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Abstract 

High intensity ultrasound has been applied to the preparation of polyurethanes from a number of 

diisocyanates and diols.  In all cases, the sonochemical reactions proceeded faster in the early stages 

and led to higher molecular weight polymers.  The effect of changing the ultrasound intensity is 

discussed and some speculation as to the mechanism of the reaction enhancement is given. 
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Introduction 

Polyurethanes are amongst the most widely applied polymers in use1.   Variation of the diisocyanates 

and diols used together with the inclusion of various chain extenders allows a huge range of 

properties to be achieved.  One method of preparation is to form a low molecular weight “pre-

polymer” which can then be processed into the final form.  Alternatively, a “one-shot” reaction with all 

the components can be used, often used with a metal containing catalysts such as tin octanoate.   

 The use of high intensity ultrasound has become a useful tool in synthetic chemistry2,3.  

Applying ultrasound – ‘sonication’ or ‘insonation’ - has also been found to affect the course of a series 

of polymerisation reactions4,5. Most sonochemical effects can be attributed to cavitation6, the growth 

and explosive collapse of microscopic bubbles as the sound wave propagates through the fluid.  This 

can result in extreme conditions of temperature (> 2000K) and pressure (>500 bar) on a microsecond 

timescale7.  The motion of fluid around the bubbles is rapid resulting in very efficient mixing or the 

formation of jets of liquid against solid surfaces8.  The rapid motion can result in effective shear 

degradation of polymer chains in the vicinity of cavitation bubbles9 as long as they are over a certain 

molecular weight. 

 In terms of polymer synthesis, the most studied reaction is that of radical polymerisation of 

vinyl monomers.  Ultrasound can obviate the need for thermal initiators and hence can be applied at 

low temperatures.  Some control over the molecular weight and polydispersity can be achieved10,11. 

 Given the large number of industrially important polymers and plastics prepared via step-

growth reactions, there have been few reports of the application of ultrasound in this area.  Watanabe 

et al. applied ultrasound from a cleaning bath to the preparation of aromatic polyformals12.  Long13  

described various reactors which incorporated ultrasonically vibrating walls and could be used for 

control of both when and where polymerization took place for several polyurethane systems and was 

especially useful for producing foams.   

There has also been some interest in ring-opening reactions.  For example, Stoessel14 has 

also reported the use of ultrasound at very high intensities to promote the polymerisation of small 

cyclic polycarbonate oligomers.  The effect of ultrasound on the reaction of caprolactam to form 

Nylon-6 has been studied by Ragaini15 et al. who showed that ultrasound enhanced the ring opening 

allowing a single step polymerization.  High molecular weight materials with narrower distributions 

were formed in shorter reaction times than when using the conventional process and sonication 
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allowed the polymerization to be run at lower temperatures than under conventional conditions. Other 

work in the area of ring opening reactions has involved the polymerization of cyclic siloxanes to 

silicone resins16. 

 This communication presents a preliminary investigation into the effect of ultrasound on the 

formation of polyurethanes.  Polymerisation times and molecular weights have been measured for 

reaction of a range of  diols and diisocyanates.  

 

Experimental 

Polymerisation methods:   The diisocyanate and diol involved were weighed into the reaction vessel 

in a 1 : 1 molar ratio.  In some reactions, 0.1 wt% of dibutyl tin dilaurate was added as a catalyst.  

Reactions were carried out on approximately 25 – 30 cm3  scale by stirring while being heated or by 

being insonated. 

 In preliminary experiments, the onset of polymerisation was detected by noting a significant 

increase in viscosity.  The solidification of the mixture was also assessed visually.  This was 

facilitated in the ultrasound experiments since the change in state of the reaction mixture caused a 

change to the pitch of the ultrasound horn which corresponded with solidification of the reaction. 

 
Sonication techniques:  The main source of ultrasound used was a Fisons ‘Soniprep 150’ sonic horn 

system operating at 23 kHz and used in the configuration shown in Figure 1.  The transducer 

produces mechanical vibrations which are coupled into the solution via a 1 cm diameter titanium 

horn.  Thermostatting was achieved to  0.5 C by circulating water through the jacket although this 

degree of control could not be achieved during some highly exothermic polymerisations.  Sonication 

intensities were measured calorimetrically17.  For comparison purposes, some reactions were carried 

out by immersing a beaker containing the reagents into a Ney ‘Ultrasonik 300’ ultrasonic cleaning 

bath. 

Figure 1 near here 

Materials:  A number of diisocyanates were used.  H12MDI (4,4’-dicyclohexylmethane diisocyanate) 

and m-TMXDI  (1,3-bis(isocyanato –1-methylethyl)benzene)  were obtained from Bayer Ltd;  IPDI 

(isopherone diisocyanate) was from Hüls;  VM10 and MDI  (4,4’-diphenylmethane diisocyanate)  from 

ICI. The structures are shown in Scheme 1.  Appropriate safety precautions were taken to minimise 

exposure to these compounds.  The diol compounds were all obtained from Aldrich in the purest form 
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available.   The water content was measured by the Karl-Fischer method to be less than 0.2 wt%.  

Solvents and other reagents used were of Reagent grade or better and were obtained from Aldrich 

Ltd. 

 
Analytical methods:  Infra-red spectra were recorded as films on NaCl plates using a Perkin-Elmer 

PE983 spectrometer. Molecular weights were estimated using a  Gel Permeation Chromatograph 

operating at 80 C in dimethyl formamide stabilised with LiBr at a flow rate of 1 cm3 min-1.  Calibration 

of the two 30 cm ‘PL Gel’ columns was performed with PEG / PEO standards (Polymer Laboratories 

Ltd).  The values below are quoted as “PEO equivalent” molecular weights.    

 

Results and Discussion 

The initial phase of the work involved a determination of the potential utility of ultrasound by a survey 

of several diisocyanate/diol systems used in commercial polyurethane production.  Polymers 

prepared from H12MDI and 1,4-butane diol are used in surface coatings.  Figure 2 shows the time 

taken for this system to form solid polymer under a variety of conditions.  In each case, a brittle, 

transparent polymer was produced except for the catalysed reaction with the ultrasonic horn where 

some foaming was observed.  There is a clear acceleration of the reaction under ultrasound in both 

catalysed and uncatalysed reactions.  Note that this is not simply a temperature effect; in the 

catalysed reactions, the maximum temperature reached in the cleaning bath was  26 C.  In the 

uncatalysed reaction, the temperature reached  50 C during insonation at the higher intensity but 

the polymerisation time was less than one-third that of a “silent” reaction at 80 C. 

Figure 2 near here. 

VM10, a mixture of MDI and TDI isomers, is used in a range of polyurethane plastics.  Table 

1 shows the polymerisation times for this monomer with butane diol and with two poly(ethylene 

glycols).  Again, it is noticeable that the use of ultrasound greatly speeds up the initial phase of the 

reaction.  In commercial uses, the reaction mixture is typically poured into a mould and simply cured 

in an oven.  To compare with the sonochemical work, reactions were also performed with vigorous 

mechanical stirring.  This also decreases the time taken to start the polymerisation although a hard 

product similar to that from an oven cure was only obtained after long several hours.   This suggests 

that the enhanced mixing of reagents caused by ultrasound is at least a contributory factor in the rate 

acceleration. 
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Table 1 near here. 

Table 2 shows results for the preparation of 1,4 butane diol based polyurethanes with TMXDI 

and with IPDI.  In each case, the reaction is faster under sonochemical conditions.  Although the 

molecular weights produced are relatively low, the polymers produced with the assistance of 

ultrasound generally have somewhat higher values. 

Table 2  near here. 

To obtain further information on the process, the reaction of H12MDI was studied in more 

detail.  This reaction was chosen since it is widely used in commercial polyurethane formulations and 

also because it is complete in a relatively short time. Figure 3 shows the effect of ultrasound on 

polymerisations with seven diols.  All reactions were started at 25 C, the non-ultrasound reactions 

being agitated vigorously with a mechanical stirrer.  The polymerisation time was again taken as that 

required for the system to gel or solidify.  This was usually accompanied by a significant exotherm. 

The reaction time in the absence of ultrasound increased with the viscosity of the diol.  

However, this was not the case when ultrasound was used.  It was also noted in the reactions with the 

PEG’s that, after the system gelled, the temperature rose to around 45 C in the stirred reactions 

while in the sonochemical polymerisations > 100 C was noted.  Again, this indicates that a greater 

degree of reaction is occurring in the latter case.   

Figure 3 near here. 

The effect of increasing the ultrasound intensity is shown in Figure 4.  Larger intensities 

indicate greater ultrasonic energy entering the system and a consequent increase in the number of 

cavitation bubbles and sonochemical effect.  As might be expected, higher intensities lead to shorter 

reaction times. 

Figure 4 near here. 

Figure 5 shows the molecular weights of the polyurethanes formed in these experiments.  As 

seen in the preliminary experiments, in each case the polymers produced ultrasonically have higher 

molecular weights.  Also noteworthy was that they generally had higher polydispersities, ranging from 

2.5 – 4 whereas the conventional experiments had values between 2.0 – 2.9.  Similar results were 

seen with the other diols investigated. 

Figure 5 near here. 
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In contrast to the polymerisation times, variation of the ultrasound intensity had little effect on 

the molecular weight.  Reaction of H12MDI with PEG 600 at five intensities between 20.3 and 40.4 

gave Mn between 6000 and 7000.  This may reflect that the final molecular weight achieved is 

dependent on the polymerisation that occurs during curing after the reaction mixture gels and so is 

less influenced by the ultrasound.  The chain lengths obtained here are too short for the ultrasonic 

degradation process to take place. 

 

Further discussion 

One explanation for the enhanced reactivity would be the heating caused by sonication.  

However, the bulk temperature of the reaction mixture never rose to greater than  50 C and the 

sonochemical rates were faster than the “silent” versions at this temperature.  The collapse of 

cavitation bubbles results in very large temperatures, sufficient to cause pyrollysis of the reacting 

compounds, for a microsecond or so.  It may be that a small amount of material around a collapsing 

bubble becomes hot enough to promote the reaction, overcoming its activation energy1.  A greater 

effect arises from the extremely efficient mixing of the components enhanced by ultrasound. 

 Figure 6 investigates the possibility that the rate enhancements are due simply to the heating 

effect of the ultrasound.  To determine the degree of this heating, an amount of PEG400 equal to the 

total of the reactants involved was sonicated at the highest intensity used.  Also shown are the 

temperature rises during a stirred polymerisation and one conducted under sonication.  The 

temperature rise in the final case is larger than that expected from the stirred reaction plus ultrasonic 

heating.  A simple heating effect does not therefore explain the results.  The higher molecular weights 

achieved under insonation also indicate that a greater extent of reaction has been achieved.   

Figure 6 near here. 

Among the chemical effects due to cavitation is the formation of radicals due to breakdown of 

the vapour entering the cavitation bubbles.  However, this is unlikely to be an effect in these 

reactions.  Another possibility is that the catalyst action is modified in some way.  Ligand exchange 

processes can be promoted under insonation and the formation of compounds with unusual oxidation 

states has been reported18.  However, considerable sonochemical rate enhancements were observed 

in reactions with no catalyst so that this cannot be a complete explanation. 
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 A number of attempts were made to follow the kinetics of the polyurethane formation.  

However, the experimental set-up made it very diffficult to achieve reproducible results.  This was 

due to the difficulty in obtaining consistent samples from the viscous mixture when it starts to react.  

A number of methods including titration of the remaining isocyanate and gas chromatography were 

used.  No convincing data could be obtained from this preliminary work and further work is underway 

using model compounds to overcome these difficulties.  However, to illustrate the effects, Figure 7 

shows infra-red spectroscopic data for the reaction of IPDI with butane diol at (initially) 25 C.  The 

reactions were sonicated or stirred for 30 min after which a small amount of the reacting mixture was 

spread onto a NaCl plate and mounted in the spectrometer. The reaction was followed by monitoring 

the loss of the isocyanate carbonyl peak at 2256 cm-1 compared with the growth of the urethane 

carbonyl at 1695 cm-1. The reaction initiated under ultrasound still proceeds at a faster rate even 

though sonication is not continued.   

Figure 7 near here. 

 
 

Conclusions 

This work has show that the rate of reaction between diols and diisocyanates can be accelerated by 

the use of high intensity ultrasound.  The source of the effect seems to be related to local heating 

around collapsing cavitation bubbles together with the enhanced mass transfer caused by the fluid 

motion.  Larger extents of reaction, evidence by longer chain lengths are found in the sonochemical 

reactions.  The range of systems used – six diols and five isocyanates – suggests that these would be 

general phenomena.  Increasing the ultrasound intensity lowered the reaction times but had no 

significant effect of the molecular weight of the polymers formed.  Straightforward bicomponent 

reaction mixtures have been used here and it may be that sonochemical enhancement would be 

particularly useful in more complex, multicomponent mixtures.  In particular, the ability to enhance 

mass transport and diffusion through the fluids may have applications in the production of foams. 
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Table 1.  Preparation of polyurethanes containing VM10 (uncatalysed) 
 
 
 

Diol Reaction 
Conditions 

Polymerisation 
Time  /  min 

Product 

    
1,4 butane diol Heat, 50 C 60 Brittle material 

1,4 butane diol Heat, 80 C 30 Brittle material 

1,4 butane diol Stir, 50 C 10 Friable foam 

1,4 butane diol U.S., 20.1 W cm-2 1 Friable foam 

    
PEG300 Heat, 50 C 120 Hard white polymer 

PEG300 Heat, 80 C 55 Hard white polymer 

PEG300 Stir, 50 C 10 Very viscous; hardens overnight 

PEG300 U.S., 20.1 W cm-2 1 Very viscous; hardens 5-10 min 

    
PEG600 Heat, 80 C 25 Hard, transparent material 

PEG600 Stir, 50 C 20 Very viscous; hardens overnight 

PEG600 U.S., 20.1 W cm-2 1 Tacky, transparent material.  Hardens 

5-10 min 

 
 
 
 
 
 
 

Table 2.  Preparation of polyurethanes with 1,4 butanediol 
 
 

 Reaction 
Conditions 

Catalyst Polymerisation Time  /  
min 

Mw  

      
TMXDI Heat, 80 C 0.1 % 10 2700 2.6 

TMXDI Stir, 50 C 0.1 % 12 1900 2.9 

TMXDI U.S., 20.1 W cm-2 0.1 % 2.5 3000 2.1 

      
IPDI Heat, 80 C 0 165   

IPDI U.S., 20.1 W cm-2 0 180   

IPDI Heat, 50 C 0.01 110   

IPDI Heat, 80 C 0.01 70 2000 2.1 

IPDI Stir, 25 C 0.01 > 360   

IPDI U.S., 20.1 W cm-2 0.01 35 10400 2.0 

 
 



Polyurethanes with Ultrasound 11

 
CAPTIONS FOR FIGURES 
 
 
Scheme 1. Structures of the diisocyanates used for polyurethane formation. 
 
 
Figure 1.  Schematic diagram of sonication apparatus. 
 
 
Figure 2. Comparison of polymerisation times (H12MDI and 1,4-Butanediol ) under varying reaction 

conditions. 
 
 
Figure 3. Comparison of polymerisation times for H12MDI  with various diols.   

 Key:   EG – ethylene glycol;    Di – diethylene glycol;    Tri - Triethylene glycol;   
  PEG – polyethylene glycol with the indicated average chain length. 
 
 
Figure 4. The effect of ultrasound intensity on polymerisation time for H12MDI polyurethanes. 

 Key: as Figure 3 
 
 
Figure 5. Comparison of molecular weights for H12MDI polymerised with various diols. 

 Key: as Figure 3 
 
 
Figure 6. Comparison of temperature rises during polyurethane formation. 
 
 
Figure 7. Infra-Red spectroscopic monitoring of kinetics of formation of a polyurethane. 
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Scheme 1 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure  5 
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Figure 6 
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Figure 7 
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