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Abstract

The MAVERIK graphics library (http://aig.cs.man.ac.uk/maverik/) provides a C programmer
with a set  of easily-portable functions and variables that can be used to create a visually
impressive 3D world. It also provides routines that allow the user to navigate through the
world they have created, in real time. This project seeks to take that level of functionality and
add a level of physical believability – the concept  that this  physics system may not  be a
completely accurate model of the physical interactions it attempts to display, but will provide
a reasonable approximation of the environment such that the user could not easily discern
between the events unfolding in the system and the events that would occur in an equivalent
real environment. 

Although visual and aural aspects of VEs have been advancing quickly since their inception,
the concept of modelling physical reality and how the world reacts to interaction has only
recently begun to become computationally realistic. A dynamic interaction graph (DIG) is an
extension of the idea of Bond Graphs, which involves the real-time creation and destruction
of  linked  lists  that  are  used  to  model  a  non-hierarchical  influencial  system of  particles.
MAVERIK is middle-layer software designed to create a 3D graphics toolkit to access the
OpenGL rendering system. A solution to the problem is modelled using MAVERIK, DIGs,
and basic Newtonian mechanical equations. This solution provided the user with an adequate
physical simulation, but the DIG functionality was found to be severely lacking in several key
regards.
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Chapter 1

Introduction

Aim

The aim of this project was to create a single-user, real-time physics engine that can model
real  world  environments  to  a  high  degree  of  believability.  The  key  problem  is  one  of
performance, especially in large-scale VEs. To this end, the project is aiming for believability
rather than absolute realism.

Objectives

 To create a library of functions and variables that provides a MAVERIK VE with
physical behaviour approximately similar to that found in the real world.

 To do so at a computation rate suitable for real-time processing on a mid-range PC
that supports hardware-accelerated OpenGL.

 To  create  a  system whereby objects  can  be  placed  under  and  removed  from the
influence of other objects, quickly. 

 Objects placed in this influence should be informed when any other objects under the
influence are altered.

There are a multitude of tools available currently that model specific elements of physics to a
very high degree of detail, but there are fewer models that provide a physical model that can
be used to simulate a fully immersive and interactive environment. Such a broad overview of
physical reality is needed in order to provide the user with a system that can handle a wide
variety of events with a reasonably high degree of believability.

One such  system is  HAVOK [12],  which  provides  an  SDK designed  to  be  used  in  the
production of computer games. As such, it has been tailored to cater for that market, and its
applications to other markets is limited. HAVOK, although it currently is,  and will  in the
future be, among the cutting edge of physics systems for entertainment purposes, its realism is
lacking when complex situations are encountered (for example, solid objects can clip into
solid walls, creating an unbelievable image, and only a specific set of objects are ‘physics-
enabled’, resulting in a lack of a sense of freedom).

This project aims to create a system that is not just for the games development industry, but
for anyone with interest in designing a virtual environment that allows emergent behaviour
similar to that of the real world. This means that every object in the environment must behave
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as it’s non-virtual counterpart would, irrespective of whether or not it has been flagged as
interactable.

Products such as IOTA [9], a system developed in MAVERIK, are similar in theory to the
aims of this project.  However,  the target of IOTA’s efforts  seems to be a high degree of
accuracy for a low number of situations, which is precisely the opposite scope to the system
being developed in this project.

As  such,  it  is  believed  that  this  project  has  a  high  relevance  to  the  world  of  physical
simulation, because there seem to be few systems readily available that are of the same scope
as it.
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Chapter 2

Literature Review

Although it is an area of development that faces a continual struggle to be taken as seriously
as it deserves, computer gaming is currently pushing the leading edge of real-time physical
solutions to limits previously thought of as impossible. Specifically, the HAVOK SDK [12]
has provided games developers with a fast solution that is believable enough for interactions
that will not be scrutinised too carefully. Whether it is a case of supply meeting demand or
vice  versa  is  unclear,  but  most  of  the  current  influx  of  computer  games  contain  highly-
developed physical environments for the user to interact with.

While it is true that while these engines are believable in their limited context, there are still
some noticable irregularities. For example, if there are only a certain number of objects that
are capable of being moved, then these may be visually indistinguishable from objects that
are stationary. This results in a world where some things behave as expected, and some things
do not,  but  there  is  no way to differentiate between these two sets  without  performing a
suitable  experiment.  It  is  this  inconsistency  that  this  project  is  aiming  to  avoid.  By
implementing collision response methods based on rigid-body dynamics, and data structures
derived from Bond Graphs [3] called Dynamic Interaction Graphs, it is believed that this
project  can implement  a believable 3D environment  in  which  every object  behaves  as  it
would if the world were real.

If such an environment was at their disposal, then it would be an easier task for games/VE
designers to create a consistent environment where everything behaves as it would in the real
world. This will make the VE more convincing to the user, who will not be able to exploit
any physical loopholes or find any immovable objects, all of which detract from the realism.
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GNU MAVERIK

MAVERIK is a well-established toolkit for C programmers who wish to design a 3D virtual
environment. It provides functionality to ensure that a convincing VE can be created with
minimum effort. It provides basic types to facilitate the creation of a 3D space - vectors, lines,
and tranformation matrices are provided as well as common functions for their manipulation.
It also provides a series of types used to represent geometric primitives (spheres, cuboids,
planes), and methods to draw these. For more complex objects, AC3D/VRML scripts can be
parsed in, or a set of primitives can be joined together in a composite type.

One  of  MAVERIK's  notable  features  is  the  ability  to  write  object-independent  callback
functions,  similar  to  C's  templating  capabilities.  A  function  is  written  (for  example,
algorithms to calculate the volume of a primitive) for several different types of object, and the
relevant type-specific functions are bound to the name mav_callbackGetVolumeExec() which
takes the object as one of the arguments and will call the type-dependent function based on its
own findings, meaning one function call needs to be written that can handle all eventualities.

There were several alternatives to using a C/MAVERIK system - OpenGL could have been
used directly from C, which would provide the project with the fastest possible execution
times, at the expense of having to spend a lot of time writing functionality that has already
been  written  in  the  MAVERIK libraries.  The  J3D  API  for  Java  is  a  system similar  to
MAVERIK, providing a 3D VE API for the Java language. However, it was felt that although
Java is a powerful language, its interpretive nature meant that it could not provide the real-
time performance that a compiled C program would provide.

As MAVERIK is a  toolkit for VE design, its functionality is open-ended - the MAVERIK
developers  could not  predict  how their  users'  VEs are  supposed to  behave,  so  almost  all
aspects of that behaviour has to be specifically programmed in. As such, it is a very useful
tool that does not set any precedents as to how it should be used. This means that not only is
it easy to add functionality to the main drawing loop, MAVERIK was specifically designed
with this in mind. Extra function calls are added into the main display loop that update the
parameters of the objects (position, orientation, velocity), and the display loop then draws the
objects in their updated position.  

Rigid Body Dynamics

On  a  small  scale,  interactions  between  rigid  bodies  are  quite  simple  to  calculate.  The
movement  equations  only  contain  a  multiplication  and  an  addition,  meaning  that  even
consumer PCs can easily move and display objects in real-time. However, when multiple
objects  are  colliding with  multiple  objects,  this  can lead not  only to  many thousands  of
calculations  necessary  every  frame,  but  also  the  introduction  of  rotational  dynamics
(introducing  CPU-intensive  matrix  multiplication  and  trigonomic  operations).  On such  a
scale, even modern CPUs are going to be strained to calculate the next configuration of the
system before the next frame needs to be displayed. Optimizations in this area have been
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researched by the gaming/VE community for quite  some time, so there is  a  considerable
amount of background material. 

a) Particle Motion

Traditionally (Euler), particles in motion are given two properties – position and velocity.
Take the equations:

x’ = x + v * t

(1)

This gives the position x’ of a particle that was moving with velocity v at position x, t time
units ago. The new velocity is calculated thus:

v’ = v + a * t

(2)

where a is given like so:

F = ma

(3)

where F is the resultant force on the particle, and m is its mass. With these three equations,
the path of a particle can be mapped accurately as long as the resultant force on it and a start
condition (position velocity pair) are known.

However, this is not a very efficient way to do it. Why calculate the object’s velocity when it
is only the position we need to calculate (assuming there are no collisions for the moment)?

Verlet integration [2] removes the velocity from the equations and uses the particle’s current
and previous positions in order to calculate where it will be at the next time step. This means
that Euler formulae only need to be calculated when the particle comes into existence and
when it changes direction (collision). The Verlet calculations are:

x’ = 2x – x’’ + a * t2

(4)

x’’ = x

(5)

Where x’’ is the previous position of the particle. The update step is trivial, but can be further
optimized by changing pointer references rather than rewriting variables.
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This approach increases efficiency of the particle computation, but it has various downsides
when it is combined with other aspects of the environment. For example, if the time step is
too large, then a fast moving particle could conceivably pass straight through another object if
the positions are not within its bounding box. 

The problems associated with having motion as a discrete variable are known, and methods
for counteracting the effect are presented in the section on collision detection. However, the
choice to use Verlet integration should make the overall system stability higher, because only
the position is known at any one time (when the velocity is needed, the difference between
the last two positions will be integrated over the timestep). With Euler, both the position and
velocity  are  calculated,  which  is  not  only a  waste  of  clock  cycles  but  can  also  lead  to
synchronisation  problems  due  to  floating  point  errors.  With  regards  to  the  system
specification, the equations above will  give a satisfactory illusion of rigid body dynamics,
although it may not be fully accurate.

The removal of velocity and introduction of a time step naturally lends itself to modelling the
progression of an object through a real-time system, as opposed to the standard equations
which  are  more  suited  to  getting  information  about  a  dynamic  system  in  a  single
configuration. Combined with the fact that this integration system has been used to a large
degree of success [2] produces a considerable confidence that this method will be suitable for
implementation in the system without heavy modifcation.

b) Collision Detection

MAVERIK provides its  own default  methods for testing for collisions  between polygons.
Until proved otherwise, it will be assumed that these methods are fast enough for real time
particle interaction. However, alternate methods of modelling particle interaction have been
researched in case they are not.

Assuming that the object has not passed entirely through the target, i.e. that at least some of
their particles co-exist, then the object can simply be transformed until it is ‘resting’ on the
surface [2]. From there, any further calculations can be performed (including what happens to
the target and object – would they bounce away or stick to each other?) using the distance the
object  travelled  inside  the  target  as  a  basis  for  calculating  the  force  that  went  into  the
collision.

The Verlet integration scheme creates some problems when testing for collisions (as it is a
discrete function), but there are a number of ways to get around this:

i) Vector Projection
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Vectors can be projected from points on the object between the two positions. In three
dimensions,  this  can  cause problems (where should rays be  cast  from in  order  to
ensure  all  collisions  are  detected?).  These  choices  can  be  narrowed  down  using
bounding boxes to perform a crude check to see what area the collision occurred in,
and then using more thorough methods over a smaller data set.

ii) Cylinder Projection

Cylinders are a fast  primitive  to calculate,  so a capped cylinder of suitable  radius
could be created between the midpoints of the object at both iterations. If the cylinder
clashes with an object, then there was a collision.

However, both of these ideas can cause problems if the object is arcing (i.e. has a motion in
the x axis and is accelerating negative y due to gravity), as the projections will be straight
lines. A method to circumvent this problem would be to use a projection method to get a time
of alleged collision, and then use Euler integration to get the object’s actual position at that
time.  If  there  is  a  discrepency that  places  the  object  outside  of  the  collision  zone,  then
perform another projection from this point, and so on until the object a) reaches the point it
did through Verlet integration, or b) collides with another object.

An alternate way of solving this problem would be to cast particles themselves instead of rays
and  cylinders  (i.e.  primitives  that  are  themselves  subject  to  the  physical  laws  of  the
environment). If the particles are cast using Euler integration, then the amount of non-Verlet
computation used is minimised, leading to an overall gain in speed, but the accuracy of the
system configuration at the moment of collision is maintained. This will be considered should
there prove to be any problems with the scheme mentioned above.

Of course,  most  of these problems can be removed by having a small  enough time step
interval.

c) Collision Response

Once  the  collisions  have  been  detected  to  within  a  certain  tolerance,  then  the  outgoing
velocities of the bodies involved must be calculated and applied. This process is the collision
response, and together with collision detection it is the most demanding on CPU time. Rigid
body dynamics need a special force in order to account for the high level of velocity change
(both  magnitude  and  direction)  that  takes  place  in  a  small  amount  of  time,  termed  the
impulse. The impulsive force acts in the direction of the normal to the collision, at the point
of collision. As the direction is known, all that is needed is the magnitude (the direction will
be reversed but of equal magnitude for the other object in the collision), and this is calculated
via the following equation (taken from [4]):
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 (6)

A and B are the objects in the collision, e is the coefficient of resitution, vI
AB is the resultant

velocity of the objects, n is a vector of the normal to the collision, M is the mass, I is a 3x3
matrix defining the inertia tensor [7] of the object, and r is a vector from the centre of mass of
the object to the point of impact.  J is a scalar that should be multiplied by  n to give the
impulsive  force  applied  in  the  collision.  This  is  then  divided  by  the  mass  to  give  the
acceleration, and this is differentiated to give the velocity of the object after the collision.
Likewise, this scalar can be applied to a vector perpendicular to both the vector from the
centre of the object to the point of impact, and the velocity of the object at the point of impact
in  order  to  give  a  value  for  the  torque  of  the  object  after  the  collision,  and this  can be
processed in a manner similar to the linear velocity in order to give the outgoing angular
velocity.

d) Frictional Interaction

The introduction of the DIG concept  creates the possibility of interacting forces between
objects that are in constant contact, such as friction. When an object in a DIG is moved,
checks should be performed to see if it should have influence over any other objects in the
DIG (for example, a ball on a table will not influence the table when it is pushed), then the
resultant forces may be calculated. 

In the Coulomb frictional model [6], the frictional force between objects is proportional to the
force exerted by the surface normal on the object resting on it, which is in turn proportional to
the mass of the object. This makes sense – a heavier object is going to need more force to
move it  than a lighter  object  of the same material,  when resting on the same surface.  In
addition, a greater force is required to start an object moving (static friction) than is required
to keep an object moving (dynamic friction). Equations to demonstrate this are given in [1],
and these are simple enough to be included without further optimisations.

e) Deformable Bodies

In essence, these are introduced when the DIG system is used on the particle level. If the
strength  of  the  binding between two  particles  is  not  infinite,  then  there  will  be  a  delay
between one particle moving and the others following. This could be used to model soft-body
systems, such as cloth (outlined in [2]). However, in order to ensure that the system always
behaves as it should, the number of particles needed will  grow exponentially (in order to
model a spongey sphere, for example) unless the system is trivial (Bridge Builder’s struts). 
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As such, these aspects of physics will be implemented for trivial systems only – [2] gives a
brief explanation of models that could be used in the Miscellaneous section, which involves
relaxing the constraints between two particles contained in a DIG so that the particle that is
not directly being influenced will not attempt to snap itself instantly back to the ‘correct’
(rest-length) position, but take a logarithmic approach. This gives the system a sort of ‘lazy’
feel, and the speed at which particles snap back can be altered depending on the material.

f) Destroyable Bodies

Impacts are simple to model: a force proportional to a plank of wood (anchored at both ends)
would cause deformation (bending) in the direction of the force. If the displacement distance
oversteps the material’s elastic limit (a constant member of the datatype, initialised at creation
time), then it will snap. Forces in the middle of the wood will create more displacement that
forces at either end. 

In the context of being able to weaken previously solid structures (sawing partially through a
table leg, for example), this could be implemented by reducing the structure’s elastic limit
variable  at  the  point  of  impact  by  an  amount  proportional  to  how  much  it  has  been
compromised. 

These systems would both be useful for creating emergent behaviour (if every object in an
environment is breakable, which is mostly accurate in our own environment, then all sorts of
solutions to problems can manifest themselves), and so it should be implemented. However,
this is one of the least important aspects to physical realism (in fact, most games have no
concept  of anything being destroyable other than enemies),  especially when the overhead
involved is taken into account.

Dynamic Interaction Graphs

Physical modelling is a computationally demanding application,  and as such, unnecessary
instructions are to be avoided wherever possible. If an object near the bottom of a stack of
objects is moved, then all other objects in the stack could be affected. If the total number of
objects in the stack is a small portion of those in the total VE, then it is inadvisable to poll
every object’s  position  to  see if  it  is  located in the stack.  To this  end,  it  is  much more
computationally sound to keep a record of which objects are in the stack and traverse this list
(adding or removing objects as necessary) instead. The larger memory footprint left by such a
structure would be insignificant when compared to the gain in the scalability of the program.

The DIG approach can also be adapted to a smaller scale by using it as the basis for creating a
multi-particle object. Using Bridge Builder as an example, consider each of the struts as a
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DIG containing two objects, being the particles at either end. In this case, the link between
them is  both visible  and has  physical  properties.  However,  on the  basic  assumption  that
objects cannot be altered from their original configuration, then this graph would remain the
same throughout the simulation process, giving rise to the definition of a Static Interaction
Graph.

There are issues with this approach – objects that are not in contact with each other but are in
contact with a floor should not be part of the same DIG (assuming that the floor is fixed and
not subject to the laws of mechanics other than in the way it influences objects that contact
it). This is done for many reasons –

 The floor cannot move, and so all objects in contact with it will not need to be polled
at the same time.

 Changes in objects on the floor should not affect objects that are on the floor but not
contacting the changed object.

 If the system has gravity, then after a finite time all objects will be linked to the floor,
and so the use of a DIG would be equivalent to polling every object in the system.

The main application of a DIG is one of time-saving – if a table with objects on it moves,
then rather than having to poll objects in the system in order to ascertain which are in contact
with the table and have to be altered, the relevant force can simply be applied to all objects in
the DIG of the table, and the end result will be achieved in fewer CPU cycles.

Contemporary Engines

The  concept  of  modelling  physical  reality  has  become  a  very  important  aspect  of
gaming/virtual  environment  technology.  The  advances  made  by  the  gaming  industry  in
creating believable visual and aural environments have been sizeable when compared to the
relatively small steps taken in the creation of physical environments. This could either be due
to an increase in the sophistication of the average consumer, or the result  of the industry
taking advantage of the continual increase in the average processing ability of a mainstream
PC. However, few engines have achieved an environment that is completely believable either
in its consitency or its non-determinism - scripted events are usually used as a replacement for
behaviour  modelling,  leading  to  endless  repetition  that  removes  any  illusion  that  the
environment is analagous to our own.

The HAVOK SDK [12]  has  recently received press  coverage for  its  use in  a  significant
percentage of games engines that require a realistic physics environment. So much so, in fact,
that  the  name  HAVOK  has  become  almost  synonymous  amongst  gaming  circles  with
believable physics engines (in forum request lists for game sequels, members are requesting
the use of HAVOK in future editions of a game). Immersive physics environments are now
important to the success of a game to the extent that the inclusion of one can be an incentive
to purchase it. 
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HAVOK is mainly used in the modelling of physics in first-person perspective games, and the
actions that typically occur in these games only provide a limited cross-section of rigid body
dyamics. There are other aspects of physics that are modelled in isolation by games using
proprietry engines, for example Bridge Builder [11] handles stress and strain of struts used in
the creation of suspension bridges as crossed by a heavily-laden train; and Truck Dismount
[10]  provides  a  highly-customizable  engine  that  is  only  possible  through  the  accurate
modelling of the physics involved – any scripting would severely limit the ability of the user
to affect the process.

It is not possible to test the HAVOK SDK itself, because the source code is not available to
non-developers. However, it is possible to perform black-box tests on the games that have
incorporated the HAVOK physics system in order to ascertain an idea of what sort of physical
modelling it provides. The two games specifically mentioned above can be examined in a
similar manner - no source code is available, so any testing will be purely black-box. 

a) HAVOK   [12]

Games that use the HAVOK SDK have a reasonably consistent physical system in
operation.  However,  as  the  games  themselves  vary,  the  information  that  can  be
gathered is  not  consistent.  There are constants, however – even though a physical
system is  in  operation,  the developers need to set  specific  objects  to  be ‘physics-
enabled’, otherwise user interaction will yield no results. 

Deus Ex 2 [13] is a useful example of what can be achieved in the HAVOK engine
because it  includes the ability to  pick up and manipulate  objects.  Complex  object
placements are valid  – early on in the game, the player encounters a  storage unit
containing a stack of cylinders on their sides, held in place with a single plank. If the
plank is moved, the barrels roll out in a convincing (non-scripted) fashion. Throw an
object at the top of a fence so it doesn’t quite clear it, and it will spin around while
still  keeping  most  of  its  momentum.  This  demonstrates  a  huge  step  towards  the
presence of an immersive environment for games.

However, limitations are present - objects the player is carrying will not occupy any
physical space (or affect mobility) until it is dropped. Objects that are picked up are
not removed from the external environment until all the objects above it have fallen to
rest, breaking the illusion of their solidity. 

Half Life 2 [14] uses a heavily-modified version of the HAVOK SDK, codenamed
Source by the programmers responsible. To demonstrate how detailed the modified
HAVOK engine is, [15] mentions a demo room created by the programmers where a
huge-scale, accurately modelled engine was created. A large wrench was supported
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over the piston chambers such that if the supports were shot away, it would fall and
cause the engine to grind to a halt. This was not scripted in any way, it  is just an
example of emergent behaviour possible because of the level of effort that went into
the engine design.

An interesting aspect of the Half Life 2 level creation process is that textures are no
longer just added to an object to give it visual character; each texture has a range of
physical properties assigned to it, so a wood texture will make the object behave and
sound like wood. This simple idea has repercussions in the area of combining the
visual, aural and physical aspects of an in-game object, making it much easier for a
designer  to  create  a  believable  environment.  If  this  could  be  applied  not  only to
textures but to physical objects, then a library of standard templates could be created
and  called  upon  when  needed.  This  would  make  the  creation  of  consistent
environments much simpler for developers, and the results more immersive for users.

b)      Bridge Builder  

This simple 2D game involves the user attempting to create a bridge over a ravine.
Two objectives are included in that synopsis – the bridge must be under budget (each
strut costs a fixed amount), and it must survive the passing of a heavy train load. This
approach simulates two particles for each strut and stores a rest length for them. When
the  train  passes  over,  a  force  is  applied  to  one  of  the  particles,  and  the  struct
continuously uses its  internal force to try to regain its  rest  length. This  process is
iterated through the bridge model,  such that  the train presses on a particle,  which
presses on its strut, which causes the other particle to exert a slightly lesser force onto
the struts it is in contact with, and so on through the structure. The struts have a hard-
coded  strength  constant  which  means  it  will  snap  if  the  force  exceeds  a  certain
amount.

This approach can be adapted when considering multi-particle objects that are moved
by the environment – the force only needs to be exerted on one particle, and it will
direct the force through the rest of the system according to its properties (elasticity,
strength). This has the added advantage of giving a simple method of implementing
rotation (two opposite forces acting at opposite sides of an object).
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Bridge Builder.  Green-red displays
a  range  of  stresses,  the  black
blocks are the train carriages.

c)      Truck Dismount  

Another  simplistic  game created  around a  convincing physics engine,  the  premise
being to  cause  the  most  damage possible  to  a  rag-doll  humanoid  by placing him
between  a  wall  and  a  high-speed  truck.  There  are  ramps  that  can  be  moved  or
removed,  demonstrating  a  good  application  of  constraint-bound  and  impulsive
physical methods. The physics are very believable, and the game copes well with real
time rotations, inelastic collisions and a complex particle system (the character slumps
in a convincing humanoid way).

Control panel for Truck Dismount

L-R, Top to bottom: Z position of character, Z
positions of ramps, position of character (1 –
6), Windscreen toggle, Acceleration of truck,

X position of ramps, ramp toggles.

One of the most impressive things about Truck Dismount is the wealth of options
available to the user in order to configure their dismount.  This shows what can be
created by designing a game from the engine-upwards – by changing a few values

18



slightly, the results can change immensely. The amount of customisation means that
no two runs of the truck are the same. 

This is clearly a sign of a well-crafted, robust engine, as it shows that every feature is
designed with flexibility in mind – there are no hacks in order to fix a single solution,
and no scripting, otherwise there would be no possibility for other solutions. 

Summary

In order to create an immersive environment, the following possibilities should be accounted
for:

 Static and dynamic particles (linear, exponential and rotational dynamics)
 Friction between objects (static, dynamic and rolling friction),
 Imposed hierarchies of objects under each other’s influence,
 Stress and strain of multi-particle systems,
 Particle/object collisions,
 Destroyable objects

As has been outlined above, there are widely-known methods for the application of these
aspects of physical environments. Respectively, these are:

 Verlet integration,
 Coulomb friction model,
 Bond graphs/DIGs,
 Infinite-stiffness springs,
 Bounding-boxes and ray intersection,
 Displacement and elastic limits

The Coulomb friction model should be simple enough to implement that it does not require
further optimizations in order for real-time operation. As opposed to particle motion which is
used any time any particle is moving, this system only comes into effect when two objects are
touching and there is a non-zero resultant force. Not only does this take up a small portion of
the total simulation time, but the necessary computations are trivial when compared to others
that are performed on a much more regular basis.

The DIG approach to modelling objects in contact has been performed to a large degree of
success in [5]. Although the subject area there is small, all that needs to be done behind the
scenes  when  two objects  come  into  contact  is  two pointer  updates.  However,  there  is  a
reasonably sizeable overhead that needs to perform checking on the messages passed in order
to ensure that the same cog is not receiving a message it has already processed. If there is an
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implementation that could perform the same task without needing the checking overhead,
then it would be a preferable method for this project.

Infinite-stiffness springs will be used to model the links between particles in a rigid body.
Using this system, a force can be applied to one of the particles, and the rest will alter their
position  in  order  to  keep the  body’s shape.  The  infinite-stiffness  means  that  this  change
happens almost instantaneously, with little or no visible deformation. Another advantage of
this model is that only one force needs to be applied on one particle, which should reduce the
computation time.

Particle collision is one of the most intensive and regularly repeated methods necessary. The
number of times this operation needs to be performed can be minimized by using well-shaped
bounding boxes in order to only perform more computationally intensive checks when the
probability of a collision is very high. If the bounding box check reveals a collision, then the
cylinder/ray casting method or  the  Euler  particle  method will  be used,  depending on the
movement  characteristics  of  the  particle  (linear  velocity  –  ray/cylinder  intersection;
accelerating – Euler particle).

Displacement of a multi-particle system should give this physics engine a degree of realism
not seen in widely available engines. It will allow for destroyable supports (within reason),
and isn’t very processor intensive – however, it does lead to particle motion and collision, and
the hierarchies of objects will need to be changed. Partial weakening of materials can also be
modelled  with  minimal  computation  time  given  the  right  data  structure  (the  information
stored  will  need  to  have  a  factor  of  weakening  and  a  position,  as  well  as  the  original
material’s strength).

Using the numerous shortcuts detailed in [1] and [2], it should be possible to model most of
these aspects in the MAVERIK graphics library on a reasonably modern PC in real time.
However, the graphics quality will be questionable because time will not be spent on it. Also,
there will be no audio to speak of, so the engine will be allowed more CPU time than it would
be in a standard gaming/VE operating environment.
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Chapter 3

Requirements

A software development project is most likely to succeed with a clear and well-defined set of
requirements.  However,  a  software  development  project  usually has  a  specific  user  base
towards which it is tailored, and from which requirements can be gathered. This project is
being created mainly for research purposes, as such the requirements are academically driven
– this project is a test to see if the theory behind it is feasible on today’s hardware.

Requirements Analysis

The  requirements-gathering  process  was  conducted  mainly  through  a  scenario  based
approach, as documented in [16, section 6.2.2]. This approach was used because knowledge
of how real-world objects behaved in a certain situation directly led to information on how
objects should behave in the simulation system. Requirements based on the DIG generation
were implemented after examining [5] and [17].

The project synopsis provided in Appendix A laid out guidelines for the project, and this
provided us with an overall scenario to be created, and some requirements were harnessed
from this.

Requirements Specification

The following chapter is based on the IEEE specification for writing an SRS [18]. As well as
defining the operating environment and target userbase for the system, this section orders the
main functional requirements into a two-tier system of primary requirements (that the system
must meet or be considered a failure) and secondary requirements (which will increase the
system’s success but are not necessarily going to be implemented, or their implementation
will prohibit the success according to the primary requirements).

Functionality

This project's main objective is to create an extension to the MAVERIK library that adds a
level of physical behaviour that would otherwise be absent.  This objective must  take the
following into account:
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 Real-time execution on a readily available PC
 Methods providing support for collision detection and response
 Dynamic creation and destruction of object groups
 Emergent behaviour that is not specifically programmed in

The program must be created with the knowledge that believability combined with real-time
operation is more favourable than absolute accuracy combined with slower operation. 

External Interfaces

Output

The software interfaces with the system’s hardware through the MAVERIK library, which
interfaces with the GL implementation on the machine. This provides a degree of portability
that  means  the  system  will  function  on  any  machine  with  a  functional  MAVERIK
distribution.

Input

It would be desirable for the program to be able to apply its physics layer to a variety of 3D
landscapes  that  are  provided  as  input,  but  this  is  not  a  requirement  at  this  stage  of  the
development cycle. The most important thing at this time is the creation of a framework that
can  handle  physical  reality for  a  pre-programmed set  of  objects;  this  framework can  be
extracted and made standalone at a later date. As such, the user has a very limited role to play
in the input to the program, and output is provided through MAVERIK's standard graphical
output methods.

There are no input requirements other than that there must be sufficient data present in the
simulation to confirm the fulfillment of the requirements. This will be achieved by providing
a series of demonstration programs that allow a non-technical user to examine the capabilities
of the system.

Target User

As this project is primarily for research purposes, the mass-market potential is quite limited.
As  such,  the  only documentation  provided  will  be  this  document,  and  the  target  user  is
assumed to be the marker of the project. The user interface is a very low priority, although
there should be some degree of user control in a test application (dynamic object creation,
environment navigation, etc.).
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Target Environment

The primary speed aim of this project is to achieve an acceptable frame rate on a mainstream
desktop PC, equivalent to those found in Bath University’s library. The PC must be equipped
with a functional MAVERIK distribution (the project was compiled against version 6.2), and
a method to compile the source code. A statically-linked version for Windows environments
will be provided for the ease of the marker.

Features

The software has two primary requirements, without which the system should be considered
incomplete with respect to this document. If the system can provide evidence on a collision
detection/response system, together with a method for imposing peerless hierarchies (DIGs)
on objects, then these requirements are fulfilled. 

There  are  a  number  of  secondary  requirements  that,  while  they  are  not  necessary  for
completeness,  their  inclusion  would  mean  that  the  system  can  provide  a  coherant  and
believable model for physical reality to a very small degree of error. These include frictional
modelling (as opposed to a scalar division of velocity, which would be an inaccurate method,
but  provide similar  results  to  a  user),  deformable/destroyable bodies,  and the creation of
multiple-particle systems acting as one coherant body.

NB – the multiple-particle systems are not analagous to a set of objects linked together in a
Dynamic Interaction Graph; the links between particles should remain unless the body is
destroyed, hence Static Interaction Graph.

Primary Requirements

Collision Detection/Response

The system must include the functionality to detect whether or not a collision has occured
between two physical objects using logical quantifiers based on the distance and size of those
objects.  The area of polling for the collision detection should be limited  to those objects
whose bounding volumes are currently overlapping, which should be calculated either using
MAVERIK's built in bounding box methods or otherwise. 

MAVERIK’s bounding volume creation methods are axis-oriented, meaning that if an object
is not in a standard orientation, the volume returned will be larger than the volume the object
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actually  occupies,  even  in  the  case  of  rectangular  parallelepipeds.  The  alternative  is  to
generate  object-oriented  bounding  volumes,  but  this  will  limit  the  speed  at  which
intersections  can  be  calculated  due  to  the  rotation  operations  necessry  in
creating/manipulating the volume.

Although there is no mention of collision detection/response in the project specification, it is
only through the creation of these aspects of an environment that emergent behaviour can be
nurtured, and that was a specific requirement.

DIG manipulation

The system must include the functionality to create and destroy links between objects when it
is deemed that they enter or leave the influence of each other. As opposed to [5], where cogs
were placed in a limited grid layout, and items in physical contact were known to be extering
influence over each other, the application of the DIG idea to a full 3D environment with six
degrees of freedom is considerably more complex. Physical proximity should certainly be
taken into consideration when calculating DIGs, but it is by no means the only factor. The
resultant velocity between two objects must also be used, and the relative positions – for
example, a ball next to the leg of a table at ground level should be treated differently to a ball
lying on the table-top (of course, no objects in the environment will be designated as a table-
type, this is just a figurative example).

With an assumption that the gravitational force is acting negatively in the Y axis (that is, a
constant acceleration [0, -9.81, 0] is being applied to all objects), then the vertical positioning
of objects will be a factor in the determination of DIG layouts. However, it is important to
define the phrase ‘DIG layout’ – the DIG should be a peerless system, as there will be no
information stored such as “A is on top of B” if A and B are in the same DIG, just by looking
at the DIG. All that will be known is that A and B are under each other’s influence. 

An important observation is that, in impulse-based physics systems, there is a tendency for
objects not to rest on a surface when it looks like they should, but to bounce on the surface
with ever-decreasing strength. As such, it is necessary to implement contraints that force an
object  to  have  zero  velocity  perpendicular  to  the  surface  when  the  impulsive  force  is
sufficiently small as to be negligible. When this constraint has been imposed, however, it
effectively removes the object from the list of objects that have physical characteristics, as
collisions are no longer being resolved. As such, the object must be specifically notified when
its position needs to be updated. At which point, the object will no longer be at rest relative to
the surface normal, and so it rejoins the set of objects that are behaving normally. The point
of the DIG system will be that objects will rejoin the set of physical objects when any objects
that it is touching are moved. If, after this event, the object again has a negligble impulsive
force, then the cycle can be repeated. However, it is of crucial importance that objects are
seamlessly tranformed between being constraint-based (at rest relative to a surface’s normal)
and impulse based (in motion).
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Secondary Requirements

Friction

The  Coulomb  friction  model  provides  three  constants  for  any  surface,  which  must  be
determined  through  experimental  evidence,  they cannot  be  calculated  [6].  The  constants
(static, dynamic and rolling constants) are multiplied by the normal force acting on the object
from the surface, and this gives the magnitude of the force that opposes motion, which acts
against the direction of motion (or the force that is attempting motion if the object is still).
Static friction is applied when the object is stationary relative to the surface, dynamic friction
is applied when the object is sliding relative to the surface (and is lower than static friction),
and rolling friction is applied when the object is rolling over the surface. The ability to apply
these forces accurately implies that  the overall  velocity of an object  is  calculated via the
summation of the forces acting upon it, which is not necessarily the case.

This is not a primary requirement because it is possible to simulate the effects of friction. By
continually degrading an object’s velocity by a constant scalar when it  is contact with an
object, a decrease in speed is produced which is equivalent to the kinetic energy being lost to
heat and sound that friction caters for. This enables the simulation to be believable without
the overheads produced by the extra frictional calculations.

Destroyable Bodies

An aspect of realism often overlooked by games/VE engines is  that  objects  have a finite
capability to resist forces. However, it is with very good reason that this functionality is not
present/very limited in current engines – calculating the change that occurs in an object when
sections of it are removed, in real-time, is a very demanding task that may even be impossible
without taking large liberties in either the calculation of how to divide the object, or where
the object parts should go after the division.

As is  mentioned above,  this  requirement  is  most  likely going to  be  impossible  to  fulfill
without sacrificing believability by implementing scripting. As such, this is not a primary
requirement, and is not expected to be implemented to any degree.

Deformable Bodies

Related to the Destroyable Bodies section, the addition of an ability of objects to be deformed
from their  rest  state  (remeniscent  of  the  struts  in  Bridge  Builder  [11])  would  add to the
realism of a simulation – add a large amount of weight to a horizontal plank supported at
either end, and it should sag in the middle. However, it would be conceptually impossible to
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implement  this without  some functionality provided for the destruction of bodies – if the
force making a body sag continually increases, then the displacement of the object is going to
increase past the point of plausibility – as the destruction capability will  probably not be
implemented, this could have the effect of functionality for extra realism actually making the
simulation seem less realistic. For this reason, this is not a primary requirement of the project.

Static Interaction Graphs/Multiple-Particle Systems

As opposed to Dynamic Interaction Graphs whose layout will change during the course of the
simulation as objects are disturbed and conjoined, Static Interaction Graphs map the links
between the parts of a multi-particle/multi-object system that should not change during the
normal operation of the simulation (unless the body is deformed/destroyed). The SIG will
need to hold information relating to the strength of the bonds between the particles and a rest
length – the rest length is the distance between the particles when no forces are acting, and
when the distance between the objects is changed, a correcting force will be applied that is
proportional to the bond strength.

This is  not a primary requirement because the addition to the system of the capability to
produce multiple-particle bodies will not have an impact on the system’s ability to fulfill the
project specification.
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Chapter 4

Design

MAVERIK imposes a small number of restrictions on to the programs that implement it – in
order to register a new class with MAVERIK, as this project does, the callback functions
must be written and registered before the library is initialised; also, there must be, at the end
of  the  main() function,  an  infinite  loop  in  which  the  methods  for  drawing frames  are
included.  The  use  of  an  infinite  loop  causes  some  restrictions  regarding  which  design
methodologies could be implemented. 

Unit Decomposition

The design of a system can be easily partitioned into a set of smaller systems with compatible
interfaces [16, section 10.3]. To this end, the requirements were analysed and the following
set of components were identified:

 Collision detector
o This unit must poll every object in the environment in order to check if its

physical constraints are being infringed upon by another object. 
 Collision resolver

o The resolver must take information from the detector concerning what objects
are  involved  with  a  collision,  and  then  attempt  to  reach  a  satisfactory
conclusion as to what positions and velocities (linear and angular) the objects
have. 

 DIG alteration
o The unit with the responsibility for creating and destroying links in the graphs

must  take  information  from  the  collision  resolver  and  determine  which
object’s links are forged, which are broken, and which are unchanged in the
frame. 

 Graphical output
o The graphical output methods will be handled by MAVERIK’s interface to the

operating system’s underlying GL implementation. This reduces the complex
prodedure of drawing a set of 3D objects to a minimal group of function calls,
allowing  resources  to  be  allocated  to  the  units  applicable  to  the  project
specification.

Given the information above, it is possible to formulate a diagram indicating the program
flow.
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Figure 1: Program Flow

Physical Data Structure

The physical information that must be held concerning an object can be divided into four
parts:  Data  that  MAVERIK itself  holds  on  objects;  constants;  state  data;  and  debugging
information (also useful to control program flow).

Object Data

The physical  wrapper  is  going  to  have  to  hold  data  on  the  type of  object  it  is  holding,
although it need not be explicitly defined. A MAV_object datatype holds pointers to two
variables, one called the_class, which points to a constant datatype indicative of which
type the objects is (e.g., in a sphere object it  would point to  mav_class_sphere) and
another called the_data, which is a pointer to a specific type of structure (e.g., for a sphere
object it would point to an instance of MAV_sphere). The type-specific structures contain
information regarding the size of the object which varies from type to type (float radius
for spheres,  MAV_vector size for boxes), but there are a number of constant members
such as  MAV_matrix matrix, a 4x4 homogeneous transformation matrix that describes
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the  object’s  current  scale  factor,  translation  from local  to  world  co-ordinates  and  a  3x3
orientation matrix. It is this matrix that the draw callbacks examine when they attempt to
draw an object, so this matrix will need to be updated with the state data from the physical
wrapper.

Constants

float mass
Needed to calculate the momentum when entering a collision,  and when resolving
forces on an object.

Float MuS, MuD, MuR or float Restitution
Frictional co-efficients for static, dynamic and rolling friction if the Coloumb fictional
model is to be implemented; otherwise a single coefficient of restitution between zero
(all  energy is  lost  on collision) and one  (no energy is  lost) can be applied to the
velocity on every collision in order to have total system energy tend to zero.

MAV_vector CentreOfMass
The position (in local co-ordinates) of the centre of mass. For all MAVERIK-defined
primitives, this is the vector [0,0,0].

State Data

MAV_vector prevPos, currPos, nextPos,
 prevRot, currRot, nextRot

Three vectors for position and rotation allow Verlet  integration to be used. When
velocity  is  needed,  then  the  difference  between  the  current  position  and  the  last
position can be taken. When the module to update the positions is called, is can copy
the current  position to  the previous  position,  the next  to  the  current  and then the
current  position  into  the  tranformation  matrix’s  translation  components  (for  linear
change), or create an updated rotation matrix (for angular change).

MAV_vector ResultantForce, Torque
These vectors hold the forces that are acting on the centre of mass in both linear and
angular directions. These vectors do not have to be constantly maintained, but only
altered when an object is in a collision.

MAV_vector Velocity, Omega
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The linear and angular velocity of the object. Differentiate these with respect to the
timestep in order to find out the distance the object travels in a frame update.

Debugging Information

It is unknown at this stage what sort  of extra information will be needed by the physical
wrapper in order for it to function correctly. However, it can be theorised that some sort of
object identification number will be held in order to identify what objects are where in the
simulation.  If messages  are used to communicate collisions,  then information  on the last
message received (identification number, time, where it was sent from) would be helpful in
ensuring the same collision was not processed more than once.

Class Registration

The first stage to the system is to register the class that will be used to hold the physical data
of the MAVERIK objects. This includes the definition of the type, the registration of this type
with the MAVERIK library, and the assignment of several callback functions that MAVERIK
will use to perform display tasks on the objects. These callback functions include descriptions
of how MAVERIK should draw the objects, how their bounding boxes should be calculated,
and so on.

The simplest way to implement these would be to simply execute the callback function for
the object that the type holds. For an object holding physical characteristics of a sphere, for
example, then the draw method for a sphere can be called when it needs to be drawn, with no
adverse side effects. This approach is also scalable – a composite object can simply iterate
over the objects it holds, calling each of their draw callbacks in turn (however, some form of
Z-buffering would be necessary in order to make sure that the objects further away from the
camera do not appear in front of those that are closer).

Environment Setup

In order for physical reality to be tested, there must be some form of environment available to
the  program.  The  simplest  form  of  which  that  provides  very  little  room  for  erroneous
behaviour would be a rectangular area with six walls in order to constrain movement on all
sides. The removal of any one of these walls would allow for an object to ‘escape’, probably
leading to floating point errors and other unwanted behaviour as it falls towards an infinity
point.

Another  way to  ease  the  testing  and  debugging  of  the  physical  algorithms  would  be  to
constrain all objects created to a 2D plane. If, for example, the Z co-ordinate of each object
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was equal, then the motion would be easier to visually monitor. If the algoithms are created
without this constraint in mind, then the scalability will not be affected as the constraint is
relaxed.

Main Loop

The  main  stage  of  the  system’s  execution  involves  repeatedly  calling  a  small  group  of
methods with the same data (the set of physical wrappers, and information on the DIGs). As
neither encapsulation nor security are requirements (due to the non-networked, single-user
operation), the variables can be global scope. This will remove any concerns that functions
will be receiving different sets of data. Also, if the data is stored globally then there is no
need to pass them as arguments, or for the fucntions to return values. This will manifest itself
as a small speed-up in the function call execution time.

Collision Detection

A large factor in the overhead of a physical system is that every frame, every object must be
checked against  every other  object  for  physical interference.  This  means  that,  if  n  is  the
number of objects in the system, there is an O(n2) complexity operation being performed
every frame, even before any calculations relating to impulse application are performed. 

This unit must contain the functionality to pass on information concerning which objects are
involved with a collision this frame. As was used in [5], a message queue system has several
advantages over other methods, such as flags built in to the physical wrapper. Primarily, flags
will have to be initialised and re-set after they have been read, which could lead to strange
behaviour if  the programmer is  lax in these issues.  Also, the infrastructure for a suitable
message processing system and a class defining the object specification by the author of [5],
which could then be integrated into the simulation system with a minimal expenditure of
effort.  Additional functionality could be added to the message objects (such as a point of
impact  vector),  and  it  helps  to  define  the  boundary between  the  collision  detection  and
resolution units: The collision detector has control up to the point of sending the message,
then the message processor delegates to the collision resolver if there are messages in the
queue.

This unit  may also  have to  apply boundary constraints  to  an object  (that  is,  check each
object’s bounding box to see if any part of it lies outside the global environment constraints
defined statically), and update the positions accordingly. This process is relatively simple
(translate the object parallel to the surface normal until they are no longer interfering), and as
such may not require the dispatch of a message indicative of a collision event.
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Collision Resolution

When the detection phase is completed, the message queue must be parsed in order to find
out if there are any collisions. Information in the message should include which objects are
involved with the collision, and the point of impact. Using this information and information
that is globally available, it should be possible to calculate the outgoing velocity vectors of
the objects involved.

In order to calculate this, it must take information from the objects concerning their velocity
as they enter the collision, and their relative positions. Given that the message object contains
references to the objects involved in the collision, this should be easy to obtain. The impulse
force can then be obtained through equation (6),  and if  this  is  significant,  it  should then
update the information contained in the physical wrapper, including the outgoing velocity.

If the force is negligible, then operations must be performed in order to check whether or not
the object with the negligible escape velocity should be added to the DIG of the other object
in the collision. The nature of these operations will depend on the nature of the objects in the
collision – is one stationary? Where is the object with negligible force in relation to the other
object?  The system will  need to calculate answers to  these questions  in order to  reach a
satisfactory solution.

Simultaneous collisions  can be handled by implementing a check on the time of the last
collision message received – if there was another collision resolved in the same frame as the
pending collision, then the initial velocity will be in the object’s velocity member, and so it
should  be  taken  from  there  and  not  through  Verlet  integration  of  the  object’s  previous
positions.

DIG Alteration

After the collisions are resolved, there may be a change in the graph status of some objects.
For example, if an object is bouncing off the top of a flat surface with a very low impulsive
force. In this case, the objects should be bound together in a graph (given the constraints
outlined in the Literature Review).

If there is any change in the link status, this may in turn affect the position of the objects
involved in the next frame – this may result in the collsion resolver needing to be re-called, or
the DIG alteration unit may have in-built methods for these kinds of collisions (it is unlikely
that this unit will need to calculate a collision impulse, and as such the complexity will be
low).
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There are many methods suitable for storing the relationships between objects. [5] uses the
objects themselves – one of the members of the structure is a pointer to an array of objects
that contains each object that is directly influenced by the object in question (the object’s
‘neighbours’). This is a suitable method for the referenced system, mainly because there is a
maximum of four objects in a neightbours list  due to the functionality of the program. A
limitation in this method is that objects in the neightbours list of one object will have their
own neightbours list that will contain some repetition. This is an undesirable feature because
of the avoidable overhead in polling the same object more than once. 

The method that  is  currently being considered for this  task involves a global scope two-
dimensional array constrained in both dimensions by the maximum number of objects that are
allowed to be present in the simulation at any one time. This array will contain some method
of referencing an object, either by it’s debug ID or a pointer to the object itself. This method
is clarified with the following diagram:

Figure 2: Example Graph

In this example, the maximum number of objects possible (and thus the constraint on the DIG
array) is four, objects zero and two are in the first DIG, and one and three are in the second.
DIGs two and three are empty and unused.

A side-effect of using this method for DIG manipulation would be that objects that are not
interacting with other objects could be placed in a DIG with no other objects. This would aid
the scalability of the system, as functions can accept a DIG as an argument  and perform
processing on all of the objects within regardless of how many there are. This will need to be
decided on a function by function basis, however, as it may not be suitable to process every
object in a DIG as if it were not under the influence of other objects.
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Chapter 5

Implementation

This section deals with the practicalities of implementing the requirements laid out for the
project.  The primary areas chosen for discussion are the choice of the language, how the
system detects and reacts to a collision between two objects, and the method the system uses
to relate objects in a DIG.

Language Choice

The  MAVERIK toolset  is  a  middle  layer  between  the  upper  layer  of  the  programming
language (C) and the lower layer of OpenGL (in the case of this system –other 3D accelerator
languages are supported, for example IrisGL for Silicon Graphics workstations, and Glide for
older Voodoo-based graphics cards). It meant that all that was required to begin work on this
project was an understanding of the C programming language, and a knowledge of how to
implement  the mathematical  solutions.  Problems such as  how to  represent  a set  of three
dimensional  objects  in  an  efficient  manner  are handled by the MAVERIK library, and a
simple user interface is provided to the C programmer. This library has made it possible for
the project to avoid the issue of how to represent 3D-space, and while this is very prevalent
for VE designers, it is outside the focus of this project.

The Java 3D (J3D) API is a library similar to MAVERIK, except that it uses Java rather than
C as it’s high-level language. Therefore, this project could have feasibly been implemented in
a purely Object-Oriented context, providing more manageable code re-usability and a more
organized abstraction. However;

 Interpretive  languages  are  not  reknowned  for  their  speed  of  execution.  A  C++
implementation (if executed correctly) could be several  orders of magnitude faster
than an equally competent Java implementation.

 A set of C++ header files with an efficient interface is just as re-usable as a Java class
with the same.

It was therefore decided that a C++/MAVERIK implementation would be able to fulfill the
speed requirement more effectively than a Java/J3D one.
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Physical Information

MAVERIK data  structures  hold  a  variety  of  information  to  define  the  3D  objects  they
represent.  This  information  is  not  always  common  across  datatypes;  for  example
MAV_sphere holds  a  parameter  radius,  but  this  would  be  meaningless  if  applied  to
MAV_box,  which  instead  holds  variables  for  the  size  in  the  X,  Y  and  Z  dimensions.
However, all objects hold a 4x4 transformation matrix that contains the position of the local
centre of the object (which is also the centre of mass for the MAVERIK-defined primitives),
the orientation parameters and the scale size.

In order to hold the information necessary to create an accurate physical representation of
objects, an additional data structure with the working name of  MAV_newton (because the
mechanics  are  Newtonian)  was created.  This  holds  both  state information  (three position
vectors and three rotation vectors) and physical attributes of the object (coefficients of friction
and restitution, inertial tensor). It also contains information that is useful for the program to
know (the ID and time of the last message received, whether or not the object is at  rest
relative to the floor, whether there is enough information to use Verlet integration or if Euler
should be used instead). Finally, it contains a pointer to the MAVERIK datatype mentioned
above,  so  a  MAV_newton giving  information  about  a  MAV_box also  contains  the
information MAVERIK needs about the box encapsulated within it.

As the MAVERIK system itself was not written to take this state information into account, it
is still the object in the data structure that MAVERIK uses in order to draw it correctly. To
this end, once the information is calculated it must be sent to the transformation matrix inside
the primitive’s object in order for the position to be correctly rendered.

The contents of the  MAV_newton type was derived mainly from empirical evidence (it is
obvious  that  the object’s  position  and basic  information  should be known),  but  was also
dependent on the equations used to calculate the collision response (the inertia tensor [7] in
particular was solely included because it is used in calculating the angular momentum).

NB: for completeness, the structure of the MAV_newton datatype is included in Appendix B.

Collision Detection

As mentioned in the Literature Review, MAVERIK contains built-in methods for calculating
bounding volumes of objects and testing those volumes for intersects with objects. In order
for  the  system  to  detect  a  collision,  it  has  to  iterate  over  the  array  containing  the
MAV_newton pointers, create a bounding box for each item and check that volume against
all objects in an SMS in order to calculate a collision. This method returns another SMS that
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contains the objects which intersect the object being tested. As a side effect, this SMS also
contains the object being tested, so checks were implemented to cirumvent this false positive.

The bounding boxes used by MAVERIK are axis-aligned cubes, so the volume they specify
can be larger than the actual  space occupied (for example, a sphere, or a cuboid with an
orientation  other  than  [0,0,0]).  As  this  is  the  case,  methods  had  to  be  used  to  ascertain
whether or not the shortest distance between the objects was less than zero (constituting an
overlap,  therefore  a  collision).  Two  callbacks  are  implemented  to  aid  in  this  task  –
mav_callbackGetSurfaceDist and  mav_callbackGetImpact – which get the
distance from the centre of the object to the point of impact, and the local co-ordinates of the
point of impact, respectively. 

Once a collision has been confirmed as being between two objects and not just their bounding
boxes, a message object is created and added to the end of the message queue. However, a
check is performed to ensure that the message isn’t just the reverse of the previous message
added to the queue – if two objects collide, then two collisions will be generated – one of
object A hitting B, and one of B hitting A. When this check is complete, the message queue
in each frame will contain a single message relating to every collision that occurred in that
frame. The message queue can then be read and the collision responses calculated.

NB: The message processing function and message object layout used is adapted from [5].
The packet object specification is in Appendix B

Collision Response

Once the collision detection loop has terminated successfully, the message queue is parsed for
collision messages. The first check is to get the resultant velocity of the two objects (velocity
of A subtract the velocity of B), and then calculate the dot product of that vector with the
normal to the collision (pointing towards A). If this dot product is negative then the objects
are moving towards each other, and a collision has occurred. If the result is zero, then the
objects are moving in parallel, and if it is positive then they are moving away from each
other. The final case can occur if the bounding boxes are still overlapping after a collision has
been performed.

If the result is negative, then equation (6) is computed in order to give a scalar value that must
be applied to  the collision normal  in order to  give the impulsive  force that  the collision
produces. This force is divided by the objects’ mass (in turn) to give the acceleration, and this
is applied to the objects in order to get their velocity as they leave the collision, and from that
their next position.
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For rotational information, the scalar is applied to the vector perpendicular to the velocity of
the object before the collision and the normal to the collision. This gives a value proportional
to the incoming velocity (the normal has a magnitude of one) in the axes in which rotation
should be performed. After the rotation matrix has been calculated, it is re-orthagonalised in
order  to  reduce  the  possibility  of  rounding  errors  which  would  otherwise  increase
proportionally to the running time of the system [4].

Dynamic Interaction Graphs

In order to reduce operational overheads as much as possible, the DIG system is implemented
as a two-dimensional array (limited in both directions by a global constant that defined the
maximum number of objects it is possible to create – this means all of the objects can be in a
DIG of their own, or all joined together in one DIG). Each object is initially created in an
empty DIG, and checks are made on the collision response scalars to see if the object only has
a miniscule force pushing it away from the collision. If the force is negligible, then the objects
position vectors are set to the rest position, it’s velocity (perpendicular to the collision) and
resultant force set to zero, and the DIGs altered.

The DIGs are altered using a simple array search that gets the DIG number, the index of the
object in that DIG and the total number of objects in the DIG of both the objects in question
(the object whose response scalars were lower than the criteria is termed the source, and the
object  it  collided with is  termed the target).  This  information is then used to remove the
source object from its DIG, re-initialize that DIG (re-order it if the source object was not the
only object in there or not at the end of the list), and add it to the end of the target graph.

[5] used an idea of a cog list, a pointer to an array of cogs that were directly influenced by the
cog in question (neighbours in the primary compass directions). This approach was deemed
unsuitable for this application, because a number of checks had to be implemented in order to
ensure that the same cog was not receiving the rotate message packet from two independent
sources. The method used in this project means that an operation performed on one object in
a DIG just needs to be iterated over every object in that array index, with little-to-no overhead
in checking mechanisms.
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Chapter 6

Testing

Overview

The comprehensive testing of something as non-deterministic as a physics engine is always
going to be a very intensive and time-consuming task, depending on the accuracy required.
The simulation can be run, and the effects watched by a human observer, and if the objects
appear to be interacting in the correct way, then the simulation has succeeded in one respect.
However, a human observer will not be able to tell that all velocities were out by a factor of
ten, for example – if the system seems consistent, then it will appear correct. 

Conversely, a human observer can also tell better then a computer observer that an object
collision is modelled incorrectly – if parts of the objects are passing through each other, or if
the object is sliding instead of rolling.

As absolute physical accuracy was not a requirement, the following tests are judged by a
human observer with no measurements. A debug mode is available to advance the simulation
by one frame at a time if there is ever any doubt as to a simulation’s correctness.

The testing was conducted through the creation of scenarios (as documented in [16 section
20.3.2])  that  would  demonstrate  to  the  user  whether  or  not  the  simulation  had  the
functionality that was expected of it.
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Scenarios

The  scenarios  will  be  divided  into  two  groups  in  order  to  test  the  two  fundamental
requirements – physical behaviour and DIG creation. The following scenarios all take place in
a six-sided room, where the boundaries do not have a physical wrapper. They are suspended
in the air,  but are used as triggers for collision detection (the collision detection methods
register a collision with the type of the boundary and handle it specially). The results of these
scenarios can be found in Appendix C.

Physical Behaviour

 Create an object such that its lowest extremity is touching the lower plane. This object
should be created at rest, and then have its position bound by the constraints imposed
on objects.

 Create an object vertically displaced from the lower plane, so it has an initial velocity.
This object would then bounce off the lower plane, having its velocity reduced by a
factor of its coefficient of restitution, until it has low enough escape velocity for the
constraints to register that it is (effectively) at rest relative to the floor. At this point
the result should be identical to the first scenario.

 Two scenarios must be created that involve the registering of collisions between two
objects (non-boundary type) when one is moving and the other is a) moving, and b) at
rest on the lower plane. 

 The above scenario may involve the collision of objects with the side planes – these
collisions should be examined when the object is both moving and at rest relative to
the lower plane.

Dynamic Interaction Graphs

 Subject to the physical constraints of the system, two objects must be created that will
eventually be at rest relative to each other, and therefore should be in the same DIG.
Once the operation is completed, the code status must be examined to ensure that the
objects are indeed in the same DIG.

 Once there are two objects in a DIG (see above scenario), then another object that is
not in the same graph must be created in such a manner that it will disturb the objects
in the DIG. The effects of which should be that when the collision is registered, a
collision message is sent to each object in the DIG (even if only one was involved in
the collision), then the objects in the same graph should be allocated their own graphs,
and the collisions resolved.
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 For the issues of scalability, these tests should be repeated when there are more than
two objects in a DIG, just to ensure that the messages are passed correctly, and that
the collisions are resolved correctly, all within a reasonable frame rate.
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Chapter 7

Conclusion

Limitations

Several limitations are imposed on the simulation that were not envisaged in the requirements
stage.

Firstly, only spheres are modelled correctly. This is due to an inability to correctly calculate
the point of intersect on a box whose orientation is non-standard (i.e. the constraints of the
bounding box are not the constraints of the box itself). Also, the addition of a system of
moments to control the balancing of a box on an edge was deemed to be a misallocation of
resources – it has no relevance on the main subject matter of the project, and implementing it
would  be  comparable  to  negligence.  The  fulfillment  of  the  primary  requirements  could
suitably be judged only through the use of spheres.

However, the DIG functionality is also quite limited. If there are more than two objects that
should be assigned to the same graph, then the mechanisms for checking this eventuality
break down. This is due to the operations not being able to apply a collision to an object in a
graph without breaking the graph up into its components – this way, an object can not join a
graph that is already formed and has more than one component object.

Problems Encountered

Programming

Several of the MAVERIK built-in methods had a safety restriction that meant no division
would be performed if the denominator was less than 0.0000001 (1e-7). This seems to be a
redundant, or at least overly-secure, check, seeing as the precision of floating point numbers
is valid up to 1e-44 (http://babbage.cs.qc.edu/courses/cs341/IEEE-754.html), and it generally
caused  more  errors  than  would  otherwise  have  been  present.  To  this  end,  the  functions
involved had to be copied from the MAVERIK source code and re-written in the system’s
own header files without the constraint.

Conceptual

The DIG functionality was not scalable – it could not perform the correct operations when a
graph should contain three objects. It is believed that the fault lies in the message dispatch
code, such that it cannot differentiate between a collision that should dislodge objects and put
them in unique DIGs, and a collision that is of sufficiently small velocity to mean that the
object should be added to the DIG in question. This resulted in the error outlined in the DIG
scenario test case in Appendix C.
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Although the functionality for the DIG concept had several limitations that may deem the
project to be incomplete with respect to the requirements, measurements of the frame rate
indicate that  high frame rates (~40fps) were obtained even when a reasonable number of
objects were being processed. This should instill  faith in this approach to physically-based
modelling  –  operation  speeds  could  easily  be  increased  by  writing  the  graphical  output
directly in GL (or an equivalent) rather than using a middle-layer language, and also by using
a polygonial-based display method rather than constructive solid geometry – this would lead
to possibilities such as back-face culling, meaning the graphics hardware is not displaying
polygons that cannot be seen.

Concluding Remarks

This  project  set  out  to  show that  physical  realism  in  games/Virtual  Environments  could
feasibly be  created  using the  grassroots  approach of  implementing  Newtonian  mechanics
equations and the fundamentals of rigid body dynamics. Examples of how these equations
have previously been adapted for a low-accuracy, high-speed environment were provided, and
reasons for this project’s existance were outlined. The term ‘believability’ was introduced,
explaining that ultimate physical realism is not necessary, but if the behaviour looks suitable,
then the user will  be suitably fooled into thinking the environment  is real.  The idea of a
consistent  and  coherant  physical  environment  was  put  forward,  with  each  object  present
exterting some physical behaviour on any others it may interact with.

The collision detection complexity problem was outlined, with special detail  given to the
problem of objects that are known to be influenced by other objects. A method for limiting
the  complexity of  the  collision  detection  operation  was  outlined,  and  the  concept  of  the
Dynamic Interaction Graph was introduced, with considerable background material.

The  ways  in  which  a  physically-realistic  system  that  incorporated  DIG  concepts  and
functionality would be computationally more efficient than one that did not were explained.
An implementation of a DIG and physical realism-based system was provided, although its
concept of DIG was non-scalable – this is a failure with respect to the requirements.

However, the system still demonstrated that the DIG concept could be applied to a physically-
based system with some success. If more resources were available, then there is confidence
that a fully-scalable solution could be produced.

The test programs and source code are available from:
(1) http://www.kfj.f2s.com/rich/project/
(2) http://www.bath.ac.uk/~ma0rpj/project/

NB – the second URL will only be valid until July 2004.
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Appendices

Appendix A: Requirements Data

Project Synopsis

Title: Physics for Games/Virtual Reality

Description:

Most computer games showing 3D worlds have either poor physics or a very limited range of
physics.  Often this  is  implemented by specialised code "attached" to those objects  which
erspond. As a result, most of the VR world does not behave like the real world at all and it
little  more than  3D wallpaper  against  which the  action  takes  place.  As part  of  our  own
research, we are developing a simple mechanism which supports interaction between objects,
with possibilities for mechanical, electrical or fluid effects. The aim of this project is to take
our  basic  model  and  develop  it  to  show  a  small  world  in  which  all  objects  behave  as
expected, using these aspects of physics. 

Pre-requisite knowledge:

Needs programming skills in C, C++ or similar. Could be Unix or Windows based.

Source Material:

Demonstrator programme (in Visual C++ but you can also do the project in C or C++ in a
Unix environment if you prefer). Documents describing our own research plans.
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Example Scenario
The following is an example scenario that was originally included with the Literature Survey.
It has since been moved to this appendix, because it is felt to be more suitable as an example
of a requirements-harnessing scenario than an accurate representation of what the simulation
is currently capable of.

Initial DIGs: 
Ball
Table
Bucket, handle
Rod

i) A spherical  ball  is  created above a wooden table.  It is  immediately subject  to
gravitational acceleration. The next position after a time t is calculated using Euler
equations, and from then on the progression is mapped using Verlet equations.

ii) At some stage, one position of the ball’s  lowest  point  is  above the table’s top
surface, and the next is below it. This is a trivial example seeing as the ball is only
moving  in  one  dimension.  The  point  of  intersection  is  found  by  continually
bisecting along the vector between the two points.

iii) The velocity at this point can be calculated using Euler’s equations. By reversing
the vector in the direction of the acceleration, the velocity after the collision is
found (if the collision isn’t perfectly elastic, then the velocity should be multiplied
by a dampening factor).

iv) Euler is again used to get the correct position of the ball at the same timestep as
that when the ball clashed with the table surface, and one more time to get the next
position after that. Then Verlet can be used again.

v) After a series of bounces, the ball will eventually come to rest (assuming the table
isn’t  perfectly elastic).  At this  point,  the ball  will  be added to  the DIG of the
table*, and any movements that affect one could potentially effect the other.
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 For the ball to remain at rest, there will have to be a resultant force of zero – i.e. a
reaction  against  gravity  must  act  from  the  table  surface  on  the  ball.  Current
implementation  is  unknown,  but  it  is  assumed  that  it  will  be  part  of  the  DIG’s
consequences.
Updated DIG:
Ball added to table

vi) The table  is  then slid  along the floor  for  a  short  period of time such that  the
frictional coefficient between the table and ball cause the ball to remain still.
i.e. – a small  (lower than the static frictional force between the ball and table)
constant force is applied to the table.

vii)The table is then stopped suddenly, causing the ball to roll along the table.
i.e. – a large (greater than the static frictional force) force is applied to the table in
the direction opposing the motion. Half of this force will be applied on the contact
point of the ball and table, and the top of the ball in the opposite direction. This
will  cause  the  ball  to  roll  towards  the  end  of  the  table  (Velocities  will  be
calculated in a similar way to i).

viii)The ball rolls into a fortuitously placed bucket.
Updated DIG:
Ball removed from table, added to bucket, handle.

ix) A constant upwards force is applied to the handle of the bucket, which tends to the
vertical. When the handle is vertical, the bucket begins to move up.
 The handle pivots around the attachment to the bucket chassis with angular velocity

calculated from the force applied.
x) The bucket and ball continue to accelerate upwards until the edge of the bucket

hits the rod. At this point, the rod is added to the DIG of handle/bucket/ball, and
the bucket rotates and slides anticlockwise around the rod.

Updated DIG:
Rod added to ball, bucket, handle

xi) When the bucket rotates past a certain angle, the ball will begin to roll out
 The angle needed will be a result of the frictional forces between the bucket and ball

(presumably less than that of the table and ball, due to the bucket being metal)
xii)The ball will exit the bucket and begin to fall towards the table again. The bucket

will swing back around the handle after it is free of the rod, and will continue to
oscillate until the friction between the handle and container dampen it to zero. The
ball will bounce along the table in a similar manner to before, but this time it will
have  horizontal  momentum  and  rotational  velocity.  Eventually  it  will  stop
bouncing and rolling, and the system will be at rest.

Final DIGs:
Bucket, Handle,
Ball, table (assuming the ball didn’t have enough momentum to roll off the edge of the
table).
Rod

* It is unknown at this time whether or not the ball should be added and removed from the DIG for
each contact point. Assumption: If the table is not moving, then the DIG will only be updated when the
ball comes to rest. However, if the ball bounces on a surface in motion, then each momentary contact
will influence the ball’s resultant trajectory, so it will need to be added, calculations performed, and
removed. This will introduce another overhead. It is possible that the calculations could be performed
without adding the object to the DIG, but the theory behind the implementation only allows objects in
the same DIG to have an effect on each other.
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VIPER Summary
Notes on this document: Any references are self-contained, and not included in the project’s
overall reference section. This document was provided by Prof. Phil Willis as a part of the
initial documentation given to project students in order to get an idea of what is required. The
document  has  been formatted to fit  in  with the  style of the  rest  of the document,  but  is
otherwise provided as-is.

We  are  familiar  with  the  real  world  and  know  how  to  use  it.  For  this  reason  we  can
manipulate unfamiliar objects and use objects in novel ways. When we construct something
new, we do so because we are predicting properties which we want the new object to have.
Those properties emerge as a consequence of the construction. Engineering is based on this
premise but so is a broad range of our everyday experience. 

We propose to investigate the systems architecture issues to permit  users to bring objects
together anywhere in a large VE, to allow almost all objects to affect each other, to permit the
emergence of new behaviour, and to support in a unified way a range of physical properties
(mechanical, electrical, hydraulic etc).  The application area will  be a large distributed VE
with thousands of objects and potentially multiple distributed users. We do not propose a
scientifically accurate  simulation,  for  example  by producing full  dynamics  solutions.  Our
immediate application area is entertainment games but we are proposing a generality well
beyond current  game technology, which  we believe will  then  be applicable  in  many VE
training applications. It is an objective of this research that we will demonstrate a VE which
behaves sufficiently like the real world that users will be confident both about manipulating it
and the consequent outcomes.

We propose to build a software system which supports the emergence of physical behaviour
in  large  scale  virtual  environments,  to  include  mechanics,  electricity  and  hydraulics  as
examples. Users of such environments will be able to manipulate objects much as they would
in the real  world.  Objects  will  stay on a  desk because of the physics,  not  because of an
arbitrary transform which locates them there. Infrastructure such as lighting in a building will
operate  as  a  consequence  of  the  wiring,  the  switches  and  the  power  supply,  not  as  a
consequence of specialised code. Water will flow because of the piping, not because of code
animating a tap. 

This  system will  therefore  support  worlds  in  which  the  behaviour  emerges  because  the
physics is modelled alongside the geometry. As a result,  consequences unexpected by the
designer of the world will be possible, whether in creative use of existing objects or in using
simple objects to make more complex constructions, such as mechanisms. Furthermore, we
will be able to use mechanisms as the engines of animated objects (as existing systems do in
the abstract) yet still have them interact fully with other objects and be extendable by the user
of the VE. This requires a profound rethink of the way we model and render the 3D world, as
well as how we incorporate behaviour in this general way.
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We summarise the major research issues as follows.

 Representing all common physical interactions between objects
 Giving all objects properties and predictable behaviours
 Unifying the representation of the basic physics of virtual environments
 Applying constraints in a dynamically-changing world
 Maintaining model consistency in a dynamically-changing world 
 Rendering a dynamically-changing world

The Real Environment

Consider the following scenario.  A man walks  along a busy street,  carrying a small flat-
packed  self-assembly  table.  The  on-coming  pedestrians  steer  their  way  around  him.  He
crosses  the  road,  weaving  carefully  through  the  traffic  and  enters  a  residential  building.
Summoning the lift he rides to the floor where he lives and opens the door of his flat with a
key. He switches on the light but the bulb blows and he is unable to reach it to replace it. He
decides there is enough daylight to assemble the table, which he does. He then drags the table
below the light fitting, takes a spare bulb from a sideboard drawer, climbs on the table and
exchanges the bulbs. The old bulb is still warm but not uncomfortably so. Stepping down he
tries the light switch once more, with no result. He realises the failing bulb must have blown
the fuse and goes to the fuse box in the kitchen and changes the fuse. Returning to the living
room he tries the switch once again and is rewarded with light. For the first time he notices
that the mechanical clock on the sideboard is running slow, so he moves the minute hand
around until both hands show the correct time. He moves his portable television from the
floor to the table. There is also space for the lava lamp he bought yesterday, so that also goes
on the table. He drags the table to the corner of the room and plugs in both television and
lamp. He switches on the lamp, the kind with multiple pieces of coloured foils, and switches
it on. After a few minutes of warming up, the foil pieces gradually convect. Realising his
hands are dirty, he returns to the kitchen, puts a plug in the sink and runs enough warm water
to wash. He pulls out the plug and the water gradually drains away.

This scenario of mundane happenings exhibits a number of features that are routinely found
in reality but are broadly lacking in virtual environments. All any of them could be fabricated
by writing  the  appropriate  dedicated  code  but  we  are  interested  in  making  the  everyday
physics behind these events work properly in the virtual world. The reason for this is that the
real world does not consist of fixed scenarios that we have to “solve”, as is the case in most
exploration games for example. Rather we know how the real world works. A VE which
works the same way is easier to use, adaptable to our needs and richer in possibilities. When
our subject moved the table under the light fitting in order to reach the bulb, he was using the
table in a way that its designer did not think of. This is an example of emergent behaviour,
behaviour which emerges as a consequence of the properties of the object being used in an
unplanned  way,  not  as  a  consequence  of  some  built-in  code  determining a  specific  use.
Doubtless the clock can be updated by dedicated code but it is the physical linking of the two
hands, in a 12:1 ratio, which permits the user to wind one hand and get the clock to show the
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correct time. The temperature of a heated object depends on its own properties – specific heat
– but is driven by the external application of heat and the laws of cooling and convection.
Whether a light comes on depends on the existence of a complete circuit, from mains to fuse
to switch to bulb and back again. It cannot exhibit its full rich behaviour if hard-coded as “if
switch then light”. The behaviour of a crowd of people and a flow of cars can be modelled
with flocking but they are not immune to other influences, whether predictable (traffic lights)
or not (someone crossing unexpectedly). The rules for flat pack assembly are simple physical
constraints.  Catching  them  correctly  not  only  ensures  any  other  flat  pack  item  can  be
assembled but it also permits disassembly. Similar constraints apply to the items resting on a
table, water staying in a sink, the way a drawer opens and the way a lift moves in a shaft. A
hinge both keeps the door attached to the frame and also causes it to rotate.

These simple  mechanisms are responsible  for making the world mutable;  that  is,  we can
manipulate objects, reposition them and use them in ways determined by us. Our everyday
experience depends on this. If we take an object from a table, the table remains where it is. If
we drag the table, the objects on it move with it. If we tilt the table, some objects may slide
off. These effects are not hierarchical – an object which slides off a table is initially affected
by the tilt  but  ultimately separates from the table.  Rather they are a manifestation of the
physics of the world. The appearance of an object is a consequence of a physical interaction
between the  object’s  properties  (e.g.  surface  texture)  and the ambient  lighting.  Similarly,
emergent  behaviour  should  arise  from the  physics  “out  there”  working with  the  object’s
properties,  such as mass.  It  should not  be built  in  to  the current  objects  or  their  current
disposition.  All  object  properties  and  the  physics  behind  behaviour  therefore  need to  be
modelled independently in a generic virtual environment. Finally we note that in computer
games, it is often desirable for the physical laws to change dynamically. If our subject climbs
through his full-length mirror into a world where magic is possible, then ordinary physics
should  be  replaced  or  enhanced  by  the  physics  of  magic.  Current  commercial  systems,
especially in gaming, emphasise appearance, offer pre-canned behaviours, and often reduce to
finding the one solution built in by the creator. In the rare examples where this is not always
so (Doom3 and HalfLife2 for example), distributed behaviour is not supported.

The Virtual Environment

In what follows, we will use the term designer for the person who builds the VE. We will use
the term user for the person exploring the VE.

The high-level Inventor product has some of the characteristics we need for implementation
but not enough. It takes a strongly hierarchical view which we don’t want and this is hard to
sidestep. The two low-level standards OpenGL and VRML have a common heritage. Scene
graphs evolved as a way of representing a 3D model  in a way that  was efficient  for the
rendering pipeline of specialised graphics computers. They include nodes to represent the
scene geometry, the lighting and the code to generate animations. They are well-suited to
displaying  a  scene  and  allowing  a  user  to  move  around  it.  They  are  however  poor  at
representing correct  relationships  between the  components  of  a  scene.  This  case  is  well-
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argued by Lescinsky et al. [LES02] who point out that even a simple relationship, such as “X
is  on  top  of  Y”,  requires  an  artificial  hierarchy to  be  imposed.  This  hierarchy suits  the
rendering process but is not true to the modelling needs: X is not part of Y. This makes full
interaction with the scene difficult.  Users cannot in general manipulate objects unless the
designer of the VE anticipated this and provided the necessary code. 

VRML objects will not interact with each other as they do in the real world. VRML provides
statically defined routes to pass messages between objects. The designer must decide which
objects can interact and hardwire the routes needed. It is not feasible to permit any object to
affect any other and indeed it is tedious to allow even one object to affect many. As a result,
behaviour arising from arbitrary physical interaction imposed by the user but unanticipated by
the designer is impossible.

Physical modelling of dynamics provides an answer to this. For example, it is then possible
for  the  user  to  make  arbitrary virtual  assemblies  and  for  these  assemblies  to  operate  as
expected. A thorough dynamic modelling is however a non-trivial computational problem,
with possible detrimental effects on the real-time VE. We believe that this is not necessary in
order to build a plausible world which still has emergent behaviour. The everyday physics
familiar to us when we pick up, move or stack objects involves little computation. Frictional
forces and rigid collisions are similarly undemanding. Elastic interactions are much harder
but the need for fully correct elastic calculations is rare in the everyday way in which we
manipulate  the  objects  in  our  world.  Complex  dynamics  are  simplified  when only rigid
objects are involved. This means we need a consistent representation for the physical forces
in the world. Bond graphs are one such representation.

Bond graphs

A Bond graph is a schematic of a system, representing power exchange. The links connecting
the nodes show the flow of power. They represent pairs of properties, one across and one
along a link (voltage/current for example: hence power). The nodes in the graph correspond
to physical constraints. Such a graph closely maps the structure of the physical system, such
as the arrangement of junctions and components in an electrical circuit. Importantly, it can be
constructed from the arrangement of the system, before any decisions about causality need to
be made. This is important to us because we need causality to emerge from the arrangement
of each system.

Bond graphs have been studied for 50 years and are thus a mature form. The technique has
been applied to thermodynamic,  hydraulic, chemical,  mechanical,  electrical  and electronic
systems and there is software support available. Bond graphs are sophisticated tools and the
area is still the subject of active research. We do not propose to make a contribution in this
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area. Rather we will adapt the experience of Bond graphs to our specific needs, leaving open
the possibility of using it to model more sophisticated systems later in the project.

In addition, our approach is not one of modelling “a (large) system”; it is one of modelling
thousands of (small) systems which vary all the time in their configuration. This suggests we
should think of an extensive and dynamic cluster of Bond-like graphs with the nodes being
objects and the links being the contact between them, transmitting the physics. Exploring how
to do this well and calculating the consequent physical results is at the heart of our proposed
investigation.

 

Proposed Approach

Dynamic interaction graphs
If the user is free to manipulate any object, taking it to new places in the VE and making
assemblies, then a key issue is knowing which objects can affect which others at any given
time. We need a fluid way of determining this and propose to use graph structures. Those
objects in contact are dynamically linked together in such a structure. In any given VE, there
will be many graphs, each perhaps representing an assembly of objects (such as the items on a
desk) or a mechanism (such as a mechanical clock). The graphs are not fixed however. As the
user manipulates the objects in the VE, graphs come into being, grow, merge, split, shrink
and disappear in response. 

These graphs do more than record which objects may affect which others. They also provide
the means to resolve the consequences. The links of the graph show how to propagate event
messages between the objects, so that actions can be coordinated and their effect determined.
For this reason we will use the term Dynamic Interaction Graphs, or DIGs for short. Multiple
DIGs thus become the key items that have to be managed to facilitate the physical interaction
of the associated objects.

The objects in a scene are thus not linked in a scene graph. Each object instance must know
where it is located and this transform must be actively maintained. An object which cannot be
broken down by the user (an atomic object) can be modelled in any way that can be rendered,
including by a hierarchical structure. What is key is that the dynamic aggregation of objects
must be based on an easy-to-maintain approach. DIGs achieve this.

Messages

Events affecting one object may have a consequence on another object. The links of a DIG
correspond to pairwise contact between objects. So, when one object is moved (say), it can
send a message to its graph neighbours so that the consequences on them can be resolved.
This also applies to their neighbours in turn. VRML timestamps event messages to ensure
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that a given node does not action a message twice. This also prevents indefinite circulation
when  the  graph contains  circuits.  We  will  use  the  same mechanism.  We have  tested  an
implementation based on a single message queue separate from the graph itself. This works
well  and has the advantage of providing easy monitoring and testing, as well  as the later
possibility of the event queue being on a different processor to the DIG.

Messages have to interact with the physics, such as friction and mass. We will  provide a
library to support this. As we envisage thousands of DIGs, with 10-100 objects each, this will
be written in re-entrant code. In this way the local state will be in the object and the physics
itself will be “out there”. As we extend the range of physical processes to include electricity,
hydraulics etc, so we will provide new library procedures. As described earlier, we will not be
attempting to  simulate  complex  dynamics  etc:  the aim is  to  demonstrate  credible  system
solutions  for  everyday  interaction  with  the  VE,  such  as  within  an  advanced  gaming
environment. 

Bringing emergent behaviour to virtual environments

We propose to use DIGs as the fundamental data structure representing the VE. Every object
will belong to a DIG (even if it is the only member). When two or more objects are brought
close enough together to interact, they will be linked into a DIG so that the physics can be
resolved. If they later separate, the link is broken and so they no longer interact. For example,
if a book is placed on a desk, the book and desk will temporarily become part of the same
DIG. The associated messaging system permits the statics to be resolved: the book sits on the
desk but does not fall through it. It permits simple dynamics to be resolved: the book can be
slid across the desk and friction will bring it to a halt.

DIGs will also support the hierarchical function of a scene graph – if we move the desk, the
book goes with the desk – but without having the structural hierarchy of a scene graph. The
latter is evident when the desk is tilted: the DIG allows the book to slide off, the scene graph
does not. A DIG shows hierarchical behaviour only where the physics requires it, while the
scene graph rather imposes this through geometry. The DIG readily allows us to move the
book elsewhere, where it will join another DIG.

Each instance of an object therefore has to know the absolute transform that locates it in the
VE. These transforms must be maintained when objects are moved, especially when a group
of them are moved. Lesinsky et al.1 show how this dependency can be achieved without a
strict scene graph. We will need to extend their approach to permit moving aggregations of
objects rather than objects linked with the “on top of” operator that they use.

1  Gordon  Lesinsky,  Costa  Tourna,  Alex  Goldin,  Max  Fudim  and  Amit  Cohen,  “Interactive  Scene
Manipulation in the Virtue3D System”, Proc. Web3D ’02 Conference, ACM, pp. 127—135, 2002.
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We can also use the links of the DIG to record physical information such as resistance. This is
in keeping with Bond graphs (VRML has no concept of value associated with links). We can
use this information in creative ways within a VE. For example, exploratory messages have a
rigorous application. A user might bolt a door. If another user then tries to open the door, a
message can be sent around the DIG to check for freedom of movement. Only if a positive
answer is received will a message making the movement be launched. The importance of this
cannot be overstated: we envisage a world where users can reconstruct freely and we must
have a general method to cope with this. The door might have been held closed by a heavy
object, rather than with the in-built bolt. The same argument applies generally, whether to
motors,  electrical  circuits,  water  pressure in  a  pipe etc.  Some of these constructions  will
produce viable results, others will be contradictory and an exploratory message allows this to
be checked.

We will  also need a corresponding constraints system associated with the objects.  In the
overall spirit of demonstrating large-scale generic solutions we will confine this to a simple
range of constraints, permitting us to concentrate on managing the generation of behaviours.
Only later, once the messaging system is well understood, will we need to explore constraints
more deeply.

So far we have largely concentrated on a user moving and assembling objects. DIGs also
provide a simple way of encapsulating free-standing mechanisms. A useful example of this is
flocking behaviour,  used to simulate crowds and traffic  in  a busy city. Here “contact” is
defined in a more elastic way, over a limited range. A link which goes out of range is broken
and so flocks can split (or merge) according to external influences (traffic lights or a narrow
path for examples). 

Overall this approach is one of geometry plus physics plus constraints plus mediation via

messages. This approach reduces the programming needed by the designer, partly because

actions can be captured but mainly because the behaviour emerges.

Separate modelling of behaviour and geometry

Some aspects of a VE are best thought of as geometry-only (i.e. with no generic behaviour).
This includes the ground and the floors and walls of buildings. These objects do in fact have a
limited behaviour – solidity – but this is the very property that, for most purposes limits the
behaviour of other objects, rather than communicates it. In other words, these objects bound
the extent  of our DIGs. A book on one desk cannot affect  a book on another desk,  even
though both desks are on the same floor. Of course this does not mean that a floor cannot
have behaviour, as it would if it was destroyable (which would affect all desks, books etc on
that floor). It is a practical observation that geometry-only objects have an important role,
which is made explicit in our approach.
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Similarly we need behaviour-only objects. For example,  the electrical  wiring of an office
building is not seen, so there is little point in modelling its geometry. We can however model
the behaviour, with a DIG which connects all relevant switches and sockets, such that turning
a switch off turns off the connected light (etc). The heating (or cooling) of a room is invisible,
even in reality, but the physical consequences are real enough. 

Commonly we will require geometry and behaviour. The rings of an electric cooker transfer
heat by contact yet also need geometric models to be seen. The appearance of the ring varies
with temperature. DIGs can cope both with changing the appearance and the transfer of heat
by contact.

Instancing of geometry is important in constructing large VEs. Our approach extends this to
instancing behaviour. Suppose we construct a DIG which constrains a drawer to slide. Having
done that once, we can build a variety of drawer units, desks etc using this one behaviour.
Similarly a hinge DIG can be used for a door, a gate or a window. We are free to combine
various geometries with various behaviours, giving a richer VE. In fact, we have the same
“freedom of assembly” that we have in the real world, whether for flat pack furniture or less-
structured objects.
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Appendix B: Type Definitions

This appendix holds type definitions that are useful to have to hand when reading the
document, if none of the other code is available.

MAV_Newton members

int objectType;
Uses defines to cast to the correct type at draw time (SPHERE, BOX or
RECTANGLE)

int m_id;
Identifier of most recent message received by this cog

int db_id;
Debug ID, used to reference object – also the object’s position in the global array
storing all MAV_newtons

int mess_type; 
The type of the last message received

int dig_id;
The ID of the DIG this object belongs to

double mess_time;
The time of the last message received

bool floor;
If true, ball is rolling/sliding along the floor and not bouncing (switch from impulse-
based to constraint-based modelling)

bool collided;
Used to see if the collision has been processed already

bool euler; 
Used to see if euler integration should be used to get the next position

MAV_vector currPos, prevPos, nextPos;
The current, previous and next positions of the centre of mass of this object

MAV_vector currRot, prevRot, nextRot;
The current, previous and next rotations of the object

MAV_matrix iTensor, iti, itiws;
The object’s inertia tensor in local space, the inertial tensor in world space, and the
inverse of the world-space tensor.

float moInertia;
Moment of inertia

MAV_vector resForce, torque;
Resultant linear and angular forces on the centre of mass.

MAV_vector cMass;
Centre of mass

MAV_vector angMom;
Angular momentum

MAV_vector velocity, omega;
Linear/angular velocity

float mass;
Mass of object (acting at centre of mass)

float rest;
Coefficient of restitution
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struct s_newton *origin;
Pointer to the sender of the last message this object received

MAV_object *object;
MAVERIK’s object data

MAV_surfaceParams *sp;
The surface parameters of the object, defining how it should be rendered

MAV_matrix matrix;
The transformation matrix of the object

Packet_object definition

MAV_newton *me;
Pointer to the transmitting cog.

MAV_newton *you;
Pointer to destination cog.

int m_id;
Unique identifier for this message.

int db_id;
Transmitting cog identifier.

int mess_type;
The type of the message (at the moment only COLLISION is implemented, but this
allows for scalability.

double mess_time;
The time of the message creation.

MAV_vector direction;
Vector defining the direction between the centres of the objects involved with the
collision (NULL if colliding with a plane, as the centre of the plane has no relevance
to a collision).

packet_object *next;
Next packet in the list – always set to NULL on packet creation, but altered by the
message queue functions in order to create a linked list of messages.
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Appendix C: Test Scenarios

Physical Behaviour

 All of the physical behaviour scenarios were completed successfully.
 There were, however, some errors present in non-test case scenarios, such that objects

would be  given an invalid  position  after  their  DIG allocation had gone through a
certain procedure. This is being considered an error with the DIG functionality, and
not the physical behaviour. This can result in the disappearance of objects in the test
applications provided, but it is not an error in the physical modelling.

Dynamic Interaction Graphs

 Subject to the physical constraints of the system, two objects must be created that will
eventually be at rest relative to each other, and therefore should be in the same DIG.
Once the operation is completed, the code status must be examined to ensure that the
objects are indeed in the same DIG.

o This scenario was completed successfully: The two objects were spheres
created with the same X position, so one was directly on top of the the other.
When the lower had come to rest relative to the plane, the upper object
eventually came to rest on top of the lower object, and they were joined
together in one DIG.

 Once there are two objects in a DIG (see above scenario), then another object that is
not in the same graph must be created in such a manner that it will disturb the objects
in the DIG. The effects of which should be that when the collision is registered, a
collision message is sent to each object in the DIG (even if only one was involved in
the collision), then the objects in the same graph should be allocated their own graphs,
and the collisions resolved.

o This scenario was completed successfully. The objects were removed from the
DIG correctly, and the collisions handled in a believable fashion. The impact
of the top two objects was forwarded to the lower object, as it visibly moved
after the impact.

 For the issues of scalability, these tests should be repeated when there are more than
two objects in a DIG, just to ensure that the messages are passed correctly, and that
the collisions are resolved correctly, all within a reasonable frame rate.

o This  scenario  was  not  completed  successfully.  When,  ordinarily,  the  third
object (another sphere with the same X and Z co-ordinates) should have been
added to the DIG, a collision was registered which made the lowest object
immaterial, and the middle object fell to ground through it. When this object
had come to rest, it  then became immaterial and the top-most object fell to
ground. After this object had bounced once and nearly cleared the object(s) on
the  ground,  an  error  was  reported  in  the  manipulateDIG() method
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(responsible for allocating objects to the same graph, or taking two objects and
putting them in unique graphs) that the graph containing the objects was not
found.
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