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Abstract
Traditional computer chess methods use a high-speed heuristic-based search to evaluate po-
sitions and decide which move to play. This project examinesthe use of knowledge in chess
by both humans and existing computer programs and then implements an addition to GNU
Chess that uses the generalized generalized hebbian algorithm to acquire and use knowledge
while playing. It is found that this method works in some cases and with further research
could be extended to become more powerful.
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Chapter 1

Introduction

Humans have been playing chess for thousands of years while computers have been playing
for less than a hundred, yet there exist chess programs whichcan rival the greatest minds
in the game. They achieve this by using their strength — raw computational power — to
analyze millions of moves and select the best one. Humans, not blessed with custom hard-
ware for chess, only analyze a couple hundred positions at most and must rely on knowledge
rather than brute force to win the game.

Most of the effort towards improving computer chess engineshas gone to finding ways to
speed up and increase the depth of the computer’s search. This focus on an increase in speed
and depth has produced significant advances, but there is potential for equally significant
progress by using knowledge to aid and eventually replace search.

Most programs to date that have attempted to use knowledge have had their knowledge
defined for them by a human. This work has shown that knowledgecan be a very powerful
tool, but has not done very much more than that because of the dependency on human
masters for knowledge input. Attempts to automatically gather this information have mostly
tried to emulate human thought, and most of the programs thatdo this only seek to create a
model human cognition, not store and utilize knowledge.

These programs or models for the most part follow the chunking theory, started by
de Groot (1965) and continued by Chase & Simon (1973) among others. This is usually
implemented with some sort of EPAM-like model (Feigenbaum &Simon 1961) with a dis-
crimination net to learn and store chunks, the groups of pieces that serve as indices into a
players library of knowledge. An alternative method, proposed by Hyötyniemi & Saarilu-
oma (1998), follows the basic ideas of the chunking theory but uses clustering to identify
and recognize chunks.

This method is used here to analyze master-level games and break them down into
chunks. Knowledge is then associated with the chunks and itseffect on the performance
of a chess engine is examined.
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Chapter 2

How Humans Play

The human mind is incredibly slow at mathematical calculations when compared to a com-
puter, but it is very good at remembering and recognizing patterns and their significance.
A study by de Groot (1965), started investigations into the way that humans store and use
knowledge, particularly in chess. If a chess program can useknowledge in a similar manner
then it might be possible to increase its performance and skill.

2.1 de Groot’s Study

de Groot (1965) performed a series of experiments on chess players varying in skill from
amateur to grand master to try and examine the human thought process during a game of
chess. In one of the experiments, chess players were asked tolook at a position on the board
and consider the next move to be made, while speaking their thoughts out loud. Surprisingly,
the expert players did not consider or evaluate more moves than the amateur players, but the
moves they considered were in general stronger. Additionally, the expert players tended to
think about the board in terms of groups of pieces, while the amateur players thought about
pieces individually.

A second experiment had the players of different ability reconstructing a position from
a game unknown to them after being shown it for a small amount of time. de Groot (1965)
found that the master-level players had an almost perfect ability to reconstruct the position,
while the ability of the amateurs was considerably less. This can be explained by the fact that
the expert players think of pieces in groups — they have less to memorize than the amateur
players who must memorize the location of every piece individually.

That expert players think in terms of groups of pieces, orchunks, also explains why the
experts considered only stronger moves when asked to examine a position. When they are
presented with an unfamiliar position, the experts can identify groups of pieces on the board
that are familiar to them and provide insight as to the best moves to consider. The expert has
a large library of knowledge and the chunks provide a means toquickly identify and retrieve
the needed knowledge.

2



CHAPTER 2. HOW HUMANS PLAY 3

2.2 Chunking

The ideas proposed in de Groot (1965) were verified and expanded upon by Chase & Simon
(1973), who developed the theory ofchunking. They re-created de Groot’s reconstruction
experiments where players were shown a position from a game for a short amount of time
and asked to replace the pieces, and confirmed that experts are a lot better at reconstructing
the position. Importantly, they also showed the players random positions not taken from any
game and found that the experts were no more successful than the amateurs in recalling these
random positions. When shown a position from a game, the experts recognize chunks which
they can store in short-term memory and use to reconstruct the board. Amateurs without a
vast collection of chunks at their disposal must try and remember the position of each piece
individually, too much information to store in their short-term memory. When the position
is random, however, the experts can not find any chunks and, like the amateurs, must try and
remember individual piece locations.

The expert acquires his knowledge through years of study, building up a vast database
of information about the game. As observed by de Groot (1965), players recognize familiar
patterns on the board and remember information about when that pattern was used before.
If a computer chess program can decompose master-level games down into chunks, it can
then begin building up knowledge about what those chunks indicate when they are present.
When a chunk is recognized during game play, the computer canuse the information it has
stored about that chunk.



Chapter 3

Traditional Computer Chess

3.1 A Brief History of Computer Chess

The first mechanical chess engine was Baron Wolfgang von Kempelen’s ‘Automaton Chess
Player’ in 1770 (Hayes & Levy 1976). This was later revealed to be a hoax–the machine
actually had a man hidden inside–but since then incredible progress has been made and
computers are capable of challenging the world’s top chess players. Around 1900, Torres
Quevedo invented a mechanical machine that could win endgames of a King and a Rook
against a King from any position on the board. The machine, which could actually move the
pieces as well as compute the moves, was supposed to have beenable to force mate in 50
moves; it was later proved that some cases required more, butthis is still quite impressive.

Towards 1950, the foundations of computer chess as we know ittoday began to emerge.
In 1948 Alan Turing designed several programs for playing simple games of chess, and in-
dependently, Claude Shannon (Shannon 1950) wrote one of themost influential papers on
the subject. The ideas in his paper, which will be discussed in detail later, are still used in
computer chess engines today. After this paper, chess programs were written that incorpo-
rated its ideas, and programs of this type were soon the most common, though there were
plenty of others. The first computer against computer match took place in 1967, when a pro-
gram developed at MIT and Stanford played against a program written in the Soviet Union
(which won the match). Also in 1967, the program MacHACK gained a lot of attention for
performing particularly well. It went on to defeat a human, Dr. Hubert Dreyfus, who was a
great critic of artificial intelligence.

Computer chess tournaments became more common and the computers running them
became faster as time went on. In 1970 the first tournament washeld by the Association of
Computing Machinery and this competition has been held annually since then. Each year
more competitors entered and achieved greater and greater levels of play.

In the mid-1980s through the mid-1990s, the strongest chesscomputers around were
the ‘Deep’ series from IBM. They defeated many grand mastersand, at their peak, Deep
Blue defeated world champion Gary Kasparov. Although the circumstances of this match
are sometimes questioned, it is clear that computers can nowat least equal the best human

4



CHAPTER 3. TRADITIONAL COMPUTER CHESS 5

players.

3.2 The Minimax Tree

Most chess programs today (and many other game programs as well) use some form of a
minimax tree, as originally described by Shannon (1950). The tree represents the moves
possible in the game. At the first layer are possible moves by white, at the second layer
moves by black, then white again, and so on. Each of the possible positions resulting from
a move is assigned a value according to an evaluation function. When it is white’s turn to
choose the move, white should choose the move that maximizesthe score; when it is black’s
turn to move, black should choose the move to minimize the score. This method assumes
that the opponent always makes the best move, the one that will give them the highest score
while minimizing your own. As Shannon (1950) writes in his article (M is a possible move
andf(P ) is the evaluation function for positionP ):

A deeper strategy would consider the opponent’s replies.
Let Mi1,Mi2, ...,Mis be the possible answers by Black, if White chooses move
Mi. Black should play to minimizef(P ). Furthermore, his choice occursafter
White’s move. Thus, if White playsMi Black may be assumed to play theMij

such thatf(MijMiP ) is aminimum. White should play his first move such that
f is a maximum after Black chooses his best reply. Therefore, White should
play to maximize onMi the quantitymin(f(MijMiP ))Mij .

Chess is a game of perfect information and known rules, and soin theory one could
compute the entire tree of moves, select a winning leaf at theedge of the tree, and then
follow the moves to get to that point and always win. However,the sheer number of possible
moves in chess prevents this, and is the main limiting factorin computer chess programs of
this type. According to Shannon, There are an average of 30 legal moves at any point in a
chess game, and an average game lasts about 40 moves until oneplayer resigns. This means
that there around10120 moves to be calculated in order to see the entire tree! Even after a
few levels of the tree, the number of possible moves becomes extremely large and takes a
long time to calculate. Early chess programs were only capable of looking a few ply1 ahead
because they lacked the processing power and memory to be able to do this in a reasonable
time. Even today’s best chess computers still have a limit tohow far they can see into the
game.

Because computers have limited resources and can not see farinto the future, they suffer
from the Horizon Effect. In Figure 3.1, taken from Frey (1977), even a beginner can see
that white has an obvious win. If the computer was limited to looking 3 ply ahead, it would
not be able to see the possibility for pawn promotion. Its evaluation function would give the
position a rating in favor of black, who has more pieces. If the computer looked 5 ply ahead,
it would still not be able to see the pawn promotion. If offered a draw in this position, a
computer playing white would accept, believing itself to beat a disadvantage. The computer

1A ply is half of a complete turn, so one move for either black orwhite.
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Figure 3.1: The Horizon Effect

needs to look ahead 9 ply in order to even realize that the RookPawn can reach the back
rank. Even modern chess engines capable of looking many ply into the game suffer from
this effect. It is entirely possible for a computer to miss a checkmate or fail to recognize a
good move because it searched one ply too few.

3.2.1 α-β Pruning

Because the minimax tree is so important in chess engines, there have been many methods
and algorithms developed to improve its performance. Theα-β pruning algorithm improves
the minimax tree by significantly reducing the number of nodes that have to be searched.
Figure 3.2 shows a small tree with nodes numbered in the orderthat they are evaluated.
The search is depth-first, so the tree is expanded to either a natural or artificial (created by
a limit on search depth) leaf. Node 3 is the first leaf node encountered in this example,
and the evaluation function assigns it a value of +1 (in white’s favor). Node 4 is the next
leaf evaluated, with a score of +2. Since all of the children of node 2 have been evaluated,
node 2 gets assigned the value of its lowest child, +1. The next leaf that is encountered is
node 6. When evaluated, this gives a value of +0. At this point, the computer knows that it
does not have to evaluate any of the other children of node 5. This is because white already
knows it can get a value of +1 by choosing node 2, and that if it chose node 5, black could
choose node 6, giving white a lower score. The algorithm is called α-β becauseα is used to
represent the best move for white andβ is used to represent the best move for black found
so far in the search. This algorithm reduces the number of nodes in the tree and produces
exactly the same results as a full minimax search.

When usingα-β pruning, the order that the moves are evaluated can make a large differ-
ence to the total number of nodes that need to be evaluated. Ifa stronger move is evaluated
first, the number of other moves that can be discarded is greater. Heuristics are used on many
chess engines to attempt to find the stronger moves so they canbe evaluated first.



CHAPTER 3. TRADITIONAL COMPUTER CHESS 7

Figure 3.2: Alpha-Beta Pruning

3.2.2 Transposition Tables

When searching a large tree of moves, it is possible that someof subtrees or moves will be
similar or the same. A transposition table serves three purposes (Marsland 1991). The tables
store the merit (or value), best move, and status of nodes andsubtrees. The first purpose of
the table is to narrowα andβ values of the search based on the value of an entry in the table.
The second purpose is to allow the best moves from a subtree tobe run first if a subtree
is re-encountered. The last and most important use of a transposition table is to remember
subtrees that have been searched already, preventing repetition in the search.

3.2.3 Progressive and Iterative Deepening

When performing a study of chess masters and their thought processes, de Groot (1965)
noticed that the masters chose to expand certain parts of thetree selectively. He called this
progressive deepening, as the tree was evaluated to a certain depth and then the best branch
chosen as a new root node and expansion continued from there.This has been implemented
in several programs (?), starting with a search of 1 ply, then 2, and so on. It seems tobe a
fairly efficient method.

3.2.4 Drawbacks to Minimax

Programs that are tree-based inevitably have some sort of artificial limit to the depth of
their search. Theoretically, given infinite processing power and storage, they are perfect
programs, capable of seeing to all of the leaves of the tree and selecting moves which always
lead to a win. However, because they have an arbitrary limit due to limitations in processing
power, it is always possible that they will fail to see a good move, or fail to notice an attack
because they are essentially blind to the significance that moves might have a long way into
the future. Techniques such as progressive deepening, transposition tables, andα-β pruning
help to make it possible to increase the depth of searches, and this provides a little relief
from the problem, but is not a solution (Schaeffer 1983).
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Berliner, Kopec & Northam (1990) notes that programs using minimax without knowl-
edge might not know the significance of positions on the boardfrom the position itself, but
that the strength or weakness of the position will become evident as the tree is searched.
However, the depth required to see this advantage or disadvantage may be quite high; as an
example, Berliner et al. (1990) gives the doubled isolated pawn: ”a program that does not
understand the weakness of a doubled isolated pawn will probably have to search to depths
of up to 40 ply to discover this fact from more primitive features such as material.” Using
knowledge the weakness would be seen much sooner.

3.3 Evaluation Algorithms

In Shannon (1950), a very general algorithm for evaluating aposition is described:

f(P ) = 200(K −K ′)+ 9(Q−Q′)+ 5(R−R′)+ 3(B−B′ + N −N ′)+
(P − P ′)− .5(D −D′ + S − S′ + I − I ′) + .1(M −M ′) + ...

in which:-

• K,Q,R,B,N,P are the number of White kings, queens, rooks, bishops, knights
and pawns on the board.

• D,S,I are doubled, backward and isolated White pawns.

• M= White mobility (measured, say, as the number of legal moves available
to White).

• Primed letters are the similar quantities for Black.

This simple function weights the different pieces with different values, the queen being
worth the most, down to pawns being worth the least. Penalties are specified for pawns in
bad positions, and a value of 200 is assigned to mate. Evaluation functions have advanced
since this, and they now include many more heuristics for calculating the value of a position.
However, these functions evaluate the position only on whatthey see before them, not with
regards to any long term plan. This can mean that their goals change from move to move,
and that moves are only reacting to the situation.

As the search is conducted, each position encountered is evaluated with this function.
If it were possible to fully expand the tree, so the leaves were endings to the game, no
evaluation function would be needed because the value of allthe nodes are already known.
Since it is impossible to fully expand the tree, the evaluation function must estimate the value
of a node, making it a critical part of the program. If things are evaluated incorrectly then
increasing the search depth will just increase error. However, a complex evaluation function
takes longer to calculate, slowing the program down.

3.3.1 Quiescence

When evaluating nodes in the tree, it is possible to come up with very incorrect values for a
position if the position is a dynamic one. As a trivial example, say the tree search reaches
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its maximum depth right after white has captured black’s queen in a trade. The algorithm
will not check any further nodes, and thus evaluate the position as very good because it
believes that white is up a queen, when in reality black will take white’s queen in the next
move. The evaluation function works its best when applied topositions that are static, or
quiescent(Frey 1977). In order to fix this problem, quiescence checks were added to the
search algorithms. When a terminal node of the tree is reached, a check is carried out to
see if the position is a dynamic one. A dynamic situation willhave pieces in the middle of
movements or possibly capturable. In these cases, the search evaluates the sub-nodes of the
dynamic node, until it reaches a static node where it can perform a proper evaluation.



Chapter 4

Knowledge in Chess

4.1 Why Knowledge?

At the most basic level, knowledge can help to make the evaluation of a position more
correct, which reduces errors and makes the moves selected stronger. Knowledge of the
game can also be used in deciding which lines of play to searchand which to ignore, allowing
most of the time spent searching to be concentrated on moves that are likely to yield a good
result. At the highest level, knowledge can be used to createand follow plans in the game,
using strong combinations of moves created to achieve a goalrather than discovered by
search.

Marsland (1987) discusses how knowledge can be used, and gives Figure 4.1 as an ex-
ample of what might happen when it is not.Nuchessgains a pawn, but doing so allowsCray
Blitz to advance its pawn and promote it. A human player looking at the board would see
that black would have a passed pawn (a pawn that has passed allof the pieces in its way
and is free to advance to the back rank) if Rxg6 was played, realize that this meant black
would be able to promote the pawn, and make a different move toprevent this from hap-
pening; the computer did not have knowledge of passed pawns or what they meant in the
game and did not search deeply enough for the mistake to manifest itself in the tree. Modern
programs now have knowledge about this particular situation in the form of passed pawn
routines which are called when a position is evaluated, but there are still many cases where
potential threats or advantages are not seen by the program because the search does not get
deep enough to reveal their effects.

Adding extra knowledge about the passed pawns and other situations into the evaluation
function was the response used by most programs that rely on aminimax search. It does help
compensate for the inability to see the full effect of moves through search, but knowledge
can be better used not augmenting the search but reducing thenumber of moves that have to
be searched at each position. If instead of examining all possible lines of play from a location
knowledge is used to select only a few of the best, this will greatly reduce the combinatorial
explosion cause by chess’s very high branching factor.

Understanding the significance of certain features within the game can help guide the

10
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45.�f6xg6? �g8xg6+ 46.�g5xg6 �c8xd6 47.Pc5xd6

Figure 4.1:Nuchess(white) to play, againstCray Blitz

search, avoid problems, and utilize advantages, but there is a lot more that can potentially be
done with that knowledge, such as creating and following plans.

4.2 Plans

Planning is perhaps the most advanced use of knowledge in chess possible. It requires a
complex analysis and understanding of the game not just at a single point but spanning
many moves. When to adopt, continue with, and abandon a plan are all decisions that
require knowledge.

4.2.1 Planner

In Schaeffer (1983), a chess program calledPlanner was discussed. This program was
based off an existing chess engine, and modified to use planning. In this implementation,
there were 13 different plans available to choose from: attack king-side, attack queen-side,
attack center, defend king-side, defend queen-side, and defend center were general plans.
Attack pawn weakness, occupy open file, pawn break, advance passed pawn, defend pawn
weakness, and block passed pawn were specific plans. The finalplan was wait, which was
invoked when another plan could not be decided upon.

The plans were selected by a complex analysis routine, whichexamines the position of
the board using a lot of chess knowledge. This differs from standard evaluation functions,
which are written to be quick so that they can be used in massive tree searches. The plan is
chosen and activated, and then information about the plan isstored, so that the plan may be
ended if it goes outside certain conditions.

When a plan is active in this engine, it serves to bias the choices of the standard minimax
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1.�h5+ �xh5 2.fxe6+ �g6 3.�c2+ �g5 4.�f5+ �g6 5.�f6+ �g5 6.�g6+ �h4 7.�e4+
� f4 8.�xf4+ �h5 9.g3 �f8 10.�h4++

Figure 4.2: PARADISE finds mate in 19 ply

tree towards moves that are consistent with the plan. The plan is broken down into sub-plans,
and these sub-plans into moves. If a plan starts to go wrong, or is not making progress, then
it is replaced with the wait plan until another plan seems appropriate.

This chess engine was made to play against an unmodified version of the original engine
it was built on. The version with planning won 8 games, while the original version won only
2.

4.2.2 PARADISE

Another chess program that uses planning is PARADISE (Wilkins 1981). PARADISE is
more sophisticated thanPlanner, and uses a large collection of rules to suggest plans. Instead
of being based on a minimax tree and using the plans to guide the search, PARADISE uses
production rules that suggests moves which get stored in a database. The moves in the
database are then analyzed to find the best one. The program iscapable of finding very deep
combinations because no artificial limit is placed on its search depth. It searches for moves
as long as a plan is continuing to work.

The rules for PARADISE were obtained by solving chess puzzles from a puzzle book
and writing down rules that could be used to solve the puzzlesin a similar manner. The chess
engine interprets these rules, which match various patterns on the chess board. If a pattern
matches, then it posts its goals and moves into the database for further consideration. The
actual tree that the system builds is very small, only a few hundred nodes, but it is incredibly
deep and does not suffer from lack of breadth because the direction was dictated by the rules.
PARADISE follows a plan until it fails or a significantly better one is found.
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4.3 Acquiring Knowledge

In order to be able to use knowledge, it must first be acquired.Simon & Schaeffer (1992)
state that “there is good evidence that it takes a minimum of ten years of intense application
to reach a strong grand master level in chess,” and that “presumably, a large part of this
decade of training is required to accumulate and index the 50,000 chunks.” Perhaps this
is a reason why there has not been extensive use of knowledge in chess programs–it would
simply take too long to provide the program with enough knowledge to make it play a strong
game in all cases.

4.3.1 Human Input

Most programs that use knowledge to some degree of sophistication have the knowledge
input by human experts. This works fine for small amounts of data, but it is not really
possible to have a grand master sit down and tell a computer everything he knows about
chess. Anotherknowledge acquisition bottleneck(George & Schaeffer 1990) is the fact that
often the programs are written by scientists and not by chessplayers. The interface for
adding knowledge, designed by the scientist, may be difficult for the chess expert to use.
George & Schaeffer (1990) proposed a graphical interface for MACH as a solution to this,
but also say that “if MACH were ‘intelligent’ enough to defineand re-define its own set of
chunks, this bottleneck would greatly diminish.”

Despite the large amount of time and difficulty required for ahuman to provide knowl-
edge to a program, there is one obvious advantage–it is possible to describe high-level con-
cepts, such as plans, to the program. With human input it is easy to define goals and steps
required to achieve them; with automated systems it is hard to acquire anything beyond very
basic knowledge.

4.3.2 Automatic Acquisition

There have been a few attempts to create programs that are capable of learning concepts
and rules of the game, mostly using explanation-based learning and case based reasoning.
However, these systems are only capable of learning simple combinations that are present
in the move tree and are not capable of understand more interesting positions and ideas
(Fürnkranz 1996).

More work has gone into learning chess knowledge by modelling the way humans ac-
quire, store, and use knowledge. The chunking theory is the basis for most of these models,
which attempt to classify chunks on the board and associate information about the game with
these chunks using a model of human cognition. The models arebased on EPAM (Elemen-
tary Perceiver And Memorizer) (Feigenbaum & Simon 1961, Feigenbaum & Simon 1962),
which is a system designed to simulate human verbal learning. EPAM has mechanisms to
simulates short- and long-term memory. It uses a discrimination network to store data, where
each non-leaf node is a test and each leaf node represents something that has been stored in
the network. The long-term memory is simulated by the discrimination net; when learning,
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the input is sorted through the tests in the network and stored as a leaf node.

One of these models is CHREST (Chunk Hierarchy and REtrievalSTructures) (Gobet &
Lane 2001). CHREST adds a few features to EPAM which let it model complex data more
easily. It was applied to chess by using virtual eyes that mimicked human eyes scanning a
chess board. The chunks the eyes observed were added to the discrimination net. There is
a program, CHUMP, that is based on CHREST and plays chess by using pattern matching
only, without searching.

Hyötyniemi (1997) proposed an alternative method of finding chunks in positions that
does not try to imitate the way humans learn. This method usesthe generalized generalized
hebbian algorithm to extract features from board positionsand group them.



Chapter 5

Clustering

In order to associate knowledge with different groups of pieces, it is first necessary to define
what those groups of pieces are. This can be achieved by usingclustering, a form of unsu-
pervised learning, to extract information about the positions of pieces in a set of games. The
generalized generalized hebbian algorithm (Hyötyniemi 1996) is well suited for this task.

5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a standard statistical method that can be used for
analysis and dimension reduction. PCA takes a set of data andreturns a new set of axes,
called principal components. The first axis is aligned in thedirection of the highest variance
in the data. The second is aligned, orthogonal to the first, inthe direction of the second
highest amount of variance, and so on. Examining the data along the first axis shows the
most amount of information in the data possible on one axis. If the first two principal com-
ponents are used then the amount of information shown from the data is the most possible
for two axes. The principal components are ordered; the firstis capable of showing the most
information, the last the least. This is useful for visualizing high-dimensional data — dis-
playing a two- or three-dimensional graph using the first principal components maximizes
the amount of information that can be seen, making it easier to analyze. It is also good for
dimension reduction because the greatest amount of information possible is preserved in the
lower-dimensions space.

The principle components are calculated by finding the eigenvectors of the covariance
matrix of the data. The eigenvector with the greatest eigenvalue is the first principal compo-
nent, and the eigenvector with the lowest eigenvalue is the last principal component.

There is another way to calculate the principal components which does not explicitly
calculate the covariant matrix. It uses a neural network andis called the Generalized Hebbian
Algorithm.

15
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5.2 Generalized Hebbian Algorithm

The Generalized Hebbian Algorithm (GHA) is named after a theory of learning behavior
proposed by Donald Hebb. His theory described a manner in which the relationship be-
tween cells in the brain becomes stronger over time. The moreoften the firing of one cell
contributes to the firing of another, the stronger the chancethe second cell will fire after
the first becomes. The term Hebbian can be used to describe most forms of unsupervised
learning or clustering, where the weights of the network areadapted to fit the input data.

Sanger (1989) described a method for using a single linear neuron for extracting the first
principle component of input data.

w(t + 1) = w(t) + η(t)
[

y(t)x(t)− y2(t)w(t)
]

. (5.1)

In that equation,w is the vector containing the weights,x is the input vector,y is the output
vector andη is the learning weight. The weight vector is being updated every epoch to better
model the input data. The weights in Hebbian learning can grow without bounds without
normalization, so the termy2(t)w(t) is needed to normalizew and keep|w| around 1. When
the network is trained, the weight vector is adapted and becomes equal to the first principle
component, the eigenvector with the largest eigenvalue from the covariance matrix, without
calculating the covariance matrix at all.

This can be generalized to extract all of the principal components, and was done by Oja
(1982), resulting in the GHA. This time a simple, one-layer neural network is used, with
one neuron for each principle component to be found. In orderto find the eigenvectors in
decreasing order, the input vector should be modified after every individual neuron is trained
to remove the contribution of that neuron.

wij(t + 1) = wij(t) + η(t)



yi(t)xj(t)− yi(t)
∑

k≤i

wkj(t)yk(t)



 . (5.2)

The summation term is responsible for removing the effects of previous neurons from the
input vector. In terms of PCA, this means that the first weightvector becomes the axis
aligned with the largest amount of variance, which is then removed from the input data,
allowing the second weight vector to align with the second largest amount of variance. This
continues for each neuron in the network. When the network has converged, the weights are
the eigenvectors of the covariance matrix of the input data.

5.3 Generalized Generalized Hebbian Algorithm

The Generalized Generalized Hebbian Algorithm (GGHA) was presented by Hyötyniemi
(1996) as a combination of clustering and principal component analysis. PCA assumes that
all of the data in the input set belongs to one distribution, but GGHA assumes that there
are multiple independent distributions in the data set. This is desirable for finding chunks
because chunks are groups of pieces that are independent of each other on the board. If
PCA was used to analyze a game, it would find features that represent the whole board.
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Knowledge could be associated with these features, but could only be used when the entire
state of the board matches. With GGHA, knowledge can be associated with each of the
separate distributions, which represent the chunks, allowing the presence of a group of pieces
instead of the state of the whole board to suggest moves.

GGHA is based on the Kohonen self-organizing map (SOM) (Hyötyniemi 1996), an
unsupervised learning method that is often used for featureanalysis. The SOM consists of
N nodes, represented by a set of codebook vectors,θi where1 ≤ i ≤ N . The SOM is
different from other networks because it has the idea of a neighborhood, where the locations
of the nodes are important. When the network is adapted, the node that best fits the input
data, the ‘winning’ node, is moved towards the input values.The other nodes are also moved,
but how much they are moved depends on their proximity to the winning node — the closer
the node to the winner, the more it is moved. Iff is the vector of input data andc is the
index of the node that best matchesf , the adaptation function is:

θi ← θi + γ · h(i, c) · (f − θi). (5.3)

The neighborhood parameter,h, determines how close theith node is to the winningcth

node and modifies the amount that the node is moved by. The parameterγ ensures that the
network converges.

The SOM itself is not capable of feature extraction, only of organizing the data that it is
given. GGHA is a modification to the standard SOM that performs feature extraction as the
network is trained. When the network converges, each node ofthe network (θi) is a basis
vector for the feature space. The GGHA assumes that each input vectorf can be expressed
additively as a sum of feature vectors,fi, multiplied by weightsφi:

f ≈
N

∑

i=1

φi · fi (5.4)

In order for the nodes to converge into basis vectors for the feature space, feature vectors
must be input to the SOM. A feature vectorfi can be extracted from the input vectorf with:

fi = (θT
i f) · θi = φiθi, (5.5)

and then the input vector should be updated:

f ← f − fi = f − φiθi. (5.6)

This process should be done starting with theθi that best matches the input vector (so the
weightφi is maximum) and proceeding in descending order to the worst match.

The problem with this is that in order to extract the feature vectors from the input vector
the basis vectors must already be defined, but the basis vectors are the codebook vectors of
the SOM, which are created by training on the feature vectorsfrom the input. In order to
overcome this circular dependency it is necessary to initialize the SOM to a random state and
thenassumethat the basis vectors have already been defined. If the data is applied iteratively,
the basis vectors will eventually converge on the correct values. Figure 5.1 shows the error
present in the SOM over time. It starts out very high and dropsas the network converges.
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Figure 5.1: The error in the network decreases with each epoch.
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Figure 5.2: 3D projection after 5 epochs.
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Figure 5.3: 3D projection after 15 epochs.

Figure 5.2 shows a series of positions from several games projected into 3D space. The
axes for the projection were selected using PCA. The points in the figure represent the input
vectors (the positions on the board), which were orignally 768-dimensional. The lines are
from the origin to the center of the clusters. It is interesting to see how the different games
diverge from one another; the points at the top of the figure are positions from the beginning
of the game, and as the game progresses, the points move clockwise and spread out.

In Figure 5.2, which shows the network after 5 epochs, the centers of the clusters are
quite close together, but in Figure 5.3, which shows the network after 15 epochs that have
moved and are now spread out more. This reflects the fact that the network is learning the
inputs better every epoch, and will eventually converge.

Figure 5.4 shows the same network at 15 epochs, but this time also shows the feature
vectors for each point mapped into 3D space. The length of each line represents the weight
φ of that particular feature. In this example, 4 featuresfi were assumed to contribute to
each input vectorf . Although it is hard to see in the diagram, there are 4 featurevectors
leading to each point. In some cases, the feature vectors only approach the input vector; this
is expected because the network has not converged yet and there is still a large amount of
error.
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Figure 5.4: 3D projection after 15 epochs, showing feature vectors.



Chapter 6

Implementation

6.1 GNUChess

GNU Chess is a free, open-source chess engine capable of master-level play, using many
modern ideas about computer chess. It uses bitboards to represent the board internally and
generates moves using the rotated bitboard technique, a relatively new method of quickly
generating moves by ‘rotating’ the order board squares are stored in the bitboard. For search
it uses Principle Variation Search (Marsland 1983), which is a modification to alpha-beta
search that can increase performance by using tighter alphaand beta bounds in the search.
The program also uses a hash table to store moves that have been evaluated previously,
increasing the search speed.

6.2 What Was Implemented

The main addition to GNU Chess this project made is, naturally, the GGHA clustering al-
gorithm that enables both the chunking of existing master games and also the analysis of
the game in progress. There are two different modes that can be used: the first is an altered
evaluation function that increases a move’s score if it is suggested by a chunk and the second
mode automatically plays a learned move if a familiar position is recognized.

6.2.1 The GGHA Algorithm

The GGHA algorithm was implemented in C and integrated into GNU Chess. A command
was added to the interface that reads in chess games from a fileand then runs the clustering
algorithm on them. The file is a PGN file, a standard format for recording chess games, and
in which thousands of master games are available openly on the Internet.

For each position read in from the PGN file the move that was made from that position
is recorded in a table, if it was played by the winning side. This helps make sure that the
moves collected are not outright blunders. Since multiple games may be read in at once from
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a PGN file a hash is calculated for each position and when the same position is encountered
multiple times each of the different moves are added to the list of moves made from that
position. The table also stores the number of times a move wasmade from a position. This
information is used later as another measure for determining the quality of the move. Once
this process is complete, the table is saved to a file.

As input, the GGHA algorithm takes the sample data as a matrixof real numbers (in
this implementation, C’s double type) where each column of the matrix is one sample, or
position from a game. For chess, each sample has 768 dimensions, one value for whether
each type of piece for each color is on each square of the board. If a piece is present the
corresponding value in the input is one; if it is not present the value is zero. The input matrix
thus has 768 rows and as many columns as unique positions thatwere read in from the PGN
file.

After it has finished, the algorithm returns two matrices, one containing the centers of
the clusters that were found and the other containing the feature model that was adapted,
which are then saved to files on disk. The next step is to use these matrices and the sample
data to construct a table that links specific chunks to positions and moves.

There is an analysis function, GGHAanal, which takes a data sample and the two ma-
trices returned from clustering and returns in a vector the coordinates of that data sample in
the feature space. The feature space has fewer dimensions than the original input data, the
actual number depending on the number of presumed clusters.It is also a sparse representa-
tion, meaning that most of the components of the vector are zero. Each component of vector
represents a chunk. If a component is non-zero then it means that specific chunk is present
in the data sample.

The chunk-to-move table is the same length as the vector returned from the analysis
function (because one entry is required for each chunk) and contains for each chunk a list of
indices to the original table holding positions and moves. The table is constructed by running
all of the original sample data through the analysis function and then, for each chunk present
in the returned vector, adding the index of the data sample tothe list of indices for that
chunk. When it is necessary to look up which moves were playedwhen a specific chunk
was present, the moves can be found by looking at the list of positions where that chunk was
present and then at the moves played for each of those positions.

Once this is complete, the table is saved.

6.2.2 Evaluation

After the initial run of the algorithm, the tables and matrices generated can be used in either
of two different modifications to GNU Chess. The first of theseis a modification to the
program’s evaluation function. The evaluation function looks at a position and gives it a
score based on heuristics such as pawn position, material balance, and control of the board.
The modification adds a small bonus to the score if the move to arrive at that position was
one suggested by a chunk.

When a position is being evaluated the previous position is chunked and a list of moves is
generated from the various tables. If the move that was used to arrive at the current position
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is in the list of moves suggested by chunking then a bonus score of one third of a pawn is
awarded to the current position. The bonus value was derivedfrom experimentation–too
large of a value and the program is likely to blunder if chunking suggest a bad move and too
small of a value means that chunking is essentially insignificant.

6.2.3 ChunkQuery

The other modification is the ChunkQuery function, which acts similarly to the BookQuery
function in GNU Chess. BookQuery uses a library of moves to automatically play based on
position during the opening moves of a game. The opening bookfeature is quite common
in modern chess engines as it allows the engine to make moves quickly at the beginning of
a game, saving time for deeper thought about later moves in tournament conditions. Chunk-
Query performs a similar function, but instead of playing moves based on exact position
matches and only at the beginning of the game, ChunkQuery uses chunking to generate a
list of moves and the best one of these is automatically played.

The best move is selected by several criteria, the most important being the number of
chunks that suggested that move. If, for example, there are four chunks found in the current
position, and all four of those chunks suggest the same move,this implies that the move
is a better one for the current position than a move suggestedby fewer chunks because the
position more closely matches the position the move was originally made from. The next
criteria is the number of times a move was made. This is only used when there are two or
more moves suggested by the same number of chunks. The move that was used the most
number of times in the sample games is the move that gets played.

The ChunkQuery function automatically plays the move, and no searching or other eval-
uation takes place. If the function fails to find any moves, then it falls back to a standard
search.

6.3 Problems

There are a few problems with the implementation in its current state. Foremost among
these is the fact that the GGHA algorithm is very slow for large sets of data. The algorithm
involves a lot of matrix multiplication, which is implemented here as anO(n3) operation.
The time is not that significant for small matrices, but when repeatedly multiplying matrices
with hundreds of thousands of elements it can take an incredibly long time to run. Clustering
around 500 moves took more than 24 hours to complete. A possible solution to this is to
use the Strassen method (or something similar) for matrix multiplication, which reduces the
number of operations required.

Another problem, related to the first, is that when searchingthe tree, the program evalu-
ates thousands of different positions. Running the analysis algorithm on each of the positions
takes a long time. This means that it would really not be possible to run the program in a
tournament under a time limit without finding a way to speed upthe evaluation. Limiting the
depth at which the modified evaluation takes place would substantially reduce the number
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of times the function has to be run, because the number of nodes evaluated increases rapidly
at each subsequent level of search.

The final problem is with the ChunkQuery function. Because the function plays a move
immediately, without evaluating anything else, it is rather prone to error and serious blunder.
If a position is similar enough to one that was learned then a chunk might match, even though
the small difference could change the entire meaning of the position.



Chapter 7

Experiments and Results

7.1 Testing the GGHA Implementation

In order to be sure that the GGHA algorithm was implemented correctly it was necessary to
test it. This was done by creating a large matrix of the form











1 2 3 ... 200
201 202 203 ... 400
... ... ... ... ...

19801 19802 19803 ... 20000











which is then chunked and reconstructed from the chunks. Thereconstructed matrix was
identical to the original, showing that the clustering worked properly. This test can be ac-
cessed inside the program with the command: chunk test.

7.2 Reconstruction of Positions

de Groot (1965) and Chase & Simon (1973) have established that the ability to reconstruct
a position on a board is a good measure of the player’s skill and library of knowledge.
Examining the ability of the program to reconstruct positions based on chunks provides a
rubric by which it is possible to gauge the success of the clustering method in defining and
identifying chunks.

The output from the reconstruction is, like the input, a 768-dimensional vector repre-
senting the presence of each type of piece on each square of the board. Also like the input,
the values are real numbers and as such can range from below zero to above one, which
represent the absence and presence of a piece on a square, respectively. In order to decide
whether or not a piece is present, thresholding is applied tothe vector (Hyötyniemi 1997).
Values above the threshold are treated as one, values below are treated as zero.

Figure 7.1 shows the board at the start of a game and Figure 7.2shows the board as re-
constructed using 4 chunks out of 100 possible, learned fromthe 1937 World Championship
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Figure 7.1: Position in a game.
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Figure 7.2: Reconstruction of Figure 7.1 using 4 of 100 chunks and a threshold value of 0.6.
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Figure 7.3: Reconstruction of Figure 7.1 using 4 of 100 chunks and a threshold value of 0.5.

games between Alekhine and Euwe. Most of the pieces are missing in the reconstruction, in-
dicating that the threshold value of 0.6 is too high. In Figure 7.3 the threshold value has been
changed to 0.5 and more pieces are visible, but the reconstruction is still incorrect. Pieces
are missing or in the wrong location, the black rook and king are in a castled position, and
there is an extra white rook. This occurs because there is no combination of chunks capable
of exactly representing all of the pieces on the board. Changing the threshold value only
changes which pieces are displayed, not which chunks are used in the reconstruction.

7.3 ChunkQuery

The position in Figure 7.1 was reached by playing against theprogram in ChunkQuery mode,
where chunks are found in each position and one of the moves suggested by chunking is
automatically played. In order to reach that position, the move e6 was played. This was one
of 7 moves suggested by chunking, which are listed in Table 7.1.

Move Number of Chunks Number of Uses
Nc6 2 1
e6 3 7
Bf5 2 38
c6 1 4
c5 2 1

Nbd7 1 1
e5 1 1

Table 7.1: Moves suggest by chunking before Figure 7.1.

The move e6 was chosen because it was suggested by more chunksthan any other move.
If there had been two moves suggested by an equal number of chunks then the move with the
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most uses would have been selected. In this case, the move selected was a reasonable one
for the position, but quite often the move selected is completely inappropriate, giving away
pieces and position for no benefit. There are a couple reasonswhy this can occur. First, all
of the moves selected might be used in a very low number of chunks, implying that only a
few similarities between the current game and the games the moves were learned from, and
any move used on this advice is very likely to be incorrect. The presence of a chunk does not
automatically mean that a move it suggests is the best one, oreven a good one, which is why
the move suggested by the most chunks is used. To alleviate this problem, a lower limit can
be imposed on the number of chunks required for a move to be used. If a move is suggested
by fewer chunks than the limit, then it is considered bad and not used. When this rule is
applied, the quality of the game played by the program improves drastically. As a game
progresses, the high branching factor means similarities between the actual position and
learned positions become increasingly less likely. Imposing a required number of chunks on
a move ensures that the move, if played, is at least somewhat relevant.

A second reason that incorrect moves are played is because the chunks are not precise
enough to represent the exact positions of all the pieces, meaning that two similar situations
will have the same chunks present and therefore suggest the same moves. The problem
with this arises because consecutive positions in the master games used for training are
represented by the same chunks, meaning that when they are recalled by ChunkQuery, both
of the moves from those positions are suggested, and the movethe occurred second in the
master games may be made first. When move ordering is important, this can have disastrous
effects–a move that relies on another piece being in position could be made before the other
piece has moved. Increasing the number of chunks and the number of epochs in training
would hopefully help define the chunks more precisely and reduce the problem, but this was
not the case. Using more data when defining chunks does help a little, but only if the new
data is similar; if it is not, then the chunks must represent agreater variety of positions,
leading back to imprecision.

7.4 Evaluation

In order to test the modified evaluation function, the modified program was made to play an
unmodified version of GNU Chess to see if there was any improvement in its play. Because
the modified program runs considerably slower, it was necessary to control a lot of variables
in order to make the games fair. There was no time limit set forthe games, so the programs
were allowed to think for as long as it took to select a move. Thinking during the opponent’s
time was also disabled, as this would allow the unmodified version a much larger amount of
time. The depth of search was set to a constant level in both ofthe programs, ensuring that
the only difference is the use of chunking in the modified program.

Figure 7.4 contains the results of this experiment. The modified program was set to play
against the unmodified version at search depths of 1, 2, and 3 with 10 games at each depth.
As a control, the unmodified version played itself 10 times ateach depth, too. One point
was awarded for a win, zero points for a draw, and one point wastaken away for a loss. The
score reported for the control is the score white got in thosegames.
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Figure 7.4: Scores

In the games with a search depth of 1, the modified program loses by 2 points to the
unmodified version. This, however, is not as bad as it seems. With a search depth of only 1,
both programs are just making the move that has the highest score and not even considering
what the opponent’s reply might be. Like this, the games played are only slightly better than
those played by ChunkQuery.

With a search depth of 2, the modified version does significantly better than the unmod-
ified version, winning by 5 points. In this case, the knowledge provided by chunking gives
the modified program quite an advantage. However, this advantage does not last when the
depth is increased to 3. In this case the modified program onlywins by 1 point, which is not
really significant considering that the control score was inthe other cases 1 and -1.

It is possible that the network was not trained well enough orthe positions in the games
at depth 3 were not recognized by the chunking, but it is more likely that the score dropped
because the limit of the knowledge being used was reached. The only knowledge used was
the list of moves that were made from similar positions — perhaps this is not enough to be
of any use when the search reaches a certain level.



Chapter 8

Conclusions

Even though it worked well only in certain caises, the program has shown that it has the
beginnings of an ability to acquire and use knowledge. It analyzed master games, broke
them down into chunks with a clustering algorithm, associated knowledge about moves with
each chunk, and then used this knowledge when playing chess.These are the building blocks
with which it might be possible to create a more advanced program that uses knowledge in
a much more sophisticated manner.

The level of knowledge associated with chunks here is quite low — just the next move
made from that position. The next step to take in this area is to associate greater amounts
of knowledge. One possible idea would be to associate part ofthe game tree with each
chunk, meaning that when the program is considering the moves suggested it can see what
happened previously and after that move in the master game. This would allow it to better
select a move that fits the current game and to choose the move with the best outcome. The
more knowledge added, the less search needs to be performed.If part of the game tree is
included then there is no need to search ahead — a move can be selected based on the game
tree from the master games. Interestingly, providing the game tree would also help eliminate
the problem with chunks matching too easily and moves being played out of order. If the
next few moves are available from the game tree they can always be used in the correct
sequence.

Once chunks serve as indices into game trees then it is possible to start adding even
more advanced applications, such as planning, to the program. If the presence of a particular
chunk indicates that a large material advantage is about to be won, say by capture of the
opposing queen, then this may be set as the goal and moves may be chosen from the game
trees that lead to this goal. In order for this to happen, knowledge about the state of the
positions in the game tree, such as positional value and material value, must be added.

Of course, in order to generate a strong program, tens of thousands of chunks — as many
as a grand master — must be defined. In humans it can take a decade to acquire all of this
knowledge, and it is quite possible that it will take a similar time for a computer.
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