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Abstract

We describe the development and implementation of a
family of non-linear filters in which the non-linear term
is given a variable recursive delay, in the context of a
search for what we term an arithmetical instrument – an
instrument whose design is founded on purely numerical
models.

Such filters are inherently unstable; we describe how
they may be controlled, not only by the careful selection
and constraining of parameters, but also by appropriate
and idiomatic performance technique. We draw compar-
isons between these filters and the behaviour of acous-
tic instruments, which typically exhibit what we call ex-
citable regions of sonic activity.

1 Introduction

Non-linear techniques are widely used in sound synthe-
sis, in the forms of a variety of modulation techniques,
among the most significant of which have been FM syn-
thesis [Chowning, 1973] and non-linear waveshaping
[Arfib, 1979][Beauchamp, 1979][LeBrun, 1979]. The
term also applies to standard signal-processing functions
such as gating and compression. In these techniques, the
non-linear behaviour is strictly controlled, and is applied
by means of linear arithmetical processes. In the case
of waveshaping and compression, for example, the non-
linearity applies to a fixed transfer function to which in-
coming samples are mapped – the mapping of input val-
ues to output values is itself a simple linear process.

In general, any signal processing algorithm which
is either time or input dependent may be classed as a
non-linear system [Reid and Passin, 1992]. Such be-
haviour is normally avoided in digital filter algorithms
because of the well-known problems of stability [Lynn
and Fuerst, 1989]. They do however find a place in non-
musical applications such as image processing [Embree
and Kimble, 1991].

Our investigations of non-linear filters arise out of
a quest for an arithmetical instrument – an instrument
which is not drawn from a physical model but which is
defined entirely by numbers. There are two primary as-
pects to any instrument – the sound generator mecha-

nism, and its environment. In the physical world, this
would apply, for example, to a set of strings, and to the
violin body on which they are mounted. Here the pri-
mary non-linear element is the string: up to a point, in-
creasing its tension will increase its fundamental rate of
vibration; beyond that point it will break. Similarly, be-
low a minimum tension it will not vibrate at all. We may
therefore describe the string as having an excitable re-
gion, only within which is it useful musically. The in-
strument as a whole has four such regions; it is not pos-
sible to perform a continuous glissando from the lowest
to the highest available notes.

The problem with conventional synthesis techniques
(from our point of view) is that they do not in general
exhibit such bounded excitable regions – a linear os-
cillator may easily be designed to span and exceed the
human audible range. Only with the development of
techniques of physical modelling drawing on aspects of
chaos theory [Rodet, 1994][Mackenzie, 1995] has the
essentially non-linear behaviour of musical instruments
(from which much of their expression derives) begun to
be realistically captured in synthesis.

Just as an instrumentalist first accepts, and then strives
to exploit and transcend the so-called limitations of their
instrument, so we in our researches are relatively un-
concerned to use mathematical artifices to overcome all
analogous limitations in a given filter; rather, we see
such limitations as features of an instrument which an
idiomatic performance technique can exploit musically.
We give one example of this below.

2 The Model

In our model, the sound source is provided by a non-
linear oscillator algorithm [Dobson and Fitch, 1995],
adapted from the simple recurrence relation of the Man-
delbrot set [Mandelbrot, 1992]:

���� � ��

��� � � (1)

This can be shown to be stable for values of � � � � �.
In extending this formula to create musically useful

waveforms we have added one or more delay elements,
leading to a recurrence relation which combines a con-



ventional linear filter with a non-linear delay:

�� � ������ � ����� � ����� � � (2)

We have found that through careful selection of coef-
ficient values, a wide range of decaying and sustained
sounds, often of richly time-varying spectral character,
can be realized. Above all, these oscillators exhibit Ex-
citable Regions, outside which they will either converge
rapidly, or exceed the bounds of their numerical repre-
sentation (in effect, they will break). Within these re-
gions, they can be forced into unexpected modes of os-
cillation, in much the same way that a wind instrument
will generate multiphonics or squeak, if played incor-
rectly or unconventionally.

We have, therefore, the first element of our arithmeti-
cal instrument. We now turn to the second element, the
environment or body, which we also wish to generate
through non-linear means. While it is possible to take a
sampled impulse response and convolve it with the in-
put signal (for example, using the new convolve unit
recently added to Csound [Vercoe, 1993], we have es-
chewed this ‘safe’ method in favour of a direct algorith-
mic implementation.

Returning to our oscillator (2), we recast this to re-
ceive an input ��:

�� � ����� � ����� � 	� �

���
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This can be described as a conventional linear Infi-
nite Impulse Response (IIR) filter combined with a non-
linear delay length 
, plus the constant term. We have
chosen to focus on the non-linear aspect; accordingly we
disregard the linear terms for the moment:

�� � 	� �

��� � � (4)

where, for stability, � � � � �, � � 	 � � (i.e. d and
C are opposite in sign, but may be of similar magnitude,
��� usually less than �	�)

The constant term � has the unavoidable side-effect
of imposing a DC component, with starting transient, on
the output. Although the filter exhibits useful behaviour
without it, we have found that the most striking effects
are dependent on its inclusion, despite the concomitant
need for a DC removal filter on the output.

Although the filter is by its nature sensitive to the in-
put, we have so far had no problems with stability so
long as the input is constrained within the range���� �
�� � ���� This is however a maximum; the chaotic be-
haviour develops rapidly as the input rises above -12dB.

It is impossible to illustrate all the distinctive be-
haviours of this filter; a fairly representative selection of
results in the frequency domain is shown in (Fig.1); in
each case the spectrum of the output given a chirp input
is shown. We have given examples which fill a large part
of the spectrum, so that the filters’ behaviour can be seen
clearly; practical filters would concentrate more of the
activity in the lower frequency ranges.
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Figure 1: Selection of spectra � � ���� 	 � ����

It will be seen that the filter exhibits distinctly comb-
like behaviour as the delay L is increased. However, un-
like the response of a linear comb filter, in which the
peaks are regular in spacing, width and amplitude, this
filter exhibits marked irregularities in all those aspects.
Some responses look remarkably like formant regions,
indicating that this filter has a distinctive set of personal-
ities, and is therefore able to provide a range of ‘bodies’
for our arithmetical instrument.

However, we consider the single most significant
property of this filter to be the fact that, whereas an input
sine wave will excite but one resonant peak of a linear
comb filter, it will excite several in this case; the filter’s
Excitable Regions will be multiply activated in a moder-
ately unpredictable way according to the characteristics
of the input. Accordingly, we call this and its derivatives
an ER filter.

We now consider briefly the inclusion of the linear fil-
ter elements according to formula (3). On their own they
form a simple resonator (band-pass), which can be con-
figured also as a low or high-pass filter. (In a practical
implementation, the coefficients � and � may be calcu-
lated conventionally, for a given centre frequency and
sample rate.)

The combination of the linear and non-linear elements
can be interpreted in two equally useful ways.

Firstly, 	 and � can be taken together as a kind of
modulation or ‘fractal’ index (whose range must clearly
reduced according to the gain of the linear filter), which,
as it increases from zero, adds a comb-like irregularity
to the linear band-pass response – the ER filter can be
‘fractalized’ dynamically. For stability the range of the
index must be reduced according to the gain of the lin-
ear filter; putting it another way, we want to leave room
for non-linear behaviour to be introduced by keeping the
linear gain within conservative levels.

We note that in this way (by always commencing the
fractal index from zero) the startup transient described
above can be obviated – this is therefore an idiomatic
performance technique for this filter. Appropriately for
this interpretation, the delay
 can be set at 3 for the clos-



Figure 2: Linear and Chaotic with low offset

est match between chaotic and linear responses (Fig.2),
or it can be set to any reasonable distance as for a comb
filter.

Alternatively, the formula can be regarded as a non-
linear comb filter with (typically) a low pass or low-
frequency band-pass linear filter on the output, serving
primarily to remove those extreme high-frequency com-
ponents which will inevitably arise from the non-linear
behaviour.

This further suggests a possible application of the ER
filter as the basis of a non-linear reverberator. Our ex-
periments with this are still at an early stage; we are not
expecting to invite any qualitative comparisonswith nor-
mal reverb (although with the interest in some commer-
cial quarters for ‘retro’ sounds such as plate and even
spring reverbs we do not dismiss the thought entirely),
rather we see this as a means to enhance the sense of the
‘size’ or ‘presence’ of our arithmetical instrument in a
manner consistent with our overall approach.

In our previous investigations of non-linear oscillators
[Dobson and Fitch, 1995], we have found that the appli-
cation of a delay offset to the second linear element led
to a new family of musically worthwhile sounds, espe-
cially when the offset is varied dynamically. Applying
the same approach to the ER filter leads to the formula

�� � ����� � ����� � 	���� ��� � �

where � � � � 


In the absence of the non-linear components this
amounts to a linear recursive comb filter, which though
unorthodox (the standard comb filter includes a care-
fully matched non-recursive delay) seems worthy of a
deeper investigation in itself. In our present context we
have noted that introduction of the non-linear compo-
nents does, somewhat to our surprise, substantially pre-
serve the linear frequency response (Fig.3). The offset
� is anti-symmetric in character; given 
 � ���, for
example, the response where � � �� is the inverse of
the response where � � �� (Fig 4).

3 Conclusion

As we have found with respect to our non-linear oscil-
lators, the ER filter exhibits a wide variety of musically
useful behaviours, any one of which invites deeper ex-
ploration. We have found it to be unexpectedly easy to

Figure 3: Linear and Chaotic Recursive Comb

control, and see it as highly amenable to a real-time im-
plementation on a DSP. It is also simple to implement in
CSound, which (especially if it can be run in real-time),
would appear to be an ideal tool with which to explore
both the ER filter and the non-linear oscillators to which
it is so closed related.
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