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Introduction

1.1. Scope

“Condensed matter physics has been surprisingly fertile in giving rise to new and

unexpected phenomena, associated very often with new ground states of the electronic system.

Many of them lurk at the fringes of interest until they are received into the Church of Physics by

baptism with a name, and the latest such addition is provided by what are now called heavy-

fermion materials”. This sentence, written by B.R. Coles [1] more than a decade ago in the

introduction of a review paper on heavy-fermion compounds, can now be used in the

introduction of this thesis by simply replacing the term heavy-fermion by non-Fermi liquid.

Landau's Fermi liquid theory has been outstandingly successful in describing the low-

temperature properties of normal and heavy-fermion metals. However, in the past decade an

increasing number of heavy-fermion systems has been reported to show strong deviations from

Fermi liquid behaviour at low temperatures. This so called non-Fermi liquid (NFL) behaviour is

generally believed to represent a new type of ground state of metals, thus challenging both

theorists and experimentalists to properly describe this new behaviour [2]. This represents the

main motivation for the work described here.

Different mechanisms leading to NFL behaviour have been proposed. Some of these

mechanisms are based on the physics of quantum phase transitions, while others are based on

local Fermi liquid descriptions. NFL materials can normally be grouped into one of these two
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classes of mechanisms. Up to now, a theoretical model which yields an universal description of

NFL behaviour is not available. Crystallographic disorder, which is present in most NFL

materials, is expected to play an important role in modelling certain types of NFL behaviour,

however its precise influence is far from being understood. The lack of a full theoretical

understanding of NFL behaviour asks for careful and detailed studies of the low-temperature

properties of heavy-fermion compounds exhibiting NFL behaviour.

In the course of this thesis work, several systems exhibiting NFL behaviour were studied.

Among them, U2Pt2In appeared to be the most interesting system and a detailed study of its

electronic, thermal and magnetic properties was carried out. Although U2Pt2In is a "difficult"

material from the metallurgical point of view, it is the first stoichiometric uranium-based

compound discovered to exhibit NFL behaviour at ambient pressure. U2Pt2In is a promising

compound to study NFL behaviour because: i) it is a stoichiometric compound, thus the physics

might not be dominated by disorder; ii) the observation of NFL behaviour at ambient pressure,

enables the use of a wide range of experimental techniques. These points, together with the

availability of samples in a single-crystalline form, yield the motivation to study U2Pt2In

extensively.

Hopefully, this thesis will serve as a reference work to NFL behaviour in heavy-fermion

compounds. No definite answer as to the origin of the observed NFL behaviour is given.

Actually, considering the state of the art of NFL physics, no definite answer can be given at

present. The experimental results presented here are discussed in terms of possible mechanisms,

yielding strong indications for collective (as in quantum criticality) or single-ion (as in local

Fermi liquid descriptions) phenomena.

1.2. Outline

Throughout this thesis, the discussion of the results runs in parallel with the presentation

and analysis of the experimental data. A general discussion of the physical properties and/or a

summary of the results is given at the end of each chapter.
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A brief introduction to heavy-fermion compounds and Fermi liquid theory, as well as an

overview of the relevant models that predict NFL properties is given in Chapter 2. In this

chapter, a short overview of materials exhibiting NFL behaviour is given as well.

A description of the experimental techniques used throughout this work can be found in

Chapter 3. As most of these experimental techniques and set-ups have been described extensively

elsewhere, the presentation is kept relatively short. However, the high-pressure technique, used

in Chapters 6 and 7, and the muon spin relaxation and rotation (µSR) technique, used in Chapters

5 and 7, are described in more detail.

In Chapter 4, an introduction to the U2T2X family of compounds is given and a Doniach

phase diagram is constructed for the families with X=In and Sn. In the case of U2Pt2In,

measurements of the magnetization, resistivity, magnetoresistance, specific heat, specific heat in

field and thermal expansion are presented, analysed and discussed. The data presented in this

chapter undoubtedly establish the NFL character of U2Pt2In.

Zero-, longitudinal- and transverse-field µSR spectra taken on U2Pt2In are discussed in

Chapter 5. These experiments served to confirm the absence of static magnetic order in U2Pt2In.

In the NFL regime, pronounced magnetic fluctuations are found.

Chapter 6 deals with resistivity measurements on U2Pt2In under hydrostatic pressure, as

well as with Th-doping studies. Results of the recovery of a Fermi liquid state in U2Pt2In under

pressure and the possible emergence of magnetic ordering in Th-doped U2Pt2In are presented.

For comparison, the suppression under pressure of magnetism in U2Pd2In was studied. A

discussion in terms of the Doniach phase diagram is given. In addition, magnetization

measurements are presented for several compounds of the U2T2X family in order to investigate

their location in the Doniach diagram.

Besides the U2T2X family, several other uranium intermetallic systems exhibiting NFL

behaviour were studied. Namely, U3Ni3Sn4 was studied by means of specific heat, resistivity

(under pressure) and µSR experiments, U(Pt1-xPdx)3 by means of µSR experiments and

URh1/3Ni2/3Al by means of resistivity measurements. The results are presented in Chapter 7 in a

collection of published (or submitted for publication) articles.

Some concluding remarks are made in Chapter 8.

Several abbreviations are introduced in this thesis. A list is presented in Table 1.1.
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Table 1.1 - List of abbreviations used in this work.

AF AntiFerromagnetism QCP Quantum Critical Point
CW Curie-Weiss QKE Quadrupolar Kondo Effect
EPMA Electron Probe MicroAnalysis RE Rare Earth
FC Field Cooled RKKY Rudermann-Kittel-Kasuya-Yosida
FL Fermi Liquid RT Room Temperature
FM FerroMagnetism SBF Symmetry Breaking Field
GPS General Purpose Spectrometer SC SuperConductivity
HF Heavy Fermion SCR Self-Consistent Renormalization
HTSC High-Temperature SuperConductivity SDW Spin Density Wave
INS Inelastic Neutron Scattering SEM Secondary Electron Microscopy
LDA Local Density Approximation SG Spin Glass
LF Longitudinal Field SMAF Small-Moment AntiFerromagnetism
LMAF Large-Moment AntiFerromagnetism SQUID Superconducting QUantum Interference Device
LTF Low Temperature Facility TCKE Two-Channel Kondo Effect
MCW Modified Curie-Weiss TEM Transmission Electron Microscopy
MORE Muons On REquest TF Transverse Field
MR MagnetoResistance XRD X-Ray Diffraction
NFL Non-Fermi Liquid ZF Zero Field
NMR Nuclear Magnetic Resonance ZFC Zero Field Cooled
OFHC Oxygen-Free High Conductivity µ-s.s. Muon Stopping Site
PSI Paul Scherrer Institute µSR Muon Spin Relaxation or Rotation

                                                
References
1. B.R. Coles, Contemp. Phys. 28 (1987) 143.
2. Proc. ITP Conference on Non-Fermi Liquid Behaviour in Metals, Santa Barbara, 1996, in J.

Phys.: Condens. Matter 8 (1996) 9675 ff.



Non-Fermi liquid behaviour in

heavy-fermion compounds

2.1. Heavy-fermion compounds and Fermi liquid theory

Heavy-fermion (HF) systems are predominantly found in cerium and uranium compounds

where the 4f- and 5f-electron states are relatively close to the Fermi level. Near room temperature

(RT), the f-moment sublattice has properties resembling those of weakly (Curie-Weiss)

interacting magnetic moments. The electronic transport properties are dominated by incoherent

scattering of the conduction electrons by the local moments. As the temperature is lowered,

local-moment behaviour gives way to electronic properties that are consistent with those of a

narrow band of conduction electrons. The crossover temperature is the coherence temperature

Tcoh.

In Landau's theory of Fermi liquids (FL), a one-to-one mapping of non-interacting electron

states to interacting electron states is assumed close to the Fermi energy. If the interactions are

turned adiabatically, the states can be described in terms of quasiparticles, which have an

enhanced effective mass due to interactions with other quasiparticles in the surrounding medium.

At sufficiently low temperatures (much lower than the Fermi temperature), a useful tool to

describe the thermodynamic properties of a system with itinerant electrons is the effective mass
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of the electrons. In normal metals, the effective mass m* is of the order of the free-electron mass

me, while in heavy-fermion systems m* can attain values as large as 103 me.

A single quasiparticle has an energy

)( F
F

2
0

*2
k

m
k

−=ε kk
�

  , (2.1)

where k is the wave-vector and kF = (3π2ρe)1/3 is the Fermi wave-vector (ρe is the number of

electrons per unit volume). This expression defines the effective mass m*. When a quasiparticle

is added to the system, it will have an energy
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where Ω is the volume of the system and f(k,k') is the quasiparticle interaction function. From

this, it follows that the energy of the added quasiparticle is not just the bare quasiparticle energy

εk
0, but also depends on the presence of other quasiparticles. δn(k)=1 represents an excited

quasiparticle and δn(k)=-1 an excited quasi-hole. Notice that k denotes (k,σ) with σ the spin index

(↑  or ↓). The function f(k,k') can be transformed into spin-symmetric and spin-antisymmetric

functions:
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A restriction of the Fermi-liquid theory is that all involved particles have a momentum very

close to the Fermi surface: |k| ≈  |k'| ≈  kF. The f a,s functions can then be expanded in a series of

Legendre polynomials PL:

∑
∞

=

θ=′
0

sa,sa,

L
LL Pff )(cos),( kk (2.4)

with cosθ = (k⋅⋅⋅⋅ k')/kF
2. A dimensionless form of the coefficients fL

a,s is given by the Landau

parameters

sa,
22
Fsa, *F LL fkm

�π
=   . (2.5)

The thermodynamic and response functions of the electronic liquid can now be calculated

and shown to be smooth functions of temperature. The density of states at the Fermi energy is

given by
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22
F*0

�π
=

kmN )(   , (2.6)

where the effective mass of the quasiparticles m* is related to the bare mass me by a symmetric

Landau parameter
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F
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The temperature independent Pauli susceptibility has the form

a
0
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with F0
a an antisymmetric Landau parameter. χ is enhanced with respect to the Pauli

susceptibility of the non-interacting system by a factor m*/me(1+F0
a).

The specific heat cV in the FL theory is given by

2

2
BF

3
*
�

kkm
T
cV =γ=   , (2.9)

which is enhanced with respect to the specific heat of the non-interacting system by a factor

m*/me. Therefore, the specific-heat coefficient gives direct information about the effective mass

m*. The Wilson ratio RW relates the Pauli susceptibility to the electronic specific-heat coefficient

a
0

2
B0

2
B

2

W F1
1

3
R

+
=

γ
χ

µµ
π

=
k

  . (2.10)

In the case of a non-interacting system, RW = 1.

The electrical resistivity behaves as

2
0 AT+ρ=ρ   , (2.11)

where ρ0 is the residual resistivity due to impurities and defects and A is a constant.

The FL theory gives a good description of the low-temperature properties of metals (above

any magnetic or superconducting transition). In heavy-fermion compounds, the high-temperature

local-moment behaviour gives way to a low-temperature coherent state where the FL theory is

valid with a strongly enhanced effective mass m*. The specific heat, susceptibility and resistivity

follow the temperature dependencies c(T) = γT, χ(T) = const and ρ(T) = ρ0+AT 2, respectively.

Values of the Wilson ratio in the range 2-5, as normally found in HF systems, can be accounted

for by a negative Landau parameter F0
a. The coefficient A is related to γ  by the empirical

Kadowaki-Woods relation: A/γ2 ~ 10 µΩcmK2mol2J-2 [1].
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Within the FL theory, spin fluctuations in the HF system give rise to a correction term in

the specific heat of the form c(T) = γT + δT 3ln(T/T*), where T* is a characteristic spin-

fluctuation temperature.

Most HF compounds exhibit the Kondo effect [2], manifested in measurements of the

electrical resistivity from room temperature down to low temperatures. The Kondo Hamiltonian

describes the exchange interaction of a single magnetic impurity (with spin S) with a conduction

electron (with spin s):

ℋ Ss ⋅−= J2   . (2.12)

For a negative coupling parameter J, the impurity spin is completely compensated at low

temperatures and a Kondo singlet is formed. As a result, the resistivity obeys a -ln(T/TK)

behaviour. The binding energy of a Kondo singlet is






 −∝
)(

exp
)( 0

1
0

1k KB JNN
T   . (2.13)

HF materials may be considered as Kondo lattices with a periodic array of magnetic "impurities".

In Kondo lattices, scattering at low temperatures may be coherent, resulting in a fast drop of the

resistivity (as the temperature is lowered) and a T 2 behaviour at the lowest temperatures. In

general, the compensation of the f-moments by means of the Kondo effect leads to the formation

of a non-magnetic ground state.

On the other hand, antiferromagnetic interactions between the f-moments are provided via

the conduction electrons by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction. This

interaction tends to form a magnetic ground state in HF systems. The energy associated with the

RKKY interaction is

)(0k 2
RKKYB NJT ∝   . (2.14)

Considering the scales defined by TK and TRKKY, Doniach proposed that the low-

temperature ground state of the system is a direct consequence of the competition between the

Kondo scattering and the RKKY interaction [3]. A (Doniach) phase diagram can then be

constructed (Figure 2.1) i. Heavy-fermion compounds are in general located close to the magnetic

                                                
i Strictly speaking, the Doniach phase diagram is of the form T/W versus J/W. However, for HF compounds and close
to the magnetic instability, external parameters like pressure and doping will more effectively influence the
exchange-coupling parameter J than the bandwidth W. Therefore, and also for simplicity, T(J) diagrams will be used
throughout this work.
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instability, where the competition between the Kondo effect and the RKKY interaction is most

important.

HF

Jc J

magnetic
FL

TK ~ e-1/|J|TRKKY ~ J2

T

Figure 2.1 - Doniach phase diagram (FL = Fermi liquid, HF = heavy fermion). The dotted lines
represent TRKKY and TK. The full line represents the ordering temperature and the dashed
line the temperature below which FL behaviour is attained.

Reviews on heavy-fermion compounds are given in Refs. 4 and 5. The Fermi-liquid theory

is extensively described in Refs. 6 and 7.

2.2. Non-Fermi liquid behaviour

During the past decade, a new class of heavy-fermion systems that exhibit strong

deviations from Fermi-liquid theory has attracted much interest [8]. These non-Fermi liquid

(NFL) materials are U-, Ce- and Yb-based intermetallics that, with a few exceptions, have been

doped with a non-magnetic element. The main macroscopic properties related to NFL behaviour

are a diverging specific heat divided by temperature (c/T ~ -ln(T/T0) or c/T ~ γ0-αT 1/2), a
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diverging magnetic susceptibility (χ ~ 1-bT β or χ ~ -ln(T/T0)) and a non-quadratic electric

resistivity (ρ ~ aT α with α < 2 and a can be positive or negative).

The divergency of c/T is the hallmark of NFL behaviour. Within the FL theory, a

temperature dependent coefficient γ  that diverges as T→0 would imply a diverging density of

states at the Fermi level. Therefore, FL theory cannot be applied in its simple form. This is why

the name non-Fermi liquid was fist given to this behaviour. Nevertheless, in some cases, models

based on a local FL description can account for this new behaviour.

At present, no theoretical models are at hand which yield an universal description of NFL

behaviour. However, a common starting point may be found in the physics of quantum critical

points. This results from the recognition that NFL properties emerge at or close to the magnetic

instability in a typical Doniach phase diagram for HF compounds (Figure 2.2).

NFL

Jc J

magnetic

FL

T

Figure 2.2 - NFL region close to a magnetic instability for HF systems.

Within the Doniach phase diagram, magnetism vanishes when the single-ion Kondo

scattering becomes more important than the RKKY interaction. In renormalization group

language, antiferromagnetism (AF) and FL behaviour can be considered as two competing fixed

points. As the temperature is lowered, the system evolves from the high-temperature local-

moment behaviour to one of these fixed points, as represented in the flow diagram in Figure 2.3.

The trajectories represented correspond to different values of TK/TRKKY. When a material is tuned

to the critical value of TK/TRKKY, it is forced to evolve to the quantum critical point (QCP) [9].
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The existence of an antiferromagnetic QCP implies that the two fixed points (AF and FL) are

linked by a new unstable fixed point. For a wide range of materials, TK/TRKKY is close to its

critical value. These materials will evolve towards the FL or AF fixed points, passing close to the

new fixed point. Over a large temperature range their properties, excitations and interactions will

be dominated by the physics of this QCP.

Figure 2.3 - Schematic flow diagram for the Kondo lattice. Taken from Ref. 9.

However, since a number of f-systems exhibiting NFL properties does not seem to be at a

QCP, other models have been put forward in order to describe the microscopic mechanisms that

lead to NFL behaviour. Single-ion Kondo models have been applied, with relative success. Also

models have been proposed where disorder plays a crucial role, as a number of NFL systems are

chemically-substituted or diluted compounds and, therefore, disordered.

The most relevant routes that have been proposed to lead to non-Fermi liquid behaviour in

f-electron systems are:

i) a two-channel Kondo effect [10], where the f-electron impurity spin is overscreened by the

spins of the conduction electrons, giving rise to an antiferromagnetic superexchange interaction

with electrons off the impurity site (see Section 2.3.1);

ii) a distribution of Kondo temperatures [11], where the Kondo effect on each f-electron impurity

sets a different temperature scale, resulting in a broad range of effective Kondo temperatures;

averaging over such a distribution gives rise to thermodynamic properties which follow the NFL

expressions (see Section 2.3.2);
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iii) a proximity to a QCP [12], where a magnetic or superconducting phase transition occurs at

T = 0 K (either spontaneously or the transition might be tuned to 0 K by an external parameter,

like hydrostatic or chemical pressure); here, the thermodynamic properties are determined by

collective modes corresponding to fluctuations of the order parameter in the vicinity of the

critical point (see Section 2.3.3);

iv) a Griffiths phase model [13] where, due to disorder, magnetic clusters appear in the

paramagnetic phase close to a QCP (see Section 2.3.4).

NFL properties have also been found in d-transition-metal systems. For instance, NixPd1-x

has a ferromagnetic QCP at x = 0.025 [14]. The specific heat, resistivity and magnetic

susceptibility strongly deviate from the standard FL behaviour and can be fully accounted for by

a proximity to a ferromagnetic QCP (see Section 2.3.3).

NFL behaviour may also be found in one-dimensional (1D) systems, where it is described

theoretically by the Luttinger liquid model [15]. In these 1D systems, the electron-electron

interaction is much stronger than in a FL, which may lead to spin-charge separation [16].

Quantum wires [17] and some organic 1D conductors [18] have been described as Luttinger

liquids.

The normal state of high-Tc cuprates is also known to exhibit properties that deviate

strongly from FL behaviour. A so-termed marginal-Fermi liquid model [19] has been proposed

as a phenomenological approach to the behaviour of high-temperature superconductors. Here, it

is assumed that the spin and charge susceptibilities have an unusual form, in that they are

approximately momentum independent and vanish linearly in ω/T for low frequencies. In

contrast, spin and charge of a FL are strongly momentum dependent and have a low-frequency

behaviour that becomes independent of temperature as T→0. This assumption gives rise to a

scattering rate linear in temperature and an effective mass that diverges logarithmically as the

Fermi energy is approached.
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2.3. Routes to non-Fermi liquid behaviour

2.3.1. Multichannel Kondo effect

As mentioned before, within the usual single-channel Kondo effect, the physics of an f-

electron system can be described by a local version of Landau's FL theory [20]. However, a

simple modification of this model can produce NFL behaviour: the multichannel Kondo effect

[10].

In the overcompensated multichannel Kondo model, M identical spin-½ conduction bands

exchange-couple to a single-impurity spin SI with the condition M/2 > SI, so that there are more

conduction spins than needed to fully compensate the impurity.

In the simplest case of the SI=½ two-channel Kondo effect (TCKE) [21], the impurity spin

is overcompensated by the presence of two conduction spins ½. The resulting spin of the ground

state will be ½ and an antiferromagnetic superexchange will be generated with electrons off the

impurity site. In renormalization group language, the kinetic energy introduced by this

superexchange interaction makes the strong-coupling (J→∞) fixed point unstable, since at this

fixed point the kinetic energy is zero. This maps the effective model back to the weak-coupling

(J=0) limit. However, the weak-coupling fixed point is unstable due to the Kondo effect. Thus

both weak- and strong-coupling limits are unstable. Therefore, a non-trivial fixed point at

intermediate coupling must exist [22].

This non-trivial fixed point gives rise to a degenerate ground state and a NFL energy

spectrum. The extra specific-heat coefficient and spin susceptibility per mole of impurity diverge

for T→0 as [23]

B
bT
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A

T
Tc ′+
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−=
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ln)( (2.15a)

KK
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T
T

χ

−χ ln~)(   , (2.15b)

where A ' = 0.251R, b = 0.41, bχ is of the order of 1 and B ' is a temperature independent

electronic or crystal-field background in c/T. The resistivity, on the other hand, behaves as [24]
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where a is of the order of 1. However, while the logarithmic divergence of c/T and χ appears for

T < 0.5TK, ρ ~ 1-aT 1/2 should be observable only for T < 0.05TK [10]. In the intermediate

temperature range 0.05TK < T < TK, ρ ~ 1-aT.

The two channels of conduction spin and the impurity have an effective spin ½. Therefore,

the degeneracy of the impurity spin is never lifted, unlike in the ordinary Kondo problem. This

residual degeneracy manifests itself in a net residual entropy of ½Rln2 per mole impurity. This

residual entropy can be recovered by e.g. an external magnetic field [10], which will lift the

degeneracy.

For the quadrupolar multichannel Kondo effect (QKE) [25], where the electrical

quadrupolar moment of the f-ion interacts with the conduction electrons and their spins provide

the two channels, the susceptibility does not diverge logarithmically but as
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with b ' ~ 1.

2.3.2. Kondo disorder model

A distribution of Kondo temperatures TK can arise if a material has large disorder. Around

each single magnetic impurity, antiferromagnetically coupled to conduction electrons (assuming

an effective spin-½ impurity magnetic moment), the Kondo effect will occur at a different value

of TK. Averaging over such a distribution can produce thermodynamic and transport properties

with NFL-like dependencies due to the broad range of effective Fermi temperatures. Essentially,

the unquenched moments contribute to the NFL physics.

In this scenario, a NFL state is generated as a consequence of the interplay of disorder and

strong correlations. The main idea of this model is that moderate bare disorder in a lattice model

of localized moments is magnified due to the strong local correlations between the f-moments

and the conduction electrons. In particular, a broad distribution of local energy scales (Kondo

temperatures) is generated. A few local sites with very low Kondo temperatures are unquenched
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at low temperatures and dominate the thermodynamics and transport, giving rise to a dilute gas

of low-lying excitations above the disordered metallic ground state. The presence of these

unquenched moments leads to the formation of a NFL phase [11].

In UCu5-xPdx (x = 1, 1.5), Cu NMR studies revealed the presence of a strong

inhomogeneous broadening of the NMR line width [26]. This broadening can be explained

within the Kondo disorder model assuming a collection of completely uncorrelated spins, each

coupled to the conduction-electron bath by a Kondo-coupling constant N(0)J, which is allowed to

be randomly distributed in the sample. This distribution is supposed to originate from the local

disorder induced by Pd substitution at the Cu sites. The thermodynamic response is then

calculated by taking an average over the response of a single Kondo spin with a distribution of

coupling constants. Because of the exponential dependence of TK on N(0)J, a broad distribution

of Kondo temperatures results, as shown in Figure 2.4.

Figure 2.4 - Distribution of Kondo temperatures in UCu4Pd (dashed line) and in UCu3.5Pd1.5 (dotted
line). The shaded area below T represents the low-TK spins which remain unquenched at
that temperature. Taken from Ref. 11.

The Kondo disorder model also leads to an incoherent nature of the transport properties

with sufficient disorder strength. Due to local Kondo physics at each f-site, the effective disorder

generated from a bare distribution of local f-shell parameters is strongly renormalized up to

scales of the order of the conduction electron bandwidth. Although clean systems have low

resistivities due to the onset of coherence at low temperature, moderate amounts of f-element
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disorder are capable of destroying this low-temperature coherence, leading to characteristic

incoherent Kondo scattering behaviour.

The predictions of the model for the specific heat, susceptibility and resistivity are [11]

( )0TTTTc /ln~)( − (2.17a)

( )0TTT /ln~)( −χ (2.17b)

aTT −ρ 1~)(   . (2.17c)

2.3.3. Proximity to a quantum critical point

A quantum critical point (QCP) occurs when a critical point such as that associated with a

ferro- or antiferromagnetic transition is tuned to T=0 by some external parameter δ, such as

pressure or dopant concentration. At the QCP (δ=δc), the low-temperature thermodynamics is

determined by collective modes corresponding to fluctuations of the order parameter, rather than

by single-fermion excitations as in a FL. Therefore, NFL properties arise. NFL behaviour can

also occur near quantum spin-glass [27] or superconducting [28] transitions.

Like its finite-temperature counterpart (thermal or classical phase transition), a quantum

phase transition is characterized by a diverging correlation length ξ  and a diverging relaxation

time ξ τ . However, the critical fluctuations that lead to these diverging length and time scales are

quantum fluctuations rather than thermal ones. Contrary to the situation for a classical critical

point, the dynamic and static behaviour of a QCP are coupled together. A system at a QCP will

be affected in the same way by either a finite frequency or a finite temperature. The system is

characterized by the dynamical scaling exponent z that describes the divergence of ξ τ . The value

of z affects strongly the static critical behaviour [29]. The dynamical exponent z takes the value

of 2, 3 and 4 for an antiferromagnet, a clean ferromagnet and a dirty ferromagnet, respectively. A

d-dimensional quantum system is related to a classical one with an effective dimension

deff = d+z.

When studying the effect of non-zero temperatures on the QCP in itinerant-fermion

systems using renormalization-group theory, the diagram of Figure 2.5 applies [12,30]. Different

regions close to the QCP must be considered. Region I is the disordered quantum regime where
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the FL picture applies, region II is the perturbative classical regime and region III is the classical

Gaussian regime. The different regimes are separated by the lines

( ) 2
cI

/~ zT δ−δ (2.18a)

( ) )/(~ 2
cII

−+δ−δ zdzT (2.18b)

( ) )/(~ 2
cm

−+δ−δ zdzT   . (2.18c)

Figure 2.5 - Phase diagram of the temperature versus the control parameter δ. Region I is the
disordered quantum regime, region II is the perturbative classical regime and region III
is the classical Gaussian regime. The lines TI, TII and Tm are defined in the text. After
Ref. 12.

Calculations of the specific heat give the same expressions for regions II and III, while the

correlation length ξ  is the same for regions I and II. For the classical regime, i.e. just above the

QCP, and for d = 3 the specific heat and resistivity near an antiferromagnetic (z = 2) QCP have

the temperature dependencies

21
0

//)( TTTc α−γ= (2.19a)

23 /~)( TTρ   , (2.19b)

while for a ferromagnetic (z = 3) QCP,

( )0TTTTc /ln~/)( − (2.20a)

35 /~)( TTρ   . (2.20b)



Chapter 224

The same predictions are obtained within the self-consistent renormalization (SCR) theory

of spin fluctuations [31]. The SCR theory takes into account the couplings among the different

modes of spin fluctuations in a self-consistent way. Although initially developed for itinerant d-

electrons, the theory can be modified to nearly localized f-electron systems [32]. It assumes that

around the magnetic phase boundary there are weakly and nearly ferro- and antiferromagnetic

regimes with various anomalous properties, which are predominantly due to exchange-enhanced

spin fluctuations. Within this theory, the d=3 predictions for c(T) and ρ(T) are the same as in

equations 2.19 and 2.20. The pressure dependence of TN or TC is also the same as in equation

2.18c. However, at very low temperatures, c(T) and ρ(T) should attain temperature dependencies

as in the FL theory.

A phenomenological description of NFL systems at a QCP [27] gives the following scaling

relations of the magnetization and specific heat:
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where f(x) and g(x) are non-singular functions. These scaling relations can also be applied to a

field-induced QCP by replacing B and c(0,T) by ∆B = B-Bc and c(Bc,T), respectively [33].

Another type of QCP, that has been considered theoretically, is the quantum Lifshitz point

[34]. A "classical" Lifshitz point is a critical point that, in addition to the onset of magnetic

ordering, is characterized by the disappearance of stiffness in one or several directions, i.e., a

tricritical point where a disordered phase, a spatial uniformly ordered phase and a spatially

modulated ordered phase meet [35]. In the quantum Lifshitz point model, NFL behaviour occurs

in the classical Gaussian region near a quantum Lifshitz point in a three-dimensional itinerant

antiferromagnet. The Néel temperature is predicted to follow the pressure dependence

54
cN

/)(~ PPT −   . (2.22)

The specific heat coefficient and resistivity are predicted to vary as

41/~/)( TTTc (2.23a)

45 /~)( TTρ   . (2.23b)

Although no NFL system has been found to obey these relations, the concept of loss of

stiffness near a QCP might have its relevance in systems like CeCu6-xAux [36].
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Reviews on quantum critical points are given in Refs. 37-40.

2.3.4. Griffiths phase model

Another model, proposed recently, takes into account the effects of disorder near a

quantum critical point. In the Griffiths phase model [13], the presence of disorder is considered

to lead to the coexistence of a metallic paramagnetic phase and a granular magnetic phase. These

coexisting phases are equivalent to the Griffiths phase [41] of a dilute magnetic system.

The "classical" problem of a Griffiths phase occurs in a lattice of magnetic atoms diluted

with non-magnetic atoms. Long-range order is lost at the percolation threshold when the last

infinite cluster of magnetic moments ceases to exist. Above the threshold, the system is

composed of finite clusters of magnetic atoms. When a magnetic field is applied to the

percolation lattice, there is a non-analytic contribution from rare large clusters to the free energy

[41].

For the Griffiths phase model for NFL compounds, a similar picture can be drawn. Two

electronic liquids coexist: in one of them, the magnetic moments are quenched by the Kondo

interaction, giving rise to a FL, while the other is dominated by the RKKY interaction giving rise

to ordered regions. This inhomogeneous situation is energetically favoured by disorder, due to

the entropy contribution to the free energy.

For a generic magnetic HF compound, which exhibits a QCP upon alloying, a phase

diagram can be constructed within this model. For small amounts of doping, the RKKY

interaction dominates and the system orders magnetically. With increasing doping, the quantum

fluctuations grow due to the Kondo effect and the critical temperature decreases until it vanishes

for the critical value of doping. At this QCP, the system percolates. For larger values of doping,

i.e. in the paramagnetic phase, only finite clusters of magnetic atoms can be found. Among these

clusters, there are some rare ones that are large and strongly coupled, in which the spins behave

coherently as a giant spin or a magnetic grain. In this phase, the thermodynamic functions show

essential singularities with strong effects at low temperatures. The specific heat coefficient and

the static susceptibility diverge as

λ+−1TTTc ~)( (2.24a)

λ+−χ 1TT ~)( (2.24b)
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with λ  < 1. Notice that λ  = 1 corresponds to the FL expressions. The parameter λ  also

characterizes the temperature dependence of the mean square deviation of the susceptibility due

to the distribution of susceptibilities in the system and of the non-linear static susceptibility, as

well as the frequency dependencies of the local susceptibility and the NMR relaxation rate [13].

In general terms, within the Griffiths phase model, the NFL behaviour can be observed

over an extended region in the paramagnetic phase next to a QCP (Figure 2.6).

Figure 2.6 - Phase diagram for the Griffiths phase model. δ denotes a control parameter like doping
concentration or pressure. Taken from Ref. 42.

2.4. Magnetotransport in nearly antiferromagnetic metals

A magnetotransport theory has recently been developed to explain the transport properties

of NFL compounds near an antiferromagnetic QCP [42,43]. Under such conditions, the low-

energy excitations of a HF system below a characteristic temperature TK (see Figure 2.7a) can be

assumed to be due to heavy quasiparticles and their collective excitations. The resistivity near the

QCP is then determined by scattering of quasiparticles by spin fluctuations. These scattering

processes are most important near hot lines, i.e. points on the Fermi surface connected by the
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magnetic ordering vector Q. In the remaining cold regions, inelastic scattering is weak (Figure

2.7b).

Figure 2.7 - (a) Phase diagram for an antiferromagnetic QCP. (b) Fermi surface with hot lines where
scattering is enhanced - Q is the ordering vector of the AF phase. Taken from Ref. 42.

The theory presented in Ref. 42 predicts the behaviour of the resistivity and

magnetoresistance of compounds in the paramagnetic phase near an antiferromagnetic QCP.

Considering that spin fluctuations are destroyed at the temperature scale Γ , where Γ  is typically

of the order of Tcoh or TK, the resistivity is universal for t < x1/2 and r < 1 in the scaling limit

t,x,r → 0 and t/x,r/x → const, where t = T/Γ  measures the temperature, x = ρ0/ρM ≈  1/RRR

measures the amount of disorder and r ∝  δ-δc measures the distance to the QCP in the

paramagnetic phase. Here, ρ0 is the residual resistivity, ρM is a typical high-temperature (t ~ 1)

resistivity value, δ is a control parameter like pressure and δc is its critical value.

Three different regimes are predicted for the resistivity ∆ρ = ρ - ρ0 :
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For three dimensions (d = 3), the diagram of Figure 2.8 results with
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The temperature ranges where the different regimes occur depend on the amount of

disorder in the system. In the very dirty limit x → 1, region II is not observed, i.e. no ρ ~ T regime

occurs. Regions I (ρ ~ T 3/2) and III (ρ ~ T 2) extend over large ranges in this limit and therefore

are called the disorder-dominated regime and the disorder-dominated FL regime, respectively.

The ρ ~ T 3/2 behaviour predicted by the theories of Millis [12] and Moriya [32] for the AF

QCP (see Section 2.3.3) is only observed in a small region close to the QCP. For very clean

systems, this behaviour will only be observed at ultra-low temperatures. In the immediate

vicinity of the QCP, the scattering process at the hot lines is short-circuited by quasiparticles at

the remaining cold regions of the Fermi surface giving way to T 2 behaviour.

In region IIB (see Figure 2.8), the thermodynamic functions show FL characteristics,

although the resistivity rises linearly with temperature.

Figure 2.8 - Resistivity scaling regimes for a compound near an antiferromagnetic QCP (d = 3). t
measures the temperature, x the amount of disorder and r the distance from the QCP in
the paramagnetic phase. After Ref. 42.
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In the presence of a magnetic field, the resistivity near a QCP is influenced by spin and

orbital effects. The spin contribution typically suppresses the antiferromagnetic order. In the

paramagnetic phase, AF fluctuations will be suppressed. Within the diagram of Figure 2.8, this

corresponds to an increase of r (the distance to the QCP). The suppression of the fluctuations

reduces the amount of scattering and the resistivity drops. Therefore, a negative

magnetoresistance is expected. Due to the orbital effects, the resistivity increases in field. This

positive magnetoresistance originates because B smears out the quasiparticle distribution,

minimizing the effect that cold regions short-circuit the hot lines.

The field dependence of the resistance due to the orbital effects is different for the different

regions in Figure 2.8. Defining b = B/B0, where B0 is the typical magnetic field necessary to

observe Shubnikov-de Haas oscillations at t = 1, the following dependencies have been predicted

[43]:
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with gt,x,r = max[xr1/2, t1/2xe-x/4t];

− region II (clean systems)
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with ht,r = min[t3/2, t2r-1/2];

− region III (disorder-dominated FL regime)
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Therefore, this theory predicts a magnetoresistance with an initial B 2 behaviour and a crossover

towards a linear dependence in B before saturation. In the disorder-dominated FL regime (region

III), ∆ρ ~ B is not observed. Besides this positive orbital contribution to the magnetoresistance,

spin effects give a negative magnetoresistance in all regions.

2.5. Examples of non-Fermi liquid compounds

A characteristic of most (but not all) HF compounds exhibiting NFL behaviour is the

presence of a QCP in the phase diagram. For the majority of the known NFL compounds, the

QCP is reached by changing the composition. This introduces disorder in the system and its

effect on the critical behaviour may be crucial. A distinction can be made between systems where

the 4f- or 5f-atom is partially substituted and systems where the ligand configuration is changed.

In the first case, a "Kondo hole" introduced by dilution may lead to substantial scattering and loss

of coherence, while in the second case the f-atoms may experience different local environments

and possibly different local Kondo temperatures. Therefore, even though a QCP is present in the

phase diagram, the mechanism responsible for the NFL behaviour might be of the single-ion type

like Kondo disorder or a multichannel Kondo effect.

NFL properties are also found in a few stoichiometric compounds. The advantage of

stoichiometric compounds is that the role of disorder may not be dominant. Usually, hydrostatic

pressure can be applied in weakly magnetic HF compounds in order to reach the QCP. Examples

of stoichiometric compounds with NFL properties at ambient pressure are U2Pt2In [44],

CeNi2Ge2 [45] and YbRh2Si2 [46]. Evidence for NFL has also been found in the normal state of

CeCu2Si2 [47], which has a complex phase diagram with competition between magnetism and

superconductivity, which relates to an intricate metallurgy.

One of the best studied NFL systems is CeCu6-xAux [48]. CeCu6 is a non-magnetic HF

compound with intersite antiferromagnetic fluctuations, as was shown by inelastic neutron-

scattering experiments. The low-temperature properties are characteristic of a FL. Upon alloying

with Au, the lattice expands. This leads to a decrease of the hybridization between the 4f-orbitals

and Cu 3d-orbitals and, therefore, to a decrease of the exchange interaction J. For x > 0.1, RKKY
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interaction between the localized moments leads to antiferromagnetic order. At the critical

concentration, xc = 0.1, NFL behaviour is observed (Figure 2.9). Applying pressure has an effect

opposite to Au substitution. The antiferromagnetic phase (x > 0.1) can be tuned to TN=0 by

pressure: e.g. pc = 0.41 GPa (= 4.1 kbar) for x = 0.2 and pc = 0.82 GPa for x = 0.3. At these

pressure values NFL behaviour is observed, as demonstrated by the logarithmic divergence of the

specific heat shown in Figure 2.9. Above the critical-pressure value, FL behaviour is recovered.

Inelastic neutron-scattering studies on CeCu6-xAux have revealed the presence of quasi 2-

dimensional (2D) magnetic critical fluctuations coupled to quasiparticles with 3D dynamics for

x = 0.1 [36]. These 2D fluctuations can be viewed as precursors to the 3D ordering for x > 0.1.

Further support for a 2D character of the critical fluctuations is provided by the fact that the

temperature dependencies of the specific heat and the resistivity of CeCu5.9Au0.1 are in agreement

with the predictions for a 2D antiferromagnetic QCP: c/T ~ -ln(T/T0) and ρ ~ T [12]. Also the

dependencies of TN on the pressure and the Au content are consistent with a 2D AF QCP:

TN ~ |δ-δc|.

Recent inelastic neutron-scattering experiments on single crystals of CeNi2Ge2 also provide

evidence for anisotropic magnetic correlations with a quasi-2D character [49].

Figure 2.9 - Specific heat of CeCu6-xAux (x = 0.1, 0.2, 0.3) plotted as c/T versus logT for different
pressure values. The sharp kinks indicate TN, while the logT behaviour is characteristic
of a NFL. For x = 0.1 and p = 6 GPa, the FL is restored. Taken from Ref. 48.

Besides pressure and doping, an external magnetic field can also act as a control parameter.

In many NFL compounds, the specific heat and the resistivity display a tendency towards FL
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behaviour under the influence of a magnetic field. In magnetic systems like CeCu5.2Ag0.8, where

TN = 0.7 K, a magnetic field decreases the Néel temperature and NFL properties are observed at a

critical field value of 2.3 T where TN→0 [33].

A very interesting aspect of the tuning of TN by pressure is that superconductivity might

occur near pc. Strong evidence for magnetically mediated superconductivity has been found in

systems like CePd2Si2 and CeIn3 with an unconventional normal state of the NFL type. CePd2Si2

is an antiferromagnet with TN = 10.5 K. Upon applying pressure, TN drops to below 1.6 K around

2.5 GPa (Figure 2.10). TN extrapolates to zero at pc = 2.7 GPa (= 27 kbar) if the linear TN(p)

dependence is assumed to continue. Around this critical pressure, superconductivity appears with

a maximum transition temperature, Tc = 0.6 K, for p=pc. The superconducting phase extends

almost symmetrically to ± 0.5 GPa around pc [50]. The normal state, above the superconducting

phase, exhibits NFL behaviour. The superconductivity observed at the edge of magnetic order in

NFL compounds like CePd2Si2 is restricted to high-quality samples. A possible explanation for

this is that the attractive magnetic interactions are strong enough to overcome competing

interactions and create Cooper pairs. In other words, the superconducting state appears to be

magnetically mediated, with the charge carriers held together in pairs by a "magnetic glue" [50].

Traces of superconductivity have also been found in high-purity single crystals of CeNi2Ge2 at

ambient pressure [45].

Figure 2.10 - T-p phase diagram of CePd2Si2. For clarity, the values of Tc have been scaled by a factor
3. Inset: ρ versus T 1.2 for p = 2.8 GPa. Taken from Ref. 50.
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Recently, much attention has been devoted to Yb compounds. The physics of Yb and Ce

systems are comparable due to an electron-hole analogy: the missing 4f-electron in the 4f 13

configuration of Yb3+ can be interpreted as the presence of a 4f-hole, in analogy to the 4f 1

electron in Ce3+. Accordingly, Yb systems respond to doping and pressure in reverse with respect

to Ce systems. For instance, pressure may drive Yb compounds towards the magnetic regime,

crossing the QCP from the non-magnetic side, while in Ce compounds the opposite effect is

observed. Another important property is the valence of the Yb ion: divalent Yb (4f 14

configuration) is non-magnetic, while trivalent Yb (4f 13) is magnetic. Proper substitutions of the

ligand atoms in an Yb system may induce a crossover from the divalent to the trivalent state,

hence inducing a crossover from a non-magnetic to a magnetic compound. This occurs e.g. in the

system YbCu5-xAlx, where a gradual change of the valence of Yb is observed with increasing Al

content x: non-magnetic Yb(4f 14) for x=0 and magnetic Yb(4f 13) for x = 2. A quantum critical

point occurs for x = 1.5, where NFL properties are observed [51].

Many attempts have been made to group all NFL heavy-fermion compounds in one

universal class. However, there does not seem to be a single and uniform picture of the

mechanism responsible for NFL behaviour. One striking example of this diversity is the system

U1-xMxPd2Al3 with M = Th or Y. UPd2Al3 is a well known HF compound with coexistence of

antiferromagnetism and superconductivity. Upon Th doping (x < 0.2), TN decreases only slightly

and Tc→0 at x ~ 0.1. This small decrease suggests that U is tetravalent, just like Th, in

U1-xThxPd2Al3 for 0 ≤ x < 0.2 [52]. As the Th content increases further, a crossover region

(0.2 < x < 0.4) occurs where neither antiferromagnetism nor superconductivity has been

observed. For x > 0.6, NFL behaviour is observed. The NFL characteristics of ρ, c and χ scale

with x and TK, indicating that a single-ion mechanism could be responsible for the NFL. No QCP

seems to be present in the T-x diagram. On the other hand, the T-x diagram of the U1-xYxPd2Al3

system is remarkably different. Upon Y doping, TN decreases rapidly and Tc=0 for x ~ 0.03. NFL

behaviour occurs around the QCP at xc = 0.7, where TN vanishes. The characteristics of ρ, c and

χ are consistent with cooperative phenomena arising from fluctuations related to magnetic order

above the QCP [52]. Therefore, substitutions with Y3+ or Th4+ lead to NFL regimes associated

with different mechanisms: single-ion for Th and cooperative for Y.

NFL properties have been observed in many other systems. A list of some representative

HF compounds exhibiting NFL behaviour is given in Table 2.1. Recent reviews are given in

Refs. 8, 47, 48 and 51.
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Table 2.1 - List of some HF compounds exhibiting NFL properties. References to most recent and
general papers are given (for the original works see references therein).

compound /
system

conditions
for NFL

notes Ref.

YbRh2Si2 - 46
CeNi2Ge2 -    traces of superconductivity 45
U2Pt2In - 44
Ce7Ni3 p=0.4 GPa    intrinsic crystallographic disorder 53

CePd2Si2 p=2.7 GPa    superconductivity 50
CeRu2Ge2 p=6.7 GPa 54
YbCu5-xAlx x=1.5 51
CeCu6-xAux x=0.1    2D antiferromagnetic fluctuations 36,48

Ce(Ru1-xRhx)2Si2 x=0.5    AF phase for x>0.6, SDW phase for x<0.4 55,56
U2Cu17-xAlx x=5 57
UCu5-xPdx x=1, x=1.5    Kondo disorder 26

Ce1-xLaxRu2Si2 x=0.075 58
U1-xThxRu2Si2 x=0.93 59
U1-xThxCu2Si2 x=0.9    ferromagnetic QCP 60
U1-xThxBe13 x=0.1    QKE 61

U1-xThxPd2Al3 x=0.6 52
U1-xYxPd2Al3 x=0.8 52

U1-xYxPd3 x=0.8    spin-glass order for x<0.8 62,63
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Experimental

A variety of experimental techniques was used to investigate the thermal, magnetic and

transport properties of U2Pt2In and related compounds. Since most of the techniques and

experimental set-ups have been described in detail by others, only a short presentation is given

here. General overviews of cryogenic techniques and low-temperature thermometry are given by

Pobell [1], White [2] and Betts [3]. Descriptions of the particular 3He system and 3He/4He

dilution refrigerator used in this work are given in Refs. 4 and 5 and Refs. 6 and 7, respectively.

The pressure cell used for the magnetotransport experiments is described in Section 3.3.1.

Section 3.6 is devoted to the µSR technique, which is described in more detail.

3.1. Sample preparation

The preparation methods of the single crystals studied in this work will be described in

Chapters 4 (U2Pt2In) and 7 (other compounds), where the corresponding experimental results are

presented and discussed. Regarding U2Pt2In, it should be mentioned that it is a difficult material

to prepare under normal arc-melting conditions due to In evaporation. Indium evaporation leads

to the formation of a secondary phase, namely UPt. In fact, small single crystals of UPt have been

grown recently out of polycrystalline U2Pt2In by inducing complete In evaporation through

annealing [8].
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Traces of superconductivity at about 0.7 K have been detected in the resistivity of certain

polycrystalline samples of U2Pt2In. A.c.-susceptibility measurements showed however that

superconductivity is not a bulk property. Electron probe microanalysis (EPMA) on these samples

indicate the presence of a network of UPt as an impurity phase. Upon annealing, the network is

partially destroyed and the superconducting transition is suppressed. Other batches of

polycrystalline U2Pt2In, containing UPtIn as an impurity phase, show a full superconducting

resistive transition at 0.85 K. The superconducting phase has a critical field of about 1.4 T.

Neither UPt nor UPtIn present a sign of superconductivity at low temperatures. The

superconducting phase might be an In-rich phase precipitated at the U2Pt2In grain boundaries.

The single-crystalline batches of U2Pt2In, from which the specimens used in this work were

taken, are, as far as it has been reported, the only ones prepared so far.

For general references on crystal growth of U and Ce intermetallic compounds, see e.g.

Refs. 9 and 10.

The structural properties of most of the samples used were checked by means of X-ray and

neutron diffraction, optical microscopy and secondary electron microscopy. The quality of the

single crystals of U2Pt2In was also checked by means of EPMA at the FOM-ALMOS facility.

The single crystals were oriented by means of the X-ray back-reflection Laue method.

Next, they were cut by spark-erosion. For the thermal-expansion measurements, the relevant

surfaces of the samples were shaped plane-parallel within 5 µm by means of spark-erosion.

3.2. Magnetization

Magnetization measurements were performed by means of a commercial Quantum Design

SQUID magnetometer (2 K ≤ T < 400 K, -5.5 T ≤ B ≤ 5.5 T) at the University of Lisbon.

High-field magnetization measurements up to 35 T were performed at the High-Field

Facility of the University of Amsterdam [11]. Field pulses of 7, 14, 21 and 35 T were used with

the magnetization measured during a 7-step field decay. After each pulse, the empty pick-up coil

was measured. The magnetization of the sample plus teflon holder is then given by
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M = Msample-in -Msample-out. The contribution of the teflon sample holder was measured in the same

way, in order to correct the data for the diamagnetic signal of teflon.

3.3. Resistivity and magnetoresistance

Resistivity measurements were performed using a standard a.c. 4-probe method with a

Linear Research resistance bridge (model LR-400 or LR-700). Since most of the materials used

in this work are very brittle, the voltage and current leads (copper wires with thickness of 50 µm)

were attached to the bar-shaped samples with silver paste. Excitation currents of 300 µA or lower

were applied in order to prevent Joule heating.

High-field magnetoresistance measurements were carried out using the step-wise field

decay of 7, 14 and 21 T pulses. In addition, free (exponential-like) decays of 5, 20 and 38 T

pulses were used.

3.3.1. Resistivity under pressure

Resistivity measurements were performed under hydrostatic pressures up to 2 GPa

(=20 kbar) in a 3He system. An overview of pressure techniques and pressure cells is given in

Ref. 12.

A schematic view of the pressure cell used in this work is given in Figure 3.1 (after T.

Naka - National Research Institute for Metals in Tsukuba, Japan). Besides a standard 4.7 kΩ

RuO2 thermometer, a cernox thermometer was mounted in order to monitor the cell and sample

temperature in the temperature range 10-300 K.

The pressure cell, which can sustain pressures up to at least 2 GPa, is made primarily of

CuBe. The outer and inner diameters amount to 25 and 6 mm, respectively. A short tungsten

carbide piston is used to transfer the pressure to the teflon holder containing the sample. The

sample is mounted on a specially designed plug and put inside the teflon holder together with the

pressure-transmitting medium.
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CuBe
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Figure 3.1 - Pressure cell for resistivity measurements.

The cell is placed in a press, in order to apply a load. The load necessary to obtain a

pressure p is simply given by (πφcell
2/4)p, where φcell is the inner diameter of the cell

(φcell = 6 mm). For p = 2 GPa, the load is 5.8×103 kgf. After the load is applied, the screw head is

adjusted in order to clamp the piston. In this way, the pressure is maintained when the cell is

removed from the press. To change the applied pressure after the experiment, the cell has to be

warmed up to room temperature. A load equivalent to the previous pressure is applied, such that

the cell can be unclamped, after which a new load is applied.

The pressure medium used is liquid 3M Fluorinert. Fluorinert remains hydrostatic in the

applied pressure range due to its low viscosity. Moreover, it has a low compressibility and good

thermal conductivity. During solidification, hydrostaticity is conserved. In fact, the pressure

medium used is a 1:1 mixture of two Fluorinerts, FC-70 and FC-77, which have glass

solidifications at 248 and 163 K, respectively. This difference in solidification temperatures

ensures that there are no sudden changes on the thermodynamic properties during the

solidification of the pressure medium. The Fluorinerts used are chemically inactive and do not

react with the components of the cell, nor with the samples, the wires or the silver paste used for

placing the electrical contacts on the samples. Additionally, they have extremely small

solubilities (less than 1%) for H2O, oil, ethanol, methanol, etc.
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Due to the different thermal-expansion coefficients of the pressure medium and the cell

components, the pressure reduces during cooling. The pressure values presented in this work

were corrected for an empirical low-temperature efficiency value of 80% obtained by T. Naka on

the same cell.

3.4. Specific heat

Specific-heat measurements were performed using a relaxation method at low temperatures

(dilution refrigerator and 3He system) and a semi-adiabatic method at high temperatures (4He

bath cryostat).

In the relaxation method, sample and addenda are connected by a weak thermal link to a

heat reservoir at constant temperature T0. A constant power Q�  is applied to a heater on the

sample holder (sapphire plate) until thermal equilibrium is achieved at a temperature T+∆T.

When the power is switched off, the sample and addenda will have an exponential relaxation

towards the reservoir temperature T0: T(t) = T0 + ∆T e-t/τ . The relaxation time τ  is related to the

heat capacity C by C = τ k = τ Q� /∆T where k is the thermal conductivity.

For heavy-fermion compounds, which present large specific heats, the addenda

contribution at low temperatures to the total heat capacity is small and can be neglected. Special

care was taken to stabilize the temperature of the sample since bad thermalization induces errors

in the measured values of ∆T and the calculated values of τ . The power supplied by the heater is

calculated after measuring the voltage Vref across a reference resistance Rref, in series with the

heater, and the voltage drop over the heater: Q�  = Vheater Iheater = Vheater Vref /Rref.

In the semi-adiabatic method, there is no deliberate thermal link between the sample and

the heat reservoir. A heat pulse of energy ∆Q gives a sample temperature rise ∆T and the heat

capacity is simply given by C = ∆Q/∆T. The high-temperature specific-heat data presented in this

work have been corrected for the contribution of the addenda.

A description of the used experimental set-ups is given in Refs. 6 and 13.
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3.5. Thermal expansion

Thermal-expansion measurements were carried out with a parallel-plate capacitance

method. The capacitance of a parallel-plate capacitor is C = εA/d where ε is the dielectric

constant of the medium between the plates, A the area of the plates and d the distance between

the plates. Typical gap distances used are d = 100 µm. The length change of the sample as

function of temperature is proportional to the change in capacitance. The uncertainty in the

determination of the effective area of the capacitor plates, εA = 9.73×10-16 Fm, gives an accuracy

limit of about 3% on the absolute value of the experimental data. The capacitance was measured

using a sensitive three-terminal technique with an Andeen-Hagerling capacitance bridge. The

maximum sensitivity of the set-up used is about 0.01 Å for a sample of 5 mm. A schematic

drawing of the capacitance cell is given in Ref. 14.

The coefficient of linear thermal expansion is given by α = 1/L (dL/dT) where L is the

length of the sample. A heating in steps of ∆T is used. The linear thermal expansion of the

sample is calculated from

Cu
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Here, the first term corresponds to the change in gap distance with the sample mounted in the

cell, the second term is the corresponding change with a oxygen-free high-conductivity (OFHC)

copper sample mounted in the cell (cell effect) and the third term is the correction for the linear

thermal expansion of the OFHC copper of the cell. The cell effect is small at low temperatures

(∆d/∆T = -2.5 Å/K at T = 4.2 K). However, a progressive increase is observed when the

temperature is further decreased (∆d/∆T = -9.0 Å/K at T = 0.3 K).

The volume expansion coefficient αV, where V = abc is the volume, is given by
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For general references on thermal-expansion measurements see Refs. 15-17.



Experimental 43

3.6. Muon Spin Relaxation and Rotation

µSR is an acronym for Muon Spin Relaxation, Rotation, Resonance or even Research. µSR

is a technique increasingly used in solid state physics, chemistry and materials science because of

its sensitivity to static and dynamic microscopic magnetic fields, which enables a study of

relevant aspects of structural, magnetic and electronic phenomena in magnets, superconductors,

semiconductors and insulators. In the µSR technique, the positive muon, µ+, is used as a probe.

Intense µ+ beams with a high spin polarization can be produced. Some properties of µ+ are given

in Table 3.1. A general description of the µSR technique can be found in Refs. 18-20, while

experimental results on some exemplary materials are given in Refs. 21-23. The µSR

experiments presented in this work were carried out at the Paul Scherrer Institute (PSI) in

Villigen (Switzerland), in the General Purpose Spectrometer (GPS), equipped with a gas flow
4He cryostat for 1.5 K ≤ T ≤ 300 K, and in the Low Temperature Facility (LTF), equipped with a

top-loading dilution refrigerator with a base temperature of about 0.025 K.

Table 3.1 - Some properties of the µ+ particle.

mass mµ = 206.76826(11) me

charge +e
spin 1/2
magnetic moment µµ = 8.8905981(13) µN

gyromagnetic ratio γµ / 2π = 135.53879(1) MHz/T

average lifetime τ µ = 2.19703(4) µs

Because of its positive charge, the muon localizes at an interstitial site, where it probes the

local magnetic environment. Since the muon has no quadrupolar electric moment (Sµ = 1/2) it

does not couple to electric-field gradients. The muons produced by the decay of pions have a

kinetic energy of 4.119 MeV. At this energy, muons rapidly thermalize within a sample without

loosing their polarization.

Once the muon is implanted in a sample, the local magnetic environment dictates the

subsequent evolution of its spin vector. If the muon experiences a unique off-axis magnetic field

Bµ (i.e. a magnetic field not in the direction of the muon spin), the spin precesses around the

magnetic field at the Larmor frequency: ωµ = γµ Bµ . However, any spatial or temporal, site to
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site, variation of the magnetic field results in a dephasing or depolarization of the muon spin.

This motion of precession and/or spin depolarization can be monitored due to the spatial

anisotropy of the direction of positron emission when the muon decays. The decay positrons are

distributed around the muon spin direction according to the probability function

θ+=θ cos)( AW 1   , (3.3)

where θ is the angle between the muon spin and the direction of positron emission. The factor A,

called the asymmetry factor, increases monotonically with the positron energy up to a value of

A = 1 for the maximum energy of 52.83 MeV. A value of 1/3 is obtained if all emitted positrons

are detected with the same efficiency, irrespective of their energy. The variation of the angular

probability function W(θ) is shown in Figure 3.2 for a number of decay positron energies. The

experimentally observed maximum asymmetry depends on the appropriate integration over the

energy-dependent probabilities of positron emission and detection, the energy-dependent

asymmetry and the solid angle of the detector. A typical experimental value for the asymmetry

factor in an actual µSR experiment is about 0.25.

e+ (53 MeV)

θµ+

Sµ

A=1

2/3

1/2

A=1/3

Figure 3.2 - Angular decay positron distribution for various positron energies. After Ref. 19.

The decay positrons, e+, are monitored by means of a detector array consisting of counters

placed perpendicularly to the positive and negative coordinate axes centered on the sample. The

time histogram of the collected events in each counter has the form

00e 1 btAPNtN t ++= µ
+

τ− )]([e)(   , (3.4)
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where N0 is a normalization constant, exp(-t/τ µ) accounts for the muon decay, A is the

asymmetry, P(t) is the muon depolarization function which describes the time dependence of the

polarization (with P(0) = 1) and b0 is the background contribution. The depolarization function

P(t) reflects the spatial and temporal distribution of the magnetic fields at the muon sites. In the

case of a static magnetic field Bµ at the µ+ site, P(t) is given by

∫ µµµ ωθ+θ= BB d22 )]cos(sin)[cos()( tftP   , (3.5)

where f(Bµ) is the magnetic-field distribution function and θ the angle between Bµ and the initial

muon polarization Pµ(0).

For a particular crystal structure, the possible presence of different muon stopping sites,

with different magnetic environments, will be reflected in a µSR signal with different

components, i.e. with different depolarization functions. Moreover, since the muons are

uniformly implanted in a sample, the coexistence of different domains, characterized by different

types of ground states, can also be detected by the presence of different components with

distinctive functions P(t), even if only one stopping site is present.

Different experimental geometries can be used with respect to the direction of an external

magnetic field Bext. In fact, each geometry corresponds to a different meaning of the acronym

µSR: muon spin relaxation for zero or longitudinal field (Bext || Pµ(0)) and muon spin rotation for

transverse field (Bext ⊥  Pµ(0)).

The muon beam at the PSI is of the continuous type (compared to beams of the pulsed

type). Because each event is treated separately, the continuous beam has a good time resolution

but a large background b0 which limits the time window to about 10 µs. Recently, a new facility,

called MORE (Muons On REquest), has been installed at the PSI, which reduces drastically the

background, increasing the time window to 16 µs. In this arrangement, a "kicker" sends a muon

to the instrument only when it is required, deflecting all the other muons away from the

experimental set-up. A disadvantage of MORE is however the initial dead-time (about 0.15 µs)

in the histograms, which limits its usefulness to the case where there is no fast depolarization

rate.
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3.6.1. Zero-field µµµµSR

The µSR technique yields the possibility to probe magnetic signals in zero external field.

Its large magnetic moment makes the muon sensitive to internal fields as small as 10-5 T (which

corresponds to the magnitude of fields originating from nuclear dipoles).

The zero-field (ZF) µSR technique can be used to measure the spontaneous µ+ Larmor

frequencies in magnetically ordered phases and provides information about the magnetic

structure and the value of the static moment. In the simplest case of a magnetic structure

producing a field of well defined magnitude and direction at the µ+ sites, f(Bµ) is represented by a

δ function and the muon-depolarization function is

)cos(sincos)( ttP µωθ+θ= 22   . (3.6)

For a polycrystalline sample, averaging over the angular dependence results in

)cos()( ttP µω+= 3
2

3
1   . (3.7)

A static distribution of internal fields, as the one arising from static nuclear or electronic

dipole fields, will produce a depolarization. Assuming that the internal fields are Gaussian

distributed in their values and randomly oriented, the field distribution has zero average and no

spontaneous precession frequency is observed. P(t) assumes the form of a Kubo-Toyabe function

[24]

( ) 222
3
2
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1

KG

22

1 /e)( tttP ∆−∆−+=   , (3.8a)

where ∆2/γµ
2 = <B2> is the second moment of the field distribution. If the field distribution is

Lorentzian then

( ) tttP λ−λ−+= e)( 13
2

3
1

KL   , (3.8b)

where λ/γµ represents the half width at half maximum of the distributions. For early times

(t << ∆-1 or t << λ -1), these functions approach a Gaussian and an exponential function,

respectively:

2
GKG

22

)( /e)( ttPtP ∆−=≈ (3.9a)

ttPtP λ−=≈ e)()( EKL   . (3.9b)

In the case of a time-dependent Gaussian distribution of the internal fields, the Kubo-

Toyabe function is modified to a dynamical Kubo-Toyabe function which cannot be expressed
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analytically, except in the limiting case of slow and fast fluctuations. If ν is the fluctuation rate of

the magnetic moments, the dynamical Kubo-Toyabe function becomes

( ) 222
3
232

3
1 22

1 // ee)( tt ttP ∆−ν− ∆−+≈ (3.10)

for slow fluctuations (ν << ∆). For fast fluctuations, ttPtP λ−=≈ e)()( E  with λ  = 2∆2/ν. In the

latter case, the depolarization rate λ  describes the spin-relaxation rate and involves spin-flip

transitions induced by the fluctuating magnetic field with a component perpendicular to the

initial muon-polarization direction. The dynamical Kubo-Toyabe function is plotted in Figure 3.3

for several fluctuation rates (notice that the static Kubo-Toyabe function corresponds to the case

ν=0).
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Figure 3.3 - Dynamical Kubo-Toyabe function for several fluctuation rates ν.

3.6.2. Longitudinal-field µµµµSR

In the longitudinal-field (LF) configuration, an external field is applied in the direction of

the initial muon polarization. In the case of a random distribution of static internal fields, the
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effect of Bext is to gradually remove the time dependence of the polarization. Eventually, by

choosing Bext to be stronger than the internal fields (γµBext >> ∆), the muon's "up" and "down"

states are eigenstates of the Zeeman Hamiltonian and any inhomogeneous static distribution of

the internal fields will not affect the time evolution of the muon polarization, which will

therefore remain constant. This behaviour reflects the decoupling of the muon spin from the

static internal fields. This situation is depicted in Figure 3.4 for a random distribution of static

moments, where a strong longitudinal field results in local fields parallel to the muon spin, which

maintains its initial polarization in the field direction.

Figure 3.4 - Effect of a longitudinal external field on a random distribution of local fields. a) Bext=0;
b) when Bext is significantly larger than the local field at Bext=0, the resulting field is
almost parallel to Pµ(0). After Ref. 25.

The polarization function for a Gaussian distribution as function of applied field is shown

in Figure 3.5. It assumes the analytical form [26]

[ ]

∫
∆

µ−

µ

µ
∆−

µ







∆

γ
γ

∆+

γ−
γ

∆−=

t
exty

t

y
B

y
B

tB
B

BtP

0

2
3
ext

3

3

ext
2

2
ext

2

2

extKT

2

22

d2

121

cose

)cos(e),(

/

/

  . (3.11)



Experimental 49

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0 B = 10 ∆/γµ

B = 5 ∆/γµ

B = 0

B = 2 ∆/γµ

P  K
T

t (∆-1)

Figure 3.5 - Kubo-Toyabe depolarization function for a decoupling of the muon spin from a
Gaussian distribution of static fields due to a longitudinal external field.

However, for fast fluctuations of the internal fields, the spin-lattice relaxation regime is

recovered and induced spin-flip transitions will lead to a depolarization in longitudinal fields

similar to the one observed in zero field.

Due to these differences, longitudinal-field µSR provides a powerful tool to distinguish

static from dynamic distributions of internal fields (if there are no spontaneous Larmor

frequencies in the static case, zero-field µSR cannot distinguish the two situations). In the static

case, there is no depolarization in an external field, while in the dynamic case the depolarization

function will have the same form as in the zero-field case, with a slightly reduced depolarization

rate

( )2
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1
2

νγ+
ν∆=λ

µ extB
  . (3.12)
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3.6.3. Transverse-field µµµµSR

In the transverse-field (TF) configuration, the external magnetic field Bext is applied

perpendicular to the initial muon polarization Pµ(0). The local magnetic field at the interstitial

site where the muon is implanted can be determined from the Larmor precession frequency. The

measured frequency or frequencies are expressed in the form of a Knight shift:

1
0ext

ext −
ω
ω

=
−

= µµ
µ B

BB
K   , (3.13)

where ω0= γµBext. Here, we consider only metals in the paramagnetic state that are exposed to a

magnetic field. The local magnetic field Bµ at the interstitial site where the muon comes to rest

can be written as

diaextconcondipext BBBBBB +χ+++=µ
�A   . (3.14)

Bdip represents the dipolar fields of the localized lattice spins. The third and the fourth term are

called the direct and indirect hyperfine contact field, respectively, and are connected with the

presence of the muon itself. The direct hyperfine contact field, Bcon, results from the spin density

at the muon site, which is induced by the polarization of the conduction electrons. In the

paramagnetic state, this polarization is induced by an external field. Bcon is proportional to the

Pauli susceptibility of the conduction electrons and is usually assumed to be temperature

independent and isotropic, in contrast to the other contributions. The indirect contact field is due

to the RKKY interaction between localized moments and the muon. The effective contact

coupling constant, Acon, is temperature independent, so that the indirect contact field is

proportional to the susceptibility tensor χ�  and the applied magnetic field. The last contribution,

Bdia, is due to the diamagnetic response of the electron-cloud screening of the muon charge. The

diamagnetic screening produces only a very small contribution to the local magnetic field. For

materials with an enhanced effective electron mass m*, the small diamagnetic contribution is

reduced by a factor me/m*, becoming negligible for heavy-fermion compounds.

In order to separate the different contributions to the local magnetic field, the experimental

Knight shift in heavy-fermion compounds is usually compared to the calculated one. If the

principal axes of the crystalline structure are chosen as the coordinate frame, the dipolar field

contribution can be written as



Experimental 51

extdipdip BB χ=
�

�

A   . (3.15)

The dipolar tensor dipA
�

 is given by

∑ 





δ−=

fr
ij

jiij

r
xx

r
A 23dip

31   , (3.16)

where the sum is over all f-moments at positions rf and r = rf - rµ.

In order to calculate this finite sum, one can define a "Lorentz sphere" with radius rL, and

separate the sum into a part inside the sphere and a part outside the sphere. If one chooses the

radius large enough, the summation over the outer region can be approximated with an integral.

The magnetic field resulting from this integral yields the Lorentz field BL = µ0M/3 and the

demagnetizing field BD = - N
�

µ0M, where M is the magnetization and N
�

 the demagnetization

tensor related to the shape of the sample (notice that for a sphere N = 1/3 and BL+BD = 0).

After correcting for the demagnetizing and Lorentz fields, the Knight shift is related to the

diagonal susceptibility tensor according to

)( bb χ⋅+=µ
�

�

totcon AKK   , (3.17)

where b = Bext/|Bext| is the unit vector parallel to the applied magnetic field, Kcon the Knight shift

due to the direct contact field and condiptot AAA
���

+=  the total hyperfine coupling tensor. In

contrast to Kcon and χPauli, the contribution from the localized f-moments will exhibit a strong

temperature dependence. Kcon can therefore be determined from the experimental data:

Kcon = Kµ(χ→0). The elements of χ
�

�

totA  can be determined experimentally from the Knight shift

anisotropy for the principal axes. The Knight shift is simply given by

i
ii

i AK χ=   . (3.18)

With the knowledge of χi, the tensor elements Aii can be determined from the observed

Knight shift Ki. Because totA
�

 is the sum of a traceless dipolar tensor and a scalar contact part, totA
�

can be decomposed using Acon = Tr( totA
�

)/3. By comparison of the experimentally determined

dipA
�

 with the calculated values, it is often possible to determine the actual muon stopping site. If

a sample orders magnetically and the muon stopping site is known, then it is easy to calculate

from the local field in the ordered state (measured by zero-field µSR) the size of the ordered

moment.
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Non-Fermi liquid behaviour in

U2Pt2In

4.1. The U2T2X family of compounds

The family of U2T2X (where T is a transition metal and X is In or Sn) intermetallic

compounds has attracted much interest in the past years [1-4], because it may serve as an

exemplary system to study hybridization phenomena in 5f-electron compounds. The

hybridization strength can be tuned by varying the T and X elements and as a result various

magnetic ground states are observed, notably Pauli paramagnetism, spin-fluctuation phenomena

and antiferromagnetism. The shortest U-U distance in these tetragonal 2:2:1 compounds is close

to the Hill limit (~ 3.5 Å) and is found either along the c-axis or within the ab-plane, depending

on the T and X elements. Therefore, this family of compounds may be used to study the

influence of the direct f-f coupling on the magnetic f-moment direction. On the other hand, it is

the strength of the 5f - d-ligand hybridization that controls the evolution of magnetism across the

2:2:1 series.
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4.1.1. Crystallographic structure and overview

In order to carry out a systematic study of the structural and physical properties of the

An2T2X series (where An is an actinide), single crystals of several uranium 2:2:1 compounds

were grown by L.C.J. Pereira at the Institute for Transuranium Elements (Karlsruhe, Germany)

[4].

The compounds were prepared in a polycrystalline form by arc melting together the

stoichiometric amounts of the elements (U with a purity better than 99.9% and T and X with a

purity 99.999%) in a water-cooled copper crucible under a purified argon atmosphere. Small

excess amounts of the X element were added in order to compensate for evaporation losses. The

mass losses after arc melting were less than 0.5% of the total mass. The single-phase character of

the ingots was checked by means of X-ray analysis, optical microscopy and secondary electron

microscopy (SEM).

The polycrystalline batches (mass about 20 g) were then encapsulated in tungsten crucibles

and sealed by electron-beam welding under vacuum. Single crystals were grown by a modified

mineralization technique [4] using radiofrequency heating with an in situ temperature reading in

order to control the melting temperature plateau. The in situ temperature reading made it possible

to reduce the mineralization time significantly, from typically 1 week to 5 hours only. The single-

phase character of the grown materials was checked by means of X-ray diffraction, optical

microscopy and SEM. The single-crystallinity was checked by the X-ray back-reflection Laue

method (or by neutron diffraction in the case of some of the compounds).

On several pieces of the single-crystalline materials, a complete structural analysis was

carried out on a four-circle diffractometer. The U2T2X compounds crystallize in the ordered

tetragonal U3Si2-type of structure (space group P4/mbm) [1], except for U2Ir2Sn, U2Pt2Sn and

U2Pt2In, which crystallize in the Zr3Al2-type of structure (space group P42/mnm) [5,6]. The

Zr3Al2-type of structure is a superstructure (doubling of the c-axis) of the U3Si2-type. The U3Si2-

type of structure was also reported for the Np [1,4], Pu and Am [7] 2:2:1 compounds and for the

rare-earth based ones [8,9].

In the U3Si2-type of structure (Figure 4.1), the U atoms occupy the 4h (xU,xU+1/2,1/2)

positions, while the T and X atoms occupy the 4g (yT,yT+1/2,0) and 2a (0,0,0) positions,

respectively, where xU ≈  0.17 and yT ≈  0.37. The point symmetries of the 4h, 4g and 2a

positions are m2m, m2m and 4/m, respectively. On the other hand, the U atoms in the Zr3Al2-type
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of structure (Figure 4.2) occupy two different crystallographic positions: 4f (x1,x1,0) and 4g

(x2,-x2,0). The X atoms are on the 4d (0,1/2,1/4) positions and the T atoms on the 8j (xT,xT,zT)

positions (x1 ≈  0.31, x2 ≈  0.16, xT ≈  0.13 and zT ≈  0.28). The point symmetries of the 4f, 4g,

8j and 4d positions are m2m, m2m, m and -4, respectively.

 T (4g)
 X (2a)

 U (4h)

Figure 4.1 - Unit cell of the U3Si2-type of structure. Each unit cell contains 2 formula units.

 T (8j)
 X (4d)

 U (4g)  U (4f)

Figure 4.2 - Unit cell of the Zr3Al2-type of structure. Each unit cell contains 4 formula units.
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In the Zr3Al2-type of structure, the U atoms do not form linear chains as is the case for the

U3Si2-type of structure, but form zig-zag chains along the c-axis. This leads to a reduction of the

shortest U-U spacing within the basal plane. Close scrutiny of Figure 4.1 and Figure 4.2 reveals

that a transition between the two structures involves only minor shifts in the positions of the

atoms.

From the structural point of view, U2Pt2In is a special case within the 2:2:1 family of

compounds, as poly- and single-crystalline materials form in different structures [10]. The X-ray

powder diffraction data taken on polycrystalline U2Pt2In confirm the U3Si2-type of structure with

lattice parameters a = 7.654 Å and c = 3.725 Å. However, U2Pt2In single crystals form in the

superstructure of the Zr3Al2-type with lattice parameters a = 7.695 Å and c = 7.368 Å.

This polymorphism of U2Pt2In shows that the stability of the crystallographic structure

depends on the experimental conditions, like pressure and temperature, during the sample

preparation process. While preparing the arc-melted polycrystalline sample, the temperatures

attained are well above the melting point of U2Pt2In and the cooling process is rather fast. This

leads to the formation of the U3Si2-type of structure. During the single crystal growth, i.e. the

mineralization process, the temperature range is much reduced (up to 20°C above the melting

point) and the cooling takes place very slowly. Under these conditions, which are closer to

equilibrium, the preferred structure is the tetragonal Zr3Al2-type of structure.

The interatomic distances and near-neighbour (d < 4.2 Å) positions, calculated for the

U2Pt2In single- and polycrystals, are listed in Table 4.1. The number of nearest neighbours for

each atom is the same in both structures (since the main effect is the doubling of the c-axis). The

average interatomic distances do not change significantly. For the U atoms, the in-plane

U(4f)-U(4f) distance decreases, while the in-plane U(4g)-U(4g) increases when moving from

polycrystals to single crystals.

As mentioned before, several magnetic ground states are found in the 2:2:1 family of

compounds. A review of the properties of the U2T2X compounds has been given in Ref. 11 and

some of the results are summarized in Table 4.2. Among these compounds, U2Pt2In and U2Pd2In

present heavy-fermion behaviour, as can be concluded from the large value of the linear

coefficient of the low-temperature specific heat, which is indicative of an enhanced effective

mass.
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Table 4.1 - Interatomic distances and near-neighbours numbers (NN) in poly- and single-crystalline
U2Pt2In.

U3Si2-type (polycrystal) Zr3Al2-type (single crystal)
bond NN d (Å) bond NN d (Å)
U-U
U-U
U-U

2
1
4

3.725
3.738
4.006

U1-U1 | U2-U2

U1-U2

U1-U2

U1-U2

1
2
2
2

3.583 | 3.925
3.687
3.913
4.144

U-Pt
U-Pt

2
4

2.835
2.990

U1-Pt | U2-Pt
U1-Pt | U2-Pt

2
4

2.828 | 2.838
3.013 | 2.975

U-X 4 3.390 U1-X | U2-X 4 3.414 | 3.372
U1=U(4f), U2=U(4g)

The electronic structure and related properties of the U2T2X compounds mainly originate

from the band filling of the transition-metal d-states and from the 5f-moments of the U atoms. A

decrease of the f-d hybridization strength occurs when the d-band is gradually filled, as evidenced

by theoretical calculations based on the local density approximation (LDA) [12,13]. Also the

evolution of magnetism across the 2:2:1 series (for In and Sn compounds) is shown to be related

to the strength of the 5f - d-ligand hybridization [14]. As shown in Table 4.2, in the U2T2In

series, U2Pd2In and U2Ni2In order antiferromagnetically with Néel temperatures of 37 and 14 K,

respectively, while in the U2T2Sn series, the compounds with Pd, Rh, Ni and Pt have

antiferromagnetic transitions at TN = 41, 28, 26 and 15 K, respectively.

In all other U 2:2:1 compounds, no anomalies have been found in the temperature

dependence of the magnetic susceptibility, resistivity and specific heat down to 1.2 K, suggesting

paramagnetic ground states. The strong hybridization effects are reflected in reduced effective-

moment values with respect to the U3+ and U4+ free-ion values, as calculated from the Curie-

Weiss behaviour of the magnetic susceptibility.

The transition elements in the U2T2X compounds do not carry magnetic moments, except

for the cases T = Co and Fe. Detailed LDA band-structure calculations on U2T2Sn (T = Fe, Co,

Ni) compounds [15] show an hybridization-induced magnetic polarization on the transition-metal

atoms in both U2Fe2Sn and U2Co2Sn (with a magnitude that is almost twice as large for the

former). This is considered as indicative of a strong covalent interaction between Fe and U and,

to a lesser extent, between Co and U. The polarization of Ni in U2Ni2Sn is found to be very

small. A negligible polarization characterizes the Sn atoms.
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Table 4.2 - Magnetic ground states in the U2T2X family of compounds.

ground state TN (K) µord (µB/U) γ
(mJ/molUK2)

U2Fe2Sn PP - - n.d.
U2Co2Sn SF - - 130
U2Ni2Sn AF 26 1.05 85
U2Ru2Sn PP - - 10
U2Rh2Sn AF 28 0.53 65
U2Pd2Sn AF 41 1.89 100
U2Ir2Sn SF - - 65
U2Pt2Sn AF 15 n.d. 185
U2Co2In PP - - 30
U2Ni2In AF 15 0.92 105
U2Ru2In PP - - n.d.
U2Rh2In SF - - 140
U2Pd2In AF 37 1.40 205
U2Ir2In PP - - n.d.
U2Pt2In NFL - - 410 *

     AF=antiferromagnet, PP=Pauli paramagnet, SF=spin fluctuator, NFL=non-Fermi liquid
     n.d.=not determined, * value of c/T at T = 1 K

Table 4.3 - Lattice parameters of the U2T2X family of compounds.

U3Si2-type a (Å) c (Å) c/a V (Å3)
U2Fe2Sn 7.296 3.446 0.472 183.436
U2Co2Sn 7.208 3.606 0.500 187.351
U2Ni2Sn 7.263 3.691 0.508 194.705
U2Ru2Sn 7.482 3.558 0.476 199.178
U2Rh2Sn 7.534 3.625 0.481 205.759
U2Pd2Sn 7.603 3.785 0.498 218.794
U2Co2In 7.361 3.431 0.466 185.906
U2Ni2In 7.374 3.572 0.484 194.231
U2Ru2In 7.505 3.545 0.472 199.672
U2Rh2In 7.553 3.605 0.477 205.657
U2Pd2In 7.637 3.752 0.491 218.831
U2Ir2In 7.596 3.582 0.472 206.679
U2Pt2In 7.654 3.725 0.487 218.224

Zr3Al2-type a (Å) c (Å) c/a V (Å3)
U2Ir2Sn 7.557 7.195 0.952 410.894
U2Pt2Sn 7.668 7.389 0.964 434.460
U2Pt2In 7.695 7.368 0.958 436.282

When comparing the magnetic properties of the 2:2:1 compounds (Table 4.2) with their

lattice parameters (Table 4.3), the following trends are noticeable: i) the ordering temperature

increases within each T series (from Fe to Ni, Ru to Pd and Ir to Pt), together with the volume
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and the c/a ratio; ii) the In compounds have less tendency to magnetic order than the Sn

compounds, which may be related to the corresponding decrease of the c/a ratio since the volume

remains the same in both series.

High-field magnetization studies have been carried out on several polycrystalline samples

[16] in order to study the evolution of the magnetocrystalline anisotropy in the U2T2X series. In

all cases, the magnetization at 4.2 K does not saturate, not even at the highest fields (quasi-static

fields up to 38 T [17] and/or pulse fields up to 57 T [18]), which makes it difficult to determine

the type of magnetic anisotropy by comparing values of the saturation magnetization for free- and

fixed-powder samples. This lack of saturation and the large high-field magnetization values

observed in the paramagnetic U2T2X compounds may be an indication of field-induced moments

on the U or transition-metal sites. At relatively high magnetic fields, the antiferromagnetically

ordered compounds undergo metamagnetic transitions. However, the magnetization steps

corresponding to these transitions are small and therefore other metamagnetic transitions at even

higher fields can not be excluded (e.g. U2Ni2Sn has 3 metamagnetic transitions at 30, 39 and

51 T).

4.1.2. Doniach diagram

A quantitative estimate of the importance of f-ligand hybridization in complicated

structures can be obtained by means of a tight-binding approximation. The tight-binding

approximation has been frequently used to calculate e.g. structural properties, structural stability

and the electronic structure of ionic, covalent and metallic systems.

A generalized method based on a muffin-tin orbital model with transition metal

pseudopotential model can be applied to calculate the coupling between atomic orbitals of s, p, d

or f symmetry, mediated by the free-electron states [19,20]. The parameters are the atomic radii

of the respective atoms rl, the interatomic distance d, the angular momentum l (l = 0, 1, 2 and 3

for s, p, d and f orbitals, respectively) and the symmetry of the bond m (m = 0, 1, 2 and 3 for σ, π,

δ and ϕ bonds, respectively). The general hybridization-matrix element Vll'm is written as [21]

1

1212

e
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+′+

−′−
′
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l

l
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mll d
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m
V '�

  , (4.1)

where the coefficients ηll'm [22] are given by the expression (see Table 4.4)
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Table 4.4 - Bond coefficients η ll'm defined in Equation 4.2.

ll'
m pf df ff
σ π2110 π3575 )( π252520
π π− 2715 / π− 23575 / )( π− 252515
δ - π2775 )( π25256
ϕ - - )( π− 2525

The covalent energy of the coupling between the l and l' states is related to the trace of the

hybridization matrices [23]
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where Nll' is the number of nearest neighbours between the atoms with angular momenta l and l'.

An estimate of the total conduction electron hybridization on the f-atom, Vcf, is then given

by

[ ] 21222 /
ffpfdfcf VVVV ++=   . (4.4)

In Table 4.5, average interatomic distances are given for several compounds of the U2T2X

family. The averages were calculated by considering the number of nearest neighbours for each

bond (each U atom has 4 X, 6 T and 7 U nearest neighbours). In the case of the compounds with

the Zr3Al2-type of structure, the mean value was taken as the average distances to the U(4f) and

U(4g) atoms. In order to calculate the hybridization for each compound of the 2:2:1 family, a

consistent set of atomic radii was taken from bandwidth calculations in an atomic-surface

method [24], based on free-atom wave functions evaluated at the Wigner-Seitz atomic-sphere

radius (Table 4.6).
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Table 4.5 - Average distances (dll'), hybridization traces (Vll') and total hybridization (Vcf) for the
U2T2X (X=In or Sn) family of compounds.

dpf

(Å)
ddf

(Å)
dff

(Å)
Vpf

(eV)
Vdf

(eV)
Vff

(eV)
Vcf

(eV)
U2Fe2Sn 3.211 2.764 3.674 0.178 0.657 0.235 0.720
U2Co2Sn 3.220 2.782 3.689 0.176 0.572 0.228 0.640
U2Ni2Sn 3.256 2.838 3.734 0.166 0.460 0.210 0.532
U2Ru2Sn 3.303 2.842 3.775 0.155 0.977 0.194 1.008
U2Rh2Sn 3.320 2.880 3.813 0.151 0.825 0.181 0.858
U2Pd2Sn 3.383 2.949 3.887 0.137 0.703 0.158 0.733
U2Ir2Sn * 3.323 2.816 3.818 0.150 1.036 0.180 1.062
U2Pt2Sn * 3.391 2.894 3.887 0.136 0.860 0.159 0.885
U2Co2In 3.228 2.773 3.694 0.180 0.583 0.226 0.651
U2Ni2In 3.361 2.822 3.740 0.147 0.476 0.207 0.539
U2Rh2In 3.331 2.876 3.815 0.154 0.832 0.181 0.865
U2Pd2In 3.388 2.945 3.889 0.141 0.709 0.158 0.740
U2Ir2In 2.881 0.903
U2Pt2In 3.390 2.938 3.887 0.141 0.785 0.158 0.813

U2Pt2In * 3.393 2.940 3.892 0.140 0.781 0.157 0.809
* Zr3Al2-type structure

Table 4.6 - Atomic radii r (in Å) of the various constituting elements of the compounds in Table
4.5. Taken after Ref. 24.

Fe 0.744 Ru 1.083 Ir 1.085 In 1.930 U 0.590
Co 0.696 Rh 1.020 Pt 1.069 Sn 1.800
Ni 0.652 Pd 1.008

The Doniach phase diagram (see Section 2.1) can be constructed by comparing the binding

energy of a Kondo singlet

JN

N
T )(e

)(
0

1

KB 0
1k

−
∝ (4.5a)

with that of a RKKY antiferromagnetic state

)(0k 2
RKKYB NJT ∝   , (4.5b)

where N(0) is the conduction-electron density of states at the Fermi level and J the exchange-

coupling constant. One can estimate a conduction-electron - f-electron exchange-interaction

parameter Jcf by assuming a hybridization-mediated mechanism, as treated in the Schrieffer-

Wolff [25] and Coqblin-Schrieffer [26] models, according to the proportionality

f

cf
cf EE

V
J

−
∝

F

2

  , (4.6)
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where Vcf is the hybridization-matrix element for conduction-electron - f-electron hybridization

and the denominator gives the position of the f-level energy Ef relative to the Fermi energy EF.

Within a transition-metal series, the distance EF - Ef can be taken constant since the f-level is

stable with respect to the Fermi energy [20]. The evolution of Jcf can then be traced by

calculation of the conduction-electron - f-electron hybridization of the compounds. Using the

hybridization values calculated for the U2T2In and U2T2Sn series (Table 4.5), the Doniach-type

phase diagram depicted in Figure 4.3 emerges by plotting TN versus Vcf
2.

It should be noted that a comparison between the dlf distances in polycrystalline U2Pt2In

(U3Si2-type of structure) and single-crystalline U2Pt2In (Zr3Al2-type of structure) clearly shows

that there is no significant difference between the hybridization effects in the two structures

(Table 4.5). Therefore the compounds forming in the Zr3Al2-type of structure can be included in

the overall Doniach diagram.
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Figure 4.3 - Doniach-type of diagram for the U2T2X (X = In, Sn) family of compounds. The dotted
lines are guides to the eye.

The compounds with Fe and Co do not fit in the general trend of the diagram (not shown in

Figure 4.3). However, as discussed in the previous section, these compounds may present

hybridization-induced magnetic polarization of the transition-metal atoms, and therefore should
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be treated separately from the other U2T2X compounds when discussing the evolution of

magnetism within a Doniach-type of diagram.

An important point to extract from this diagram, is the location of U2Pt2In at the border line

between magnetic and non-magnetic compounds. This strongly suggests that U2Pt2In is close to a

magnetic instability and explains its heavy-fermion behaviour.

4.2. U2Pt2In

U2Pt2In has a number of unrivalled properties. The heavy-electron properties of U2Pt2In

were first reported by Havela et al. [2]. Specific-heat experiments carried out on a polycrystalline

sample [2,3] in the temperature range 1.3-40 K revealed the presence of a pronounced upturn of

the electronic specific heat divided by temperature (c/T) below about 8 K, insensitive to an

applied field of 5 T. The c(T) data could be fitted with a T 3lnT term below 5 K, providing

evidence for spin-fluctuation phenomena. The resulting linear coefficient of the electronic

specific heat γ  (T→0 K) amounted to 415 mJ/molUK2, which classifies U2Pt2In as a heavy-

electron compound. In line with this, the electrical resistivity, ρ(T), of U2Pt2In was found to show

a weak maximum around 80 K and coherence effects at low temperatures [3], which could be

attributed to the Kondo-lattice effect. The magnetic susceptibility, χ(T), shows deviations from

the Curie-Weiss behaviour below about 150 K [2]. In the limit T→1.2 K, χ is enhanced and

continues to rise. No sign of magnetic ordering has been observed.

More recently, data taken on a polycrystalline sample [27] showed that ρ(T) = ρo + aT in

the temperature range 1.4-6 K. This led to the suggestion that U2Pt2In might be a good candidate

to study non-Fermi liquid (NFL) phenomena.

In order to probe and investigate the NFL behaviour in U2Pt2In, it is of interest to study the

thermal, transport and magnetic properties of single crystals at lower temperatures (T < 1.2 K).

As discussed in Section 2.5, only a few stoichiometric compounds (like e.g. CeNi2Ge2) show

NFL properties at ambient pressure. U2Pt2In is the first U compound exhibiting NFL behaviour

without chemical substitution, pressure or magnetic field as a control parameter. In this section,

results of magnetization (2 K ≤ T ≤ 350 K, B ≤ 35 T), resistivity (0.3 K ≤ T ≤ 300 K),
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magnetoresistance (B ≤ 38 T), specific-heat (0.1 K ≤ T ≤ 180 K), specific-heat in field (B ≤ 8 T) and

thermal-expansion (0.35 K ≤ T ≤ 200 K) experiments carried out on U2Pt2In single crystals are

presented (for details on the preparation and characterization of the single crystals see Section

4.1.1 and Ref. 10).

4.2.1. Magnetization

Magnetization measurements were performed on several single crystals (with a mass of

10-50 mg) using a SQUID magnetometer (Quantum Design) in the temperature range 2-350 K

and in applied fields up to 5.5 T. In addition, magnetization measurements were carried out in

high magnetic fields up to 35 T at 4.2 K in the Amsterdam High-Field Facility.

The magnetizations Ma(B) and Mc(B) at some selected temperatures are shown in Figure

4.4a, where a and c refer to the crystallographic direction along which the magnetic field is

applied. In both cases, the magnetization is linear in fields up to 5.5 T. The slope dM/dB is

always higher for B || c than for B || a, though the anisotropy is not substantial. M (T = 2 K)

reaches the value of 0.25 (0.21) µB/f.u. in a field of 5.5 T applied along the c- (a-) axis. No

hysteresis in Ma and Mc was observed. Magnetization measurements for B || c at 4.2 K were

carried out up to 35 T (Figure 4.4b). No significant deviation from a linear behaviour was

observed. In the maximum field, Mc (35 T) = 1.48 µB/f.u. These results are similar to the ones

obtained on polycrystalline samples up to 35 T [17] and 57 T [18]. In the polycrystalline data, a

weak non-linearity was observed, which was not found in the single-crystal data. This non-

linearity is due to the saturation of magnetic impurities in the polycrystalline sample (about 2%

of ferromagnetic UPt was present as a second phase [3]). The data taken on free and fixed

powder are identical, which is another indication that the magnetic anisotropy is rather weak in

this compound.

The temperature variation of the d.c. susceptibility (M/H), χa(T) and χc(T), is presented in

Figure 4.5 for B = 0.1 T. The susceptibility is anisotropic, with the c-axis as the easy axis of the

magnetization. This anisotropy persists in the whole temperature range (up to 350 K).

At low temperatures, a clear difference between χa and χc is observed. χa continues to

increase as the temperature is lowered down to 2 K, while χc displays a broad maximum (Figure

4.5). Tracing the derivatives, dχ/dT, shows that the maximum occurs at Tmax = 7.9(3) K. The
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relative height and width of the maximum do not change significantly with the applied field

strength (from 0.005 to 5.5 T). This type of behaviour is frequently observed in systems which

exhibit exchange-enhanced Pauli paramagnetism. The maximum in χc is indicative of the

stabilization of short-range antiferromagnetic correlations along the c-axis [28,29].

Above 10 K, the susceptibility follows a modified Curie-Weiss law, χ = χ0 + C/(T-θ). For

B || c, the parameters obtained are χ0 = 1.1×10-8 m3/molU, θ = -62 K and µeff = 2.6 µB/U, while

for B || a, χ0 = 1.1×10-8 m3/molU, θ = -63 K and µeff = 2.2 µB/U. The fitted Curie-Weiss

behaviour is represented by the lines in Figure 4.5. The near-equality of the paramagnetic Pauli

temperatures θ reflects the weak magnetic anisotropy in this system. The µeff values are

considerably reduced with respect to the free-ion values for U3+ and U4+ of 3.62 µB and 3.58 µB,

respectively, which points to a strong Vcf hybridization.

The magnetization data do not show any sign of long-range magnetic order down to 2 K. In

order to investigate the presence of possible spin-glass effects, magnetization measurements were

performed after zero-field cooling and field cooling to 2 K. However, no difference was observed

for 0.01 T ≤ B ≤ 5.5 T, indicating the absence of a spin-glass ground state.
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Figure 4.5 - Temperature dependence of the d.c. susceptibility of U2Pt2In in a magnetic field of 0.1 T
applied along the a- or c-axis. The dotted lines represent modified Curie-Weiss fits.

4.2.2. Resistivity

Resistivity measurements were carried out on bar-shaped crystals with typical dimensions

3×1×1 mm3, for electrical currents along the a- and c-axis, in the temperature range 0.3-300 K

using a 3He system. A standard a.c. four-point method was used with an excitation current of the

order of 300 µA. The excitation current was varied in order to check for Joule-heating effects.

The resistance curves for I || a and I || c are shown in Figure 4.6a for temperatures below

10 K and in Figure 4.6b for temperatures below 300 K. The R(T) values are normalized to the

room temperature values RRT. For both I || a and I || c, the resistivity ρRT amounts to

220 ± 20 µΩcm. The experimental error in ρRT is mainly due to the uncertainty in the

determination of the distance between the voltage contacts. Upon cooling, ρa,c(T) starts to rise

and a weak broad maximum is observed at about 80 K followed by a relatively sharp decrease at
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lower temperatures, typical of coherence effects in heavy-fermion compounds. As shown in

Figure 4.6, the resistivity is anisotropic: ρc > ρa for T < 150 K.
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Figure 4.6 - Resistivity (normalized to the room temperature values) of U2Pt2In for I || a and I || c for
T < 10 K (a) and T < 300 K (b).

Clearly, the resistivity curves do not obey the Fermi-liquid expression ρ ~ T 2 at low

temperatures. Instead, as shown below, ρ ~ T α with α < 2.

If the resistivity below a certain temperature T ' can be expressed by

α+ρ=ρ Ta0   , (4.7)

then the exponent α can be calculated by

Tlnd
)ln(d 0ρ−ρ

=α   . (4.8a)

However, using Equation 4.8a may result in significant errors in α due to the uncertainty in

evaluating the residual resistivity ρ0, especially when α is small. Alternatively, the following

expression can be used:

T
T

lnd
d
dlnd ρ

+=α 1   . (4.8b)
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One can define an effective temperature-dependent exponent αeff(T) by applying equation

4.8b at all temperatures. The effective exponent can be identified with α if αeff(T) ≈  constant in a

certain temperature range.

Figure 4.7 shows αeff(T) computed from the derivative of the smoothed low-temperature

resistivity curves. For I || a, one obtains αa = 1.25(5) below about 1 K. For I || c, αeff(T) does not

attain a constant value and thus ρc does not follow a clear T α law down to 0.3 K. Assuming that

αeff,c(T) levels off below 0.3 K in a way similar to αeff,a(T), the rough estimate αc ~ 0.9(1) can be

made.
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Figure 4.7 - Effective exponent αeff of the resistivity of U2Pt2In for I || a and I || c.

With these α-values the following residual resistivities result: ρ0,a = 0.53 ρRT and

ρ0,c = 0.95 ρRT, i.e. ρ0 ≈  115 µΩcm for I || a and ρ0 ≈  210 µΩcm for I || c. The residual

resistivity values are large, which is normally taken as evidence that some disorder is present in

the crystals. However, this has not been confirmed by single-crystal X-ray [10] and neutron-

diffraction [30] experiments. The structure refinement confirms the high crystalline quality. The

possibility of site inversion (e.g. Pt and In inversion) is also excluded by the neutron-diffraction

refinement. Moreover, because the residual resistivity depends strongly on the direction of the
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applied current, it is clear that besides impurities other scattering mechanisms contribute to ρ0. It

should be noted that the low-temperature resistivity data were taken on several single crystals, all

showing the same behaviour.

4.2.2.1. Magnetoresistance

Transport properties in a magnetic field provide an important tool to investigate the non-

Fermi liquid state. In general, a magnetic field is expected to restore the Fermi liquid state, as for

the case of a proximity to a quantum critical point. If a compound is driven away from the

magnetic instability, the suppression of magnetic correlations should be observable in the

resistivity.

In Figure 4.8, the temperature dependence of the resistivity is shown in a field of 8 T

applied along the different crystallographic directions. Below 4.2 K the magnetoresistance (MR)

for I || c is negative for both B || c (longitudinal configuration) and B || a (transverse

configuration). At the lowest temperatures, the ρ(T) curves show a tendency to level off. For

I || a, the curves obtained in the two transverse configurations (B || b and B || c) are essentially the

same, i.e. a negative MR at high temperatures and a positive MR below 0.8 K. At the lowest

temperatures, an approximate ρ ~ T 2 behaviour is observed in 8 T. In the longitudinal

configuration, the magnetoresistance is always positive and shows no tendency to level off at low

temperatures.

Assuming that the ρ(T) curves follow power laws of the type ρ ~ T α, the exponent α can be

estimated using equation 4.8b. The effective exponent obtained for different magnetic fields is

plotted in Figure 4.9 for the transverse configurations (since for I || a the data for B || b and B || c

are almost identical, only B || c is shown). The low-temperature value of α increases with

increasing magnetic-field strength, reaching values close to 2 for 8 T, as expected for a Fermi

liquid. The field evolution of the exponent α is shown in Figure 4.10, which clearly illustrates

that there is a tendency towards a Fermi-liquid ρ ~ T 2 law near 8 T.
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Figure 4.10 - Field dependence of the resistivity exponent α in the transverse configuration. The lines
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In Figure 4.11 and Figure 4.12, the magnetoresistance in the longitudinal and transverse

configurations is shown at 0.48, 1.3, 4.2 and 10 K. The magnetoresistance curves show several

unusual features.

In the longitudinal configuration, a negative MR is obtained when current and field are

applied along the c-axis. A weak upward curvature is observed at the lowest temperatures at high

fields. On the other hand, when current and field are applied along the a-axis the

magnetoresistance is positive and approximately follows a ∆ρ/ρ ~ B 2 law.

In the transverse configuration, the MR obtained for I || c is also negative with ∆ρ/ρ values

higher (in absolute value) than for B || I || c. No tendency to upward curvature is visible at the

lowest temperatures. In the B ⊥  I || a case, the MR values are negative at low fields, pass through

a minimum and then become positive. The position of the minimum increases with temperature:

Bmin ~ 3.5, 5 and 14 T at T = 0.48, 1.3 and 4.2 K, respectively (see Figure 4.13 for the high-field

MR at 4.2 K).
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Figure 4.11 - Magnetoresistance of U2Pt2In in the longitudinal configuration (B || I) at temperatures as
indicated.

0 1 2 3 4 5 6 7 8
-14

-12

-10

-8

-6

-4

-2

0

(a)

4.2 K

1.3 K

0.48 K

I || c ,  B || a

 

∆R
 / 

R
  (

%
)

B (T)
0 1 2 3 4 5 6 7 8 9

-1

0

1

(b)

4.2 K

1.3 K

0.48 K
I || a ,  B || b

∆R
 / R

  (%
)

B (T)

Figure 4.12 - Magnetoresistance of U2Pt2In in the transverse configuration (B ⊥  I) at temperatures as
indicated.



Non-Fermi liquid behaviour in U2Pt2In 73

0 5 10 15 20 25 30 35 40
-5

0

5

10

15

∆R
 / 

R
 (%

)

B (T)

Figure 4.13 - High-field magnetoresistance of U2Pt2In at 4.2 K for I || a and B || c. The line is a
polynomial fit through the data points. Note: the oscillations observed are an artefact of
the averaging procedure.

According to Ref. 31, the magnetoresistance of weakly- or non-disordered metals in the

NFL regime close to an antiferromagnetic quantum critical point (see Section 2.3) can be

separated into spin and orbital effects. For the spin effects, small magnetic fields will suppress

the antiferromagnetic fluctuations as the compound is driven away from the QCP. This

suppression of the fluctuations will reduce the amount of scattering and the MR will be negative.

For localized-moment paramagnets, applying a magnetic field results in a net polarization of the

disordered magnetic moments and thus to a reduction of their scattering contribution to the

resistivity. The magnetoresistance is related to the correlation function ji SS  between the ion

spins and therefore to the low-field magnetization M [32]:

2

sat






−=

ρ
ρ∆

M
Ma   , (4.9)

where ∆ρ/ρ ≡ [ρ(B,T)-ρ(0,T)]/ρ(0,T), a > 0 and Msat is the saturation magnetization obtained at

extremely high fields. Since the magnetization of U2Pt2In is proportional to the field, it follows

that ∆ρ/ρ ~ -B 2.
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On the other hand, for the orbital effects a positive MR is expected, which varies initially

as B 2, then crosses over to a linear behaviour in B and finally saturates at high fields [31].

In addition, if the Lorentz force would be responsible for the B 2 behaviour observed, then

one would expect a weak positive B 2 contribution to the transverse MR and, to a lesser extent, to

the longitudinal magnetoresistance. A comparison of the MR values obtained for the different

configurations (Figure 4.14) shows that this contribution is very weak and not significant. In fact,

the opposite effect is observed: for I || c, ∆ρ/ρ is less negative for B || I than for B ⊥  I, while for

I || a the positive contribution is clearly stronger in the longitudinal configuration than in the

transverse one.
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Figure 4.14 - Magnetoresistance of U2Pt2In at T = 0.48 K for B || I and B ⊥  I.

When summarizing the magnetoresistance data, a competition of a positive and a negative

contribution is clearly found. At low fields, the negative contribution is always dominant, except

when B || I || a. As the field increases, the positive contribution becomes dominant. The high field

experiments show that the MR has a tendency to saturate at extremely high fields (about 100 T).

This is also predicted by the theory of magnetotransport in nearly antiferromagnetic metals [31].



Non-Fermi liquid behaviour in U2Pt2In 75

A proper analysis of the relative weight of the different contributions is difficult due to

their competition, although it is evident that the negative contribution, associated with a

polarization of the moments, is stronger when the current is applied along the c-axis.

A closer inspection of the zero-field resistivity curves for I || c reveals the presence of a

shoulder in ρ(T) centered at about 7 K. The shoulder becomes more clear in a ρ versus logT plot

(Figure 4.15). This anomaly is not observed for I || a. It should be noted that B || c is the direction

for which a maximum at Tmax = 7.9 K is observed in the magnetic susceptibility. This suggests

that the resistivity shoulder may be related to short-range antiferromagnetic correlations along the

c-axis. The field effect (B || I, B ≤ 5 T) on the shoulder is shown in Figure 4.15. The shoulder is

suppressed under the influence of the magnetic field and becomes very faint at 5 T. As

antiferromagnetic fluctuations tend to be suppressed by a magnetic field, also the shoulder should

be gradually suppressed with field. However, suppression of the magnetic fluctuations was not

observed in the susceptibility in fields up to 5.5 T. Since the shoulder in ρ(T) is very faint, it may

possibly be more sensitive to this effect than the maximum in χ(T).

Another important point is that ρ0 varies significantly with the applied magnetic field,

which clearly shows that the residual resistivity is not uniquely due to impurity or defect

scattering.
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Figure 4.15 - Temperature dependence (T ≤ 15 K) of the resistivity of U2Pt2In for B || I || c.
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4.2.3. Specific heat

The specific heat of U2Pt2In was measured on several single-crystalline samples, using a

semi-adiabatic technique in a bath cryostat above 1.5 K, while data below 5 K were taken in a
3He system (0.3 K < T < 5 K) and a dilution refrigerator (0.1 K < T < 0.7 K) employing the

relaxation method. The results are shown in Figure 4.16 in a plot of c/T versus logT. Below 10 K,

c/T shows an upturn and instead of attaining a constant value in the limit T→0 K, as expected for

a Fermi liquid, c/T diverges logarithmically, which is one of the hallmarks of a non-Fermi-liquid

ground state.
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Figure 4.16 - Low-temperature specific heat of U2Pt2In divided by temperature as a function of logT.

The line is a  c/T ~ -ln(T/T0)  fit.

The data below 6 K are well described by
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with γ1 = 406.8(5) mJ/molUK2 and δ = 89.9(5) mJ/molUK2. Here, T1 ≡ 1 K and

T0 = exp(γ1/δ) = 92(1) K. In this case, γ1 is the value of c/T at 1 K and not the enhanced-

Sommerfeld coefficient, as usually observed for heavy-fermion compounds.
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Of main importance is that U2Pt2In is one of the few stoichiometric systems exhibiting

non-Fermi liquid behaviour with a strong logarithmic divergency of the specific heat. Moreover,

this logarithmic divergency has been found in the data over almost 2 decades of temperature.

At higher temperatures, the dominant contribution to the specific heat is the lattice

contribution. Since no samples of the non-magnetic compound Th2Pt2In were available, the

phonon contribution to the specific heat could not be estimated. However, an approximation can

be given by the Debye function
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This expression is valid for the specific heat at constant volume (cV) but, experimentally, the

specific heat at constant pressure (cp) is obtained. The difference between cV and cp can usually

be neglected as it will be shown in Section 4.2.4.

The Debye function has been tabulated in Refs. 33 and 34 and can therefore easily be

compared to the experimental data. The high-temperature slope of the specific heat of U2Pt2In

can be approximated by a linear electronic term cel = γT with γ  = 88 mJ/molUK2. Using this

value, cph = c - cel is in good agreement with the Debye function calculated with θD = 175 K (see

the line in Figure 4.17a). However, the subtracted linear term has an unusually large coefficient,

about 10 times higher than expected, which possibly indicates that the Debye function

underestimates the lattice contribution to the specific heat of U2Pt2In.

The electronic contribution obtained after subtracting the Debye function from the total

specific heat is plotted in Figure 4.17b. In this contribution, the logarithmic divergency is

observed up to about 35 K. However, the high-temperature linear term above 50 K is extremely

large. The entropy associated with it is also too large to account for a possible crystalline electric-

field effect.

Assuming that the low-temperature phonon contribution to the specific heat is cph = βT 3,

with β obtained from θD = 175 K, the low-temperature entropy associated with the electronic

specific heat can be determined by the integral of (c-cph)/T,

∫==−
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TSTS

K10

el
elel K10

.

d)().()(   . (4.12)

The entropy is shown in Figure 4.18. In the S=½ two-channel Kondo effect, the entropy is

predicted to saturate at ½ Rln2 (≈  2.88 J/molUK) before continuing to increase at higher
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temperatures (see Section 2.3). For U2Pt2In, there is no clear evidence for this effect.
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Figure 4.18 - Entropy (per mole U) derived from the electronic specific heat of U2Pt2In.



Non-Fermi liquid behaviour in U2Pt2In 79

4.2.3.1.  Specific heat in field

In order to investigate the robustness of the non-Fermi-liquid state in U2Pt2In in an external

magnetic field, specific-heat measurements were performed in the temperature range 0.1-1 K

with B || c up to field values of 8 T. In Figure 4.19, the results obtained in the dilution refrigerator

(T < 0.7 K) are shown. The straight line represents the zero-field c/T = -δln(T/T0) behaviour taken

from Figure 4.16.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

 

 

∆c
  (

 m
J 

/ m
ol

 f 
uK

 )

T  -2 (K -2)

0.1 1
0.8

1.0

1.2

1.4

1.6

1.8

2.0

B = 0
2 T
4 T
6 T
8 T

c 
/ T

  (
 J

 / 
m

ol
 f 

u K
2 )

T (K)
Figure 4.19 - Specific heat divided by temperature versus logT for U2Pt2In under magnetic fields

applied along the c-axis. Insert: nuclear specific heat cN ≡ c - c|B=0 versus T -2 for
T < 0.25 K; the lines are functions cN = D2T -2 (see text below).

A strong enhancement of the specific heat is observed at low temperatures as the field

strength increases. As will be shown below, this enhancement is predominantly due to the

specific heat of the In nuclei.

A nuclear contribution to the specific heat arises when an interaction lifts the degeneracy of

the states, which are characterized by different orientations of the nuclear moments. This

interaction may be provided by an external magnetic field, an effective hyperfine field or an

electric field gradient. The energy levels, εm, of a nucleus with spin quantum number I in a

magnetic field and in an electrical field gradient with axial symmetry are given by [35,36]
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where  µ = gNIµN  is the magnetic moment of the nucleus (µN is the nuclear magneton and gN the

nuclear g-factor) and Beff is the effective field at the nucleus arising from the hyperfine field Bhf

and/or an external field B. eq is the component of the electric-field gradient tensor along the

high-symmetry axis and Q is the nuclear quadrupole moment. One has Q = 0 for I = 1/2, while

q = 0 for nuclei in a cubic environment.

The exact expression for the nuclear specific heat (of the Schottky-anomaly type) is
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From this expression it follows that at low temperatures cN ~ exp(-1/T), while at high

temperatures cN ~ T -2. A maximum occurs at Tmax = (εm+1-εm)/kBI and the entropy associated

with cN equals Rln(2I+1).

Since the measurements are usually made at temperatures well above Tmax of cN (for most

metals the maximum is found at T << 0.1 K), one can use a high-temperature expansion of cN in

a power series of 1/T:

∑
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N
i

i
iTDc   . (4.16)

The coefficients Di are determined by the various moments of the energy levels. If the magnetic

field is parallel to the symmetry axis of an axially symmetric electric-field gradient, the first two

coefficients are given by [37]
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If the quadrupole interaction is zero (P=0), all odd coefficients in Equation 4.16 vanish. In most

cases, the first term is sufficient for fitting the experimental data: cN = D2T -2.

In Table 4.7, the nuclear spin quantum number, magnetic moment and quadrupole moment

of the isotopes that may contribute to the nuclear specific heat of U2Pt2In (i.e. the isotopes with

I ≠ 0) are shown. Considering the abundancies and the nuclear moments of these isotopes, one

can assume that the origin of the nuclear specific heat shown in Figure 4.19 is mainly due to the

nuclei of In (113In and 115In have a nuclear magnetic moment that is one order of magnitude

higher than 195Pt and 235U). The In nuclei have a spin of 9/2 and the average (taking into account

the relative abundancies) magnetic and quadrupole moments are equal to µ = 5.5403 µN and

Q = 0.81×10-24 cm2, respectively.

Table 4.7 - Some nuclear data for the isotopes with I ≠ 0 present in U2Pt2In. Source: WebElements
[http://www.shef.ac.uk/chemistry/web-elements].

isotope abundancy (%) I µ (µN) Q (10-24 cm2)
113In 4.29 9/2 5.5289 0.799
115In 95.71 9/2 5.5408 0.81
195Pt 33.83 1/2 0.60950 0
235U 0.72 7/2 -0.35 4.936

The insert in Figure 4.19 shows the field effect on the specific heat, obtained by subtracting

the zero-field function, ∆c = c - cB=0 = c - (γ1 - δlnT). This figure shows that ∆c varies

approximately linearly with T -2. Extracting values of D2 from the B = 6 T and 8 T curves (for the

lower fields the scatter is rather large after subtracting the zero-field curve), one obtains

Bhf = 51.5 mT and a quadrupole-coupling constant P ≈  0.9 mK. With these parameters, values

of D2 can then be calculated for B = 2 and 4 T (insert of Figure 4.19).

Although above 0.3 K the nuclear contribution to c/T is small, the data in Figure 4.19 show

c/T values a few percent higher than for the zero-field data in this temperature range. There are

two possible explanations for this behaviour: i) it can be attributed to small errors in the

calibration of the thermometer on the sapphire plate in field. In fact, data taken above 0.4 K in a
3He system with another calibrated thermometer did not show this effect. Notice that a small

calibration error does not affect significantly the overall c(T) curve; ii) the nuclear contribution

might overshadow a decrease of the electronic term at low temperatures. As under influence of a

magnetic field, a compound is pushed away from a magnetic instability, the low-temperature c/T

will level off in order to recover the Fermi liquid behaviour. A decrease of c/T at low
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temperatures has to be accompanied by an increase at higher temperatures because of the

conservation of entropy [38].

In zero field, the calculated value of D2 amounts to 4.303×10-5 JK/molIn, which indicates

that the nuclear contribution can be neglected with respect to the U electronic specific heat

(T ≥ 0.1 K). This value of D2 is about 40 times larger than the one calculated for pure In in its

tetragonal structure [39]. This is possibly explained by a substantial enhancement of the

hyperfine interactions, which is not an unusual phenomenon in intermetallic compounds [40].

This large nuclear contribution hampers the study of the field effect on the non-Fermi

liquid contribution. As a result, the proposed scaling properties of the specific heat (see Section

2.3) cannot be investigated. Magnetoresistance measurements showed a recovery of the Fermi

liquid behaviour at the lowest temperatures. This seems, however, not to be confirmed by the

specific-heat data.

4.2.4. Thermal expansion

Thermal-expansion measurements were performed on a single crystal of U2Pt2In in the

temperature intervals 0.3-10 K (using a 3He system) and 1.7-200 K (using a 4He bath cryostat).

Data were taken along the a-axis (L = 4.478 mm) and the c-axis (L = 1.570 mm). The linear

thermal-expansion coefficients, αa and αc, obtained along the a- and c-axis, respectively, are

shown in Figure 4.20, together with the temperature dependence of the volume expansion

coefficient  αV = 2αa + αc (tetragonal structure).

The coefficients αa and αc are both positive and show a rapid increase with increasing

temperature below 3 K. αa varies approximately linearly with temperature for 3 K < T < 60 K and

levels off at higher temperatures. αc is much larger than αa below 12 K, but αc ≈  αa above this

temperature. The observed anisotropy in the thermal-expansion coefficients shows that when

lowering the temperature below the coherence temperature, the c-axis shrinks more rapidly than

the a-axis. The coefficient of the volume expansion shows, besides the heavy-fermion

contribution, an unusual quasi-linear temperature dependence between 12 K and 60 K.
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expansion. Insert: αV/3 (T ≤ 200 K).
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Figure 4.21 - Difference between the specific heats of U2Pt2In at constant pressure and volume.

The thermal-expansion data can be used to estimate the specific heat at constant volume.

The difference between cV and cp can be expressed as
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Using the compressibility value of κ = 0.68 Mbar-1 (see Section 6.1), the difference cp-cV shown

in Figure 4.21 is obtained. The relative value (cp-cV)/cp is limited to 3% up to 200 K. Therefore,

the specific-heat data presented in the previous section do not need to be corrected for the

difference between cp and cV.

The thermal expansion can be related to the specific heat by means of a Grüneisen

parameter. A physically meaningful Grüneisen parameter emerges when part of the entropy can

be written as Si(T/Ti) where Ti is a (volume dependent) characteristic temperature of the entropy

term. The Grüneisen parameter is defined as [41]
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where κ is the isothermal compressibility
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It is useful to define an effective temperature-dependent Grüneisen parameter
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where Vm is the molar volume (Vm = 6.568×10-5 m3/molfu for U2Pt2In). The temperature

dependencies of Vm and κ are usually small and can be neglected.
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In general, if the effective Grüneisen parameter is constant in a certain temperature interval,

one can identify Γ eff with the Grüneisen parameter for the particular mechanism that governs the

thermal properties in that temperature range [41,42].

The temperature dependence of the effective Grüneisen parameter of U2Pt2In is shown in

Figure 4.22. At high temperatures, the Grüneisen parameter amounts to Γ ph = 3.1. This value can

be compared to the value of 2 normally found for the phonon contribution in metals. Γ eff

increases smoothly as the temperature is decreased down to about 40 K, below which a fast

increase occurs, reflecting the heavy-fermion character of U2Pt2In. At the lowest temperature of

0.35 K, Γ eff = 56. Similar values have been observed in other heavy-fermion compounds [43].

The small anomaly near 0.5 K is not significant, as it is an artefact of the experiment. The

continuous increase of Γ eff(T) at low temperatures hampers the extraction of the bare NFL form

from the thermal-expansion data.
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Figure 4.22 - Low-temperature (T ≤ 15 K) dependence of the effective Grüneisen parameter of U2Pt2In.
Insert: Γ eff at temperatures up to 180 K.
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4.3. Discussion

4.3.1. Hybridization phenomena and evidence for NFL behaviour

The inter-uranium distances in U2Pt2In, shown in Table 4.1, are slightly above the Hill

limit (~ 3.5 Å) for uranium [44]. From this, one may conjecture that U2Pt2In would order

magnetically, as it is located on the magnetic side in the Hill plot. However, in the past decade it

has become clear that the electronic structure in many U compounds is governed by the

5f - d-ligand overlap and that the Hill-limit picture is too simple.

If the magnetic ordering temperatures of the In and Sn 2:2:1 compounds are plotted versus

the square of the calculated hybridization matrix elements, a Doniach-like phase diagram results

(Section 4.1.2 and Ref. [45]). Interestingly, U2Pt2In is close to the border line between magnetic

and non-magnetic compounds.

The participation of 5f-electrons in the bonding in light-actinide intermetallics, leads to a

compression of the 5f charge densities towards the bonding directions, which are given primarily

by the shortest inter-actinide directions [46]. In the UTX (1:1:1) family, it was found as an

empirical rule that the magnetic moment is always directed perpendicular to the shortest U-U

direction. However, exceptions for this rule have been found in the 2:2:1 family. In U2Rh2Sn

[47] the shortest U-U distance is located along the c-axis and yet the U moments are aligned

along the c-axis. In the case of U2Pt2In, the shortest U-U distance is located in the tetragonal

plane. The susceptibility data show that antiferromagnetic correlations (of the Ising type) are

found along the c-axis. This complies with the shortest U-U distance rule, as reported for the

1:1:1 compounds.

The analysis of the resistivity leads to a description with a low-temperature term

T α (T→0 K), with α = 1.2 and 0.9 for the a- and c-axis, respectively. The absence of the usual

Fermi-liquid T 2 term gives strong support for non-Fermi liquid behaviour in U2Pt2In. The

specific-heat measurements on a single crystal down to 0.1 K show a clear logarithmic

divergency of c/T below 6 K, i.e. over almost two decades of temperature. This puts the NFL

behaviour in U2Pt2In on firm footing.
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Neutron-diffraction studies carried out on single-crystalline U2Pt2In [30] confirmed that the

crystallographic structure is of the Zr3Al2-type. The structure refinement showed a perfect

stoichiometry in the sense that no significant improvements in the final refinement factor could

be achieved by allowing the occupational parameters to vary (including possibilities of atomic

disorder like, e.g., Pt-In site inversion). At 1.5 K, exhaustive scans along different reciprocal

lattice lines revealed no evidence of any long- or short-range magnetic ordering.

Polarized neutron-diffraction experiments carried out on the same U2Pt2In single crystal

[30] probed the local susceptibility at the two U sites: U(4f) and U(4g). The observed

magnetization density in the unit cell, constructed using the maximum entropy method, is

reproduced in Figure 4.23 for T = 10 K and B = 4.6 T applied along the [101] direction. The site

susceptibility of the U atoms at the 4f positions is almost twice that of U(4g).

U(4g)
U(4f)

Figure 4.23 - Magnetization density ((001) projection) induced at 10 K by a field of 4.6 T in the [101]
direction of U2Pt2In. Contour levels are from -0.01 (dashed) to 0.41 in steps of
0.02 µB/Å3. Taken from Ref. 30.

Considering the average (room temperature) interatomic distances for the two U sites

(Table 4.1), the hybridization on the U(4f) and U(4g) atoms can be calculated separately in the

same way as described in Section 4.1.2. The p-, d- and f- hybridizations at the two sites and the

total conduction-electron - f-electron hybridization are shown in Table 4.8. As can be seen, the
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hybridization is smaller for the U(4f) atoms than for the U(4g). Within the Doniach phase

diagram (TN versus Vcf
2) presented before, one may conjecture that the hybridization on the 4f

sites "pushes" U2Pt2In towards magnetic order in a stronger way than the hybridization at the 4g

sites. Therefore, a stronger site susceptibility may be found at the 4f sites.

Table 4.8 - p-, d-, f- and total hybridization at the two U sites in U2Pt2In.

VIn-U (eV) VPt-U (eV) VU-U (eV) Vc-U (eV)
U(4f) 0.136 0.764 0.164 0.793
U(4g) 0.144 0.781 0.151 0.825

The ratio of the orbital and spin magnetic moments was also estimated and found to be

approximately the same for the two sites, |µL/µS| ≈ 1.8. This value corresponds to values

frequently found for U ions in intermetallic compounds [48] and indicates an appreciable

quenching of the orbital moment, when compared to the free-ion U3+ and U4+ configurations, due

to hybridization processes.

The total moment measured at 10 K in a field of 4.6 T applied along the [101] direction

was 0.139(9) µB/f.u.. This moment is about 24% lower than that found in the magnetization

measurements (Section 4.2.1). Although the magnetization was not measured for fields applied

along the [101] direction, a value of 0.182 µB/f.u. at 4.6 T can be estimated by considering

M[101] ≈ Mccos2φ + Masin2φ, where φ is the angle between the [101] and the c direction. The

neutron experiments are only sensitive to the magnetization associated with the localized 5f-

states, which is normally larger than that obtained by bulk measurements. The difference is

attributed to a negative conduction-electron polarization [49]. Thus, the positive discrepancy in

the case of U2Pt2In is unusual and at least two possibilities exist for this additional conduction-

electron polarization: it can arise from either the Pt 5d-electrons or a fraction of the U 5f-states

that is delocalized [30]. A positive conduction-electron polarization has also been found in the

heavy-fermion superconductor UPd2Al3 [50].

4.3.2. Single-ion scaling and the two-channel Kondo model

Irrespective of the microscopic mechanism responsible for the NFL behaviour in U2Pt2In, it

is of interest to investigate single-ion Kondo scaling of the NFL properties. Within the two-



Non-Fermi liquid behaviour in U2Pt2In 89

channel Kondo effect (TCKE - see Section 2.3), the specific heat can be expressed as

c/T = B'-(A'/TK)ln(T/bTK) [51]. Using the values A' = 0.251R and b = 0.41 from the TCKE, one

obtains TK = 23.2 K and B' = 204.3 mJ/molUK2. This value of TK is close to the Kondo

temperature 16 < TK < 21 K, which can be deduced from the susceptibility data, assuming that

the paramagnetic Curie temperature θ is 3-4 times larger than TK [52]. The value of B' is however

extremely high, since it should account for a temperature independent electronic or crystal-field

background in c/T.

This value of TK in U2Pt2In is also consistent with the one extracted from thermoelectric-

power data taken on a single crystal [53]. In the temperature range 5-150 K, the thermopower is

negative with a minimum at Tmin ≈ 25 K. Similar minima were reported for several other heavy-

fermion compounds exhibiting spin-fluctuation phenomena, with Tmin ~ TK [54].

With the value of TK, the coefficient a of the power law in the resistivity,

ρ/ρ0 = 1 + a (T/TK)α, can be calculated: aa = 2.89 and ac = 0.71 for αa = 1.2 and αc = 0.9,

respectively.

The unusual low-temperature susceptibility data yield further support for NFL behaviour.

The theoretical expressions for the magnetic susceptibility of a NFL compound are χ ~ -ln(T/T0)

or χ ~ 1-bT β (β < 1), depending on the type of system (see Section 2.3). In U2Pt2In, χc(T) is

dominated by antiferromagnetic correlations below 10 K, therefore, no low-temperature analysis

can be done confidently. However, χa(T) continues to rise, at least down to 2 K. Analysing χa

(T < 10 K) with a term χa ~ 1 - b' (T/TK)β one finds β = 0.7 and b' = 0.25, but the limited

temperature range where this behaviour occurs does not allow for a reliable estimate of the

exponent β.

The results of the scaling analysis within single-ion Kondo models are summarized in

Table 4.9. The reduced values of the parameters should be considered as rough estimates since

the data were not corrected for the phononic contributions. The high value of B' indicates that the

specific heat can not be fully described by the TCKE expression. Furthermore, single-ion models

are normally applied in diluted systems where small amounts of an f-element are used to partially

replace a non-magnetic rare earth or actinide element (e.g. systems like Y1-xUxPd3 and

Th1-xUxPd2Al3 [51,55]), while U2Pt2In should be considered as a Kondo-lattice system. A clear

indication that the TCKE does not apply to U2Pt2In is that the entropy does not saturate at the

value ½ Rln2 as expected for this model. Nevertheless, the observed scaling of the low

temperature properties shows that the Kondo temperature, being a characteristic temperature of
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the heavy-fermion character of U2Pt2In, can also be taken as a characteristic temperature of its

non-Fermi liquid behaviour.

Table 4.9 - Parameters from single-ion scaling of some low-temperature properties of U2Pt2In.

a-axis c-axis
c/T = -(A'/TK)ln(T/bTK) + B' TK = 23 K

B' = 0.20 J/molUK2

ρ = ρ0 [1 + a (T/TK)α] α = 1.2
ρ0 ≈  115 µΩ.cm

a = 2.89

α ≈  0.9
ρ0 ≈  210 µΩ.cm

a = 0.71
χ = χ(T=0) [1 - b' (T/TK)β] β = 0.7

χ(0) ≈  14×10-

8 m3/molU

b' = 0.25

-

4.3.3. Kondo disorder

An alternative mechanism which can lead to NFL behaviour is the Kondo disorder model

[56], where the Kondo effect on each f-electron atom sets a different temperature scale, resulting

in a broad range of effective Kondo temperatures. One should note that the residual resistivity

values of the U2Pt2In single-crystals are large. ρ0,a and ρ0,c equal 110 and 200 µΩcm,

respectively, which indicates that disorder is present in the crystals. The origin of this disorder

remains unclear. The single-crystal X-ray and neutron-diffraction structure refinement with final

agreement factors of 4.3% and 2.6% respectively, are considered to indicate a high crystalline

quality. A small percentage of site inversion (Pt and In inversion) seems also to be excluded by

the neutron-diffraction structure refinement. It is also possible that the disorder is somehow

related to the polymorphism of U2Pt2In and the presence of two U sites with different magnetic

susceptibilities.

Specific-heat measurements performed on a polycrystalline sample in the temperature

range 0.3 K < T < 5 K yield the same logarithmic divergency as measured on the single crystals.

This shows that the NFL behaviour is found for the U3Si2-type of structure (polycrystals) as well

as for the Zr3Al2-type of structure (single crystals). Therefore, the NFL behaviour in U2Pt2In is

not related to the presence of two different crystallographic U sites and the difference in U site

susceptibility is not a main ingredient in the origin of the NFL behaviour.



Non-Fermi liquid behaviour in U2Pt2In 91

On the other hand, it is clear that the ρ0 values found do not reflect bare residual

resistivities. This may be concluded from the following: i) there is a strong current-orientation

dependence of the values of ρ0, with ρ0,a = 0.56ρ0,c at zero field, which cannot simply be

attributed to impurity or defect scattering; ii) both ρ0,a and ρ0,c vary in field, which indicates that

at least part of ρ0 is caused by scattering mechanisms other than scattering at crystallographic

defects.

4.3.4. Magnetic critical point

An appealing scenario for the origin of the non-Fermi liquid behaviour in U2Pt2In is the

proximity to a quantum critical point [57]. This is reflected in the location of U2Pt2In at the

border line between magnetic and non-magnetic compounds in a Doniach-type of diagram for the

U2T2X series (X = In, Sn). Tuning the quantum critical point with an external parameter, e.g. a

magnetic field or (chemical) pressure, should elucidate the applicability of this scenario.

Magnetoresistance measurements show a tendency towards a ρ ~ T 2 law as the field strength

increases, suggesting that the magnetic field shifts U2Pt2In away from the quantum critical point

towards a Fermi-liquid regime. Specific-heat measurements in field were inconclusive in this

respect due to the presence of an important contribution from the In nuclear moments.

The proximity of U2Pt2In to a quantum critical point is best probed with pressure

experiments and chemical substitutions. Usually, compounds located at a magnetic instability are

tuned towards the Fermi-liquid regime by applying pressure since a reduction of the interatomic

distances results in an increase of the hybridization. On the other hand, chemical substitution of

U by a larger non-magnetic element like Th should have the opposite effect. Resistivity

measurements under pressure were carried out on U2Pt2In up to p = 1.8 GPa and will be

presented in Section 6.1, while some preliminary results of studies on Th-doped U2Pt2In will be

presented in Section 6.2.

The absence of static magnetism in U2Pt2In has been confirmed by detailed muon spin

relaxation and rotation (µSR) experiments, which will be presented in Chapter 5. As discussed in

Chapter 3, the µSR technique is a very powerful probe as it enables the detection of tiny ordered

moments (which might be overlooked by other techniques). The µSR technique may also be used

to investigate whether Kondo disorder is the origin of non-Fermi liquid behaviour.
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Muon spin relaxation and rotation

in U2Pt2In

The main purpose of using the µSR technique in the study of non-Fermi liquid compounds

is to demonstrate the absence of static magnetism with tiny ordered moments. This weak

magnetism is commonly observed in heavy-fermion compounds, and might be overlooked by

macroscopic magnetic, thermal and transport techniques. Also, because the muon is an extremely

sensitive magnetic probe, important information about magnetic fluctuations can easily be

extracted from the data. In this chapter, results of zero-, longitudinal- and transverse-field µSR

experiments carried out on single-crystalline U2Pt2In are presented. The experiments were

performed at the GPS and LTF spectrometers of the Paul Scherrer Institute (Switzerland). For a

brief description of the µSR technique and the relevant theoretical aspects see Section 3.6.

5.1. Zero field

Zero-field (ZF) µSR experiments were performed in the temperature range 0.05-200 K. The

spectra obtained give no evidence of magnetic order down to the lowest temperatures. Best fits to

the muon relaxation curves, as measured in the GPS, were obtained using a two-component

function, consisting of an exponential and a Gaussian term (Figure 5.1):
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( ) ( )22
GGEEGGEE )(expexp)()()( tAtAtPAtPAtP ∆−+λ−=+=   . (5.1)

In this nomenclature, Ai is the amplitude of the component i with the normalization AE+AG = 1.

Notice that in this case the sample was mounted with mylar foil on a fork-like holder, such that

the contribution from the sample holder can be neglected. For the measurements in the LTF, the

sample was mounted on a silver plate. Since the dimensions of the sample are smaller than the

muon-beam window, an extra nuclear contribution of the Kubo-Toyabe type arises from the

silver plate. This Kubo-Toyabe term has a temperature-independent amplitude AKG = 0.76 (with

AE+AG+AKG = 1) and a depolarization rate ∆KG ~ 0.01 µs-1.
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1.0 T = 5 K

 P(t)
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 AG PG(t)

P

t (µs)

Figure 5.1 - Depolarization spectrum of U2Pt2In at 5 K. The solid line is the total depolarization
function and the dashed and dotted lines represent the exponential and Gaussian
components, respectively.

In Figure 5.2, the depolarization rate of the exponential component is shown. λE is almost

constant above 7.5 K, while it increases strongly below this temperature. Notice that the

susceptibility of U2Pt2In goes through a maximum at Tmax = 8 K, which indicates the presence of

short-range antiferromagnetic correlations. Therefore, the strong increase of λE may very well be

related to the stabilization of antiferromagnetic correlations. For the Gaussian component, on the

other hand, ∆G ~ 0.34 µs-1, independent of temperature. This temperature-independent behaviour

suggests that the Gaussian component is associated with a random distribution of nuclear
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moments. The dominant nuclear contribution comes from the In nuclei, with spin 9/2 and

magnetic moment 5.5 µN. The contribution of the Pt nuclei (I = 1/2, µ ~ 0.6 µN, 34% abundancy)

is much smaller.

AE(T)/[AE(T)+AG(T)] has approximately the same form as λE(T) with values ranging from

0.2 at high temperatures to about 0.8 at 0.05 K. If each of the two components is associated with

a different muon-stopping site (µ-s.s.), the amplitude ratio should be temperature independent as

it depends only on the crystallographic multiplicity of the µ-s.s.. The observed temperature

dependence of the amplitude ratio indicates that the two components represent two magnetic

contributions to the ZF-µSR signal, originating from one or more stopping sites.

0.1 1 10 100
0.0

0.5

1.0

1.5

2.0
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λ E  
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s-1
)

T (K)

Figure 5.2 - Temperature dependence of the depolarization rate of the exponential contribution to the
ZF-µSR signal in U2Pt2In. Notice the logarithmic T scale. The line is a guide to the eye.

The observed value of ∆G can be compared with the calculated one for a random

distribution of In nuclear moments. A distribution of randomly oriented nuclear moments will

produce a depolarization rate (Kubo-Toyabe depolarization rate) given by [1]

∑ θ−
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where µ0 is the vacuum permeability and γN the gyromagnetic ratio of the nuclei with spin I. ri is

the vector connecting the muon site and the nucleus i, while θi is the angle defined by ri and the

initial muon polarization Pµ(0).

Since the µ-s.s. are not known, ∆KT is calculated for different possible sites. In U2Pt2In

several interstitial positions with high symmetry are unoccupied. These are the best candidates

for stopping sites. The crystallographic sites and their coordinates for the P42/mnm space group

are listed in Table 5.1. The sites with the highest symmetries are shown in Figure 5.3.

Table 5.1 - Crystallographic positions and coordinates for the P42/mnm space group (U2Pt2In).

2a 2b 4c 4d 4e 4f 4g 8h 8i 8j 16k
(0,0,0) (0,0,½) (0,½,0) (0,½,¼) (0,0,z) (x,x,0) (x,-x,0) (0,½,z) (x,y,0) (x,x,z) (x,y,z)

- - - In - U
x=0.335

U
x=0.180

- - Pt
x=0.130
z=0.234

-

U1 U2

Pt In

2a

 2b

 4c

Figure 5.3 - Crystal structure of U2Pt2In with some interstitial sites with high symmetry indicated.
Note: U1 = U(4f), U2 = U(4g).

The Kubo-Toyabe depolarization rate can be calculated by taking into the account the

gyromagnetic ratio of the In nuclei (IIn =9/2, µIn = 5.5408 µN): γ In/2π = µ/hI = 9.3855 MHz/T.
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Usually, ∆KT is calculated by performing the sum in equation 5.2 inside a Lorentz sphere and

approximating the sum outside the sphere by an integral [2]. Considering the symmetry of the In

positions, ∆KT can also be calculated by evaluating the sum inside a parallelepiped of dimensions

Na ×  Na ×  Nc centered at the possible muon stopping site. Since the sum is over ri
-6, N does not

need to be very large. In fact, the values of ∆KT do not change more than 1×10-4 µs-1 when going

from N = 20 to N = 500. Values of ∆KT for some of the possible µ-s.s. calculated with N = 50 and

Pµ(0) || c are given in Table 5.2

Table 5.2 - Calculated Kubo-Toyabe depolarization rates at different interstitial positions due to a
random distribution of In nuclear moments in U2Pt2In.

site    ∆KT (µs-1)
2a (0,0,0)   0.09408
2b (0,0,½)   0.09408
4c (0,½,0)   0.35382
4e (0,0,z)   0.09408 (z→0)

  0.13072 (z=¼)
  0.09408 (z→½)

≡ 2a

≡ 2b
4f (x,x,0)   0.09408 (x→0)

  0.16806 (x=0.17)
≡ 2a

4g (x,-x,0)   0.16435 (x=0.34)
  0.09408 (x→½) ≡ 2b

8h (0,½,z)   0.35382 (z→0)
  0.58754 (z=0.04)

≡ 4c

Considering the symmetry of the In positions, )()( 4e2
14e

KT4e
4e
KT zz −∆=∆  and only the

positions with z4e ≤ ¼ need to be calculated. Due to the positioning of the In and U atoms, the

following conditions can be imposed for the possible muon sites: z8h < ¼-rIn/c,

x4f < xU(4f)-rU/(a√2) and x4g > xU(4g)-rU/(a√2) , where rIn and rU are the radii of the In and U atom,

respectively. For rIn = 1.55 Å and rU = 1.75 Å [3], it follows z8h < 0.04, x4f < 0.17 and x4g > 0.34.

The variation of ∆KT with the x and z values of these positions is shown in Figure 5.4.

The value of the depolarization rate observed for the Gaussian component, ∆G = 0.34 µs-1,

indicates that the muon might stop at the 4c sites. However, the temperature dependence of

AE/(AE+AG) indicates that the Gaussian component is not attributed to one stopping site but rather

to an effective magnetic contribution to several µ-s.s.. This means that, besides at the 4c sites, the

muons might also come to rest at a site with a lower ∆KT. For two µ-s.s., the depolarization

function can be written as the sum of e.g. two damped Gaussians:

( ) ( )ttPAttPAtP 22G211G1 λ−∆+λ−∆= exp)(exp)()(   , (5.3)
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where PG(∆it) = exp(-(∆it)2/2). ∆1 and ∆2 account for the In nuclear contribution from sites 1 and

2, respectively, while the amplitudes reflect the crystallographic multiplicity of the sites. At low

temperatures, the two components are damped by magnetic fluctuations characterized by the

rates λ1 and λ2. Approximating Equation 5.3 by Equation 5.1 implies that the extracted values of

∆G and λE represent effective depolarization rates. This means that at least one µ-s.s. is a site with

a high nuclear depolarization rate (∆KT ~ 0.35 µs-1) but other sites with a lower ∆KT might also be

µ-s.s..

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

4g (x,-x,0)4f (x,x,0)

8h (0,1/2,z)

4e (0,0,z)

∆ KT
 (µ

s-1
)

x, z

Figure 5.4 - Kubo-Toyabe depolarization rate calculated for the 4e (0,0,z), 4f (x,x,0), 4g (x,-x,0) and
8h (0,1/2,z) positions due to a random distribution of In nuclear moments in U2Pt2In.

5.2. Longitudinal field

In order to check the nature of the observed ZF signals, longitudinal-field (LF) experiments

were carried out. In this configuration, an external field Bext is applied along the initial muon-

polarization direction. If a signal has a static origin, there will be a decoupling of the muon spin
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from the static magnetic moments and the muon will be weakly depolarized. On the other hand, a

signal with a dynamic origin will not be significantly changed as long as ν >> γµBext, where ν is

the fluctuation rate of the magnetic moments.

The field dependence of the depolarization rates of the observed exponential and Gaussian

components is shown in Figure 5.5 for T = 0.06 K and Bext ≤ 0.01 T. λE maintains an almost

constant value, while ∆G drops drastically with increasing field. This indicates that the

exponential signal has a dynamic origin and that the Gaussian component is static. This is in

agreement with the conclusions reached in the previous section, namely that the exponential

component is related to the magnetic fluctuations on the U sites, while the Gaussian component

is related to the In nuclear moments.

0 2 4 6 8 10
1E-3

0.01

0.1

1

Bext || Pµ(0)

σG

λE

λ 
, σ

  (
µs

-1
)

Bext (mT)

Figure 5.5 - Longitudinal-field dependence of the depolarization rates of the exponential (λE) and
Gaussian (σG) components observed in ZF of U2Pt2In at T = 0.06 K. Notice the vertical
logarithmic scale. The lines are guides to the eye.
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5.3. Transverse field

Transverse-field (TF) experiments are useful for the determination of the µ-s.s.. Different

stopping sites will have different local magnetic fields and therefore different muon-precession

frequencies will be observed. Also the ratio of the amplitudes of the signals corresponds to the

ratio of the multiplicity of the sites.

In a tetragonal system, the dipolar tensor is simply
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( . Therefore, only measurements with Bext || c and Bext || a are

required in order to determine the components of the tensor. The Knight shifts are given by
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i.e. by plotting the Knight shifts versus the bulk susceptibilities, Kc(χc) and Ka(χa), the dipolar

tensors at the µ-s.s. can be evaluated and compared with the ones calculated for the different

interstitial crystallographic sites.

TF-µSR spectra were taken in a field of Bext = 0.6 T applied along the a- and c-axis in the

temperature range 2-300 K. Typical fast Fourier transforms of the signals are shown in Figure

5.6. The asymmetric shape of the peak at low temperatures indicates that at least two frequencies

are present. As the temperature increases the frequencies tend to "collapse".

Best fits to the data were obtained by using a two component depolarization function:

tt tAtAtP 21
2211

λ−λ− φ+ω+φ+ω= e)cos(e)cos()(   , (5.6)

where the phase φ is the angle between Pµ(0) and the direction perpendicular to the detector. The

best fits are obtained for A1 = A2, which means that the two stopping sites have the same

multiplicity. The observed frequency shifts and line widths are shown in Figure 5.7a and Figure

5.8a, respectively. The Knight shift is calculated by

( )
ext

ca,
ca,3

1

0

0ca,
ca,

4
B
M

NK
π

−−
ω

ω−ω
=   , (5.7)
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where the magnetization 4πM has the same units as Bext and ω0 = γµBext. The sample has an

irregular shape which hampers an accurate estimate of the demagnetizing factors Na,c. In Figure

5.7b, the Knight shift is shown in a plot of Ka,c versus χa,c (Clogston-Jaccarino plot) where the

approximate values Na ~ 0.3 and Nc ~ 0.6 were used. Due to the small frequency shifts observed,

small differences in Na,c change significantly the slopes of Ka(χa) and Kc(χc). The large error bars

in Figure 5.7b result from an assumed uncertainty δN = 0.1. Since the dipolar tensor elements

follow from the relation







χ

−
χ

=
a

a

c

c
3
2cc

dip d
d

d
d KK

A   , (5.8)

it is obvious that they cannot be extracted reliably from the experimental data. Hence the muon

stopping sites cannot be determined in this way.

79 80 81 82 83

T  =  2  K

 in
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Figure 5.6 - Fast Fourier transforms of the TF-µSR signals at T = 2, 10 and 20 K with Bext = 0.6 T
and Bext || c in U2Pt2In. The full lines are the sum of the two components represented by
the dashed lines.
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Figure 5.7 - TF (Bext = 0.6 T) frequency shift (a) and Knight shift (b) of U2Pt2In. The error bars in K
include the uncertainty in the demagnetizing field corrections. The lines are guides to the
eye.
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Figure 5.8 - Temperature (a) and Knight shift (b) dependence of the TF (Bext = 0.6 T) line width in
U2Pt2In. The error bars in K include the uncertainty in the demagnetizing field
corrections. The lines are guides to the eye.
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In Refs. 4 and 5, the µSR technique has been used to investigate the possibility of Kondo

disorder as the main route for non-Fermi liquid behaviour in the system UCu5-xPdx. Due to the

inhomogeneous distribution of Kondo temperatures arising from disorder, there is a broad

distribution of the heavy-fermion spin polarization, which is reflected in the µSR line width.

In the case of U2Pt2In, the µ-s.s. are not known and the Knight shifts cannot be determined

accurately. Therefore, these data cannot be used to test the Kondo disorder model. However,

because the Knight shift is proportional to the local susceptibility and the line width is related to

the spread of the local susceptibilities, an inhomogeneous line broadening is expected if Kondo

disorder is present in the system. This means that the line width will have a stronger dependence

on χ than the Knight shift and λ(K) will deviate from a straight line. In Figure 5.8b, K(λ) is

plotted for U2Pt2In. Considering the error bars, there is no evidence of an inhomogeneous line

broadening due to Kondo disorder.

The ZF-µSR data suggests that one of the µ-s.s. is the 4c site. Since A1 = A2 in the TF-µSR,

the other signal should originate from a site with the same multiplicity as 4c. However,

considering the large value of λ1, it is possible that signal 1 corresponds in fact to a sum of two

signals originating from two µ-s.s. with lower multiplicity, which cannot be resolved in the fits

due to the small frequency shifts. The only possible sites are 2a and 2b. This means that the total

TF-µSR spectra could be fitted with the function

[ ] ),(),(),()( ttPttPttPtP GGG c4c4b2b2a2a2 2
1

2
1 λω+λω+λω=   , (5.9)

with PG(ωt,λt) = cos(ωt+φ) e-λt. Due to the different low-temperature susceptibilities at the sites 2a

and 2b, a sum over the two signals would be reflected by a large value of λ1, while ω1

corresponds to an average frequency for the two sites. The different susceptibilities at the 2a and

2b sites are well justified by considering their distances to the nearest U neighbours (Table 5.3).

The 2a site is relatively close to U(4g) and the 2b site is close to U(4f). As mentioned in Section

4.3, polarized-neutron experiments show that the field-induced susceptibility of the U atoms is

stronger at the 4f site than at the 4g site. Therefore, the susceptibility at the 2b site is expected to

be higher than at the 2a site.
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Table 5.3 - Distances between different interstitial sites and the U sites in U2Pt2In.

site U-site d (Å) site U-site d (Å) site U-site d (Å)
2a 4f 3.647 2b 4f 1.790 4c 4f 2.873

4g 1.961 4g 3.476 4g 2.822

5.4. Summary

The most important conclusion that can be drawn from the ZF-, LF- and TF-µSR

experiments on U2Pt2In is the absence of weak static magnetic order.

Best fits to the ZF muon relaxation curves are obtained by using a two-component

function, consisting of a Gaussian and an exponential term. LF-µSR spectra clearly show that the

exponential component is of dynamic origin, while the Gaussian component is static. The

Gaussian term is attributed to a random distribution of In nuclear moments. The amplitude and

the line width of the exponential term increase strongly below 7.5 K. Since χc(T) goes through a

maximum at about the same temperature, this term is most likely associated with the stabilization

of antiferromagnetic fluctuations.

The depolarization rate of the Gaussian component strongly suggests that one of the muon

stopping sites is the 4c site. The irregular shape of the sample and the small frequency shifts

observed hamper a proper analysis of the TF data. The data are however consistent with an

occupancy of the 2a, 2b and 4c sites by the muons. No evidence for Kondo disorder was found

from the TF line widths.
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Probing U2Pt2In in the Doniach

phase diagram

In order to probe the (Doniach) phase diagram of U2Pt2In, resistivity experiments under

pressure and Th-doping studies were carried out. The main role of replacing small amounts of U

by Th is an expansion of the unit cell, while applying hydrostatic pressure gives the opportunity

to study the effects of unit-cell volume reduction. This in turn changes the conduction-electron -

f-electron hybridization and therefore the exchange interaction J. Assuming that U2Pt2In is close

to a quantum critical point, it is of interest to study the eventual emergence of magnetic order

with Th doping or the recovery of the Fermi-liquid state under pressure.

Experiments under pressure were also performed on U2Pd2In in order to study the

suppression of the antiferromagnetic ground state. As mentioned in Section 4.1, U2Pd2In is an

antiferromagnetic heavy-fermion material. On the magnetic side of the Doniach diagram (see

Figure 6.17a in Section 6.5), it is the compound closest to U2Pt2In.

The magnetic ground states of some of the 2:2:1 compounds, prepared in single-crystalline

form, were investigated, which confirmed their location in the Doniach diagram (Section 4.1.2).

The results are presented in Section 6.4.
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6.1. Pressure effects on the resistivity of U2Pt2In

Resistivity measurements under pressures up to 1.8 GPa and in magnetic fields up to 8 T,

were carried out in the temperature range 0.3-300 K. The data were taken on bar-shaped single-

crystals of U2Pt2In by using a standard four-probe method. Experiments under pressure were

carried out by using the CuBe piston cylinder-type clamp cell described in Section 2.3.1. The

pressure values presented in this chapter were corrected for an empirically established efficiency

of 80%. For each pressure, the resistance curves were normalized to 1 at room temperature. In

this way, possible changes in the geometrical factor (mainly in the distance between the voltage

contacts) are taken into account.

As shown in Section 4.2.2, the zero-pressure resistivity curve of U2Pt2In for I || c follows a

power law of the type ρ ~ T α with α ~ 0.9 at the lowest temperatures. Upon increasing the

pressure, α gradually increases for p < 1.0 GPa (Figure 6.1). However, as the pressure is

increased above 1.0 GPa, a minimum in the resistivity develops, which becomes more

pronounced at the highest pressures.
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Figure 6.1 - Low-temperature dependence of the resistivity of U2Pt2In for I || c at different pressures.
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In order to investigate whether the observed minimum has a magnetic origin,

measurements of ρ(T) in magnetic fields (B || I) were performed at p = 1.8 GPa (Figure 6.2a).

Tmin decreases smoothly with the strength of the applied magnetic field: Tmin ~ 4.8 K for B = 0

and Tmin ~ 2.2 K for 8 T. Also, the minimum becomes less pronounced with increasing field. Due

to the limited range of temperatures and fields available and the relative uncertainty in determine

Tmin, it is not possible to clearly trace the evolution of Tmin with B. Figure 6.2b shows that the

data can be fitted with a linear dependence, B = B0(1 - Tmin/T0) with B0 = 14.2(7) T and

T0 = 4.7(1) K. A typical antiferromagnetic-like field dependence of the ordering temperature,

B = B0[1 - (Tmin/T0)2]β with β = 0.8, B0 = 9.2(8) T and T0 = 4.4(2) K, cannot be excluded.

However, the latter produces a poorer fit. The field effect on the resistivity curves suggests that

Tmin has a magnetic origin. Whether Tmin is associated with magnetic ordering remains

unresolved.
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Figure 6.2 - (a) Temperature dependence of the resistivity of U2Pt2In for I || c and p = 1.8 GPa at
different longitudinal fields. (b) Field dependence of Tmin.

It is of interest to note, however, that the structure in ρ(T) at p = 1.8 GPa resembles, to a

certain extent, the one of an antiferromagnetic phase transition of the spin-density wave type, as

observed e.g. in the heavy-fermion antiferromagnets URu2Si2 (TN = 14 K) [1] and U(Pt0.95Pd0.05)3

(TN = 5.8 K) [2]. In these compounds, ρ(T) increases below TN because of the opening of an
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energy gap. At about 0.9TN, ρ(T) develops a local maximum, below which the resistivity drops

because of the ordered structure. The data in Figure 6.1 for U2Pt2In under pressure, show no local

maximum at temperatures T > 0.15Tmin. If Tmin is indeed associated with magnetic ordering, the

absence of a local maximum is possibly due to the large value of the residual resistance of the

samples.

The emergence of a magnetic component to ρ(T) upon applying pressure is quite

surprising. Applying pressure on a compound at the magnetic instability normally leads to an

increase of the control parameter J and brings the compound in the non-ordering Fermi-liquid

regime. A possible explanation for this unusual behaviour might be offered by assuming that the

control parameter J is not governed by the volume, but by the c/a ratio of the tetragonal unit cell.

This is suggested by the comparison of the unit-cell volumes and c/a ratios of U2Pt2In and the

antiferromagnets U2Pd2In (TN = 37 K) and U2Pt2Sn (TN = 15 K) [3]. Whereas the unit-cell

volume of U2Pt2In is smaller than that of U2Pd2In and larger than that of U2Pt2Sn, the c/a ratio is

always smaller (for simplicity the doubling of the crystal structure along the c-axis in single-

crystalline U2Pt2In has not been taken into account) [4]. Thus the appearance of magnetic

ordering under pressure could be the result of an increase of the c/a ratio. This in turn requires

the compressibility to be anisotropic.

In order to determine the compressibility of U2Pt2In, X-ray diffraction experiments were

performed under pressure at RT by T. Naka (NRIM-Tsukuba, Japan). The resulting lattice

parameters under pressure are presented in Figure 6.3. Both the c and a parameters decrease

almost linearly with pressure. The compressibility values are almost identical for both axes:

κa = 0.220 Mbar-1 and κc = 0.242 Mbar-1, while the volume compressibility amounts to

κ = 0.682 Mbar-1. This means that between p=0 and 1.8 GPa, the c/a ratio does not change

significantly (it actually decreases 0.04%). This invalidates the hypothesis that the c/a ratio is the

control parameter for U2Pt2In in the Doniach diagram.

Resistivity experiments under pressure were also carried out for the current along the a-axis

(Figure 6.4). Interestingly, the results differ very much from the results for I || c. In Section 4.2.2

it was shown that the zero-pressure resistivity curve for I || a follows a power law ρ ~ T α with

α = 1.25 at the lowest temperatures. Upon increasing the pressure, α gradually increases and no

minimum in ρ(T) is observed up to p = 1.8 GPa.
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Figure 6.3 - Pressure dependence of the lattice parameters of U2Pt2In.
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Figure 6.4 - Low-temperature dependence of the resistivity of U2Pt2In for I || a at different pressures.

The pressure dependence of the exponent α is shown in Figure 6.5a. The Fermi-liquid

value of α = 2 is reached at p ~ 1.0 GPa. Upon further pressure increase, there is an increase of
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the temperature TFL below which a ρ ~ T 2 behaviour is observed. The pressure dependence of

TFL is shown in Figure 6.6b. According to the theory of Rosch [5] for the resistivity of heavy-

fermion materials close to an antiferromagnetic quantum critical point (see Section 2.4), the

temperature below which a ρ ~ T 2 behaviour is observed should vary initially as TFL = a1 (p-pc)

and at higher pressures as TFL = a1/2 (p-pc)1/2, where pc is the pressure at which the QCP occurs.

The region where the linear behaviour is observed depends on the amount of disorder x in the

system (x ≈  1/RRR). The TFL(p) behaviour in U2Pt2In for I || a is consistent with a linear

dependence with pc = 0. A ρ ~ T region is predicted to occur for x < T/Γ  < x1/2 (x < 1), where Γ

defines the temperature scale where the spin fluctuations are destroyed (Γ  ~ TK or Tcoh). Defining

a region where ρ ~ T for the different pressure values (see Figure 6.6a for p = 1.8 GPa), the

diagram of Figure 6.6b can be constructed, from which it follows that x = 0.34 and Γ  = 8.1 K.

The fact that x < 1/RRR indicates that the residual resistivity observed in U2Pt2In for I || a is not

uniquely due to impurity or defect scattering. The distance to the QCP is given by r = ζ p with

ζ = 0.11 GPa-1.
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Figure 6.5 - Pressure dependence of the resistivity exponent α for I || a.
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Figure 6.6 - (a) Temperature dependence of ρa - ρ0,a for U2Pt2In under p = 1.8 GPa. (b) Pressure
dependence of the temperature below which ρ ~ T 2 and the temperature interval where
ρ ~ T. The lines are defined in the text.

Therefore, the resistivity data under pressure for I || a are consistent with the location of

U2Pt2In at or close to a QCP. Pressure increases the exchange parameter J, shifting the

compound towards the non-ordering Fermi-liquid regime. These results for I || a indicate that the

minimum in ρc(T) is most probably not related to magnetic order.

At high temperatures, the resistivity curves also have different characteristics for the two

crystallographic directions. The anisotropy in the transport properties increases with pressure in

the whole temperature range studied, as shown in Figure 6.7. As the pressure is increased, ρa

tends to decrease, while ρc increases, thus the difference ρc - ρa increases (Figure 6.7b).

Assuming that the difference ρc(T) - ρa(T) is due to an extra resistivity component only present

for I || c, the effect of pressure is to enhance this component, without significantly changing its

temperature dependence. This implies that the minimum in ρc(T) is probably a consequence of

the enhancement of a resistivity component for I || c.
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The temperature Tm at which a maximum in the resistivity occurs increases strongly for

I || a, but decreases slightly for I || c. According to the theory of Yoshimori-Kasai for the dense

Kondo system [6], the temperature Tm is approximately proportional to the Kondo temperature

TK. The volume dependence of TK is given by a Grüneisen parameter defined as

0
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where V0 = V(p=0). Since Tm ∝  TK, it follows that [7]
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The volume change is ∆V/V0 = -κ p. The values of ln[Tm(p)/Tm(p=0)] are plotted versus

∆V/V0 in Figure 6.8. The slope of the straight lines through the data points yields the value of Γ K.

Not considering the point for I || a at p = 1.8 GPa, where the maximum is not well defined, a

value of Γ K,a = 49.7±7.1 can be estimated for I || a. This value is close to the values of 59 and 65

reported for the heavy-fermion compounds CeInCu2 and CeCu6, respectively [7]. This indicates

that the strong pressure dependence of Tm observed in U2Pt2In (I || a) is not unusual. The increase

of TK reflects the increase of the conduction electron - f-electron hybridization and, therefore, the
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increase of the exchange parameter J. This is in agreement with the appearance of a FL ρ ~ T 2

behaviour at low temperatures.

The slight decrease of Tm for I || c, on the other hand, is unexpected. A similar analysis of

the pressure dependence of Tm as performed for I || a, yields a Grüneisen parameter

Γ K,c = -6.8(7). Since TK should not depend on the current direction, this value of Γ K,c indicates

that the maximum observed in ρc(T) is not due uniquely to the Kondo effect. The enhancement

of an extra anisotropic resistivity component under pressure (mainly present for I || c) occurs

even at high temperatures (Figure 6.7b). Therefore Tm cannot be taken to be proportional to TK

for this current direction.
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Figure 6.8 - Values of ln[Tm(p)/Tm(p=0)] as a function of volume change [V(p=0)-V(p)]/V(p=0) for
U2Pt2In.

Resistivity measurements under pressure were also performed on other single-crystals of

U2Pt2In. Although all the crystals were cut from the same batch, there is a slight sample

dependence of some of the features. The data under pressure presented so far were all measured

on one single crystal (sample #1). It had a platelet shape such that the current could be applied

along the a- and c-axis. Measurements on a second crystal (sample #2) with I || c and on a third

crystal (sample #3) with I || a, confirm the overall behaviour of the resistivity curves under
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pressure: an increase of the transport anisotropy, the development of a minimum in ρc(T) at low

temperatures and the recovery of a T 2 term in ρa(T).

However, the values of Tmin are different for samples #1 and #2. For sample #2, the

minimum shows up for p > 1.2 GPa and attains values of Tmin ~ 1.2 K at p = 1.5 GPa and

Tmin ~ 2.1 K at p = 1.8 GPa [8]. The field dependence of Tmin at p = 1.8 GPa has the same form as

shown in Figure 6.2b for sample #1. Also, at high temperatures, the absolute values of the

maximum Tm are slightly different, but the pressure dependence of Tm remains the same. The

Grüneisen parameters obtained are Γ K,a ~ 45 (sample #3) and Γ K,c ~ -2 (sample #2). These values

do not differ significantly from the values obtained for sample #1.

6.2. Studies of Th doping in U2Pt2In

Resistivity studies on polycrystalline (U1-xThx)2Pt2In samples (0 ≤ x ≤ 1) reported in the

literature [9,10], indicate that the low-temperature behaviour of ρ(T) gradually changes, from

linear in T as observed for undoped U2Pt2In towards a quadratic behaviour as the Th content

increases. The resistivity of the sample with x = 0.1 shows a knee at about 19 K, which suggests

magnetic ordering. However, it should be noted that a small amount of UPt impurity phase,

possibly present in the sample, could also give rise to a similar anomaly, as UPt has two

ferromagnetic transitions at 19 K and 27 K [11].

In this section, results are presented on polycrystalline samples of (U1-xThx)2Pt2In with

x = 0, 0.03, 0.08 and 0.1. The samples were prepared by L.C.J. Pereira (Technological and

Nuclear Institute, Portugal) by arc-melting the constituents under a purified Ar atmosphere. The

crystallographic structure and the lattice parameters were determined by X-ray diffraction [12]. It

was found that all polycrystalline samples crystallize in the simple U3Si2-type of structure. The

lattice parameters and unit-cell volume are given as a function of x in Figure 6.9. The unit-cell

expansion is almost isotropic. The volume increases linearly with x. However, the prepared

materials were not single phase. All samples have small amounts of UPt and/or UPtIn as

impurity phases. UPtIn is an antiferromagnet with TN = 15 K [13]. Due to the non-single phase
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character of the Th-doped samples, the results presented here should be considered as

preliminary.
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Figure 6.9 - Lattice parameters and unit-cell volume of polycrystalline (U1-xThx)2Pt2In. Data taken
from Ref. 12.

As mentioned in Section 4.3.3, specific-heat measurements on polycrystalline U2Pt2In

show the same logarithmic divergence of c/T as observed on single crystals. However, in the

polycrystals small amounts of UPtIn and UPt impurity phases were detected by X-ray diffraction

and magnetization measurements. These small amounts of impurity phases (less than 5 w.%)

were not detected in the specific heat. Due to the high electronic specific heat of U2Pt2In, the

low-temperature contribution from the impurity phases is unobservable.

Magnetization measurements were performed on (U0.95Th0.05)2Pt2In in the temperature

range 2-300 K and in fields up to 5 T. Both the temperature and field dependence of the

magnetization M reveal the presence of a ferromagnetic component with TC ~ 25 K, consistent

with an UPt impurity phase. The M(B) curves are shown in Figure 6.10a. Below 30 K, the

saturation of the ferromagnetic contribution of the UPt impurity phase in low fields is clearly

visible. At higher fields M(B) is almost linear. Assuming that the high-field linear behaviour

(B > 1 T) is only due to the main phase, the susceptibility χDC of (U0.95Th0.05)2Pt2In can be

extracted by taking the slopes of the M(B) curves at high fields. The low temperature values of
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the magnetization obtained by extrapolating the linear high-field behaviour to B=0 are consistent

with the presence of about 3 w.% of UPt, in agreement with the value estimated from the X-ray

structure refinement. The results of χdc = µ0dM/dB are shown in Figure 6.10b. A maximum in

χdc(T) appears at low temperatures. The maximum possibly indicates antiferromagnetic ordering

at TN ~ 8(2) K. However, it is also possible that the maximum is related to the presence of short-

range antiferromagnetic correlations, as in the case of U2Pt2In with B || c. The high-temperature

(T ≥ 25 K) χdc(T) curve follows a modified Curie-Weiss law with χ0 = 1.4(1)×10-8 m3/molU,

µeff = 1.8(4) µB/U and θ = -29(2) K. However, it should be stressed that due to the presence of

impurity phases, the χdc(T) curve should be considered as indicative and its analysis should be

taken with care.
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Figure 6.10 - (a) Field dependence of the magnetization of (U0.95Th0.05)2Pt2In. (b) Temperature
dependence of the high-field slope of the M(B) curves. The line represents a modified
Curie-Weiss law.

Zero- and transverse-field µSR experiments were carried out on the same

(U0.95Th0.05)2Pt2In sample in the temperature range 2-200 K. Reasonable fits to the zero- and

0.01 T transverse-field spectra can be obtained with a Gaussian or exponentially damped

depolarization function. An important feature of the data is that part of the asymmetry is missing.

In the TF-µSR spectra with B = 0.01 T, the full asymmetry A ~ 0.24 is observed above 15 K. This
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value of the asymmetry is determined by the experimental geometry and sample size. Below

about 15 K the asymmetry drops to a value of A ~ 0.15, which implies that an additional fast

component to the µSR signal appears, which has not been accounted for in the fits. A fast

component, i.e., a component with a high depolarization rate, must have its origin in a

magnetically ordered phase. The drop in the asymmetry near 15 K (∆A ~ 0.09), is too high to be

attributed to the presence of ~ 3 w.% of UPt impurity phase.

Although no reliable fits to the spectra at low temperature were obtained, a common

feature appeared in all fit attempts: as the temperature is decreased below 25 K, the zero-field

depolarization rate increases and has a tendency to diverge at about 10 K, below which it regains

a low value. A divergency of the depolarization rate is often associated with an antiferromagnetic

transition [14], which is in agreement with the antiferromagnetic-like χDC(T) curve.

Transverse field µSR experiments in 0.01 T were carried out on (U0.97Th0.03)2Pt2In for

2.5 ≤ T ≤ 100 K. In contrast to the results obtained on the x = 0.05 sample, no significant loss of

asymmetry was found at low temperatures. Best fits to the spectra were obtained using a damped-

Gaussian depolarization function: P(t) = PG(t) exp(-λEt) with PG(t) = exp(-∆G
2t2/2)cos(ωt). Here,

the temperature-independent Gaussian relaxation rate was found to be ∆G = 0.17 µs-1, which

possibly accounts for the In nuclear contribution. This value is much reduced with respect to the

one observed on U2Pt2In (∆G = 0.34 µs-1). It should be noted that the crystallographic structures

are different and therefore different muon stopping sites might be involved, leading to a different

value of ∆G from the distribution of In nuclear moments. The damping of the Gaussian term is

observed below 10 K with λE increasing below this temperature. Whether this increase is

associated with a dynamic or a static magnetic component cannot be determined from the

available data set.

Recently, polycrystalline (U1-xThx)2Pt2In samples with x = 0.03, 0.05, 0.08 and 0.1 were

prepared with lower amounts of impurity phases [12]. Specific-heat measurements carried out by

G. Bonfait (Technological and Nuclear Institute, Portugal) on these samples do not confirm

magnetic order above 2 K. It would be of interest to carry out µSR experiments on these samples

as well, in order to look for weak magnetism. Clearly, single-phase samples are highly desirable

to reliably determine the presence of magnetic order.
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6.3. U2Pd2In - resistivity under pressure

As mentioned in Section 4.1, U2Pd2In is an antiferromagnet with TN = 37 K [15,16]. The U

magnetic moments are confined to the basal plane and form a non-collinear magnetic structure.

At 10 K, µU = 1.6 µB [15].

Resistivity measurements under pressure were performed on a single crystal of U2Pd2In in

the temperature range 0.3-300 K at pressures up to 1.8 GPa. The shape of the sample restricted

the current to be applied along the [101] direction. The ρ(T) curves are shown in Figure 6.11a for

p = 0.2, 1.0 and 1.8 GPa. The shape of the curves does not change significantly with pressure.

The value of TN decreases only slightly from 37.4(5) K at p = 0.2 GPa to 35.2(5) K at

p = 1.8 GPa (Figure 6.11b).
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Figure 6.11 - (a) Temperature dependence of the resistivity of U2Pd2In for different pressure values.
(b) Pressure dependence of TN. The line is a guide to the eye.

The small decrease of TN under pressure is consistent with the location of U2Pd2In at the

maximum in the Doniach phase diagram for the U2T2In family of compounds (Section 4.1.2 - see

also Figure 6.17). Upon pressure, the hybridization increases and thus also the exchange
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interaction J. For p ≤ 1.8 GPa, the increase of the hybridization strength only shifts the position of

the compound in the Doniach phase diagram around the relatively broad maximum of TN(J).

6.4. Magnetization studies of several U2T2X compounds

In order to partially confirm the general Doniach phase diagram for the U2T2X family of

compounds presented in Section 4.1.2, the magnetization Ma and Mc, where a and c denote the

direction of the applied field, of several U2T2X single-crystals was measured for T ≥ 2 K and

B ≤ 5.5 T. The measurements were performed after zero-field cooling (ZFC) and, in some cases,

after field cooling (FC), using a SQUID magnetometer at the University of Lisbon.

6.4.1. U2Co2Sn

Above 25 K the magnetizations Ma and Mc of U2Co2Sn (Figure 6.12a) are linear functions

of B, which is typical of a paramagnetic state. At lower temperatures, Mc(B), and to a lesser

extent Ma(B), depart significantly from linear behaviour. Over the entire temperature range and

for B ≤ 5.5 T, Mc > Ma which shows an important easy-axis anisotropy.

The M(T) curves do not show any sign of magnetic ordering (see Figure 6.12b for B || c at

2 T). Above 20 K, the d.c. susceptibility curve, χc(T) = M(T)/H, follows a Curie-Weiss law with

θ = -24.5 K and a reduced effective moment µeff = 1.65 µB/U, indicating the presence of

hybridization effects. For all field directions, the low-temperature (T < 20 K) M/H values are

higher than those given by the Curie-Weiss law extrapolated from the high-temperature range, as

shown in Figure 6.12b for the c direction. The observed difference could indicate the presence of

ferromagnetic spin fluctuations. However, the negative paramagnetic Curie-Weiss temperature θ

suggests antiferromagnetic correlations. The two contributions indicate the possibility of

different magnetic interactions on the U and Co sublattices. It should be noted however, that the

M(B) curves are not linear below 25 K. This means that the comparison of the M/H values with

the Curie-Weiss behaviour should be taken with care.
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applied along the c-axis. The line represents a high temperature Curie-Weiss behaviour.

In order to determine if the Co atoms carry a magnetic moment, the magnetization density

distribution in the unit cell was measured at 2 K by means of polarized-neutron scattering

experiments under a magnetic field of 5.5 T applied along the c-axis [17]. It was found that the

major contribution to the magnetic susceptibility is located on the U atoms, µU = 0.118(3) µB, but

a small response from the Co atoms was also present, µCo = 0.013(2) µB. At 2 K and 5.5 T, the

induced magnetization along the c-axis is 0.220 µB/f.u. to be compared with a value of

0.262(7) µB/f.u. determined by neutron scattering. The difference is likely due to a negative

conduction-electron polarization.

6.4.2. U2Ru2Sn

Experiments carried out on polycrystalline samples have shown that U2Ru2Sn is a weak

itinerant paramagnet [18]. This is confirmed by magnetization measurements on single crystals.

A linear behaviour of the magnetization is observed as a function of applied fields up to 5.5 T

(Figure 6.13a). M(T) shows a weak temperature dependence (Figure 6.13b) and the
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magnetization curves show no difference when measured after ZFC and FC. At room

temperature, the susceptibility along the a-axis reaches a value of 2.51×10-8 m3/mol only. This

value is further gradually reduced below 200 K to 1.98×10-8 m3/mol at T = 5 K.
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Figure 6.13 - Magnetization of U2Ru2Sn for fields applied along the a-axis. (a) Field dependence at
temperatures as indicated. (b) Temperature dependence at B = 1 T.

Recently, resistivity data taken on polycrystalline samples were reported [19], which

possibly reveal Kondo insulating behaviour. A sharp rise in the resistivity was observed at low

temperatures (T < 30 K), which could be an indication of semiconducting behaviour due to gap

formation in the electronic density of states with an energy gap of the order of 1 K. So far, this

has not been confirmed by the single-crystal magnetization data.

6.4.3. U2Rh2Sn

The ZFC magnetizations, Ma(T) and Mc(T), of U2Rh2Sn are shown in Figure 6.14a for

B = 0.05 T. For both field directions a well defined peak in the susceptibility is observed, which

signals an antiferromagnetic transition with a Néel temperature TN = 28(2) K.
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Over the whole temperature range studied Ma < Mc. This shows that the unique tetragonal

axis is the easy axis for magnetization. The pronounced peak observed in Mc(T) indicates that the

magnetic moments are aligned along the c-axis. In a simple ideal antiferromagnet, the

susceptibility measured for the field direction perpendicular to the magnetic moments should be

almost constant below TN. The small peak at TN observed in Ma(T) is possibly due to a small

misalignment of the crystal with respect to the magnetic field direction. In fact, if one considers a

misalignment of only 5º between the field direction and the a-axis, the magnetization becomes

almost constant for temperatures up to TN and the peak is much reduced (Figure 6.14a).

The M(B) curves (Figure 6.14b) show a linear behaviour for fields up to 5.5 T in both

directions (B || c and B || a). No hysteresis was observed for either field direction over the whole

temperature range studied.
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Figure 6.14 - Magnetization of U2Rh2Sn. a) Temperature dependence for B = 0.05 T (the dotted line
represents the corrected magnetization curve for B || a assuming a misalignment of 5º -
see text). b) Field dependence (open symbols: B || a; solid symbols: B || c).

The susceptibility curves show that there is an important magnetic anisotropy even in the

paramagnetic region. For B || c, a Curie-Weiss behaviour is detected for temperatures above TN

with θ = -105(2) K and an effective moment per U atom µeff = 2.80 µB/U. For B || a, χ-1(T) shows

a positive curvature for the higher temperatures in the paramagnetic region, well described by a
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modified Curie-Weiss law with θ = -60(2) K, µeff = 1.34 µB/U and χ0 = 1.9×10-8 m3/molfu. This

modified Curie-Weiss behaviour could be due to a small misalignment of the crystal with respect

to the direction of the field, which leads to an additional contribution from the c-axis to the total

magnetization measured. Therefore, the smaller value of µeff that was found for B || a should be

treated with caution. Accurate determinations of µeff along both axes require a perfectly aligned

crystal and an extension of the measurements to higher temperatures. It is likely that

hybridization effects between the f-electrons and the ligands, as found in the UTX family of

compounds [20], contribute significantly to this strong anisotropy in the paramagnetic region.

Antiferromagnetic order of the U moments was confirmed by neutron-scattering

experiments on a single crystal [21]. The data reveal that U2Rh2Sn orders in a collinear magnetic

structure along the c-axis with k = (0,0,1/2) (magnetic unit cell doubled in the c direction

compared to the nuclear cell). The refined value of the ordered magnetic moment at the U atom

is 0.53(2) µB.

Interestingly, U2Rh2Sn presents an exception to the empirical rule (obtained for the UTX

compounds) that the f-moments should point perpendicularly to the shortest f-f bond distances, as

in this compound the shortest interuranium distances are found to lie along the easy axis

(dff = 3.63 Å).

6.4.4. U2Ir2Sn

The magnetization of U2Ir2Sn measured in fields applied along the a- and c-axis, shows the

presence of a ferromagnetic phase below 50 K (Figure 6.15). Below this temperature, the M/H

values strongly deviate from a Curie-Weiss behaviour. The M(B) curves indicate the saturation of

a minority ferromagnetic phase at low fields, although the structural analysis of the single-

crystals did not reveal the presence of an impurity phase. The impurity that is likely to be present

in small quantities in the samples at e.g. the grain boundaries, may be UIr, a ferromagnet with

TC = 46 K and µU ≈  0.5 µB [22]. Considering that the slope of the M(B) curves at high fields is

due to the U2Ir2Sn matrix, the saturation magnetization of the ferromagnetic impurity can be

extracted. At 5 K one obtains µUIr ~ 0.003 µB. Comparing this value with the moment of pure UIr,

results in the presence of about 0.6% of UIr impurity phase in the single-crystalline samples.
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dependence for 1 T applied along the a-axis. The line is a high-temperature Curie-Weiss
fit. b) Field dependence at T = 5 and 40 K.

The-high temperature (T > 50 K) susceptibility follows a modified Curie-Weiss behaviour

with a high Curie-Weiss temperature and a very much reduced effective moment:

χ0 = 1.4×10-8 m3/mol, θ = -106 K and µeff = 1.0 µB/U for B || a. A strong anisotropy is present in

the system which persists up to 300 K, typical of systems with pronounced spin fluctuations. The

c-axis is the easy direction of magnetization.

Due to the presence of the ferromagnetic impurity phase, a detailed study of the

magnetization of U2Ir2Sn was not carried out.

6.4.5. U2Ni2In

The magnetization of U2Ni2In is linear in applied fields up to 5.5 T. The ZFC M(T) curves

for U2Ni2In in a field of 0.05 T are shown in Figure 6.16. The measurements show a typical

behaviour of an antiferromagnet with TN = 15.0(5) K. In contrast with what is expected for

antiferromagnets with collinear structures, an extremely small magnetic anisotropy is observed in

the ordered state, as evidenced by the similarity of Ma(T) and Mc(T).
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Figure 6.16 - Temperature dependence of the magnetization of U2Ni2In in a magnetic field of 0.05 T
applied along the a, c and [110] directions. Insert: inverse susceptibility for B || a.

Neutron-diffraction experiments on a U2Ni2In single-crystal [23] indicate a non-collinear

antiferromagnetic structure with the moments aligned along the [110] and 0]1[1  directions and a

magnetic propagation vector k = (0,0,1/2). The size of the ordered U moments amounts to

0.92(2) µB and no moments were found on the Ni sites, in contrast with what was reported in

studies on polycrystalline samples [24].

Magnetization measurements were also performed with magnetic fields applied along the

[110] direction. Also in this direction, M(T) follows the same behaviour as Ma and Mc. High-

temperature fits of the susceptibility to a modified Curie-Weiss law yield the results shown in

Table 6.1. The parameters obtained are similar in all field directions.

The reason for the similarity of the M(T) curves for all studied field directions remains

unclear.
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Table 6.1 - Results from the fits of the susceptibility of U2Ni2In to a modified Curie-Weiss law.

χ0

(10-8 m3/mol)
θ

(K)
µeff

(µB/U)
B || [100] 1.8 -73 2.3
B || [110] 1.2 -92 2.5
B || [001] 1.9 -64 2.2

6.5. Discussion

The measured resistivity of U2Pt2In under pressure is consistent with an increase of the

control parameter J upon pressure, bringing this compound into the Fermi-liquid regime. The

pressure dependence of the temperature TFL below which ρa ~ T 2, is also consistent with the

location of U2Pt2In at or close to a QCP. A highly anisotropic resistivity component mainly

present for I || c is strongly enhanced upon pressure. A minimum in ρc(T) develops as a

consequence of this enhancement. The origin of this extra component remains unclear.

The effect of Th doping can be considered, in a first approach, as being equivalent to

negative hydrostatic pressure. A comparison between the unit-cell contraction upon application

of pressure and the unit-cell expansion upon Th doping, yields a value of -20.4 GPa/x. This

implies that ∆V/V0 for x = 0.03, 0.05, 0.08 and 0.1 corresponds to - ∆V/V0 for p = 0.6, 1.0, 1.6

and 2.0 GPa, respectively.

Therefore, magnetic order could be expected to occur for the Th-doped compounds. The

ordering temperature should increase with increasing Th content. Although the preliminary µSR

experiments described are consistent with this hypothesis, the specific-heat results seem to

contradict it. The presence of impurity phases in the samples unfortunately hampers the proper

determination of the magnetic phase diagram of (U1-xThx)2Pt2In. Therefore, the results regarding

Th doping presented in this chapter, should be considered as preliminary and taken with caution.

Assuming that the atomic coordinates do not change with pressure, the isotropic

compressibility indicates that the primary effect of pressure is a uniform reduction of the

interatomic distances. Therefore, the hybridization matrices can be calculated for U2Pt2In under

pressure. The total hybridization Vcf increases about 2.3% from p=0 to p = 1.8 GPa. The



Chapter 6130

temperature TFL below which a ρ ~ T 2 behaviour is observed is plotted in Figure 6.17b as a

function of Vcf
2, where Vcf

2 ∝  J.

The antiferromagnetic ordering temperature of U2Pd2In decreases slightly with pressure, as

evidenced by the resistivity measurements. Taking for U2Pd2In the same compressibility value as

for U2Pt2In, the hybridization can be calculated in the same way as before. From p=0 to

p = 1.8 GPa, Vcf increases 2.4%. The values of TN are also shown in Figure 6.17b.
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Figure 6.17 - (a) Doniach phase diagram for the U2T2X (X=In, Sn) family of compounds. (b) Possible
phase diagram around U2Pt2In. The lines are guides to the eye.

Recently, magnetization, resistivity and neutron-diffraction studies on the system

U2(Pt1-xNix)2In have been reported [25]. No magnetic order was found down to 1.7 K for the

polycrystalline samples with x ≤ 0.4. For x ≥ 0.5, antiferromagnetism is present with TN

increasing from ~ 11 K for x = 0.5 to ~ 14 K for x = 1. The evolution of TN upon Ni doping is not

consistent with the Doniach phase diagram for the U2T2In compounds (Figure 6.17a). However,

there is a strong suppression of the heavy-fermion character of U2Pt2In upon Ni doping which

might reflect a strong modification of the density of states at the Fermi surface [25].

The tentative phase diagram presented in Figure 6.17b is consistent with the location of

U2Pt2In at or close to a quantum critical point (QCP). Whether the non-Fermi liquid behaviour is
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present only at the QCP or for a finite region of J values around the QCP is a question that can

only be answered by a more thorough study of the phase diagram. This could be done by

investigating single-phase samples of (U1-xThx)2Pt2In or preferably U2(Pt1-xPdx)2In.
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Non-Fermi liquid behaviour in

other uranium compounds

In this chapter, the results are presented of the measurements of the thermal, magnetic and

transport properties of a few other uranium intermetallic compounds, which show non-Fermi

liquid behaviour (NFL) and/or quantum critical points.

The first compound is a stoichiometric one: U3Ni3Sn4. NFL behaviour is observed for

0.5 K < T < 5 K [1], while at lower temperatures the Fermi liquid (FL) state is attained [2]. Upon

applying pressure, the FL regime becomes more robust, as it is observed up to higher

temperatures [3]. As it will be shown, the data are consistent with the location of U3Ni3Sn4 close

to (but not at) an antiferromagnetic quantum critical point (QCP).

The second system is the pseudobinary series U(Pt1-xPdx)3. Pure UPt3 is an unconventional

superconductor. Upon alloying with Pd, superconductivity is suppressed and an

antiferromagnetic phase with "large" ordered moments is found for 0.006 < x < 0.1. At the

critical concentration xc = 0.006, both the superconducting and antiferromagnetic phase lines

meet at a (T = 0 K) QCP [4].

The last material is the system URh1-xNixAl. On the Ni-rich side of the magnetic phase

diagram antiferromagnetism exists, while the compounds with a low Ni content order

ferromagnetically. The antiferromagnetic and ferromagnetic phases meet at x = 2/3, where

magnetism vanishes and NFL properties are observed [5].

The experiments, of which the results are presented in this chapter, include:
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- specific-heat measurements on U3Ni3Sn4 single crystals at 0.1 K ≤ T ≤ 5 K;

- muon spin relaxation experiments on U3Ni3Sn4 single crystals at 2 K ≤ T ≤ 10 K;

- resistivity measurements under hydrostatic pressures up to 1.8 GPa on U3Ni3Sn4 single crystals

at 0.3 K ≤ T ≤ 300 K;

- muon spin rotation experiments on polycrystalline samples of U(Pt1-xPdx)3 with x = 0.007,

0.008 and 0.009 in a transverse field of 0.01 T at 0.04 K ≤ T ≤ 2 K;

- resistivity measurements on a polycrystalline sample of URh1/3Ni2/3Al at 0.05 K ≤ T ≤ 300 K.

These results have been published [1,2,5] or are submitted for publication [3,4]. In this

chapter, these papers are partially reproduced.

7.1. U3Ni3Sn4

7.1.1. Non-Fermi liquid behaviour in U3Ni3Sn4

The ternary U3T3Sn4 compounds (where T = Ni, Cu, Pt, Au) crystallize in the cubic

Y3Au3Sb4-type structure (space group I 4 3d) which is a filled variant of the Th3P4-type [6]. The

key feature of this system is that the 5f-hybridization of the U atoms can be systematically

increased by adding relatively small transition element atoms into voids in the Th3P4-type

structure [6]. Indeed, different magnetic ground states (paramagnetism and weak magnetic order)

can be found in the U3T3Sn4 family of compounds, including several that exhibit heavy-fermion

(HF) behaviour. Only the Cu variant orders magnetically (antiferromagnet at TN = 12 K) while

the other analogues are paramagnetic [7]. Of special interest are the striking departures from the

standard FL theory of metals observed in nominally stoichiometric U3Ni3Sn4 single crystals [1].

The magnetic, transport and specific-heat properties of U3Ni3Sn4 are consistent with recent

theoretical models based upon classical fluctuations near an antiferromagnetic QCP

Single crystals of U3Ni3Sn4 and U3Cu3Sn4 were grown by the Kyropoulos technique from

the top of the melt by means of a cooled-seed crystal holder. Bulk charges were first prepared by

induction melting with 3:3:4 atomic ratios of pure U (depleted), Ni or Cu, and Sn, respectively,

each of at least 99.9% purity. Finally single-crystalline samples of U3Ni3Sn4 and U3Cu3Sn4 were
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grown by slowly cooling a semi-levitated melt of the bulk charges in a cold crucible using an

induction furnace. The rate of cooling was approximately 40°C/h between 1600-1400°C and

50°C/h between 1400-800°C. The obtained solid products were about 2-2.5 cm in diameter, and

consisted of many crystalline grains, from which single-crystals with dimensions ranging from

0.5 to 2 mm3 were extracted.

Single-crystal X-ray diffraction (XRD) data, collected at room temperature, are consistent

with the cubic space-group I 4 3d. The unit-cell parameters of U3Ni3Sn4 and U3Cu3Sn4 are

9.3524(5) Å and 9.4956(5) Å, respectively.

Previously the heat capacity of a U3Ni3Sn4 single crystal [1] in the temperature interval

0.3-5 K was described using the expression:

23
0

−+β+α−γ= DTTTTc )(   , (7.1)

where cE = (γ0 - α√T)T is the electronic contribution, cL = βT 3 the lattice contribution, and

cN = D/T 2 represents the high-temperature form of a nuclear Schottky term [10]. The best-fit

coefficients obtained were γ0 = 0.124 J/molUK2, α = 0.0151 J/molUK2.5, β = 2.07 x 10-3 J/molUK4

and D = 4.62 x 10-4 JK/molU. From the value of β we estimated a Debye temperature

θD ≈  210 K [1]. This description is in agreement with a renormalization group theory [8], which

predicts γ  ∼ γ0 - α√T near a zero-temperature antiferromagnetic instability (NFL behaviour). A

non-universal scale factor T0 ≈  10 K was estimated using the fitted value of

α = (15/64)kBNAN[2/πT0]3/2ξ (5/2) [11]. This value of T0 corresponds very well with the onset

temperature of the non-analytic behaviour of the magnetic susceptibility and resistivity.

Alternatively, recent experimental [12] and theoretical [13] work proposes that NFL

behaviour might be caused by a competition between RKKY and Kondo interactions in the

presence of atomic disorder leading to a Griffiths phase (large magnetic clusters) close to a QCP.

We found that the NFL behaviour of nominally stoichiometric U3Ni3Sn4 single-crystals can also

be described by a divergent power law predicted by this model, i.e., c(T)/T ∝  χ(T) ∝  T -1+λ with

λ  = 0.7 [1]. The best-fit coefficients yielded electronic, lattice and nuclear contributions that

differ by only a few percent from those obtained using the renormalization group theory form of

Equation 7.1.

New heat capacity data spanning the temperature interval 0.1-300 K for a U3Ni3Sn4 single-

crystal are presented in Figure 7.1. A 3He/4He dilution refrigerator was used for attaining

temperatures down to 0.1 K, while the high temperature data were obtained in a standard 4He
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cryostat using a semi-adiabatic method. The phononic contribution to the high temperature

specific heat can be properly estimated for comparison to previous results. Fitting the high

temperature data with a Debye function [14] we obtain the value θD = 208 K. The solid line in

Figure 7.1 is the sum of the numerical solution of the Debye integral and linear electronic

contribution.

U3Ni3Sn4

T (K)
0 50 100 150 200 250 300

C
 (J

/m
ol

U
 K

)

0

20

40

60

80

100

120

140

Figure 7.1 - Temperature dependence of the specific heat of single-crystalline U3Ni3Sn4. The solid
line is a fit to the data with the sum of the Debye approximation of the phonon
contribution and the linear electronic term to the specific heat.

Data for c/T over the temperature range 0.1-5 K are plotted versus the logarithm of

temperature in Figure 7.2. The lower temperature data make it clear that the previously calculated

nuclear contribution to the specific heat was overestimated [1], since the specific heat data below

0.4 K exhibit a tendency toward saturation, in contrast with what would be expected from an

important nuclear contribution to the specific heat, unless a Schottky anomaly (maximum) takes

place in the temperature range 0.1–0.2 K. However, this would be very unlikely considering that:

i) although quadrupolar interactions from 235U and 62Ni could yield a specific heat Schottky

anomaly in the measured temperature range, the fact that these isotopes form very small

quantities of U3Ni3Sn4 (<1 at.% for the formula unit) makes it difficult to conceive that such

contribution would be observable with the relatively large electronic background in U3Ni3Sn4;
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ii) the I = 1/2 Sn isotopes (that have no quadrupolar interactions) would be expected to give rise

to a Schottky maximum only at much lower temperatures.
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Figure 7.2 - U3Ni3Sn4 low temperature specific heat divided by temperature versus logT. The lines

are fits to the data with Equations 7.1 and 7.2 (see text).

Another possibility would be a crossover to a Fermi liquid regime at the lowest

temperatures, which would require a saturation of c/T as T→0. In fact, the low temperature data

below T = 0.4 K can be fitted with a modified Fermi liquid expression of the type:

( ) NL
3 * ccTTTTc ++δ+γ= ln   , (7.2)

where T* is a characteristic spin fluctuation temperature [15-16]. The lattice contribution can be

fixed using our high temperature Debye fit, while for the nuclear contribution we used

D = 6.45 x 10-8 JK/molU, which corresponds to a typical hyperfine field of Bhf = 0.5 T for the Sn

isotopes with I = 1/2, consistent with preliminary Mössbauer experiments on U3Ni3Sn4 single

crystals [17]. Using this expression we obtain a characteristic spin fluctuation temperature T* of

the order of T0 and a Sommerfeld coefficient γ  = 0.130 J/molUK2. In Figure 7.2, we present the

fits to the data using the form of Equation 7.1 for T > 0.5 K, and Equation 7.2 for T < 0.4 K,

considering the same values of cL and cN for both temperature ranges. The saturation behaviour

of the heat capacity can be interpreted as the onset of a degenerate Fermi liquid regime for
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T << 0.5 K. Defining Tcr as a crossover temperature to a Fermi liquid state, i.e. the temperature

below which Equation 7.2 applies, we obtain Tcr = 0.40(2) K. With this reduced nuclear

contribution Equation 7.1 only holds down to T ~ 0.5 K, which means that there is a crossover

region in the temperature range 0.4-0.5 K separating a non-Fermi liquid to a Fermi liquid regime.

An assessment of the potential existence of a Schottky term in the specific heat can only be

made by studying the effect of a magnetic field, or the acquisition of data for T < 0.1 K.

We have characterized the heat capacity, microstructure and crystal structure of U3Ni3Sn4

and U3Cu3Sn4 single-crystals. U3Cu3Sn4 is a heavy-fermion antiferromagnet while nominally

stoichiometric U3Ni3Sn4 is a nearly magnetic NFL compound.

We find that satisfactory fits of the heat capacity data for U3Ni3Sn4 in the temperature

range 0.5-5 K always require a dominant electronic term which exhibits a near-square-root

temperature dependence, consistent with a theoretical model for NFL systems near a zero-

temperature quantum transition from magnetic to non-magnetic states [8] or an alternative

Griffiths phase model [13]. It should be noted that the renormalization group theory treatment

does not include the effects of disorder, which must be present in real systems to some degree,

while the Griffiths phase model includes disorder as a crucial ingredient.

Previously we have undertaken a thorough analysis of the heat capacity and susceptibility

of nominally stoichiometric U3Ni3Sn4 [1], and conclude that several NFL models (e.g.

multichannel Kondo [18] and Kondo disorder [19]) commonly considered in the contemporary

literature do not describe the entire data set known for this material. All attempts to include a

logarithmic heat capacity term resulted in an unphysically high characteristic temperature scale

T0 [1]. On the other hand, the scaling temperature T0 ≈  10 K, obtained from low temperature

analysis based on renormalization group theory, is consistent with the onset of the non-analytic

behaviour of physical properties in this material. Having extended heat capacity measurements to

the lower temperatures we found a crossover to a Fermi liquid state below 0.4 K described by a

T 3lnT term to the specific heat, characteristic of spin fluctuation phenomena. The crossover to a

Fermi liquid state is a characteristic of NFL materials that are imprecisely tuned to a QCP [8],

due to unfavourable conditions of a control parameter such as pressure, magnetic field,

composition or atomic disorder. In the case of nominally stoichiometric U3Ni3Sn4, such a non-

thermal critical parameter might be vacancy doping which governs the degree of spd-f

hybridization leading to competition between NFL-FL states. On the other hand, a possible

marginal Fermi liquid ground state can not be ruled out. The precise role of small amounts of
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disorder detected by XRD analysis in nominally stoichiometric U3Ni3Sn4 single crystals [1] must

be investigated by further studies of carefully characterized samples.

The moderate size of the Sommerfeld coefficient γ  ~ 0.130 J/molUK2 and reduction of

µeff = 2.0 µB/U [1] from 3.62 or 3.58 µB expected for U3+ or U4+ free ions, respectively suggest

significant hybridization between 5f and itinerant electron states takes place in U3Ni3Sn4. The

replacement of the Ni atoms by Cu gives rise to an increase in the number of 3d electrons,

leading to a dehybridization of the 5f states with the 3d band. This is consistent with the observed

lattice expansion on replacing Ni (a = 9.3524(5) Å) with Cu (a = 9.4956(5) Å), the increase of γ

by a factor of about 3, and development of antiferromagnetism below 14 K in U3Cu3Sn4 with an

effective magnetic moment µeff = 3.3 µB/U, corresponding to either a 5f 2 or 5f 3 uranium

configuration. The apparent variation in 5f hybridization with transition element substitution, the

crossover from a Fermi liquid ground state in U3Ni3Sn4 to weak antiferromagnetism with

TN = 14 K in U3Cu3Sn4, and the observation of NFL properties in U3Ni3Sn4 for the temperature

range 0.5-5 K, imply that a QCP should exist in this series of materials over some range of

composition and/or pressure in the vicinity of stoichiometric U3Ni3Sn4.

7.1.2. Recovery of the Fermi liquid state in U3Ni3Sn4 under pressure

The specific heat of single-crystalline U3Ni3Sn4 shows a temperature dependence of the

type c/T ~ γ0-αT 1/2 in the temperature interval 0.5-5 K [1,2]. This is consistent with theoretical

models for NFL systems near a zero-temperature antiferromagnetic (AF) QCP [8,9]. Below about

0.4 K, there is a crossover to a FL state [2]. It is interesting to compare U3Ni3Sn4 with U3Cu3Sn4.

The latter compound is an antiferromagnet with TN = 14 K [2]. Replacement of Ni by Cu results

in an increase of the number of 3d electrons, leading to a decrease of the hybridization of the 5f-

states with the 3d-band. The hybridization change across the U3(Ni,Cu)3Sn4 series, namely the

crossover from a FL ground state in U3Ni3Sn4 to weak antiferromagnetism in U3Cu3Sn4, together

with the observation of a NFL region in U3Ni3Sn4 suggests that a QCP may exist in this series of

compounds.

In order to confirm the absence of magnetic order in U3Ni3Sn4, zero-field muon spin

relaxation (µSR) experiments were carried out on single-crystalline samples at 2 K and 10 K in

the general purpose spectrometer (GPS) of the Paul Scherrer Institute (Switzerland). Best fits to
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the spectra were obtained by a depolarization function consisting of a single Gaussian

component. The depolarization rate obtained at 10 K is ∆G = 0.044(3) µs-1. This small value of ∆

can be attributed to a random distribution of the Sn nuclei with spin I = ½ and magnetic moment

µ = 1.0 µN. At 2 K, the depolarization rate slightly increases to ∆G = 0.061(2) µs-1. This small

increase, if significant, could be attributed to the presence of spin fluctuations in the system

associated with the NFL behaviour observed in the specific heat below 5 K. No static magnetic

order has been detected in these µSR experiments.

Resistivity measurements were performed on a bar-shaped single crystal of U3Ni3Sn4 under

hydrostatic pressures up to 1.8 GPa in the temperature range 0.3-300 K. A CuBe piston clamp

cell was used with Fluorinert acting as pressure transmitting medium. The pressure values here

presented were corrected for an empirical efficiency of 80%. The resistivity was measured using

a standard a.c. 4-probe method. Since the crystallographic structure of U3Ni3Sn4 is cubic, the

resistivity should be isotropic. Therefore, the current was applied along an arbitrary direction.

The low-temperature (T < 10 K) resistivity curves at p = 0, 0.6 GPa and 1.8 GPa are shown

in Figure 7.3. At ambient pressure, the resistivity increases slowly as temperature is decreased

below room temperature (RT), reaching a maximum value at Tmax ~ 240 K. Below this

temperature the resistivity decreases and coherent scattering sets in at lower temperatures. A low

residual-resistivity value of ρ0 = 6 µΩcm is attained, indicating that the single crystal is relatively

clean (RRR ≡ ρRT/ρ0 ≈  60).

In order to account for possible changes in the distance between the voltage contacts upon

applying pressure, ρRT was assumed to be pressure independent. This assumption is supported by

the resulting negligible pressure dependence of ρ0. Pressure has the effect of reducing the

resistivity values. At the lowest temperatures, a tendency to FL-like behaviour ρ ~ T 2 is clearly

observed (Figure 7.3)
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Figure 7.3 - Temperature dependence of the resistivity of single-crystalline U3Ni3Sn4 at p = 0, 0.6
and 1.8 GPa. The arrows indicate TρFL for p = 0.6 and 1.8 GPa.

The pressure dependence of the temperature TρFL below which the resistivity follows the

relationship ρ = ρ0+AT 2 is shown in Figure 7.4. TρFL follows the pressure dependence

TρFL = a (p-pc)ν, with pc = -0.04(2) GPa, ν = 0.50(7) and a = 2.0(1) KGPa-ν (Figure 7.4).

At the proximity to an AF QCP, TρFL is predicted within the theory of Millis [8] to vary as

TρFL ~ (p-pc), where pc is the critical pressure (i.e. the pressure value at which the QCP occurs).

However, according to the theory of Rosch [20] for the resistivity of HF compounds close to an

AF QCP, the linear behaviour of TρFL (p) depends on the amount of disorder in the system. The

less disordered the material is, the narrower the region TρFL ~ (p-pc). Above this region,

TρFL = a (p-pc)1/2. In the very clean limit, the linear behaviour of TρFL (p) is not observed.

The RRR value of 60 of U3Ni3Sn4 implies that the range where TρFL ~ (p-pc) should be

narrow. Due to the limited number of data points at low pressures, it is not possible to clearly

distinguish the range in which this linear behaviour is observed. The location of a QCP at

pc = -0.04(2) GPa is in agreement with the observed NFL behaviour in the specific heat of

U3Ni3Sn4 for 0.5 < T < 5 K.
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Figure 7.4 - Pressure dependence of the temperature below which a ρ ~ T 2 behaviour is observed in
U3Ni3Sn4. The solid line represents a TρFL = a(p-pc)1/2 fit.

The FL resistivity coefficient A is related to the coherence temperature Tcoh. In the FL

regime and close to a QCP, ,Tcoh is related to the electronic specific-heat coefficient γ  by

γ  ∝  Tcoh
-1 [21]. On the other hand, A ∝  γ  2 according to the Kadowaki-Woods relation for HF

compounds [22]. The volume dependence of Tcoh is given by the Grüneisen parameter Γ coh

defined as
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where V0 ≡ V(p=0) and Tcoh,0 ≡ TK(p=0). Using ∆V/V0 = -κ p, where κ is the compressibility, the

pressure dependence of A can be written as

( )ppApA coh2exp0 Γκ−== )()(   . (7.4)

The pressure dependence of A is shown in Figure 7.5. Due to the limited temperature range

where ρ = ρ0 + AT 2 at ambient pressure, A(p=0) cannot be reliably determined. Fitting the data

with Equation 7.4 yields κΓ coh = 0.29(5) GPa-1 and A(p=0) = 0.43(4) µΩcmK-2. This value of

κΓ coh is similar to the value of 0.26 GPa-1 obtained for UPt3 [23] from measurements of γ  and A

under pressure (see references cited in Ref. 21).
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Since γ  ~ A 1/2 and γ(p=0) = 0.13 J/molUK2 [2], a value of γ(p = 1.8 GPa) of about

0.08 J/molUK2 can be predicted. The reduction of γ  reflects the fact that, upon pressure, the

compound is driven away from the magnetic instability and that the interactions between the

quasiparticles are reduced.
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Figure 7.5 - Pressure dependence of the resistivity coefficient A of U3Ni3Sn4. The line represents a fit
to Equation 7.4.

At high temperatures, a weak maximum in ρ(T) is observed at T=Tmax, which is attributed

to the Kondo effect. Tmax increases almost linearly from 240 K at p=0 to 265 K at p = 1.8 GPa.

Taking Tmax roughly proportional to TK [24], the increase of Tmax reflects the increase of the

characteristic temperature of the Kondo effect. Because the observed maximum is weak and the

phonon contribution to the resistivity has not been determined, an analysis of Tmax(p) in terms of

the Grüneisen parameter Γ K is not possible.

In conclusion, upon application of pressure, a FL behaviour is restored in the resistivity of

U3Ni3Sn4 at temperatures below TρFL, which increases with increasing p. The pressure

dependence of TρFL is consistent with the presence of an AF QCP at pc = -0.04(2) GPa. The

pressure dependence of the resistivity coefficient A can be analysed in terms of the Grüneisen

parameter for the coherence temperature Tcoh. Upon pressure, the compound is driven away from
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the QCP and the increase of Tcoh is reflected in a decrease of A. Also TK, being related to Tcoh,

increases upon pressure. The increase of TK is seen in the increase of the temperature at which

ρ(T) reaches a maximum. The NFL behaviour observed at ambient pressure at temperatures

above the FL regime in U3Ni3Sn4 is a direct consequence of its proximity to a QCP.

7.2. Magnetic quantum critical point and superconductivity in

U(Pt1-xPdx)3

For more than a decade now it has been recognized that superconductivity (SC) and

magnetism are intimately related in strongly correlated systems, such as the high-Tc cuprates,

heavy-fermion materials and organic superconductors [25]. One of the key issues is to identify

the nature of the attractive interaction for Cooper pairing. In conventional s-wave

superconductors Cooper pairing is mediated by phonons. In strongly correlated electron systems

magnetic interactions suppress s-wave SC, and therefore it has been proposed that SC is

unconventional and mediated by spin fluctuations [26,27]. Compelling evidence for spin-

fluctuation mediated SC [28] has recently been obtained for the magnetically ordered heavy-

fermion materials CePd2Si2 and CeIn3. By tuning these materials towards a magnetic quantum

critical point (the Néel temperature TN→0 K), by the application of mechanical pressure, a SC

phase appeared.

The heavy-fermion superconductor UPt3 (Tc ~ 0.5 K) has become an exemplary system to

study unconventional SC [25,29]. Because of the unusual coexistence of SC and ferromagnetic

(FM) spin fluctuations, the latter signalled by a pronounced T 3lnT contribution to the low-

temperature specific heat [30,31], it has been argued that UPt3 is an odd-parity spin-fluctuation

mediated superconductor [31,32], in close analogy with superfluidity in 3He. The thermodynamic

properties and multicomponent SC phase diagram can only be explained by Ginzburg-Landau

models, based on an unconventional SC order parameter [29,33-35]. Much attention has been

devoted to models where a symmetry-breaking field (SBF) lifts the (spin) degeneracy of the 2D

(or 1D) order parameter, which results in a splitting ∆Tc = Tc
+-Tc

- of the SC phase transition

[33-35]. Experimental evidence [36] has been put forward that the SBF is provided by small-
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moment antiferromagnetism (SMAF) which sets in at TN,SMAF ~ 6 K [37]. This established a clear

coupling between magnetism and SC in UPt3.

The nature of the SMAF state itself is the subject of lively debate. It has been observed

convincingly through neutron [36,37] and magnetic x-ray [38] scattering only. The ordered

moment, m = 0.02 µB/U-atom (T→0), is extremely small, which hampers its detection by standard

bulk probes. However, NMR [39] and zero-field muon spin relaxation (µSR) experiments

[40,41] also do not signal the small moment (the early µSR results of Ref. 42 have not been

reproduced thereafter), which strongly suggests that the moment fluctuates at a rate larger than

10 MHz, but on a time scale which appears static to neutrons and X-rays. Therefore, TN,SMAF may

be considered to represent a cross-over temperature, rather than being connected to a true phase

transition. This is in line with the unusual quasi-linear increase of m2(T) below TN,SMAF [37].

One of the hallmarks of heavy-fermion materials is the proximity to a magnetic quantum

critical point (QCP). In the case of UPt3 pronounced antiferromagnetic (AF) phase transitions can

readily be induced by chemical alloying, e.g. by substituting small amounts of Pt by Pd [43] or U

by Th [44]. In the U(Pt1-xPdx)3 pseudobinaries, AF order of the spin-density wave type has been

observed in the thermal, magnetic and transport properties in the concentration range

0.02 ≤ x ≤ 0.08 (see Figure 7.6). Neutron-diffraction experiments [45,46] show that at optimal

doping (x = 0.05, TN = 6 K) the ordered moment of the so-termed large-moment

antiferromagnetic phase (LMAF) is substantial, m = 0.63±0.05 µB/U-atom, and that the magnetic

order parameter is conventional. The magnetic structure consists of a doubling of the nuclear unit

cell (space group P63/mmc) along the a*-axis, with the moments pointing along a*. LMAF is

also detected by local probe techniques, such as µSR [41] and NMR [47]. TN(x) follows a rather

conventional Doniach-type phase diagram [48] (see Figure 7.6).

The SMAF phase has clearly a different signature, although the magnetic structure is

identical to the one of the LMAF phase. Neutron-diffraction experiments [46] show that SMAF

is robust upon alloying with Pd and persists till at least x = 0.005. The ordered moment grows

upon alloying, but TN,SMAF(x) remains ~ 6 K and does not vary at these small Pd concentrations

(see Figure 7.6). Notice that TN,SMAF is also insensitive to the application of pressure [36], unlike

the LMAF TN [49].

All these results strongly suggest that SMAF and LMAF are different phases with a

distinctly different nature. As a consequence they might also couple differently to SC. Pressure

[36] and alloying experiments [50] are consistent with SMAF acting as SBF. In order to fully
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understand the nature of the SC phase, it is important to examine the relation (coexistence or

competition) between LMAF and SC as well. Therefore, it is crucial to determine the critical Pd

concentration for the emergence of the LMAF phase. In this Letter we present µSR experiments

carried out on U(Pt1-xPdx)3 samples (x = 0.007, 0.008 and 0.009), which show that the Néel

temperature TN for the LMAF phase is suppressed to 0 K at a Pd concentration xc,af ≈  0.006.

Combined with our earlier results on the suppression of SC by Pd substitution [50-52], we find

that xc,af ≈  xc,sc and that unconventional SC is replaced by LMAF. As we will show, these results

provide strong evidence for SC mediated by ferromagnetic spin fluctuations.
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Figure 7.6 - Magnetic and superconducting phase diagram for U(Pt1-xPdx)3 alloys. SMAF = small-

moment antiferromagnetic phase, LMAF = large-moment antiferromagnetic phase,
SC = superconducting phase. Néel temperatures TN are measured by neutron-diffraction
(o and �) [46], specific heat (�) [43,46] and µSR (�) (Ref. 41 and this work).
Resistively determined superconducting transition temperatures Tc

+ (�) are taken from
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Polycrystalline U(Pt1-xPdx)3 samples were prepared in a two-step process. First, master

alloys of UPt3 and U(Pt0.95Pd0.05)3 were prepared by arc-melting stoichiometric amounts U

(purity 99.98%), Pt and Pd (both with purity 99.999%) on a water-cooled copper crucible in a

high-purity argon atmosphere (0.5 bar). Next samples with x = 0.007, 0.008 and 0.009 were

prepared by arc-melting together appropriate amounts of the master alloys. After an annealing
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procedure (see Ref. 41), four thin platelets (thickness 0.8 mm, area 6×10 mm2) were prepared by

spark-erosion and glued with General Electric varnish on a silver support, in order to cover an

area of 12×20 mm2, which corresponds to the total cross-section of the muon beam.

Measurements of the residual resistivity on pieces cut from the annealed buttons are consistent

with previous results [51,52], which ensures that Pd dissolves homogeneously in the UPt3 matrix.

Measurements of the positive muon (µ+) precession in an applied transverse field of 100 G

were conducted at the low temperature µSR facility (LTF) on the πM3 beam line at the Paul

Scherrer Institute. The samples were mounted on the cold-finger of a top-loading dilution

refrigerator with a base temperature of 0.025 K. As we shall see, the muon spin depolarization

rates are very small. Accurate determination of the rates for the samples with x = 0.007 and 0.008

was made possible by the use of a kicker device, which ensures that only one muon at a time is

present in the sample and that no other muons are present in the spectrometer [53]. This so-called

MORE (Muons On REquest) mode allows to extend the µSR time window to 20 µs, with

virtually no accidental background, making it possible to measure relaxation rates as small as

0.001 µs-1.

When positive muons come to rest in the sample they start to precess around the local field,

Bloc, with a precession frequency νµ = γµBloc (γµ/2π = 135.5 MHz/T is the muon gyromagnetic

ratio). The internal dipolar magnetic field distribution in general leads to de-phasing of the

precession frequency and consequently the signal is damped. As a first step, we have analyzed

the µSR spectra using a Gaussian-damped depolarization function PG(t) = AGcos(ωt)exp(-∆2t2/2),

where AG is the asymmetry, ω = 2πνµ and ∆ is the Gaussian damping rate. At the highest

temperatures, ∆ attains a temperature-independent value of ~ 0.06 µs-1, which is consistent with

depolarization due to static 195Pt nuclear moments [41]. Upon lowering the temperature, ∆ rises

progressively, which points to the presence of an additional source of internal dipolar magnetic

fields. Improved fit results were obtained using the damped-Gauss muon spin depolarization

function

)/exp()cos()( 222
EDGDG tttAtP ∆−λ−ω= (7.5)

with ∆ fixed at the observed Pt nuclear depolarization rate ~ 0.06 µs-1. In Equation 7.5 the factor

exp(-λEt) accounts for damping due to the additional magnetic signal. Because of the low

damping rates and the large sample size, the asymmetry ADG is close to the maximum value ~0.3.

In Figure 7.7 the temperature dependence of λE is shown for all three samples. At the highest
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temperatures, λE is very small (about 0.003 µs-1) and essentially temperature independent. Upon

lowering the temperature, λE increases, as the additional source of magnetism emerges. The

additional source of magnetism becomes stronger when the Pd concentration increases, and we

associate its onset temperature with the Néel temperature TN for LMAF.

Figure 7.7 - Temperature variation of the exponential relaxation rate, extracted from transverse field
(100 G) µSR spectra using Equation 7.5, for U(Pt1-xPdx)3  with x = 0.007, 0.008 and
0.009. The solid lines show the quasi-logarithmic increase of λLMAF below TN and the
temperature independent background λBG above TN.

In order to extract TN, we write the observed exponential damping rate as

λE = λBG + λLMAF, where λBG and λLMAF are due to the background and the LMAF phase,

respectively. λBG may account for small variations of the actual depolarization rate due to Pt

nuclear moments, as in the fitting procedure we used the fixed value ∆ = 0.06 µs-1. The super-

linear increase of λLMAF is unusual, and can be described phenomenologically, in this limited

temperature interval, by a quasi-logarithmic increase λLMAF ~ -ln(T/TN). Making use of this
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functional dependence and imposing λLMAF=0 for T>TN, we obtain TN values of 1.23±0.10 K,

0.78±0.10 K and 0.45±0.15 K for x = 0.009, 0.008 and 0.007, respectively.

The assignment of the increase of λE to the onset of LMAF ordering is based on an analogy

with the analysis of the zero-field µSR spectra obtained in the LMAF phase for samples with

higher Pd concentrations [41]. For x ≥ 0.01 the spectra are well described by a two-component

depolarization function, consisting of the standard depolarization function of a polycrystalline

antiferromagnet and a Kubo-Lorentzian (KL) term, accounting for the spectral distribution of

internal fields. Within this phenomenological approach it was observed that the depolarization

rate of the KL function, λKL, scales with the ordered moment as determined by neutron

diffraction. Our new results indicate that below x = 0.01 the LMAF state rapidly weakens. The

quasi-logarithmic temperature dependence of λLMAF below TN shows that the internal magnetic

dipolar fields measured at the µ+ localization site [54] grow only slowly with decreasing

temperature.

In Figure 7.8 we show the magnetic and SC phase diagram for x < 0.012, highlighting our

new µSR results. For x = 0.01, a TN value of 1.6±0.1 K has been extracted from zero-field µSR

data taken on a polycrystal [41], while TN = 1.7±0.1 K was obtained by single-crystal neutron-

diffraction [46]. The SC (Tc
+) phase transition temperatures have been taken from Ref. 51. Our

new data for TN nicely follow the Doniach-diagram type behaviour. From the data in Figure 7.6

and in Figure 7.8, we can safely conclude that the LMAF phase line smoothly extrapolates to

TN=0 at xc,af ≈  0.006. Locating the magnetic QCP near x = 0.006 is consistent with the absence

of any signal of the LMAF phase for x = 0.005, as was concluded from zero-field µSR

measurements on a polycrystal down to 0.04 K [41], as well as from single-crystal neutron-

diffraction data down to 0.1 K [46].

Our results show that it is the LMAF phase which presents the magnetic instability in

U(Pt,Pd)3 and not SMAF. This is consistent with recent transport measurements on

polycrystalline U(Pt,Pd)3 [55], which  show clear deviations from Fermi-liquid behaviour in the

vicinity of xc,af, as predicted for a QCP [56].

Inspecting the phase lines TN(x) and Tc
+(x) plotted in Figure 7.8, we arrive at a most

important conclusion, namely the phase diagram two quantum critical points coincide, i.e. the

critical concentration for the suppression of SC coincides with the critical concentration for the

emergence of LMAF, xc,s = xc,af = 0.006. The fact that Pd substitution results in an anomalously
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high rate of suppression of Tc
+ [51,52], as well as in the onset of the LMAF phase, indicates that

this relationship is not coincidental. Stabilization of the LMAF phase completely suppresses

unconventional SC. Recent NMR measurements [39], as well as alloying experiments [57,58],

provide strong evidence that the SC wave function has odd parity. This in turn implies that

Cooper pairing is driven by FM spin fluctuations, rather than by AF fluctuations [26,32].

Therefore, our experiments indicate that doping UPt3 with Pd leads to a shift of the spectral

weight from FM to AF fluctuations. This is not uncommon near a QCP, where the many energy

scales become comparable and competition between various phases becomes important. Indeed,

inelastic neutron scattering experiments carried out on pure UPt3 [59] show that the magnetic

fluctuation spectrum is complex and has both AF and FM components.
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Figure 7.8 - Magnetic and superconducting phase diagram for U(Pt1-xPdx)3 alloys with x < 0.012. The

meaning of the symbols is the same as in Figure 7.6. The solid lines serve to guide the
eye.

The phase diagram shown in Figure 7.6, differs from the generic phase diagram, proposed

for magnetically ordered pure heavy-fermion materials under pressure [28]. In these materials,

the approach to the magnetic QCP at T=0 is circumvented by the occurrence of a SC ground

state. Tc is maximum near the critical pressure pc,af, which has been interpreted as evidence for

SC mediated by AF fluctuations. In the case of U(Pt,Pd)3, however, Tc→0 at the QCP. This is
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naturally explained if SC in UPt3 is mediated by FM spin fluctuations, which cannot coexist at

any non-zero temperature with an ordered AF state. This is consistent with the notion that the

SMAF state is fluctuating in time.

In conclusion, we have shown that the magnetic instability in U(Pt,Pd)3 is due to the

LMAF phase rather than SMAF. The U(Pt1-x,Pdx)3 phase diagram has a critical point at

x ≈  0.006 where unconventional SC is suppressed and LMAF emerges. The existence of this

critical point provides strong evidence for SC mediated by FM spin fluctuations. A complete

understanding of the phase diagram and its quantum critical point might prove to be essential in

further specifying the SC pairing mechanism. Measurements of the critical exponents of the

thermal, magnetic and transport properties in the concomitant non-Fermi liquid regime are

needed to identify the character of the magnetic fluctuations [56]. Moreover, the results may be

relevant [60] to other strongly correlated systems, such as the high temperature superconductors,

which have phase diagrams that exhibit a similar competition between SC and static AF order.

7.3. Possible non-Fermi liquid behaviour in URh1/3Ni2/3Al

Ternary intermetallic compounds with the general formula UTX (T = late transition metal,

X = p-element) crystallizing in the hexagonal ZrNiAl-type of structure exhibit a large variety of

magnetic properties [61]. This structure consists of two basal planes, one containing U and 1/3 of

T atoms and the other the remaining T atoms and Al. It is well established that the magnetism,

which is mainly due to U moments, is controlled by the strength of the hybridization between the

5f- and the ligand-electronic states. On one hand, hybridization delocalizes the 5f-states and

inhibits magnetic ordering, on the other hand, however, it mediates interaction between them and

promotes magnetic ordering. It is therefore not surprising that the magnetic properties of these

compounds vary as a function of the constituents, which change the hybridization. Recently, we

have started a systematic study of quasiternary compounds with substitutions on the transition-

metal sites [62]. Here, we report on the magnetic, thermal and transport properties of

URh1/3Ni2/3Al, which appears to show anomalous low-temperature behaviour.
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URh1/3Ni2/3Al was prepared in polycrystalline form by arc melting stoichiometric amounts

of the constituting elements (the purity of U was 99.8%, of the other elements 99.99%). After re-

melting and reversing the ingot several times to ensure homogeneity, the resulting ingot was

annealed for one week at 700°C in a vacuum-sealed quartz ampoule. After crushing the annealed

material under protective atmosphere, X-ray powder diffraction was carried out to verify the

structure and lattice parameters. The magnetic susceptibility χ(T) = M/H was measured between

1.7 and 320 K in fields up to 5 T on a sample consisting of powder that was fixed in random

orientation in a SQUID magnetometer (Quantum Design). Electrical-resistivity measurements

were performed in the temperature range 0.05-300 K on a bar-shaped sample by means of a

standard four-probe method. The temperature dependence of the specific heat was measured

between 0.4 and 40 K by means of a semi-adiabatic heat-pulse method.

In Figure 7.9 we show the temperature dependence of (a) the magnetic susceptibility

measured in 0.1 T both in zero-field cooled (ZFC) and field-cooled (FC) modes, (b) the specific

heat in the absence of a magnetic field and (c) of the electrical resistivity. It is clearly seen that all

the three physical properties deviate from the temperature dependencies expected for Fermi-

liquid systems. At low temperatures, the FC susceptibility diverges and the ZFC curve exhibits a

clear maximum at 10 K above which the FC and ZFC curves coincide. The maximum suggests

the presence of AF correlations and the difference between the FC and ZFC curves reminds one

of a spin-glass system (SG). For a SG system, some type of disorder in the compound is required.

Indeed, recent X-ray and neutron-diffraction studies suggest a random occupation of Rh and Ni

atoms of sites in the plane that does not contain U atoms [63].

The specific heat shown in Figure 7.9b exhibits a low-temperature dependence that can be

described by a -ln(T/T0) dependence with T0 ≈  10 K ≈  -θP/4 (dashed line in Figure 7.9b),

suggesting non-Fermi-liquid (NFL) behaviour. However, the data are equally well described by

the expression c/T ≈  T λ-1 with λ  = 0.94 (solid line in Figure 7.9b). To discriminate between the

two descriptions, measurements at even lower temperatures would be required.

At high temperatures, as in normal metals, the electrical resistivity decreases with

decreasing temperature. However in URh1/3Ni2/3Al, it exhibits a minimum near 10 K and a

pronounced increase below this temperature. In other words, the aT 2 term is absent or it is very

weak. The resistivity can be fitted to a ρ0 + a(T/T0)α dependence with a negative a and α = 0.96.

The best fit is shown in Figure 7.9c by the full line. At an even lower temperature of 0.33 mK, a

distinct step-like decrease of the resistivity is found (see inset of Figure 7.9) which we tentatively
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attribute to a small amount of UNi2Al3
i which may be present as impurity phase and which

exhibits superconductivity around this temperature [64].

Figure 7.9 - The temperature dependence of the magnetic susceptibility (a), the specific heat (b) and
the electrical resistivity of URh1/3Ni2/3Al (c). The curves through the symbols denote the
best fits to the expressions given in the text. The inset of (c) shows the low-temperature
detail of the electrical resistivity.

In the limit T→0, the Fermi-liquid theory (FL) predicts a temperature-independent

contribution to the specific heat, an aT 2-type of behaviour of the electrical resistivity and a

substantial temperature-independent contribution to the magnetic susceptibility. Deviations from

the behaviour predicted by FL theory are referred to as NFL behaviour. One of the hallmarks of

NFL is divergence at low temperature of the specific heat divided by temperature, C/T, which

behaves as -ln(T/T0) or as T λ-1 as found in URh1/3Ni2/3Al. It is also clear that the magnetic and

transport properties of the URh1/3Ni2/3Al compound cannot be explained solely within the FL

theory.

                                                
i A possible off-stoichiometry of an impurity phase of UNi2Al3 (Tc = 1.2 K) might reduce its superconducting
transition temperature.
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Concluding remarks

8.1. U2Pt2In

In this thesis, it has been shown that U2Pt2In is the first stoichiometric U-based compound

that exhibits non-Fermi liquid (NFL) behaviour at ambient pressure. Research on stoichiometric

compounds prepared in a single-crystalline form is highly desirable in the study of NFL

behaviour because the effects of disorder may not dominate the physics. This provided a strong

motivation to carry out an extensive study on U2Pt2In in order to determine its NFL properties.

Nevertheless, the rather difficult metallurgy of U2Pt2In imposed its restrictions on the research

carried out.

The main results obtained on U2Pt2In are summarized below.

•  Polymorphism was found in U2Pt2In [1]: while polycrystalline samples form in the U3Si2-

type of structure, single-crystals form in the Zr3Al2-type of structure (superstructure of the U3Si2

type with a doubling along the c-axis).

•  When tracing the magnetic ordering temperatures of the U2T2X family of compounds versus

the square of the conduction-electron - f-electron hybridization matrix element in a Doniach-like

diagram, one finds that U2Pt2In is located at the border line between magnetic and non-magnetic

compounds, which suggests that U2Pt2In is near a magnetic instability.
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•  The magnetic susceptibility of U2Pt2In is weakly anisotropic and follows a (modified) Curie-

Weiss behaviour at high temperatures. At low temperatures, however, an anomalous behaviour is

observed: χc goes through a maximum at 7.9 K, which is attributed to the stabilization of short-

range antiferromagnetic (AF) correlations, while χa increases as 1-bT 0.7 for 2 K ≤ T < 10 K. This

is at variance with the standard Fermi liquid (FL) behaviour, which predicts χ to attain a constant

value at low temperatures.

•  The resistivity of U2Pt2In is highly anisotropic below about 80 K with ρc > ρa. At the lowest

temperatures, the resistivity does not follow the FL quadratic temperature dependence, instead

ρa ~ T 1.25 and ρc ~ T 0.9. The residual resistivities are unusually high: ρ0,a ≈  115 µΩcm and

ρ0,c ≈  210 µΩcm. However, structure refinements from X-ray [1] and neutron-diffraction [2]

experiments indicate a high sample quality. Also, the large difference between ρ0,a and ρ0,c

shows that ρ0 is largely determined by other scattering mechanisms than impurity or defect

scattering. It should also be noted that the higher resistivity values are found for a current along

the c-axis, which is the axis along which the AF fluctuations stabilize.

•  Magnetoresistance (MR) experiments show a gradual increase of the resistivity exponent α

(defined as ρ ~ T α as T→0) with increasing magnetic field strength. At 8 T, α = 2 as expected for

a FL. There are two different contributions to the MR: a negative one (associated with spin

effects) and a positive one (associated with orbital effects). At low fields, the negative

contribution is dominant, except in the case B || I || a, whereas at high fields the positive

contribution becomes more and more important. The negative contribution to the MR is more

important for I || c than for I || a. However, no satisfactory explanation for this anisotropy can be

offered at the moment. Additional evidence that the high residual resistivity in U2Pt2In is not

determined by crystallographic disorder is provided by the strong field dependence of ρ0.

•  The specific heat of U2Pt2In provides solid evidence for the classification of this heavy-

fermion compound as a NFL. The specific heat shows a pronounced diverging behaviour of the

type c/T ~ -ln(T/T0) over almost two decades of temperature. The low-temperature specific heat

measured in a magnetic field is dominated by a strong contribution of the In nuclear moments.

The same logarithmic divergency is observed in the specific heat measured on polycrystalline

samples. As these crystallize in the simpler U3Si2-type of structure, the NFL behaviour is not

directly related to the presence of two inequivalent U positions, as present in the single crystals

with the Zr3Al2-type of structure.
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•  The thermal-expansion coefficient of U2Pt2In becomes anisotropic below about 12 K, in a

way that the c-axis shrinks more rapidly than the a-axis upon formation of the heavy-fermion

bands.

•  Absence of weak magnetic order, at least down to 0.05 K, is confirmed by means of muon

spin relaxation and rotation (µSR) experiments. Besides a static magnetic component originating

from the In nuclear moments, the µSR spectra below 10 K reveal the presence of magnetic

fluctuations. No evidence was found for Kondo disorder.

•  Resistivity experiments under hydrostatic pressure indicate a recovery of the FL ρ ~ T 2

behaviour at low temperatures for I || a. This is consistent with predictions from a transport

theory for heavy-fermion compounds near an AF quantum critical point (QCP) [3]. The

anisotropy in the resistivity is strongly enhanced under pressure, as follows from the increase of

the ratio ρc/ρa measured for 0.3 K ≤ T < 300 K. Due to the enhancement of the anisotropy, the

resistivity curves for I || c do not show a ρ ~ T 2 behaviour but a low-temperature minimum.

One of the main issues that arise when discussing the properties of NFL compounds is the

responsible mechanism for this behaviour. Although in the current state-of-the-art NFL physics

no definite answers can be provided, one most important distinction can often be made: whether

the NFL behaviour is due to a single-ion or a cooperative mechanism.

The location of U2Pt2In at the border line between magnetic and non-magnetic compounds

in the Doniach diagram for the U2T2In family of compounds, suggests a proximity to an AF

QCP. Resistivity measurements under pressure carried out on U2Pt2In and U2Pd2In yield strong

support for this hypothesis. Considering the absence of magnetic order down to 0.05 K (as

evidenced from the µSR experiments) and the important finding that pressure leads to the

recovery of the FL behaviour, one cannot exclude that U2Pt2In is even located at the AF QCP. In

order to investigate this further, specific-heat experiments under pressure would be most

welcome. As the specific-heat coefficient γ  is related to the coherence temperature Tcoh [4], the

observation and evolution of the FL γ  coefficient with pressure would provide valuable

information on the recovery of the FL state near the QCP.

It is important to notice that the observed divergency of the specific heat, c/T ~ -ln(T/T0) is

not consistent with an AF QCP, but rather indicates a ferromagnetic (FM) QCP [5]. However, a

logarithmic divergency of c/T is allowed for an AF QCP in a two-dimensional (2D) system. This

appears to apply to compounds like CeCu5.9Au0.1 [6] and CeNi2Ge2 [7], where inelastic neutron
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scattering (INS) experiments have provided evidence for a spectrum of strongly anisotropic

magnetic fluctuations, with a quasi-2D nature. INS experiments on U2Pt2In could possibly

elucidate the nature of the magnetic fluctuations further.

In order to investigate the evolution of magnetic order near U2Pt2In in the Doniach phase

diagram, the study of single-phase samples of e.g. (U1-xThx)2Pt2In and U2(Pt1-xPdx)2In is helpful

If Pd or Th doping results in the emergence of magnetism, strong evidence for U2Pt2In being at a

QCP is obtained. One could then also study such doped samples under pressure, which should

lead to the suppression of magnetic order and to the appearance of the FL state.

The origin of the strongly anisotropic character of the resistivity of U2Pt2In remains

puzzling. Its enhancement under pressure indicates that the anisotropy is not inherent to the

crystal structure since the compressibility is almost isotropic. Resistivity measurements on single

crystals of the non-magnetic compound Th2Pt2In would be useful to address this issue. These

could also serve to obtain an estimate for the phonon contribution to the resistivity of U2Pt2In. In

addition, specific-heat experiments on Th2Pt2In should be carried out in order to estimate the

phonon contribution to c(T). This would enable a more precise determination of the temperature

up to which a logarithmic divergency is present in the electronic specific heat of U2Pt2In.

The high residual resistivity of U2Pt2In raises the question of the role of disorder in the

NFL properties. The dependence of ρ0 on the current direction, as well as its field and pressure

variations, indicate that impurity and defect scattering are not the dominant mechanisms leading

to the high values of ρ0. Even though X-ray and neutron-diffraction experiments indicate a good

single-crystalline quality, the use of a local probe to measure the near-neighbour bond-length

distributions, like (synchrotron radiation) X-ray absorption fine-structure (XAFS) experiments,

could be helpful to determine the exact amount of disorder. For instance, neutron-diffraction

experiments carried out on UCu4Pd were inconclusive regarding the presence of disorder [8].

However, XAFS experiments on the same sample revealed the presence of Pd/Cu site

interchange [9]. It was concluded that the amount of disorder observed was sufficient for the

Kondo disorder model to apply.

Although there is no evidence for Kondo disorder in U2Pt2In, a good test for the Kondo

disorder model is obtained by a comparison of the µSR and NMR line widths [10]. As shown in

this work, the small frequency shifts observed in the transverse-field (TF) µSR spectra of

U2Pt2In, require that a full analysis of the TF line widths can only be accomplished with samples

with a well-defined geometry in order to account for demagnetizing effects.
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A further study of the NFL behaviour of U2Pt2In may hopefully be carried out on a "second

generation" of single crystals, with a minimum amount of disorder. Single crystals with a lower

residual resistivity should be prepared. Therefore, one should look into single-crystal growth

methods other than the mineralization technique, by which possibly crystals of higher quality can

be produced.

8.2. Related compounds

The presence of a QCP has also been investigated for the compounds U3Ni3Sn4 and

U(Pt1-xPdx)3.

Specific-heat measurements carried out on the stoichiometric compound U3Ni3Sn4 show

the presence of a NFL regime in the temperature range 0.5-5 K and a crossover to a FL ground

state below 0.4 K. The divergency of the specific heat in the NFL regime is of the type

c/T ~ γ0-αT 1/2, which is consistent with the proximity to an AF QCP in a 3D system [5]. Both

the NFL c/T divergence and the spin-fluctuation term in the FL specific heat, have the same

characteristic temperature T0 of 10 K. The pressure dependence of the temperature below which

the FL regime in the resistivity is attained, is well described in terms of a transport theory for

nearly AF metals [3]. These results indicate that by a small lattice expansion, equivalent to a

negative pressure of about -0.04 GPa, U3Ni3Sn4 may be tuned to the QCP. The isostructural

compound U3Cu3Sn4 is an antiferromagnet with TN = 13 K and its unit-cell volume is about 5%

larger than that of U3Ni3Sn4. Therefore, it would be highly interesting to check the existence of

an AF QCP by studying samples in which small amounts of Ni are replaced by Cu.

µSR experiments on the system U(Pt1-xPdx)3 indicate a new type of QCP in the phase

diagram: at the critical concentration xc = 0.006, unconventional superconductivity is suppressed

and a large-moment antiferromagnetic (LMAF) phase emerges. The fact that the superconducting

wave-function has odd parity suggests that doping with Pd leads to a shift of the spectral weight

from FM to AF fluctuations. The observed competition between superconductivity mediated by

FM fluctuations and static AF order, is in contrast with superconductivity mediated by AF

interactions in materials like CePd2Si2 close to the QCP [11]. The phase diagram of U(Pt1-xPdx)3
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is similar to the phase diagrams observed for high-temperature superconductors with the

peculiarity that the critical points TN→0 and Tc→0 coincide.

Resistivity measurements carried out on U(Pt1-xPdx)3 show values of the exponent α equal

to 1.8 and 1.6 for samples with x = 0.004 and x = 0.007, respectively [12]. These values are

inconclusive with respect to the type of QCP in the system (α = 3/2 and α = 5/3 are predicted for

the AF and FM QCP, respectively). A systematic study of the resistivity exponents in samples

with x around 0.006 is required to clearly determine the type of magnetic fluctuations at the

QCP.

The origin of the NFL behaviour observed in URh1/3Ni2/3Al might be of the single-ion type.

URh1/3Ni2/3Al shows a diverging specific heat of the type c/T ~ -ln(T/T0) below about 6 K. Below

10 K the resistivity increases as ρ ~ 1-aT α with α about 1. The low-temperature resistivity

increase is an indication that the mechanism responsible for the NFL behaviour is of the single-

ion type. In fact, a loss of coherence is predicted to occur at low temperatures within the Kondo

disorder model. This model also predicts a logarithmic divergency of c/T and the linear increase

of the resistivity below TK, as observed for URh1/3Ni2/3Al. A detailed structural analysis on

single-phase samples is required to establish the amount of disorder in this compound.
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Summary

The Fermi liquid (FL) theory of Landau has been very successful in describing the low-

temperature properties of metals. This description is summarized by the well-known expressions

for the specific heat c(T) = γT, the magnetic susceptibility χ(T) = const, and the electrical

resistivity ρ(T) = ρ0 + AT 2. It has been a challenging task to also describe heavy-fermion (HF)

materials as strongly renormalized FL's. However, quite surprisingly, in the past decade, a

number of HF systems has been discovered, which does not obey the standard FL behaviour, at

least not down to the lowest temperatures experimentally accessible. Detailed studies of such

systems have led to the recognition that the FL framework may break down under specific

conditions. This so-called non-Fermi liquid (NFL) state may be considered as a new type of

ground state. In NFL materials, c(T)/T and χ(T) diverge when T→0, while ρ(T) obeys a non-

quadratic temperature dependence.

In this thesis it is shown that U2Pt2In is the first stoichiometric uranium-based compound

which exhibits NFL behaviour at ambient pressure. The specific heat of U2Pt2In shows a

pronounced diverging behaviour of the type c/T ~ -ln(T/T0) over almost two decades of

temperature (0.1 ≤ T < 6 K), providing solid evidence for the classification of this heavy-fermion

compound as a NFL.

At low temperatures, an anomalous behaviour is observed in the magnetic susceptibility of

U2Pt2In: χc goes through a maximum at 7.9 K, which is attributed to the stabilization of short-

range antiferromagnetic (AF) correlations, while χa increases as 1-bT 0.7 for 2 K ≤ T < 10 K. This

is in variance with the standard FL behaviour.

The resistivity of U2Pt2In is highly anisotropic below about 80 K with ρc > ρa. At the

lowest temperatures, the resistivity does not follow the FL quadratic temperature dependence,
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instead ρ ~ T α with α = 1.25 and 0.9 for currents applied along the a- and c-axis, respectively.

Magnetoresistance experiments show a gradual increase of the resistivity exponent α with

increasing magnetic field strength, reaching the FL value α = 2 at 8 T.

The residual resistivities are unusually high (ρ0,a ≈  115 µΩcm and ρ0,c ≈  210 µΩcm),

even though the structure refinements from X-ray and neutron-diffraction experiments indicate a

high sample quality. The large difference between ρ0,a and ρ0,c and the strong field dependence

of ρ0, shows that ρ0 is largely determined by other scattering mechanisms than impurity or defect

scattering.

Resistivity experiments under hydrostatic pressure indicate a recovery of the FL ρ ~ T 2

behaviour at low temperatures. This is consistent with predictions from a transport theory for

heavy-fermion compounds near an AF quantum critical point (QCP). The anisotropy in the

resistivity is strongly enhanced under pressure.

Absence of weak magnetic order, at least down to 0.05 K, is confirmed by means of muon

spin relaxation and rotation (µSR) experiments. Besides a static magnetic component originating

from the indium nuclear moments, the µSR spectra below 10 K reveal the presence of magnetic

fluctuations. No evidence was found for Kondo disorder.

The location of U2Pt2In at the border line between magnetic and non-magnetic compounds

in a Doniach-type of diagram for the U2T2X family and the recovery of the FL state in the

resistivity of U2Pt2In under pressure, yield evidence for U2Pt2In being at or close to a QCP.

Other uranium-based heavy-fermion compounds exhibiting NFL behaviour have been

studied in this work:

− Specific-heat experiments on the compound U3Ni3Sn4 evidence a FL ground state. However,

a NFL regime is observed for 0.5-5 K. Resistivity experiments show that the temperature range

where FL behaviour is observed increases with applying pressure. The results are consistent with

the location of U3Ni3Sn4 close to an antiferromagnetic QCP (at the paramagnetic side of the

phase diagram).

− A new type of QCP is found for the system U(Pt1-xPdx)3. µSR experiments show that the so-

called large-moment antiferromagnetic phase appears at the same Pd concentration where

superconductivity is suppressed, i.e. the QCP of both superconducting and antiferromagnetic
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phases coincide. This result suggests that odd-parity superconductivity is suppressed because of a

shift of the spectral weight from ferromagnetic to antiferromagnetic fluctuations upon Pd doping.

− The temperature variation of the resistivity of the pseudo-ternary compound URh1/3Ni2/3Al is

consistent with NFL behaviour due to a single-ion mechanism.



Samenvatting

Het Fermi-vloeistof (FV) model van Landau is uitzonderlijk succesvol gebleken in het

beschrijven van metalen bij lage temperaturen. Deze beschrijving kan in het kort samengevat

worden middels de overbekende uitdrukkingen voor de soortelijke warmte c(T) = γT, de

magnetische susceptibiliteit χ(T) = const en de elektrische weerstand ρ(T) = ρ0 + AT 2. Niet

alleen normale metalen, maar ook de zogeheten zware-fermion (ZF) systemen kunnen

beschreven worden met behulp van het FV model, waarbij de FV parameters sterk

gerenormaliseerd zijn. Echter, in de afgelopen tien jaar is een aantal sterk gecorreleerde

elektronsystemen ontdekt dat sterke afwijkingen van het standaard FV gedrag vertoont.

Gedetailleerde studies van zulke systemen hebben tot het inzicht geleid dat het FV model onder

bepaalde condities niet toepasbaar is. Deze zogeheten niet-Fermi-vloeistof (NFV) toestand kan

beschouwd worden als een nieuwe grondtoestand. In NFV materialen, divergeren c(T)/T en χ(T)

voor T→0, terwijl ρ(T) een niet-kwadratische afhankelijkheid van de temperatuur vertoont.

In dit proefschrift wordt aangetoond dat de ZF verbinding U2Pt2In de eerste

stochiometrische uranium verbinding is, die onder normale atmosferische druk NVF gedrag

vertoont. De soortelijke warmte van U2Pt2In divergeert volgens c/T ~ -ln(T/T0) over twee decades

in temperatuur (0.1 K ≤ T < 6 K), hetgeen overtuigend bewijs is dat U2Pt2In geclassificeerd dient

te worden als een zware-fermion NFV materiaal.

Ook de magnetische susceptibiliteit vertoont anomaal gedrag bij lage temperatuur: χc

vertoont een minimum bij 7.9 K, hetgeen toegeschreven kan worden aan de stabilisatie van

antiferromagnetische (AF) interacties, terwijl χc toeneemt als 1-bT 0.7 voor 2 K ≤ T < 10 K. Dit

gedrag is in strijd met het normale FV gedrag.
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De elektrische weerstand van U2Pt2In is sterk anisotroop voor temperaturen beneden 80 K,

waarbij ρc > ρa. Bij de laagste temperaturen varieert de elektrische weerstand niet kwadratisch

met de temperatuur zoals voor een FV. In plaats daarvan geldt ρ ~ T α met α = 1.25 en 0.9 voor

een stroom langs de a- en c-as, respectievelijk. Magnetoweerstandsmetingen laten zien dat de

exponent α geleidelijk toeneemt in een uitwendig magneetveld. In 8 T wordt de FV waarde α = 2

bereikt.

De restweerstanden zijn uitzonderlijk hoog (ρ0,a ≈  115 µΩcm en ρ0,c ≈  210 µΩcm),

terwijl Röntgen- en neutronendiffractie experimenten erop duiden dat de kristallen van goede

kwaliteit zijn. Het grote verschil tussen ρ0,a en ρ0,c en de sterke magneetveldafhankelijkheid van

ρ0 laten zien dat ρ0 grotendeels bepaald wordt door andere verstrooiingsmechanismen dan

verstrooiing aan onzuiverheden of defecten.

Weerstandsmetingen onder uitwendige hydrostatische druk laten zien dat onder hoge druk

de FV toestand hersteld wordt, aangezien ρ ~ T 2. Dit is consistent met een transporttheorie voor

zware-fermion systemen die een antiferromagnetisch quantum kritisch punt (QKP) hebben voor

T→0. De anisotropie in de weerstand neemt toe onder druk.

Muon spin-rotatie en relaxatie (µSR) experimenten laten zien dat U2Pt2In geen zwakke

magnetische ordening vertoont, althans niet boven een temperatuur van 0.05 K. Naast een

statische magnetische component, die toegeschreven kan worden aan de depolarisatie t.g.v.

indium nucleaire momenten, bestaat het µSR signaal uit een component die op magnetische

fluctuaties duidt (T < 10 K). Er is geen bewijs gevonden voor zogeheten Kondo wanorde.

De lokatie van U2Pt2In vlakbij de grens voor magnetische ordening in een Doniach-

diagram zoals samengesteld voor de hele reeks van U2T2X verbindingen en het herwinnen van de

FV grondtoestand zoals gemeten d.m.v. elektrische weerstand onder uitwendige druk, vormen

overtuigend bewijs dat U2Pt2In op of vlakbij een magnetisch QKP ligt.

Soortelijke-warmte metingen aan de verbinding U3Ni3Sn4 laten zien dat de grondtoestand

een FV is. Echter, in het temperatuurgebied 0.5-5 K wordt NFV gedrag gevonden.

Weerstandsmetingen onder uitwendige druk laten zien dat het temperatuurgebied waar FV

gedrag gevonden wordt groeit met toenemende druk. De resultaten kunnen geïnterpreteerd

worden als een bewijs dat U3Ni3Sn4 vlakbij een QKP ligt (aan de paramagnetische kant).

Een nieuw type van QKP is gevonden in het systeem U(Pt1-xPdx)3. µSR experimenten laten

zien dat de zogenaamde groot-moment antiferromagnetische fase ontstaat bij dezelfde Pd
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concentratie als die waar supergeleiding wordt onderdrukt, d.w.z. de QKP voor supergeleiding en

antiferromagnetisme vallen samen. Dit resultaat suggereert dat het spectrale gewicht van de

magnetische fluctuaties in UPt3 verschuift van ferro- naar antiferromagnetisch door legeren met

Pd.

De NFV weerstand van de pseudo-ternaire verbinding URh1/3Ni2/3Al zoals gevonden bij

lage temperatuur kan toegeschreven worden aan een single ion NFV mechanisme.
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