

Citation for published version:
Fitch, JP & Padget, JA 2004, Ride a Cock-horse.... in J Delgado, P Nesi & K Ng (eds), WEDELMUSIC 2004.
Proceedings of the Fourth International Conference on Web Delivering of Music, 2004. IEEE, pp. 136-143,
WEDELMUSIC 2004, 1/09/04. https://doi.org/10.1109/WDM.2004.1358110

DOI:
10.1109/WDM.2004.1358110

Publication date:
2004

Link to publication

© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/WDM.2004.1358110
https://researchportal.bath.ac.uk/en/publications/ride-a-cockhorse(2c46c90d-e1f0-4431-8dc4-2fee44330352).html

Ride a Cock-horse ...

John ffitch and Julian Padget

Department of Computer Science, University of Bath, UK
(jpff,jap)@cs.bath.ac.uk

Abstract

We present a general architecture for a net-wide musi-
cal service, following previous work on mathematical ser-
vices on the ’net. The structure and components of this ar-
chitecture are identified, and a number of sample applica-
tions are presented, to show the scope of this architecture.

One aim of this proposal is the option of having music
where ever we go, whether delivered on a workstation, lap-
top or palm-held device. This opens up a number of possi-
bilities for performance or personal delight.

1. Introduction

We are considering what facilities are needed in a widely
based sound and music system, using thin clients such as
palm-held devices. Our starting point was in the design of
a system to help in the composition of computer music and
also to provide an interactive listening environment. That
system has been described elsewhere[1], and work on it
continues.

Starting from the MUSIC V concept of separating the
orchestra from the score we are developing tools to per-
form simple score editing [2], using agent technologies. Our
architecture assigns agents to each instrument used in the
piece of music, which could then interact with each other
and the composer of the music. This would allow a higher
level of control, and more control, over the piece being com-
posed.

A conductor agent provides the interface between the
user and the system, which then instructs performer agents
when and how to play the requested piece of music. The per-
former agents change their respective parts of the score in
response, and pass their output to a mixer agent. This mixer
agent then sends the completed (merged) score to Csound
to generate the piece.

As this work continues it became clear that we need to
develop a detailed ontology in which to express the modifi-
cations, and in particular an ontology of time.

Partly in response to the needs of distributed users we
also created the NetCsound facility[3] where users can ask
for pieces to be synthesised and delivered to a web browser.
This powerful but simple facility led to the question of what
would a full web-based synthesis system look like. This
paper provides a possible answer and in so doing, draw-
ing analogy from mathematical-based web services[4], pro-
poses a program of work for musical web services.

2. MONET

The Monet project (Mathematics On the NET) was a step
toward weaving together the emerging world of web ser-
vices – the semantic web – and grid computing, in that the
aim is deliver sophisticated mathematical problem analy-
sis and the code to compute the answers, for which grid
services will be required, in a common open agent-based
framework for the description and provision of web-based
mathematical services.

The application area is mathematics, and is deeply in-
volved in representing the semantics of mathematical no-
tation, and the automated use of computer algebra system.
The area may differ from music, but we content that there
are lessons to be learnt from their experience.

In the MONET architecture (see Figure 1) a client, us-
ing a browser, submits a mathematical question to a bro-
ker. The query contains the problem, described in the Open-
Math language[5], some information about the client, as de-
scribed in the example above, and possibly a description of
a particular service which the client wishes to use. This last
part is optional, and characterises the difference between a
relatively straightforward query — the user says use a given
service — and the much harder case, when all that the bro-
ker has to work on is the problem itself and must use mathe-
matical reasoning techniques to establish strategies for solv-

WEB SERVICE
CONTAINER

Service i

Service j

SITE-A

CLIENT
browser/

agent

MONET
broker

UDDI
UDDI

SITE-B

SITE-C

query = problem + [service] + [client]

result = OpenMath + error output

SOAP Envelope = hdr + body(OpenMath, Action)

Figure 1. General Monet Architecture

ing the problem. The information within the query is formed
from the Mathematical Query Ontology.

We note that there is a separation between the services
and a broker that has the task of identifying services and
negotiating for their use. The MONET project has devel-
oped the concept of the broker[6] significantly. The other
component to which we wish to draw attention is the ontol-
ogy, to which we return later (see section 3.5). In the case of
MONET there was a need to develop a Mathematical Ser-
vice Description Language, in addition to the problem and
query ontologies.

2.1. The Mathematical Broker

The broker is expected to operate in a number of roles
in order to process mathematical queries and discover ser-
vices. The ontologies combine to describe both the prob-
lems themselves and the services which could be used to
solve these problems. A broker intelligently matches ser-
vices to problems through consultation with the ontologies.
Essentially the broker is an intelligent collection of agents,
which may communicate with other brokers when choos-
ing a service to solve a particular problem. The client is ex-
pected to request their problem to be solved, either by a
specified service or software package already known to the
client, or by searching for an appropriate capable service.

An additional facility which is expected of the broker is
that of a planning service. This is necessary for compound
problems which require the facilities of more than one ser-
vice to solve. The planning service would provide an exe-
cution plan to be carried out by either the client, or by an
orchestration service on behalf of the broker.

The MONET system has been developed significantly

beyond this introduction, but we have presented here suffi-
cient of the architecture to see that it provides a shift from
local computation and local facilities to a net-wide GRID-
like system of services.

3. A Musical Web Architecture

We now consider how the lessons on MONET can be ap-
plied to a putative musical web service.

Musical activities can be thought of as a collection of ser-
vices; delivery of complete works as PCM or compressed
format, synthesis services, musical transformation services
(that is filtering) and storage services such as filing or burn-
ing CDs.

If we make the systematic changes to the MONET ar-
chitecture we can see the emergence of a musical web ser-
vice system. Using a browser as the interface to the web,
access is made to a musical broker (which we may name
an impresario) who has the responsibility for negotiating
with a number of musical service providers, presented as
web services. An XML-based language is needed in order
that these systems may communicate, a language we have
dubbed Musical Description Language or MDL; this is con-
sider in more detail in section 3.1. Eventually the results
will be returned to the browser.

A natural extension for the musical application is to al-
low the results to be provided elsewhere, such as a perfor-
mance system, active speakers, or similar facility. Similarly
there will be a need for the results to be sent to a collec-
tion of performers, as shown in figure 2. The Banbury pro-
cess differs a little from the MONET one as there the prin-
cipal application is to solve a problem, while in the applica-
tions we currently envisage the actions are more functional

MUSICAL WEB
SERVICE

CONTAINER

Service i

Service j

SITE-A

CLIENT
browser/

agent

BANBURY
broker

Remote
performer

Remote
performer

UDDI
UDDI

SITE-B

SITE-C

query = problem + [service] + [client]

result = MDL + error output

SOAP Envelope = hdr + body(MDL, Action)

Figure 2. General Architecture of Banbury

2

— synthesise this, filter that, or perform the other.

We will now consider the various components of this
structure, and identify the necessary actions.

3.1. Musical Description Language

In the mathematical arena there has been a significant
research effort spent on developing languages to communi-
cate mathematical semantics; OpenMath[5] is perhaps the
best known. Much of the equivalent musical work has con-
centrated on notation (for example see [7] and [8]) but we
require a much wider language. Related projects are the
MPEG-4 language SAOL[9] which in effect creates a lan-
guage for synthesis, within a certain limited scope, and
Open Sound Control[10] which is a low-level language
for controlling performance. Some aspects of SDIF[11] are
similar to what we need, dealing with streams of musical
data.

The MDL must be capable of representing not just CMN
(classical musical notation) and PCM streams, but also anal-
ysis data, spectral representations, and low bandwidth con-
trol information, as well meta data such as provenance,
composer, copyright and licensing information. It is clear
that this will need an extensible language to incorporate new
analysis methods and those aspect of which we have not yet
thought. This has the potential for a sink of effort, so we ex-
pect its design to be incremental, expanding as we add ap-
plications to the structure.

3.2. Banbury Broker

The broker requirements for the musical architecture are
very similar to those of the mathematical broker. The main
tasks are to identify web services for synthesis, analysis,
filtering, format exchange and so forth, and negotiate their
use.

The research consensus is to use ontology modelling lan-
guages for the purpose of locating web services, meaning
DAML+OIL and the now almost finalised OWL [12]. How-
ever, both of these are rather too general and because of
the expected growth in web services, extensions to sup-
port service descriptions have been created, namely DAML-
S [13, 14], OWL-S, respectively, although at the moment,
tools are only available for DAML-S, of which RULE-
ML [15] reasoners were potentially the most relevant for
the MONET work; as yet there is no clear equivalent mech-
anism for a musical broker, and we need to develop this.

The acquisition process for a service can be looked at
as a three step process in which three different kinds of
agents have supporting rôles to play. Broadly, these three
categories of agents are: service agents, middle agents and
service requester agents. The service agents act as front-
ends to specialised musical software, the requester agents
ask the service providers to carry out their service function,
while the middle agents are responsible for locating specific
provider agents (matchmakers and brokers).

3.3. Musical Web Service Container

The services identified by the broker are not the direct
raw services but are encapsulated in a Musical Web Service
Container. We are expecting that many services that the user
requests as a single action will in practice be provided by a
collection of web services. In order to hide this layer our ar-
chitecture has container services. An example can be found
in the examples section (4.2).

3.4. Interaction frameworks

All musical performance is ultimately grounded in inter-
action. Even in the case of a solo performance, such interac-
tion may take place between composer and performer, be-
fore a performance, as part of the process of the develop-
ment of a piece. But the more natural reaction is to think of
the interaction between performers during the performance.
Here it is at its simplest in the case of a duet and rapidly
gets more complicated as numbers increase until it is ac-
cepted that a conductor is required.

It is a novel observation that these interaction frame-
works exhibit similar characteristics to so-called institu-
tional structures and thereby to the norms that capture the
range of behaviour, rules and procedures that govern inter-
action between the participants. Although our work in in-
stitutions and norms is rooted in the economic concept es-
tablished by North [16], we believe the principles are much
more general. Starting from the ideas put forward by North
[17, 18], we have applied them in diverse area such as fish
auctions [19] and organ and tissue transplant management
[20] as well as making progress on their formalisation for
computational and reasoning purposes [21, 22]. In this last,
North’s concept of norm is stratified into four levels:

abstract norms: which capture high level goals in general
terms, frequently un-related to any application domain.
The best example of this is that “each agent shall be
treated fairly” – obviously the interpretation of this is

3

quite different in concrete terms if one considers a trad-
ing versus an organ transplant scenario.

concrete norms: which derive from abstract norms, but
are grounded, typically by means of an ontology, in a
particular domain – for which the ontology defines the
concepts and their relationships. A musical example
could be that in a jazz combo, each agent shall have an
improvisatory solo, or that in an orchestra, each agent
shall have constrained freedom of interpretation.

regulatory norms: are more specific still, and typically
define obligations or prohibitions in terms of a contex-
tual condition and a corresponding action. For instance
within a ensemble each player-agent is obliged to fol-
low the conductor, and may not drown-out the melody
line,

procedural norms: are the most detailed level and effec-
tively define a protocol, not necessarily as a totally or-
dered sequence of events, but in which some actions
must precede or succeed others. The classical example
is that of a conversation, in which – normally – speak-
ers take turns, but at times, one may interrupt the other,
perhaps accompanied by some action or signal. A sim-
ilar protocol can be observed in musical improvisation.

For the sake of the remaining discussion, we should
make clear that we will use the term “norm” in the same way
as North, that is to refer to any or every constraint on be-
haviour, regardless of the degree of detail, unless the point
depends on the level.

By being able to classify a norm and identify its level,
this contributes to further clarification, since it establishes
– or not! – the relationship between norms at adjacent lev-
els in the stratification. A vertical set of relationships be-
tween levels is the representation of and the means for the
validation of a policy.

The purpose of this quite extensive introduction to insti-
tutions and norms is to underpin our assertion that economic
institutions as defined by North are a specialised application
of a more general principle for which we use the cumber-
some term interaction frameworks. And furthermore, these
interaction frameworks can be used to capture the norms
that guide musical performance. As a result, we believe
this approach can then be used with multiple performers –
both synthetic, in the form of agents playing synthesised in-
struments, and human – enabling electro-acoustic music to
move beyond humans either playing against an unchang-
ing recording or perhaps at best triggering musical events
via midi.

3.5. Musical Ontologies

The framework approach that we have just described is
a part of the story: it defines the context in which the agents
(human or software) interact, but it says nothing about what
they communicate to one another. For that we need a lan-
guage, or perhaps several languages. Again drawing from
our background in software agents, we see the FIPA [23]
agent communication language performatives as quite ade-
quate for describing the speech acts of one agent to another.
The complete list is:

accept-proposal, agree, cancel,
cfp, confirm, disconfirm,
failure, inform, inform-if,
inform-ref, not-understood,
propose, query-if, query-ref,
refuse, reject-proposal,
request, request-when,
request-whenever, subscribe

But the primitives are inform and request, with the
rest being macros.

However, although the FIPA performatives enable one
agent to convey to another the kind of illocution (s)he/it is
making, the critical component is the content of the com-
munication. For this we need two things: 1. a content lan-
guage in which to write expressions – typically this is sim-
ilar to predicate calculus – such as Jade’s [24] SL (Seman-
tic Language). There are many such other languages, but
since we are using Jade for our work, we are also using SL.
2. an ontology, whose elements will be the leaves of the ex-
pressions, which defines the concepts that constitute a do-
main of discourse and the relationships between the con-
cepts. Again, there are numerous ontology description lan-
guages, but the one that is set to become the most widely
used is OWL [12] and we have been developing tools to
translate a limited subset of OWL to fit into Jade’s (single
inheritance based) ontology class structure [25].

One of out primary aims in developing this system is that
it should be used for composing, listening to and perform-
ing computer music. In such a complex system, there are
many concepts which must be modelled for expression in
agent � agent communication and agent � human commu-
nication. With this in mind we intend to develop a collec-
tion of layered, time and musical ontologies. So far we have
put together a very basic performance ontology covering
the standard (Italian) musical terms that frequently deco-
rate scores – as well as implementing the actions that agents
must take to apply these instruction to transform scores ap-
propriately. This is an area where there is much to be done,

4

and we expect development to proceed as applications re-
veal the detailed needs.

Thus our performance agents can pass relatively simple
messages around the system, and the Jade system automat-
ically generates appropriate codec methods for the ontolog-
ical terms, so it is straightforward for an agent to see what
it is being asked to do. Having the ontology does not how-
ever remove the problems of the size of musical data, an is-
sue to which we will return in section 4.3

4. Example Projects

In this section we present a range of projects that fit
within the web services model for musical delivery, ranging
from simple ones to more speculative ideas. Not all of these
are complete, but by describing them we seek to convince
the reader that the architecture is fundamentally sound.

4.1. NetCsound

NetCsound is a simple web page that allows a user to
enter a Csound[2] orchestra and score as an XML docu-
ment. This can be specified either as a local file or a URL.
The computer behind the web page then synthesises the mu-
sic, optionally compressing it with Ogg – conceptually this
could be any compressed format, but there are licencing is-
sues to consider. As synthesis can be a slow process the
client has the option to wait for the result, or to elect to have
an e-mail sent when it is available.

This can be seen as a very simple Container service. The
initial version was in reality a single site, but when MP3
compression is introduced this will be performed on a sep-
arate computer which has an MP3 creation licence. The
user will not need to be concerned that this component is
achieved using a separate site, as the functionality will be
provided by the container site.

The initial version of NetCsound was actually driven by
a CGI script, but this is now being replaced by a proper
web-service to provide the seamless integration of a syn-
thesis and a compression service.

Of course in the larger scheme this service needs to be
known to a broker, who may have a number of similar ser-
vices.

SYNTHESIS
SERVICE

CONTAINER

Csound

Compression

NetCsound

CLIENT
browser/

agent

query = CSD + [client]

result = Audio + error output

Figure 3. the NetCsound System

4.2. Net-based Audio Processing

The logical development of the NetCsound web service
is a collection of audio transformation services that may
be composed, the results of one being fed into another.
Following the experience of MONET we will be re-using
the mechanisms developed in that project, where we used
BPEL4WS to generate and handle the workflows between
multiple services. The first topic we are working on in this
context is signal filtering, since the composition of filters
is both useful in itself as well as being an instructive pro-
cess. Furthermore, as the client experiments with the com-
position of various simple filters, until the desired effect is
obtained, it would then be possible to construct automati-
cally a single filter from the composition and then deploy
that as a new service.

For the present we just have a basic filtering mechanism,
with a two families of web service providing a second order
FIR filter

���������
	��������	�������������	������

and a family of second order IIR filters

������	������
������������� ���������

The client requests that a series of filters are applied
to a signal using a Musical Service Description Language,
such as given in Figure 4, where the om namespace prefix
refers to OpenMath [26], an ontology for semantic markup
of mathematical information.

This problem statement of the required action may be
sent to a broker [6] – a further concept that we are re-using

5

<banbury:action id="my filtering">
<filter

source="http://mysound.org/a.wav">
<filter:cascade>

<filter:iir>
<om:OMV name="b1"/>
<om:OMI>-1.0</om:OMI>
<om:OMV name="b2"/>
<om:OMI>-1.0</om:OMI>

<filter:iir/>
<filter:fir>

<om:OMV name="a0"/>
<om:OMI>1.0</om:OMI>
<om:OMV name="a2"/>
<om:OMI>0.5</om:OMI>
<om:OMV name="a3"/>
<om:OMI>0.5</om:OMI>

<filter:/fir>
<filter/cascade>

</filter>
<banbury:/action>

Figure 4. An example of a filtering problem

from the MONET project – whose task is to identify two fil-
ter services, one in each family, and arrange that the output
from the first is fed to the second, and the total output re-
turned to the original client.

There are two obvious extensions to this process: one
is the use of mathematical services, like those developed
and deployed in MONET, to solve algebraic and numeri-
cal aspects of DSP, and the other is the orchestration (to use
the accepted term for combining web services) of numer-
ous DSP functions published as web services.

4.2.1. MONET and Banbury. MONET has developed
generic technology for the description and invocation of
mathematical web services. Amongst the demonstrator ser-
vices that have been set up is one for factoring polynomials.
This is directly applicable to the construction of a filter cas-
cade, since by factoring the rational response function of a
higher order filter over the reals, into quadratic and linear
factors, and then generating the banbury:action from
the the result of the MONET query, we can identify a set
of simple filters that may be composed to achieve – numer-
ically stably – the effect of the high order response func-
tion. Integrating this technique with a filter design program
such as METEOR[27] is an attractive additional project.

4.2.2. DSP Flow Processing. The example presented
above only used filtering, but it is a small step from that

to providing a range of simple DSP processes as web ser-
vices, which can be orchestrated and combined via a com-
plex query and brokerage scheme. Services with zero or
one audio input and one audio output are really no dif-
ferent to the filter services. We need to extend to some
acyclic directed graph with duplication and merging ser-
vices and the whole process becomes like a DSP net-
work, as used to illustrate Csound orchestras, or more
immediately relevant, to a MIDAS-like distributed syn-
thesis system[28]. The planning of the flow through
the signal processing network is controlled by the bro-
ker. We do not expect a service based on the worldwide
web to provide comparable efficiency, but on a local dedi-
cated network it might be expected to be competitive, and
easily upgradable as the hardware improves. It also pro-
vides an opportunity for specialised synthesis services,
such as a high-quality piano emulation, or a full gui-
tar model, to be incorporated into a non-real time synthesis.
While it is beyond the scope of our current work, the bro-
kerage service could negotiate a price for use of a unique
sound.

Work has begun on the MIDAS-like system, called
Pactolus after the river that inherited King Midas’ gold cre-
ating habit.

4.3. Remote Performance

A problem we have not considered above is the size of
audio data. This introduces problems of latency and possi-
ble lack of quality of service. In this section we consider
a model for remote performance of synthesised electro-
acoustic music, which has a low data transfer rate between
the performer and the performance site.

In order that the data transfer rate is not a limiting fac-
tor we need to ensure that only control data is transferred,
which requires that the synthesis take place at the perfor-
mance site. The remote performer can send control data, in-
fluencing the actual synthesis.

Based on the MUSIC V model, we take the original
score and divide it into regions (not necessarily coincid-
ing with the score sections, but sub-components of sections)
for which some gestural modifications are possible. Modi-
fications such as amplitude, tempo or instrumental balance
are the most obvious examples, but in any individual piece
there may be others. The performer can indicate modifica-
tions to the synthesis for the next score region that has not
yet started. The additional control data is then sent to the
performance site. As long as the control regions are suf-
ficiently long there should be no latency problems. If we
use a time synchronisation protocol such as Network Time

6

Protocol[29] it should be possible to make the remote per-
formance appear at exactly the same time as the performer
hears the monitoring system. If a short delay is acceptable
then the performer could be playing the piece a few seconds
earlier, which would allow for smaller regions and even ret-
rospective control.

The main concept for this remote performance is the
physical separation of the performer and the performance,
but we can extend the ideas to multiple performers in one
space; it does include the possibility of a netbased perfor-
mance of Xenakis’ Duel or Stratégie, and the opening of
opportunities for more heteronomous music[30].

5. Conclusions

We have presented a web-services musical architecture
that can provide a secure foundation for a wide variety of
musical activities, and especially those that are geograph-
ically diverse. In analogy to ubiquitous computing we are
providing ubiquitous sounds, and hence music. It can sup-
port synthesis from a simple hand-held device, and remote
performance processes. The working title of Banbury re-
flects this universality of sound.

In the words of the old English nursery rhyme,

Ride a Cock-horse to Banbury Cross
To see a fine lady on a white horse
With rings on her fingers and bells on her toes
She shall have music where-ever she goes.

The architecture we have presented here should provide
the structure for music wherever we go, whether on laptops,
workstations, PDAs or mobile telephones.

References

[1] John ffitch and Julian Padget, “Learning to Play and Per-
form on Synthetic Instruments,” in Voices of Nature: Pro-
ceedings of ICMC 2002, Mats Nordahl, Ed., School of Mu-
sic and Music Education, Göteborg University, September
2002, ICMC2002, pp. 432–435, ICMC.

[2] Richard Boulanger, Ed., The Csound Book: Tutorials in Soft-
ware Synthesis and Sound Design, MIT Press, 2000.

[3] NS-Dream, “NetCsound,” http://dream.cs.bath.
ac.uk/netcsound.

[4] Marc-Laurent Aird, Walter Barbera Medina, and Julian Pad-
get, “Monet: service discovery and composition for math-
ematical problems,” in Proceedings of IEEE workshop on
Agent-based Cluster and Grid Computing (at CCGrid 2003),
Omer Rana and Sven Graupner, Eds. IEEE Computer Soci-
ety, May 2003, pp. 678–687, IEEE Computer Society Press,

ISBN 0-7695-1919-9. Invited paper. Also available from the
MONET project website: http://monet.nag.co.uk.

[5] The OpenMath Society, “OpenMath website,” http://
www.openmath.org, February 2003.

[6] Walter Barbera Medina, Julian Padget, and Marc-Laurent
Aird, “Brokerage for Mathematical Services in MONET,”
in Collected papers from Web Services and Agent Based
Systems workshop (AAMAS’03), Laurence Cavedon, Ed.
Kluwer, 2004, in press.

[7] Kai Renz and Holger H. Hoos, “A WEB-based Approach to
Music Notation using GUIDO,” in Proceedings, ICMC’98,
M. Simoni, Ed. ICMA and University of Michigan, October
1998.

[8] “Musicxml definition,” http://www.recordare.
com/xml.html, January 2004.

[9] Eric Scheirer, “SAOL Home Page,” http://sound.
media.mit.edu/˜eds/mpeg4/.

[10] Matthew Wright and Adrian Freed, “Open SoundControl:
A New Protocol for Communicating with Sound Synthesiz-
ers,” in Proceedings ICMC 1997, Perry Cook, Ed. 1997, pp.
101–104, ICMA and Aristotle University of Thessaloniki.

[11] Matthew Wright, Amar Chaudhary, Adrian Freed, Sami
Khoury, Ali Momeni, Diemo Schwarz, and David Wessel,
“An XML-based SDIF Stream Relationships Language,” in
ICMC2000, Ioannis Zannos, Ed. ICMA, August 2000.

[12] “Web Ontology Language (OWL) Reference Version 1,”
http://www.w3.org/TR/owl-ref/.

[13] DAML, “DAML-based Web Service Ontology,” Octo-
ber 2002, Available from http://www.daml.org/
services/daml-s/0.7/.

[14] Massmo Paolucci, Katia Sycara, and Takahiro Kawamura,
“Delivering semantic web services,” Tech. Rep. CMU-RI-
TR-02-28, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, December 2002.

[15] RULE-ML, “Rules and Rule Markup Languages for the Se-
mantic Web,” 2003, Available from http://www.dfki.
uni-kl.de/ruleml/.

[16] Douglass C. North, Institutions, Institutional Change and
Economic Performance, Cambridge University Press, 1991.

[17] P Noriega, Agent mediated auctions: The Fishmarket
Metaphor, Ph.D. thesis, Universitat Autonoma de Barcelona,
1997.

[18] J-A. Rodrı́guez, On the Design and Construction of Agent-
mediated Institutions, Ph.D. thesis, Universitat Autonoma de
Barcelona, July 2001.

[19] Joan-Antonı́ Rodrı́guez, Pablo Noriega, Carles Sierra, and
Julian Padget, “FM96.5 A Java-based Electronic Auction
House,” in Proceedings of 2nd Conference on Practical Ap-
plications of Intelligent Agents and MultiAgent Technology
(PAAM’97), London, UK, Apr. 1997, pp. 207–224, ISBN
0-9525554-6-8.

[20] Javier Vázquez-Salceda, Julian Padget, Ulises Cortés, An-
tonio López-Navidad, and Francisco Caballero, “Formaliz-
ing an electronic institution for the distribution of human tis-
sues,” Artificial Intelligence in Medicine, vol. 27, no. 3, pp.
233–258, 2003, ISSN: 0933-3657.

7

[21] Marc Esteva, Julian Padget, and Carles Sierra, “Formalizing
a language for institutions and norms,” in Intelligent Agents
VIII, Jean-Jules Meyer and Milinde Tambe, Eds. 2001, vol.
2333 of Lecture Notes in Artificial Intelligence, pp. 348–366,
Springer Verlag, ISBN 3-540-43858-0.

[22] Javier Vázquez-Salceda, The role of Norms and Electronic
Institutionsin Multi-Agent Systems applied to complex do-
mains. The HARMONIA framework, Ph.D. thesis, Univer-
sitat Politècnica de Catalunya, 2003.

[23] Foundation for Intelligent and Physical
Agents, “Agent communication language,”
http://drogo.cselt.stet.it/fipa/spec/fipa97.htm, 1997.

[24] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa,
“JADE — A FIPA-compliant agent framework,” in Proceed-
ings of the 4th International Conference on the Practical Ap-
plications of Agents and Multi-Agent Systems (PAAM-99),
London, UK, 1999, pp. 97–108, The Practical Application
Company Ltd.

[25] Daniel Jiménez Pastor and Julian Padget, “Towards HARMO-
NIA: automatic generation of e-organisations from institution
specifications,” in Proceedings of Ontologies in Agent Sys-
tems at AAMAS03, 2003, Published electronically at http:
//CEUR-WS.org/Vol-73/oas03-jimenez.pdf.

[26] The OpenMath Society, “OpenMath website,” http://
www.openmath.org, February 2003.

[27] K. Steiglitz, T.W. Parks, and J.F. Kaiser, “METEOR: A
Constraint-Based FIR filter design program,” IEEE Trans.
Signal Processing, vol. 40, no. 8, pp. 1901–1909, August
1992.

[28] T. Anderson, A. Hunt, R. Kirk, P. McGilly, R. Orton, and
S. Watkinson, “From Score to Unit Generator — A hierar-
chical view of MIDAS,” in Proc. International Computer
Music Conference, San José, 1992, pp. 235–238, ICMA.

[29] David L. Mills, “RFC1305: Network Time Proto-
col (Version 3). Specification, Implementation and Anal-
ysis,” http://www.faqs.org/ftp/rfc/rfc1305.
pdf, March 1992.

[30] Iannis Xenakis, Formalized Music: Thought and Mathemat-
ics in Music, Pendragon Press, 2nd edition, 1992.

8

