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Towards the efficient computation of effective properties of
microstructured materials

Vers le calcul efficace des propriétés effectives de materiaux
microstructurés

C.-F. Kreiner J. Zimmer I.V. Chenchiah
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany

Abstract

An algorithm for partially relaxing multiwell energy densities, such as for marterials undergoing martensitic
phase transitions, is presented here. The detection of the rank-one convex hull, which describes effective properties
of such materials, is carried out for the most prominent nontrivial case, namely the so-called Tk-configurations.
Despite the fact that the computation of relaxed energies (and with it effective properties) is inherently unstable,
we show that the detection of these hulls (T4-configurations) can be carried out exactly and with high efficiency.
This allows in practise for their computation up to arbitrary precision. In particular, our approach for detection of
these hulls is not based on any approximation or grid-like discretization. This makes the approach very different
from previous (unstable and computationally expensive) algorithms for the computation of rank-one convex hulls
or sequential-lamination algorithms for the simulation of martensitic microstructure. It can be used to improve
these algorithms. In cases where there is a strict separation of length scales, these ideas can be integrated at
a sub-grid level to macroscopic finite-element computations. The algorithm presented here enables, for the first
time, large numbers of tests for T4-configurations. Stochastic experiments in several space dimensions are reported
here. To cite this article: C.-F. Kreiner, J. Zimmer, I.V. Chenchiah, C. R. Mecanique 331 (2003).

Résumé

Nous présentons dans cette Note un algorithme de relaxation partielle de densités d’énergie à plusieurs puits,
comme pour la modélisation de matériaux subissant des transitions de phase ”martensitiques”. La détection de
l’enveloppe rang-un convexe, qui décrit les propriétés effectives de tels matériaux, est menée à bien pour le cas non
trivial le plus connu, c’est-à-dire les configurations Tk. Bien que le calcul d’énergies relaxées (et donc de propriétés
effectives) soit naturellement instable, nous montrons que la détection de ces enveloppes (configurations T4) peut
être effectuée de façon exacte très efficacement. En pratique, cela permet leur calcul à une précision arbitraire.
En particulier, notre approche pour la détection de ces enveloppes n’est basée sur aucune approximation ou
discrétisation. Ceci la démarque des autres algorithmes (instables et coûteux) de calcul d’enveloppes rang-un
convexes ou de lamination séquentielle pour la simulation de microstructures martensitiques. Notre méthode peut
être utilisée pour améliorer ces derniers. Dans les cas où il y a une stricte séparation des échelles, ces idées
peuvent être utilisées à un niveau inférieur dans des calculs macroscopiques de type éléments finis. La méthode
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présentée ici permet pour la première fois un grand nombre de tests pour la configuration T4. Nous rendons compte
également d’expériences stochastiques en plusieurs dimensions. Pour citer cet article : C.-F. Kreiner, J. Zimmer,
I.V. Chenchiah, C. R. Mecanique 331 (2003).
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1. Introduction

This paper addresses the efficient algebraic detection of so-called Tk-configurations (see Definition 2.1
below), which are the most prominent examples of non-trivial rank-one convex hulls. Rank-one con-
vex hulls of sets and rank-one convex envelopes of functions are important notions in the calculus of
variations [10]. Further, the rank-one convex envelope of a nonconvex microscopic energy function of a
material serves as a model for its macroscopic energy, which explains the relevance of rank-one convexity
to engineering and the importance of a reliable method for the computation of these hulls and envelopes.

Previous algorithms for the computation of the rank-one convex hull of a set M ⊂ Rm×n have been
based on a discretization of the space and the rank-one convexification of the distance function d(x) :=
miny∈M ‖x − y‖ along finitely many rank-one directions [1,2,3]. The complexity of these algorithms is
high. The results depend very sensitively on the chosen discretization and especially on the choice of
rank-one directions. Moreover, satisfactory results typically require a high degree of precision. It is easy
to see that such a discretization-based algorithm will fail completely if essential rank-one lines are missed.
An example of a numerical instability is given in [9].

In this paper, we study a simpler, but closely related and important question rigorously. Specifically,
we answer a question posed in [7, Section 8] by presenting an efficient algorithm for the detection of
Tk-configurations as an important example of nontrivial rank-one convex hulls. The guiding idea is to
exploit the algebraic structure of rank-one convexity.

2. Tk-configurations and their algorithmic detection

We start with the definition of Tk-configurations.
Definition 2.1 A finite set M = {M (1),M (2), . . . M (k)} ⊂ Rm×n of k ≥ 4 matrices is called a Tk-
configuration if there exist a permutation σ of {1, . . . , k}, rank-one matrices C(1), C(2), . . . , C(k) ∈ Rm×n,
positive scalars κ1, κ2, . . . , κk, and matrices X(1), X(2), . . . , X(k) ∈ Rm×n such that the relations

X(j+1) −X(j) = C(j), M (σ(j)) −X(j+1) = κjC
(j) (1)

hold, where the index j is counted modulo k (see Fig. 1). 2

This differs only slightly from the definition in [7, Definition 7] where M is considered as a tupel rather
than as a set (i.e., σ = id).

A degenerated Tk-configuration arises as limit of Tk-configurations where the inner polygon formed by
the X(j) reduces to a single point. More precisely, there exists an X ∈Mco (the usual convex hull of M)
with rank(X −M (j)) = 1 for all M (j) ∈M.

We state some connections between Tk-configurations and rank-one convex hulls. For a set M⊂ Rm×n,
the rank-one convex hull will be denoted by Mrc (see, e.g., [10] for the precise definition).

It is easy to verify that the rank-one convex hull of a Tk-configuration M (indexed such that σ = id)
contains at least

⋃k
j=1[M

(j), X(j)], where [A,B] is the line segment between A and B. For a degenerated

Email addresses: kreiner@mis.mpg.de (C.-F. Kreiner), zimmer@mis.mpg.de (J. Zimmer), chenchiah@mis.mpg.de (I.V.
Chenchiah).
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Tk-configuration, one has
⋃k

j=1[M
(j), X], see [6, Corollary 4.19]. Note that, unlike in the classical example

given by Tartar [14], M need not lie in a plane, even for k = 4.
The question asked in [7, Section 8] and addressed here can be phrased as follows. Let k ≥ 4 matrices

M (1), . . . ,M (k) ∈ Rm×n without rank-one connections (i.e., rank(M (i) −M (j)) ≥ 2 for i 6= j) be given.
Do they form a Tk-configuration?

We will study only the interesting case k ≥ 4, since T3-configurations lie necessarily in a plane consisting
of rank-one lines. The stochastic experiments in Section 3 will concentrate on T4-configurations. In the
special case of R2×2, the T4-configurations are in some sense the universal example for finite sets with
nontrivial rank-one convex hull. This is due to the following theorem [13, Theorem 2].
Theorem 2.2 (Székelyhidi, ’03) Let M ⊂ R2×2 be a compact set without rank-one connections but
Mrc 6= M. Then M contains a (possibly degenerated) T4-configuration. 2

For k = 4, an attempt was made to solve the system (1) of 4 (m
2 ) (n

2 ) + 8mn quadratic and linear
equations directly (for some permutation σ of {1, 2, 3, 4}). But even Gröbner basis methods implemented
in Macaulay 2 failed to solve the system even for simple test cases.

To exploit the algebraic structure, let us define for a matrix M ∈ Rm×n its rank-one cone R1(M) as

R1(M) := {X ∈ Rm×n
∣∣ rank(X −M) ≤ 1}

=

X
∣∣ det

 Xrs −Mrs Xru −Mru

Xts −Mts Xtu −Mtu

 = 0,
1 ≤ r < t ≤ m

1 ≤ s < u ≤ n

 , (2)

i.e., R1(M) is the set of all matrices that are rank-one connected to M .
In order to describe R1(M) algebraically, the following notation is used. Let X = (Xrs) be an m× n-

matrix of the indeterminates X11, X12, . . . , X1n, X21, . . . , Xmn. The real polynomials in these indetermi-
nates will be denoted by R[X] (considered as a ring, i.e., addition and multiplication are well defined).
Whenever necessary, we will silently identify Rmn and Rm×n. For simplicity, the ideas leading to Algo-
rithm 2.3 will be explained for σ = id.

If the matrices M (1), . . . ,M (k) form a Tk-configuration then the corners of the inner polygon lie neces-
sarily in the intersections of rank-one cones, i.e.,

X(j) ∈ Jj := R1(M (j)) ∩R1(M (j−1)),

where the index j is counted modulo k. It can be shown that if m,n ≥ 3 then Jj is generically empty.
The intersections Jj (j = 1, . . . , k) are the zero set of the 2 × 2-minors of (X(j) −M (j)) and (X(j) −

M (j−1)),

PSfrag replacements
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Figure 1. A T4-configuration and a T5-configuration, both projected to R2.
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det

 X(j)
rs −M (j)

rs X(j)
ru −M (j)

ru

X
(j)
ts −M

(j)
ts X

(j)
tu −M

(j)
tu

 , det

 X(j)
rs −M (j−1)

rs X(j)
ru −M (j−i)

ru

X
(j)
ts −M

(j−1)
ts X

(j)
tu −M

(j−1)
tu

 ∈ R[X(j)],

1 ≤ r < t ≤ m, 1 ≤ s < u ≤ n, j = 1, . . . , k (counted modulo k). (3)

(As a zero set of polynomials, Jj is by definition a variety.) The set of polynomials with the zero set Jj

has the structure of an ideal and will be denoted Ij . It is generated by the minors in (3), see, e.g., [5]. If
Ij = R[X(j)], then the associated variety Jj is empty and there is no candidate point for the corner X(j)

of the inner polygon of a possible Tk-configuration.
If M is a Tk-configuration, then for each j, the matrices M (j), X(j+1) and X(j) lie on a line, in this

particular order. This yields the equations and inequalities

λjM
(j) + (1− λj)X(j) = X(j+1), 0 < λj < 1, for 1 ≤ j ≤ k. (4)

In order to describe this in terms of varieties we introduce the polynomial ring P := R[X(1), . . . , X(k),
λ1, . . . , λk] in kmn + k indeterminates. Then we obtain naturally from (4) the polynomials

λjM
(j)
rs + (1− λj)X(j)

rs −X(j+1)
rs for 1 ≤ j ≤ k, 1 ≤ r ≤ m, 1 ≤ s ≤ n. (5)

These kmn polynomials and the polynomials in (3), the latter taken for all 1 ≤ j ≤ k, generate an ideal
I ⊆ P. For a permutation σ, let Iσ be the ideal generated analogously, with M (j) substituted by M (σ−1(j))

in (3) and (5). The real variety associated to Iσ will be denoted by Vσ ⊂ Rkmn+k.
With the notation introduced above, M = {M (1), . . . ,M (k)} ⊂ Rm×n is a Tk-configuration if and only

if there exists a permutation σ of {1, . . . , k} such that Vσ ⊂ Rkmn+k contains a point (X(1), . . . , X(k),
λ1, . . . , λk) with λj ∈ (0, 1) for 1 ≤ j ≤ k.

The preceding arguments immediately show the correctness of the following algorithm.
Algorithm 2.3

Input: M = {M (1), . . . ,M (k)} ⊂ Rm×n without rank-one connections.
Procedure: For all permutations σ of {1, . . . , k} perform the following test.
1. For j = 1, . . . , k compute a Gröbner basis for the ideal Iσ,j generated by the polynomials from (3),

with M (j) substituted by M (σ−1(j)). If Iσ,j = R[X(j)] for some j then there exists no solution to (1)
for this σ. Else:

2. Compute a Gröbner basis for the ideal generated by the polynomials in (5) with M (j) substituted
by M (σ−1(j)).

3. Compute a Gröbner basis for the ideal Iσ generated by the union of the ideals in Steps 1 and 2. If
Iσ = P then there exists no solution to (1) for this σ. Else:

4. Check if there is a a point (X(1), . . . , X(k), λ1, . . . , λk) ∈ Vσ with λj ∈ (0, 1) for all 1 ≤ j ≤ k. If
yes, this is a Tk-configuration; if not, there exists no solution to (1) for this σ.

Output: If M is a Tk-configuration this is detected in Step 4 for some σ. If M is not a Tk-configuration,
then for every σ, either Step 1, 3 or 4 give a negative answer. 2

To perform the check in Step 4, we use a combination of the BKR algorithm [11] and the eliminant
method [12]. This requires Iσ to be zero-dimensional in P (i.e., the complex variety Vσ ⊂ Ckmn+k has
to consist of single points). This was true in every one of the more than 200 000 examples we checked.
However, a rigorous proof of the zero-dimensionality is lacking.

Similar ideas can be applied for the detection of degenerated Tk-configurations.
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3. Stochastic experiments for T4-configurations

Extensive tests with random integer matrices in R2×2, R4×2 and R3×3 have been carried out for k = 4.
Such computations were not possible with previous methods. Algorithm 2.3 allows for the first time
the investigation of stochastic questions, such as the distribution of T4-configurations in the space of
quadruples of matrices. We report some results.

Algorithm 2.3 has been implemented in the computer algebra package Macaulay 2 [4]. For every exper-
iment, we had Macaulay 2 generate four random matrices M = {M (1),M (2),M (3),M (4)} with integer
entries in the interval [0, R] for R = 20, 30, 50, 150. If the set M was found to have a rank-one con-
nection between two of its elements, the experiment was terminated since such a set M cannot be a
T4-configuration.

Table 1 shows some results. In particular, almost 9%—a remarkably large number—of all random
four-element sets in R2×2 were found to form a T4-configuration. This suggests that the set of all T4-
configurations, considered as a subset of (R2×2)4, has positive measure.

Somewhat surprisingly, quite a few sixfold T4-configurations were found. By this term, we mean sets
M that satisfy (1) for every permutation σ of {1, 2, 3, 4}. As shown by Székelyhidi [13, Theorem 3], a T4-
configuration admits a real solution for (1) either for only one σ (up to a rotation) or for all permutations
σ. Consistent with this, no twofold or threefold T4-configurations were found.

As expected, a larger range of entries in the matrices leads to fewer configurations with rank-one
connections.

In the cases of R3×3 and R4×2, no random set of matrices was found to be a T4-configuration. In R3×3,
no random configuration yielded four nonempty intersections Jj of the respective rank-one cones. It was
already a rare exception (ca. 0.1% of experiments) to find at least one nonempty intersection. Rank-one
cones are five-dimensional objects in a nine-dimensional space; thus this is intuitively not surprising. In
R4×2, however, the Jj are two-dimensional, but the ideal Iσ equaled the entire ring P in every experiment.
The complexity of the algorithm increases by necessity for larger k. However, the case k = 4 we focussed
on is the most interesting and important one for theoretical reasons (see Section 2).

R2×2 R4×2 R3×3

Range R 30 50 150 50 20

Number of experiments 5 000 50 000 50 000 25 000 100 000

with a rank-one connection 748 776 133 0 0

T4-configurations 368 4 351 4 392 0 0

thereof sixfold T4-configurations 2 108 80 0 0

thereof degenerated T4-configurations 0 0 0 0 0

not a T4-configuration 3 884 44 873 45 475 25 000 100 000

Average time per experiment

on a 1GHz Dual Pentium III n/a 8.79 s 9.70 s 3.66 s 0.41 s

Table 1
Overview of some results of stochastic experiments
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