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Abstract

The main topics of this thesis are forward and inverse problems in electromagnetic

imaging. While the main focus is on magnetic induction tomography, other modal-

ities including, electrical resistance tomography, electrical capacitance tomography

and magnetostatic permeability tomography are treated. Regularized Gauss-Newton

method is used as a nonlinear inverse solver and applied to both simulated and ex-

perimental data. Finite element programs using nodal and edge elements have been

developed for the forward problems. For the large scale forward problems of resis-

tance tomography we employed algebraic multigrid method to improve the speed

of the solution. Sensitivity formulae are derived for all these modalities, where the

change in measurement due to small change in material properties can be calculated

efficiently. This thesis reports some of the first results of using nonlinear reconstruc-

tion for electrical capacitance tomography and magnetic induction tomography for

simulated and experimental data. The monotonicity method, a pixel based shape

reconstruction method, and the level set method, an interface based shape method,

have been implemented for two phase materials. The contribution of this thesis in

monotonicity is to apply the method to the electrical resistance tomography with the

complete electrode model and apply it to the electrical capacitance tomography with

simulated data. In the level set method a narrowband technique is implemented to

reconstruct the interfaces between two phases. Reconstruction of two phase materi-

als with experimental electrical resistance and capacitance tomography data in two

dimension and simulated data for electrical resistance tomography in three dimension

by using the level set method are presented thesis for the first time.
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Chapter 1

INTRODUCTION

Low frequency electromagnetic tomography techniques (less than 20 MHz) are used

to non-invasively create cross sectional images of the objects with contrasts in one

or more of the passive electromagnetic properties (PEP) including conductivity, per-

mittivity and permeability. Magnetic induction tomography (MIT) [58], [78], [116],

[145], [131] is a relatively new member of the electromagnetic imaging family, which

works based the eddy current in conductive objects. Image reconstruction of MIT and

the three other members of this family, including magnetostatic permeability tomog-

raphy (MPT) [88], electrical impedance tomography (EIT) [32], [168] and electrical

capacitance tomography (ECT) [175] have been studied in this thesis.

EIT is the oldest member and was introduced in a medical context by Barber and

Brown [8]. ECT has been used for industrial process tomography applications mainly

for materials with low permittivity and negligible conductivity. This thesis will study

MIT in conductivity imaging mode and MPT for permeability imaging. EIT con-

sidered here works in electrical conductivity mode, so it is referred to as electrical

resistance tomography (ERT).

1
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In MIT and MPT a magnetic field from an excitation coil is applied to the object.

MIT is based on concept of the eddy current that originates with Michael Faraday’s

discovery of electromagnetic induction in 1831. In MIT, a time varying magnetic

field is induced in the sample material using a magnetic coil with alternating current.

This magnetic field causes an eddy current to be generated in conducting materials.

These currents, in turn, produce small magnetic fields around the conducting materi-

als. The smaller magnetic fields generally oppose the original field, which changes

the transimpedance between excitation and sensing coils. Thus, by measuring the

changes in transimpedance between magnetic coils as it traverses the sample, we can

identify different characteristics of the sample. In MPT there is no eddy current and

changes in magnetostatic fields due to the presence of a permeable object can be de-

tected by sensing coils. The mutual inductances between excitation and sensing coil

is the measurement data in MIT. In ERT electrical current is applied to the conductive

body via excitation electrodes and resulting electric voltages are measured in periph-

eral electrodes. In ECT electric potential is applied to the excitation electrodes and

capacitances are measured between pairs of electrodes. ERT requires direct contact

between the imaging area and the electrodes, but MIT and MPT are fully contactless,

and ECT can be used without direct contacts.

All these modalities are inherently complex. They need energization of target region,

sensors, electronics, data acquisition and data processing. Induced voltages in MPT

and MIT, measured voltages in ERT electrodes and measured capacitances between

ECT electrodes are the data for the image reconstruction.

There have been extensive studies of the image reconstruction for EIT including many

past PhD theses designated only to the EIT image reconstruction (see for example

[17], [121],[160], [20], [101], [178]). Image reconstruction in EIT is more advanced
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than for ECT and MIT. For instance, nonlinear image reconstruction methods, includ-

ing most commonly used regularized Gauss-Newton, are now widely adapted for EIT

imaging but not for ECT or MIT. The area of image reconstruction in ECT and MIT

is still very underdeveloped. In the past few years many interesting works have been

done in the area of sensor design [132], electronic design [162], [78] and basic under-

standing of the sensitivity maps in MIT [143]. Various types of linear reconstruction

methods were used for the image reconstruction of ECT and MIT [176], [79], [11].

In ECT the main focus was to generate images by fast methods, so the computational

time and complexity of a nonlinear solver could be a reason why it has not been ex-

ploited. Non-phenomenological methods (methods that do not consider and thus are

not benefiting from the knowledge of the underlying physics of the measurement sys-

tem) such as Neural Network and Genetic algorithm were used for ECT and MIT [50],

[80], [103]. In phenomenological methods such as regularized Gauss-Newton meth-

ods one needs to numerically model the underlying physical problem. Modelling of

the electric fields in ECT and ERT involves solving a Laplacian elliptic partial differ-

ential equation and scalar fields. The finite element method (FEM) [179] is a powerful

tool to solve such a problem. In MIT, further development of the image reconstruction

(phenomenological method) requires computation of the general eddy current prob-

lem involving vector fields. Some simplified models were used earlier by using scalar

fields in MIT [51], which were not accurate to model for higher frequency cases. Edge

FEM are developed for the eddy current problem to enhance the computation of vector

fields. In the past decade finite element solution of the eddy current problem has been

an active area of research [12], [19], [30], [48]. In this thesis we have implemented

nodal and edge finite elements for the forward problem in ECT, MPT and MIT.

Recently, shape based reconstruction techniques have become more popular in EIT.
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The shape reconstruction method is intended to be applied in situations where approx-

imate values of the parameters inside non-smooth, high-contrast structures are avail-

able, but the sizes, shapes, locations and geometry of these structures are unknown.

For example, shape reconstruction method has been studied in [76], monotonicity

based shape reconstruction in [155], linear sampling methods in [26], and level set

method in [31]. Further study of the monotonicity method is considered in this thesis.

So far most of these schemes have been applied to simulated data. The linear sampling

method was applied to real measurement data in EIT and the results were reported in

[61]. In this thesis we have designed a narrowband level set method for the shape

reconstruction. The method was applied successfully to experimental data in ECT

and ERT. This shape reconstruction algorithm is a nonlinear inversion scheme, which

makes use of a numerical shape propagation technique, the so-called level set tech-

nique, which originally was developed for the modelling of moving interfaces [112],

[113], [140].

1.1 Aims and objectives

The main objective of this thesis is to design suitable algorithms and create corre-

sponding computer programs for image reconstruction of various types of electrical

impedance and magnetic induction tomography systems. This thesis mainly concen-

trates on forward and inverse problems of electromagnetic tomography systems. The

forward problem is to simulate the observed measurements given the internal struc-

ture (and excitation fields). Image reconstruction here is an inverse problem. Inverse

problems are to determine the internal structure of a system using some measurement

data from the outside of the object. In this thesis we are interested in reconstruction
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of two or three dimensional image of the PEP parameters. The inverse problems are

ill-posed, which makes them sensitive to the inevitable measurement noise. Regular-

ization schemes are required to stabilize the ill-posed inverse problem. In general, the

inverse problems of PEP are nonlinear as well. Iterative methods are the most com-

monly used techniques to solve nonlinear inverse problems. In this thesis the forward

problems are solved using nodal and edge FEM method for scalar and vector fields.

An efficient sensitivity formula has been derived in each case to calculate the sensitiv-

ity map as well as the Jacobian matrix. Then the regularized Gauss-Newton method is

used to solve the inverse problem. This inverse finite element technique is applied to

MIT, MPT, ECT and ERT using simulated and experimental data.

An important part of the study of the inverse problem is the regularization and incorpo-

ration of a priori information. For example Tikhonov regularization imposes smooth

constraints on the solution. A priori information is different in different applications.

In many applications one knows in advance that there is only a two phase material

to be reconstructed. The knowledge of the two phase material prepares the ground

for some interesting shape reconstruction methods. In this thesis we have studied the

monotonicity based method and a level set method for the shape reconstruction prob-

lem.

As it can be seen in the course of this thesis, these imaging modalities have many

common aspects in the forward problem, sensitivity formula and the inverse problems.

So the idea of this thesis can be used to develop reconstruction techniques in a more

generic way. However, there are important details and differences in each system that

requires special attention.
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1.2 Thesis organization

In chapter 2 we briefly overview some mathematical settings required for linear and

nonlinear inverse problems. It also includes a brief introduction to the linear solvers

arising from the FE discretization.

In chapter 3 we study inverse and forward problems of MIT. The goal is to reconstruct

electrical conductivity images based on MIT measurement data and inverse finite el-

ement techniques. There are two major application areas we have in mind, medical

and industrial applications. In medical applications we are dealing with low contrast

conductivity imaging whilst in the industrial application studied in this thesis (molten

steel flow visualization in continuous casting) the conductivity contrast is very high.

We derive a sensitivity formula with some theoretical study of a simplified coil model

for a general eddy current problem. The forward problem was implemented by edge

finite elements. The sensitivity maps are studied and a nonlinear inverse solver has

been implemented for the conductivity imaging.

Chapter 4 considers an MPT system, and similar to chapter 3 the forward problem has

been solved using an edge FEM formulation of magnetic vector potential AAA. The sen-

sitivity formula for magnetic permeability and sensitivity maps have been obtained.

The sensitivity map for two opposite coils in MPT is different from the one for MIT

for electrical conductivities. A numerical study of the inverse permeability problem

with potential applications in detecting reinforced steel bars in concrete has been con-

ducted.

Chapter 5 describes the implementation of an efficient numerical scheme for the large

scale forward problem of electrical resistance tomography. In many practical applica-

tions, especially in medical ERT, a large scale forward problem occurs. In ERT the
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accuracy of the external shape is an important issue for the image reconstruction. For

a complicated geometry such as the human brain the number of nodes in the FEM

mesh increases substantially. Therefore, the computational time for the forward prob-

lem increases. Algebraic multigrid is used as a preconditioner for an iterative solver

(Conjugate Gradient (CG)), and the computational time for the forward problem has

been reduced substantially.

Chapter 6 deals with numerical modelling of the inverse and forward problems of

ECT using some experimental data. The implementation of a suitable forward solver

for ECT and validation of the forward problem with experimental data were studied.

An efficient formulation for the Jacobian matrix has been derived based on an adjoint

field formulation. Linear inverse solvers were used for low contrast permittivity, and

nonlinear schemes were used for the high contrast permittivity imaging.

Chapter 7 is dedicated to an extension of a two phase material reconstruction using the

monotonicity technique. The technique is a very fast nonlinear method that requires

only computation of eigenvalues of small matrices (resistance or capacitance matrix).

The technique has potential to be used in real time monitoring of many industrial

process tomography applications. Monotonicity method is an interesting pixel based

binary reconstruction algorithm for two component mixtures.

Chapter 8 is designated to a narrowband level set method, implemented to reconstruct

the interfaces between two conductivity phases. Compared with more traditional pixel

based image reconstruction, the level set method can provide more accurate solution

for the interfaces. The computational time to solve the inverse problem reduces as

one only needs to solve the inverse problem in a narrow band area surrounding the

interfaces. In this chapter we show some improvements for real ERT data using the

level set scheme and some three dimensional ERT test examples.
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Chapter 9 is dedicated to the conclusions and future works. Future works includes

some modelling and mathematical studies as well as some simulation work. A selected

list of the author’s publications is given in appendix A.



Chapter 2

DETERMINISTIC INVERSE

PROBLEMS

In this chapter the inverse problem theory necessary for this thesis is reviewed. A

more detailed study of general inverse problems can be found in [62], [161]. The

background knowledge of low frequency electromagnetic imaging systems and their

applications [168], [64], electromagnetic theory, computational electromagnetic [87],

[92], [152] FEM modelling [179] and knowledge of edge FEM [19] are assumed. We

also assume background in linear algebra [49]. The main bases of the regularization

and the inverse problems can be described in terms of statistical methods for such

study we refer to [160], [121], [17].

2.1 Forward and inverse problems

The formulation of image reconstruction for one or more internal PEP characteristics

from a set of boundary measurements is an example of an inverse boundary value

9
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problem. The definition of the the forward problem [5] is ”Given some boundary

conditions on the boundary ∂Ω of an object Ω ��� 3 , and a distribution of parameter

p within Ω, find the resulting measurement set y on ∂Ω”.

The solution to the forward problem can be expressed in the form of a general non-

linear forward operator y � F � p � , where F : P � Y and F � C∞ � P� Y � , where p � P and

y � Y . Similarly, the inverse problem may be stated as follows ”Given a distribution

of PEP characteristics p and a distribution of measurements y on ∂Ω derive the PEP

parameter p within Ω. This can be represented by y � F
� 1 � p � .”

If we have an estimated p0 that is close to ideal solution, then the resulting forward

solution y0 � F � p0 � is close to y. Under suitable conditions one can expand the for-

ward operator in a Taylor series. We now state sufficient conditions for the existence

of a Taylor expansion [20]. A general map F : P � Y between two Banach space is

considered. The Fréchet definition of F at a point p in a subset U � P is defined as a

bounded linear map by F
�
such that

lim
h � 0

F � p � h � � F � p � � F
� � p �

h
� 0 (2.1)

If F
�

exists F is differentiable at p and if F
�

is continuous of p, then F is called

continuously differentiable (F � C1 � P� Y � ). If the second derivative of F , described

by F
� �
p , exists we say it is twice differentiable at p, and we say F � Cr � P� Y � if F

�
r �

p

is continuous. If F � Cr � P� Y � for all r we say F is smooth or F � C∞ � P� Y � . For

F � Cr � P� Y � Taylor’s theorem states [47]

F � p � h � � F � p � � F
�
p � h � � � 1

2!
� F
� �
p � h � h � � � � � � 1

r!
� F
�
r �

p � h � h � � � � � h � � o � hr � (2.2)

For r � 1 this reduces to (2.1). Here o � hr � is the Landau symbol stands for any map de-
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fined in a neighborhood of the origin of a Banach space P satisfying limh � 0
o � hr �

�
h

�
r � 0.

If p0 is an estimate close to the actual solution, the forward map can be extended by

the Taylor series

y � F � p0 � � F
�
p � p0 � � p � p0 � � � p � p0 � T F

� �
p � p0 � � p � p0 � � o � �

p � p0
� 2 � (2.3)

In the discrete case the matrix representation of F
�

in standard basis is JJJ � � m � n the

Jacobian matrix and F
� �

represented by HHH � � m � n , the Hessian (the discrete represen-

tation of Hessian is a matrix for a single multivariable function, but for vector value

function it is a tensor). Here ppp � � n and yyy � � m are finite number of the parameter

to be estimated and measurements respectively. Putting ∆yyy � yyy � yyy0 and ∆ppp � ppp � ppp0

leads to

∆yyy � JJJ∆ppp � ∆ppp000
T HHH∆ppp � o � �

ppp � ppp0
� 2 � (2.4)

Neglecting terms after the first, linear term constitutes the perturbation approach and

the problem reduces to inversion of the matrix representation of JJJ at ppp0. This is

therefore a linear problem which may well be ill-posed, and is amenable to standard

matrix inversion methods. Its success is largely dependent on how closely the initial

estimate is to the correct solution, and how little effect is played by higher-order terms

in equation (2.4). The linear methods require a different experiment that measures

∆yyy as the difference between two states. This approach provides a means of imaging

which is sensitive to the change in PEP.
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2.2 Linear inverse problems

Linear reconstruction relies on the fact that for small changes, the measurement ∆yyy can

be approximated in a linear fashion with the parameter ∆ppp, which may be expressed

using the Jacobian matrix JJJ as

∆yyy � JJJ∆ppp � o � �
∆ppp

� � (2.5)

This could be interpreted as seeking either a difference image from the difference be-

tween two sets of measurement data, or it could be a step in a non-linear iterative

algorithm in which the voltage difference is taken between calculated and measured

data. If the number of unknowns is smaller or bigger than the number of the measure-

ments, then the matrix JJJ is not square. In such a case we can use the Moore-Penrose

generalized inverse, however we must also consider the stability of the solution. In

particular, measurement noise and computational errors that occur during the forward

modelling means that the perturbations in object properties that can be reconsted have

also to be big enough, in order to create sufficient signal changes above the noise and

computation errors. Mathematically this is described as ill-posedness of the inverse

problem. This means that the minimization of misfit between data and model is diffi-

cult, and that small errors in the measurements or simulations can lead to large errors

in the solution. For this reason, some assumptions, which incorporate as much prior

information as is practical, are required.

2.2.1 Singular value decomposition

The inverse problems of finding PEP using electromagnetic tomography are ill-posed.

Hadmard [60] gives a definition of ill-posed problem saying that the solution does not
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exist or is not unique or is not a continuous function of the data. The third condition

is one of the biggest problems in electromagnetic tomography. An arbitrary small

perturbation of the data can create an arbitrarily large perturbation of the solution.

Singular value decomposition (SVD) provides a means to study the ill-posedness of

an inverse problem.

In equation (2.5) in our definition of a linear inverse problem. SVD of JJJ is

JJJ � UUUΣΣΣVVV T
�

n

∑
i � 1

uuuiσivvv
T
i (2.6)

here UUU � � uuu1 � uuu2 � � � � � uuun � � � m � n and VVV � � vvv1 � vvv2 � � � � � vvvn � � � n � n are matrices with

orthonormal columns called singular vectors, UUUTUUU � VVV TVVV � IIIn, and the diagonals

of ΣΣΣ includes the singular values, which are positive numbers � σ1 � σ2 � � � � σn � sorted in

non-increasing order.

If matrix JJJ is invertible then ∆ppp � ∑n
i � 1

uuuT
i ∆yyy

σi
vvvi is the solution to our linear problem.

A plot of singular values will tell us, how ill-posed a particular inverse problem is. In

next chapters logarithmic plots of singular values of the Jacobian matrix in our low fre-

quency electromagnetic imaging techniques shows almost a linear decay which means

the problem is very ill-posed. If we include dependent measurements, there will be a

distinguishable gap between large and small singular values which shows linearly de-

pendent measurements. Figure 2.1.a shows the singular values of 64 measurements of

an 8 electrode ECT system (to be discussed later on in this thesis in the next chapters).

The plot shows this inverse problem is rank deficient meaning some of those measure-

ments are linearly dependent and can not be used for the inverse solution, this is called

effectively rank deficient. Figure 2.1.b shows the same problem with 28 independent

measurement. This problem is ill-posed and including some small singular values will

produce errors in the reconstructed image.
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Figure 2.1: (a): Singular values for 64 ECT measurement, shows rank deficiency and

(b): Singular values for 28 independent measurement, shows ill-posedness
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Truncated SVD (TSVD) can be used to solve an ill-posed problem by ignoring n � k

number of small singular values in ∆pppls � ∑k
i � 1

uuuT
i ∆yyy
σi

vvvi giving a least square solution

∆pppls. TVSD was used for the MIT image reconstruction and was reported in [28].

A comparison between the decay of
�
uuui∆yyy

�
and σi’s is the basis for the Picard criterion

[62]. If the decay of
�
uuui∆yyy

�
is faster than the decay of σi’s then ∆pppls will be an

acceptable solution. For the inverse problem described before, assume that we are

very close to the actual solution, the level of the noise in the data is the error level and

it is ∆yyy. Different measurement strategies can be compared based on Picard criteria,

given one can estimate the noise level for each measurement strategy and also able to

calculate the SVD for that particular measurement strategy. Polydorides et al. [119]

investigated optimum number of electrodes and electrode arrangements in EIT based

on Picard criteria.

If we can reduce large decay of the singular values, in other words increase the con-

dition number of the system of equations artificially we can have an approximation

solution for the problem. By doing that we regularize the ill-posed problem. For ex-

ample replacing σi by σnew
i �

σ2
i � α2

σi
we have ∆∆∆pppls � ∑n

i � 1
uuuT

i ∆yyy

σnew
i

vvvi that can be solved

in a stable manner. Choosing small value of α has small effect on lager singular val-

ues, whilst at the same time smaller singular values are contributing in the solution in

an stabilized way. Because of the regularization the contribution of the smaller sin-

gular values in the solution is not the exact reflection of those singular values of the

components in the measurements.
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2.2.2 Underdetermined and overdetermined

We are looking to find ∆ppp in the interior given a measurement data ∆yyy on the boundary.

Solving the inverse problem by minimizing

∆pppls � argmin � �
∆yyy � JJJ∆ppp

� 2 � (2.7)

This is the so called output least squares approach [82]. If JJJ is a square matrix ∆ppp �

JJJ
� 1∆yyy. When JJJ is not square we need

∆ppp � JJJ
�

∆yyy (2.8)

Where JJJ
�

� JJJT � JJJJJJT � � 1 in the underdetermined case and JJJ
�

� � JJJT JJJ � � 1 � JJJT � for the

overdetermined case. In many cases the image reconstruction problem is an underde-

termined problem.

2.2.3 Tikhonov regularization

A big change in ∆ppp makes a small change on the measurements. This means that the

optimization in (2.7) fails to produce a correct result. In order to overcome the ill-

posedness we need to regularize, imposing additional information about the solution.

A penalty term can be added to the optimization problem

∆pppGT � argmin
�

∆yyy � JJJ∆ppp
� 2 � α2 �

RRR � ∆ppp � ∆ppp000 �
� 2 (2.9)

A simple choice for the regularization penalty term is Tikhonov regularization. The

aim of this regularization is to dampen the contribution of smaller singular values in

solution. The matrix RRR is a regularization matrix which penalizes extreme changes in
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parameter ppp removing the instability in the reconstruction, at the cost of producing

artificially smooth images. TSVD achieves this goal by explicitly removing those

smaller singular values. In Tikhonov regularization by adding a penalty term the effect

of smaller singular values are dampened in an implicit way. The parameter α controls

the trade-off between fitting the data and violating the prior assumption. For Tikhonov

regularization we reformulate the optimization problem. The function to be minimized

can be expanded as a quadratic form.

g � ∆ppp � �
�

∆yyy � JJJ∆ppp
� 2 � α2 �

RRR � ∆ppp � ∆ppp0
� 2

� ∆pppT JJJT JJJ∆∆∆ppp � 2∆pppT JJJT ∆yyy �

∆yyyT ∆yyy � α2∆pppT RRRT RRR∆ppp � 2α2∆pppT RRRT RRR∆ppp0 � α2∆ppp000
T RRRT RRR∆ppp000

(2.10)

The regularization would mean making the resulting linear system better conditioned.

But it does not necessarily mean having a solution that is acceptable. An acceptable

solution can be achived by considering the realistic situation in the measurement as

well as the material side. In the measurement side we would like to include the reality

of the electronic noise and any other sources of errors either in the measurement or in

the model. In the parameter side, a good initial guess is a good regularization which

means
�

∆ppp � ∆ppp0
�

is small.

Differentiating g � ∆ppp � with respect to ∆ppp in the zzz direction we get

zzzT ∇g � ∆ppp � � 2zzzT JJJT JJJ∆ppp � 2zzzT JJJT ∆yyy � 2α2zzzT RRRT RRR∆ppp � 2α2zzzT RRRT RRR∆ppp0 (2.11)

If this is zero for all z we have

∆ppp � � JJJT JJJ � α2RRRT RRR � � 1 � JJJT ∆yyy � α2RRRT RRR∆ppp0 � (2.12)
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A simple form is the standard Tikhonov where RRR � III and assuming ∆p0 � 0

∆ppp � � JJJT JJJ � α2III � � 1 � JJJT ∆yyy � (2.13)

2.2.4 Generalized SVD

Generalized SVD (GSVD) of pair of matrices JJJ � � m � k and RRR � � n � k . As singular

values of JJJT JJJ and RRRT RRR are square of singular values of JJJ and RRR, GSVD is a good

tool to analyze the regularized system. Here m � k and n � k, then the pair can be

decomposed to UUU � VVV � ΘΘΘ � CCC � SSS � � k � k where
�
JJJ � 000 � � UUUCCCΘΘΘ � 1, RRR � VVVSSSΘΘΘ � 1, here UUU and

VVV are orthogonal and ΘΘΘ is square and nonsingular and CCC and SSS are diagonal matrices of

the singular values of JJJ and RRR. Given λi �
CCCii

SSSii
for i � 1 � 2 � � � k, and ∆yyy f

�
�
∆yyy � 0 � � � k

the general Tikhonov solution can be written as ∆ppp � ∑k
i � k � n ξi

uuuT
i ∆yyy f

λi
θi, and ξi is

the filter factor and ξi �
λ2

i

λ2
i � α2

. This factor tend to zero when λi is very small

compared to α, which means rejecting the effect of smaller singular values in the

solution. The filter factor in TSVD is 1 for selected singular values and zero for

the rejected ones. And for standard Tikhonov the filter factor is ξi �
σi

σ2
i � α2

where

σi is i-th singular value of matrix JJJ. The Picard criteria from GSVD information

is also useful for analyzing the regularized system with the expected noise level in

measurement data [119], [62].

2.2.5 Other methods

In Newton one step reconstruction (NOSER) [33] the regularization matrix is RRRT RRR �

diag � JJJT JJJ � . Replacing σi to σnew
i �

σ2
i � α2li

σi
, and li is diagonal elements of JJJ. We

have ∆pppls � ∑n
i � 1

uuuT
i ∆yyy

σnew
i

vi that can be solved in a stable manner.
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Krylov subspace methods such as preconditioned conjugate gradient (PCG) [122] also

act as an implicit regularization for the ill-posed inverse problem and can be efficient

when used for the large scale problems.

A simpler iterative algorithm is the Landweber iteration scheme used in ECT image

reconstruction [176]. Let us consider Landweber’s iterations as give by the formula-

tion

∆pppi
�

1 � ∆pppi � λJJJT � ∆yyy � JJJ∆pppiii � (2.14)

where the fixed parameter λ is a relaxation parameter. If
�

III � λJJJT JJJ
� 2

2 � 1 or 0 � �
2

�
JJJT JJJ

� 2
2 the method will converge. The method can be expressed as an SVD filter

with the filter factor for iteration i is ξi �

� 1 � � 1 � λσ2
i � � i

σi
.

In [93] a hybrid method is used for ECT image reconstruction. Hybrid method is

∆pppi
�

1 � ∆pppi � λ � JJJT JJJ � α2RRRT RRR � � 1 � JJJT � � ∆yyy � JJJ∆pppi � (2.15)

An algorithm for finding the nearest local minimum of a function which presup-

poses that the gradient of the function can be computed. The method of steepest

descent [98], also called the gradient descent method. Steepest descent method is

given by iteration ∆pppi
�

1 � ∆pppi � λiJJJ
T � ∆yyy � JJJ∆pppiii � and in iteration i we calculate

λi �

�
JJJT � ∆yyy � JJJ∆∆∆pppiii �

�

�
JJJJJJT � ∆yyy � JJJ∆pppiii �

� .

2.3 Nonlinear inverse problems

Nonlinear methods are suitable to reconstruct the absolute values where as linear

methods are useful for difference imaging. First we begin from minimization of the
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residual error

g � p � �
1
2

�
y � F � p � � 2 (2.16)

Consider D � p � � y � F � p � . Here gradient of g is ∇g � p � � F
� � p � � y � F � p � � .

D � p � h � � D � p � � D
� � p � h �

�
1
2 � F

� �
� p � h2 � o � �

h2 � � (2.17)

Newton’s method began as a method to approximate roots of functions, equivalently,

here solutions to equation g � p � � 0. A Newton-Raphson iteration is pi
�

1 � pi �

∇g � pi � , gradient of g can be used to optimize g � p � by D � p � h ��� 0. By ignoring sec-

ond order term we have D � p � h � � D � p � � D
� � p � h so D

� � p � h � D � p � h � � D � p � . The

iterations are in a way that D � p � h � � 0, which means h � D
� � p � � 1D � p � . Therefore

Newton-Raphson iterations can be written pi
�

1 � pi � F
� � pi � � 1 � y � F � pi � � .

Hessian for the function g can be calculated

H � p � � D
�
� p � T D

�
� p � � D

� �
� p � D � p � � F

�
� p � T F

�
� p � �

k

∑
j � 1

F
� �
j � p � � Fj � p � � y j � (2.18)

By ignoring second derivative term in Hessian the Gauss-Newton iteration can be

written pi
�

1 � pi � H � pi � � 1∇g � pi � . Gauss-Newton method is a standard optimization

technique for well-posed problems.

By replacing Hessian with identity, we can build nonlinear conjugate gradient (NLCG)

algorithm with regularization [4]
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Data: Measurement data

Result: Solution of the nonlinear inverse problem

initialization;

for i=1,2,... do

if
�

∇g � pi �
� 2 � tol then

break ;

else

βi �

�
∇g � pi �

� 2
�

∇g � pi � 1 �
�

2 ;

Λi � � � W∇g � pi � � α2I � � βiΛi � 1 ;

end

line search for λi ;

pi
�

1 � pi � λiΛi;

end

Algorithm 1: Nonlinear CG algorithm

here tol is the tolerance and α is the regularization parameter.

A weighting function W was proposed by [121], to improve the efficiency of NLCG

and was applied to the EIT problem. NLCG does not require calculation of the Hessian

and using adjoint formulation one can calculate the g efficiently [121].

A nonlinear Landweber can be described by iteration pi
�

1 � pi � λF
� � pi � � y � F � pi � �

[176].

In the regularized Gauss-Newton method the second order term in the Hessian is ap-

proximated. The regularized optimization is to find p, given p0 as the initial guess,

R � p � is the regularization function, we also include regularization parameter α here

g � p � �
1
2

�
y � F � p � � 2 � α2R � p � (2.19)
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For regularized Gauss-Newton the iteration steps are pi
�

1 � pi � H � pi � � 1∇g � pi � ,
where H � pi � � F

� � pi � T F
� � pi � � α2R

� � � pi � , where H is the modified Hessian here and

R � p � is regularization function and ∇g � pi � � F
� � pi � � F � pi � � y � � α2R

� � pi � . Here

R
� � pi � and R

� � � pi � are the first and second derivatives of R � p � with respect to pi. The

regularized Gauss-Newton (GN) algorithm is as follows

Data: Measurement data

Result: Solution of the nonlinear inverse problem

Initialization ;

for i=1,2,... do

if Stopping criteria is satisfied then
break;

else
Material distribution pppi in step i ;

Calculate the forward model FFF � pppi � ;

Calculate the sensitivity term FFF
� � pppi � ;

Choose regularization parameter α ;

Compute gradient by ∇g � pppi � � FFF
� � pppi � � FFF � pppi � � yyy � � α2R

� � pppi � ;

Compute G-N approximation of HHH by

HHH � pppi � � FFF � pppi �
�
FFF � pppi � � α2R

� � � pppi � ;

Calculate δpppi � � HHH � pppi � � 1∇g � pppi � ;

Update the material distribution pppi
�

1 � pppi � λiδpppi, here λi is the

step size ;

end

end

Algorithm 2: G-N algorithm
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2.3.1 Linearized Tikhonov steps

Let’s consider generalized Tikhonov regularization

p � argmin � �
FFF � ppp � � YYY mmm

� 2 � α2 �
RRR � ppp � ppp0 �

� 2 � (2.20)

Using iterative method to solve (2.20), ∆pppi � pppi
�

1 � pppi, by linear approximation

around pppi (the solution of step i) we have

pppi
�

1 � argmin � �
FFF � pppi

�
1 � � YYY m

� 2 � α2 �
RRR � pppi

�
1 � ppp0 �

� 2 � (2.21)

by linearization around pppi we can reformulate the problem to

∆pppi � argmin � �
FFF � pppi � � FFF

�
� pppi � ∆pppi � YYY m

� 2 � α2 �
RRR � ∆pppi � pppi � ppp0 �

� 2 � (2.22)

Replacing ∆ppp0 � pppi � ppp0 and ∆YYY m � FFF � pppi � � YYY m, this is similar to equation (2.10), so

we have

∆pppi � � FFF
�
� pppi � T FFF

�
� pppi � � α2RRRT RRR � � 1 � FFF

�
T � pppi � � FFF � pppi � � YYY m � � α2∆ppp0 � (2.23)

In discrete form we have iteration steps such that

∆pppi ��� JJJiii
T JJJiii � α2LLLT LLL � � 1

JJJiii
T � � YYY m � FFF � pppiii � � � α2RRRT RRR � pppiii � ppp000 � � (2.24)

For i � 1 this is a linear reconstruction algorithm. Here JJJiii is the Jacobian calculated for

the inverse parameter pppiii, YYY m is the vector of measurements and the forward solution

FFF � pppiii � is the predicted measurement from the forward model with parameter pppiii. There

are methods to find the best regularization parameter for linear problems, for example

L-Curve method [62], a review of other methods is given in [160]. Morozov’s stopping
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criteria has been used to stop the iterations [105]. The iteration will stop when
�

FFF � pppi � � YYY mmm
� � ε, where ε is the noise level estimated in measurement system.

2.4 Semi-linear methods

In the Newton-Kantorovich [77] method the forward problem is solved in each itera-

tion but the Jacobian matrix remains the same in all iterations the same as the Jacobian

matrix in first iteration.

With the aim of speeding up Newton types algorithm Broyden Quasi-Newton method

has been studied for ERT [86].

In the BQN technique one needs to solve the forward problem in each step and the

inverse of the Jacobian matrix can be updated with direct formula as follow. If F is

the forward map and YYY m is the measurement capacitance, we define DDD � FFF � YYY m and

γγγ � DDDi
�

1 � DDDi and ∆pppi
�

1 � pppi � pppi
�

1. The material distribution that best describes the

actual solution is the one that makes DDD � 0. The solution for this particular permittivity

can be found using the iterative equation

pppi
�

1 � pppi � HHH iDDDi (2.25)

We start with an initial guess, and updating the solution for each iteration. HHH i is an

approximation of the inverse of the Jacobian matrix related to permittivity distribution

pppi. Instead of calculating the Jacobian matrix and solving a linear system of equation

in each iteration, the matrix HHH can be updated with O � n2 � operations, n is the number
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of pixels of the image as follow

HHH i
�

1 � HHH i �
� ∆ppp � HHH iγi � ∆pppT

i HHH i

∆pppT HHH iγi
(2.26)

It is been shown that the method has super-linear convergence [6] and that the set

of matrixes HHH i � i � 1 � 2 � 3 � � � � converges to HHHtrue(The inverse of the Jacobian matrix

at the point ppptrue where DDD � 0 is satisfied). The initial guess for the BQN method

is important to the convergence. If we start close to the solution the BQN converges

fast. If the initial guess is far from the solution, the BQN may not converge. A

mixed regularized Gauss-Newton and BQN for high contrast ERT problem, where the

first few steps are using regularized Gauss-Newton and when we are approaching the

solution we can benefit from faster BQN iteration [86].

2.5 Linear solvers for FEM

A major part of FEM modelling is the linear solver for the system of equations arising

from the discretized model. In real-life applications, where we are dealing with very

complicated geometries in three space dimensions, these systems of equations are

extremely large. Hence, iterative solution methods outperform direct ones. The CG

method is an effective method for symmetric positive definite (SPD) systems. If for

any complex vector xxx we have xxx � KKKxxx � 0 the KKK is positive definite and � � ��� is the

complex conjugate transpose. The method proceeds by generating vector sequences of

iterates (i.e., successive approximations to the solution), residuals corresponding to the

iterates, and search directions used in updating the iterates and residuals. Although the

length of these sequences can become large, only a small number of vectors needs to

be kept in memory. In every iteration of the method, two inner products are performed
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in order to compute update scalars that are defined to make the sequences satisfy

certain orthogonality conditions. On a SPD linear system these conditions imply that

the distance to the true solution is minimized in some norm. Here, the CG method

is the solver of choice, having the optimal approximation property that the iterate xxxi

produced at the ith step, has minimal error eeei � xxx � xxxi � measured in the norm,

�
eeei

� 2
KKK � eeei

T eeei �

over all possible choices of xxxi belonging to the associated Krylov subspace. Conver-

gence of the method is completely determined by the spread of the eigenvalues of the

coefficient matrix, in that,

�
eeei

�
KKK�

eee0
�

KKK

�
min

ϖi
max

j � 1 � 2 ��������� n
�
ϖi � σ j �

�
� (2.27)

where ϖi is any polynomial of degree i satisfying ϖi � 0 � � 1 and � σ j � n
j � 1 denotes

the set of eigenvalues of KKK � � n � n
� Simply put, the error on the left hand side of

(2.27) can only be reduced to zero with a few iterations of CG if the eigenvalues of

KKK are clustered. As is common in finite element problems, the SPD matrix KKK in our

study does not have this property. Efficient CG convergence can only be achieved by

locating a symmetric preconditioner MMM � � n � n
� such that the eigenvalues of MMM

� 1KKK

are clustered, and iterating, instead, on the preconditioned system, MMM
� 1KKKxxx � MMM

� 1 fff .

2.5.1 Conjugate gradient algorithm

To solve the linear system of equation KKKxxx � fff . The iterates xxxi are updated in each

iteration by θi a multiple of the search direction vector ΛΛΛi, is

xxxi � xxxi � 1 � θiΛΛΛi (2.28)
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Correspondingly the residuals rrri � fff � KKKxxxi are updated as rrri � rrri � 1 � θiKKKΛΛΛi.

The choice of θi �
rrrT

i � 1rrri � 1

ΛΛΛT
i KKKΛΛΛi

minimizes rrrT
i KKK

� 1rrri over all possible choices for θi.

The search directions are updated using the residuals i � rrri � κi � 1ΛΛΛi � 1 where the

choice κi �
rrrT

i rrri

rrrT
i � 1rrri � 1

ensures that rrri and all rrr j are orthogonal ( f or i �� j).

Here is a PCG iteration with matrix MMM as a preconditioner



CHAPTER 2. DETERMINISTIC INVERSE PROBLEMS 28

Data: Linear system of equations and right hand side

Result: Solution of the linear system of equations

Choose an initial guess for xxx, xxx0 ;

Compute rrr0 � fff � KKKxxx0 ;

for i=1,2,... do

if check convergence then
break

else

solve MMMζζζi � 1 � rrri � 1;

ρi � 1 � rrri � 1ζζζi � 1;

if i=1 then

ΛΛΛ1 � ζζζ0;

else

βi � 1 �
ρi � 1

ρi � 2
;

ΛΛΛi � ζζζi � 1 � βi � 1ΛΛΛi � 1 ;

end

qqqi � KKKi;

θi �
ρi � 1

ΛΛΛT
i qqqi

;

xxxi � xxxi � 1 � θiΛΛΛi ;

rrri � rrri � 1 � θiqqqi;

end

end

Algorithm 3: CG method

If MMM � III the algorithm is unpreconditioned CG. The convergence of PCG algorithm

depends on condition number of MMM
� 1KKK. In order to compare total computational time

of solving a problem using PCG, one needs to take into account computational time
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of generating matrix MMM. Essentially, the new coefficient matrix is MMM
� 1KKK . Precondi-

tioning aims to produce a more clustered eigenvalue structure for MMM
� 1KKK and/or lower

condition number than for KKK to improve the relevant convergence ratio. However,

preconditioning also adds to the computational effort by requiring that a linear sys-

tem involving MMM (namely MMMζζζ � rrr ) be solved at every step. Thus, it is essential for

efficiency of the method that MMM be factored very rapidly in relation to the original KKK.

Accurate predictions of the convergence of iterative methods are difficult to make, but

useful bounds can often be obtained. For the Conjugate Gradient method, the error

can be bounded in terms of the spectral condition number of the matrix MMM
� 1KKK. With

symmetric positive definite matrix KKK, then for CG with symmetric positive definite

preconditioner MMM, it has be shown [53] that

�
xxxi � xxxtru

�
KKK � 2θi

�
xxx0 � xxxtrue

�
KKK

where θ �

�
cond � MMM � 1KKK � � 1�
cond � MMM � 1KKK � � 1

, where cond � � � is the condition number of a matrix,

xxxtrue is the exact solution.

The Cholesky factorization expresses a symmetric matrix as the product of a triangu-

lar matrix and its transpose KKK � ϒϒϒT ϒϒϒ where ϒϒϒ is an upper triangular matrix. Not all

symmetric matrices can be factored in this way; the matrices that have such a factor-

ization are said to be positive definite. If we could have exact Cholesky factorization

for matrix KKK the solution of the linear system of equation could be xxx � ϒϒϒ � 1 � ϒϒϒT fff � .
If KKK is n � n matrix, the computational complexity of Cholesky factorization of KKK is

O � n3 � and the complexity of the solution of the linear system after that is only O � n2 � .
For large scale systems of equations this is not an efficient method. But one can use

incomplete Cholesky (IC) factorization and use that as preconditioner for the CG al-

gorithm. In IC factorization the matrix KKK can be written as KKK � ϒϒϒT ϒϒϒ � ΞΞΞ, where ΞΞΞ



CHAPTER 2. DETERMINISTIC INVERSE PROBLEMS 30

is the error (rest) matrix. To calculate IC factorization of the matrix KKK we need to set

a drop tolerance. Smaller drop tolerance means that the incomplete factorization is

closer to the Cholesky factorization. So if ϒϒϒ calculated with smaller drop tolerance is

used as a preconditioner in PCG, the number of iterations of PCG will reduce, but the

computational cost of calculating more accurate ϒϒϒ is higher. It is always difficult to

find a balance between the computational time for calculating the IC factorization and

PCG iterations.

2.6 conclusion

In this chapter some of the basic concepts in forward and inverse problems have been

studied. This study is an abstract study but helps to understand some of the tech-

niques that have been implemented in this thesis. Comprehensive details can be seen

in refrences given in each part.



Chapter 3

MAGNETIC INDUCTION

TOMOGRAPHY

Magnetic induction tomography (MIT) is relatively new modality for medical and in-

dustrial imaging (see for example [58], [145], [116], [78]). The technique operates as

follows. Passing an alternating current through excitation coil(s) produces a primary

magnetic field. When this magnetic field interacts with a conductive and/or a perme-

able object, a secondary magnetic field is created. The sensing coils can then detect the

resulting magnetic field. As the secondary field depends on the materials present, the

measured induced voltages are nonlinear functions of their electromagnetic properties,

e.g., conductivity and permeability. The contact-less nature of this type of tomogra-

phy makes the technique of interest for non-invasive and non-intrusive applications.

Potential applications of MIT for medical imaging have been studied earlier (see for

example [29], [133],[100], [145]). In [29] the possibility of using MIT for permeabil-

ity imaging in medical application has been investigated. In addition to the medical

applications MIT has some potential applications to the industrial process monitoring

31
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[63],[116], non-destructive testing (NDT) [70], and geophysics [41]. Industrial pro-

cess applications of MIT especially for the metals industry, such as molten steel flow

visualization [116], [11], [94] and solidification monitoring for molten steel [117],

[118] are of interest of this study. In particular we are interested in molten metal flow

visualization using MIT. The major difference between medical (e.g [78]) and indus-

trial MIT is that in industrial applications conductivity contrast are often high, where

as in the medical context small conductivity contrasts are more typical [143].

In this thesis we focus on electrical conductivity imaging using the eddy current con-

cept. The formulation can be easily extended to complex conductivity reconstruction,

but we assume the permittivity distribution is given. A mathematically similar prob-

lem (crack detection) has been studied extensively for the NDT application. In NDT

applications various forward problem formulations, sensitivity formulations and sev-

eral inverse techniques have been developed [110], [153], [81], [70]. In this thesis

the tomographic notion of the inverse eddy current problem (MIT) is considered. Im-

age reconstruction here is a nonlinear ill-posed inverse problem where the measured

voltages are given and the spatial distribution of the electromagnetic properties (for

purpose of this chapter the electrical conductivity) of the object material need to be

found. The idea of regularization has not been explored in NDT application of the

inverse eddy current problem. Here we are using regularization methods to stabilize

the inverse solver.

In medical MIT, linear back projection [78] and a single step regularized method [28]

have been used. In this thesis we demonstrate that the MIT is a so called soft field

tomography method, and that the linear back projection cannot be a suitable image

reconstruction method. Soft field tomography means that a local change in imaging

quantity (here electrical conductivity) has an effect on all measurement data. In this
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chapter we present a regularized Gauss-Newton scheme to the inverse problem of

MIT. Sensitivity analysis in this thesis shows that the sensitivity map changes with the

background conductivity. Because the sensitivity map changes with the background

one needs to recalculate the Jacobian matrix at each iterative step of the purposed

nonlinear inverse solver. A computationally efficient method to calculate the Jacobian

matrix is given in this chapter. Reconstruction of the conductivity requires a forward

solver so that predicted data can be compared with measured data. The generalized

eddy current form of the Maxwell’s equation has been adapted for the forward problem

in MIT. The eddy current problem involves the computation of the vector field as

well as scalar fields. Edge FEM has advantages over nodal elements for vector field

computation of the eddy current problem [12]. We have implemented edge FEM

software to simulate the forward problem in MIT. For mesh generation we are using a

general purpose mesh generator provided by FEMLAB [46]. The edge finite element

method (edge FEM) has been employed for the medical and industrial MIT forward

problem [146], [99]. Solving the forward problem of MIT using a scalar field has been

reported earlier by [51]. A major simplifying assumption is made by the authors of

[51], that the electric field in conductive region can be written in terms of the magnetic

vector potential of the primary field and a scalar potential. This assumption is not valid

for the general eddy current problem. In order to understand why the assumption is

not correct, one can follow the eddy current formulation of AAAr � AAAr � V by [99], which

shows the electric field in the conducting area is the sum of the scalar field and primary

magnetic vector potential and a reduced magnetic vector potential. The simplifying

assumption of [51] is valid for very low frequency (for example medical conductivity

with frequency range smaller than 100kHz), but at higher frequencies one can not

ignore the effect of the secondary magnetic field.



CHAPTER 3. MAGNETIC INDUCTION TOMOGRAPHY 34

In this thesis we present some simulation results with a range of conductivity and

frequency of medical MIT.

For the industrial process tomography application we have examined the image recon-

struction software with simulation and experimental data. The experimental data was

collected from a newly developed industrial MIT system working at frequency 5kHz.

Reconstructed results using experimental MIT data are among the first real data re-

construction using an FE based image reconstruction in MIT.

3.1 Inverse eddy current problem

Assuming time-harmonic fields with angular frequency ω Maxwell’s equations are

∇ � E � � iωµH (3.1)

∇ � µH � 0 (3.2)

∇ � H � � σ � iωε � E � Js (3.3)

∇ � εE � 0 (3.4)

Here E and H are the magnetic and electric fields, σ is conductivity, µ magnetic per-

meability and ε permittivity. The current sources are represented by the current density

JJJs. The inverse boundary value problem for Maxwell’s equations is the recovery of

the material parameters σ, ε and µ from measurements of the tangential components

n � H and n � E of the fields on some surface Γ (with normal n � enclosing the re-

gion Ω where the material parameters are unknown. Uniqueness of the solution for
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this inverse boundary value problem has been proved, provided ω is not a resonant

frequency [111] (resonant frequency is a frequency that the capacitive and inductive

component of the the impedance cancell each other). In this study they take Js � 0

assuming the sources are included in the boundary conditions. It is worth noticing

that in the sensing coil the measurements of induced voltage can be expressed as line

integral of the tangential component of E along the coil. It can also be described as

surface integral of the normal component of the magnetic flux density B.

The methodology for establishing the derivative of the boundary measurements with

respect to a perturbation of a material parameter was established in the fundamental

paper of Calderón [27] for the static case ω � 0. The general case for time harmonic

Maxwell’s equations was treated by [150]. These results require some slight modifica-

tion for application to MIT. In this case, we are not measuring on an isolated boundary.

Typically we have an arrangement of coils on some surface Γ but boundary conditions

(such as screening by a conductive or magnetic shield) are applied on some surface

containing this. We can think of an idealized excitation coil as imposing a predeter-

mined tangential component of H on Γ, and our idealized measurement as an integral

of E around an infinitesimal loop on Γ. This is no worse than the idealization in the

low frequency case (EIT) that one can apply arbitrary current patterns to the surface

and measure the voltage everywhere.

In practise we measure a finite subset of the idealized data, but it is important to know

at least that if we collected ideal data then the material parameters are uniquely deter-

mined. This question, called uniqueness of solution by mathematicians, is the prac-

tical question of sufficiency of data for the engineer. The measurement arrangements

of MIT using a system of coils does not fit exactly in to this formalism. There is no

barrier to electric and magnetic fields on the surface containing the coils so we must
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model them by a current source term Js, and impose boundary conditions on some

larger enclosing surface. We will address this in the next section. For the moment, our

ideal data is the transfer impedance on the surface Γ, where we have complete control

of the tangential component of H and knowledge of the transfer impedance of E (or

vice versa). There is of course a parallel impedance due to the region exterior to Γ,

which we will assume is known by calibration and has already been subtracted.

It is convenient to recast the data on Γ in an integral of the normal component of the

Poynting vector E � H that represents the power-flux, we obtain
�

Γ

δ � E � H � � ndx2
�

�

Ω

δµH � H � � δσ � iωδε � E � E dx3 � O � � �
δσ

� 2 �
(3.5)

Taking the electric and magnetic fields from two different excitations from coils 1 and

2, but with the same material perturbations, and applying the above to E � E1 � E2

and H � H1 � H2 then subtracting we obtain
�

Γ

δ � E1
� H2 � � ndx2

�

�

Ω

δµH1 � H2 � � δσ � iωδε � E1 � E2 dx3

� O � �
δσ

� 2 �
(3.6)

Now taking the magnetic field on Γ to be prescribed and the tangential magnetic field

to be measured, the left hand side reduces to

�

Γ

δE1
� H2 � ndx2

� (3.7)

Taking H2 to be the field due to the excitation of measurement coil 2 with a unit

current, this reduces to δV21 the change of the induced voltage on the measurement

coil 2 when coil 1 is excited.

Although one could in principle calculate the sensitivity using a numerical solver for

Maxwell’s equations by successively making small perturbations to small voxels in
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the model, this would result in a large number of field solutions, whereas calculation

using this formula requires only one E and H solution for each coil.

3.1.1 Coil Model and Sensitivity

There are a number of ways to model the excitation and measurement coils. As in

EIT where the conductive electrodes must be modelled, the presence of the coils can

affect the fields. Rather than modelling individual turns of copper wire, we will use a

simplified model of a coil as a surface, (topologically at least) an open ended cylinder.

When used as an excitation coil this surface carries a tangential current Js. This is

equivalent to a surface that is perfectly conducting in one direction (angular for a

cylinder) and an insulator in another (axial) direction, with each loop fed by a perfect

current source.

A typical arrangement of the sensors for MIT uses fixed excitation and the measure-

ment coils. There might be an external screen modelled as an electrical conductor,

which means that the tangential component of E vanishes. Where shielding is not pos-

sible one would nevertheless need to apply far field boundary conditions to Maxwell’s

equations. It is important to note that the electromagnetic fields inside the sensor area

and between the coils and the shield are coupled so that we can no longer apply the

above approximation where measurement is made on a surface, which decouples the

problem. Instead we apply the boundary condition n � E � 0 on the shield Γ, and

include source terms Js for the coils as above.

In areas (such as the air gap surrounding the coils) the same approximation of ignor-

ing the displacement current results in the magnetostatic approximation ∇ � H � 0.

This does not allow wave propagation effects and is valid provided our system is small
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compared with the wavelength of electromagnetic waves in air. Our coils are consid-

ered as electro-magnets not radio transmitting antennas. Combining (3.1) and (3.3)

we obtain

∇ �

�
1
µ

∇ � E � � iωξE � � iωJs (3.8)

Where ξ is the complex admittivity ξ � σ � iωε. We now consider the case where we

excite one coil. Suppose that the admittivity is perturbed ξ � ξ � δξ with the resulting

change in the field E � E � δE while the current � s is held constant. Our aim is to find

the linearized change in the voltage measured on some other coil, so in this derivation

we will neglect second and higher order terms. A more detailed derivation along the

lines of Calderón [27] would prove that this is the Fréchet derivative in suitable normed

spaces. Applying (3.8) to E and E � δE, then subtracting and neglecting higher order

terms gives

∇ �

�
1
µ

∇ � δE � � iω � δξE � ξδE � � 0 � (3.9)

Taking the dot product with E yields

1
µ

E � ∇ � � ∇ � δE � � iωδξE � E � iωξE � δE � 0 (3.10)

from which we seek to remove the term in δE (in the interior). We use the identity

∇ � � E � ∇ � δE � � E � ∇ � ∇ � δE � � ∇ � E � � � ∇ � δE � (3.11)

to give

∇ � � δE � ∇ � E � � δE � ∇ � ∇ � E � � ∇ � δE � � � ∇ � E �

� � iωµξδE � E � iωµδE � Js � � ∇ � δE � � � ∇ � E �
(3.12)

using (3.8) and subtracting (3.12) from (3.11) gives

∇ � � E � ∇ � δE � δE � ∇ � E � � E � ∇ � ∇ � δE

� iωµξE � δE � iωµδE � Js

(3.13)
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eliminating the δE terms using (3.10) then integrating over the domain and using

Gauss’ theorem, together with the vanishing of the tangential components of E and

δE on Γ finally gives �

Ω

δE � Jsdx3
�

�

Ω

δξE � Edx3 (3.14)

which, unsurprisingly has the same right hand side as terms contained in (3.6). One

can calculate the sensitivity of a voltage measured on coil 2 when coil 1 is excited.

�

Ω

δE1 � Js2dx3
�

�

Ω

δξE1 � E2dx3 (3.15)

The left hand side here is now the change in voltage induced on our ideal coil provided

a unit current is driven in coil 2. It must be emphasized that with non-zero (for ex-

ample impedance) boundary conditions on the shield Γ the sensitivity would involve

boundary terms that are unknown. The same sensitivity formula (3.14) holds here,

and the uniqueness result of [111] can be adapted here. If Ω is a bounded domain in

R3 with a smooth boundary Γ and a connected complement. Suppose the map Λ that

assigns the tangential component of Et to that of Ht is defined. Assume that outside

Ω, ε, µ are known constants and σ vanishes. Then, it has been proved by [111] that

knowledge of the map Λ uniquely determines these quantities. This applies to the coil

model we presented here. The same uniqueness will be applied to the permeability

tomography in next chapter.

3.2 MIT system

In this chapter the simulated MIT system is a virtual system, and has been used to

generate the data for image reconstruction. The simulated image reconstruction results

in this chapter are based on this MIT system. The simulated MIT system here has
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8 coils system, used for both excitation and sensing. The coils have 0.04 m inner

and 0.05 m outer diameter and 0.02 m length. They are arranged in a circular ring

surrounding the object to be imaged. In this example the distance between the centre

of two coils on opposite sides is 0.160 m, the centre of the coil ring is at (0,0,0).

Figure 3.1 shows the coil arrangement of this virtual MIT system. The system could

have a magnetic or electric shield but in this chapter the far field boundary condition

Bn � 0 is applied to the model and the shield has not been considered. We use the

normalized value of the measured voltage. All voltages are normalized with respect

to the free space induced voltage and a 1Am
� 2 current is applied to the excitation coil

for simplicity. The region of interest for the imaging is a cylinder with radius 0.07 m,

length 0.10 m centred at (0,0,0) and a relative permeability of 1 (labelled C1). Each

coil is excited in turn and the induced voltages are measured in the remaining coils.

The real part of the induced voltage (in phase to the excitation) has been used for the

conductivity reconstruction in low contrast and the imaginary part has been used in

high contrast conductivity and experimental examples.

The purpose of the forward solver in MIT is to predict the measurement by a given

material distribution and the excitation currents. As we can see in the next section one

needs to calculate the interior electric and magnetic field to be able to calculate the

efficient Jacobian matrix. Commercial FEM packages do not provide enough access

to the model to enable it to be used for the purpose of the inverse problem. As we

will see in this chapter in order to generate sensitivity maps one needs to have access

to system matrices, which may not be accessible from a commercial package. For

the image reconstruction one needs to have access to the system matrix and all shape

functions. For this reason one needs to implement a suitable forward solver for the

particular inverse problem.
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Figure 3.1: Excitation and sensing coils, view from the top

3.3 Whitney finite elements

Edge finite element has its origin from a work by Whitney [173] in differential forms

in algebraic topology. Nedlec [107], [108] is the first scientist to extend the edge fi-

nite elements in three dimensional. Since then edge finite elements have been used

in various electromagnetic problems. Eddy current and magnetostatic problems are

among many other electromagnetic problems that are benefited from the advancement

of edge FEM [12], [48], [18], [129], [166], [167] [130], [91], [90], [74]. In [1], [2]

edge elements are used for an integral formulation for computational electromagnet-

ics.

Edge finite element is a member of family of vector finite elements. Whitney elements

are from three forms including, 0-form defined for a scalar potential φ bases for first

order nodal FEM, 1-form defined for the edges and a vector potential uuu and it is the

base for the edges FEM and 2-form defined for vector field uuu and it is the base for the
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facet elements.

In a general any Whitney form associated with p-simplex i0 � i1 � i2 � � � � � ip is [30]

wi0 ��������� ip � p!
p

∑
j � 1

� � 1 � jφi jd
0φi0 � � � � � ��� d0φi j � 1 � d0φi j

�
1 � � � ��� d0φi p (3.16)

where φi is a piecewise linear function that has value 1 in node i and zero in other

nodes of the element and d0 is the exterior derivation. The value of a variable x can be

defined by x � ∑i φi � x � xi with xi value of x in node i and ∑i φi � x � � 1. The operator d1

is for grad φ for 0-form and d2 is for curl uuu for 1-form and d3 is for div uuu for 2-form.

Based on equation (3.16) the lowest order is the form of degree zero defined in nodes.

We have wi � φi, which has value 1 at node i and zero in any other nodes. The function

wi is continuous across facets. If i and j are nodes for an edge, the 1-form belonging

to this edge is wwwi j � φi∇φ j � φ j∇φi. Tangential component of wwwi j is 1 along edge

between nodes i � j and zero along any other edges. Tangential component of the vector

field wwwi j is continuous across facets. If i � j � k are nodes belonging to a face, the 2-form

belonging to the facet elements is wwwi jk � φi∇φ j � φk � φ j∇φk � sφi � φk∇φi � sφ j. The

normal component of the vector field wwwi jk is continuous across facets.

Conformity of the Whitney forms is an interesting property of them. The conformity

of Whitney elements is grad w0 � www1 and curl www1 � www2 and div www2 � w3, here w3 is

for scalar fields and has the same properties as 0-form.

In this thesis we are working with nodal FEM based 0-form and edge FEM based

on 1-form. Properties of nodal FEM that make them interesting for the scalar field

computations are very well known, we use nodal FEM for the forward problem of ERT

and ECT (scalar fields) next chapters. We also use an edge finite element technique

for vector field computation in eddy current and magnetostatic problems.

Edge FEM has some promising advantages compared with the more conventional



CHAPTER 3. MAGNETIC INDUCTION TOMOGRAPHY 43

nodal FEM for vector field computations. In edge FEM a vector field is represented

using a basis of vector valued functions. Nodal FEM was used for the vector fields in

electromagnetics. Although nodal FEM is easy and straightforward and its outcome

accurate, several serious problems have been identified when the ordinary nodal-based

finite elements were employed to compute vector electric or magnetic fields, most no-

tably

� Long computation time

� Large memory requirements

� Lack of adequate gauge conditions for vector magneto-static analysis

� Satisfaction of the appropriate boundary conditions at material and conducting

interfaces

� Difficulty in treating the conducting and dielectric edges and corners due to the

field singularities associated with these structures

� Occurrence of non-physical or so-called spurious solutions, especially in wave-

guide and scattering problems, etc.

A very important advantage of edge FEM in computational electromagnetics is their

superiority in imposing physically necessary continuity properties for inter-elements,

and not imposing any additional continuity. For eddy current and magnetostatic prob-

lems we developed edge FEM based on a formulation involving edge finite element

modelling of the magnetic vector potential AAA [12]. The tangential component of AAA is

continuous between two neighboring elements, which satisfies tangential continuity

of the electric fields. The magnetic flux density is curl of magnetic vector potential,
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continuity of tangential component of magnetic vector potential ensures the normal

continuity of magnetic flux density. Continuity of normal component of the magnetic

flux density and tangential component of electric fields are two physical continuity

and are satisfied by edge finite element formulation.

3.4 Forward problem

The electromagnetic field in the eddy current problem can be described either in terms

of a field, a potential or a combination of both. One can use different combinations of

these quantities as state variables [12]. Although different formulations would produce

the same answers in exact arithmetic, they may differ in accuracy when implemented

numerically and the implementation will differ in complexity and computational cost.

We have implemented two of the most popular edge FEM formulation in forward

modelling. We use a formulation based on magnetic vector potential AAA and an elec-

tric scalar potential V [12]. We have also implemented a method based on the AAA � AAA

formulation [73].

3.4.1 AAA � AAA � V formulation

First order tetrahedral edge finite elements are employed to model the magnetic vector

and the first order nodal tetrahedral elements electric scalar potential. We have devel-

oped a more general eddy current software for time harmonic eddy current modelling.

For the field quantities we have EEE � � iω � AAA � ∇V � (the time derivative for electric po-

tential is used to ensure the symmetry of linear system of equations) and BBB � ∇ � AAA.



CHAPTER 3. MAGNETIC INDUCTION TOMOGRAPHY 45

Let us consider the quasi-static electromagnetic fields governed by

∇ � � ν∇ � AAA � � iωξ � AAA � ∇V � � � sss � (3.17)

iω∇ � � ξ � AAA � ∇V � � � 0 (3.18)

where ξ � σ � iωε and σ , ε are the electric conductivity and permittivity and ν � 1
�
µ.

The boundary conditions of AAA � nnn � 0 on Γ, the surface of the whole simulation do-

main and nnn � � � iωξAAA � iωξ∇V � � 0 on Γe, the surface of the eddy current region.

Far field boundary conditions of normal component of magnetic field density zero are

set. In edge FEM the degree of freedom is the tangential components of the vector

field.

The linear system of equations can be solved using the Incomplete Conjugate Gradi-

ent (ICCG) method [97],[75]. The electric vector potential TTT s is defined in the coil

region to represent the current in the excitation coil. Here ∇ � TTT s � JJJs and using

this formulation guarantees a divergence free current source for the right hand side

of equation (3.17) and improves the convergence of the linear solver. For simple coil

shapes we are using some analytical formulation for the computation of TTT s [12], and

there is no need to mesh the coil itself. For complicated coil shapes the boundary

value problem ∇ � � 1
σ∇ � TTT s � � 0 is solved with suitable boundary conditions in the

coil region. More detailed study of the current source modelling will be presented

later in this section.
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Finite element discretization of (3.17) ,(3.18) using edge basis functions yields
�

Ω

� ∇ � NNN
1
µ

� ∇ � AAA � dx3 �
�

Ωe

� iωξNNN � � AAA � ∇V � � dx3

�

�

Ωc

� ∇ � NNN � TTT sss � dx3
(3.19)

and

�

Ωe

� iωξ∇φ � � AAA � ∇V � � dx3
� 0 � (3.20)

where NNN is any linear combination of edge basis functions, NNNi j � φi∇φ j � φ j∇φi, φ is

standard nodal basis, Ω is the entire region, Ωe the eddy current region, and Ωc the

current source region. ∇ � NNN and ∇L are constant in each elements so the integration

is simple within an element. For those terms including NNN we calculate the volume

integrals by Gaussian quadratures method [179]. The Gaussian quadratures provide

the flexibility of choosing not only the weighting coefficients but also the locations

where the functions are evaluated. We use five Gaussian points to evaluate the integrals

in eachtetrahedral element.

The induced voltages (Vm) in sensing coils are calculated using

Vm � � iω
�

Ωc

� AAA � J0 � dx3 (3.21)

where 0 is a virtual unitary current passing through the coil.

To see the result of the forward solver, consider a cylindrical object with diameter

0.14 m and length 0.14 m placed in the centre of the coil ring and has conductivity

0.8 Sm
� 1. Figures 3.2, 3.3 show the real part of the magnetic flux intensity in plane

z=0 and in 3D and figures 3.4 and 3.5 shows the real part of the eddy current when the

excitation coil is carrying 1Am
� 2 current at frequency 150kHz and placed at (0,-0.08)
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m in two and three dimensions. The conductive object is modelled as a cylindrical

object with diameter 0.14 m and length 0.14 m placed in the centre of coil ring (0,0)

with conductivity 0 � 8Sm
� 1. As discussed in the next section, the shape of the eddy

currents inside of the conductive background affect the sensitivity map.
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Figure 3.2: The real part of the magnetic flux intensity (B in Tesla) for the electric

current of 1Am
� 2 in the coil

Figure 3.6 shows the magnetic field intensity when we insert a cylindrical object with

radius 0.03 m with relative permeability of 1000 centred at (0,0.025)m.

3.4.2 AAA � AAA formulation

In the “AAA � AAA” formulation using edge FEM [73], [12], AAA in a conductive region includes

the gradient of the electric scalar potential, and Maxwell’s equation reduce to the

vector Helmholtz equations. Conformity results of Whitney forms means that gradient

of the form of degree of 0 is a subset of the form of degree of 1 (edge finite element).

This property enable us to use [73] a formulation based on magnetic vector potential
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Figure 3.3: The real part of the magnetic flux intensity (B in Tesla) for the electric

current of 1Am
� 2 in the coil in 3D
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Figure 3.5: The real part of the eddy current intensity (in Am
� 2 ) for an electric current

density of 1Am
� 2 in the coil
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AAA, which can be written

∇ ��� 1
µ∇ � AAA � � iωσAAA � Js � (3.22)

The finite element discretization of 3.22 with edge element basis functions yields

�

Ω

� ∇ � NNN
1
µ

� ∇ � AAA � dx3 �
�

Ωe

� iωσNNN � AAA � dx3
�

�

Ωc

� NNN � � sss � dx3 (3.23)

where NNN is any linear combination of edge basis functions, Ω is the entire region, Ωe

the eddy current region, in which σ � 0, and Ωc the current source region, again TTT s is

used to model the current source.

A set of experimental data was collected from the 8 coils MIT system, where the

conductive object was a copper bar (a cylinder with radius 0.019 m and length 0.20

m) placed in center of the object space. The normalized induced voltages (all data

were normalized with respect to measurement number 1, which is coil 1 excited and

coil number 2 is measured) for simulation using our edge FEM software as well as

the experimental results are shown in figure 3.7. There is a relatively large difference

between measurement of coil 8 and coil 2 when coil 1 is excited in measurement data,

we belive this could be because of a mismatch in position of the coils number 2 or 8.

In [146] the forward problem for both magnetostatic and the eddy current has been

validated against experimental data as well as a commercial package called MAFIA.

The number of elements in the edge FEM for this simulation was 86400, simulated at

a frequency 5kHz. Image reconstruction for a single copper bar in different positions

has been done earlier in [146].

Figure 3.8 shows the the imaginary part magnetic flux intensity in plane z=0 when the

excitation coil is carrying 1Am
� 2 current at frequency 5kHz and placed at (0,-0.08)

m is shown below. For the conductive object here we assumed a cylindrical object
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with diameter 0.038 m and length 0.2 m placed in the centre of coil ring (0,0) and

has conductivity 5 � 8 � 107Sm
� 1. Figure 3.9 show the real part of the magnetic flux

intensity. Figure 3.10 shows the imaginary part of the eddy current.
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Figure 3.8: The imaginary part magnetic flux intensity (B in Tesla) for the electric

current of 1Am
� 2 in the coil (with copper bar)

3.4.3 Current source modelling (right hand side)

Special attentions are needed to formulate the excitation current in edge element mod-

elling of the eddy current and magnetostatic problems [129]. Current density needs

to be defined in a way that the normal continuity of the current density are satisfied

between two elements. Here we explain various methods for the current source mod-

elling and then deal with the main field modelling. In edge element the current source

needs to be defined along the edges and also be able to model a divergence free cur-
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rent desnsity, otherwise the linear system of equations arising from edge FEM does

not converge [129]. In the cases in which the current distribution is not known in ad-

vance, a boundary value problem is set up either in terms of electric scalar potential

or electric vector potential. In such cases we have

∇ � Js � 0 (3.24)

Electric Scalar potential

In this method the electric scalar potential is used for computing the current density.

Obviously the nodal based FEM is used for interpolation of the electric scalar poten-

tial.

It is possible to solve the above equation using electric scalar potential.

We can say

∇ � σ � ∇V � � 0 (3.25)

here σ is the conductivity of the coil region and V is the electric scalar potential in coil

region. We use a Neumann or Dirichlet boundary condition, respectively for voltage

or current source. In this case after computation of V by nodal FEM. We have

Js � σEEEs (3.26)

Then we have in each point

JJJs � σ � ∇φ � V (3.27)

where φ is the nodal shape function and V is calculated potential of the nodes.
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We may want to use this Js on the right hand side (R.H.S) but the numerical experi-

ments show that the convergence behavior of the solution of the system of equations of

the magnetostatic fields of the edge elements of magnetic vector potential formulation

is better when we use we use Ts as a source term, in which ∇ � TTT s � Js. Substituting

Js to TTT s we have to solve

�

Ωc

� ∇ � NNN � � � ∇ � TTT s � dx3
�

�

Ωc

� ∇ � NNN � � Jsdx3 (3.28)

where Ωc is a simply connected region containing the coils and Js is the imposed

current density.

Analytical model for a simple coil shape

It is possible to analytically calculate the current distribution Js or more likely the

current vector potential distribution TTT s analytically in some specific types of coils.

For example, for a cylindrical coil around the z-axis with the center at the origin of a

cylindrical coordinate system, having an inner radius ri, outer radius r0, height h and

carrying a current density JJJ � J1eeeθ, the following function TTT � T1eeez is appropriate (

eθ and ez are the unit vectors in azimuthal and axial directions, respectively)

TTT s �

��� �� 0 when
�
z

� � h
2 or r � r0

J1 � r0 � ri � when
�
z

� � h
2 and r � ri

J1 � r0 � r � when
�
z

� � h
2 and ri � r � r0

with this definition of the current density, we will have a current source where ∇ � Js � 0

is exactly satisfied analytically. As with all numerical integration over elements, we

have some errors compared to an analytical formulation.
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Method based on calculation of TTT s by edge FEM

This method uses the computation of TTT s in current from

∇ � � 1
σ

∇ � TTT s � � 0 (3.29)

here the boundary condition can be calculated using

�

Ci

TTT s � dddlll �

�

Γi

Js � nnndx2 (3.30)

for any closed path Ci in a fundamental set of loops in the graph with Γi being a surface

bounded by the curve Ci. Figure 3.11 shows a mesh of the coil and figure 3.12 shows

the electric current density in the coil.
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Figure 3.11: Coil mesh
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Method for computation of TTT s: element by element by facet current

In this method we have to calculate the current passing from each facet and then cal-

culate the TTT s by

�

Ci

TTT s � dddlll �

�

Γi

Js � nnndx2 (3.31)

for any closed path Ci in a fundamental set of loops in the graph with Γi being a surface

bounded by the curve Ci . Obviously this method is useful when we know the current

density distribution.

Method using Line Integration

First, the volume of the current source is approximated by multiple lines.

In the cross section of the source, the lines are located at the points of numerical

integration of 2D. The total current is shared by the weighting factor of 2D numerical



CHAPTER 3. MAGNETIC INDUCTION TOMOGRAPHY 59

integration.

Second, in the flowing direction, the lines are approximated by the chains of small

straight sticks. The numerical line integration is evaluated in an element only, not

across the boundary.

The term of � � NNN � Jsdx3 � is calculated by the three numerical line integration, two in

the cross section and one in the flowing direction. We know the current continuity is

guaranteed in this formulation. This formulation is also independent on mesh division.

3.5 Sensitivity analysis

The gradient is derived from the solution to two forward problems: an ordinary and an

“adjoint” problem. In contrast, a finite difference computation of the gradient requires

the solution of multiple forward problems, one for each unknown parameter used in

modelling the perturbed region. The general formulation is equation (3.15) and we use

this equation for our forward problem formulations in this thesis. The general form of

the sensitivity formula is

S �
∂Vi j

∂σk
� �

1
IiI j

�

Ωek

� EEE i � EEE j � dx3
(3.32)

Equation (3.32) gives the sensitivity of the induced voltage in pairs of coils labelled

as i, j with respect to an element and Ωek is the volume of element number k and Ii

and I j are excitation current for coils. Here EEE i and EEE j are the electric field intensity

resulting from the forward solution when coil i and j are excited respectively.
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3.5.1 Sensitivity for AAA � AAA � V formulation

With the AAA � AAA � V formulation and using edge FEM, the sensitivity to a change in the

conductivity of the conducting region can be calculated using an adjoint field method

as derived in this chapter and discussed in [42], [70], [69] where the integral becomes

the inner product of EEE fields and the Jacobian can be calculated by performing this

integration for a chosen basis for the conductivity perturbation δσ. Using the shape

function of edge elements NNNe and nodal elements of φe, the electric field EEE inside each

element can be expressed as follows

EEE � NNNeAAAe � ∇φeVe (3.33)

where AAAe are defined along the edges, and Ve is calculated electric potential for the

nodes. Then the sensitivity term for each element is as follows

S �
∂Vi j

∂σk
� �

ω2

IiI j

�

Ωek

� AAAi
eNNNe � V i

e∇φe � � � NNNeAAA j
e � ∇∇φeV

j
e � T dx3

(3.34)

In the edge FEM software implemented here, one can calculate AAA in all elements by

(3.33) where NNNe is a matrix of shape functions for all elements and AAAe is a vector of

the solution of the forward problem. One can use equation (3.34) simply for the region

Ω f that includes more than one finite element. Then the computation of the Jacobian

matrix is a matrix vector multiplication for each measurement. In the software pack-

age developed for this study, one can define all components of the Jacobian matrix for

the anisotropic material properties. The forward problem and the sensitivity formula

is based on a general complex admittivity, but for the inverse problem, we are con-

centrating in conductivity imaging. However extension of the inverse formulation to a

complex admittivity problem is trivial.
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The sensitivity plot changes with the background conductivity [143]. For example, if

a conductive object is introduced into the space the sensitivity in the surface layers

of the object increases due to the circulation of the eddy current. The sensitivity

also depends on the geometrical configuration of the sensing and exciting coils. For

example using a single frequency and fixed shape of the conductive object, for high

conductivity the higher eddy current density region is very small and regions close to

the boundary of the object have higher sensitivity. When the conductivity decreases

the area of high sensitivity spreads toward the centre of the object. Finally, when

the conductivity goes to zero the more sensitive area is no longer effected by the

conductive background shape and it is only effected by the geometrical configuration

of the sensing and exciting coils.

Figure 3.13 shows the sensitivity map for two opposite coils, two coils are placed in

� 0 � 0 � 08 � m and � 0 � � 0 � 08 � m and the background is a homogeneous cylindrical object

with conductivity 0 � 8Sm
� 1 and length and diameter of 0.14 m placed in the centre of

the coil ring. Figure 3.14 shows a 3D sensitivity map. Figure 3.15 shows the sensitivity

map for two coils in 90 degree, and figure 3.16 is the sensitivity map between coil 5

and coils (8,1,2) as a gradiameter.

3.5.2 Sensitivity for AAA � AAA formulation

With the AAA � AAA formulation and using the edge FEM, the sensitivity to a change in the

conductivity of the conducting area can be calculated using the dot product of the

electric fields [83], given EEE � � iωAAA where the integral becomes the inner product of

the EEE fields and the Jacobian can be calculated by performing this integration for a

chosen basis for the conductivity perturbation δσ. Using the shape function with edge



CHAPTER 3. MAGNETIC INDUCTION TOMOGRAPHY 62

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
−12

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y
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coil, the sensitivity values are in V mS
� 1
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elements NNNe, the potential AAA inside each element

AAA � NNNe � AAAe (3.35)

where AAAe are defined along edges. The sensitivity term for each element is

S �
∂Vi j

∂σk
� �

ω2

IiI j
AAAi

e �
�

Ωek

� NNNe � NNNT
e � dx3 � � AAA j

e � T (3.36)

The sensitivity calculated in (3.34) or (3.36) is a complex number S � Sr � iSi and Sr � Si

which are real and imaginary parts of the sensitivity term. These terms represent the

change in Vr � Vi, i.e. real and imaginary part of the measurement voltage V � Vr � iVi.

Some industrial MIT measurement systems [11] measure the amplitude of the induced

voltage
�
V

�
. The sensitivity term with respect to the amplitude then is calculated as

follow

Samp �
VrSr � ViSi�

V
� (3.37)

Some medical MIT measurement systems [78] measure the phase . The sensitivity

term with respect to the phase is calculated as follows

Sphase �
VrSi � ViSr�

V
� 2 � (3.38)

The sensitivity plot changes with the background conductivity [143]. For example, if

a conductive object is introduced into the space the sensitivity in the surface layers

of the object increases due to the circulation of the eddy current. The sensitivity

also depends on the geometrical configuration of the sensing and exciting coils. For

example using a single frequency and fixed shape of the conductive object, for high

conductivity the higher eddy current density region is very small and regions close to
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the boundary of the object have higher sensitivity. When the conductivity decreases

the area of high sensitivity spreads toward the centre of the object. Finally, when

the conductivity goes to zero the more sensitive area is no longer effected by the

conductive background shape and it is only effected by the geometrical configuration

of the sensing and exciting coils.

Figure 3.17 shows the sensitivity map for two opposite coils, two coils are placed in

� 0 � 0 � 08 � m and � 0 � � 0 � 08 � m and the background is a homogenous cylindrical object

with conductivity 5 � 8 � 107Sm
� 1 and length and diameter of 0.038 m placed in centre

of coil ring. Figure 3.18 shows the sensitivity map for two coils with 90 degree, two

coils are centred at � 0 � 0 � 08 � m and � 0 � 08 � 0 � m and the background is a homogenous

cylindrical object with conductivity 5 � 8 � 107Sm
� 1 and length and diameter of 0.038

m placed in centre of coil ring.

3.5.3 Jacobian matrix

The Jacobian matrix is assembled in a way that each row of it is the calculated sensi-

tivity term for an element for all measurements. Figure 3.19 shows the distribution of

the singular values of the real and imaginary part of the Jacobian matrix. In a noise and

error free situation it is possible to reconstruct an image with up to 28 parameters. In

real data and with measurement errors according to the Discrete Picard criteria some

of the small singular values may not be able to contribute to the image reconstruction.

It is worth noticing that some of these small singular values may represent important

and desirable part of the images which may not be reconstructed due to noise and error

in the measurement.

To illustrate the degree of ill conditioning in the problem the singular values are plotted
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on the log scale (figure 3.19). The roughly linear decay of the first 28 singular values

shows that the problem is ill-posed. Here the background conductivity is the cylinder

C1 with homogeneous conductivity of 4 Sm
� 1 and frequency is 1MHz. In medical

MIT the in-phase component, of the received signal contains are used to reconstruct

conductivity of the tissue [163]. The quality of imaging depends on the precision with

which real part can be measured. In figure 3.19 one can see that using the imaginary

part of receiving signal (with this particular conductivity and frequency) the inverse

problem is actually better posed than using the real part. In practical terms measuring

the imaginary part (detecting a very small signal due to the conductive object is a very

large primary signal) is very difficult task for medical MIT application.
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Figure 3.19: Singular values of the Jacobian matrix (JJJ) for the real and imaginary part

of the measurement voltages on a logarithmic base (background is C1 with conductiv-

ity 4 Sm
� 1 and frequency 1 MHz).

Figure 3.20 shows the sensitivity map for background C1 with conductivity 5 � 8 � 107

Sm
� 1 and frequency 5 kHz. This figure shows that using real part or imaginary part

to reconstruct conductivity is more ill-posed that the problem of figure 3.19, but the
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ill-posedness of the real part and imaginary part data is similar.
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Figure 3.20: Singular values of the Jacobian matrix (JJJ) for the real and imaginary part

of the measurement voltages on a logarithmic base (background is C1 with conductiv-

ity 5 � 8 � 107 Sm
� 1 and frequency 5 kHz).

3.6 Inverse problem

The image reconstruction is to find the distribution of electrical conductivity σ within

the region of interest using the knowledge of all 28 induced voltage measurements.

This can be done using iterative schemes based on optimization methods. We imple-

mented an optimization algorithm that finds a distribution for σ to minimize equation

�
Vm � F � σ � � 2 � R � σ � (3.39)

where R � σ � is the penalty term and can be implemented in discrete form using a reg-

ularization matrix. Where the descent direction of σ can be found using the Tikhonov
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Gauss-Newton method

δσσσn
�

1 ��� JJJT
n JJJn � α2RRRT RRR � � 1

JJJT
n � � VVV m � FFF � σσσn � � � α2RRRT RRRσσσn � � (3.40)

For n � 1 this is a linear reconstruction algorithm. Here JJJn is the Jacobian calculated

with the conductivity σσσn, VVV m is the vector of voltage measurements and the forward

solution FFF � σσσn � is the predicted voltage from the forward model with conductivity σn.

The matrix RRR is a regularization matrix which penalizes extreme changes in conduc-

tivity removing the instability in the reconstruction, at the cost of producing artificially

smooth images. Here RRR is a matrix, typically a difference operator between neighbor-

ing voxels. We take RRR as first order Laplacian operator in discrete form approximated

by finite difference. Here RRR � i � j � � � 1 for i �� j when two elements are neighbors

(sharing at least one node) and RRR � i � i � � � Σ jRRR � i � j � � i �� j.

This effect can be seen in figure 3.21 where the eigenvalues have been clustered when

the Tikhonov regularization matrix is applied to formulate a smoothness assumption

to the conductivity map.

The other type of regularization is total variation (TV) regularization. Using TV reg-

ularization one can improve the reconstruction of blocky images and sharp edges

[17]. A more practical study of TV will be given in chapter 6, here we mention

the implementation of TV regularization in our 3D tetrahedral mesh for complete-

ness. TV regularization matrix can be implemented as follows. Let the area of each

facet i between two voxels be qi � i � 1 � 2 � � � � I. The k-th row of the matrix SSS � � I � P

(here I is number of facets and P is number of tetrahedral elements) is chosen to be

SSSk �
�
0 � � � � 0 � 1 � � � � � � 1 � 0 � � � � � 0 � , where 1 and -1 occur in the columns related to the ele-

ments with common facet k. Each row of SSSk then weighted with area qk of the facet

k, where TTTV � SSST QQQSSS is the total variation regularization matrix and QQQ is a diagonal
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matrix with QQQ � k � k � � qk.

As an iterative reconstruction algorithm, the regularized Gauss-Newton method starts

with an initial conductivity distribution σσσ0. The forward problem is solved and the

predicted voltages compared with the calculated voltages from the forward model. The

conductivity is then updated using (3.40). The process is repeated until the predicted

voltages from the FEM agree with the calculated voltages from the finite element

model to measurement precision. In the non-linear steps, the Jacobian matrix is also

updated in each step.

3.6.1 Low conductivity contrast

In order to evaluate the quantitative reconstruction we considered a simple inverse

problem example. In this example the MIT system works in frequency 0.1 MHz and

the true and reconstructed conductivity can be seen in figure 3.22 for noise free data.

The number of unknowns are smaller than number of independent measurements, so

as expected the inverse solver can reconstruct all 20 values with a reasonable accuracy

with exact data. When we add two percent noise the reconstruction results are shown

in figure 3.23.

In all remaining reconstruction examples with low contrast conductivity the frequency

is 1 MHz, the relative permeability is 1, the relative permittivity is 100, and the mea-

surement data is the simulated real part of the induced voltage. In all cases an addi-

tional Gaussian noise of 2 percent was added to the simulated data. The simulated

data was generated using a fine mesh of 208000 tetrahedral elements.

Figure 3.24 shows a simple example, reconstruction of a spherical background with

conductivity 1Sm
� 1 and a spherical inclusion with conductivity 2Sm

� 1. In all MIT im-
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Figure 3.22: Reconstruction of 20 unknowns using noise free data
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Figure 3.23: Reconstruction of 20 unknowns using with 2 percent noise
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ages presented in this chapter we omit the colorbar as we did not recover the absolute

conductivity values.

−0.05
0

0.05

−0.05
0

0.05

−0.05

0

0.05

−0.05
0

0.05

−0.05
0

0.05

−0.05

0

0.05

−0.05
0

0.05

−0.05
0

0.05

−0.05

0

0.05

−0.05
0

0.05

−0.05
0

0.05

−0.05

0

0.05

Figure 3.24: Reconstruction of one inclusion in a spherical background in different Z

level

Figure 3.25 shows a conductivity distribution of a ring shape. The background has

conductivity 1Sm
� 1 and the ring has conductivity 5 � 8Sm

� 1. We added 1 percent

Gaussian noise to the simulation data generated by the phantom of figure 3.25. The

reconstructed image is shown in figure 3.26. The convergence plot of the nonlinear

inverse solver and the voltage differences is shown in figure 3.27. The reduction of

the voltage differences during the iteration down to the noise level is shown in figure

3.28. The maximum value of the reconstructed conductivity of figure 3.26 is 5 � 6Sm
� 1

which is not exactly the expected value, because of the presence of noise. The mesh

for the inverse problem had 80600 elements and the region of interest for imaging in

the cylindrical background includes 3760 elements.

Figure 3.29 shows a conductivity distribution with background conductivity 0 � 8Sm
� 1

and four cylindrical inclusions with conductivity 4Sm
� 1. The reconstructed image in
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Figure 3.25: True conductivity distribution for ring shape in different Z level. There

are 2800 elements
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Figure 3.26: Reconstruction of the conductivity distribution of figure 3.25 in different

Z levels
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Figure 3.27: Convergence plot, shows the norm of the differences between measured

and simulated voltages. Measurement and simulated voltages are normalized with
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figure 3.30 was performed with 5 iteration steps.
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Figure 3.29: True conductivity distribution for four inclusions in different Z level
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Figure 3.30: Reconstruction of the conductivity distribution of figure 3.29 in different

Z levels

Importantly it was not possible to reconstruct an annular object, meaning inserting

a conductive cylinder placed at centre of figure 3.25 and with diameter 0.03 m with

conductivity of 10Sm
� 1. The reconstructed image is more or less is the same as figure

3.26, which means we could not detect the central object. The initial guess was the
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homogeneous conductivity of 1Sm
� 1 and the external ring was reconstructed in few

iterations, and central region’s conductivity remains as an initial guess. The sensitivity

map here for a ring is shown in figure 3.31 showing very small sensitivity value in the

central region, this could be one reason for the failure to detect a central object within

an annular object.
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Figure 3.31: The sensitivity map for two opposite coils from the background conduc-

tivity distribution of figure 3.25

To further show the dependence of the shape of the sensitivity map to the background

we insert four cylinders with diameter 0.04 m and length 0.14 m placed at (0.05,0)

m, (-0.05,0) m, (0,0.05) m, (0,-0.05) m and conductivity of 4Sm
� 1 to the previous

homogeneous cylinder (0.14 m diameter and 0.14 m length and conductivity 0 � 8Sm
� 1

and the centre in (0,0)). Figure 3.29 shows the conductivity background including four

higher conductive objects. The change in the sensitivity map can be seen in figure

3.33. This shows that the sensitivity map changes with the conductivity background,

as the distribution of eddy currents changes with the background. Figure 3.32 shows

the real part of the eddy current for the conductivity background of figure 3.29 when
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the excitation is coil 1. After a few iterations 4 objects in corners were reconstructed,

the sensitivity value given the position of 4 corner has a higher value in centre, so the

central object could be reconstructed in this example.
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Figure 3.32: The real part of eddy current for coil 1 with conductivity distribution of

figure 3.29

Figure 3.29 shows a conductivity distribution with background conductivity 0 � 8Sm
� 1

and five cylindrical inclusions including one in the centre with conductivity 4Sm
� 1.

The reconstructed image in figure 3.30 was performed with 7 iteration steps. As we

have seen from the sensitivity plot of figure 3.17, detecting an object in the centre

is more complicated because the sensitivity is very low in the centre of a conductive

background. But in this particular example four higher conductive objects in the cor-

ners cause an improvement of the sensitivity map of the centre as shown in figure

3.33. So that the trace of the inclusion in the centre can be seen in the reconstructed

image of figure 3.35. But in general it is hard to detect the inclusion(s) located inside

a conductive background as the sensitivity analysis shows a smaller sensitivity in the

central region of the conductive background for all coil combinations.
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Figure 3.33: The sensitivity map for two opposite coils from the background conduc-

tivity distribution of figure 3.29
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Figure 3.34: True conductivity distribution for five inclusions in different Z levels
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Figure 3.35: Reconstruction of the conductivity distribution of figure 3.34 in different

Z levels

3.6.2 High contrast examples

Figure 3.36 shows a test problem, molten steel flow (with conductivity 2 � 1 � 106Sm
� 1)

with a cross shape inside of a refractory nozzle with an inside diameter 0.14 m and

length 0.14 m with conductivity 0Sm
� 1. The simulation data (28 measurement of

the amplitude of the measurement voltages) has been generated using the distribution

of figure 3.36 and the forward model with 315607 elements. Gaussian noise with

a level of two percent of the mean value of the measurement voltages was added to

the simulated measurement data. For image reconstruction we used a different mesh

which has a total number of elements of 86400 and the number of the voxels in the

region of interest for the imaging (the cylinder) are 3800. The initial guess for the

image reconstruction was the cylinder full of molten steel. The reconstructed image

is shown in figure 3.37. Figure 3.38 shows the norm of the differences between the

measured and simulated voltages. The norm of error in figure 3.38 is a normalized

value, and described by
� � VVV m � FFF � σσσ � � �

VVV 0
�
, where VVV 0 is measurements voltage of
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the free space.
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Figure 3.36: True steel flow in different Z levels

After 10 iterations the quality of the reconstructed image and the norm of the mismatch

error did not improve significantly, as the difference between measured and simulated

voltages are smaller than the noise. With smaller conductivity contrast such as medical

MIT [100], the number of iterations to generate suitable image is less. One step could

provide a satisfactory image for low contrast conductivity imaging of medical MIT.

The next example is the reconstruction of three metal bars (with conductivity 2 � 1 �

106Sm
� 1 ) shown in figure 3.39, the reconstruction of these three bars can be seen in

figure 3.40, using 6 nonlinear iterations. Again an additional 2 percent Gaussian noise

was added to the simulation data, and the reconstruction results. Reconstruction of

the shape of the metal flow and location of metal bars are good, but the reconstruction

of the absolute conductivity values are not satisfactory. Further study is needed to

improve the quantitative images. It is worth noticing that in reconstructed results as
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Figure 3.37: Reconstructed steel flow in different Z levels
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expected the quality of the images on planes in the area of coils are much better than

the planes further away, because the sensitivity reduces when we move away from the

coil.
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Figure 3.39: Three metal bars in different Z levels

3.6.3 Experimental results

Figure 3.41 shows a block diagram of the hardware for an MIT system, which consists

of a sensor array, data acquisition unit and host computer. A new MIT system was

designed and fabricated in Prof. A. J. Peyton’s group in Lancaster University. The

data acquisition unit houses the electronics required to sequence the a.c. excitation

field, and acquire the secondary field values from the detector coils. The host computer

controls the measurement process and implements the image reconstruction algorithm,

which is the concern of this chapter. The system used in this study was developed in

order to investigate the flow of liquid steel during continuous casting. Here the sensor
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Figure 3.40: Reconstruction of three metal bars in different Z levels

array consisted of 8 coils as shown in figure 3.42, which were used both for excitation

and detection. The geometrical information of the new MIT system is similar to the

simulation model presented in figure 3.1. Each coil has 45 turns and with a 0.05 m

outer and 0.04 m inner diameter and a length of 0.01 m. The coils are placed in a

circular ring and the distance between two opposite coil was 0.16 m. The applied

current was a 5 kHz sine wave.

The experimental results are shown for one, two, three and four metal bars inside of

the region of interest. Figures 3.43 show a copper rod in centre with diameter 9 mm.

This is about the minimum size can be detected by the current experimental system in a

region of interest with diameter 160 mm. Figure 3.44 shows reconstruction of a copper

and an aluminum rod diameter 12.5 mm each. Figure 3.45 shows the reconstruction

of three copper bars with diameter 19 mm each. Figure 3.46 show the reconstruction

of three copper bar, diameter 19mm each and an aluminum bar diameter 12.5 mm.
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Figure 3.41: Block diagram of a the experimental MIT system (this image is from

Prof. A.J. Peyton)

Figure 3.42: Coil arrangement in a MIT sensor array used in this study (this image is

from Prof. A.J. Peyton)
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Figure 3.47 shows reconstruction of a rectangular metal object in centre and dimension

of 80mm � 50mm cross section. Figure 3.48 shows reconstruction of a quarter of a

cylinder (diameter 180 mm) of aluminum. Figure 3.49 shows reconstruction of copper

tube, which is laminated with thin copper sheets.
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Figure 3.43: Reconstruction of one metal bars, a copper rod at centre with diameter

9mm in different Z level

Using Mayavi [128] for the visualization can improve the data presentation in 3D

MIT. Here we present some examples of showing the MIT images using Mayavi.

A Matlab function written by Borsic [14] to convert the image data generated from

Matlab to a Visualization ToolKit (VTK) file used by Mayavi has been used here. In

figure 3.50 reconstruction of a rectangular shape object is shown. An isosurface plot

of the electrical conductivity from the rectangular shape object is shown in figure 3.51.
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Figure 3.44: Reconstruction of two metal bars, a copper and aluminum bar with the

same size in different Z level
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Figure 3.45: Reconstruction of three metal bars, three copper rods with the same size

in different Z level
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Figure 3.46: three copper rods and one aluminum rod in different Z level
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Figure 3.47: Reconstruction of a rectangular object in centre in different Z level
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Figure 3.48: Reconstruction of a quarter of a metallic cylinder in different Z levels
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Figure 3.49: Reconstruction for a tube shape copper in different Z levels

Figure 3.52 shows 3D shape of four metal bars also presented in figure 3.46.

3.7 Applications of MIT

MIT has potential applications in fields such as medical imaging, nondestructive test-

ing, environmental cleaning, geophysics. If there is a contrast or change in PEP of

an object to be imaged, MIT potentially can be used as a static or dynamic imaging

tool. In an ideal case with perfect accuracy and enough speed, MIT is able to image

the PEP contrasts in static mode. It can image online changes in PEP in dynamical

mode. In reality the measurements are noisy and also there are numerical errors in

simulated data generated by forward models. These errors impose a limitation in res-

olution and contrast of the image. The limited speed of the measurement system and

the simulation tools may limit the speed of MIT for online imaging. If the sensitivity

of the measurement system is very low for part of the object, we may not be able to
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Figure 3.50: Rectangular metal object

Figure 3.51: Rectangular metal object, isosurface for electrical conductivity
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Figure 3.52: Four metal bars of figure 3.46

image those regions. This acceptable sensitivity is bounded also by the accuracy of

the measurement system, accuracy of the simulation models and reconstruction tech-

niques. The feasibility study of MIT for each application plays a vital role in success

of each MIT project. The implemented software in this thesis enables us to have a

synthetic analysis of the MIT system, also one may use it for feasibility studies for

different applications.

3.7.1 Industrial Process

There is increasing interest in using PEP images in monitoring of the industrial pro-

cesses. ERT and ECT attracts many process engineers to collaborate with scientists

to develop those techniques for the process monitoring purposes. MIT is potentially

a good alternative and sometimes the only option for process monitoring as it has the
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advantage of being contact less. In EIT when an insulating object surrounds a conduc-

tive object, this makes it impossible to image the conducive object. Molten steel flow

visualization [11] is an interesting application of MIT in continuous casting in the steel

industry. Identification of the solidification of the metal object during the casting [117]

is also a potential MIT application, that have been studied previously. Tomographic

condition monitoring of Taphole operation is also an ongoing project in industrial

application of MIT. MIT can be used in many other industrial applications. In this

thesis we contribute on improving some image and shape reconstruction techniques

that enable MIT to be used for the multi-phase material monitoring. Specifically we

concentrated on imaging of the molten steel flow.

An interesting application of MIT with high contrast conductivity imaging is the

molten metal flow visualization in continuous casting of steel. Continuous casting,

see figure 3.53, is a key process by which molten steel is formed into semi-finished

billets, blooms and slabs. Liquid steel from basic oxygen steelmaking (BOS) or elec-

tric arc furnace (EAF) processes and subsequent secondary steelmaking, is transferred

from a ladle, via a refractory shroud, into the tundish. The tundish acts as a reser-

voir, both for liquid steel delivery and removal of oxide inclusions. A stopper rod or

sliding gate liquid (not shown) is used to control the steel flow rate into the mould

through a submerged entry nozzle (SEN). The SEN distributes the steel within the

mould, shrouds the liquid steel from the surrounding environment, and reduces air

entrainment thus preventing re-oxidation, and maintaining steel cleanliness.

Primary solidification takes place in the water-cooled copper mould and casting pow-

der is used on the surface to protect against re-oxidation and serve as a lubricant in the

passage of the strand through the mould. Exiting the mould, the strand consists of a

solid outer shell surrounding a liquid core. This is continuously withdrawn through a
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Figure 3.53: Overview of the continuous casting process (this image is from Prof. A.J.

Peyton)

series of supporting rolls and banks of water sprays where further uniform cooling and

solidification take place. The resulting cooled and solidified strand is finally divided

by cutting torches into pieces as required for removal and further processing. Figure

3.54 shows a photograph of the process with the SEN labelled.

At present, the metal level in the mould, which is maintained by automatic flow con-

trol, is usually measured using electromagnetic or radioisotope metal level sensors

in the mould. Several possible flow regimes could exist within an SEN as shown in

figure 3.55, examples of which are bubbly flow (argon bubbles with the stream) fig-

ure 3.55(a), central stream with a half filled nozzle figure 3.55(b) and annular flow (a

stream with a central gap) figure 3.55(c). Other flow regimes are possible and tran-

sitions from one flow mode to the other can occur during casting depending on the

flow rate of steel and gas for the given casting conditions. Therefore, an on-line flow

visualization approach, based on a rugged and inherently safe sensor, would be highly

desirable. Knowledge of the flow regime in the SEN would enable improved control

of conditions in this area of the caster.
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Figure 3.54: Photography of the continuous casting process showing the SEN and

tundish (courtesy Corus plc.)

Figure 3.55: Examples of flow regimes of molten steel from left to right, Bubbly,

Centred and Annular (this image is from Prof. A. J. Peyton)
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3.7.2 Non Destructive Testing

In eddy current testing [153] technique a time-varying current flowing in an exciting

coil induces eddy currents in a specimen under testing. The eddy currents field de-

pends on the spatial distribution of the resistivity and magnetic permeability and is

detected by a suitable number of magnetic sensors. Information concerning the spa-

tial distribution of the resistivity is then retrieved by inversion of the measured data.

In this frame, the problem of reconstructing 3D volumetric anomalies in conductors is

presently receiving considerable attention. The problem is very difficult from a theo-

retical, experimental and computational point of view. From the theoretical point of

view, the actual information that can be retrieved from experimental data should be as-

sessed, for a given experimental noise level. Eddy current testing (it has the same basis

as MIT) is very well known in Non Destructive Testing (NDT) where the eddy current

method is used for crack detection in metallic objects. Although it called eddy current

testing but in fact it can be categorized as an MIT system too, as it images indeed

the conductivity distribution. The forward and inverse problems are the same as MIT.

Most eddy current instrument (and probes) are dedicated to a particular application,

such as the detection of cracks, inspection of tubes, metal sorting, or determination of

coating thickness or conductivity. From point of view of this thesis we consider the

eddy current testing as a PEP imaging system similar to MIT technique, as it can be

a multiple (coil/coil) or single coil measurement, where the objective is to map the

shape and position of the cracks. This thesis contributes in forward modelling, inverse

solution and the sensitivity analysis of eddy current testing system.
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3.7.3 Medical Applications

In medical applications the non-invasive measurement of the impedance of biological

tissue can yield data of diagnostic relevance. For example a change in impedance

can give an indication of the healing process of wounds and of skin irritations. The

traditional way is to apply the current directly to the tissue and measure the voltage

with electrodes. This leads to stray capacitances between the electrodes as well as

between the ground and the patient especially at frequencies above 500kHz. If the

patient has acute pain it is not always possible to touch the skin, so a non-contact

method must be used. In some applications (e.g. impedance measurement in the brain)

impedance can hardly be measured with surface electrodes. Such a sensor could be

an instrument, which is moved around on the skin of a patient, in order to detect areas

with impedances that deviate from normal. The non-contact measurement is based

on the idea that a time varying magnetic field induces eddy currents in the conductive

tissue. These eddy currents will create a field by themselves and a change in the

signal can be detected. This change is expected to be very small, so a high resolution

of the measuring system is necessary [141]. Electrical bio-impedance measurement

(EBIM) is an important physiological measurement technique that gives information

on tissue characteristics. The coil-coil method is a non-invasive, contact free method

for the EBIM. In contrast to the conventional techniques which are applying electric

current and measuring the voltages using electrodes, the coil-coil method measures

impedance using pairs of coils.

There are some advantages of this contact-less system compared with electrode sys-

tems. First that we do not need to attach electrodes, which is an advantage for intensive

care patients and patients with damaged skin. Secondly the number of measurements

can be increased by mechanical moving of the coils which is not feasible with an
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adhesive electrodes system. Thirdly, injected current cannot generate high current

density in a volume surrounded by a less conductive region, so it is practically im-

possible to obtain detail information on the parts inside of such a region (screening

effect). Coil-coil EBIM aims to estimate the electrical conductivity of biological tis-

sue from external measurements [78]. This technique appears especially attractive

for the monitoring of pathologies in the brain, which are correlated with local fluid

shifts, for example oedema, haemorrhage’s or epileptic events [157],[142]. In appli-

cations like cryosurgery monitoring [127] where we are looking for relatively larger

changes in the conductivity (normal tissue compared with freezing tissue), in partic-

ular in cryosurgery monitoring of the head where the screening effect makes the task

difficult for conventional bio-impedance measurement we suggest the coil-coil system

may be advantageous. MIT in medical applications are working in higher frequency

and the contrast are low for the conductivity compared to the industrial applications.

The forward model, sensitivity analysis and the image reconstruction technique devel-

oped for this thesis are perfectly usable for MIT in medical applications.

3.8 Discussion

In MIT the image is the distribution of the electric conductivity based on detecting

the induced current caused by a time varying magnetic source. Basically the magnetic

source is a coil carrying sine wave current outside of the conductive volume. The

direct measurement of the eddy currents is not so easy, but one can measure the ef-

fect of eddy currents by their magnetic field results in the induced voltage on external

sensing coils. The measurement process can be described by a general eddy current

problem. There is not an analytical solution to the eddy current problem in all cases.
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In this thesis an edge FEM software has been developed to numerically simulate the

forward problem of MIT. A sensitivity formula has been derived that calculates the

changes in induced voltages due to the small change in conductivity of a region. The

computer program includes an edge FEM code for the general eddy current problem,

computation of the Jacobian matrix, nonlinear Gauss-Newton method, generating the

regularization matrix and visualization functions have been implemented in Matlab.

The forward problem and the Jacobian computation can work for the anisotropic ma-

terial distribution, but the image reconstruction presented in this chapter is for isotropic

material distribution. In this chapter we presented a nonlinear image reconstruction

method using a regularized Gauss-Newton scheme for MIT, which uses the forward

solver, sensitivity formula and regularization method to reconstruct the conductivity

profiles in a stable manner. The image reconstruction method has been tested suc-

cessfully for various MIT examples with conductivity range of medical and industrial

applications. In general the conductivity times frequency is a decisive factor for the

nonlinearity of the inverse problem in MIT, so just low contrast conductivity contrast

may not be enough to use a linear reconstruction method. As the frequency increases,

the electrical interference between two inclusions located close to each other increases,

which cause the change in sensitivity plot and consequently the nonlinearity. A large

number of iterations are needed for the high contrast conductivity problem.



Chapter 4

MAGNETOSTATIC

PERMEABILITY TOMOGRAPHY

Magnetostatic permeability tomography (MPT) is an imaging modality, part of a larger

family of magnetically coupled electromagnetic imaging techniques similar to MIT

[58]. MPT attempts to reconstruct the permeability distribution of an object using

magnetostatic measurement data. The data for image reconstruction are external mag-

netic field measurements on the surface of the object due to an applied magnetostatic

field. Given the normal and tangential components of the magnetic field in the surface

the internal isotropic permeability distributions can be uniquely defined [151]. In the

previous chapter we presented a simplifying model for the excitation and sensing coils

so they could approximately reflect the measurement of normal and tangential com-

ponents of the magnetic field. The magnetostatic fields are applied to the object. The

primary magnetic field can be generated using permanent magnet or an electromagnet

such as solenoid. The resulting magnetic field can be detected using a magnetometer,

or for alternating magnetic field a detection coil. In this thesis we apply an alternating

103
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electric current to the excitation coil(s) and measure the induced voltages in sensing

coils. With our explanation of a simple coil model in previous chapter, the coil-coil

(throughout this thesis) measurement gives similar information to the data from tan-

gential and normal components of the magnetic field. There are potential applications

for MPT with magnetostatic fields in material inspection. For example structural ma-

terials in reinforced concrete, often made of steel, are sometimes damaged due to

ingress of corrosive solutions. This damage changes the magnetic permeability. An

MPT system can give information about the steel bars inside of the concrete as well

as reconstructing their number, shape and position. In [50], [126] an inductive scan-

ner has been used to recover the conductivity and permeability of steel bars within a

concrete structure. In this thesis we focus on tomographic notion of a magnetostatic

imaging system using the forward solution and Jacobian matrix, which can be de-

scribed as a phenomenological method. Non-phenomenological methods as described

in [81](techniques that ignore the underlying physical process of the forward prob-

lem) also can be used for the inverse problem of MPT; as an example the simple linear

superposition used in [50]. We present a numerical method to solve the reconstruction

problem in three dimensional. There have been some previous studies to reconstruct

permeability distributions using magnetostatic data in two dimesions. In [88], [89]

MPT reconstruction has been studied for two dimensions, Wexler’s method [172] has

been used to reconstruct the permeability distribution. As for other similar problems

Wexler’s method used for MPT shows very slow convergence and requires several

hundred solutions of the forward problem, which makes the technique computation-

ally very expensive especially in three-dimensions. A regularized one step permeabil-

ity reconstruction for simple geometry used with an analytical forward problem has

been presented in [28]. Given the fact that the inverse problem in MPT is a nonlinear
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problem and there is not an analytical solution for the general form of the magneto-

static forward problem, the method proposed in [28] can not be used in general. In this

chapter a regularized Gauss-Newton method based on a finite element model is used.

It incorporates a priori information in the regularization, the method is nonlinear and

the convergence of the method is known to be good for similar inverse problems [121].

The method has been widely used for a similar inverse problem in EIT (see for exam-

ple [121]). Edge FEM has been used to solve the magnetostatic problem formulated

using the magnetic vector potential [12]. For the calculation of the Jacobian matrix an

efficient adjoint field method has been used. We show the results of 3D permeability

reconstruction for a numerically simulated MPT system.

4.1 Simulated MPT system

The simulated MPT system here is assumed to have 8 coils, which are used for ap-

plying and detecting the magnetostatic fields. The coils have 0.04 m inner and 0.05 m

outer diameter and 0.02 m length. The coils are arranged in a circular ring surrounding

the object to be imaged. In this example the distance between centre of two coils in

opposite sides is 0.160 m, centre of coils ring is at (0,0,0). Coil arrangement of figure

3.1 has been used here for MPT modelling. The system could have a magnetic shield

but in this chapter the far field boundary condition BBBn � 0 is applied to the model and

a magnetic shield has not been considered, BBBn is the normal component of the mag-

netic flux intensity. The frequency of the applied current is 16kHz, and for simplicity

we use a 1 � Am
� 2 � current applied to the excitation coil. The region of interest for the

permeability imaging is a cylinder with radius 0.07 m, length 0.10 m centred at (0,0,0)

and has a relative permeability of 3 (we call it C1). Each coil is excited in turn and the
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induced voltages are measured in the remaining coils.

4.2 Forward problem of MPT

The forward problem is to predict the measurement data given the permeability dis-

tributions, and given the applied current pattern and geometrical data. The interior

magnetic fields are needed for the efficient computation of the Jacobian matrix, which

will be described in next section. The magnetostatic field can be modelled either by a

scalar field (for example by magnetic scalar potential) or vector field (for example by

magnetic vector potential). The magnetostatic field have been formulated using edge

FEM for the magnetic vector potential (AAA) [18] here. Edge FEM has the advantage

of satisfying normal continuity of the magnetic field, so it handles multiple connected

materials and jumps in permeability. Given BBB � ∇ � AAA then

∇ � � ν∇ � AAA � � � sss (4.1)

where ν � 1
�
µ, this is the same as the eddy current problem with conductivity zero.

The finite element discretization of (4.1) the governing equations using edge element

basis functions is

�

Ω

� ∇ � NNNν � ∇ � AAA � dv �

�

Ωc

� NNN � � sss � dx3 (4.2)

where NNN is any linear combination of edge basis functions, Ω is the entire region

and Ωc is the current source region. In order to improve the convergence of the edge

FEM we use an electric vector potential TTT s to represent the current in excitation coil

in which ∇ � TTT s � JJJs, described in previous chapter [129]. Incomplete Cholesky

conjugate gradient (ICCG) has been successfully used to solve the linear system of
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equations (4.2), arising from the edge FEM forward model without applying any gauge

conditions.

4.2.1 Induced Voltages

In figure 4.1 the normalized induced voltage for coils 2 � 3 � � � � � 8 when coil 1 is excited

is shown, the object (cylinder C1) is symmetric with respect to the coils 2,3,..,8 and

the voltages are normalized with respect to the induced voltage in coil 2. A maximum

error in computation (about 1.5 percent) is the difference between voltages of coils 2

and 8 as they are closest to the excitation coil (The coils 2,8 are in the same position

with respect to coil 1 so ideally the calculated voltage for them must be the same). The

permeable object (relative permeability of 3) is the cylinder C1 and the rest of space

has relative permeability 1.
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Figure 4.1: Normalized induced voltage in coil 2-8 when the coil 1 is excited

With 69804 elements we tested the accuracy of the simulated voltage measurement

with respect to the stopping criteria for the ICCG for the calculation of the magnetic

vector potential. Figure 4.2 shows the error in the calculated voltage of coil 1 when
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coil 3 is excited. Figure 4.3 shows the error in the calculated voltage in coil 1 when

coil 1 is excited. We choose 10
� 8 for the stopping criteria since the accuracy of the

calculated voltages do not improve beyond that. Here we chose a given mesh density

and solved the forward problem with different residual level, the smaller resudual level

was chosen as more accurate.
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Figure 4.2: Error in induced voltage in coil 1 when coil 3 is excited with respect to the

error norm for stopping ICCG

4.3 Sensitivity analysis

There are a number of ways to model the excitation and measurement coils. As in any

imaging system the sensors must be modelled. Rather than modelling individual turns

of copper wire, we will use a simplified model of a coil as a surface (topologically at

least) as an open ended cylinder. When used as an excitation coil this surface carries

a tangential current Js. This is equivalent to a surface that is perfectly conducting in

one direction (angular for a cylinder) and an insulator in another (axial) direction, with
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Figure 4.3: Error in induced voltage in coil 1 when coil 1 is excited with respect to the

error norm for stopping ICCG

each loop fed by a perfect current source. The excitation coil is modelled to give an

accurate tangential HHH. With a similar argument the measured induced voltage in the

exciting coil is the same as the measurement of the normal component of the mag-

netic field. There might be an external magnetic screen (shielding) which means that

the normal component of BBB vanishes. In this study we assume a far field boundary

condition, and where there is no shielding one would nevertheless need to apply far

field boundary conditions to Maxwell’s equations. The general form of the sensitivity

analysis for Maxwell’s equation, which has been studied in [42] and discussed further

in the last chapter can be applied here. The sensitivity to the change in permeability,

equation (3.6), of a region is proportional to an integral over the volume of the per-

turbing region of the inner product of the magnetic field HHH from sensing and exciting

coil [42], [69]. In [83] a more ideal model of the coils is considered to represent the

measurement of the tangential HHH (for exciting coils) and normal BBB (as sensing coil)

in the surfaces. In [83] a sensitivity formula has been derived for the general electro-
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magnetic problem of MIT. A more detailed description is also given in the previous

chapter. A numerical form of the sensitivity formula using a magnetic vector poten-

tial formulation of the forward problem for MPT is implemented. Using the matrix

of edge elements NNNe in each element (NNNe is the shape function in each element), the

magnetic field BBB inside each element can be expressed as follows

BBB � � ∇ � NNNe � � AAAe (4.3)

where AAAe are defined along edges and are the solution of the forward problem. The

sensitivity term for each element is expressed as follows based on the general form of

equation(3.5) (term H is for the sensitivity with respect to permeability)

∂Vi j

∂µk
�

iω
IiI jµ0µ2

k

AAAi
e

�� �

Ωek

� ∇ � NNNe � � � ∇ � NNNe � T dx3 �� � AAA j
e � T (4.4)

Equation (4.4) gives us the sensitivity of the voltage induced in coil i when coil j is

excited with respect to µk relative permeability of element k. Here µ0 is the permeabil-

ity of free space, Ωek is the volume of element number k and I j and Ii are excitation

current for coils. For first order edge basis functions the curl of the basis function

is constant in each element so the integral in equation (4.4) is a constant and easy to

calculate in each element. In figure 4.4 one can see a plot of the sensitivity when the

excitation and sensing coils are coaxial (Coil 1 and 5) and are placed in two opposite

sides of the object, two coils are centred at � 0 � 08 � 0 � 0 � m and � � 0 � 08 � 0 � 0 � m, and the

background is the cylinder (C1). Figure 4.4 shows that the sensitivity is higher in the

centre and also near to the coils, and figure 4.5 shows a three dimensional sensitivity

map. Figure 4.6 is the sensitivity map for coils 1 and 3, two coils in 90 degrees. Fig-

ure 4.7 shows the sensitivity plot of coil 5 as an excitation coil and coils 8,1,2 are as
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a gradiameter. The voltage of the gradiameter is V1 � V2 � V8, where V1 and V2 and

V8 are voltages in coils 1, 2 and 8 respectively. All these sensitivity values are for a

current density of 1Am
� 2.

0

2

4

6

8

10

12

14

16

18

x 10
−11

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X−Axis

Y
−A

xi
s

Figure 4.4: Sensitivity plot for coils 1,5 as excitation and sensing coils in plane Z=0,

the sensitivity value is in volt/(unit change in relative permeability)

Each row of the Jacobian matrix is a sensitivity of one of the measured voltages to a

small change in each voxel’s permeability value. In figure 4.8 one can see the singular

values of the Jacobian matrix for the cylinder C1. The linear decay on a logarithmic

scale shows that the inverse problem is severely ill-posed. In this study we use 28

mutual inductance measurement.

4.4 Image reconstruction

Image reconstruction in MPT is an inverse medium problem. The regularized Gauss-

Newton method has been used for the image reconstruction for electrical imaging
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[120], [121], [147]. In [147] a regularized and one step Gauss-Newton method has

been applied to the electrical conductivity imaging of MIT. In this chapter a gen-

eral nonlinear regularized Gauss-Newton scheme is applied to an interesting and new

imaging method, magnetostatic permeability tomography. The forward solution pro-

vides a good understanding of the measurement process and the Jacobian matrix

provides partial knowledge of the inverse solution. The regularized Gauss-Newton

scheme provides a direction to improve the solution from a given point. The regular-

ization methods enable us to include some prior knowledge of the measurement noise

as well as prior knowledge of the permeability distribution, so the ill-posed inverse

problem can be stabilized.

The algorithm starts with an initial permeability distribution. The forward problem

is solved and the predicted voltages compared with the calculated voltages from the

forward model. The permeability is then updated using the Jacobian matrix. The

process is repeated until the measurement data agree with the calculated voltages from

the finite element model up to the measurement precision. The Jacobian matrix needs

to be updated in each step, as the sensitivity map changes with change on background

permeability.

Reformulation of the inverse problem to include prior information is known as regu-

larization. A natural assumption will be that
�
RRRµ

�
is not too large, which can mean

the permeability is small, or slowly changing or smooth. Where RRR is the Laplacian

smoothing regularization matrix used for MIT. We solve this minimization problem

by regularized Gauss-Newton, described in equation (3.40), which is a compromise

between the error of the mismatches between the measurement (VVV m) and the pre-

dicted voltages and the deviation from the prior information. Here α regularization

parameter was chosen as 10
� 7.
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For the first test, we inserted two bars with relative permeability of 4 into the cylinder

C1 as a test phantom (see figure 4.9.a ). Figure 4.9.b shows the reconstructed image

from the test phantom of figure 4.9.a. Figure 4.9 is cross section of a 3D image in

different Z levels.

In the second test, four high permeability bars were inserted with relative permeability

of 50 as shown in figure 4.10.a. Figure 4.10.b shows the reconstruction of this test

phantom, the nonlinear reconstruction steps have been applied. The convergence plot

which shows the norm of the differences between measured and simulated voltages

depicted in figure 4.11. In both cases in order to avoid a so called “inverse crime”

two different meshes were used, for generating simulated measurement data and for

the forward solver and 2 percent Gaussian noise (2 percent of the mean value of the

measurement voltages) was added to the data.

4.4.1 Remarks and summary

The image in the lower contrast case (figure 4.9) is more affected by the noise in the

data as the changes on the voltages are small. For the higher permeability contrast

case (figure 4.10) the measurement signals are higher, so if the objective is to recover

shape and location of the high contrast inclusions the resulting images are better than

the low contrast case in terms of spatial resolution. The maximum permeability values

in reconstructed image in figure 4.9 is 3.89 and in figure 4.10 is 26.67. Although the

spatial resolution of the reconstructed image in the case of high contrast permeability

is good, the quantitative values of the permeability are not accurate. Reconstruction

of the absolute value of the permeability in higher contrast is a more complicated task.

Three major reasons for this are: the smoothing assumption of the Tikhonov regu-

larization, the underdetermined nature of the problem, and the effect of measurement
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Figure 4.9: Reconstruction of the test phantom in (a) can be seen in (b), the image is

for different Z levels of cylinder C1.
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Figure 4.10: Reconstruction of the test phantom in (a) can be seen in (b), the image is

for different Z levels of cylinder C1.
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Figure 4.11: Norm of the error between measured and simulated voltage (Voltages are

normalized to the voltage of free space)

noise to the reconstructed quantitative values of the image (because of the saturation

explained below). Quantitative accuracy of the image can be improved by additional

constrains or a priori knowledge, or different regularization schemes such as total

variation regularization [31]. A method has been introduced in [35] to use a priori

information of location of inclusions and solving the inverse problem for the reduced

number of unknowns (here the value of permeability in entire region is the unknown,

for example for the image of figure 4.10 we have one background and four inclu-

sions, so there are 5 unknowns to be recovered). Shape reconstruction methods can

be used for two phase material reconstruction (for example monotonicity based shape

reconstruction of Tamburrino and Rubinacci [155]), for a given low and high value

of the permeability values. The third reason depends on the measurement accuracy.

For high contrast, the sensitivity plot has saturation property, which means if we per-

turb a region and increase the permeability of the region, the resulting changes to the

measurement voltages are linear with permeability changes, as we increase the perme-
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ability to the higher values the changes in the induced level out (see figure 4.12). This

explains why it is hard to find the absolute permeability distribution in higher contrast

case with noisy data.

Figure 4.12 shows the change on induced voltages (for all 28 measurements), when the

relative permeability of an spherical object (Radius 0.02 m and centered at (0.03,0,0)

m ), when the background is a cylinder C1. One can see that the voltages are changing

linearly and saturation occurs for higher permeability changes. For this perturbation

test in order to avoid the discretization error we used a high mesh density (208000

elements). As the voltage differences between two high contrast inclusions are very

small, this difference will often be overshadowed by noise.
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Figure 4.12: Change in induced voltages (normalized to the voltage for free space)

due to perturbation of permeability of a spherical object. Note the validity of a linear

approximation for small changes and saturation for high changes

In figure 4.12 one region has been perturbed, and if we consider perturbation of more

than one region (especially perturbation objects closed to each other) we can see the

lack of superposition and the interferences between perturbed fields and perhaps more
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complicated pattern of the change in the measurement voltages. In the test example

of figure 4.10 the high permeability inclusions are far from each other and the spatial

resolution of the reconstructed image is good. If two high permeability inclusions

are close to each other, so that their magnetic field interfere, the spatial resolution of

the image will be degraded. Further studies are needed for high contrast permeability

imaging especially when the absolute value of the permeability is required.

4.5 Discussion

This chapter introduced a 3D magnetostatic permeability tomography (MPT) system.

Knowing the tangential component of the applied field and normal component of the

measured field uniquely defines the permeability distributions for all possible exci-

tations [151]. In practise, a finite set of external excitation and sensing coils (or the

magnetic field sensors) can be used for the measurement configuration and so a finite

amount of information can be extracted from those limited data. Like other bound-

ary value inverse problems, inverse MPT problem is an ill-posed nonlinear problem,

so regularization is needed for a stable solution. We presented a numerical method

to solve the reconstruction problem in three dimensions using a regularized Gauss-

Newton scheme. The forward problem has been solved using edge FEM and an effi-

cient technique has been employed to calculate the Jacobian matrix. The permeability

of the object is assumed to be linear and isotropic. The reconstruction results for per-

meability was presented using synthetically generated data with additive noise. Re-

construction results presented for high and low contrast permeability imaging. In the

case of low contrast a linear step is used to recover the permeability distribution. In

the higher contrast case, the linear property does not hold and a nonlinear reconstruc-
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tion must be applied. Further study is needed to solve the inverse problem of high

contrast permeability, both in terms of regularization and quantitative accuracy of the

reconstructed images.



Chapter 5

FORWARD PROBLEM IN ERT

Electrical resistance tomography (ERT) seeks to image the conductivity from external

measurements of the potential using multiple field patterns of low frequency as a re-

sult of the excitation at the external boundary. In ERT dielectric effects and magnetic

fields are considered to be negligible. A promising application of ERT is medical

imaging, where currents of low intensity are used in order to image electrical proper-

ties of the human body. ERT has been tested to detect epileptic seizures (see [13]),

functional brain activity triggered by external stimuli (see [122]) and internal corti-

cal hemorrhage (see [34]), conditions which all cause local and temporal conductivity

changes in brain tissue. Linearization techniques are widely used and require the re-

peated solution of a linear forward problem. To account correctly for the presence of

electrodes and contact impedances, the so-called complete electrode model (CEM) is

applied [150],[123]. Implementing a standard FEM for this particular forward prob-

lem yields a linear system that is symmetric and positive definite and solvable via the

conjugate gradient (CG) method. However, preconditioners are essential for efficient

convergence. Preconditioners based on incomplete factorization methods are com-

122
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monly used but their performance depends on user-tuned parameters. To avoid this

deficiency, we apply a black-box algebraic multigrid, using both standard commercial

and freely available software. The suggested solution scheme dramatically reduces

the time cost of solving the forward problem. Numerical results are presented using

an anatomically detailed model of the human head. We do not restrict ourselves to a

particular application. Rather, we focus attention, broadly, on media with conductivity

distributions with coefficients that are generally anisotropic and/or discontinuous. In

this chapter the main objective is to improve the speed of the forward ERT solvers by

applying an algebraic multigrid method as a preconditioner for CG.

5.1 Forward modelling of ERT

The forward problem in ERT is to predict the voltage on the sensing electrodes given

applied current to the exciting electrodes. The main part of an ERT measurement

system is shown in figure 6.1. The electric current applied to the excitation electrodes

and the potential between electrodes are measured using phase sensitive detection and

a differential amplifier.

Figure 5.1: An electrical impedance measurement used in ERT

Let Ω ��� 3 be a Lipschitz domain with C2-continuous boundary Γ, to which L elec-

trodes are attached. In the absence of interior sources or charges, the low-frequency,
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time-harmonic Maxwell’s equations reduce to a genera;ized Laplace equation, i.e. the

elliptic partial differential equation,

∇ � � σ̂∇u � � 0 in Ω � (5.1)

Here u is the scalar electrical potential and σ̂ is a symmetric and positive definite tensor

of electrical conductivity coefficients. The equation (5.1) is solved in conjunction

with the set of boundary conditions prescribed by the so-called complete electrode

model. A theoretical study of the model can be found in [150] and details of finite

element implementations and numerical considerations are given in [159] and [121].

Specifically, the boundary current density satisfies,

�
el

σ̂∇u � n̂ � Il on Γ1 � (5.2)

σ̂∇u � n̂ � 0 on Γ2 � (5.3)

whilst for the boundary electric potential measurements, the relation,

u � zl σ̂∇u � n̂ � Vl on Γ1 � (5.4)

is valid. Here, Il denotes the current on the surface of the lth electrode, el , Vl is

the electric potential measured by el , zl is the associated contact impedance and n̂ is

the outward-pointing unit normal vector. In addition, Γ1
� Γ denotes the union of

the pieces of the boundary situated underneath the electrodes and Γ2 � Γ � Γ1 is the

remainder of the surface. The model is known (see [150]) to have a unique solution up

to an additive constant. Hence, one can apply a reference condition for the potential by

grounding one of the boundary electrodes, yielding the Dirichlet boundary condition

u � 0 ��� ΓG

ΓG
� Γ1 � (5.5)
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Alteratively, (5.5) can be applied to a randomly selected node in the model. Applying

the charge conservation theorem, we also impose,

L

∑
l � 1

Il � 0 � (5.6)

5.2 Discrete problem

To solve (5.1) together with (5.2)–(5.4) numerically, the domain is partitioned into k

tetrahedra with a total of n vertices. The conductivity coefficients are each approxi-

mated by a piecewise constant function on that mesh. Given a standard nodal basis

(Whitney ”0-form”) � φi � n
i � 1 for the set of piecewise linear functions, a potential is

sought in the form,

uh �

n

∑
i � 1

uiφi � (5.7)

Multiplying (5.1) by an arbitrary test function v � which is sufficiently smooth, and

integrating over Ω gives,

�
Ω

v∇ � � σ̂∇uh � dx3
� 0 in Ω � (5.8)

Integrating by parts yields,

�
Ω

σ̂∇uh � ∇vdx3
�

�
Γ1

σ̂∇uh � n̂ vdx2 �
�

Γ2

σ̂∇uh � n̂vdx2
�

so that imposing (5.3) and (5.4) on uh gives,

�
Ω

σ̂∇uh � ∇vdx3
�

L

∑
l � 1

�
el

1
zl

� Vl � uh � vdx2
� (5.9)

Substituting for uh from (5.7) in (5.9) gives,

n

∑
i � 1

� � �
Ω

σ̂∇φi � ∇vdx3 �
L

∑
l � 1

�
el

1
zl

φivdx2 ��� ui

�

L

∑
l � 1

� �
el

1
zl

vdx2 � Vl � 0 �

(5.10)
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so that setting v � φ j � j � 1 : n � yields n algebraic equations. Imposing the remaining

boundary condition (5.2) on uh and applying (5.4) yields an additional L algebraic

equations,

Il �
1
zl

Vl
�
el

�
�

n

∑
i � 1

� �
el

1
zl

φi dx2 � ui � l � 1 : L � (5.11)

where, here,
�
el

�
denotes the area of the lth electrode. Hence, assembling KKKM �

� n � n ,

KKKZ �
� n � n , KKKV �

� n � L and KKKD �
� L � L

� via,

KKKM � i � j � �

�
Ω

σ̂∇φi � ∇φ j dx3 i � j � 1 : n �

KKKZ � i � j � �

L

∑
l � 1

�
el

1
zl

φiφ j dx2 i � j � 1 : n �

KKKV � i � l � � �

�
el

1
zl

φi dx2 i � 1 : n � l � 1 : L �

KKKD � s � l � ��� 1
zl

�
el

�
s � l

0 s �� l
� s � l � 1 : L �

leads to the matrix equation,�
KKKM � KKKZ KKKV

KKKT
V KKKD �

�
uuu

vvv � �

�
000

III � � (5.12)

where uuu � i � � ui, vvv � l � � Vl and III � l � � Il � for i � 1 : n � l � 1 : L �

5.3 Linear system of equations

The main focus here will be in efficiently solving linear system of equations arising

from the FEM with CEM. In EIDORS-3D preconditioned conjugate gradient was used

with incomplete Cholesky (IC) factorization as preconditioner. In [65] a geometric

multigrid (GMG) is considered as an alternative solver for a forward problem in EIT

without CEM. Whilst using GMG to solve such problems on simple geometries is
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straight-forward, this is not so for complicated domains (such as the human head, see

[52], [9]) with discontinuous and/or anisotropic coefficients. In particular, it requires

the generation of a hierarchy of finite element meshes which can be vastly expensive

and time-consuming.

AMG (see [137], [138], [154]) is a highly attractive plug-in solver for 3D problems

posed on irregular domains. Popularized by Ruge and Stüben in the 1980s, the ap-

proach is derived from traditional multigrid principles (see [21]), but, crucially, does

not require the user to supply geometric information associated with a hierarchy of

finite element meshes. Convergence theory is largely based on heuristic arguments

and limited to the class of so-called M-matrices. An SPD matrix KKK � � n � n is an

M-matrix if KKK � i � i � � 0 � i � 1 : n � and KKK � i � j � �
0 � i � j � 1 : n � i �� j.

However, the resulting scheme has optimal work complexity and provided that basic

criteria are satisfied, it can be applied as a black-box preconditioner, i.e. without

tuning parameters.

The performance of an AMG method as a preconditioner for CG solver has been

compared with more traditional IC preconditioner. The speed of the forward solvers

are improving substantially by using this AMG scheme. To understand the concept of

AMG first we describe the geometrical multigrid method.

5.3.1 AMG preconditioned conjugate gradient

In contrast to GMG, AMG do not need FE meshes with hierarchical grids. AMG still

has the most advantages of GMG. AMG is an optimal solver with optimal time and

memory complexity, which is especially suited for sparse linear system of equations

with large condition number. In dealing with a complex geometry such as human
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brain, the coarsest grid in GMG is too large to be solved efficiently by a direct solver.

Instead of different grid level, AMG uses the finest grid and produces all system ma-

trices and right hand sides related to coarser levels numerically. This is called set up

stage for AMG. In this chapter we are using a ready to use AMG scheme provided

by FEMLAB [46]. Here is a brief description of a V-Cycle of AMG as a base for the

method. We skip many details i.e., set up stage of AMG. A V-cycle of AMG can be

expressed as follows

Data: Linear system of equations

Result: An approximation solution of the equations

Relax ν1 times on the fine grid KKK2xxx2 � fff 2 (for example using Gauss-Seidel

forward) ;

Calculate the defect rrr2 � KKK2xxx2 � fff 2 ;

Project the defect rrr1 onto the coarse grid rrr1 � III2
1rrr1 ;

Solve the coarse grid problem KKK1vvv1 � fff 1 ;

Project the coarse grid correction vvv1 onto fine grid vvv2 � III1
2vvv1;

Update xxx2 by vvv2, xxxnew
2 � xxx2 � vvv2 ;

Relax ν2 times on the fine grid KKK2xxx2 � fff 2. (for example using Gauss-Seidel

backward) ;
Algorithm 4: A V-cycle for AMG

Here we are not using AMG as an iterative solver, it is used as a preconditioner for

PCG . It is essential to use Gauss-Seidel forward in pre-smoothing and Gauss-seidel

backward in post-smoothing step to obtain symmetric preconditioner, so it can be used

for PCG.

In [104] and [72], similar forward problems with simple Neumann boundary condi-

tions are studied. The first work reports on the efficiency of AMG as a solver for a
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finite difference discretization, which does yield an M-matrix. The system matrix for

the forward problem in the complete electrode model, to be discussed below, has a

slightly different structure. This is the first time that AMG has been investigated as a

solution methodology for it. Our numerical experience reveals that AMG can be ap-

plied effectively as a black-box preconditioner for the original system matrix despite

the presence of positive off-diagonal entries which violate the M-matrix property.

M-Matrix property for CEM

Attention must be paid to the efficiency of the solution of (5.12) since it must be

solved for a number of right-hand sides, corresponding to different current patterns.

For brevity, we write the system (5.12) as KKKxxx � fff � Note that since the problem is well-

posed (see [150]), KKK is symmetric positive definite (SPD). We employ CG as a solver

and use a single V-cycle of AMG as a preconditioner. Since the contact impedances

and the averaged conductivity coefficients are positive, it follows immediately from

the above definitions and the definition of the standard linear basis functions (e.g. see

[33]) that,

� KKKM � i � i � � 0 � KKKZ � i � i � � 0 � for i � 1 : n �

� KKKD � l � l � � 0 for l � 1 : L �

� KKKZ � i � j ��� 0 for i � j � 1 : n �

� KKKV � i � l � �
0 for i � 1 : n � j � 1 : L �

All these properties have consequences for AMG. Note that since L � � n � KKKV and KKKD

represent only a few rows and columns of the whole coefficient matrix. The success

of any multigrid preconditioner is thus determined by the properties of KKKM � KKKZ �
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Here, KKKZ and KKKM contribute positive off-diagonal entries to K � violating the M-matrix

property.

However, KKKZ is extremely sparse if the number of electrodes is small. In practice, the

number of significant positive off-diagonal entries contributed by KKKZ is small. Here we

examine the use AMG as a preconditioner for CEM model of forward ERT problem.

5.4 Numerical results

5.4.1 Cylinder test example

In ERT applications, the time cost of solving the forward problem is the main topic in

this section. To illustrate the real benefits of using the suggested solution scheme, we

present numerical results using an optimized commercial code. All the experiments in

this sections were performed on a unix machine in Matlab using FEMLAB (see [46])

and its integrated AMG software. For CG, we use a zero initial guess and terminate

the iteration when the residual error 10
� 8.

To test the performance of the preconditioner with respect to mesh size, with fixed

conductivity distribution, we repeat the experiment on the cylinder. The cylinder has a

length of 3 cm and diameter of 2 cm. Anisotropic conductivity of σ̂ � diag(1,2,3)

is assigned for all three cylinders (with different node numbers). Iteration counts

and solve times (in elapsed seconds) for unpreconditioned CG are listed in Table 5.1.

Results with AMG preconditioning are given in Table 5.2.

Here, ‘set-up’ refers to the initial process of assembling the components of AMG. It

is performed once, outside the CG iteration, so the total time cost in Table 5.2 is the

sum of the last two columns.
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Table 5.1: Unpreconditioned CG, cylinder example

n iter solve time

1,060 178 0.21

10,441 344 5.08

93,209 724 149.90

Table 5.2: CG-AMG iteration, cylinder example

n iter set-up time solve time

1,060 10 0.03 0.11

10,441 14 0.31 1.98

93,209 14 20.60 13.60

Table 5.3: CG-IC iteration, cylinder example, n � 93 � 209

ε iter fac. time solve time

10
� 1 396 3.3 196.75

10
� 2 97 262.4 67.70

10
� 3 41 5,617.0 42.30
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Figure 5.2: Convergence of CG with AMG and IC preconditioning.

In Table 5.3 we list, for a fixed problem size, iteration counts for CG iteration with IC

preconditioning. Here, ε denotes the drop tolerance parameter. The results illustrate

the fact that better convergence is obtained by allowing more fill-in. However, factor-

ization time increases unacceptably. A disadvantage for non-specialists is that ε needs

to be tuned to the problem at hand. One does not know, a-priori which value of ε will

yield the quickest solution time. In this example, doing no preconditioning at all is

actually faster than performing the factorization.

Convergence rates of both preconditioning schemes are compared in figure 5.2. Note

that in the AMG experiment, no parameters are tuned. It is applied as a black-box.

The key observations are that the time cost grows linearly with respect to the problem

size and the convergence rate is optimal.
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5.4.2 Example of the head model

In this section we examine the efficiency of the proposed preconditioning scheme for

a challenging real-life application, involving a complicated geometry. Specifically, we

are interested in the use of ERT for monitoring cryosurgery (see [114]), a technique

that uses freezing to destroy tumorous tissues. We focus on the human head which

contains tissues with highly discontinuous conductivity coefficients. The head mesh

and the electrode models were generated by Nick Polydorides earlier in [122].

In this simulation, we are interested in evaluating changes in voltage measurements

induced by the introduction of a spherical ice ball, (representing frozen tissue) into

the brain (see [127], [114].) We solve the complete electrode forward problem on two

finite element meshes, labelled M1 and M2. The first has 9,063 nodes and 44,304 ele-

ments (also used in [122]) and the finest one has 59,372 nodes and 327,015 elements.

To begin, we solve the problem with the conductivity coefficients prescribed in Table

5.4. Next, we introduce into the domain, an ice ball with conductivity 10
� 5 Sm

� 1
� and

diameter 15mm � We label these models, on meshes M1 and M2, MP1 and MP2 re-

spectively. In all the experiments, a total of sixteen electrodes are used and an opposite

current pattern of 1mA is applied. The arrangement of the surface electrodes is shown

in figure 8.2.a and the ice ball is centered at the point � 100 � 100 � 100 � � A cross section

of the conductivity map is shown in figure 8.2.b, the plot was produced by MayaVi

[128].

Table 5.5 summarizes the performance of CG with IC preconditioning for the forward

problems constructed on both meshes, with and without ice. Again, the choice of the

drop tolerance ε for the factorization plays a key role in the time cost of each solution.

Note however, that since for each forward problem one needs to solve the same lin-
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[a] [b]

Figure 5.3: Arrangement of 16 surface electrodes, numbered anti-clockwise (a) and a

cross section of conductivity map of the brain (b)
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Table 5.4: Conductivity coefficients for the head model in Sm
� 1

Tissue Conductivity

scalp 0.172

skull 0.067

csf 1.540

gray matter 0.345

brain 0.150

ear system of equations with several right hand sides (different current patterns), this

complicates the choice of ε. The results presented below are averaged over fifteen dif-

ferent right-hand sides. Overall, the choice ε � 10
� 3 proved most efficient. However,

the optimal choice is hard to ascertain and depends on each individual problem.

Table 5.6 shows the performance of CG with AMG preconditioning for the same ex-

periments. Comparing the time costs of the two approaches, we see that the CG-AMG

method is significantly faster.

Table 5.5: CG-IC iteration, drop tolerance ε � 10
� 3

iter fac. time solve time

M1 849 12.21 45.31

MP1 851 12.04 45.62

M2 2,856 430.25 1,305.68

MP2 3,100 420.91 1,411.32

Finally, we increase the size of the ice ball from zero to a maximum volume of 1cm3
�

in twelve steps, and evaluate the measurement voltage during the freezing process. In

this case we use mesh M2. In the first step the initial guess for the CG iteration to

solve the forward problem is set to zero. In each of the subsequent eleven steps we use

the solution of the forward problem from the previous step as an initial guess. This
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Table 5.6: CG-AMG iteration

iter set-up time solve time

M1 16 0.36 1.81

MP1 18 0.36 2.01

M2 20 6.06 12.90

MP2 21 6.06 13.46

also helps to reduce the time cost of the total solve. The time needed to solve the first

forward problem (one current pattern) is 19.26 sec. The average time for each of the

eleven remaining forward problems is only 8.36 sec.

Figure 5.5 shows the electric potential distribution when electric current is applied be-

tween two electrodes. Figure 5.6 shows the electric current density when two opposite

electrodes are excited. The FE mesh is also shown in figure 5.4.
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Figure 5.4: Mesh of the head

Figure 5.7 shows that the voltage difference between electrodes 1 and 8 (see figure
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Figure 5.5: The electric potential distribution (in mv) on the surface for the head model

with two electrodes excited
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Figure 5.6: Current density when two opposite electrodes are excited
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8.2) when the current source and sink electrodes are numbers 3 and 10. The voltage

difference increases almost linearly with the volume of the ice ball. A similar obser-

vation has been reported in [127]. The measurement voltages for the other electrodes

exhibit the same behavior.
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Figure 5.7: Voltage differences with respect to volume of the ice ball, the voltage

difference between electrodes 1 and 8 when the current is applie to electrodes 3 and

10

Figure 5.8 shows the saturation of the voltage measurement when we change the con-

ductivity of a region.

5.5 Discussion

We have described the application of AMG as a black-box preconditioner for the com-

plete electrode model, a forward problem arising in ERT applications. With further
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study the AMG scheme can be used for complex condutivity in EIT and the eddy

currernt problem in MIT. Numerical results illustrate that with this preconditioning

scheme, the convergence of CG is independent of the mesh size and highly robust

with respect to jumps in conductivity coefficients. Further, it offers significant advan-

tages over traditional incomplete factorization methods. Work complexity is optimal

with respect to the problem size and no parameters require tuning. As a case study we

considered the feasibility of using ERT for cryosurgery monitoring. The use of AMG

as a preconditioner for the forward problem leads to a significant decrease in the time

cost of solving the image reconstruction problem. Our numerical experience shows

if KKKZ includes very large positive numbers(for example contact impedance smaller

than 10
� 6 for homogeneous conductivity of 1) the AMG preconditioned CG will not

converge, the same problem will occur with IC preconditioned CG. This is not only

because of the violation of the M-Matrix but also the poor condition number of the

system of equations. Physically when the contact impedance is very small, it is bet-

ter to change the formulation to point electrode model, and AMG works very well

for a point electrode model as it has been reported earlier [148]. For an acceptable

(practical) range for the contact impedance value number of iteration of AMG pre-

conditioned CG is almost steady. One of the most challenging problems in brain EIT

is to solve the large forward problem. Our CG-AMG did improve the speed of the

forward solvers. Application of parallel computing in CG-AMG would be the next

step to further improve also speed of the forward solvers.



Chapter 6

ELECTRICAL CAPACITANCE

TOMOGRAPHY

Electrical capacitance tomography (ECT) attempts to image the permittivity distribu-

tion of an object by measuring the electrical capacitances between sets of electrodes

placed around its periphery. Image reconstruction in ECT is a nonlinear and ill-posed

inverse problem. Various regularized linear image reconstruction methods have been

used for ECT. The linear reconstruction techniques are fast and are able to create sat-

isfactory images for low contrast permittivity distributions. The saturation property of

the inverse problem in ECT for higher contrast permittivity distribution means that lin-

ear reconstructions techniques are unable to create suitable images. In this thesis, we

tackle the problem of nonlinearity, and we use regularization techniques to overcome

the ill-posedness. We apply smoothing Tikhonov type regularization for low contrast

and total variation regularization when there are jumps in permittivity. We have im-

plemented a regularized Gauss-Newton scheme for nonlinear image reconstruction.

The forward problem has been solved in each iteration using FEM and the Jacobian

141
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matrix is recalculated using an efficient method based on the adjoint field method. The

results from experimental ECT data demonstrate an advantage of total variation (TV)

regularization for sharp edges, and improvement on the image quality using nonlinear

reconstruction method.

Potential applications include monitoring of oil and gas mixtures in oil pipe lines and

flow measurement in pneumatic conveying [44], [43], [3]. Assuming an electrostatic

approximation, valid for the range of frequency used in practise, the problem is equiv-

alent to the inverse conductivity problem of Calderón [27]. Landweber’s linear itera-

tion, “linear back projection”, regularized one step reconstruction method have been

applied to the reconstruction of images from experimental ECT data, [175], [176],

[93]. In [24], [68] the authors studied the nonlinear inverse problem for simulated

ECT data. In [165] an adaptive method has been used to calculate the regularization

parameter in regularized Gauss-Newton reconstruction, which claims to improve the

edge detection in ECT images compared with using one regularization parameter in

all iteration steps. The regularization parameter has been studied using the L-curve

method in [54] for regularized Gauss-Newton and simulated ECT data. For two phase

materials, shape reconstruction techniques such as monotonicity shape reconstruction

[156], level set method [39], [31] and linear sampling methods [26] have some ad-

vantages over the image reconstruction methods, as the prior assumption of two phase

permittivity can be included effectively.

Most commonly used nonlinear image reconstruction techniques for electrical imag-

ing [120] are based on repeated linearization and nonlinear iterative steps. In this

thesis we show experimental results as well as some numerical results for a new ECT

program (in Matlab) which has been developed for nonlinear ECT reconstruction. For

mesh generation we use a QMG [102] mesh generator adapted for ECT sensor geom-
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etry in previously released EIDORS ECT [14].

We demonstrate the application of TV regularization to reconstruct sharp edges and

the jumps in permittivity using both simulation and experimental data.

6.1 ECT system

A typical ECT sensor [177] comprises an array of conducting plate electrodes, mounted

on the outside of a non-conducting pipe, surrounded by an electrical shield (figure

6.1.a). Figure 6.1.b shows an experimental ECT system [124] that has been used for

part of the experimental data on this chapter. For metal walled vessels, the sensor

must be mounted internally, using the metal wall as the electrical shield. Additional

components include radial and axial guard electrodes, to improve the quality of the

measurements and hence images. It is not necessary for the electrodes to make phys-

ical contact with the specimen, so ECT can be used on conveyor-lines, or externally

mounted to plastic piping to reduce the risk of contamination.

6.2 Forward problem

The forward problem in ECT is the problem of calculating the capacitance matrix

from given geometrical information of the sensor array and applied potential, as well

as the guessed permittivity distribution of the cross section. Practical ECT systems are

designed to reduce the external coupling between the electrodes. Many different ECT

protocols are possible, depending on which combination of groups of electrodes are

used. In a simple and commonly used protocol, each of the drive electrodes in turn is

set to some fixed potential, the others set to zero, while the total charge is measured
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[a]

[b]

Figure 6.1: (a): Cross section through sensor showing electrodes and screen, (b): The

PTL (Process Tomography Limited, Wilmslow, www.tomography.com) ECT system

showing sensor, ECT system and host computer
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on each of remaining electrodes (those electrodes are set to zero potential). There

is a cylindrical screen around the electrode array set to zero potential, and a radial

guard is placed in the gap between the electrodes. The shields are used to reduce the

exterior capacitance coupling between the electrodes. For the mathematical model

we use assumes the electrostatic approximation, ∇ � E � 0, effectively ignoring wave

propagation. We take E � � ∇u and in the absence of internal charges

∇ � � ε∇u � � 0 in Ω (6.1)

where Ω is the whole region of the modelling, u is electric potential, ε is dielectric

permittivity. With the boundary condition

u � Vl on el (6.2)

where el is the l � th electrode, held at the potential Vl , usually attached on the surface

of an insulator. Vl is the potential for an excitation electrode and zero for sensing

electrodes. In addition shields are set to zero volt [54]. The electric charge on the

l � th electrode is given by

Ql �

�

el

ε
∂u
∂n

dx2 (6.3)

where n is the inward normal on the l � th electrode, the capacitance is then Cl � QlVl .

We represent the permittivity as a piecewise constant function using FEM (first order

triangular elements). In this study electrodes are relatively long and translationally

invariant objects and a two dimensional model agrees well with measured data [69].

With finite element discretization of the boundary value problem we have a linear

system of equations KKKxxx � fff , where the matrix KKK is the discrete representation of the
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operator ∇ � ε∇ and the vector fff is the boundary condition term and xxx here is the elec-

tric potential in all nodes. This linear system of equations can be solved efficiently by

using the Preconditioned Conjugate Gradient (PCG) method [122]. The forward prob-

lem in 2D ECT is not a large scale forward model, but our numerical experience shows

the same kind of the advantages for CG method with AMG preconditioner compared

to the CG with incomplete Cholesky as preconditioner, which may be helpful for 3D

ECT forward modelling.

6.2.1 Some results of the forward solver

In figure 6.2.a one can see a typical mesh for an ECT system, and the electric potential

distribution (shown in figure 6.2.b) when electrode 1 is set to +1 volt and the other

electrodes set to zero. The numbering is used to identify electrodes, the electrodes

numbered anticlockwise, starting at the electrode near to “3 o’clock” position (see

figure 6.1.a). The ECT system considered in this chapter, in common with many

experimental systems, has only 8 electrodes.

The vectors of the electric field are shown in 6.2.c (electrode 1 is set to +1 volt and

others set to zero). The number of triangular elements used in forward model is 6400,

and the number of elements in the region of interest for imaging is 725. In experi-

mental ECT systems the capacitance data are normalized using calibration [174]. The

normalized capacitance is λ �
Cmeas � Cair
Chigh

� Cair
, where Cair is the capacitance measurement

for the empty pipe and Chigh is the capacitance measurement when the pipe is full of a

material with high permittivity. Cmeas is the absolute capacitance measurement.

Figure 6.3 shows the experimental data collected from a test example versus the results

from the forward solver. In the test example we have a plastic rod (permittivity 1.8)
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close to wall and the measured data and simulated ones show good agreement.

Figure 6.4 shows the error between measured and simulated capacitance in figure 6.3.

Figure 6.5 shows another experimental test data collected from a test example verses

the results from the forward solver. In the test example we have a plastic ring (permit-

tivity 1.8) and the measured data and simulated ones shows a good agreement.

Figure 6.6 shows the percentage of the error between measured and simulated capaci-

tance model in figure 6.5.

6.2.2 Discussion on boundary condition

A different boundary condition has been proposed for ECT by [165], [24]. The au-

thors applied the Dirichlet boundary condition to the electrodes and a homogeneous

Neumann boundary condition applied to the gap between the electrodes.

The charge measured on the l � th electrode Ql is a combination of Qint
l

� Qext
l

Qext
l �

�

el

ε
∂uext

∂n
dx2 (6.4)

and

Qint
l �

�

el

ε
∂uint

∂n
dx2 (6.5)

where uint
� uext are on the interior and exterior surface of the electrode. So this is a

result of coupling both through the interior and exterior of the sensor. As the gap be-

tween electrodes are very small we make the simplifying assumption that permittivity

changes inside of the sensor have negligible electric field exterior to the sensor. In-

deed this is one design goal of the sensor system. To decouple the interior and exterior
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model of figure 6.5
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fields we could assume a zero Neumann condition in the gaps between electrodes as

[165], [24]. This means that Qint
l is independent of ε inside the sensor, and can be

found by calibrating the sensor using materials of known permittivity in the interior.

The inverse problem of finding ε inside the sensor volume is now the classical problem

of EIT, where the “conductivity” coefficient is to be determined from pairs of current

and voltages data at the boundary of a domain. This is a more ideal assumption than

the real ECT shielding.

6.3 Sensitivity analysis

We calculate the Fréchet derivative of the measured capacitance on the electrodes with

respect to a perturbation in the permittivity. For our purposes we perform a simple

perturbation calculation ignoring higher order terms. This can simply be extended to

a formal proof using operator series [27], but here we give a simple derivation for

completeness. Using Green’s identity or for the less smooth potentials the weak form

of ∇ � ε∇u � 0 , for any w

�
Ω

ε∇u � ∇wdx3
�

�
∂Ω

wε
∂u
∂n

dx2
� (6.6)

Here dx3 and dx2 are volume and surface measures. In particular for w � u we have

the power conservation formula

�
Ω

ε
�
∇u

� 2 dx3
�

�
∂Ω

uε
∂u
∂n

dx2
�

L

∑
l � 1

�
el

Vlε
∂u
∂n

dx2 (6.7)

hence �
Ω

ε
�
∇u

� 2 dx3
�

L

∑
l � 1

VlQl � (6.8)
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This simply states that the power input is stored in the domain Ω. We now take per-

turbations ε � ε � δε, u � u � δu, Ql � Ql � δQl , Ql here is collected charge in

electrode l and 1 � l � L and L is the number of the electrodes, with the voltage in

each electrode Vl held constant. Ignoring second order terms gives

�
Ω

δε
�
∇u

� 2 dx3 � 2
�

Ω
ε∇u � ∇δudx3 � O � �

δε
� 2 � �

L

∑
l � 1

δQlVl � (6.9)

Using this and equation (6.6) with w � δu we get

�
Ω

δε
�
∇u

� 2 dx3 � 2
�

∂Ω
δuε

∂u
∂n

dx2 � O � �
δε

� 2 � �

L

∑
l � 1

δQlVl (6.10)

In the boundary in the electrode position δu � 0 and in gap between the electrode we

have ∂u
∂n � 0, so we can simplify the equation and have the desired result

L

∑
l � 1

δQlVl �

�
Ω

δε
�
∇u

� 2 dx3 � O � �
δε

� 2 � (6.11)

This gives only the total change in power, to get the change in charge on a particular

electrode e when a voltage is driven in some or all of the other electrodes. This type

of perturbation or linearized calculation will be familiar from the other linear inverse

problems, for example in EIT [121], [84]. To get the change in Q on electrode ei

when e j is driven, we consider potential ui when ei is driven and u j when e j is driven.

Applying 6.11 to ui � u j and subtracting gives

δQi j �
1

Vj

�

Ω

δε∇ui � ∇u j dx3 � O � �
δε

� 2 � (6.12)

where Ω is the perturbed region. Here ∇ui and ∇u j can be calculated by the solution

of the forward problem when electrodes i and j are excited.
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This sensitivity formula results in an efficient method for assembly of the Jacobian

matrix. It confers a particular advantage when u is calculated using the FEM as the

integral of gradients over elements is also calculated in the assembly of the system

matrix K. To calculate the Jacobian matrix one must choose a discretization of the

permittivity. We take the permittivity to be piecewise constant on triangular elements,

in which case the sensitivity of measurement � i � j � to a change in triangle Tk is simply

Sd � Tk � ∇ui � ∇u j, as Sd is the area of the triangle. Figure 6.7 shows sensitivity plot

between electrodes 1-3, 1-4 and 1-5 for an empty tank.

6.4 Inverse problem

In general the inverse problem in ECT is to reconstruct the permittivity distribution in

the interior given the capacitance data from exterior electrodes. This is an ill-posed

and nonlinear problem, and therefore hard to solve with noisy measurement data and

error in simulation of the forward model. An a priori knowledge of the permittivity

distributions may help to give an acceptable approximation solution. Prior knowledge

is also a key to choosing the reconstruction scheme as there is no stable method to

solve the inverse problem. One needs also consider the intended use of an ECT image

when choosing the reconstruction method. For example sometimes an indication of

the location of an object inside of the pipe is enough, in other case, it is important

to create an accurate image of the shape of anomalies, and in some applications the

absolute value of the permittivity distribution is required. In this section we study the

linear and nonlinear inverse problem for ECT. Two main regularization techniques,

Tikhonov type and Total Variations (TV) are also briefly discussed here. The major

difference between the two regularization methods is that the TV does not smooth
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jump-discontinuities so that can improve the reconstruction of sharp edges and jumps

dicontinuity in permittivity. It worth mentioning that the linear iterative methods, such

as Krylov subspace methods [122] and Landweber [176] have an intrinsic regulariza-

tion property.

6.4.1 Linear methods and regularization

When the linearity assumption fails consequently the linear reconstruction will not be

able to produce accurate image.

In general the inverse problem in ECT is to reconstruct the permittivity map of the

interior given the capacitance data from exterior electrodes. This is an ill posed and

nonlinear problem, and hard to solve with noisy measurement data and errors in simu-

lation of the forward model. The prior knowledge of the permittivity distributions may

help to solve the problem to an acceptable approximation solution. Prior knowledge

is also a key to choosing the reconstruction scheme as there is no a unique and reliable

method to solve the inverse problem. The questions to be answered by an ECT image

also determines which method must be used. For example sometimes an indication

of where about an object inside of the pipe is enough, in other cases it is important to

create an accurate image of the shape of anomalies and sometimes the absolute value

of the permittivity distribution is required. In this section we study two major cate-

gories of the inverse problem in ECT, linear and nonlinear. Two main regularization

techniques, Tikhonov type and total variation also subject of a brief discussion here.

The major difference between the two regularization methods is that the total variation

does not smooth jump-discontinuities. A common choice for the regularization matrix

RRR is a discrete approximation to the Laplace operator, in which case the penalty term
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is

R � ε � �

�
Ωin

�
∇ε � x � � 2dx (6.13)

Ωin is the interior region and not includes the wall area. If the element number tm has at

least one vertex in common with elements t1 � t2 � � � � ti and i �� m then RRR � tm � t j � 1:i � � � 1

and RRR � tm � tm � � ∑ j � j �� m � RRR � tm � t j � � .

Figure 6.8 shows the reconstructed image from a plastic ring and a plastic rod (permit-

tivity 1.8 for both ring and rod) in centre using one step Tikhonov regularization. As

we decrease the regularization parameter the feature of the real object is more clear in

the reconstructed image.

Total variation regularization

Although Tikhonov type regularization provides a good method to reconstruct smooth

parameters both in terms of contrast and shape, it fails to reconstruct the sharp edges

and absolute values for high contrast. TV regularization is a suitable method for both

sharp edges and high contrast. Using TV regularization to reconstruct the sharp edges

has been discussed in [15], [16] for EIT. The recovery of sharp edges in ECT using TV

regularization is identical and just as important as EIT. In others word the TV func-

tional is used to encourage blocky images as regularized solution. The TV functional

of a continuum

TV � ε � �

�
Ωin

�
∇ε � x � �

dx (6.14)

Ωin is the interior region and not includes the wall area. Here we choose to use mini-

mum total variation method presented in [160]. Let the length of each edge i between



CHAPTER 6. ELECTRICAL CAPACITANCE TOMOGRAPHY 159

[a] [b]

[c] [d]

[e]

Figure 6.8: Reconstructed image when α is (a): 10
� 2

� � b � : 10
� 3

��� c � : 10
� 4

� � d � : 10
� 5

, the target includes a ring and a rod at the centre of the ring with permittivity value of

1.6
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two pixels be di � i � 1 � 2 � � � � I. The k-th row of the matrix SSS � � I � P (here I is number

of edges and P is number of elements) is chosen to be SSSk �
�
0 � � � � 0 � 1 � � � � � � 1 � 0 � � � � � 0 � ,

where 1 and -1 occur in the columns related to the triangle with common edge k. Each

row of SSSk has been weighted with length dk of the edge k, where TTTV � ST DS is the

regularization matrix and D is a diagonal matrix with D � k � k � � dk. The term
�

TTTVVV εεε
�

gives an approximation to the total variation of the distribution ε [37].

6.4.2 Nonlinear inverse problem

In some ECT applications the permittivity changes are high, for example a mixture of

oil and water. In this high contrast ECT problem, the linear method fails to solve the

inverse problem properly. The predicted values using linearization (Jacobian matrix)

has an error with respect to the perturbation and solving the forward problem. In

order to show the nonlinearity of the capacitance changes with respect to the change

in permittivity, we choose a circular object with 10 percent of the image area in centre

of the pipe and perturbed its permittivity. Figure 6.9 shows the nonlinearity in terms

of scaling. The lack of superposition is also an aspect of nonlinearity that makes it

difficult to separate two objects near to each other using linear reconstruction. It is

also clear that the saturation exhibited in this plot shows that the reconstruction of

higher contrast permittivity for absolute values of permittivity is very difficult as the

differences in measured capacitances are very small.

The sensitivity map changes as the background permittivity changes. Figure 6.10.b

shows the sensitivity map between two opposite electrodes when the background is a

permittivity distribution of figure 6.10.a, which includes an object with permittivity 8.

This sensitivity map differs from the sensitivity map shown in figure 6.7.c for the free

space.
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Figure 6.10: (a): Including an object with permittivity 8 to the free space background

and (b): Sensitivity plot for the background is permittivity distribution in (a)

Figure 6.11.b also shows the change in sensitivity map between two opposite elec-

trodes when the background is the permittivity distribution of figure 6.11.a, which

includes a rod with permittivity 2.
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Figure 6.11: (a): Rod with permittivity 2 inserted in centre and (b): Sensitivity plot

for the background permittivity distribution of (a)

High permittivity inclusions change the pattern of the electrostatic field between two

electrodes. The change of the field pattern changes the sensitivity map. Change of the

sensitivity map with the background permittivity distribution maks the requirement to

update the sensitivity map (Jacobian matrix) in image reconstruction using non-linear
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iterative method. The ill-posed inverse permittivity problem is very sensitive to any

source of error (in model or in measurement data) that includes the error in computed

Jacobian matrix.

6.5 Results

We solve the regularized inverse problem using an iterative method. Starting with an

initial guess (permittivity of free space 1) the update formula in nonlinear iteration,

described in equation (3.40), TV and Tikhonov regularization are also compared in

some examples.

In order to validate the reconstruction software we have applied it to previously pub-

lished experimental data by [175]. Figure 6.12 shows the reconstruction of the plastic

rod in the centre, plastic rod near to the wall and two plastic rods and a plastic ring.

Figure 8.9 is the reconstructed image of a plastic rod inside a ring of plastic which was

also from the data published in [175].

Figure 6.13 shows the image reconstruction using synthetic (noise free) data generated

by test model of figure 6.13.a. In figure 6.13.b one can see the image reconstruction

using Tikhonov regularization method. Figure 6.13.c shows the image reconstruction

for the same model when TV was used for the regularization. This example shows

that TV regularization can help to improve the reconstruction of the absolute value

of the permittivity. Tikhonov regularization is not suitable to reconstruct the absolute

permittivity values of high contrasts. In this example regularized nonlinear iterative

steps has been used, we stop the iterations when there was no more improvement in

the convergence of the nonlinear solver for both cases.

Figure 6.14 shows reconstruction of real experimental data using nonlinear steps, wa-
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[a] [b]

[c] [d]

Figure 6.12: Reconstruction of plastic bar(s) and ring using regularized linear steps,

permittivity 1.8 for plastic, figure (a) is a rod in centre, (b) a rod close to wall, (c) two

rods close to wall and (d) a ring
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Figure 6.13: Results of reconstruction of simulated data (a): True model, (b): Image

reconstruction using Tikhonov regularization and (c): TV regularization with noise

free data.
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ter (permittivity 80) inside of the glass tube (permittivity 3.5), here we used TV for

the regularization with 16 iterative steps, the maximum value of the permittivity in this

image is 9 and one can see the higher permittivity region (water) in the image in the

centre but finding absolute value of the permittivity is rather complicated task as the

changes in the measured capacitances are in the saturation part of typical sensitivity

curve shown in figure 6.9. In experimental data (because of noise and saturation) it is

hard to find the absolute value of high permittivity inclusions.

Figure 6.14: Reconstruction of water inside of a glass tube

In figure 6.15 the reconstruction of tube with 20 percent filled with glass (horizontal)

, shows a model from reconstruction of a horizontal flow.

The experimental test in figure 6.16 is 4 plastic rods (permittivity 1.8) that has been

reconstructed using nonlinear reconstruction steps and Tikhonov regularization and

the reduction of the cost functional by the iteration steps has been shown in figure

6.16. The norm of the cost function and observation of the image quality during

iteration shows an improvement in image quality, for successive iterations.

Figure 6.17 shows the reconstruction of wood objects with square cross section. Using

TV regularization and nonlinear iterative steps the sharp edges of the square can be
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Figure 6.15: Reconstruction of tube, 20 percent of the area filled with glass

seen in reconstructed images. Figure 6.17.b (TV) preserve the edges of the square

object better than figure 6.17.a (Tikhonov) For two square objects figure 6.17.c it is

harder to recover all the sharp edges, as expected with so few measurements.

Figure 6.18 shows the reconstruction of wooden objects with some thresholds. In

this figure it can be seen that the sharp edges can be recovered better by using TV

regularization.

Figure 6.19 shows an experimental ECT test, with three plastic cylinders (permittivity

1.8) with water (permittivity 80). This is a high contrast problem with multiple ob-

jects, which is heavily nonlinear. The quality of the image improves with nonlinear

iterations.

By contrast figure 6.20 shows the reconstructed images of a plastic object with cross

shape. TV and Tikhonov regularization were used to reconstruct these images.
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Figure 6.16: Reconstruction of 4 plastic rods shown in (a): from experimental data

shown in (b), and reduction in cost function shown in (c)
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[a] [b]

[c] [d]

Figure 6.17: Reconstruction of wood with square cross section (permittivity 2), using

TV and Tikhonov regularization. (a) Tikhonov regularization of the square object in

centre, (b) TV regularization of the square object in centre, (c) TV regularization of

square object close to the wall and (d) Tikhonov regularization of two square objects
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[a] [b] [c]

[d] [e] [f]

Figure 6.18: Reconstruction of wooden object with square cross section (permittivity

2), using TV and Tikhonov regularization. (a) True object in centre, (b) Tikhonov

reconstruction, (c) TV reconstruction, (d) True object, (e) Tikhonv regularization and

(f) TV regularization

6.6 Discussion

We studied nonlinear image reconstruction algorithm for 2D ECT. Numerical simu-

lations show the saturation and the failure of superposition aspects of nonlinearity of

the inverse ECT problem. Linear reconstruction methods are able to tackle the ill-

posedness using a regularization matrix or iterations (linear iterations), but are not

suitable for nonlinear problems. For two phase problems one should use shape recon-

struction methods, which we study in next chapters. Absolute permittivity reconstruc-

tion for high contrast materials was better recovered by using total variation regular-

ization. Total variation improves the separation between inclusions and the shape of

each inclusion. The noise in measurement data makes the low contrast images more

blurred than high contrast images. Presence of the noise makes it hard to recover the

absolute permittivity values for high contrast because of saturation. The high contrast

permittivity objects can interfere with each other (this can be seen as a blurring in

high contrast images especially when the objects are close to each other, and a linear
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[a] [b] [c]

[d] [e] [f]

[g]

Figure 6.19: Improvement of the image quality using nonlinear steps: (a) Real phan-

tom, (b): Step 1, (c): Step 2, (d): Step 3, (e): Step 4, (f): Step 8 and (g): Step

12. Thanks to Bastian Mahr and colleagues from Institute of Process Engineering at

university of Hannover in Germany for the experimental ECT data for this test
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[a]

[b]

[c ]

Figure 6.20: Reconstruction of a cross shape plastic object in from experimental data

using TV and Tikhonov regularization, The experimental data was collected by PTL,

(a) A cross shape inclusion, (b) Tikhonov reconstruction, and (c) TV reconstruction
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method is used). For better separation of high contrast objects a nonlinear method

is necessary. In this chapter the proposed method was tested against experimental

data from three different sources, Hannover University in Germany, Industrial Process

Tomography at UMIST and PTL in Manchester UK.



Chapter 7

MONOTONICITY METHOD

The monotonicity method was introduced to the shape reconstruction of ERT by Tam-

burrino and Rubinacci [155]. The non-iterative inversion method of Tamburrino and

Rubinacci provides a low computational cost reconstruction method for tomography

data from two component mixtures, such as oil and air (in ECT). In this chapter we

study a shape reconstruction method for two phase materials using the monotonicity

property. In ERT and ECT the resistance and capacitance matrices are monotone. In

MIT a second order moment extracted from multifrequency transimpedance data has

the monotonicity property [134], [135] , [136]. The reconstruction method uses the

monotonicity property of the data as a test applied to each pixel. The criterion, how-

ever, only gives a partial classification by an excluding and an including test [7]. In

this chapter we study the monotonicity properties and the inversion algorithm for two

phase materials.

174
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7.1 Electrical resistance tomography

The ERT data is a set of the measurements of the DC resistances between pairs of elec-

trodes in contact with the conductor under investigation. In ERT the measurement can

be interperrated to Dirichlet to Neumann map. Dirichlet to Neumann has some major

properties. It is self adjoint, positive definite, uniquely defines the internal conductiv-

ity map and it is monotone [155]. We use the monotonicity property to build a shape

reconstruction algorithm. We further concluded that the numerical model including

complete electrode model (CEM) of ERT is monotone as well [156].

The relation between electrodes currents and voltages is given by a matrix multipli-

cation VVV ��� I, where � is the resistance matrix, an � L � L � symmetric matrix, VVV and

III are the columns vectors of electrodes voltages and currents, respectively (assuming

that one electrode is grounded, number of electrodes here � L � 1 � . In most ERT sys-

tems (except ACT1... ACT4 at RPI and OXBAT 2 3 at Oxford Brooks) the diagonal

arrays of the resistance matrix are not measured, in such cases our proposed method

can not be used. The main property of the resistance matrix, from the perspective of

the inversion method, is the monotonicity, for all x we have

η1 � xxx � � η2 � xxx ��� xxx in Ωc � � 1 ��� 2 (7.1)

where ΩC is the conductive domain, � k is the resistance matrix associated to the con-

ductivity 1
�
ηk (ηk is the resistivity of the material).

For two phases problem, (7.1) can be recast as

Dβ � Dα � Ωc � � α ��� β (7.2)

where Dγ is the region including conductivity level γ and � γ, for γ � � α � β � is the
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resistance matrix related to a resistivity ηγ defined as

ηγ � xxx � � � ηi � xxx � Dγ

ηb � xxx � Ωc
�
Dγ

�

ηb is the resistivity of the first phase that we call the background phase, and ηi
� ηb

is the resistivity of the second phase that we call inclusion or anomalous phase. We

stress that the monotonicity (7.1) and (7.2) hold for the actual resistance matrix and

for the numerically computed resistance matrix.

7.2 Electrical capacitance tomography

As is well known, for linear problems, the capacitance matrix CCC relates the electrodes

charges and voltages. Specifically, we have QQQ � CCCVVV , where VVV and QQQ are the columns

vectors of electrodes voltages and charges, respectively. In a system having � L � 1 �
electrodes (one electrode is grounded) VVV and QQQ have L components and CCC is a � L �

L � symmetric and positive definite matrix. Typical measurements protocols directly

provide the elements of CCC.

The operator mapping the dielectric permittivity into the capacitance matrix satisfies

the following monotonicity property:

ε1 � xxx ��� ε2 � xxx � � xxx � Ωd � CCC1 � CCC2 (7.3)

where Ωd is the region of interest for dielectric imaging, CCCk is the capacitance matrix

associated to the permittivity εk. For the two phase problem, (7.3) can be recast as

Dβ � Dα � Ωd � CCCα � CCCβ (7.4)
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where CCCγ, for γ � � α � β � , is the capacitance matrix related to a permittivity εγ defined

as

εγ � xxx � � � εi � � xxx � Dγ

εb � � xxx � Ωd � Dγ
(7.5)

Here εb is the permittivity of the first phase that we call the background phase, and

εi
� εb is the permittivity of the second phase that we call the inclusion phase (notice

that if εi � εb then the r.h.s. of (7.4) is given by CCCβ � CCCα). We notice that (7.4) follows

directly from (7.3). The proof of (7.3) can be found in [155] with reference to another

elliptic problem: the steady ohmic conduction. We highlight that the monotonicity

given by (7.3) relies on the ellipticity of the governing partial differential equation.

7.3 Magnetic induction tomography

The goal of MIT is the reconstruction of the resistivity of a conductor through eddy

current induced by a set of coils. Specifically, we assume as data the change of the

coil impedance due to the induced eddy currents. The mathematical model (in terms

of magnetic vector potential A) is given by

∇ �

�
1
µ

∇ � A � � iωσA � Js (7.6)

together with suitable interface and regularity (at infinity) conditions. Here, µ is the

magnetic permeability, ω is angular frequency, σ is the electrical conductivity, Js is

the current flowing in the excitation coil. It is possible to show that [155],[156]

Re � ZZZ0 � iω � � ZZZη � iω � � � ω2PPP
�
2 �

η � o � ω4 � � ω � 0 (7.7)
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where Re is for real part of a complex number, ω is the angular frequency, Z0 � iω � is

the impedance matrix when the conductor is not present and ZZZη � iω � is the impedance

matrix when a conductor of resistivity η is present. The main property of the second

order moment is its monotonicity [155],[156]

η1 � xxx ��� η2 � xxx � ; � xxx ; in Ωe � PPP
�
2 �

1 � PPP
�
2 �

2 (7.8)

where PPP
�
2 �

k is the second order moment associated to the conductivity 1
�
ηk.

For two phases problem, (7.8) can be recast as

Dβ � Dα � Ωe � PPP
�
2 �

α � PPP
�
2 �

β (7.9)

where Ωe is the eddy current region, PPP
�
2 �

γ , for γ � � α � β � is the second order moment

related to a resistivity ηγ defined as

ηγ � xxx � � � ηi � xxx � Dγ

ηb � xxx � Ωe
�
Dγ

� (7.10)

The monotonicity (7.8) and (7.9) has been proved for a numerical model [134], how-

ever, it is possible to show that they hold also for the actual second order moment.

The monotonicity satisfied in MIT involves PPP
�
2 � whereas we measure the impedance

matrix δZZZ � iω � at the angular frequencies ω1 � � � � � ωv. Therefore, we need a prelimi-

nary step to apply the non-iterative inversion method aimed to extract PPP
�
2 � from the

measured data. A detailed description of this calculation can be seen in [156], [134],

[135], [136]. The author’s contribution in monotonicty MIT is the derivation of the

second moment term for edge FEM formulation of MIT.

Using edge FEM used to solve the forward model of equation (7.6). The linear system

of equations is � KKKr � iωωωKi � aaa � bbb, where KKK � KKKr � iωKKK i is the system matrix and aaa is



CHAPTER 7. MONOTONICITY METHOD 179

the solution of edge element and bbb is the right hand side (multiple right hand side for

all excitations). The transimpedance can be expressed as δZZZ � iω � � ibbbT KKK
� 1bbb. Here

we approximate KKK
� 1

KKK
� 1

� � KKKr � iωKKK i � � 1
� � III � iωKKK

� 1
r KKKi � KKK � 1

r

�

∞

∑
m � 0

� � iωKKK
� 1
r KKKi � mKKK

� 1
r

� KKK
� 1
r � iωKKK

� 1
r KKKiKKK

� 1
r

(7.11)

Assuming resistivity of coil is zero (or subtracted from total impedance), δZZZ � iω � �

ibbbT � KKK � 1
r � iωKKK

� 1
r KKKiKKK

� 1
r � bbb and resistivity term is Re � δZZZ � iω � � � � bbbT � KKK � 1

r KKKiKKK
� 1
r � bbb.

Here aaar � KKK
� 1
r bbb is the solution of the magnetostatic problem (for all excitations). The

real part can be written Re � δZZZ � iω � � � � aaaT
r Kiaaar. With expansion of the resistive part

we have

Re � � δZZZ � iω � � � ω2PPP
�
2 � � ω4PPP

�
4 � � o � ω6 �

for ω � 0 � (7.12)

Therefore, to extract PPP
�
2 � from the data, we neglect the terms of order six and higher,

and we compute PPP
�
2 � , the estimate of PPP

�
2 � , by minimizing

Ψi j � ppp2 � ppp4 � � ∑k ω
� np
k

�
� � Re � δZZZ � iωk � � � i j � ppp2ω2

k � ppp4ω4
k � 2

(7.13)

we set � PPP � 2 � �
i j

� ppp2 � i j,
� PPP � 4 � �

i j
� ppp4 � i j, where � ppp2 � i j � ppp4 � i j � minimizes Ψi j � ppp2 � ppp4 � .

In equation (7.12) δZ � iω � is the measured (therefore noisy) impedance variation ma-

trix and the term ω
� np
k is used to properly weight the data collected at different fre-

quencies. np is usually a small integer. We found that in equation (7.12) it is possible
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to neglect the term of order six and higher as the electromagnetic field penetrates in-

side the conductor, as usually is the case to image the interior part of the material.

After from this preprocessing required to extract P̃PP
�
2 �

from the available data, we can

use the non-iterative inversion algorithm by replacing the resistance matrix with its

second order moment equivalent.

7.4 Inversion algorithm

The inversion method presented here for two-phase problems is a quantitative non-

iterative inversion method requiring the solution of a number of direct problems grow-

ing as O � N � , where N is the number of voxels used to dicretize the unknown. In the

following we briefly summarize the inversion method with reference to the ERT. This

inversion method can be applied to ECT and MIT without major modification, since

ECT and MIT satisfy a monotonicity property that is formally identical to (7.1), (see

(7.3) and (7.8)).

The inversion method is based on the following property of the unknown-data map-

ping

Dβ � Dα � Ωc � � α � � β is a positive semi - definite matrix (7.14)

Reversing (7.14) we obtain the proposition at the basis of the inversion method

� α � � β not a positive semi - definite matrix � Dβ �� Dα � (7.15)

Proposition (7.15) is a criterion allowing us to exclude the possibility that Dβ is con-

tained in Dα by using the knowledge of the resistance matrices � α and � β. Notice
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that (7.15) does not exclude that Dα and Dβ are overlapped, i.e. does not exclude the

case Dβ � Dα �� /0 where /0 is the void set. Let us initially assume that the measured

resistance matrix ˜� is noise free (˜� corresponds to the anomaly in V ), that the con-

ductive domain Ωc is divided into N ”small” non-overlapped parts Ω1,. . . ,ΩN and that

the anomalous region V is the union of some Ωk’s. The proposition (7.15) leads in a

rather natural way to the inversion method. In fact, to understand if a given Ωk is part

of V , we need to compute the largest positive and the smallest negative eigenvalues

of the matrix ˜� � � k, where � k is the resistance matrix corresponding to an anomalous

region in Ωk. If the product of these two eigenvalues is negative, then ˜� � � k is not a

positive semi-definite matrix and, therefore, from (7.15) applied to ˜� and � k it follows

that Ωk
� V . Since Ωk is either contained in V or external to V (we are assuming that

V is union of some Ωk’s), it follows that Ωk cannot be included in V . It is worth noting

that the criterion (7.15) is a sufficient condition to exclude Ωk from V . Therefore, the

reconstruction Ṽ obtained as the union of those Ωk such that ˜� � � k is positive semi-

definite includes V , i.e. V � Ṽ . Here we briefly explain two tests to find Ωext and Ωint

to identify the inclusion. The true anomaly V is a subset of the anomaly calculated

from the exclusion test and the anomaly calculated by the inclusion test is a subset of

the true anomaly.

7.4.1 Exclusion test

To determine Ωext which means finding pixels certainly not part of the inclusion. For

each Ωk, find the eigenvalues, λk � j, of ˜� � � k, and calculate the sign index sk,

sk �
∑ j λk � j

∑ j
�
λk � j � (7.16)
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The estimate of Ωext is then composed of all Ωk such that sk � 1. Now in practise,

noise in � R means that the small eigenvalues may change sign, hence the test is modified

either by eliminating eigenvalues close to zero, λk � j � 0 if
�
λk � j � � ε, or by relaxing

the test condition sk � 1 � ε. The latter approach was used here with the value of ε

chosen by minimizing
� �

˜� � � Ωext � ε � � 2
2.

7.4.2 Inclusion test

To determine Ωint, means finding pixels definitely in inclusion. For each Ωk in Ωext,

find the eigenvalues, λk � j, of � ΩExt � k � ˜� , and the sign index tk,

tk �
∑ j λk � j

∑ j
�
λk � j � (7.17)

The estimate of Ωint is then composed of all Ωk such that tk � 1. Again in practise the

modified tests have, λk � j � 0 if
�
λk � j � � ε, or the relaxed condition tk

�
1 � ε. As

with the exterior test, the choice of ε, in the latter condition, is made by minimizing

� �
˜� � � Ωext � k � ε � � 2

2.

7.5 Results for ECT and ERT

Many examples of shape reconstruction for 2D ERT (with point electrode model) have

been presented in [155]. We have presented some more examples in 2D, 3D ERT with

complete electrode model and ECT in [156] and [7]. Here we present some more

sample shape reconstruction examples.

Figure 7.1 shows the reconstruction of true object in 2D ERT with the result of in-

cluding and excluding tests. Figure 7.2 shows the reconstruction of true object in 2D
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ECT with the result of excluding and including tests. ERT system has 32 electrodes.

In 2D ERT examples, the background conductivity is 1 Sm
� 1 and the inclusion has

conductivity 2 Sm
� 1 and relative permittivity of the background in ECT is 1 and the

inclusion has relative permittivity of 3. Figure 7.3 shows 3D ERT reconstruction of

true object with the result of excluding and including test. The ERT system here in-

cludes 32 electrodes. The background conductivity is 1 Sm
� 1 and the inclusion has

conductivity 2 Sm
� 1.

[a] [b]

[c]

Figure 7.1: Example of 2D ECT, (a): True shape, (b): Excluding test and (c): Includ-

ing test

7.6 Discussion

The monotonicity underlying resistance, capacitance potentially offers a fast, stable,

non-iterative and non-linear reconstruction algorithm for two-phase mixtures. In this
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[a] [b]

[c]

Figure 7.2: Example of 2D ERT, (a): True shape, (b): Excluding and (c): Including

[a] [b]

[c]

Figure 7.3: Example of 3D ERT, (a): True shape, (b): Excluding and (c): Including
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reconstruction technique there is no need for any assumptions of the smoothness of

material properties; it is only required that (obviously) the material properties of the

two phases are different. More work needs to be done in applying the method to ex-

perimental data. In MIT the second order moment of the impedance matrix has the

monotonicity property. The second order moment can be extracted from multifre-

quency measurement of transimpedance of MIT. Preliminary work has been done in

MIT [156], further work is needed to apply the monotonicity of multifrequency data

to MIT. The numerical study shows that the real object is a subset of the reconstructed

shape from the including test and the excluding test is an inclusion that is a subset of

the true object. Therefore there will be few pixels that can not be identified by this

algorithm. We have implemented a Bayes-Monotonicity [7] approach in which these

undecided pixels are analyzed by a binary Monte Carlo Marko Chain (MCMC). The

result of such a scheme is a probability distribution of an uncertain pixel being part

of the inclusion. It is worth noticing that the test matrices � 1 � � � � � � N , where N is the

number of pixels in the inverse problem can be pre-computed and easily stored since

they are L � L symmetric matrices, where L � 1 is the number of electrodes that, gen-

erally does not exceed a few dozen. In addition, the computational cost of calculating

the largest and smallest eigenvalues of ˜� � � k is moderate. The method is non-iterative

in the sense that we can decide if Ωk is part of V independently from Ωi for i �� k.



Chapter 8

NARROWBAND LEVEL SET

METHOD

The level set method was introduced by Osher and Setain for modelling of front prop-

agations [112]. The method has many applications including fluid mechanics, optimal

design, image processing and inverse problems. There have been some initial stud-

ies in using various types of level set techniques for shape reconstruction in electrical

and electromagnetic imaging (see for example [39, 139, 85]). The level set method is

well-suited for the shape reconstruction application since it is able to easily accom-

modate topological changes of the boundaries. The shapes are given as the zero level

set of a higher dimensional function. If we change this higher dimensional function

(called the ’level set function’), for example by adding an update, we move the shapes

accordingly. In particular, topological changes are performed automatically this way.

A new shape reconstruction method for electrical resistance and capacitance tomogra-

phy is presented using a narrowband level set formulation. In this shape reconstruction

approach, the conductivity (or permittivity) values of the inhomogeneous background

186
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and the obstacles are assumed to be (approximately) known, but the number, sizes,

shapes, and locations of these obstacles have to be recovered from the data. A key

point in this shape identification technique is to represent geometrical boundaries of

the obstacles by using a level set function. This representation of the shapes has the

advantage that the level set function automatically handles the splitting or merging

of the objects during the reconstruction. Another key point of the algorithm is to

solve the inverse problem of the interfaces between two materials using a narrow-band

method, which not only decreases the number of unknowns and therefore the compu-

tational cost of the inversion, but also tends to improve the condition number of the

discrete inverse problem compared to pixel (voxel) based image reconstruction. Level

set shape reconstruction results shown in this thesis are some of the first ones using ex-

perimental data of impedance tomography. The experimental results also show some

improvements in image quality compared with the pixel based image reconstruction.

The proposed technique is applied to 2D resistance and capacitance tomography for

both simulated and experimental data. In addition, a full 3D inversion is performed on

simulated 3D resistance tomography data.

8.1 Sensitivity formula

The forward problems of ERT and ECT have been discussed in previous chapters. A

derivation of the sensitivity formula for ERT can be seen in [120]. For ECT we de-

rived an efficient sensitivity formula in chapter 6. We use the linearized sensitivity

of the measurement to a change in permittivity for ECT and to the change in elec-

tric conductivity in ERT. This type of perturbation calculation, which mathematically

amounts to calculating the Fréchet derivative of the measurement data with respect to



CHAPTER 8. NARROWBAND LEVEL SET METHOD 188

permittivity and conductivity, is standard in a broad class of inverse problems (see for

example [84]). A treatment of this linearization for full Maxwell’s equations can be

found for example in [150]. At each point in the domain the calculated sensitivity is

essentially proportional to the inner product of two electric field vectors EEE i � EEE j at the

given location. In particular, we have for ERT

dVi j

dσ
δσ �

�

Ω

δσEEE i � EEE j dx3 (8.1)

and for ECT

dVi j

dε
δε � �

�

Ω

δεEEE i � EEE j dx3
� (8.2)

Here, Ω is the perturbed region and EEE i and EEE j are the calculated electric fields of the

forward problem when electrodes i and j are excited. This sensitivity formula results

in an efficient method for the assembly of the Jacobian matrix. In the FEM model

introduced in the previous section, we have EEE � � ∇u.

8.2 Inverse interface problem using level set

Compared to the more typical pixel (voxel) based reconstruction schemes, the shape

reconstruction approach has the advantage that the prior information about the high

contrast of the inclusions is incorporated explicitly in the modelling of the problem.

With this technique, a more accurate reconstruction of the high contrast objects can

be achieved than is possible with the more traditional reconstruction schemes. This is

because most regularization schemes for the traditional methods, which are necessary

for stabilizing the inversion, have the side-effect of artificially smoothing the recon-

structed images. Therefore, these schemes are not well-suited for reconstructing high

contrast objects with sharp boundaries.
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In order to arrive at a robust and efficient shape-based inversion method, a powerful

technique needs to be incorporated for computationally modelling the moving shapes.

We have chosen to use the level set technique [85, 112] to describe the changing

shapes, since this method is able to easily model topological changes of the bound-

aries. In this technique, the shapes which define the boundaries, are represented by

the zero level set of a level set function Ψ. Let’s consider γ as electrical conductivity

in ERT or dielectric permittivity in ECT. If D is the inclusion with conductivity or per-

mittivity γint embedded in a background with conductivity (or permittivity) γext , the

boundary of the inclusion, which is also an interface between two materials, is given

by the zero level set

∂D : � � r : Ψ � r � � 0 � (8.3)

where the image parameter at each point r is

γ � r � ��� γint � r : Ψ � r � � 0 �
γext � r : Ψ � r � � 0 � (8.4)

If we change this level set function for example by adding an update, we move the

shapes accordingly. This relation is used in the level set technique when constructing

updates to a given level set function such that the shapes are deformed in a way which

reduces a given cost function.

In general, one possibility for moving the shapes in order to solve our shape recon-

struction problem is to introduce a shape evolution of the level set function which is

described by a Hamilton-Jacobi equation

∂Ψ
∂t

� α � t � �
∇Ψ

�
� 0 � (8.5)



CHAPTER 8. NARROWBAND LEVEL SET METHOD 190

Here α � t � is a velocity function of evolving contours in their outward normal direction,

which is usually chosen to point into the gradient direction of the cost functional in

each time step of the evolution. This approach leads to a steepest descent flow for the

inversion.

However, the following approach is slightly different. We want to combine well-

known and very efficient optimization techniques (based on the Gauss-Newton ap-

proach) with our newly developed shape based inversion approach. Using optimiza-

tion strategies for the shape inversion as an alternative to a shape evolution approach

was already suggested in the early paper by Santosa [139]. In order to mathematically

derive this new optimization scheme for our situation, we will denote the mapping

which assigns to a given level set function ΨD the corresponding parameter distribu-

tion γ by γ � Φ � ΨD � .

The parameter distribution γ has the same meaning as in the traditional Gauss-Newton

inversion scheme. The only difference is that in the shape based situation it is con-

sidered as having only two values, namely an inside value and an ’outside’ value.

This assumption can be generalized by allowing these inside and outside values to be

smoothly varying functions, separated by the interface. We will not consider this ex-

tension here. However, in our new approach it will only be an intermediate parameter,

linking the data finally to the new basic unknown of the inverse problem, namely the

level set function ΨD.

Having defined this mapping Φ, we can replace now the iterated parameter γn by

γn � Φ � ΨDn � � Φ � Ψn � . Instead of the forward mapping F � γ � we need to consider

now in the new Gauss-Newton type approach the combined mapping

G � Ψ � � F � Φ � Ψ � � �
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If we perturb the latest best guess for the level set function Ψ by some small correction

δΨ, the linearized response in the data will be

G
� �

Ψ � δΨ � F
� �

Φ � Ψ � � Φ
� �
Ψ � δΨ (8.6)

according to the chain rule. In [139] Santosa has shown that the linearized infinites-

imal response in the parameter due to a perturbation in the level set function can be

formally described as

Φ
� �

Ψ � δΨ � � � γint � γext � δΨ�
∇Ψ

� δ∂D (8.7)

where δ∂D is the Dirac delta function concentrated on the boundary of the latest best

guess for the shape D. The singular nature of the Dirac delta function which is in-

volved in this expression causes some mathematical complications when directly ap-

plying this expression to the Gauss-Newton update. Instead we use

δ∂D � x ��� Cρχρ � x �

where χρ is the indicator function of a small narrowband of half-width ρ centred at

∂D, and Cρ is the corresponding normalization factor. With this approximation, we

get

Φ
� �

Ψ � δΨ � � � γint � γext � δΨ�
∇Ψ

� Cρχρ � x � � (8.8)

It is convenient to further approximate
�
∇Ψ

� � c1 with some constant c1, which usually

is justified if we rescale our level set function after each step, or even recalculate it as

a signed-distance function repeatedly. We finally arrive at

Φ
� �

Ψ � δΨ � aχρ � x � δΨ (8.9)

with the constant

a � �

γint � γext

c1
Cρ �
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We denote the discretized form of Φ
� �

Ψ � by KKK, and the Jacobian of GGG by BBB. Then, the

new Gauss-Newton update is

ΨΨΨn
�

1 � ΨΨΨn � λn � BBBT
n BBBn � α2RRRT RRR � � 1

BBBT
n � AAAd � GGG � ΨΨΨn � � (8.10)

with

BBB � JJJKKK � BBBT
� KKKT JJJT

� BBBT BBB � KKKT JJJT JJJKKK � (8.11)

Notice that (8.11) implies that BBBT BBB can be restricted to be defined only on the narrow-

band, since both KKK and KKKT contain discretized versions of χρ � x � , AAAd is measurement

data, α is the regularization parameter and λn is the stpe-size parameter.

There are two parameters to be tuned in this level set formulation. The optimal choice

of these two parameters depends on the mesh density, the conductivity (or permittivity)

contrast and the initial guess. The relaxation parameter λ has mainly the meaning

of a step-size parameter: it essentially determines the magnitude of changes in the

shape in a given update. The effect of the regularization parameter α depends on the

choice of the regularization operator RRR. Using for RRR the identity, this regularization

parameter has a positive effect on the stability of the inversion without increasing too

much the smoothness of the reconstructions. When using a Laplacian for RRR instead,

the effect will be a smoothing of the updates over the domain. The larger we choose

α, the smoother the update will be. Here the optimal choice of the parameter α will

depend on several factors, for example on the complexity of the correct shape of each

inclusion (which is a-priori unknown), the spatial position of the different inclusions

with respect to each other and with respect to the electrodes, and on the initial guess.

If α is chosen to be too large, it is more difficult for the scheme to split objects in

order to perform a topological change. This means, resolution may suffer when α

is chosen too large, and the scheme might have difficulties detecting smaller objects



CHAPTER 8. NARROWBAND LEVEL SET METHOD 193

which are at a certain distance from inclusions with a more dominant effect on the

data. In our numerical experiments presented here, we are mainly using the identity

for L during the level set based inversion. We will indicate in the following discussion

which regularization parameter α was chosen in the presented situations.

The numerical implementation:

Number of elements: N , Number of measurements: M , Number of Nodes: P The

inclusion is D and the boundary of inclusion is ∂D

� N � 1 vector containing the value of the level set function ΨΨΨ which has the same

format as the real conductivity. We assign this in center of each element. So

we have γγγk as a conductivity (permittivity) and ΨΨΨk for k � 1 � 2 � � � � � N. Where

γγγk � γγγint and ΨΨΨk � 0 for inclusion and γγγk � γγγext and ΨΨΨk � 0 for back ground.

For example ΨΨΨk
� � dist � ∂D � .

We start with an initial guess for the shape function like:

ΨΨΨk
� � X � X0 � 2 � � Y � Y0 � 2 � � Z � Z0 � 2

� ρ2 level set function and � X0 � Y0 � Z0 �
are cartesian coordinate of the center and ρ is radius of the sphere.

� Search for zero level set ΨΨΨk
� 0, for each element k � 1 � 2 � � � � � N compare sign of

ΨΨΨk with sign of the nearest neighbors. If ΨΨΨk changes sign use it as an interface.

� Narrowband function, we need a N � 1 vector indication narrow bands, those

who are in narrowband get 1 and the others 0.

� A N � M matrix for updating the δΨΨΨ level set. we calculate the update with

equation (8.11).

� Update for level set function and relaxation:

ΨΨΨnew � ΨΨΨold � λδΨΨΨ
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� Optionally smooth the level set function.

� Calculate γγγnew � γγγint when ΨΨΨ � 0 and γγγnew � γγγext when myvecΨ � 0.

The pixel or voxel based image reconstruction results in this section are all based

on the standard regularized Gauss-Newton method using Tikhonov regularization as

described in [84].

8.3 Results

The pixel or voxel based image reconstruction results in this section are all based on

the generalized regularized Gauss-Newton method using Tikhonov regularization as

described in previous chapters.

8.3.1 Simulation 2D ERT

The first numerical example is a simple but representative example of a 2D cross

section of a pipe, which may be used in industrial process tomography. We use an op-

posite current pattern for this application. In figure 8.2 the reconstruction of inclusions

with conductivity of 8 Sm
� 1 embedded in a background with conductivity 1 Sm

� 1 is

shown. The data was generated synthetically using our forward model, and Gaussian

noise with S.D. of 1 percent of the largest measurement was added to these simulated

measurement data.

Figure 8.1.a shows a mesh for 12 electrodes system. We apply electric potential 1 volt

to the electrode number 4 and the rest of the electrodes are grounded. Figure 8.1.b

shows the electric potential distribution.

In order to avoid the so called inverse crime, we used different meshes, namely a
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Figure 8.1: (a): Mesh for 12 electrodes system (This mesh was provided by Dr Frank

Podd) and (b): Electric potential distribution when electrode number 4 is excited
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triangular mesh for the FEM model for calculating the simulated data, and a uniform

grid mesh (a 100 by 100 grid) during the level set reconstruction. The level set method

was able to identify the position and a relatively accurate shape of the inclusion. Figure

8.3 shows the evolution of the norm of the residuals during the shape reconstruction

process.

In the next example we attempt to reconstruct two objects which are located relatively

close to each other. It is interesting to see that two objects could be clearly separated

in the level set based reconstruction. The inclusions have a conductivity of 25 Sm
� 1

and the background medium has a conductivity value of 1 Sm
� 1. With a standard

regularized pixel based solution it is hard to separate these two objects. The initial

guess was a circle in the far right of the pipe. With a choice of the regularization

parameter to be α � 10
� 3, we were able to reconstruct after 120 iterations one of

the disc shaped inclusions (on the left hand side), but it takes many more iterations

to also reconstruct the second one. When we choose the regularization parameter to

be smaller, namely α � 10
� 6, we successfully reconstruct after 48 iterations the two

objects as shown in figure 8.4.

For alternative approaches and examples for level set reconstructions in the literature

(mainly applied to simulated data) see [85], [31] and [139]. A 3D level set reconstruc-

tion for ERT has been presented in [25].

8.3.2 Reconstruction in 3D ERT

Figure 8.5 shows the electrode arrangement for a 32 electrodes ERT system. There are

two planes of 16 electrodes. The adjacent current pattern has been used for excitation.

To solve the forward problem we use a finite element scheme with 9568 tetrahedral
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Figure 8.2: True image and the evolution of the shape during the level set reconstruc-

tion
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Figure 8.3: Evolution of the norm of the residuals during the shape reconstruction.
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Figure 8.4: True image and level set solution for two objects close to each other
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elements.

Figure 8.5: Electrodes in 3D ERT

The figures 8.6, 8.7, 8.8 show the true shapes and the reconstructed shapes for different

3D ERT examples. In all these examples the background has a conductivity of 1 Sm
� 1

and the inclusions have a conductivity value of 20 Sm
� 1.

[True] [Reconstructed ]

Figure 8.6: True image and level set solution for two inclusions
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[True ] [Reconstructed]

Figure 8.7: True image and level set solution for three inclusions

[True] [Reconstructed]

Figure 8.8: True image and level set solution for four inclusions
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8.3.3 Experimental ERT results

Figure 8.9 shows reconstructions from experimental data for different examples using

both the level set based shape reconstruction scheme and a standard Gauss-Newton

pixel-based reconstruction scheme [84]. Three plastic rods were used the largest one

with diameter 6.17 cm (we call it r1) the second one with diameter 5.14 cm (we call

it r2) and the third one with diameter 4.18 cm (we call it r3). The first example shows

three circular rods, in figure 8.9.a, r3 is in top left, r1 in far right and r2 close to r1.

The second example shows three different circular objects which are all well separated

from each other, in 8.9.b r3 is on the top, r1 in the right and r2 in the left. The third

example shows three circular objects of which two are close to each other and near

to some electrodes, in figure 8.9.c, r1 is in the bottom right, r2 and r1 are in the top

left. Finally, the fourth example shows two circular objects, figure 8.9.d is the same as

8.9.b with r2 removed. The measurement data consisted of 104 voltage measurements

from adjacent current pattern and from a 16 electrodes ERT system with a diameter of

30 cm of electrode ring. The number of iterations used for pixel-based reconstruction

was 4, and the number of iterations for the level set method was 24, 15, 27, 15 for

these four test examples, respectively. The initial guess was a circle centered at (0,0)

and with diameter of 6 cm.

Figures 8.10 and 8.11 show the improvement in condition number and reduction in

the size of the inverse problem by using the level set method.

8.3.4 Experimental ECT results

Figure 8.12 shows reconstructions for some situations with ECT data which have been

used already earlier for a different reconstruction method in [176]. To evaluate the
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Figure 8.9: Level set reconstructed for ERT experimental data. The top row shows

the real object, the center row the pixel based reconstruction, and the bottom row the

shape based reconstruction using level sets.
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Figure 8.10: Improving the condition of the inverse problem
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Figure 8.11: Reduction in size of an inverse problem, square for level set and star for

pixeled based imaging

level set and pixel based algorithms, the experimental data was used from an 8 elec-

trode sensor 84 mm in diameter. The measurement electrodes are 10 cm long (third

direction) and are mounted symmetrically on the outside of an insulating pipe, and 28

measurement data are used the image and shape reconstruction. In the first example,

a ring of Perspex with a circular object (Perspex 26 mm in diameter) in the centre is

considered. In the second example two circular objects (Perspex 32 mm in diameter

each) considered. The third example considers a single ring of Perspex with a circle

in centre (air with diameter 26mm), and the fourth example one circular object (Per-

spex 32 mm in diameter) near the wall. All these inclusions are Perspex objects with

relative permittivity of 1.8, and the background is free space with relative permittivity

of 1. The number of iterations for the pixel-based reconstruction was 3 in all cases,

and the number of iterations for the level set method was 25, 48, 16, 17, respectively.

Figure 8.13 shows an evolution of the shape of the inclusion from the initial guess
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Figure 8.12: Level set reconstruction in ECT imaging from experimental data. The

region of interest is the interior of the pipe. The top row shows the real object, the

center row is the pixel based reconstructions, and the bottom row is the level set based

shape reconstructions

during 17 iterations.

8.4 Discussion

In this chapter we studied some efficient computational algorithms for large scale in-

verse problems in ERT and ECT. Inversion of the large scale Jacobian matrix is com-

putationally expensive both in time and memory as the Jacobian matrix is a full matrix.

A narrowband level set method has been studied in this chapter to reconstruct the in-

terfaces between two conductive regions. The size of the effective inverse problem to

be solved decreases, and the problem becomes better posed. In situations where the

unknown objects can be represented by shapes with a high contrast to the background,

shape based identification is much better adapted to the problem than a pixel based

reconstruction scheme. A pixel based scheme can be used in order to find a good ini-
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Figure 8.13: Evolution of level set for example 3 of figure 8.12

tial guess for the shape evolution. However, when continuing a pixel based inversion

for more than a few iterations, the convergence to the high contrast obstacles becomes

very slow due to the smoothing effect of most regularization schemes. When a shape

based inversion scheme is used instead, convergence is extremely fast and gives very

good results.

The performance of our shape based inversion scheme in practical situations has been

demonstrated by presenting shape reconstructions from real experimental ECT and

ERT data. The improvements of this method compared to more traditional pixel-based

reconstructions are indicated by the presented results. Separating two objects which

are close to each other is typically a hard task in pixel-based EIT imaging. Here, our

scheme was able to successfully separate two nearby objects from each other using

the level set based method. Moreover, we have shown that the level set formulation

can recover objects with a high contrast to the background, which is another difficulty

in more traditional pixel-based inversion schemes.
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An interesting side-effect of our specific scheme is the restriction of the basic operators

to be defined only on the narrow band around the most recent best guess. This reduces

the dimension and the complexity of the operators significantly. In particular, the

condition number of the corresponding Jacobian tends to be much better than in the

corresponding pixel-based inversion scheme, simply because the sizes of the involved

matrices are smaller. Moreover, most operations on these smaller-sized matrices can

be performed more rapidly than in a full Gauss-Newton inversion. Therefore, the

individual update is less expensive than in the pixel based inversion scheme. That

makes the technique in particular attractive for large scale inversion problems. Finally

we have found that, with a suitable choice of the step size (for example using a line-

search technique), the total number of iterations can be reduced as well.



Chapter 9

CONCLUSION AND FUTURE

WORKS

Imaging is the science of building 2D or 3D reconstructions from exterior measure-

ments. The applications include medical and industrial tomography, geomagnetic

prospecting, ground penetrating radar, industrial non-invasive testing and many oth-

ers. Computational imaging algorithms involve the solution of large-scale inverse

problems, in the form of constrained or unconstrained optimization problems. Due

to the similarities in the underlying mathematical formulations of the problems, one

can design algorithms which can be combined to solve large classes of application

problems.

Many imaging problems belong to the general class of inverse problem, whose solu-

tions are extremely sensitive to data errors (and rounding errors in the computations).

An approximated solution to these problems can be computed by incorporating a priori

information about the desired solution into the reconstruction model. This information

can be defined explicitly, e.g., by requiring the solution to satisfy given constraints or

207
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to lie in a given subspace, or the information can be implicit, e.g., by requiring that

the solution satisfies certain smoothness conditions. The algorithms that incorporate

these requirements into the solution process are called regularization algorithms, and

they usually take the form of a linear or nonlinear optimization algorithm that involves

a combination of a “goodness-of-fit” (such as the residual norm) and a “quality mea-

sure” (such as a semi-norm) of the solution. In this thesis various types of electrical

impedance and magnetic induction tomography systems were studied both in terms of

the forward simulation and the inverse problem.

Applications of the nonlinear inverse solver in ERT, ECT, MIT, MPT have been the

main subject of this thesis. Large scale inverse problems have been studied including

efficient calculation of the Jacobian matrix and improving the speed of the forward

solver. Three-dimensional EIT is more practical as a result of our AMG scheme that

has improved the computational cost by reducing the computational time for the for-

ward solvers. AMG was applied to the large scale forward problem of brain EIT with

complete electrode model.

Applications of shape and image reconstruction methods have been studied for the

above mentioned imaging techniques. A narrowband level set method was applied

to the experimental EIT data. The large scale inverse problem in three-dimensional

EIT has been solved successfully by a narrowband level set method. The compu-

tational time for the inversion decreases compared to more traditional pixel (voxel)

based method, as we are dealing with the interfaces rather than all pixels. The results

of experimental tests shows that our new narrowband technique can produce more

accurate images, especially separation of two nearby objects, than the conventional

Tikhonov regularized pixel based method. The experimental data for test in level set

for EIT was collected from data released in EIDORS-2D by Dr Marko Vauhkonen and
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colleagues [158].

Some extension of Tamburrino’s monotonicity method have been studied for two

phase materials. For MIT multifrequency data are required for this technique. The

method is considered as a fast nonlinear and non-iterative method. Further works

are required to apply the technique to the experimental data and optimization of the

technique for real time online application.

It is always essential for an image or shape reconstruction technique to be applied to

the experimental data. In most cases in this thesis proposed inverse solvers were tested

successfully against experimental data. A nonlinear image reconstruction scheme was

applied to the ECT inverse problem using experimental data for the first time. Ex-

perimental MIT reconstruction using an FE based inverse solver were among the first

results and the level set method was applied to the experimental ECT and ERT data

for the first time.

Improvements have been made in ECT images, as a result of applying a regularized

nonlinear method. Applying TV regularization in ECT can improve the edge detection

for sharp edges. We were able to reconstruct square and cross shaped objects and

high contrast objects from experimental ECT data. The ECT experimental data were

collected from various ECT systems, from Dr W. Yang’s group in industrial process

tomography at UMIST, from B. Mahr from Hannover University in Germany and from

the company PTL in UK.

In MIT the edge FEM has been implemented as a powerful computational tool to sim-

ulate the forward problem. An efficient sensitivity formula based on the adjoint field

method was derived . It has been demonstrated that the sensitivity maps are changing

with the background conductivity. Then the requirement of a nonlinear solver seemed

essential to further progress in MIT. As a result of this study, nonlinear inverse solvers
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were designed for the MIT problem and the results are presented for both medical

and industrial range of applications. The experimental results presented in this thesis

are based on independent test data generated by a newly developed MIT system by

Prof. A.J. Peyton and colleagues and demonstrate the feasibility of newly developed

FE based inverse solvers. This thesis introduces three-dimensional MPT based on a

simulated model and some reconstruction results are given.

9.1 Future works

Many interesting projects and studies can be done as a continuation of this thesis,

some of them related to the applications and the measurement strategies and some of

them in modelling and mathematics. Here we give some examples.

9.1.1 Modelling and algorithms

This thesis focused on the development the bases for the modular imaging algorithms

based on the finite element method (FEM), with specific applications in electrical

impedance tomography and magnetic induction tomography. Prototype algorithms

have been implemented in Matlab. While FEM models are advantageous for their

ability to describe complex structures in two and three dimensions, they also require

more skills from the user and programmer, and hence they are currently not a standard

part of general inverse problem software. However, the design of a modular inverse

solver software makes the stage set for the use of modular FEM models in a general

regularization framework.

We suggest by having modular inverse solvers we can attempt an adaptive choice of

reconstruction algorithm or regularization schemes. We know that each reconstruction



CHAPTER 9. CONCLUSION AND FUTURE WORKS 211

method is able to detect some information regarding the main object, so it could be

an idea to have a main management software to make a decision each time to choose

a reconstruction algorithm. To make it clear, we use a simple example. If we do

not know if the material distribution is two phase or not, we may first use a pixel

based reconstruction to recover the material distribution. By analyzing the information

acquired from this step we may be able to deduce that the material was two phase, and

then extract better information by using a shape based method.

FEM models, are frequently used as “building blocks” in the solution of many en-

gineering problems, and they also make a suitable basis for computational imaging

problems, e.g., in sound and vibration reconstruction problems or electrical impedance

tomography problems. In this thesis we dealt with isotropic and linear materials. Part

of the computer programs including the forward solvers and the Jacobian matrices

have been developed in a way that can handle anisotropic materials. More studies are

needed to solve the inverse problem of anisotropic and nonlinear materials especially

in MIT.

In most of these tomographic techniques, the qualitative information of the image has

been improved. For example we have improved sharp edges using TV in 2D ECT and

we have improved separations between objects by employing the level set method.

The quantitative accuracy still is a challenging problem both experimentally (due to

some saturation properties we have shown) and mathematically.

The nonlinear inverse problem can be solved using regularized linear iterative steps:

there are research opportunities in the solution of linear system of equations arising

in each nonlinear step. One can further explore efficient ways of regularization and

especially choice of the regularization parameter. Computational imaging in two and,

in particular, three dimensions involve the processing of large amounts of data, and
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must be performed with algorithms suited for such large-scale problems. Hence there

is a growing interest in iterative algorithms that only involve matrix-vector multipli-

cations and thus avoid the high computational complexity of classical factorization

algorithms. Another advantage of the iterative methods is that they only require the

operation of the “forward model” on the iteration vectors, and they are matrix-free in

the sense that they only require access to a computational module that produces the

result of applying the forward operator to a vector. Hence the forward operator is not

restricted to be a (sparse) matrix – it can be a sophisticated model that involves, say, the

solution of a partial differential equation. It is precisely these features and advantages

of iterative methods that make them well suited for designing modular regularization

algorithms which, in principle, can make use of any forward operator, as long as it is

available as a computational module.

Application of the level set method and AMG for complex conductivity can be an

interesting future study. One needs to study further surface based (curve based) regu-

larization schemes when using the level set method. Application of AMG in curl-curl

operator of magnetostatic and eddy current forward problem will be a very helpful

tool to speed up the forward solvers.

One could study simultaneous reconstruction of permeability and complex conductiv-

ity using MIT data. Similar to the optical tomography (recovering absorption and scat-

tering coefficient) [4] some normalization are required to stabilize the inverse problem

here.

We suggest an adaptive frequency method for MIT. Depending on the conductivity

distribution, each excitation coil will have different frequency. We choose these fre-

quencies in a way that produces the best distinguishability and makes resulting inverse

problem better posed. Assume a linear situation and linear image reconstruction. The
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background conductivity is given σσσ0. Given an MIT system with N coils, the mea-

surement voltage VVV m � σσσtrue � ωωω � and simulated voltages FFF � σσσ0 � ωωω � are N � N matrices.

k-th row of the matrix belongs to the excitation coil k with frequency ωk. We choose

ωωω � ω1 � ω2 � � � � ωN (ωL � ωωω � ωH in which ωL and ωH are lowest and highest fre-

quency by measurement system), in a way that minimizes the condition number of

JJJ � σσσ0 � ωωω � , in the same time maximizes
�

VVV m � FFF
� 2. In proposed algorithm, first the

image will be reconstructed by a single frequency data, which gives an estimated con-

ductivity distribution σσσ1. Then we maximize
�

FFF � σσσ1 � ω � � FFF � σ0 � ω � � 2, to find the

best frequencies. Then the measurement data will be created by these optimum fre-

quencies. Next the image will be reconstructed by this optimum data. By maximizing

the differences between measurement and simulated data one can reduce the effect of

the noise on data and consequently on reconstructed images. Reducing the condition

number of the Jacobian matrix makes the inverse problem better posed, so that more

singular values can contribute in image reconstruction and more accurate details can

be recovered.

9.1.2 Some applications

The computational modules developed in this project have a general interest in inverse

problems; however, we also had some specific applications in mind within the areas

of industrial and medical electromagnetic imaging. Molten Steel flow visualization is

a potential application that is commercially important and we expect to be feasible.

Two phase techniques developed in this thesis are well suited for recovering the flow

regime using MIT data. Steel solidification monitoring is another area of interest and

can be approximated to a two phase material problem. Eddy current NDT is a similar

problem, it is two phase, so that the notion of regularization and two phase materials
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can be used in NDT crack detection.

As an example of large scale inverse and forward problem in EIT, brain tomography

could be an interesting problem. Our large scale techniques namely AMG and the

level set method can be used here. We applied AMG to the EIT forward problem of

brain imaging. We also applied level set method to some 3D test examples, it can be

further studied for brain tomography.

There are many potential applications for an MPT system, including the application

mentioned in this thesis (detecting steel bars inside concrete). Magnetic permeability

mapping can produce an indication of stress in metal objects, the notion of MPT and

inverse permeability problem could improve the stress sensing. Study of the nonlinear

materials will be particularly interesting here, where we deal with magnetic curves,

saturation and nonlinear materials.

Techniques developed in this thesis are general, many of them could be used when

there are limited angle tomography data. Many NDT devices or bio-impedance de-

vices could benefit of using notion of the inverse problem or tomography. In many

applications increasing the number of measurements from one to few measurements

(for example 20 measurements from an 8 electrodes EIT) does not make the measure-

ment system terribly complicated. But this multiple measurement data together with

a smart pattern recognition scheme could produce valuable results. In some cases a

tomography system can be used just for the proof of the concept and acquiring the

pattern recognition idea, then the tomographic system can be replaced by a decision

making chip that triggers an alarm with more accuracy based on an understanding of

the material distribution map.

Dehydration of liquids in human body is an issue for example for soldiers fighting in

deserts. Using electrical impedance techniques one could relate the level of liquids
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in human body to a conductivity measure. Our proposal for that would be a set of

MIT measurements with possible assembling the sensors inside the clothes (by smart

textile technology) and using a pattern recognition method to set an alarm. It might

be possible to assemble the sensor in some surfaces near to the body a subsurface

conductivity study will be interesting here.

We have studied use of EIT for monitoring freezing tissues in cryosurgery, however

we suggest MIT may be a suitable technique for this application. The large changes

in conductivity, permittivity and perhaps permeability of the freezed tissues make it

possible to be detected by MIT. MIT also have a potential to map the temperature

during hyperthermia.
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