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Abstract

Computer Science is full of interesting ideas, but without evaluation and
testing there is no way of determining a good idea from one which has
simply been well-publicised.  This dissertation provides an evaluation of
Bryson’s (2001) Behaviour Oriented Design [BOD], a methodology for the
development of complex agents.  This evaluation is based on experiences
gained whilst developing a computer-controlled player (“bot”) for the game
Unreal Tournament, and on comparisons with existing architectures and
methodologies.  BOD is shown to be a useful and powerful methodology,
applicable to a wide range of situations.  The document also describes the
development of the bot and its eventual performance, highlighting issues
relating to BOD and to game-agent development in general.

The development process made use of the Gamebots interface (Kaminka et
al., 2002) and the PyPOSH implementation of BOD’s Action Selection
mechanism (Kwong, 2003), both of which are described and commented
upon here.  Improvements made to PyPOSH are also discussed.
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1. Introduction

Computer Science is full of interesting ideas, but without evaluation and testing there is no
way of determining a good idea from one which has simply been well-publicised.  This
dissertation provides an evaluation of Bryson’s (2001) Behaviour Oriented Design [BOD],
a methodology for the development of complex agents.  This evaluation is based on
experiences gained whilst developing a computer-controlled player (“bot”) for the game
Unreal Tournament, and on comparisons with existing architectures and methodologies.
BOD is shown to be a useful and powerful methodology, applicable to a wide range of
situations.  The document also describes the development of the bot and its eventual
performance, highlighting issues relating to BOD and to game-agent development in general.

The development process made use of the Gamebots interface (Kaminka et al., 2002) and
the PyPOSH implementation of BOD’s Action Selection mechanism (Kwong, 2003), both
of which are described and commented upon here.  Improvements made to PyPOSH are also
discussed.

1.1. Contributions, Key Concepts, and Justification

The principal contributions of this dissertation are:

• The development, using Behaviour-Oriented Design, of a bot for Unreal
Tournament’s Capture-the-Flag mode, and a discussion of this development.  The
POSH plan developed as part of this is more complex than any existing published
POSH plan.  (POSH is BOD’s Action Selection Mechanism, introduced in section
2.4).

• An evaluation of BOD in light of this development and with reference to existing
architectures and methodologies for Agents and Artificial Intelligence.  These
include Soar (Lehman et al. 1996), EPIC (Kieras and Meyer, 1997), ACT-R
(ACT-R Research Group, 2004a), the Subsumption Architecture (Brooks, 1986),
JACK (Howden et al., 2001), agent modelling via UML and Rational Rose (section
6.2), Kinny et al.’s (1996) Beliefs-Desires-Intentions model, and Tyrrell’s (1993)
criteria for Action Selection Mechanisms.

Additional contributions of this dissertation include the following:

• A summary and evaluation of a number of Artificial Intelligence / Agents
architectures and methodologies.

• Improvements to the PyPOSH implementation of BOD’s Action Selection
mechanism.

1.1.1. Behaviour-Oriented Design [BOD]

Behaviour-Oriented Design (Bryson, 2001) is a methodology for the development of
complex agents.  There is much debate over the exact definition of an “agent”, but a well-
respected definition is that given by Wooldridge (2002, p.15; his emphasis):

An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design
objectives.
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Bryson (2001) defines a complex agent as one which must deal with goals and behaviours
which may be conflicting.

BOD is both methodological and architectural: it specifies an iterative development process,
a system of behaviour decomposition and a mechanism for Action Selection (POSH).  BOD
draws on ideas from Behaviour-Based AI (e.g., Matariƒ, 1997) and Object-Oriented Design
(Booch, 1990).  It is introduced in detail in chapter 2.

1.1.2. Unreal Tournament [UT] and Capture the Flag.

Unreal Tournament (Epic Games, 2004) is a First-Person Shooter [FPS] game.  As the name
suggests, the viewpoint adopted by the player in FPS games is that of the character he or she
is controlling: the player sees the world through the character's eyes.  (Some FPS games also
offer a third-person “over the shoulder” view option.)

The single-player version of Unreal Tournament pits the human player against computer-
controlled players (“bots”) in kill-or-be-killed deathmatches spread over a wide range of
expansive 3D environments.  The aim of the game is to defeat all competitors in every arena.
The multi-player mode is similar, except that it is other human players who are fought, rather
than computer-controlled ones.  The complete storyline for the game can be found at
http://www.planetunreal.com/utguide/story.shtml.

This project, however, concentrates on a specific game-mode within UT: Capture the Flag
[CTF].  In this mode, two teams (or possibly two single players) compete against each other.
Each team has a base in which their flag is located.  The object of the game is to obtain your
opponents’ flag (done by running into it), and return with it to your flag.  This counts as a
flag capture.  Once a specified number of captures have been achieved, the game is won.

However, the opposing team can obviously capture your flag also.  In this case, you must
recover it before you can make a successful capture, as returning to your base with the
enemies’ flag achieves nothing if your own team’s flag is not there.  Once a player has
captured a flag, s/he may be forced to drop it by being killed (using the usual UT weaponry).
The flag then lies on the ground waiting for someone (of either team) to pick it up.  If you
pick up your own flag dropped by an escaping enemy, it returns to your base instantly.

Teams in CTF may be composed of human players alone, or of a mixture of human and
computer players.

1.1.3. Justification

This project is significant for a number of reasons.  The primary reason is that BOD has not
previously been evaluated in detail except by its developer.  It is important that
developments in any scientific field are critically evaluated if they are to be truly understood
and reach their full potential.  Similarly, the PyPOSH implementation of POSH Action
Selection has not previously been evaluated by a third-party.

Furthermore, the bot developed as part of the implementation phase of this project has a
more complex POSH plan than any published to date (see section 5.3.6).  The development
therefore provides much insight into the effectiveness and scalability of all aspects of the
BOD process and acts as evidence of the power of the methodology.

Finally, this dissertation provides information useful in a number of areas:  Evaluation of
BOD is a major part, but this project also contributes to existing literature on the
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development of agents and specifically of agents for computer games (e.g. Laird and Duchi,
2000).  The evaluation itself is relevant from both a theoretical and a practical perspective.

Are computer games really a valid field for the exploration of Artificial Intelligence?

Although computer gaming may appear a trivial use of computers, computer games’
contribution to AI research is far from insignificant.  Laird and van Lent (2000) go so far as
to describe interactive computer games as the “Killer Application” for pursuing the goal of
Human-level AI.  However, the usefulness of computer games extends far beyond just
pursuing this particular goal.  McCarthy (1998; p.1), for example, describes using the game
Lemmings as an ideal model for “AI research connecting logical formalizations with
information that is incompletely formalizable in practice”, whilst Veksler and Gray (2004)
have made use of the Tetris game for experiments with reinforcement learning.

A key motivation for the use of computer games in AI research is that they offer complex
interactive environments in which artificially-intelligent agents can operate.  These
environments are usually highly customizable and can often be created from scratch to suit
particular needs.  The cost and complexity of using such an environment in comparison to,
say, robotics are negligible.

Readers interested in further justification are encouraged to read Laird and van Lent’s article
(2000).  In particular, it offers a list of “reasons for AI researchers to take the computer game
industry seriously” (p. 1172).

1.2. Document Structure

This document is made up of three main sections:

• Chapters 2 and 3 summarise and comment on most of the architectures studied.
Chapter 2 introduces BOD whilst other architectures are introduced in Chapter  3.

• Chapters 4 and 5 discuss the development process and the bot produced,
including some brief evaluation.

• Chapters 6, 7 and 8 provide the evaluation of BOD and a brief evaluation of
PyPOSH, the Python implementation of POSH.  The evaluation is summarised as
part of the conclusions in chapter 9.

This document contains no explicit “Literature Review” section.  Rather, the work done for
my Literature Survey is spread throughout the document, much of it in chapters 2 and 3.

1.2.1. Roadmaps

If you just wish to read about different architectures, chapters 2 and 3 are the most
important ones to read.  You should also read section 6.8 (the Subsumption Architecture).
You may also like to read about JACK in section 6.6.4, and the “Rational Rose approach”
in section 6.2.

If your main interest is the development parts of this project, you should read the
scenarios in chapter 4, as these describe the behaviour of the created bot.  You should
definitely read chapter 5, the primary place where the development process is discussed.
You may find section 2.4 (an explanation of POSH action selection) useful in your
understanding of chapter 4, as this chapter makes much reference to POSH plans and action
selection.  You should also read Appendix B which describes the bot’s specification, and
possibly Appendix D, as this discusses part of the development of the Soar Quakebot (Laird
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and Duchi, 2000).  Chapter 8 is probably worth reading too, as part of the development time
was spent working on modifications to PyPOSH.

If your interest is only in the methodological side of BOD, you should read sections 2.1 and
2.2 (although these might make more sense if you understand BOD fully, so you may find
it useful to read all of that chapter).  You should then read chapter 5, probably omitting the
section which discusses POSH (5.3.6), and read the sections of evaluation which detail
specifically with the methodology (6.3 and 6.4).  The discussion with reference to Extreme
Programming in section 7.2.1 would also be worth reading.

Finally, if your interest in BOD is limited to POSH action selection, you should begin by
reading chapter 2 (probably omitting section 2.2).  Chapter 4 describes the behaviour of the
bot in relation to the plans created and so should definitely be read.  POSH’s contribution
to the development process is discussed in section 5.3.6 whilst the comparisons in section
6.6  deal  with action selection.  POSH plan files are evaluated in section 7.3, whilst section
7.4 tests POSH against Tyrrell’s (1993) criteria for Action Selection mechanisms.  Section
8.2 of the chapter on PyPOSH might also be useful: it discusses some of the problems
corrected with this implementation of POSH.  Finally, Appendix A gives a number of
sample plan files.
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2. Introduction to Behaviour-Oriented Design

2.1. Introduction

Introduced in Bryson (2001), Behaviour-Oriented Design [BOD] is a methodology for
developing complex agents.  Bryson (2001, p. 59) summarises the components of BOD as
follows (her emphasis):

Behaviour-oriented design consists of three equally important elements:

• an iterative [development] process

• parallel, modular behaviours, which determine how an agent behaves, and

• action selection, which determines when a behaviour is expressed.

This chapter explores these three elements in more detail.  It also provides a theoretical
defence of pre-written plan files, introduces the PyPOSH Python implementation of POSH
and introduces the Python language itself.

2.2. Development Process and Development Principles

BOD aims to facilitate rapid, efficient and simple development.  These goals are the driving
force of the development process itself, and are the raison d'etre of BOD's development
principles.

The design process begins with the initial behaviour decomposition, discussed in section 2.3
below.  The core of the design process, however, is the following iterative sequence (Bryson,
2001, p. 120):

1. Select a part of the specification to implement next.

2. Extend the agent with that implementation:

• code behaviors [sic] and reactive plans, and

• test and debug that code.

3. Revise the current specification.

The iterative nature of this process allows for rapid prototyping: different approaches can
be tried, rolling back to the previous iteration if some development is found to be ineffective.

The key principle for revision of specifications is “when in doubt, favour simplicity” (ibid,
p. 121).  In practice, this means using the simplest action-selection component possible in
any given situation, refactoring action-selection components to avoid overly complex or
overly long elements, and both eliminating redundancy and maximising re-use.

Bryson (2001) gives three further recommendations to make developing with BOD as
efficient and effective as possible:

1. Document the agent specification in program code

2. Use a Revision-Control system

3. Use debugging tools.

These recommendations and others are discussed in more detail in Chapter 8 of ibid.
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2.3. Behaviours

Separating a large system into more manageable subsystems is a long-established software-
engineering principle, and behaviour decomposition is an effective way of breaking down
the capabilities of an agent.   Brooks (1991; p. 87) describes it succinctly (his emphasis):

[The] fundamental slicing up of an intelligent system is ... dividing it into activity
producing subsystems.  Each activity, or behaviour producing system, individually
connects sensing to action.

Contrast this with applying the principle of breaking down a system into areas of specific
functionality: “One needs a long chain of modules to connect perception to action.  In order
to test any of them they must all first be built.  But until realistic modules are built it is
highly unlikely that we can predict exactly what modules will be needed or what interfaces
they will need.” (ibid; p. 87).

However, this activity-based approach to decomposition is not without its problems,
primarily in the interaction between the behaviour modules.  This can be seen in Behaviour-
Based AI (for example, Matariƒ, 1997) where a high level of coupling is required to ensure
that the right module runs at the right time (by having these modules interact to suppress or
activate each other, for example).  BOD offers a way around this problem: its hierarchical
reactive plans mean that behaviours can run without worrying about the interactions of other
behaviours, yet with the assurance that should some more important situation arise, the
relevant behaviour will be triggered to handle it.  This is particularly significant as it means
that the developer is free to concentrate on what the agent actually does. 

As with other aspects of the design process, BOD provides guidelines to follow for initial
behaviour decomposition (Bryson, 2001; pp. 119-120):

1. Specify at a high level what the agent is intended to do.

2. Describe likely activities in terms of sequences of actions. These
sequences are the basis of the initial reactive plans.

3. Identify an initial list of sensory and action primitives from the previous
list of actions.

4. Identify the state necessary to enable the described primitives and drives.
Cluster related state elements and their primitives into specifications for
behaviors [sic]. This is the basis of the behavior library.

5. Identify and prioritize goals or drives that the agent may need to attend to.
This describes the initial roots for the POSH action selection hierarchy
[explained below].

6. Select a first behavior to implement.

An important point is that BOD's emphasis on revision of specifications means that no
assumption is made that the initial decomposition is perfect.  The developer is free to modify
the decomposition if new issues arise, and the lack of coupling between components means
that this can be easily achieved.

The use of behaviours in BOD draws inspiration from Object-Oriented Design [OOD]
(Booch, 1990).  Specifically, behaviours are usually coded as objects, and the basic actions
in Reactive Plans (see section 2.4.2) are then method calls on these objects.  OOD also
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(have hunger) 

(full)

(have a peeled banana)

(have a banana)
 

eat a banana

peel a banana

 get a banana

⇒ ↑

⇒

⇒

⇒

⇒

goal

 Figure 2.1 (from Bryson, 2001)

influences BOD’s iterative design process where, as described above, cyclic design with
rapid prototyping is emphasised.

I imagine that this use of OOD would be a contributing factor to the acceptance of BOD as
a methodology: it is a technique with which the majority of software engineers would
already be familiar, and one which has proven successful and useful.  The advantages (and
disadvantages) of drawing on OOD for agent methodologies is discussed further in Inglesias
et al. (1999).

2.4. Action Selection

Action Selection is the mechanism which controls when actions are executed.  In BOD this
is controlled by Parallel-rooted Slip-stack Hierarchical [POSH] reactive plans, described
below.  Note that “reactive planning” is something of a misnomer as reactive planning is not
planning in the traditional sense (Nilsson, 1998 pp. 117-214).  A more accurate phrase
would be “reactive action selection” (Bryson, 2001; p. 60).

2.4.1. Basic Reactive Plans

Basic Reactive Plans [BRPs] are the theoretical basis for many of the elements used in
POSH plans.  BRPs are ordered groups of sense÷ action pairs (production rules).  Figure
2.1 is an example.

This BRP groups together all the rules to do with the actions to be performed when the agent
has hunger.  The rules have a priority (increasing in the direction of the vertical arrow).  The
rule which fires is that which has the highest priority of all those whose preconditions are
satisfied.  Note the goal element.  This indicates that the task is complete, and the BRP
terminates when it fires.  BRPs can also terminate due to none of their conditions being able
to fire.

Plans which contain sub-plans are called hierarchical.  It has been argued (e.g. Maes, 1991)
that hierarchical approaches to action selection are overly restrictive, and that full
parallelism is a superior approach.  This argument is refuted in Bryson (2000c).

POSH plans themselves are made up of 5 types of component: Sensory Primitives, Action
Primitives, Action Patterns, Competences and Drive Collections.  The plans are written in
Bryson’s own LAP [Learnable Action Pattern] format, which uses a Lisp-like syntax.

2.4.2. Sensory and Action Primitives

Sensory and Action primitives are the lowest-level components in POSH, specifying how
the available actions and senses should be carried out.  For example, these may be coded as
methods in a behaviour module.
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2.4.3. Action Patterns

Action Patterns are the simplest type of plan, being simply a list of actions.  For example:

+ get a banana ÷ peel a banana ÷ eat a banana , Figure 2.2 (from Bryson, 2001)

2.4.4. Competences

Competences are a special form of BRP with two additions: (1) competences offer the option
to specify a maximum number of retries for each action, and (2) competences return a value:
y if the competence ends because the goal-trigger fires, and z if it ends because no element
can fire.

2.4.5. Drive Collections

A Drive Collection is also a special type of BRP, usable only as the top level of the
hierarchy.  Whilst each BRP element contains a priority, releaser (i.e. preconditions) and the
action itself, Drive Collection elements also contain a maximum frequency at which the
element fires (e.g. the element may only fire at most once per two minutes, even if its
preconditions are met more often than that).  Drive Collection elements also contain a fifth
item: A, the root of a BRP Hierarchy.

The action element, α , in a Drive Collection points to the currently active element of A.  This
allows Drive Collections to force the plan execution to remain focussed on a lower-level
plan element: if α  turns out to be a competence which then triggers a competence or action-
pattern 

β
, then action α  is set to point to the root of 

β
 (hence the “Slip-stack” in “POSH”).

Altering where α  points means that next time the competence element fires, control jumps
straight to this sub-element.  Control is returned to the higher element when 

β
 terminates.

This return of control is accomplished by setting α  to point to the root of A, which is where
it points when then element runs for the first time.

One further difference between Drive Collections and BRPs or Competences is that multiple
drives (i.e. Drive Collection elements) may effectively be active simultaneously (hence
“Parallel-rooted” in “POSH”).  For example, whilst one drive is pointing to some lower-level
task which is part way through being executed, a higher-priority drive may fire instead,
temporarily moving control into that drive.

2.5. A defence of pre-written plans

Some might argue that by pre-writing reactive plans, we are not creating a system which is
“artificially intelligent” at all.  (For instance, it could be argued that the system itself should
write its own plans.) However, this is not the case.  There are two key points here:

2.5.1. Pre-written plans are both biologically plausible and sufficiently reactive.

Section 4.2.2 of Bryson (2001) cites much evidence to support these points, which I shall
not repeat here.  Bryson (2000a) also studies the issue of biological plausibility in great
detail; its central hypothesis is that “natural, appropriate and alert behaviour can be exhibited
by agents executing actions prestored as hierarchies and sequences” (p. 33).

Furthermore, it is important to note that pre-coding of plans in no way compromises an
agent’s autonomy.  Consider Barber and Martin’s (1999; p. 9) comprehensive definition of
autonomy, which draws together ideas from a wide range of existing sources:

An agent's degree of autonomy, with respect to some goal that it actively uses its
capabilities to pursue, is the degree to which the decision-making process, used to



18

determine how that goal should be pursued, is free from intervention by any other
agent.

In choosing actions via POSH plans, it is clear that the agent is acting without any
intervention and thus is autonomous.

2.5.2. Existing AI is not yet sufficiently advanced

Whilst it is a dream for many to be able to release a basic agent into an environment and
have it learn everything necessary without any pre-written plans, the science of AI is still a
long way from achieving this (after all, it took humans four billion years of evolution!).  In
fact, BOD is arguably an excellent compromise of realism and idealism, as it does enable
a large amount of learning (e.g. Bryson, 2001, Ch. 7) and, through the non-linear execution
of actions brought about by structures such as competences, facilitates much in the way of
emergent behaviour.

Furthermore, the “learn everything” approach would require a huge amount of search to
create its own plans. Wolpert and Macready’s (1996) “no free lunch” theorems claim that
for any algorithm (and thus for search such as this), a general-purpose optimal solution is
impossible: an improvement in performance on one set of problems is matched exactly by
a decrease in performance for some other set.  This places severe constraints on the
feasability of agents which do not use any pre-written plans.

2.6. PyPOSH and Python

PyPOSH (Kwong, 2003) is “an agent framework built in Python (Davids, 1997) which
supplies POSH action selection mechanisms for agents” (p. 25).  Using PyPOSH with the
Gamebots interface (Kaminka et al., 2002) allows agents in Unreal Tournament to be guided
by POSH plans to perform actions coded in the Python programming language.  A simple
agent, “poshbot”, was developed as part of PyPOSH’s development, and the agent I have
developed builds on this.  My choice of Python as a programming language is driven by the
fact that PyPOSH is written to use behaviours coded in Python.  A rationale behind the use
of Python for PyPOSH can be found in Kwong (2003), pp. 17-21.

Python is a general purpose Object-Oriented language which includes garbage collection.
Python programs are highly portable, as (like programs written in Java, for example) they
compile to an intermediate language which is then run by an interpreter.  Python is also
embeddable and extendable, able to load compiled files, source files or object code
dynamically.

One interesting syntactic aspect of Python is that whitespace is not ignored.  Rather,
indentation is used to define blocks.  Another is the interesting aspect is Python’s expression
evaluation, which allows expressions such as the following (Davids, 1997):

a = b = c = 0 multiple assignments

[a, b] = [‘a’, ‘b’] multiple different assignments

w < x < y < z multiple range testing
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3. Introduction to Other Architectures

3.1. Introduction

Since one of the primary parts to this project is an evaluation, it is desirable to have
alternatives to compare against, as well as just experience in the methodology to be
evaluated.  Some of these alternatives, primarily Soar, EPIC and ACT-R, are outlined below.
These architectures are those studied as part of the initial Literature Survey I performed.
Although, unlike BOD, these are all cognitive architectures, I chose to study in these detail
as they are more complex than most other architectures.

Other architectures were studied as part of the later comparisons and these are introduced
at the relevant stages of this document.  These other architectures include the Subsumption
Architecture, JACK, agent modelling via UML and Rational Rose, and Kinny et al.’s (1996)
Beliefs-Desires-Intentions model.

3.2. Soar

The Soar architecture (Lehman et al. 1996) was designed for modelling human cognition,
with the specific aim of creating a unified theory of cognition [UTC].  Work on Soar began
around 1980.  Soar projects have included at least one similar to my work with UT: The Soar
Quakebot (Laird and Duchi, 2000).

The Soar architecture is designed around a particular view of cognition.  This view specifies
that cognition:

• is goal-oriented

• reflects a rich, complex, detailed environment

• requires a large amount of knowledge

• requires the use of symbols and abstractions

• is flexible, and a function of the environment

• requires learning from the environment and experience.

(This list and the subheadings below adapted from Lehman et al., 1996).  The view of
cognition is important as it affects the structures and mechanisms which underlie Soar.
These are outlined below.

3.2.1. Goal Context

The Goal Context structure is central to Soar.  Soar deals with four kinds of conceptual
object: goals (why something is being done), problem spaces (a method of partitioning
knowledge), states (internal representation of the situation) and operators (maps from state
to state), and a goal context encapsulates a particular instance of these.

For example, consider a model of a student working on a dissertation.  In this case, the
model could contain a goal context with objects that were something like the following:

• Goal: produce an optimal dissertation report

• Problem space: the set of knowledge related to report creation

• States: report title, deadline, supervisor, etc
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• Operators: schedule meeting with supervisor, drink coffee, read paper, etc

The above may seem very general.  However, Soar is hierarchical (see Impasses below) and
so the goal context outlined above would have several sub-contexts which would be more
specific.

3.2.2. Working Memory

Working Memory [WM] contains the current situation (which may include past states and
hypothetical states as required for reasoning), in the form of one or more goal contexts.  The
results of perception are also held here.

3.2.3. Long-Term Memory

The knowledge in Long Term Memory [LTM] is processed by the architecture to produce
behaviour.  The knowledge is stored in the form of associations which map the current goal
context (in WM) to a new goal context.

With the student example above, some associations might include the following:

(a1) If I perceive that I have finished reading a paper

then suggest a goal to summarise that paper.

(a2) If there is a goal in WM to summarise a paper

then suggest achieving it using the Summary Creation problem space with

an initial state having num_words 0 and amount_summarised 0.

(a3) If using the Summary Creation problem space and the amount_summarised is < 100

then ...

Note that the exact format of the associations is unimportant.  I have used if-then structures
as that is the style adopted in Lehman et al. (1996).  More details on how the “then” parts
of associations are handled are given in Section 3.2.5 below.

A further point is that “Soar’s long-term memory is impenetrable.  This means that a Soar
system cannot examine its own associations directly; its only window into LTM is through
the changes to working memory that are the results of associations firing.” (ibid, p. 34; their
emphasis).  I believe that this is likely to lead to a more human-like model of cognition but
at the expense of ease of programming and debugging.

3.2.4. The Perception / Motor Interface

The Perception / Motor Interface defines mappings from the external world to internal
representations in Working Memory, and from internal representations to action in the
external world.

3.2.5. The Decision Cycle

The Decision Cycle is the primary process underlying Soar’s cognition.  The cycle is made
up of two phases: elaboration and decision.  In elaboration, the architecture attempts to
match the contents of WM against associations held in LTM.  Any that match fire in
parallel.  Any changes to the state happen immediately but changes to the context (e.g.
changing to a new problem space, adding a new goal context)  are simply added to a list of
suggestions.  Elaboration repeats (as changes to state may mean that new associations can
fire) until no further associations match.
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At this point the decision phase begins.  This phase decides which one (and only one) of the
suggested context changes to perform and performs it.  The process uses those associations
from LTM which suggest which context change is the “best” to enable it to make a decision.

If the decision process cannot decide, then we have an impasse:

3.2.6. Impasses

As outlined above, impasses occur when a decision cannot be made about which context
change should be applied.  Note that since knowledge in Soar is compartmentalised into
problem spaces, the solution may be found in another problem space.  When an impasse
arises, a new sub-goal is created to find the knowledge necessary to make this decision.
Impasses therefore provide an opportunity for learning.  The model would include
associations suggesting how impasses could be resolved (by looking in a specific problem
space, for example).

When a solution is found, a new association is added to the original problem space in LTM
so that next time the situation is encountered an impasse will no longer occur.

Inability to make a decision is just one type of impasse (another may be the lack of
information on how to perform a required action, for example).  However, all impasses are
solved in the same way.

Impasses are what give Soar its hierarchical structure: models are given an initial goal
context, and any further sub-goals are generated solely by impasses.  For example, our
student might have a goal of writing a dissertation which might lead him to determine that
he must read papers.  However, if the knowledge on how to do this is not available in his
report creation problem space then an impasse will be generated and sub-goals generated in
the technical reading problem space.

3.2.7. Chunking

Chunking is the name given to the procedure by which new associations are added to LTM.
These new associations are created automatically whenever results are generated from an
impasse.  This involves looking at all contextual information which generated the impasse’s
result.  The process is explained in more detail in section 8 of Lehman et al. (1996).

The concept of Problem Spaces seems to me to be a useful one, as partitioning knowledge
can make search more effective.  However, I would be concerned that this could result in a
lot of redundancy once chunking has been performed several times, as similar or related
associations would be found in different problem spaces.

3.2.8. Summary

In summary, Soar uses goal contexts (goals, problem spaces, states and operators) to store
knowledge.  Knowledge in Working Memory holds details of the current situation, whilst
Long-Term Memory holds associations which map one goal-context to another.  Learning
comes about as a result of impasses, i.e. situations where the current problem space does not
provide a solution to the current problem.  Once a solution has been found, chunking is used
to add relevant new associations to Long-Term Memory.
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3.3. EPIC [Executive Process-Interactive Control]

3.3.1. EPIC in Theory

The EPIC architecture is being developed for the modelling of human cognition and
performance (Kieras and Meyer, 1997).  A key theoretical aspect of EPIC is that it is uses
embodied cognition: i.e. constraints imposed by the perceptual-motor system are considered.
In short, “how long it takes an EPIC model to do a task depends intimately on how EPIC's
eyes, perceptual mechanisms, and effectors are used in the task” (Kieras and Meyer, 1997;
p. 395).  This allows EPIC to model human behaviour more effectively and more accurately.

Another important aspect of EPIC is that of multiple-task performance.  It is known that the
capacity a human has for information-processing is limited, and this has been traditionally
expressed by a single-channel bottleneck.   Despite this, however, it appears that humans are
able to perform multiple tasks simultaneously.  EPIC takes a fairly radical approach,
described by Kieras and Meyer (1997; p. 397) as follows:

With EPIC ... we do not make the assumption that central capacity for cognitive
processing is limited.  Such an assumption is traditional but lacks both empirical
and metatheoretical justification.  In contrast, we assume that limitations on human
ability are all structural; that is, performance of tasks may be limited by constraints
on peripheral-perceptual and motor mechanisms or by limited verbal working
memory capacity, rather than by a pervasive limit on cognitive-processing
capacity.

3.3.2. EPIC in Practice

The EPIC architecture includes perceptual processors (visual and auditory), cognitive
processors and motor processors.  The details of perception and motor processing are not
relevant to this project and so these processors will not be examined here.  Cognitive
processing, by contrast, is of interest:

Cognitive Processing

EPIC's cognitive processor is programmed via production rules which use the Parsimonious
Production System [PPS] interpreter (Bovair et al., 1990).  The rules have the following
format: (<rule-name> IF <condition> THEN <actions>) .  Rules are limited
in what they can do: “[conditions] can test only the contents of the production-system
working memory.  The rule actions can add and remove items from working memory or send
a command to a motor processor” (Kieras and Meyer, 1997; p. 402).  Working memory is
explained below.

EPIC’s cognitive processing operates in cycles.  At the start of a cycle, working memory is
updated with the output from perceptual processors and with the modifications from the
previous cycle; at the end of a cycle, the production-system working memory is updated and
any required commands are sent to the motor processors.

As alluded to above, EPIC allows more than one production rule to fire at a time, so-called
“Cognitive Parallelism” (ibid; p. 403).  In fact, all rules whose conditions match the contents
of working memory are fired on each cycle, and thus all their actions are executed.

The current version of EPIC does not offer support for learning.
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Working Memory

Although PPS has only one working memory structure, EPIC treats it as several partitions.
The first four of these relate to particular processors: visual memory, auditory memory and
tactile memory contain information from perceptual processors, whilst motor memory
contains “information about the current state of the motor processors, such as whether a
hand movement is in progress” (ibid, p. 404).

Another form of working memory is the control store.  The control store contains items to
represent the current goals and the steps for accomplishing these goals.  As this shows,
control information in PPS is a type of working memory item like anything else which the
model “knows” (and can therefore be manipulated by rule actions).  This greatly assists
cognitive parallelism, as it allows running tasks to control other tasks by manipulating their
goals and actions.

The final form of working memory is simply referred to as General WM and is used to store
miscellaneous information for and about tasks.

3.3.3. Production Rule example

The following example is part of a model of the selection of items from a drop-down list
(pull-down menu):

(if-not-target-then-saccade-one-item
if
(goal do menu task)

(step visual-search)
(wm current-item is ?object)
(visual ?object is-above ?next-object)
(not (visual ?object is-above nothing))
(motor ocular processor free)
(visual ?object label ?nt)
(not (wm target-text is ?nt)))

then
((deldb (wm current-item is ?object))

(adddb (wm current-item is ?next-object))
((send-to-motor ocular move ?next-object)))

Figure 3.1 (adapted slightly from Kieras and Meyer, 1997, p. 414)

This rule causes the model to move its eye down the list ((send-to-motor ocular
move ?next-object) ) until the object currently being looked at (stored in the variable
?object ) is that with label ?nt  or the end of the list is reached ((not (visual
?object is-above nothing)) ).  As well as moving the eye, the then  actions
update working memory to show that the current object is now the next object (the deldb
and adddb  instructions).

3.3.4. Summary

In summary, EPIC is designed to model human cognition.  Unlike many other models, it
does not assume a cognitive bottleneck.  Rather, performance is limited by the size of
working memory, and the fact that only one task may use a given motor (e.g. eyes) at a time.
Cognitive processing is done via Production Rules which use the PPS interpreter and test
against working memory.  Rules’ actions may modify the memory and send commands to
the motors.
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I find the EPIC architecture very interesting in that it does not have this in-built limit on
cognitive performance.  Similarly, the idea of cognitive parallelism is an interesting one,
although I imagine that it could lead to problems when a number of incompatible actions
attempt to control the motors simultaneously – interleaving these actions could lead to very
strange movement sequences, for example.  Attempting to solve this problem by allowing
tasks to manipulate the goals and actions of other tasks could lead to interaction problems
similar to those encountered with the Subsumption Architecture (see section 6.8.1).

3.4. ACT-R

Like EPIC, ACT-R is “a cognitive architecture, a theory for simulating and understanding
human cognition” (ACT-R Research Group, 2004a).  In fact, ACT-R's modules which
interact with the environment are adapted from those of EPIC.  However, as will become
clear, there are differences between the two.

The ACT-R architecture has two types of memory: declarative (facts) and procedural (rules).
It is goal-driven, goals being placed in a specific goal buffer.  All other modules in the
system also have buffers, this being the only way that the production system (see below) can
interact with them.  The system’s modules are shown in the overview diagram (Figure 3.2).

3.4.1. Declarative Memory and Pattern Matching

Items in declarative memory are called chunks.  Chunks have a name, a category (specified
by an “isa” slot) and any number of additional slots containing further information.  For
example, the following chunk holds the fact 3 + 4 = 7.  This example is taken from Anderson
et al. (1997; p. 441).

fact3+4

isa addition-fact

addend1 three

addened2 four

sum seven

ACT-R attempts to simulate the working of the human mind in its knowledge-recall process.
This is done by pattern-matching of facts and the idea of activation.

Items in declarative memory (“chunks”) are retrieved from declarative memory via pattern
matching.  For example, to help decide what to do next a model may request an instance
from declarative memory (using the retrieval buffer) which describes a situation matching
the one it currently finds itself in.  If no exact match is found, a partial match may be
returned (see below).

Which instance is returned depends on activation, how readily available the fact is in
memory.  Chunks that have been used recently or chunks that are used very often end up
with a high activation.  Activation decays over time as the chunk is not used.  Activation
models the human recall process whereby knowledge used regularly (e.g. using a kettle) or
recently (the previous key I have pressed as I type this) is easily accessed but other
knowledge (e.g. a discussion from several weeks ago) is hard or even impossible to retrieve.

The activation of a chunk depends on its usefulness in the past (base-level activation) and
its relevance to the current context (associative activation).  The equation for this, and
further explanation, is given in Taatgen et al. (in press).  Noise is added to the activation,
meaning that alternative strategies may be tried at times, increasing the overall quality of
solutions chosen and providing further opportunities for learning.
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Figure 3.2: An overview of ACT-R 5.0 (adapted from Taatgen et al., in
press).

I believe that the use of noise could produce more human-seeming behaviour, as humans do
not always solve problems in the same way, even when a known effective solution exists.
It could be argued that an agent which was specified in enough detail would do this anyway,
as the complexity of the environment would result in new emergent behaviours.  However,
I do not believe that this could be relied on completely, especially with relatively simple
environments or agents.

Partial Matching

If partial matching is required, then this is made possible by decreasing the activations of
chunks which do not match.  The greater the mismatch, the higher the penalty and thus the
lower the likelihood that the chunk will be returned.  Enabling partial matching means that,
whilst it is still the chunk with highest activation which is returned, the chunk’s slot values
need not match those requested exactly.  Taatgen et al. (in press) give an example of the use
of partial matching with the Sugar Factory example.  In this, the model was able to improve
performance by analysing past settings, actions and their effects (even if the previous
settings did not match the current situation exactly), without needing to know the rules
which governed success.

Partial Matching appears a very useful procedure for learning which I believe could go some
way towards removing the need to completely specify every situation that an agent might
encounter.  However, it does seem a little haphazard (see the discussion of learning past-
tenses in section 3.4.3).
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3.4.2. Procedural Memory

Rules in procedural memory (known as productions) drive behaviour in ACT-R by
specifying what should be done and when (i.e. in response to what conditions) it should be
done.

The general form of a production rule is as follows (from ACT-R Research Group, 2004b,
Unit 1):

(p Name
list of buffer tests
==>
list of buffer changes
)

The following example shows the rule to count to a particular number.  An English
description is on the right.  (Example and description from ibid):

(P increment

=goal>
ISA
count-from
start =num1

- end =num1
step count
ing

=retrieval>

ISA
count-order

first =num1
second=
num2

==>

=goal>
start =
num2

+retrieval>

ISA
count-order

first =
num2

!output! (=num1)
)

If the goal is

to count from

the number =num1

and =num1 is not the final
digit

and one is counting

and a chunk has been
retrieved

of type count-order

where the first number is
=num1

and it is followed by
=num2

Then

change the goal

to continue counting from
=num2

and request a retrieval

of a count-order fact

for the number that
follows =num2

and output =num1 in the
trace

Like chunks, productions are also chosen by pattern-matching.  (I.e. attempting to find rules
whose conditions match the contents of buffers.)  When more than one production rule is
applicable the utility attribute is used.

Conceptually, utility is how useful a production is in the current context.  ACT-R
automatically keeps track of the estimated cost and estimated probability of success for each
rule, and the utility of a rule i is calculated by the following equation (from Taatgen et al.,
in press; p. 13):

Ui = PiG – Ci



1  Examples of verbs with this pattern will be returned more frequently than those such "hit" which do not
change in the past.  The reason for this is that -ed verbs are more common and so more examples of them will
be available in declarative memory.
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Pi is the probability of success, G is the value assigned to the current goal and Ci is the
estimated cost.  The actual production choice equation (which determines the probability of
choosing production i from a matched set of n productions) is given in ibid and, as with
pattern matching for chunks, includes a noise element.

Probability is calculated as the ratio of successes to attempts (i.e. the sum of successes and
failures).  Cost is similar: “the sum of the efforts invested in a goal ... divided by the total
number of experiences (both successes and failures)” (ibid, p. 14).  Equations for these
elements and a discussion of their initial values can be found in p. 14 of ibid.

The concept of utility for action selection is found in other architectures.  For example, the
idea of a option’s “score” in Stone and McAllester (2001).

3.4.3. Learning in ACT-R

As shown above, the values of a production’s Probability and Cost alter as successes and
failures are experienced.  This Utility Learning is one type of learning in ACT-R.

Learning is also accomplished via production compilation, described neatly in Taatgen et
al. (in press; p. 23) as follows:

Production compilation ... learns new rules by combining two existing rules that
fire in sequence into one new rule.  If the first of the two rules makes a request to
declarative memory the result of which is used by the second rule, then the
retrieved chunk is submitted into the new rule, effectively eliminating the retrieval.

Although it may not be obvious at first reading, this procedure enables genuinely useful
learning and not just the creation of ever-more specific and efficient rules.  This is often
shown by the example of learning the past tense of verbs (described briefly in ibid and in
detail in Taatgen and Anderson, 2002).

In this example, the past tenses of verbs are originally generated by two rules:  One of these
searches for a chunk stating the past tense of a particular verb, whilst the other (initiated if
the direct match fails) attempts to match by analogy, by finding a pattern in the existing facts
about other verbs.  Discovering that many verbs append an -ed suffix, new rules will be
composed for the verbs with previously unknown past tenses1.  Irregular verbs will have to
be learned by example as this analogy method does not work for them.

The production compilation may appear to be a little over-zealous for this sort of example,
in that all sorts of incorrect past-tense rules and chunks may be constructed (e.g. swim ÷

swimmed).  However, the use of utility and activation in pattern matching (see above) should
mean that incorrect examples will gradually be ignored more and more often as they fail to
achieve the goal (i.e. a correct sentence) and thus decrease in utility, whilst the incorrect
chunks (i.e. those facts which describe the past tense of a verb incorrectly) will be retrieved
less and less frequently as their activation will decrease.  However, Taatgen and Anderson
(2002, p. 138) do admit that “there is no mechanism to really safeguard this”.
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3.5. Summary

This section has described Soar, EPIC and ACT-R.  The following table illustrates some of
the key points of comparison.

BOD Soar EPIC ACT-R

Decomposition by activity
rather than function?

U X X X

Hierarchical? U U X X

Associations / Production-
Rules?

U U U U

How are multiple possible
actions handled?

priorities decision-
phase, i.e.
further
associations

cognitive
parallelism

utility

Parallel Actions? U X U X

Learning? Updating of
state, (dynamic
plan-writing)

chunking

X

probability
& cost,
production
compilation

Partial Matching &
Noise?

X X X U

Table 3.1 Summary of Architectures
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4. The Bot in Action

4.1. Introduction

This chapter presents a number of scenarios demonstrating the actions of the bot that I
created (the “bodbot”) and relates these back to the plan files created.  The chapter’s purpose
is threefold:

• To demonstrate the development of the plan files.

• To illustrate how the actions of the bot are guided by the plan file it uses.

• To give examples of the bodbot’s actions, and thus provide a more concrete starting-
point for the discussion of the development process which follows in chapter 5.

The plan files control the execution of sensory and action primitives; these primitives are
discussed as part of the explanation of the development process in chapter 5.

The actions of the bot are illustrated by a series of commentary-style descriptions
(recognizable both by their indentation and by the style of writing they use) which are
interleaved with brief analysis and samples of plan code.  The complete texts of the plan
files demonstrated in this chapter are given in Appendix A.

To improve the examples, some plans are illustrated by the actions of a bot on the red team
and others by the actions of a bot on the blue team.  This provides more of a difference as
might be imagined as, for reasons which are not clear, the blue bot always began the game
facing a certain direction regardless of map settings.  This means that many of the early
plans do not work very effectively for a blue bot as the bot never sees any navigation points
at all (they’re all behind her).

Which bot is used in the scenarios below can be determined from whether male or female
pronouns are used: the red player is represented in Gamebots by a male wizard, whilst the
blue player is represented by a female character.

4.2. The Scenarios

4.2.1. Walking To Navigation Points

The initial plan was based upon poshbotfollow.lap  the plan created by Kwong’s
(2003) for his “poshbot”.  This original plan had the bot wandering around and following
any players he saw.

The first plan I created removed the player-following element, replacing it with one which
attempted to follow navpoints (navigation-points, aka pathnodes):

Yes, the bodbot has just this moment spawned into the play-area.  He’s wasting no
time running off that ledge and towards the tunnel, seems to be having a bit of
trouble on the corners, though: he’s paying more attention to that wall than it
really deserves ... no, here he goes off again.  Looks like he’s missed that vital
turning though, seems more interested in the walls of the tunnel again, no wait,
he’s coming back, takes the turning, now he’s looking around again, trying to
decide where to go.  He’s finally decided and now he emerges from the tunnel.
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The important part of this plan is the competence below.  The top-level Drive Collection
only contains two drives and thus almost always fires this competence as the other is only
triggered when the bot walks into something:

(C get-to-enemy-base (minutes 10) (goal ((at-enemy- base)))
  (elements
    (
      (find-base (trigger((reachable-nav-point)))
          walk-to-nav-point)
      (wander-base (trigger((succeed))) wander-arou nd)
    )
  )
)

When the bot starts up, he can see a navigation point specified as reachable and so he runs
off the ledge (only a short drop) to get to it.  This is because the reachable-nav-point
trigger returns true.  This sense (described in more detail in section 5.3.3) also sets a variable
to contain the location of the navpoint which the walk-to-nav-point  action then uses
when communicating with Gamebots.

On the occasion of his trouble in the tunnel, the problem is that because of the curve of the
tunnel he can no longer see any navpoints.  For this reason the wander-base  element
takes over (a trigger of succeed  means that it always fires if no higher-priority element
can).  wander-base  triggers the following competence:

(C wander-around (minutes 10) (goal((see-player)))
  (elements
    ((stuck (trigger ((is-stuck))) avoid))
    ((pickup (trigger ((see-item))) pickup-item))
    ((walk-around (trigger ((is-rotating False))) w alk))
  )
)

This version of the competence is taken directly from Kwong’s poshbotfollow.lap .
The bot walks towards the wall (walk-around , the lowest-priority element, fires) and,
when he hits it, the stuck  element is triggered.  avoid  is the following Action Pattern:

(AP avoid (minutes 10) (stop-bot rotate then-walk))

This causes the bot to rotate and attempt to walk again.  Eventually he sees another
navigation point and continues as described.  The reason he doubles back after missing the
turning is again that he hits a wall, and his rotation is such as to make him face back the way
he came.

get-to-enemy-base  and wander-around  provide an example of POSH’s Slip-Stack
(see section 2.4.5). get-to-enemy-base  is fired by a Drive Collection element, to-
enemy-base .  Since get-to-enemy-base  then triggers a further competence
(wander-around ), to-enemy-base ’s active element α  is set to point directly to the
root of wander-around  rather than to the root of get-to-enemy-base , thus missing
out a link in the hierarchy.  If wander-around  triggers the avoid  action pattern, thenα  will point to that instead, missing out another link in the hierarchy.

Out of the tunnel, the bot’s now running towards the blue flag ... yes, he’s got it!
What a performance!  Seems in no hurry to be going anywhere now though.  In
fact, he’s wandering around.  I’ve never seen anything like it...  Is he going to just
throw that early lead away?
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Finally, the bot grabs the blue flag.  This is at this stage a mere side-effect of his navpoint-
following behaviour (the points lead directly there).  Once he is there he can see no further
navigation points and so resumes the wander-around  behaviour.

A point worth noting is that this plan is not often as effective as in the example above – the
bot usually spends large amounts of time wandering around the same few navpoints, or
getting stuck in rooms.  The example above was chosen as it is more interesting.

4.2.2. A Greater Awareness of Flags

The plan used for this scenario is a quite major extension of the previous one, as the
following commentary shows.  For brevity, I have not included a commentary on the entire
run, just the points of interest.  Note that the red player mentioned is the one controlled by
me.

And here comes the blue bodbot now.  She’s looking around, wondering where to
go next.  And now she’s off, running towards the tunnel...

The “looking around” at the beginning comes from a modification to the get-to-enemy-
base  competence, whose elements are now the following (the second is new):

(find-base (trigger((reachable-nav-point)))
    walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)

(wander-base (trigger((succeed))) wander-around)

Although two of the elements have triggers of succeed  (the function which always returns
true), the retries limit (10) on find-nav-point  means that the lowest-priority element
does sometimes get a chance to fire.  In the example given above, however, the rotating leads
to a position where the bot can see a reachable navpoint, and thus the first element fires.  A
trigger of succeed  is used rather than just True  as this was the style used in
poshbotfollow.lap .

The running through the tunnels, omitted from the commentary, is very similar to the
behaviour described in section 4.2.1.

The bodbot emerges from the tunnel, she’s almost at the enemy base now, the
prize in her sights.  Yes, I think she’s going to make it!  She makes a clear run for
the red flag and grabs it!  Nice work there, but can she capitalise on this early
success?  Remember, she’s still got to take it home.

To understand the bot’s next actions (running to the enemy flag), we need to consider the
top-level Drive Collection:

(RDC life (goal ((fail)))
  (drives
    ((pickup-our-flag-from-ground
        (trigger ((our-flag-on-ground))) go-to-own- flag))
    ((pickup-enemy-flag-from-ground
        (trigger ((enemy-flag-on-ground)))
            go-to-enemy-flag))
    ((attack-enemy-with-our-flag
        (trigger ((see-enemy-with-our-flag)))
            attack-enemy-carrying-our-flag))
    ((take-enemy-flag-from-base
        (trigger((enemy-flag-reachable)
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         (have-enemy-flag False)))
            go-to-enemy-flag))
    ((hit (trigger((hit-object)(is-rotating False)) )
        avoid))
    ((go-home (trigger((have-enemy-flag))) go-to-ow n-base)) 
    ((to-enemy-base (trigger((succeed)))
        get-to-enemy-base))
  )
)

Until now, the main element which has been firing is to-enemy-base , which has resulted
in the competence discussed above being used.  Once the bot approaches the enemy flag,
however, the trigger enemy-flag-reachable  returns true and go-to-enemy-flag
is fired instead (as it has a higher priority, and have-enemy-flag  already returns False
as required.).  This is a single-element Action Pattern which fires the to-enemy-flag
primitive.  This primitive simply sends a RUNTO message to Gamebots, giving it the ID of
the flag and causing the bot to run straight there.

Wait a minute, John, there seems to be some sort of upset at the other end of the
arena!  Yes, the bodbot’s quest for glory has left her own flag dangerously
unguarded and the red player has stolen it!  He looks pretty pleased about that one,
and is heading for home.  He passes the bodbot in the tunnel but she ignores him!
What is she thinking?

To demonstrate a situation more similar to genuine Capture the Flag games, I intervened at
this point and, playing as the red player, stole the blue flag.  The reasons for the bodbot’s
ignoring of the red player are unclear.  I believe that it is a limitation of the bot’s sensory
abilities as the relevant plan elements do fire at a later occasion (see below).  It could be
connected to the UT skill-level of the bot (set to “novice” during this scenario), as these do
have an effect on all bots, not just those that come pre-written with UT.  Brief preliminary
tests suggest that a higher skill level does improve perception by a small amount, but not by
as much as would be expected.  I have not had time for detailed tests, however, and it
remains an area for future work (section 9.2).

It is also worth noting that, unlike the previous scenario, the bodbot is able to return home
once she has captured the flag.  The reason for this is the addition of the go-home  element,
whose have-enemy-flag  trigger now returns true, meaning that go-home  now executes
instead of to-enemy-base  as before.  As the bot recorded the location of her own base
when she saw her own flag at the start of the game (see the discussion of the
PositionsInfo  class in section 5.3.2), she was able to send this information to the UT
server and retrieve a list of navigation points to use to get home (the GETPATH command).
Section 5.3.2 discusses some of the functions used as part of this.

Well Clive, the red player seems to have a pretty unorthodox style himself – he’s
running back to the blue team’s base.  Is he just wanting to taunt his opponent with
his advantage?  Has he forgotten that the blue player has his own flag herself?
Well, he won’t forget it much longer as she’s emerging from the tunnel now, this
confrontation could spell trouble!

Too right, John, the bodbot rounds on the red player, running towards him and
shooting and ... it’s a success!  He’s been tagged, and he drops the blue flag to the
ground where the bodbot grabs it, restoring it to its rightful place!  Yes, nothing
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 Figure 4.1: the blue bot runs towards the goowand on the floor.

can stop her now!  She’s running back to her own flag, she’s made it now, the blue
team scores!!

In an attempt to get the blue player to notice me (and since I cannot win whilst the other
team has my own flag), I returned to the blue player’s base.  On this occasion the bodbot did
notice that I had her team’s flag.  Doing so meant that her current action of going home was
interrupted as the attack-enemy-with-our-flag  Drive Collection element fired
instead (it has a higher priority) and the bot began to attack me.

Upon being tagged (killed), the red player drops the blue flag he has been carrying and the
bodbot’s current undertaking is again interrupted, as the pickup-our-flag-from-
ground  element now fires (it has an even higher priority).  Picking up one’s own flag
returns it instantly to the base, and the bodbot scores when returning to her own flag while
carrying the red one.  The bot only moves towards her own flag as the list of navpoints leads
there: at this stage there is no specific drive to run directly there once it is reachable.

Well, that certainly was impressive.  The bodbot seems to have had enough
though, she’s not going anywhere!  This is remarkable, she’s just standing there!
What it she thinking?!

This final segment illustrates a problem discussed in section 5.3.4: the expiry of out-dated

state the bot holds.  In this case, the instance of the PositionsInfo  class held out-dated
information about the enemy flag, claiming that it was reachable from the bot’s current
location (as that had the been the case until the bot scored and the red flag was returned to
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the red base).  This out-dated information resulted in both of the following element’s triggers
succeeding

((take-enemy-flag-from-base
    (trigger((enemy-flag-reachable)
     (have-enemy-flag False)))
        go-to-enemy-flag))

The bot therefore attempted to send a command to Gametbots to make it run directly to the
enemy flag.  This was not possible from its current location, and so nothing happened.
Making the agent more robust to handle this sort of failure is discussed briefly in section
6.8.2.

4.2.3. Responding to Attack

This final scenario introduces a number of new elements, the most important being the bot’s
ability to respond when it is attacked.  As before, only part of the run is described.

For those of you who’ve just joined us, we’re seeing a fine run by the blue bodbot.
She’s part way through the first stage of the tunnels but, uh oh, it looks like she’s
going to miss that turning.  No, it’s okay, she’s spotted it, and is running to pick
up that goowand.  Her supporters will be breathing a sigh of relief that she’s no
longer unarmed.

The bot begins, as in the previous scenarios, by following navigation points as part of the
get-yourself-to-enemy-base  Drive Collection element.  This is interrupted by the
following higher-priority element:

((pickup-weapon-as-unarmed
    (trigger  ((see-reachable-weapon) (are-armed Fa lse)))
        get-weapon))

As described, this results in the bot running to pick up the goowand (one of the weapons the
Gamebots interface adds to the game).  This is an interesting example of a case where an
outside observer may attribute different intentions to the actions of an agent than those
which are actually underlying the agent’s actions (Sengers, 1998):  The only reason that the
agent made the turning in this case was that she ran to the goowand which then resulted in
her seeing new navpoints.  Had the wand not been there, it might have taken her longer to
find the turning.  Figure 4.1 shows the blue bot running towards the goowand.

Continuing through the tunnels she makes a dash for the red flag and takes it!
Where are the defence?  Well, someone’s trying to shoot her but not doing a very
good job of it, that shot landed just in front of her.  Fortunately for the red team,
that goo will stay there for a while before it explodes.  Looks like the bodbot’s a
little confused though – looking around for where to go next... yes, she’s off now,
and ouch!  That goo-explosion’s got to hurt.

The assailant was a bot controlled by me.  The goowand fires blobs of goo which stick to
walls and floors and remain there for a few seconds before exploding.  The bodbot’s
confusion described here was due to the bot receiving a corrupt Gamebots message of the
form described in section 5.3.4.

Not one to let that sort of behaviour go unnoticed, she’s looking around for the
assailant, she’s spotted him now and begins to shoot ... ooh, right in the stomach!
Keen not to throw that lead away though, she’s now heading back to her own base.
Obviously doesn’t want another surprise attack, she’s keeping firmly focussed on
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that attacker as she runs back through the tunnels, doesn’t seem to be shooting
him, though!

The response to attack comes as a result of the following Drive Collection element:

((respond-to-attack-health-not-low
    (trigger ((taken-damage) (armed-and-ammo)
     (is-responding-to-attack False)))
        respond-to-attack))

This element has a higher priority than go-home , the drive element previously being
attended to, and so the following competence is triggered:

(C respond-to-attack (seconds 10) (goal ((fail)))
  (elements
    (
      (attack-visible-attacker
      (trigger ((taken-damage-from-specific-player) ))
          respond-to-visible-attacker)
      (find-attacker (trigger ((succeed)))
          try-to-find-attacker)
    )
  )
)

In some cases, the bot will receive details of the assailant when receiving a message from
Gamebots about damage inflicted.  For example, if the bot actually sees the shot being fired.
This was not the case in this example, however, and so find-attacker  is triggered.  This
in turn triggers the following competence:

(C try-to-find-attacker (seconds 3) (goal ((fail)))
  (elements
    (
      (found-attacker (trigger ((see-enemy)))
          respond-to-visible-attacker)
      (spin (trigger ((succeed))) big-rotate 1)
    )
  )
)

This competence is the reason the bot looks around for the attacker: the spin  element
causes the bot to perform the big-rotate  action.  Note the limit on retries here: the bot
shouldn’t keep on turning around as it may never be able to see the attacker.  In this case the
search was successful, leading to the see-enemy  sense returning true and the found-
attacker  element running.  It is this element which makes the bot shoot the attacker.

Furthermore, finding an attacker results in variables being set telling the bot to keep looking
at the attacker whilst performing other actions (KeepFocusOnID  in CombatInfoClass ,
see section 5.3.2).  In practice, this means that when running, the bot instead sends a
command to strafe.  Strafing is running in one direction while facing another.

Such strafing makes it possible for the bot to continue shooting the assailant.  This happens
successfully much of the time but was not the case in the example above.  The reason for
this is that the behaviour relies on the fact that bots continue shooting until either explicitly
told to stop or until their target is no longer visible.  In this case the bot briefly lost sight of
her assailant and so stopped shooting prematurely.  Overcoming this sort of problem is an
area for future work (see section 9.2).
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Into the home strait now, she turns around for the final sprint, she’s nearly there,
yes ... she scores!  Now she’s going back to try another capture, it could be a high-
scoring game, folks!

The Drive Collection used for this scenario contains some unexciting but nevertheless very
important elements: those which expire state:

((expire-our-damage-info (trigger ((succeed)))
    expire-the-damage-info (seconds 10)))

((expire-our-reachable-info (trigger ((succeed)))
    expire-the-reachable-info (seconds 20)))

((expire-our-focus-info (trigger ((succeed)))
    expire-the-focus-info (seconds 30)))

The need to expire state is discussed in section 5.3.4, and the previous scenarios give some
examples of the problems brought about by not doing so.  In this scenario, the reason the bot
stopped facing her assailant was because the expire-our-focus-info  element fired.

The three elements given here are the highest priority in their Drive Collection.  However,
their limits on frequency mean that other elements get plenty of chance to run.

The bot’s attempt to capture the flag again will be aided by the fact that she now knows the
location of the enemy base (this information is stored in an object of the PositionsInfo
class).  This means that she can obtain a list of navpoints from the server which give her the
path she needs to follow.  Note another advantage of the expiry of data: unlike in the
previous scenario, the bot no longer believes the enemy flag to be reachable once it has been
returned to the enemy base (expire-our-reachable-info  handles this).

4.3. Summary

This chapter has demonstrated a number of plan files of increasing complexity, highlighting
both the connection between plan files and actions, and various problems encountered
during development.  How the actions and senses triggered by the plan file actually work is
explored as part of the next chapter.
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5. The Development Process

5.1. Introduction

This chapter has a dual purpose: First, it provides a demonstration of some of the
development work I undertook as part of this project (sections 5.3.2 and 5.3.3, primarily).
Secondly, it evaluates BOD’s contribution to the process and the effectiveness of those
principles and practises BOD introduces.

There are two main sections to this chapter: section 5.2 describes the Initial Behaviour
Decomposition (i.e. preparation for development), whilst section 5.3 describes the main
iterative cycle of development itself.

5.2. Initial Behaviour Decomposition

5.2.1. The Process

As with other aspects of the design process, BOD provides guidelines to follow for initial
behaviour decomposition (Bryson, 2001; p.133):

1. Specify at a high level what the agent is intended to do.

2. Describe likely activities in terms of sequences of actions. These
sequences are the basis of the initial reactive plans.

3. Identify an initial list of sensory and action primitives from the previous
list of actions.

4. Identify the state necessary to enable the described primitives and drives.
Cluster related state elements and their primitives into specifications for
behaviors [sic]. This is the basis of the behavior library.

5. Identify and prioritize goals or drives that the agent may need to attend to.
This describes the initial roots for the POSH action selection hierarchy
[explained below].

6. Select a first behavior to implement.

An important point is that BOD's emphasis on revision of specifications in the development
cycle (see below) means that it is not assumed that the initial decomposition is perfect.  The
developer is free to modify the decomposition if issues arise, and the lack of coupling
between components means that this can be easily achieved.

5.2.2. My Experience of the Process

Revision of the Specification

The full initial decomposition I produced is given in Appendix B.  In my experience, I found
that revision of this specification document only happened three times during development
despite the fact that the project did depart from the specification laid down by the initial
decomposition.  The concept of revision of specification was one I found very useful and
made use of and the initial decomposition provided a very useful starting point.  However,
the specific action of rewriting the initial document was not one I found helpful.

The main reason for this is that it felt like unnecessary redundancy to have, for example,
information about sensory and action primitives both in terms of methods in the behaviour
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modules and as items in a list in the specification document.  This point is particularly
relevant in light of BOD’s encouragement of self-documenting code.

Furthermore, moving from coding to something at a higher level of abstraction (specification
writing) interrupted the natural flow of development.

Other Points

The list of goals and drives proved to be very helpful as a high-level guide to what needed
to be developed.  I concentrated on one drive per iteration of the development cycle (see
below).

5.3. Evolutionary Design and Development

Creating the agent was a major undertaking, involving learning the Python language, the
syntax for POSH plans and how best to use the Gamebots API.  This section explains and
evaluates BOD’s development process, and explores the actual development work I
performed.

5.3.1. The Process

The core of the BOD process is the following iterative sequence (Bryson, 2001, p. 120):

1. Select a part of the specification to implement next.

2. Extend the agent with that implementation:

• code behaviors [sic] and reactive plans, and

• test and debug that code.

3. Revise the current specification.

The iterative nature of the process allows for rapid prototyping: different approaches can
be tried, rolling back to the previous iteration if some development is found to be ineffective.

5.3.2. Behaviour Modules, State and Utility Functions

This section explains some of the specific development work that my project involved,
outlining behaviour modules, classes used for agent-state and utility functions.  Action and
sensory primitives are discussed in the next section.

A discussion of the development of the plan file is given as part of chapter 4.

Behaviour Modules

A discussed in the Initial Decomposition (Appendix B), the bot’s behaviour is split into three
modules:

• Movement – containing state to do with positions of objects, bases and the bot
himself.

• Status – containing state regarding health level, weapons held and so on.

• Combat – state about who is attacking the bot, what enemies are around and what
teammates are around.

Each of these is stored as a separate Python class, and contains methods for action and
sensory primitives.  These primitives are registered with the agent (class Agent  in



2 This file is part of Kwong’s (2003) PyPOSH implementation, as are posh_core.py  and pyposh.py
(referred to elsewhere in this document).
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posh_agent.py 2) via the init_acts  and init_senses  functions, which allows the
plan interpreter to call them.  Allowing primitives to reside in multiple files is one change
I made to the original PyPOSH (see section 8.1 for a discussion).

I made much use of code from the “poshbot”, an Unreal Tournament agent designed by
Kwong (2003) as part of the development of PyPOSH.  This included classes to store agent
state and classes for communicating with Gamebots.  The AndyBehaviour behaviour module
holds those primitives developed for the poshbot.  Although this meant that the behaviour
decomposition was not as logical as it could be (many of these primitives would be logically
suited to the movement  module instead), I felt that such a distinction between the simple
behaviour of the original bot and the more advanced behaviour of the bot I developed was
useful.

Classes for Agent State

Apart from the general agent information provided specifically by Gamebots, and stored in
Kwong’s Bot_Agent  class, I developed two further classes specifically to hold agent state:

• CombatInfoClass  – this holds state relating to combat (for example, details of
the player holding the bot’s flag), and is used by both the movement and combat
behaviours.

• PositionsInfo  – this class holds state relating to the position of the bot and
position of the game objects (e.g. flags and navigation-points), and is used by all
three behaviour modules I developed.

The theoretical considerations concerning agent state are discussed in section 5.3.5 below.

Functions for Updating State

The Bot_Agent  class (in bodbot.py ) coordinates communication with Gamebots and
handles some of the agent state.  As part of this, it includes a number of functions to pass
updating information to the behaviours (e.g. pass_flag_details ).  When the relevant
information arrives from Gamebots, these functions are triggered and call the relevant
“receiving” functions in the behaviour modules (e.g. receive_dam_details  in
CombatBehaviour ).  These receiving functions update state as required to reflect the
new information.

See section 5.3.5 for a discussion of problems with the current method of handling these
updates.

Utility Functions

The file utilityfns.py  is not a class, simply a collection of functions.  These help
reduce redundancy by providing useful functionality used in a number of places.

Four examples worth particular note are is_previous_message , send_if_
not_prev , nav_point_dict_to_ordered_list  and compare_number_
strings , as they provide an insight into some of the issues encountered when developing
a UT agent, especially one which uses Kwong’s (2003) classes to interact with Gamebots.
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is_previous_message and send_if_not_prev

Kwong’s Agent  class, mentioned above, keeps a log of all messages it sends to Gamebots.
There are times when this log needs checking to ensure that the same message is not sent
twice in a row.  An example of when this might occur is when the bot is running from
navpoint (navigation-point, aka pathnode) to navpoint in an attempt to find the enemy base.
Consider the following competence elements (from bodbotattack.lap ):

(run-to-base (trigger((know-enemy-base-pos)))
    to-enemy-base)

(find-base (trigger((reachable-nav-point)))
    walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)

(wander-base (trigger((succeed))) wander-around)

If the bot can see a reachable navigation-point which s/he is not already very close to
(reachable-nav-point  sense), s/he will attempt to run there (walk-to-nav-
point ).  This involves sending a message to Gamebots instructing the bot to run to the
given point.  Obviously this movement takes some time, and during that time it is likely that
the competence will run again.  In that event, we do not need to send another message
instructing the bot to run to the navpoint (in fact, the Gamebots API advises against sending
the same message repeatedly), we simply need wait for the bot to arrive there, at which time
the distance-tolerance check will fail (i.e. the bot will be very close to the navpoint) and the
bot will attempt to find another point.

is_previous_message  takes a message and a bot as its arguments, and returns true if
the message was sent to Gamebots by the bot as the most recent command.
send_if_not_prev  uses this function but also sends the message to Gamebots if
is_previous_message  returns false.  This removes the need for a large number of if
not is_previous_message(...  tests in the primitives themselves.

It is worth noting that since only the most recent message is checked, the instruction to run
to the navpoint will be re-sent if the bot is interrupted whilst running there.

nav_point_dict_to_ordered_list and compare_number_strings

One of the advantages of using Kwong’s classes to communicate with Gamebots rather than
doing so directly is the classes parse attribute strings so that attributes can be sent and
received as dictionaries (Python’s dict  type, essentially a hash-table).  However, there is
one situation where this is less than ideal: lists of navpoints generated by the UT server
giving the path to a specified location.  These are lists of triples containing a number, an ID
and a location.  Python dictionaries are unordered, and so a dictionary of these triples must
be converted into lists in the correct order.  This is accomplished by the function
nav_point_dict_to_ordered_list .  This sorts the list of dictionary keys (i.e. “1”,
“2” etc) using the compare_number_strings  function; normal sorting does not work
as the keys are strings so “10” would be treated as less than “2” and so on.

5.3.3. The Primitives

This section illustrates part of the development process by presenting some examples of
action and sensory primitives.  In total, I coded 20 actions and 23 senses, and re-used the 5
actions and 9 senses of the poshbot (Kwong, 2003).  The actions and senses shown in this
section have been chosen to demonstrate primitives of differing complexity: the first two are
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relatively simple, whilst the third is quite advanced.  They were also chosen with a view to
demonstrating interesting features of the bot, such as its use of state, the trade-offs between
plans and behaviours and so on.

are-armed  sense (from the status  module):

def are_armed(self):
    if self.bot.botinfo == {}:
        return False
    else:
        if self.bot.botinfo["Weapon"] == "None":
            return False
        else:
            return True

Note that names with underscores as separators are function names, whilst those separated
by hyphens are the names used in the plans.  (I.e. are_armed  is registered with the agent
as are-armed ).

This function defines a sense.  The only parameter is self , a required parameter for any
class method in Python (it is automatically set to refer to the relevant class instance).  The
function tests against an item in self.bot.botinfo .  botinfo  is a dictionary of state
about the bot, filled automatically by Kwong’s class which communicates with Gamebots.
The fact that we are testing against a string (“None” ) reflects the fact that this dictionary
was originally derived from a string-based list of attributes.  The return value is either True
or False  (Python is case-sensitive).  Senses need not be limited to returning true/false
values (ammo_amount returns an integer, for example), but many of them do.

The following is the definition of the shoot-enemy-carrying-our-flag  action
primitive (from the combat  module):

def shoot_enemy_carrying_our_flag(self):

    if self.CombatInfo.HoldingOurFlag != None and
    self.CombatInfo.HoldingOurFlagPlayerInfo != Non e:

        Target = self.CombatInfo.HoldingOurFlag

        Location = self.CombatInfo.
          HoldingOurFlagPlayerInfo["Location"]

        self.bot.send_message("SHOOT",
          {"Target" : Target, "Location" :Location} )

    return True

This primitive uses details from the CombatInfo  class (discussed in section 5.3.2):
HoldingOurFlag  contains the ID of the flag-carrier (every object in UT has a unique ID),
whilst HoldingOurFlagPlayerInfo  is a dictionary of information about the flag-
carrier, including, as shown here, his/her location.

The astute reader may wonder why the checks against HoldingOurFlag  and Holding
OurFlagPlayerInfo  occur here rather than in a sensory primitive included in the plan.
In fact, the plan does include such a sense (see-enemy-with-our-flag ).  However,
including these checks in the action increases the robustness of the code.
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As the penultimate line shows, messages are sent to Gamebots using Kwong’s
send_message  function.  (This is found in the Bot_Agent  class).  As discussed above,
this accepts attributes in the form of dictionaries.

Actions must return true if they complete successfully.  This is a general requirement of
POSH.  For example, Action Patterns terminate as soon as one of their elements fails (i.e.
returns false).  In fact, many of my actions return true even if they do not complete
successfully, the reason being that their failure is not significant enough to warrant the
termination of an entire sequence.

A Longer Example

The code for the reachable-nav-point  sense follows.  This is intended to provide an
example of a more complicated primitive and hopefully to illustrate further features and
functions used.  For ease of explanation, I have broken it up into sections:

# returns True if there's a reachable nav point in
# the bot's list which we're not already at

def reachable_nav_point(self):

This is just a comment and a standard class-function definition.

    # setup location tuple

    if not self.bot.botinfo.has_key("Location"):

        # if we don't know where we are, treat it a s
        # (0,0,0) as that will just mean we go to t he
        # nav point even if we're close by

        (SX, SY, SZ) = (0, 0, 0)

    else:

        (SX, SY, SZ) =
utilityfns.location_string_to_tuple(self.bot.botinf o[
"Location"])

As part of this sense, we must already determine whether we are already close to the
navpoint we are aiming for.  Our location is stored in the botinfo  dictionary (discussed
above).  However, this is stored as a string and thus must be converted into a tuple (in this
case, a triple) for comparison, hence the call to utilityfns.
location_string_to_tuple .  This line also provides an example of Python’s ability
to perform multiple-assignment.

If the location is not available, we can treat the bot as being at (0,0,0) .  This might mean
that we are actually close to a navpoint but do not realise it, but it is worth taking this minor
risk rather than doing nothing.

    # is there already a navpoint we're aiming for?

    DistanceTolerance = 30 # how near we must be to
be thought of as at the nav point

    if self.PosInfo.ChosenNavPoint != None:

        (NX, NY, NZ) = self.PosInfo.ChosenNavPoint

        if utilityfns.find_distance((NX, NY),
          (SX, SY)) > DistanceTolerance:



3 “Units” refers to Unreal Tournament distance units, discussed in the Gamebots API:
http://www.andrew.cmu.edu/user/roman/15396/game_bots_api.html
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            return True

        else:

            self.PosInfo.VisitedNavPoints.append((N X,
NY, NZ)) # set this NP as visited

            self.PosInfo.ChosenNavPoint = None

It may be that the bot has already chosen a navigation point to aim for (self.PosInfo.
ChosenNavPoint , see above for a discussion of the PosInfo  class) and is currently
heading there.  In this case, we test whether the bot has already got there.  This uses another
utility function, find_distance  (inherited from Kwong’s poshbot).  If the bot is not
already there, then we need do nothing more – the bot has a location to head for so we can
simply return.

However, if the bot is there then we add the point to our list of visited navpoints and clear
the variable stating where we are heading for.  We do not return from the function but rather
continue execution to find a new navpoint.

This extract of code is an interesting one as it is an example of something which could be
accomplished either by a behaviour (as here) or by making the plan file more complicated.
I.e. Adding a sense to check whether we are at the place we’re heading and an action to clear
it if we are.  There is no overwhelming advantage to either method, it is more a matter of
personal preference.  The trade-off this demonstrates (between complexity of plans and
complexity of behaviours) is an important one, however.

    # now look at the list of
    # navpoints the bot can see

    if self.bot.nav_points == None or
      len(self.bot.nav_points) == 0:

        return False

If the bot cannot see any navpoints then the sense obviously fails.

    else:

        # nav_points is a list of tuples.  Each tup le
        # contains an ID and a dictionary of
        # attributes as defined in the API

        # Search for reachable nav points

        PossibleNPs = self.get_reachable_nav_points (
          self.bot.nav_points.items(),
          DistanceTolerance, (SX, SY, SZ))

The get_reachable_nav_points  function takes a list of navpoints and returns a list
of all those which are specified as “reachable” and which the bot is more than Distance
Tolerance  units away from3.

        # now work through this list of NavPoints
        # until we find one that we haven't been to

        # or the one we've been to least often
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        if len(PossibleNPs) == 0:

            return False # nothing found

        else:

            self.PosInfo.ChosenNavPoint = self.
              get_least_often_visited_navpoint(
                PossibleNPs)

            return True

The function now searches this returned list (unless it is empty) and finds the one visited
least often.  This is accomplished by the get_least_often_visited_navpoint
function which searches the list in self.PosInfo.VisitedNavPoints  (see above).

self.PosInfo.ChosenNavPoint  is set to this least-visited navpoint.  This variable
then used by the walk-to-nav-point  action primitive to actually make the agent run
to this navpoint.

5.3.4. Problems Encountered

This section briefly outlines some of the problems I encountered during development.  It is
intended to highlight difficulties with developing for Unreal and Gamebots rather than
problems with the BOD methodology (see elsewhere in this chapter for evaluation of the
methodology itself).  Errors with PyPOSH are discussed in their own right in chapter 8.

Navigation is a major difficulty in Unreal Tournament as it is in robotics and other areas.
There are various reasons for this, including the following:

• At the start of the game, the bot does not know locations of any other parts of the
level, and thus cannot use UT’s built-in path-finding functions.

• There are no sensory functions available which can tell the bot that it sees a wall,
a slope, a doorway etc.  This means that the only way it can discover these is by
walking into them.

• Even when the bot does know the location of a point of interest there can still be
problems with the built-in path-finding functions.  For example, if the bot is very
close to the desired location but facing the wrong way, an empty list of navpoints
will be returned (as there are no points between the bot and its desired location) but
the bot will not be aware that it is so close to its destination.  (This problem was
combatted with the too-close-for-path  sense).

• It is very difficult to place navigation points in such a way that the bot will be able
to follow them easily and not double back on itself or lose the trail.  (This does not
apply when the path-finding functions are used as these provide a pre-defined list
of points for the bot so it does not matter whether the bot actually notices the points
or not).  This may also be improved by setting the bot’s skill level as something
higher than “novice”.  Preliminary tests suggest that the bot’s perception is
improved by a higher skill level, but that this improvement in fact results in it
noticing the points it has already been to before seeing new ones and so still
doubling back on itself frequently.  This suggests that to make the most of the
improved perception, the behaviour would also need modification.  However, this
has not been tested in detail and remains an area for future work (section 9.2).



4 “Respawning” is UT-jargon for what happens when a player (including computer-controlled bots) dies: the
player is returned to his/her own base (or another “respawn point”) and given full health.  However, s/he loses
all ammunition, weapons and armour.  The concept is similar to “losing a life” in other computer games,
except that there is usually no limit to the number of times it may occur.
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• Unreal Tournament’s levels are completely 3D, as opposed to simple grid-based
layouts.

Expiry of data is a key issue affecting various aspects of the bot’s behaviour.  For example,
if the bot died at a location where the enemy flag was reachable it still believed it to be
reachable when it respawned, despite then being in a completely different location.4  Similar
problems occurred because the bot only receives information about objects when it sees
them.  This means that it could receive information that a flag was reachable and then
continue to believe this even if it moved a long way away: if it did not see the flag again, it
would not receive a message informing it that the flag was no longer reachable.  This is an
example of the Frame Problem (McCarthy & Hayes, 1969).

Such expiry problems were combatted in three ways.  The main way was the creation of a
number of expiry actions which were called periodically to clear particular items of state
(e.g. expire-reachable-info ).  As well as this, various items of state were cleared
when the bot died.  Finally, Gamebot’s CHECKREACH function was used.  This function
allows the bot to check whether a given location or object is reachable from the current
location.

Some other problems encountered are worth mentioning but do not merit detailed
discussion.  These are listed below:

• Forgetting to rebuild a UT map before saving it means that changes are not reflected
when playing the map.  This is because rebuilding calculates how the changes will
actually affect what the player sees when the map is played.  For example, it
performs rendering and raytracing.

• As suggested in section 5.3.3, tests against attributes from Gamebots should test for
“True”  and “False”  rather than the standard boolean True  and False .  This
is because information from Gamebots is sent as strings.

• Sending an extra space at the front of a location string results in the location being
ignored and the bot just standing around.

Gamebots-specific Problems

One problem with Gamebots is that some commands and events do not work:

• PRJ is supposed to provide details of incoming projectiles.  However, these
messages are never generated.

• INIT  is the message sent to generate a bot.  The attributes sent with this message
(name and team) are ignored.

These problems (and others) are fixed in the new version of Gamebots, available from http://
www.cs.rit.edu/~jdb/gameAI/gamebots/codechange.html.  However, I was not aware of this
version at the time of development.
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When keeping attention on an assailant, the bot strafes (i.e. runs in one direction while
facing another) rather than just running.  However, the INCH command (moving a small
amount forwards) has no strafe equivalent.

Occasionally, the list of navpoints sent from the UT server seems to be corrupted.  For
example, consider the following printout of these attributes (the problematic data is in bold):

{'11': 'CTF-Simple2dt.PathNode20 306.283630,-943.96 9238,
-205.899719', '10': 'CTF-Simple2dt.PathNode19 179.5 91705,
-1001.335571,-205.900146', '13': 'CTF-Simple2dt.Pat hNode22
409.230133,-551.878540,-205.899963', '12':
'CTF-Simple2dt.PathNode21 397.411743,-817.479858,-2 05.900085',
'15': 'CTF-Simple2dt.FlagBase0
0.99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00RCH {ID
ReachPathThere', '14': 'CTF-Simple2dt.PathNode37 2. 160962,
347.320404,-137.227463', '1': 'CTF-Simple2dt.PathNo de14 389.730133,
-1862.520874,-205.900085', '0': 'CTF-Simple2dt.Path Node15
383.894440,-2076.516846,-205.900116', '3':
'CTF-Simple2dt.PathNode12 242.659698,-1564.088623,- 205.899902',
'2': 'CTF-Simple2dt.PathNode13 355.602875,-1704.071 777,
-205.900024', '5': 'CTF-Simple2dt.PathNode17 6.0000 00,-1346.876953,
-206.516571', '4': 'CTF-Simple2dt.PathNode27 8.0000 00,-1458.000000,
-204.000000', '7': 'CTF-Simple2dt.PathNode4-6.20000 5,-1248.000000,
-203.000000', '6': 'CTF-Simple2dt.InventorySpot21 - 0.891642,
-1266.071045,-203.000000', '9': 'CTF-Simple2dt.Inve ntorySpot16
2.643697,-1023.192627,-203.000000', '8': 'CTF-Simpl e2dt.PathNode0
51.432945,-1158.075439,-207.000000', 'Reachable': ' True', 'From':
'90.789177,-2312.877930,-212.100006'}

In this example it appears that two messages – a list of nodes and a RCH message (i.e. a
response to the CHECKREACH command) – have been mixed together.  This problem and
possible solutions are discussed briefly in the future work section of this document.

5.3.5. Evaluation of the BOD Process

Types of Behaviour

One conceptual problem I encountered was that I found myself subconsciously treating the
bot’s “physical” actions (e.g. running, shooting) and “mental” actions (e.g. remembering
information it was provided with from the server, “forgetting” out-of-date knowledge) as
fundamentally separate types of entity.  Therefore, it was easy to forget the plan file when
coding this “mental” functionality.  This lead to problems as whilst action primitives run
atomically, other aspects of the agent may run in parallel with them.  Therefore, coding a
mental function as part of the main agent control loop rather than as an action meant that the
mental function could alter a variable used by an action whilst that action was running and
thus lead to exceptions being raised.  For example, clearing a list of navigation-points whilst
an action was searching the list.

Problems with functions overwriting data whilst another function was reading it occurred
several times before the simple solution became apparent: the action plans should contain
both mental and physical actions.  An example of this can be seen in actions such as
expire-reachable-info  in the movement  behaviour library.  Due to constraints on
time, however, I was not able to correct this flaw for all cases.  This is discussed in the
Future Work section (9.2).

It could be argued that this leads to untidy plans, as they mix both tangible actions of the bot
with general housekeeping functionality.  However, on reflection I believe that it leads in
fact to plans which relate more closely to the action selection of humans: humans must
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choose (even if only subconsciously) to devote some of their time to purely mental activities
such as remembering information they are presented with, as well as the more obvious
physical tasks.

Roll-backs

Whilst I found iteration and prototyping very useful (in creating the functionality to take the
bot to the enemy base, for example), I found that rolling back to a previous iteration was not
a technique I ever made use of.  The primary reason for this was that rolling back would
have removed other useful code I had written during the iteration as well as removing the
code which proved to be ineffective.  It was also the case that removing the code “by hand”
rather than by rolling-back was simple and error-free, meaning that “automatic” removal by
rolling back would not have been an advantage.

This problem of removing useful code when rolling back suggests that my iterations were
too large.  However, the usefulness of rolling back actually decreases with smaller iterations
as it then become easier simply to remove the code by hand.  It could be argued that the
work done during an iteration was too wide-ranging for rolling-back to be effective but, even
if this were true, I certainly did not notice it as a problem during development.

Specification Revision

Although, as discussed above, I did not perform many alterations to the initial decomposition
produced, revision of specifications was still something I found useful.  For example, there
were a number of occasions when I modified action primitives to facilitate re-use of
functionality.

One example of maximisation of re-use was separating the functionality which recorded who
recently attacked the bot from that which made the bot turn to face him/her.  This in turn
allowed the plan file to be simplified by combining two Action Patterns into one.  In fact,
the combining could have been performed without separating the code, but the plan with the
separated code was clearer and thus made this possibility of reuse more obvious to me.

Another form of refactoring specifically suggested by Bryson (2001) is to use the simplest
type of POSH component possible (i.e. a primitive rather than a sequence rather than a
competence).  The recording / facing situation mentioned above also provided an
opportunity for this: by increasing the complexity of the set-attacker  primitive, I was
able to use it (and thus the entire Action Pattern) in both the case when an attacker was
spotted actually attacking the bot, and when the bot had to look around before finding an
enemy it believed was the assailant.

There are a number of cases, however, where I deliberately did not combine sequence
elements into new primitives.  For example, the elements of the following sequence are used
nowhere else:

(AP respond-to-visible-attacker (seconds 4)
    (set-attacker face-attacker shoot-attacker))

However, there are two reasons for keeping these separate.  The first is that these some of
these actions are likely to be required in their own right in future plans.  The second is that
this separation makes the plan file far more readable.

Agent State

As discussed in section 5.3.2, and highlighted in the code examples in that section, I made
substantial use of state to store details about the Unreal world.  Like the primitive-



5 This plan file includes an Action Pattern as part of its documentation, but no others.
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complexity vs plan-complexity tradeoff (see section 5.3.3), there is also a trade-off between
plan-complexity and the amount of state required.  For example, Bryson (2001; section 6.5)
gives the example of an insect which could either have two plan elements for hitting
something on its left side or its right, or have some state indicating which side it hit
something on, and a single plan element whose primitive uses this state to decide whether
to move left or right.

I believe that the complexity of the information my bot requires means that the need for
extra state usually prevails.  For example, the state holds the attacker’s ID, something
dynamically generated by UT and thus not usable in a pre-written plan.  Furthermore, even
if it were, the need for persistence again suggests that state is required: the bot needs to
“remember” that a certain agent attacked it when that agent is no longer shooting at it (and
thus there are no external cues).

The need for complex state is a point made by Laird (2005; the full e-mail is given in
Appendix D):

I might be wrong, but I think this is where the behavior-based [sic] approaches
really make it tough on themselves by not making it easy to encode complex state
information, derived from many sources and both about the past and the current
situation.

5.3.6. POSH’s Contribution to Development

The POSH plan produced was the most complex ever published, and  I found the POSH
Action Selection mechanism a great help in the development of the agent.  This section
explores three of the key advantages: more focussed development, multi-threading, and
frequency & retries.  It begins, however, with a justification of my claim of the complexity
of the plan:

The most complex POSH plan ever published

This section compares the final plan given in Appendix A (a version of bodbotattack.
lap ) with the most complex plans published to date: stay-groom.lap  (see Bryson,
2003) and educate-me+monk.lap  (see chapter 9 of Bryson, 2001).  Both these plans
are available from http://www.cs.bath.ac.uk/~jjb/web/posh.html.

The following table provides various relevant statistics:

bodbotattack stay-groom educate-me+monk

Drive Collections 1 1 1

Competences 6 2 4

Action Patterns 11 (3 of which are
multi-element)

05 1

Drives 14 4 5

Deepest Nesting 4 0 2

Table 5.1 Statistical comparison of POSH plans.
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The bracketed figure given for bodbotattack  is the number of Action Patterns with more
than one element.  Single-element patterns are required as PyPOSH does not allow Drive
Collection elements to trigger action primitives directly (see section 8.3.3).

“Deepest Nesting” refers to the depth of nested competences and action patterns.  The
deepest potential nesting in bodbotattack  is 4: The top-level Drive Collection triggers
the get-to-enemy-base  competence which can in turn trigger wander-around .
This can then trigger the avoid  pattern which triggers the then-walk  competence.  By
contrast, stay-groom ’s competences only trigger primitives whilst educate-me+
monk’s deepest nesting is 2.

A final point worth noting is that whilst educate-me+monk  comes closest to
bodbotattack  in terms of statistics, educate-me+monk  is not a real-time plan.
Working in real-time throws up many additional challenges for development and control of
agents.  Similarly, whilst robots developed using BOD (e.g. Bryson, 2001; Chapter 7) may
have very complex behaviours, their plans are still simpler than that which I produced.

More Focussed Development

The greatest advantage of having an Action Selection mechanism was simply the fact that
I needed not code it for myself!  However, the advantage is greater than mere convenience:
Not needing to think about how action selection was going to work left me free to think
about what I should make the bot do, thus making development more focussed as less of my
attention was on secondary concerns and more on the actual behaviour of the bot.

Weiser (1994; abstract) summarises this advantage neatly:

For thirty years most interface design, and most computer design, has been headed
down the path of the “dramatic” machine. Its highest ideal is to make a computer
so exciting, so wonderful, so interesting, that we never want to be without it. A
less-traveled [sic] path I call the "invisible"; its highest ideal is to make a computer
so imbedded, so fitting, so natural, that we use it without even thinking about it.

Multi-threading

“Multi-threading” here refers to both the use of threads within Kwong’s (2003) poshbot, and
to the parallel nature of POSH.  In practice, this was particularly useful in two areas:
synchronous interaction with Gamebots and the bot, and the ability for higher-priority drives
to interrupt lower-priority ones.

Interaction with Gamebots and the Plan Driver

UT is a dynamic environment and as such messages about the world and the player may be
received and must be dealt with at any time.  I was fortunate in being able to build on
poshbot (designed by Kwong (2003) as a means of demonstrating PyPOSH), which already
contained the necessary multi-threading functionality to handle synchronous and
asynchronous messages from Gamebots whilst plans are being executed.

Interruptions

The ability for an agent to temporarily stop doing something to deal with a more pressing
need is a fundamental part of action selection and I found this to be well-supported in POSH
Action Selection.  The existence of a schedule, allowing interrupted tasks to be continued,
was a major boon: coding such functionality by hand would have been very difficult and
would probably not have resulted in such a general-purpose solution.
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Frequency and Retries

Many of the “mental” actions (see section 5.3.5) required the frequency attribute of POSH’s
drive collection elements.  For example, every 30 seconds the bot “forgets” the details of
whether flags are still reachable (otherwise it would continue to think they were reachable
even when it had moved far away from them, as this is only set when it sees the flag).  This
proved a very useful feature and, in my opinion, makes the construction of realistic action
selection far easier.

The retries limit for competence elements was also useful to help represent the “try x and
then try y if x doesn’t work” structure.  Consider this extract from one of the competences:

(find-base (trigger((reachable-nav-point)))
    walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)

(wander-base (trigger((succeed))) wander-around)

The use of retry limits allows both the final two elements to have a trigger of succeed (i.e.
the function which always returns true) yet still both to have a chance to run: if rotating does
not result in a navigation point becoming visible (and thus find-base  being triggered),
the bot will attempt to wander around.  The limit is very useful as it means that the bot does
not continue rotating forever if no navigation point is visible, but equally that is does try this
action before it wanders around.

Limitations of these attributes

Whilst, as mentioned above, being able to specify the frequency and retries limit for
elements was very useful, there were occasions when I felt constrained by this.  For
example, the bot’s “forgetting” of flag details was arguably sub-optimal: a better solution
would have the bot forgetting 30 seconds after receiving the information.  By contrast, a
frequency of 30 seconds means that the time between the bot seeing the flag and forgetting
about it is anything up to 30 seconds, but potentially much less, as it is 30 seconds after the
last “forgetting”.  However, it could also be argued that such an element of randomness
makes the bot more human-like.  This frequency problem could of course be solved by
having the behaviour set a timer, another example of the trade-off between complexity of
plans and complexity of behaviours.

5.4. Summary

This chapter has introduced BOD’s development process and my experiences of using it.
Specific information about development has been provided, including details of behaviour
modules, and classes and functions relating to agent state.  The development of sensory and
action primitives has been illustrated by discussion of a series of examples.  Problems
encountered have been discussed, including some specific to Gamebots.  Finally, the process
and POSH’s contribution to it have been evaluated, and the complexity of my POSH plan
demonstrated.  A summary of my evaluation of BOD can be found in Chapter 9.  The next
chapter, however, continues evaluation by way of a comparison with other architectures.
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6. Comparison with Other Architectures

6.1. Introduction

A large part of my analysis of BOD is based on comparisons with other architectures and
methodologies.  One problem I encountered was that there are a surprisingly small number
of existing methodologies for complex agents.  This point has been noted elsewhere (e.g.
Kinny et al., 1996).

There are a number of methodologies for Multi-Agent Systems [MAS], and a review of
several of these can be found in Inglesias et al. (1999).  However, although the majority of
these MAS methodologies do refer to the structure of individual agents, most do not go into
enough detail to be interesting (although see the discussion of Kinny et al's methodology in
section 6.3).  One possibility would be to examine whether these multi-agent methodologies
could be adapted for complex agents.  However, initial examination suggests that this would
not be very enlightening: common concepts from these models (such as roles and
organisations) seem too broad for meaningful adaptation.

This chapter makes much reference to ACT-R, Soar and EPIC.  These architectures are
introduced in Chapter 3.

6.2. The Rational Rose Approach

One approach studied in this chapter (hereafter referred to as the “Rational Rose approach”)
but which has not been previously introduced is that of specifying agents via UML [Unified
Modelling Language, e.g. Odell (1998)] diagrams and automatically generating code from
this specification using Rational Rose software6.

Although there does not appear to be a huge amount of information available about this
method of agent creation, and I do not have practical experience with it, it has been included
as it is considerably different to the other approaches.  Furthermore, it is currently being
used to create Unreal Tournament agents as part of assignments at Carnegie Mellon
University (e.g. Douglas, accessed 2005; Carnegie Mellon University, accessed 2005).  The
approach is touched on briefly in various sections of this chapter, and analysed in its own
right in section 6.7.  The Rational Rose approach can make use of subsumption, discussed
in section 6.8.

6.3. Getting Started with Development

This section compares BOD’s Initial Behaviour Decomposition to the initial processes of
other architectures.  BOD’s approach is evaluated in its own right in section 5.2.2.

The fact that BOD supplies relatively detailed instructions as to how development should
begin is an important point which can easily be taken for granted.  It could be argued that
doing so is going beyond what is required of an architecture.  However, even the best-
designed architecture is little practical use if no-one can develop with it.  Bryson (2000b)
even goes as far as stating that the best way to consider agent architectures is as design
methodologies.
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An important distinction between the initial development processes of BOD and of ACT-R
or Soar is that using BOD one begins by considering what agents should do whereas in
ACT-R and Soar one must consider what an agent needs to know.  (This could be a
reflection of the fact that ACT-R and Soar were designed primarily for the modelling of
human cognition.)  I believe that BOD’s approach is a better fit to the problem, since to
discover what an agent needs to know, you in any case must first  consider what the agent
should do.  Furthermore, putting the components of a a Soar model together is a precise
process: the division of knowledge into problem-spaces must be done with consideration of
the relationships between impasses to ensure that learning is useful.  BOD’s iterative process
which allows for easy alterations appears far simpler.

Arguably, one could begin development in ACT-R or Soar by writing production rules
(“associations” in Soar terminology).  However, as well as going against the recommended
process (e.g. Lehman et al. 1996  p. 13) this would be rather difficult since writing
production-rules relies on a substantial amount of information about what knowledge is held
in the model and how that knowledge is structured.

Nevertheless, there are situations where the approach of ACT-R or Soar would be a better
fit to the problem.  For example, the modelling of human cognition and recall.  However, I
believe that this side of Artificial Intelligence is only a small part of the agent domain, which
encompasses far more than AI alone.

EPIC’s approach is a little more similar to that of BOD.  Kieras and Meyer (1997; p. 409)
state that the builder of an EPIC model must supply the following information:

1. A production-rule representation of the task procedures

2. Task-specific sensory availabilities and perceptual-processor encodings
and timings.

3. Any movement styles not determined by the task requirements.

This process begins with the writing of production-rules, meaning that, like BOD, there is
at this stage more emphasis on what is done than on what is known.

The Rational Rose approach is similar to BOD in that it deals with tasks (“Use Cases”)
rather than knowledge.  Again, however, the initial stages of development with this
technique are not discussed in detail.  Rather, the majority of UML techniques relate to
interactions between objects or to decomposition of object data (e.g. Entity-Relationship
modelling), areas which are less relevant here.

There are ways in which BOD’s Initial Decomposition could be improved, however.  This
becomes apparent when comparing it with Kinny et al’s (1996;  p. 61, my emphasis)
methodology for BDI [Beliefs-Desires-Intentions] agents:

Our methodology for the development of these models [for the internal structure
of agents] begins from the services provided by the agent and the associated events
and interactions.  These define its purpose, and determine the top-level goals that
the agent must be able to achieve.  Analysis of the goals and their further
breakdowns into subgoals leads naturally to the identification of different means,
i.e., plans, by which a goal can be achieved.

There are many parallels between this process and BOD’s Initial Decomposition.  However,
the key difference is that the top-level goals are used to establish the means by which they
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may be achieved.  In BOD, the list of top-level goals is created after sequences of actions
are created.

I believe that, for an agent such as mine, BOD’s ordering is slightly confusing: it is easier
to determine likely sequences of actions once top-level goals are identified (as per Kinny et
al’s method).  However, there are also areas where BOD’s method would be preferred.  For
example, if one aims to replicate some simple real-world “agent” but to a great degree of
detail, it would make sense to identify what it can do (e.g. sensory and action primitives)
before identifying top-level goals.  This is because the primitives are a relatively fixed-size
set, whereas the set of goals is likely to grow as the agent is developed to match the range
of abilities of the real-world version ever more closely.

Overall, I believe that for creating a complex agent such as mine, BOD’s Initial
Decomposition process is superior to the corresponding procedures of EPIC, ACT-R or
Soar.  There are three reasons for this:

1. The process is specified in more detail

2. The process is a closer map to the actual tasks carried out when designing an agent

3. The process requires less detail at earlier stages, allowing instead for highly iterative
development as requirements and constraints become more apparent.

However, as comparison with the methodology of Kinny et al. (1996) suggests, in some
cases a slight re-ordering of the stages of the process could make it more effective.

6.4. Evolutionary Design and Development

Soar, ACT-R and EPIC do not explicitly state the processes which should be followed
during development.  As with Initial Decomposition the fact that BOD does could again be
considered an advantage.  It could also be argued that specifying this is overly prescriptive.
However, it makes sense to develop in a way which suits the architecture one is developing
in, and by providing detail on the design process BOD makes this easier.

Attempting BOD’s iterative, evolutionary development process in Soar could lead to
complications.  The primary reason is the complex inter-dependencies of Soar’s production
rules.  Consider the following extract from the example associations given in section 3.2.3:

(a1) If I perceive that I have finished reading a paper

then suggest a goal to summarise that paper.

(a2) If there is a goal in WM to summarise a paper

then... 

(a2) clearly depends to some extent on (a1), as (a1) suggests the goal which triggers (a2).
However, such dependencies are not recognised by Soar, the dependency exists only in the
mind of the developer.  I claim, therefore, that it would be very difficult to see what rules
would be affected when a rule is modified, deleted or added.  Furthermore, consider the
difficulties arising from moving something to a different problem-space:  This would result
in an entirely new set of impasses being created when the model runs, potentially drastically
transforming the relationships between elements.  By contrast, BOD is specifically designed
so that changes can easily be made at any stage of the development process.

The fact that in Soar and ACT-R knowledge is specified before an agent’s actions would
also make iterative development more difficult: changes to what the agent does would be
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likely to also  require changes to be made to the knowledge an agent holds, thus leading to
further alterations and risking affecting other parts of the system.

The Rational Rose approach seems to suggest incremental development, with an agent
gradually being extended with further Use Cases.  However, it appears to suffer from a
similar problem to Soar: that of dependencies between components.  Carnegie Mellon
University (accessed 2005) gives an example of avoiding potentially problematic
interactions between actions by manual insertion of delay states, a rather inelegant solution.

Revision of specifications and the supporting of maintenance via structured commenting
(Bryson, 2001; section 8.4.1) are concepts which could, to some extent, be applied to ACT-R
and EPIC.  Again, however, the complex dependencies in Soar would make such revision
more difficult.  Rational Rose allows documentation to be associated with any diagram
element which should ease the process of creating structured documentation.  However, I
expect that this would also produce disjoint, fragmented documentation, as it would be
spread across all the diagram and sub-diagram elements.

The opportunities for incremental development given by the Subsumption Architecture are
discussed in section 6.8.1, where this architecture is also introduced.

6.5. Goal-Driven Development

The central thrust of the development process involved taking goals from the list identified
as part of the Initial Decomposition, and coding the corresponding plan and behaviour
elements to support them.  I believe that such a focus on goals leads to more robust designs
as a domain’s high-level goals are less volatile than behaviours or lower-level plan elements.
Therefore, any changes to behaviours or low-level plan elements can be easily coded as
another (or a replacement) way of achieving the high-level goal.  This point is also discussed
in Kinny et al. (1996).

6.6. The Architecture

The very fact that BOD provides the POSH architecture is an advantage.  For example,
whilst the Rational Rose approach does enable a lot of code to be automatically generated,
it requires much of the action selection mechanism to be manually coded.  This can easily
become a complicated and daunting task.

6.6.1. POSH’s Hierarchical Structure

One of POSH’s greatest strengths is its hierarchical structure.  This greatly increases the
clarity of the plan files.  On a basic level, decomposing the plans into sub-components makes
them easier to read.  On a more technical level, the structure leads to simpler triggers.
Consider rule (a3) from the example Soar associations in section 3.2.3:

If using the Summary Creation problem space and the amount_summarised is < 100

Soar’s associations are required to explicitly state the problem space.  A more hierarchical
approach such as BOD’s means that triggers can be designed with more certainty about
context (e.g. we are already in the context of the parent competence).

The use of UML means that the Rational Rose approach is very hierarchical.  However, this
hierarchical decomposition requires a large number of sub-diagrams.  I believe that this
could become confusing, especially as it could mean that the detail of one part of the system
may only be examined in isolation from other parts.  The reasons for this could include a
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lack of screen space, or the use of modal windows for component properties (only one of
which may be open at any given time).

6.6.2. Priorities and Emergent Behaviour

As well as the contextual information provided by the plan hierarchy (discussed above),
BOD’s priority system means that if a given component fires then we can be certain that
nothing more important can fire, reducing the need for extra “negative triggers” testing
against the preconditions of more important elements.

EPIC’s approach to this issue is its cognitive parallelism whereby all rules which match are
fired simultaneously.  Whilst this has advantages (Kieras and Meyer (1997) suggest a closer
match to the cognitive processing of humans), I suspect that this would cause problems with
regard to interactions between the items which are running in parallel.  For example, it could
make consistent behaviour difficult to achieve, and make debugging very complicated as the
cause of some event could be emergent from these interactions rather than something
obviously pre-coded.

Although ACT-R’s pattern matching / utility-based retrieval system is also arguably a close
match to human cognition, the issue of emergent behaviour is again likely to make
debugging and consistent or predictable behaviour difficult to achieve.  Note particularly
that a new chunk may be retrieved in place of some existing one in some cases but not
others.  To discover exactly when this would occur would involve studying much of the
existing facts.  By comparison, modifying BOD plans is far simpler as such dependency
issues do not arise.

Further discussion of utility-based action selection

BOD supports what could be called “manual” utility allocation: a programmer is able to try
a number of approaches for responding to a given situation, adopting the one he or she finds
most useful.  This method is arguably more accurate as the programmer can adopt a broader
view of the situation than the system’s simple “has this worked in the past?”  For example,
it allows side effects to be considered, and can consider more complex outcomes than the
simple success and failure used in ACT-R.

However, the issue of emergent behaviour means that the precise effects of different
approaches may not always be obvious to the programmer.  Furthermore, it may require
extensive testing to determine which method is best, something which is especially difficult
if the programmer has only limited control over the simulation, as is the case in Unreal
Tournament.  One area where “automatic” utility allocation could certainly be useful is
where an environment cannot be simulated accurately, for example sending a robot to a
previously unexplored planet.

6.6.3. Frequency and Retries

As discussed in section 5.3.6, I found the ability to limit frequency and the number of retries
to be a useful feature.  Achieving such effects in ACT-R would require chunks to be
extended with further slots, increasing the complexity of the system and potentially requiring
many chunks to be modified beyond just the one which is to be limited.

6.6.4. Modularity and Re-use

The fact that POSH plans are stored as entirely separate files from the code for behaviour
primitives and from the Action Selection mechanism is a major advantage.  Specifically, this
means that radically different agents can be created from a single set of primitives simply
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by supplying a different plan.  This appears to be a far faster and simpler approach than, for
example, rewriting production rules for Soar, ACT-R or EPIC.

A Comparison with JACK

As well as BOD, another agent framework designed with modularity and re-use as primary
objectives is JACK (Howden et al., 2001).  JACK is an agent framework which extends the
Java language  with both new syntax and new classes.  One of the key ways in which the
concepts of modularity and re-use are supported is by Capabilities.  Capabilities allow agents
to share plans, event-handlers and state.  They work in a similar way to macro expansion:
code of the form #has capability <Capability Name> <Local Name>  is
replaced by the statements stored in the relevant capability file.

This sharing of plans can be likened to BOD’s use of external plan files, whilst the sharing
of state can be likened to several BOD agents making use of an external class designed to
store agent state.

Whilst I believe that Capabilities seem to perform a useful role in JACK in drawing various
aspects together, I do not believe that BOD is weaker for not have such an encompassing
component.  The reason for this is that BOD agents similar enough to share many
components in common would probably use the same classes (i.e. behaviour modules) and
only differ in their plan files.  Thus only a single set of classes would be required, not one
for each agent, and so the issue of sharing would not arise.

Furthermore, whilst it is true that Capabilities effectively modularise functionality, similar
modularisation is already very easy in BOD via behaviour decomposition and the structuring
of plan files.

However, there is one area where further sharing could be beneficial, the sharing of plan
components across plan files.  Consider this extract from the Initial Decomposition (see
Appendix B):

If the bot were a defender by default, the list [of initial drives and goals] would be
as above, but with the following changes:

The following drive would be inserted between 8 & 9:

Run after enemy carrying our flag

Item 11 would be removed and items from 14 onwards would be replaced by the
following:

14. Run to own base

15. Find medical kit, weapon or ammunition (as required).

16. Look for vantage point

17. Wander around near our flag / vantage point

18. Pick up nearby medical kit (if health not in dangerous range)

The current implementations of POSH would require those elements used by both attackers
and defenders (i.e. most of the plan) to be repeated in the LAP file for each.  Redundancy
could be reduced by allowing the sharing of plan elements across files.

One possible way to achieve this would be via pre-processing.  For example, the plan files
could contain code such as #uses <element name> from <file name> .  During
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that team’s base was to guess where the flag-carrier was headed.
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pre-processing, this would be replaced with the relevant POSH element.  For systems where
a number of similar plans are used, a plan file could be treated as “abstract” (i.e. not
designed to be run directly) and this file could contain all the elements shared between the
plans.

Sharing within plan files is discussed in section 7.3.2.

6.6.5. Explicit Goals

Kinny et al. (1996, section 4.3) discuss how plans using their BDI methodology are both
event-driven and goal-driven, i.e. actions can be triggered in response to some external event
or as a means of achieving some internal goal.  This is true to some extent of POSH: the
execution of competences and drive collections is controlled by goals (i.e. execution
terminates if the goal condition is met), whilst the elements of competences and drive
collections are more like event-driven elements, firing as a response to triggers evaluating
to true.

The firing of elements could be made more goal-driven by explicitly storing goals and
providing sensory primitives to test against them.  However, I believe that this would be an
unnecessary extra level of abstraction.

Furthermore, I believe that such goal-directed thinking can cause problems for the
programmer also, by forcing him or her into a simplified view of the world.  Consider the
following fictitious scenario: A bot is busy defending himself from attack when he sees
another enemy player running away with his team’s flag.  However, he does not run after the
flag-carrier as his own dangerously low health means that killing his attacker is more
important.

The programmer needs to ensure that something triggers the bot to run after the flag-carrier
after the current attacker has been killed. In a purely goal-directed world, this would be
accomplished by adding a “chase flag-carrier” goal to the goal list.  This goal would then not
be found for execution until the “kill assailant” goal had been accomplished.  However, this
apparently simple solution would cause problems: there is no guarantee that the flag-carrier
is still visible after the attacker has ben killed.  I claim that a programmer thinking in terms
of events rather than just goals would know that goals can be an unnecessary abstraction and
so would instead be drawn to considering how the event could be replicated.  In this case,
storing details of the flag-carrier in some state which could then be checked by sensory
triggers.  Since more detail is stored than just the fact that the bot needs to chase the flag-
carrier, there is a higher chance of the bot knowing enough to be able to catch him.7

It could be argued that a greater use of goals makes it easier for partial plan representation
to be used.  For example, Ingrand et al. (1996, section 3.1) discuss how PRS [Procedural
Reasoning System] allows plans to add goals to the list of active goals and rely on some
other plan which can satisfy them being chosen by the meta-interpreter.  This is possible as
plans declare explicitly which states they bring about, whilst goals describe desired states.

However, similar things are achievable in POSH: If some action causes an event, it can be
guaranteed that if some component can deal with that event in the current context (i.e. all
other required triggers return true), and its priority is high enough, then that will fire.  All
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goals must be a result of some event or condition (internal or external) and POSH is simply
concerned with the event rather than the associated goal.

6.7. Further Analysis of the Rational Rose Approach

This section outlines aspects of the Rational Rose approach which are noteworthy but do not
relate specifically to the comparisons in earlier sections of this chapter.  The Rational Rose
approach itself is introduced in section 6.2 above.

The fact that the Rational Rose approach provides automated code generation could make
it easier to use for those unfamiliar with programming.  However, even the simplest agents
still seem to require some programming (e.g. Carnegie Mellon University, accessed 2005).
Furthermore, the fact that the code is spread between various diagram components could be
confusing, as the connections between the different pieces of code are not immediately
apparent.

Code generation can be performed with a number of target languages.  However, the fact
that some code must be written manually makes this approach less useful as this code must
be rewritten.  (The code must also be found, which could require quite a lot of searching
through diagrams and properties-windows.)

One important point about the Rational Rose approach is its visual nature.  This could be
very useful for people who find diagrams easier to understand than text.  Furthermore, the
connection with UML modelling could make it easy to adapt existing specifications.  UML
also provides an existing, relatively well-known structure within which to work.  However,
the approach is arguably too abstract.  Kinny et al’s (1996, section 4.3) plan models are
similar to some of the diagrams used by the Rational Rose approach but are in my opinion
superior as they offer a better fit to the situation being modelled (i.e. they are less abstract).
For example, states can cause the generation of subgoals and may contain programming
constructs such as loops.

6.8. Comparisons with the Subsumption Architecture

The Subsumption Architecture was introduced in Brooks (1986).  Its influence on BOD is
apparent in BOD’s use of behaviours, discussed in section 2.3.  This section introduces the
architecture, examines its support for incremental development compared to BOD, and
explores how its structure leads to robustness.

6.8.1. Incremental Development and Behaviour-Interaction

The Subsumption Architecture is designed for incremental development whereby a simple
system is expanded by adding further behaviours (“levels of competence”, ibid, p. 10).
These behaviours are entirely self-contained, in that once one is added it is not changed.
Rather, new higher-level behaviours can interact with it via suppression and inhibition:

• A higher-level layer may suppress the inputs of lower-level layers.  I.e. it may
replace the existing input with one of its own.

• A higher-level layer may also inhibit the outputs of lower-level layers.  I.e. destroy
the signal before it is acted upon.

Brooks (1986) describes a navigation robot which wanders aimlessly, avoiding obstacles.
The robot is then augmented with a new level of competence which allows it to move
purposefully towards areas of interest.  This new level must inhibit the output of the
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wandering layer so that the robot only wanders when it is not required to move towards
some particular location instead.

This incremental approach offers some obvious parallels with the BOD development
process.  However, the concepts of subsumption and inhibition mean that there are some
important differences also.  The predominant factor is that subsumption and inhibition
greatly increase the interdependencies between elements.  This means that while
development may be incremental, adding new behaviours must be done with great
consideration for potentially every other behaviour in the system.  In BOD this difficulty is
far reduced.

I claim that this constraint means that more consideration need be given to the order in
which new behaviours are added in the Subsumption Architecture.  For example, if a new
behaviour is added which is at a higher level than any existing one then all that need be
considered is which lower behaviours it must subsume or inhibit.  However, if a behaviour
is added “between” two existing ones (i.e. a higher priority than one and a lower priority
than the other), then the programmer must consider which lower behaviours the new
behaviour must subsume / inhibit and which higher behaviours must subsume / inhibit the
new one.  Even if the programmer decides to avoid this problem by only ever adding
behaviours which are a higher priority than all existing ones (as the Subsumption
Architecture in fact requires), there is then the constraint that these lower levels must be
perfect the first time they are created, as they cannot be modified.

In fact, even assuming that lower-level layers are completely correct, things are not simple.
Consider the following slightly simplified extract from the bodbotattack.lap  plan:

((pickup-weapon-as-unarmed
    (trigger  ((see-reachable-weapon)
    (are-armed False))) get-weapon))

((respond-to-attack-since-health-low
    (trigger ((taken-damage) (own-health-level 30 < )
     (armed-and-ammo))) respond-to-attack)) 

((attack-enemy-with-our-flag
    (trigger ((see-enemy-with-our-flag)))
        attack-enemy-carrying-our-flag))

((take-enemy-flag-from-base
    (trigger((enemy-flag-reachable)
     (have-enemy-flag False))) go-to-enemy-flag)) 

((respond-to-attack-health-not-low
    (trigger ((taken-damage) (armed-and-ammo)
     (is-responding-to-attack False)))
        respond-to-attack))

((hit (trigger((hit-object)(is-rotating False)))
    avoid))

((go-home (trigger((have-enemy-flag)))
    go-to-own-base))

((get-yourself-to-enemy-base (trigger((succeed)))
    get-to-enemy-base))

To achieve this prioritisation of tasks in the Subsumption Architecture could, I claim, require
almost every element to subsume many of the elements below it!  For example, the drive to
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respond to an attack when the bot’s health is low (respond-to-attack-since-
health-low ) should initially prevent the bot from taking the enemy flag, from attempting
to go to the enemy base and from attempting to go to the home base.  Even the lower-priority
drive to respond to an attack when health is not low would need a more complicated trigger
to prevent it running in parallel and thus commands being sent twice.  However, since the
lower-level behaviours are not modified once they are added, this would need to be
accomplished by subsumption also!  For a system of any size, subsumption and inhibition
would clearly lead to a large number of very complex interactions.

One possible way to simplify this tangle of interactions would be via the idea of action
groupings.  For example, outputs from go-home , get-yourself-to-enemy-
base  and take-enemy-flag-from-base  could all pass through a single “forwarding”
point.  Thus only the outputs of this forwarding point would need suppression.  However,
this approach has two major disadvantages:

• It is very coarse-grained and inexact.  There are likely to be occasions where only
outputs from some items in the group need suppression, but dealing with these cases
separately makes it less worthwhile having the group at all.

• When considering interactions with different high-level behaviours, the lower-level
behaviours could need grouping differently.

Overall then, this problem of interaction is a major obstacle to the creation and development
of systems.  However, it is unfair to end on this note and not to consider the area of
robustness, one where the Subsumption Architecture claims a major advantage:

6.8.2. Robustness

The key role played by subsumption means that the Subsumption Architecture is fairly
robust.  For example, if a higher-level behaviour fails to act in time to suppress a lower-level
one (or fails to act at all), the robot being controlled will continue to act intelligently, albeit
at a lower competence level.

The fact that the failure of a high-level behaviour results (even though only indirectly) in a
lower-level behaviour running instead is one advantage the Subsumption Architecture has
over POSH.  In POSH, a “broken” or ineffective plan component will simply continue to be
executed until its trigger is no longer true, or until some higher-level element takes priority.

One could possibly imagine increasing the robustness of a UT agent by keeping track of the
number of messages sent to Gamebots.  If no messages were sent for a substantial period of
time then it could be assumed that the current high-level drive had failed and the plan
interpreter could attempt to execute a drive element of a lower priority.  However, this
would be a very imprecise mechanism and would involve an inelegant overlap between the
plan interpreter and the low-level agent actions (i.e. messages to Gamebots).

6.8.3. Overall Comparison

Overall I believe BOD offers significant advantages over the Subsumption Architecture.
True evolutionary development is possible, without the constraints of messy component
interaction or the requirement that development of lower-level layers be frozen once the
layers have been included in the architecture.  However, BOD’s lack of robustness is
unfortunate.
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7. General BOD Evaluation

7.1. Introduction

Whilst much evaluation of BOD can be done in the form of comparisons with other
architectures (as in chapter 6), the architecture also merits analysis in its own right.  This
chapter performs such analysis.  This chapter also evaluates POSH with respect to criteria
for action-selection mechanisms proposed in Tyrrell (1993), and summarises existing
analyses of Extreme Programming, a technique with interesting similarities to BOD’s design
methodology.

7.2. The Methodology

7.2.1. Lessons from Extreme Programming

The central role of iteration in the BOD process invites parallels with the Extreme
Programming [XP] methodology (Beck, 1999): XP involves a frequently repeated cycle of
Analysis, Design, Implementation and Testing, whilst BOD’s cycle involves implementing
functionality from the pre-written specification, testing and debugging this new functionality
and revision of specifications.  Similarly, BOD’s revision of specification is parallelled by
XP’s emphasis on refactoring.

The popularity of Extreme Programming has lead to a number of evaluations, both
experimental and theoretical, from which further opinions on the value of iterative
development and of refactoring can be gained.  Obviously this overview is far from
comprehensive, but it does provide some interesting opinions.

The Evaluations

I considered the following XP evaluations:

Rumpe and Schröder’s (2002) Quantitative Survey on Extreme Programming Projects
presents the results of a detailed questionnaire sent to 45 developers who are or have been
using XP for a project.

Müller and Tichy (2001) discuss their observations of XP's use by students at the University
of Karlsruhe in Germany.

Karlström (2002) reports on the use of XP for a small development project for the company
Online Telemarketing in Sweden.  XP was chosen as the customer had a poor idea of the
system required at the start of the project.

Bossi (2003) discusses the use of XP in the development of a portfolio-watching application
for Credit Suisse Italy.

Lappo (2002) describes how a group of Masters students at Brighton University fared using
XP for a 12-week project for web-based resource management.

As might be expected from the title, Keefer's (2002) Extreme Programming Considered
Harmful for Reliable Software Development paints a negative picture of XP for anything
except small projects with talented engineers and shallow technical specifications.  The
report has a mainly theoretical basis but also draws on Keefer’s experiences as part of an XP
team.
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Iterative Development

XP’s “Small Releases” (i.e. iterative development) scored quite highly in Rumpe and
Schröder’s survey: The XP elements were rated from 0 (not used at all) to 9 (strongly used),
with Small Releases scoring an average of 6.86.  Furthermore, Small Releases were viewed
as very helpful and caused difficulties in only 4.4% of cases.

Müller and Tichy’s students, by contrast, nicknamed designing in small increments
“designing with blinders” since they felt limited by not being able to look at the more
general picture.  However, the paper admits that this may be due to the students’ lack of
experience, and that incremental design did ensure rapid feedback about code.  In fact, BOD
would solve this “blinders” problem: whilst it does make much use of incremental
development, performing initial behaviour decomposition (section 5.2) allows the developer
to consider the bigger picture, something kept in mind throughout development.

Karlström and Lappo both found that the initial iteration took longer than the others due to
a lack of initial familiarity with the technology.  However, Lappo observed that frequent
iteration forced simpler designs to be created.

Keefer claims that iterative development makes the calculation of total project cost or
schedule very difficult.  I believe, however, that this conclusion is not especially relevant:
a key reason for the use of  XP is when a project which may change frequently and rapidly.
Any cost or time estimates for such a project are likely to be inaccurate, whatever the
methodology followed.

Refactoring

Rumpe and Schröder also report positively on Refactoring, its average on the not-used (0)
to strongly-used (9) scale being 7.27 and participants declaring it helpful.  Rumpe and
Schröder also hypothesise that refactoring was one of the reasons that respondents found the
cost of late changes lower in projects using XP.  However, the survey also reports that 20%
of respondents had difficulties with refactoring.

Although Bossi found that more of the development time was spent on refactoring than
coding (44% vs 37%), he reports favourably on it, noting that less code was wasted and
more code was able to be re-used.  These advantages are among those outlined by Bryson
(2001) as the reasons for revision of specifications in BOD.

The general consensus from those using XP with students was that projects were either too
small to warrant (major) refactoring or that students did not appreciate the importance of it.

Keefer argues that refactoring leads to the need for alterations to the test suites and risks
introducing further errors, and that a better solution is simply to write good code from the
start.  I consider this a slightly naïve view.  Furthermore, Keefer’s argument ignores the fact
that well-designed test suites should operate on a program’s interfaces, rather than on the
main program code.  Refactoring this program code would then not affect the test suites as
the interfaces would not change.  However, if the test suites are to remain entirely
unchanged throughout the development process then the interfaces must be correct right
from the start.

Conclusions

The most detailed evaluation considered (Rumpe and Schröder’s) gives a positive view of
both iterative development and refactoring, suggesting that BOD is right to emphasis these
aspects of development.  Although Müller and Tichy’s students were not positive about
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iterative development, I believe that the difficulties they encountered with iterative
development would be solved by BOD’s Initial Decomposition.  Similarly, whilst Keefer is
doubtful about the effectiveness of either technique, I believe that there are significant flaws
in his arguments, as explained above. 

7.3. POSH Plans

This section explores some of the issues which became apparent during my use of POSH
plans.  It covers syntax issues, improvements to sharing to reduce redundancy, POSH’s use
of parallel plan elements, and possible improvements to documentation.  The discussion
includes recommendations for changes to POSH and the plan interpreter as well as
suggestions for things plan writers themselves can do to simplify the development process.

7.3.1. Syntax

Whilst syntax issues will be largely avoided when an IDE [Integrated Development
Environment] becomes available for POSH, they still present a problem to the hand-coder
and are arguably reflective of deeper problems in some cases.

Element Names

Consider the following extract from the description of the LAP file format (Bryson, 2001;
pp. 225 - 226):

drive-element :: (<name> (trigger <ap>) <name>
[<sol-time>])

This defines the structure of Drive Collection elements such as the following from my
bodbotattack.lap  file:

((attack-enemy-with-our-flag
    (trigger ((see-enemy-with-our-flag)))
        attack-enemy-carrying-our-flag))

The problem is that elements require two names: the first is the element’s own name (not
referred to elsewhere in the plan) and the second the name of the POSH element to be fired
if the trigger evaluates to true.  This double-naming can make plan files harder to read as
they can contain many similar names, especially when the names of any nested elements are
taken into consideration.

This syntax does have the advantage that it provides a unique name for each element.  This
is an advantage in itself, and also provides greater scope for extensions (see section 7.3.2,
for example).

I suggest that, for simplification and clarity, the plan-writer adopts naming conventions.
This is not something I have made much use of, but would do so were I to write any new
plans.  For example, the names of Drive Collection elements could be identical to the names
of those components which they may trigger, but with a dc_ prefix.  The fact that under
PyPOSH drive collection elements may not trigger action primitives directly (see section
8.3.3) meant that a large number of single-item action patterns were required.  Conventions
for naming these would also help.  For my development, I often added the word “the” to the
action pattern’s name, so the pattern which executed expire-damage-info  was called
expire-the-damage-info , for example.

A further possible improvement regarding names would be checking for the existence of
plan elements at load time rather than run-time.  At present, references to non-existent
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elements only become apparent when the plan interpreter attempts to call the element, and
generates a “not callable” exception.  Checking all elements at load-time could reduce
development time, as such errors would be caught sooner.  This is especially important in
cases where setting up a situation to test the new element takes a substantial amount of time.
For example, when I had to wait for the bot to find his way to the enemy base and pick up
the flag before the new plan components for returning home could be tested.  At present,
such existence checks are done by the Lisp version of POSH, but not by PyPOSH.

Filenames

One of BOD’s development recommendations is that old plan scripts should be kept.  This
allows rolling-back to previous versions, and provide a useful guide to the development
history of a bot.  I simply named my old files bodbotattack[1].lap ,
bodbotattack[2].lap  and so on.  One possible improvement for future development
would be to use more descriptive names (e.g. to base and take flag.lap , to
base, take flag and return home.lap , flag capture and combat
response.lap ).  This would reduce the amount of time needed to find particular old
plans.  There would obviously be a trade-off between conciseness and clarity, but even
slightly more descriptive names could be useful.  Combining descriptive names with
sequential numbering could be particularly beneficial, as this would also provide a clear
sense of order and of the progress of development.

Magic Numbers

 In the current structure of POSH plans the use of limits on frequency and retries, along with
the timeouts for elements, has required much use of so-called “magic numbers”, i.e. numbers
hard-coded into the plans rather than specified as variables or constants.

The magic numbers problem is not only one of readability and maintainability but also
constrains the plan writer’s ability to express relationships between values.  For example,
the timeout of expire-the-damage-info  is very low (8 seconds) since the Drive
Collection element which calls it is written so as to occur very frequently (every 10
seconds).  Allowing variables or constants along with simple operators would allow this
relationship to be expressed: the frequency for the calling element could be set to some
variable damage-expire-frequency  and the timeout then to damage-expire-
frequency-2 , for example.

A relatively simple way to accomplish this would be with some form of pre-processing on
the files similar to that which makes C’s #define  statements possible.  This would have
the added advantage that existing plan engines would not need altering.  The pre-processed
file would not need saving to disk (this would add clutter to plan directories) but could
simply be stored in memory before being parsed as normal.  A solution using variables
would be more elegant, but would require existing plan engines to be modified.

7.3.2. Sharing and Redundancy

The structure of POSH plans could be modified to allow further sharing and to reduce
redundancy.  For example, consider the following competences, simplified versions of two
from the bodbotattack.lap  plan (points of particular interest are in bold):

(C get-to-enemy-base (minutes 10)
(goal (( at-enemy-base)))
  (elements
    (
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      (check-immediate-vicinity
          (trigger((too-close-for-path)))
              big-rotate 2)
      (run-to-base (trigger(( know-enemy-base-pos)))
          to-enemy-base)
      (find-base (trigger((reachable-nav-point)))
          walk-to-nav-point)
      (find-nav-point (trigger((succeed))) rotate 1 0)
      (wander-base (trigger((succeed)))
          wander-around)
    )
  )
)

(C go-to-own-base (minutes 10) (goal (( at-own-base)))
  (elements
    (
      (check-immediate-vicinity
          (trigger((too-close-for-path)))
              big-rotate 2)
      (run-to-own-base (trigger(( know-own-base-pos)))
          to-own-base)
      (find-base (trigger((reachable-nav-point)))
          walk-to-nav-point)
      (find-nav-point (trigger((succeed))) rotate 1 0)
      (wander-base (trigger((succeed)))
          wander-around)
    )
  )
)

These competences are almost identical, the only differences being the goal condition and
the second element (i.e. which base it needs information about).  Some method of sharing
this structure would reduced redundancy.

One possibility would be allowing competence elements to be shared by using their name
(something which is not used at all at present).  This could result in the two competences
above being rewritten to look something like the following:

(C get-to-enemy-base (minutes 10) (goal ((at-enemy- base)))
  (elements
    (
      (check-immediate-vicinity
          (trigger((too-close-for-path))) big-rotat e 2)
      (run-to-base (trigger((know-enemy-base-pos)))
          to-enemy-base)
      (find-base (trigger((reachable-nav-point)))
          walk-to-nav-point)
      (find-nav-point (trigger((succeed))) rotate 1 0)
      (wander-base (trigger((succeed))) wander-arou nd)
    )
  )
)

(C go-to-own-base (minutes 10) (goal ((at-own-base) ))
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  (elements
    (
      (check-immediate-vicinity)
      (run-to-own-base (trigger((know-own-base-pos) ))
          to-own-base)
      (find-base)
      (find-nav-point)
      (wander-base)
    )
  )
)

Where check-immediate-vicinity  etc refer to the competence elements defined in
get-to-enemy-base .

This is in fact a further example of the plan vs behaviour trade-off (e.g. section 5.3.3).  The
problem above could also be solved by using a single competence and delegating to a
behaviour the job of deciding which base the bot is currently interested in.

Priorities which vary with the value of some variable

A further area in which my plans contain redundancy is in responding to attack: The priority
of responding to attack is higher when the bot’s health is below a threshold value than when
it is  not.  In the plan this is accomplished by having two similar drive elements, the higher-
priority one including a check against the threshold.  (In fact, the lower-priority one also
checks that the bot is not focussed on attacking someone already, but this difference can be
ignored for this part of the discussion).

Some way of removing this sort of redundancy could be useful, not least because it could
make more precise differentiation easier (i.e. using a finer-grained check than just testing
against a single threshold).  One possibility would be to allow pre-processing on triggers of
the following format:

([(variant-priority <threshold> <min-limit> <max-li mit>)]
<sensor-name> <value> <predicate>)

Pre-processing on drive elements with a variant priority would result in extra drive elements
being added.  For example, consider a drive element Ψ  with the following trigger:

((variant-priority 10 10 70) health-level 30 <)

Pre-processing of this would result in copies of that drive element being inserted into the
plan, each with a slightly different trigger.  For example, an element with the following
trigger:

(health-level 20 <)

would be inserted two elements before Ψ  (thus having a higher priority than it and than the
element before it).  An element whose trigger had a value of 10 would be inserted two
elements before that.  (The value decreases in steps of <threshold>  down to a minimum
of <min-limit> ).  Similarly, elements with lower priorities would be inserted which
tested against a higher health level (up to <max-limit> ).

However, I believe that while such preprocessing would be interesting, it would only be
useful or applicable in a limited number of cases.  It would also risk making the bot’s
behaviour hard to understand, as the version of the plan the bot actually used would have
many more elements than that which the programmer could see!  There are undoubtedly
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alternative solutions to this problem which are more elegant, but I do not have time to
consider these here.  The solution proposed above may be considered a proof-of-concept.

Further possibilities could be developed to enable the sharing of more of the structure.  This
would risk decreasing the plan’s clarity, however.

7.3.3. Parallel Plan Elements

Consider the following description of the structure of Drive Collection elements (from
Bryson, 2001; p. 226):

drive-elements :: (drives (<drive-element>+)+)

The drive elements in parentheses are ordered in terms of priority.  However, the inner +
indicates that each set of parentheses may contain more than one drive element.  In this case,
these elements are taken to have equal priority and should therefore have mutually exclusive
triggers (behaviour if they do not is undefined).  Similarly, competence elements may also
be in parallel.

The astute reader will notice that this does not in fact add any expressive power to the plans:
if items have mutually exclusive triggers, then allowing (either) one to be one place above
the other in the priority list would result in the same action selections as would occur if they
were at the same priority level.

However, despite this, and despite the fact that I did not use this functionality, I believe it
is an important part of POSH which should not be removed.  The reason for this is the subtle
difference in meaning which the alternative structure conveys, thus contributing to the self-
documenting nature of the code:

• Two items having the same priority level suggests that neither is more “urgent” than
the other.  (I.e. neither requires the bot’s attention before the other).

• Two items having different priorities suggests that one is more urgent than the other.
The fact that the triggers are mutually exclusive is irrelevant at this level of
meaning.

The only downside I can envisage from keeping this distinction (apart from the fact that the
majority of Drive Collection elements will be surrounded by double parentheses) is a slight
increase in maintenance: the programmer must ensure that the triggers remain mutually
exclusive even when they are altered (either by adding or removing triggers, or by altering
the underlying senses).  However, I believe that this is not a sufficient reason to remove the
possibility for parallel elements, especially as the fact that this functionality is used
infrequently means that the extra maintenance would be minimal.

7.3.4. Improvements to Documentation

One useful improvement would be the documentation of possible trigger predicates.  The
PyPOSH documentation does state that “triggers can contain predicates and values in
addition to sensor specified. This allows the output form the trigger function to be compared
against a value with a predicate.” (Kwong, 2003; p. 34) and mentions that the default
predicate is the test for equality.  However, the other possible predicates are not mentioned.
The PyPOSH code, and my own experience, indicate that the following are usable:

Values Meaning

eq , == sense’s value equals test value
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lt , < sense’s value is less than test value

gt , > sense’s value is greater than test value

not , ! , != sense’s value is different to test value

Table 7.1 Possible Predicate Values for PyPOSH

Plans for the Lisp version of POSH may use any valid Lisp comparator.  However, this is
also not made clear by the documentation.

7.4. Testing POSH against Action-Selection Criteria

Tyrrell (1993) examines a large number of action selection mechanisms from both a
practical perspective (controlling a creature in a simulated environment) and a theoretical
one.  As part of his report, he outlines fourteen requirements which he claims such a
mechanism should meet.  In this section, I introduce a small number of these criteria and
briefly explore how well POSH action-selection meets them.  (The list of criteria adapted
from pp. 214-216 of ibid).  For brevity, only those criteria which are most interesting with
relation to this discussion are included, but I claim that those left out are met by POSH.

7.4.1. Dealing with all types of sub-problem

For brevity, I will not explore all Tyrrell’s sub-problem types here (I believe that POSH can
handle all these problem types, incidentally).  Interested readers are directed to section 7.2
of ibid.  However, a number of problem types are worth discussion:

Homeostatic sub-problems concern internal variables which should be kept at a certain
value or within a certain range.  This has similarities to goal-driven behaviour, discussed in
section 6.6.5.  A goal- rather than event-driven agent would arguably provide a closer fit to
ths sort of problem.  However, there is no reason why a BOD agent could not handle such
problems.  In fact, the bodbot does deal with such a problem, that of keeping its health
sufficiently high.  For example, the priority of responding to attack is different depending
on the bot’s health level.  Similarly, the bot will only pick up a medical kit if his health is
low, but getting it will become a high priority in this case.

Periodic problems are those whose importance rises and falls with a regular rhythm (e.g.
sleeping).  A naïve approach might be to attempt this sort of control using the frequency
attribute of drive collection elements although, as section 5.3.6 suggests, this would not be
very effective.  However, alternative solutions would be possible, using comparison
predicates in triggers, for example.  (I.e. “if time of day greater than x and less than y ...”.)
Section 7.3.2 outlines a potentially more optimal approach to this sort of problem in its
discussion of priorities which vary with the value of some variable.

Proscriptive problems require that certain actions not be carried out (e.g. that the agent
avoids walking into a lake of lava).  There is no overarching mechanism in BOD which
prevents actions from being executed.  However, such things could arguably be achieved
using POSH’s hierarchical structure.  For example, consider the problem that an agent
should not shoot when a wall is in front of him, even if he is “facing” the enemy (i.e. the
enemy is on the other side of the wall).  Initially the component triggered could just be an
action primitive which communicates with Gamebots.  A more complex version of the plan
could easily replace this with a reference to a competence which first checks that the agent
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is not facing a wall and then shoots if this condition is met8.  In short, plans and triggers can
be designed such that actions will not run in certain cases.

7.4.2. Contiguous action sequences

“Contiguous action sequences” refers to the idea that once an agent has started on one
sequence of actions, the likelihood of changing to another sequence should be reduced.
Tyrrell claims that this is because of the cost of changing (i.e. of moving to a situation where
some other goal can be successfully achieved).  For example, once an animal has started
drinking, it should be less inclined to go after nearby food as it would  be “wasting” time in
getting to the food which could be used for the guaranteed reward of continued drinking.
Rather, it should wait until the need for food is higher than that which might normally
trigger a response, or until the need for water is particularly low.

There are few parallels to this in Unreal Tournament (medical kits are picked up as soon as
they are touched and provide instant health improvement, for example).  However, one
situation which is relatively similar is that of a defender finding a well-secluded vantage
point: once it is found, the bot should be reluctant to abandon it in case an enemy approaches
while s/he is “in the open” and will have less of an advantage in terms of location.

POSH does not provide this emphasis on existing actions (not doing so arguably helps it be
more reactive), although the slip-stack mechanism (see section 2.4.5) is similar in some
respects.  However, I believe that the number of occasions in which such emphasis  is
relevant is sufficiently small that such behaviour can be accomplished with triggers and
Action Patterns.  Furthermore, I believe that a deep-rooted emphasis on contiguous action
sequences is too broad an approach: although achieving such effects with triggers is more
complicated, it is also more precise.

7.4.3. Compromise candidates

Tyrrell (1993; p. 216) describes the idea of compromise candidates as “the need to be able
to choose actions that, while not the best choice for any one sub-problem alone, are best
when all sub-problems are considered simultaneously”.  An example from the UT domain
could be an unarmed bot taking a less direct route to the enemy’s base as it increases his
chances of finding a weapon on the way, or running away from an assailant and towards a
medical kit rather than just taking the route which will put the most distance between him
and his attacker.  This sort of thing is far more complicated in UT than in Tyrrell’s
simulation (for example, Tyrrell’s simulation takes place in a discrete grid with discrete
timing).  The selection of compromise candidates is still possible in theory as any part of the
plan may include triggers used in any other part of the plan, and primitives may examine any
of the bot’s state which they need.  However, in practice the selection of compromise
candidates would run into problems:

• Considering all, or even most, of the other candidates would result in long and
unwieldy triggers.

• Providing plan elements capable of producing a number of possible compromise
candidates would result in unreasonably long competences.
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Although extending the action selection mechanism with an ability to choose compromise
candidates could possibly help with these problems, I believe that the primary difficulty is
the complexity of the domain.  This means that enabling any action selection mechanism to
choose compromise actions would be immensely difficult (not least because it would require
the mechanism to have a huge amount of knowledge about the domain, violating
encapsulation rules).

These problems could be avoided by producing more complex behaviours which examined
state concerning other actions as well as that concerning the action which they wished to
perform.  Such information could allow the final action produced to be chosen with other
candidates in mind.  This would be possible (and could be very effective in some cases) but
is not a general-purpose solution.

Overall, I believe that it is unreasonable to expect a general-purpose compromise-finder for
a domain as complicated as Unreal Tournament.

Transitions

A loosely-related area to that of interactions between behaviours to produce a compromised
outcome is that of transitions, an idea introduced by Sengers (1998).  Sengers argues that
current agent architectures result in agents which are “schizophrenic” (p. 37).  This term is
used to describe problems which occur as a result of attempting to reintegrate atomized
agent behaviours.  For example:

• Agents attempting to undertake two incompatible behaviours simultaneously (e.g.
fighting and sleeping).

• Agents switching between behaviours in a way which appears unnatural.

• Agents rapidly switching between behaviours rather than actually achieving
anything, or refusing to change behaviour when circumstances required it.

• Agents rapidly switching back and forth between two behaviours.

(These examples adapted from ibid, pp. 38-39.)  The primary way in which Sengers suggests
such problems be combatted is via a change in thinking during design: considering how an
agent appears to an observer should be central to agent design.  This is an interesting and
novel approach which time unfortunately does not permit discussion of here.  (Interested
readers are encouraged to read Sengers’ thesis.)  However, one of the concrete examples of
this principle is the idea of transitions: actions which occur during the switch between two
behaviours.

As with compromise candidates, the POSH action-selection mechanism does not contain
sufficient meta-level controls to implement such transitions at a high-level.  Rather, they
would need to be coded either in terms of more complex triggers and longer competences,
or at the level of primitives themselves.  Allowing more control over the meta-level
procedures of action selection could usefully make POSH more extensible in this area and
others, but would risk encouraging dilution and abuse of the mechanism.  Alternatively,
transitions could potentially be accomplished by means similar to those used by Bryson and
Thórisson (2000).  They combined POSH action selection with the Ymir architecture
(Thórisson, 1996) to link high-level action selection with lower-level control over actions
such as gestures and body language.  Even without such methods, however, I believe that
POSH has other means of addressing all but the second of Sengers’ concerns listed above.
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7.4.4. Conclusion

In conclusion, I believe that all of Tyrrell’s criteria are met to some extent by POSH.  POSH
could deal better with periodic goals but this is simply a matter of conciseness – triggers can
be designed which are sufficiently powerful for this.

POSH is not able to choose compromise candidates.  However, I believe that for a domain
as complex as Unreal Tournament this is an unrealistic requirement and, furthermore, that
sufficient “compromised” choices can be made by behaviours in the specific cases where
they are applicable.  Similarly, POSH does not have built-in support for contiguous action
sequences (although keeping items on the scheduler is arguably similar) but I again believe
that this is needed infrequently enough that accomplishing it with triggers is a reasonable
response.
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8. PyPOSH: Problems, Alterations, Corrections and
Recommendations

During the implementation stage of my project, I made great use of Kwong’s (2003)
PyPOSH framework (see section 2.6).  In doing so, I discovered and corrected a number of
problems with it.   I also made some changes to the framework to make it more powerful and
better suited to my needs.  These corrections and changes are discussed in some detail in this
section to facilitate understanding of the code and to assist anyone who wishes to compare
the original  version with the modified one.  Furthermore, a number of problems I
encountered but was not able to correct are also discussed.

8.1. Multiple Behaviour Files

The original version of PyPOSH only allowed action and sensory primitives to be specified
in a single file.  This is inconsistent with POSH’s principle of decomposition of functionality
into behaviour modules (see section 2.3) and makes effective development more difficult.

I therefore modified PyPOSH so that behaviours could be specified as multiple files.  This
involved a number of changes:

• Dictionaries for actions and senses were added back into posh_agent.py  (lines
89 & 90), having previously been commented out.  This provided a central reference
point for the primitives, despite the fact that they were now in multiple files.

• The functions get_act  and get_sense  (again in posh_agent.py ) were also
modified.  The original versions called their equivalent function in the single
behaviour object to retrieve the relevant primitive.  The new versions looked in the
new dictionaries instead.

• Similarly, the functions add_act  and add_sense  now add details of primitives
to the central dictionaries rather than passing them on to the behaviour object.

• The make_behavior  function of the main agent file (in my case, bodbot.py )
was originally defined to return a single behaviour object.  I modified it to return a
list of behaviour objects.  This meant that self.behavior_instance  in
posh_agent.py  then needed initialising to be an empty list rather than None
(Python’s null type), and various other pieces of code which used it needed slight
modification.

8.1.1. How to Write a Behaviour Module

As a means of further illustrating the multiple-behaviour-file modification to PyPOSH, this
section explains the key steps involved in writing a behaviour module for an agent.

Creating the Class

1. Create a new class definition, extending the class Base .

2. The __init__  function should call the ancestor’s initialisation function (Base.
__init__(self, **kw) ) and should set up any state.  It should also call the
functions you have written for registering primitives (see below).
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3. Include the bind_bot  function:

def bind_bot(self, bot):
        self.bot = bot

4. Write functions for your action and sensory primitives.  Note that actions must
return True to indicate successful completion and False otherwise.  (See the
examples in section 5.3.3.)

5. Write functions to register your primitives.  These should call self.agent.
add_act  for each action and self.agent.add_sense  for each sense.  These
functions take two arguments: a string which will be used to refer to the primitive
in the plan, and a reference to the relevant function.

Initialising the Class

An instance of the behaviour class will need to be created by the make_behavior
function in your top-level agent file (in my case, bodbot.py ).  This function should create
a class instance, passing it any relevant parameters.  One required parameter is the agent.
This should be passed as a keyword parameter (i.e. agent = agent ).  agent  is one of
make_behaviour ’s parameters, so there is already a reference to it.

Once this is done, the instance’s bind_bot  method should be called, passing it an instance
of Bot_Agent  which in turn should be created in as part of make_behaviour .  All
behaviour instances use the same bot.  The connect  function of this bot needs calling as
part of make_behaviour , but again only needs doing once, regardless of how many
behaviour classes are instantiated.

Finally, the new behaviour instance should be appended to the behaviour list which
make_behaviour  returns.

8.2. Problems Corrected

I discovered two quite important bugs in the PyPOSH code.  One affected timeouts for Drive
Collection elements and the other retry limits for competence elements.

8.2.1. Timeouts for Drive Collection Elements

The code to test the frequency (lines 922 and 923 in posh_agent.py ) originally
contained the following:

if (element.frequency <= 0) or \

(element.frequency > (time - element.last_fired)):

However, time  is a Python module and thus cannot be subtracted from.  I replaced time
with timestamp , a variable which had previously ben instantiated (in the original version
of the code) to hold the number of seconds since the UNIX epoch (line 912).

This modification meant that the code did not crash.  However, the element with the
frequency limit was then never called.  The reason for this was the greater-than operator in
the test (element.frequency > (timestamp - element.last_fire d)) ,
which should instead have been less-than.  Fixing this solved the problem.
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8.2.2. Retry Limits for Competence Elements

Attempting to use a retry limit for a competence element resulted in the following error:

  File "C:\programming\Python\programs\fyp\pyposh\
posh_core.py", line 701, in fire_cel

    competence_element.retries =
competence_element.retries - 1

TypeError: unsupported operand type(s) for -: 'str'
and 'int'

The reason for this problem could be found in posh_agent.py   at line 624:

retries = elements[3]

The variable elements  contains strings parsed from the plan file.  Therefore, the line
needed changing to the following:

retries = int(elements[3])

Doing this solved the problem.

8.3. Other Issues and Suggestions

8.3.1. Debugging

I was unable to use the Python debugger on PyPOSH.  This may have been due to my
inexperience with Python, but I cannot be sure.  This section illustrates the problem
encountered.

The debugger is run using the run  function of the pdb  object.  Thus my call to the debugger
was as follows:

pdb.run(pyposh)

pyposh  is the file which is run to launch the PyPOSH environment and interpreter.  Note
that the file as a whole is run, rather than a specific function from it.  I believe that this may
be the reason for the error I encountered:

Traceback (most recent call last):
  File "<pyshell#8>", line 1, in ?
    pdb.run(pyposh)
  File "C:\programming\Python\lib\pdb.py", line 979 ,
in run
    Pdb().run(statement, globals, locals)
  File "C:\programming\Python\lib\bdb.py", line 347 ,
in run
    cmd = cmd+'\n'
TypeError: unsupported operand type(s) for +:
'module' and 'str'

However, I cannot be certain of the reason for this error and so it is an area for future work
(see section 9.2).

8.3.2. Profiling

I was also unable to use the profiler successfully on PyPOSH.  I set it up to profile the
calling of app.MainLoop()  in pyposh.py , but this seemed only to record details of the
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execution of functionality concerned with the PyPOSH GUI.  I believe that this may be
because code is loaded dynamically when agents are run, but again I cannot be sure.

In an attempt to combat this, I tried to profile the code which is executed when the agent is
“brought to life”, by using the following command:

profile.run('self.agent.execute_thread()',
'profile.out')

However, the profiler uses the exec  statement to run code dynamically, and that cannot
understand the reference to self  as self  is a local variable.  Therefore, this was also
unsuccessful (it did not even run).

8.3.3. Issues with Primitives

PyPOSH does not allow Drive Collection elements to call action primitives directly, but
requires them to be contained within single-element Action Patterns instead.  This is not a
restriction derived from the original POSH specification but rather is an extra constraint.
I have not corrected this myself, but would suggest that it is considered in any further
development of PyPOSH.

8.4. Distribution

A number of other projects are making use of Unreal Tournament and POSH / PyPOSH and
for this reason I was asked to create a distribution containing the current version of my bot
and  my modified PyPOSH files.  This has been circulated among a number of researchers
and academics in both Europe and North America.  The readme file I produced for this
release is given in Appendix D.
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9. Conclusions

This chapter begins by summarising the achievements of this document.  It then highlights
the document’s limitations, and gives suggestions for future work.  Finally, a summary of
my evaluation of BOD is provided. 

9.1. Summary of Achievements

9.1.1. A Discussion of Architectures

This dissertation has summarised Bryson’s (2001) Behaviour Oriented Design [BOD].  The
key features, both methodological and architectural (the POSH architecture) have been
introduced, explored and discussed.  A number of other architectures for Artificial
Intelligence and Agent Development have also been introduced, discussed and compared
against.  These architectures have included Soar (Lehman et al. 1996), EPIC (Kieras and
Meyer, 1997), ACT-R (ACT-R Research Group, 2004a), the Subsumption Architecture
(Brooks, 1986), JACK (Howden et al., 2001), agent modelling via UML and Rational Rose
(section 6.2), and Kinny et al.’s (1996) Beliefs-Desires-Intentions model

9.1.2. The Bodbot Project

This dissertation has explored the bodbot project, which includes the most complex  POSH
plan file ever published (and equally, a large number of behaviour modules and primitives).
The development of this project has been discussed, and BOD’s part in this process
analysed.  The dissertation has demonstrated the resulting behaviour of the created bot,
further illustrating the workings of POSH and the development undertaken for the bodbot
project.

9.1.3. An Evaluation of BOD, and Improvements to PyPOSH

BOD has been evaluated both in its own right and comparatively in light of significant
research into existing architectures and methodologies.  Suggestions for improvements have
ben identified, as have BOD’s particular strengths.  The PyPOSH Python implementation
of POSH (Kwong, 2003) has been discussed and further developed, improved and corrected.

9.2. Future Work, and Limitations of this Dissertation

Whilst this dissertation has accomplished a lot, there is still much which could be improved
and covered in more detail, and many possibilities for further work.  This section introduces
a number of the possibilities for future work.

Improvements to the bodbot fall into two categories: significant developments and tweaks.
Both are important to create a better CTF player.

9.2.1. Significant Developments

Meeting the Specification

Whilst the developed bot provided many opportunities for analysis and evaluation, and
proved an interesting (although not particularly challenging) opponent, it requires further
development to meet the original specification as outlined in Appendix B.

The most significant lacking is that the plan (and associated primitives) for a defender have
not been created.  Creating a defender agent would be useful in a number of ways:
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• It would highlight general bot-development challenges and problems not
demonstrated by the attacker.

• It would make the development of teams and bot-vs-bot simulations (see below)
more feasible.

• It would be evidence of the usefulness of the fact that two different bots (i.e.
attacker and defender) can be created from one set of primitives.

There are also a number of other ways in which the bot needs to be developed to meet the
provided specification.  Specifically, the following high-level goals and drives require
attention:

• Avoid incoming projectile

• Pick up nearby ammunition (if have none)

• Attack enemy who is near our flag

• Find medical kit, weapon or ammunition (as required).

The drive “Avoid incoming projectile” would be particularly interesting, as that would
require the new version of the Gamebots interface to be used (see section 5.3.4).

There are also a number of other minor discrepancies between the created bot and the
specification which, for brevity, I will not list here.

Teams and Bot-vs-Bot Challenges

BOD’s suitability for Multi-Agent Systems [MAS] has not been tested in great detail (but
see Bryson, 2003).  Using the plan created (ideally in conjunction with a “defender” plan)
to control teams of bots could be very enlightening, not least in the possibilities it would
open up for communication between agents.  Similarly, observing bodbots playing against
each other would be very interesting and provide a forum for testing the bot in novel ways.

Internal Maps

I believe that the bodbot could be far more effective were it to create an internal map as part
of its state.  Among other things, this would address the problem that Gamebots provides no
stimulus to represent “seeing” a wall – the bot only knows about walls when it walks or is
pushed into them.  An annotated map of the type described by Laird (2005; see Appendix
D) would be especially useful in the creation of a tactical bot.  Potential annotations could
include:

• Paths from and to various useful points, even including routes where there are no
navpoints.

• Key doorways and tunnels, to help defenders identify vantage points.

• Points where weapons, ammunition and health kits appear.

• Common routes taken by opponents, and common hiding places and vantage points
used by the other team.

• Routes worth avoiding (e.g. narrow tunnels, exposed areas or places where the risk
of long falls or falling into lava is particularly high).

• Vantage points used by the defenders on the bot’s own team, to help it identify how
likely an assailant is to escape and so the priority of chasing him/her.
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The above are just a few examples, experience and testing would probably reveal many
more.

9.2.2. Tweaks

Although listed as a “tweak” as it would be relatively quick to fix, the fact that some
updating functions still run in parallel with actions (thus causing exceptions and errors,
see section 5.3.5) is quite a major problem which should be corrected as a priority.

With some important exceptions (e.g. navpoints), the current bot does not make much use
of the “reachable” attribute  sent when it sees objects.  The reason for this has been that
it often seems to be set to false when it should be true.  However, this should be tested more
extensively, and the information made use of.  For example, when the bot decides whether
to run towards a flag on the ground.  Like other perception problems, this “reachable
problem” could be due to the skill setting of the bot.  However, I have not had time even for
preliminary tests of this hypothesis.

The bot does not seem very good at noticing enemies carrying its flag (see section 4.2.2).
This problem should be examined in more detail.  In particular, the theory that the UT skill
level affects this (section 4.2.2 again) should be tested.

The theory that a higher skill level improves the bot’s ability to notice navigation points
should also be tested, and modifications made to the behaviour as required to maker the most
of the improved perception.  (See section 5.3.4).

The user should be able to specify the team that the bot is on.  This would involve
modification of the parameters to make_behaviour  (in bodbot.py ).  As with
responding to incoming projectiles (see above), this would involve use of the new version
of Gamebots.

The list of visited navigation-points which the bot maintains should instead be a dictionary
with navpoints’ locations as its keys.  This should make calculating the least-visited navpoint
(see section 5.3.3) a far less expensive process.

As discussed in section 4.2.3, there are occasions when the bot keeps looking at an attacker
whilst continuing to move around the level, but fails to keep shooting at him / her.  This
sort of problem should be fixed, perhaps by resending the SHOOT message if it has not been
already sent more than once.

The problem with corrupt Gamebots data demonstrated in section 5.3.4 could be
examined.  First, the new version of Gamebots could be tested to see if the problem still
occurs.  If it does, the code could probably be improved to detect the corrupt data (as the
corruption results in a string being present where an integer is expected) and the response
ignored.

9.2.3. Further Evaluation and Development of BOD

The evaluation of BOD performed as part of this document is a good start, but there is still
much more which could be done.  For example, more comparisons with other architectures
could be carried out.  Comparisons informed by experimentation would be particularly
valuable (i.e. attempting to develop the same bot in two different architectures) as that is
something missing from this document.

I concentrated primarily on evaluating the methodological parts of BOD by experience and
by comparison with formal methodologies.  It could be informative to analyse the
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development processes of some agent-development projects which did not use a formal
methodology.

This document has made a number of suggestions for improvements to the sharing of plan
elements both within and across plans (e.g. section 7.3.2).  These improvements should be
implemented and tested.  Implementing these by pre-processing on plans would mean that
the existing POSH interpreters would not need modification.

Chapter 8 details improvements to and problems with the PyPOSH version of POSH.
Similar analysis of other implementations of POSH (e.g. the Lisp version) would be useful,
not least in informing the development of new implementations9.

9.2.4. Other Work

As discussed in sections 8.3.1 and 8.3.2, I was unable to use the Python debugger or profiler
with PyPOSH.  Further attempts to get these tools to work successfully with PyPOSH would
be very useful.  For instance, I was unable to determine precisely why the bodbot spent so
long doing nothing at the start of some runs; this sort of problem would be easier to identify
with a working profiler and debugger.

The BOD methodology recommends the use of profiling, debuggers and version control
software.  The fact that I did not use any of these is a weakness of my evaluation.  (Version
control software was not used as I determined the learning curve to be too steep for the
perceived benefits.  I reached this conclusion after considering the quality and quantity of
documentation available, and the fact that I already had previously devised manual version
control procedures.)

9.3. Summary of Evaluation

BOD has been evaluated in light of both research and experience, and a number of key
points have been identified in terms of both methodology and architecture.

9.3.1. Methodology

The detail BOD provides about the development process is definitely useful, and an
improvement on that offered by most other architectures studied.

In terms of the initial stages of development, BOD’s emphasis on what is done rather than
what is known is very useful.  However, the process BOD identifies could be improved in
many cases by a slight re-ordering of the steps of the analysis (section 6.3).  With regard to
the main development process, BOD greatly facilitates evolutionary, incremental
development and enables existing elements to be changed easily.  By comparison,
architectures such as Soar, ACT-R and the Subsumption Architecture bring about many
complex dependencies between elements, making evolutionary development more difficult.
The lessons learned from projects using Extreme Programming (section 7.2.1) suggest that
BOD is right to emphasis iterative development and revision of specifications.

9.3.2. POSH Action Selection

The fact that BOD provides an action selection mechanism at all is a positive step.  A
number of approaches require manual coding of action selection.  POSH’s hierarchical
nature and the ability to set limits on frequency and retries is also useful, whilst the simpler
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relationships between elements (see previous section) make debugging easier.  There are
cases where the ability to consider utility (Taatgen et al., in press) would be useful when
choosing between elements, however (section 6.6.2).  While many approaches are much
more goal-directed than POSH, I claim that this reliance on goals can in fact be an
unnecessary and even confusing abstraction (section 6.6.5).  Looking at Tyrrell’s (1993)
criteria for Action Selection Mechanisms, I claim that POSH meets all of them to some
extent (section 7.4).

One area in which POSH could be improved is that of robustness, e.g. how the system copes
with the failure of a plan element or primitive.  This weakness becomes apparent when
comparing with the Subsumption Architecture (section 6.8.2).

9.3.3. Plan Files

The ability use different plans to generate radically different agents from one set of
behaviour modules gives BOD much power.  However, the ability to share elements across
plan files could be a useful simplification and is not currently supported.  Further sharing
within plan files could also be useful, although the trade-off between redundancy and
readability is very important here (e.g. section 7.3.2).  The development of POSH plans can
be made easier by the adoption of naming conventions (section 7.3.1).

9.3.4. Overall Summary

Overall, I believe that BOD stands up well to scrutiny: whilst there are areas for
improvement, these do not detract significantly from the fact that this is a very useful and
powerful methodology, being both scalable and applicable to a wide range of situations.
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Appendix A: Sample Plan Files
The plan files listed here are those demonstrated in Chapter 4.  Note that the plans shown
here are merely a representative sample of those created during the development process:
many more plans were created than those shown here.

The format of plan files is given in Bryson (2001; pp. 225 - 226).  Note also that semicolons
(; ) begin comments which last until the end of the line.  Furthermore, since some of these
plans were adapted during the writing of Chapter 4 to make the given scenarios more
informative, I have not included header information (e.g. date of creation).

Walking To Navigation Points

(
  (C wander-around (minutes 10) (goal((see-player)) )
    (elements
      ((stuck (trigger ((is-stuck))) avoid))
      ((pickup (trigger ((see-item))) pickup-item))
      ((walk-around (trigger ((is-rotating False)))  walk))
    )
  )
  
  (AP avoid (minutes 10) (stop-bot rotate then-walk ))

  (C then-walk (minutes 10) (goal((is-walking)))
    (elements
      ((try-walk (trigger ((is-rotating False))) wa lk))
    )
  )
  
  (C get-to-enemy-base (minutes 10) (goal ((at-enem y-base)))
    (elements
      (
        (find-base (trigger((reachable-nav-point)))
            walk-to-nav-point)
        (wander-base (trigger((succeed))) wander-ar ound)
      )
    )
  )
  
  (RDC life (goal ((fail)))
      (drives
        ((hit (trigger((hit-object)(is-rotating Fal se))) avoid))
        ((to-enemy-base (trigger((succeed))) get-to -enemy-base))
      )
  )
)

A Greater Awareness of Flags

(
  (C wander-around (minutes 10) (goal((see-player)) )
    (elements
      ((stuck (trigger ((is-stuck))) avoid))
      ((pickup (trigger ((see-item))) pickup-item))
      ((walk-around (trigger ((is-rotating False)))  walk))
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    )
  )
  
  (AP avoid (minutes 5) (stop-bot rotate then-walk) )

  (C then-walk (minutes 10) (goal((is-walking)))
    (elements
      ((try-walk (trigger ((is-rotating False))) wa lk))
    )
  )
  
  (C get-to-enemy-base (minutes 10) (goal ((at-enem y-base)))
    (elements
      (
        (find-base (trigger((reachable-nav-point)))
            walk-to-nav-point)
        (find-nav-point (trigger((succeed))) rotate  10)
        (wander-base (trigger((succeed))) wander-ar ound)
      )
    )
  )
  
  (AP go-to-own-base (minutes 10) (to-own-base))
  (AP go-to-own-flag (minutes 10) (to-own-flag))
  (AP go-to-enemy-flag (minutes 10) (to-enemy-flag) )
  
  (AP attack-enemy-carrying-our-flag (minutes 20)
      (shoot-enemy-carrying-our-flag
       run-to-enemy-carrying-our-flag))
  
  (RDC life (goal ((fail)))
      (drives
        ((pickup-our-flag-from-ground
            (trigger ((our-flag-on-ground))) go-to- own-flag))
        ((pickup-enemy-flag-from-ground
            (trigger ((enemy-flag-on-ground))) go-t o-enemy-flag))
        ((attack-enemy-with-our-flag
            (trigger ((see-enemy-with-our-flag)))
                attack-enemy-carrying-our-flag))
        ((take-enemy-flag-from-base
            (trigger((enemy-flag-reachable)
            (have-enemy-flag False)))
                go-to-enemy-flag))
        ((hit (trigger((hit-object)(is-rotating Fal se))) avoid))
        ((go-home (trigger((have-enemy-flag))) go-t o-own-base))
        ((to-enemy-base (trigger((succeed))) get-to -enemy-base))
      )
  )
)

Responding to Attack

Note the commented lines for avoiding projectiles – see section 5.3.4.

(
  (C wander-around (minutes 10) (goal((reachable-na v-point)))
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    (elements
      ((stuck (trigger ((is-stuck))) avoid))
      ((walk-around (trigger ((is-rotating False)))  walk))
    )
  )
  
  (AP avoid (minutes 5) (stop-bot rotate then-walk) )

  (C then-walk (minutes 10) (goal((is-walking)))
    (elements
      ((try-walk (trigger ((is-rotating False))) wa lk))
    )
  )
  
  (C get-to-enemy-base (minutes 10) (goal ((at-enem y-base)))
    (elements
      (
        (check-immediate-vicinity
            (trigger((too-close-for-path))) big-rot ate 2)
        (run-to-base (trigger((know-enemy-base-pos) ))
            to-enemy-base)
        (find-base (trigger((reachable-nav-point)))
            walk-to-nav-point)
        (find-nav-point (trigger((succeed))) rotate  10)
        (wander-base (trigger((succeed))) wander-ar ound)
      )
    )
  )
  
  (C go-to-own-base (minutes 10) (goal ((at-own-bas e)))
    (elements
      (
        (check-immediate-vicinity (trigger((too-clo se-for-path)))
             big-rotate 2)
        (run-to-own-flag (trigger((our-flag-reachab le)))
            to-own-flag)
        (run-to-own-base (trigger((know-own-base-po s)))
            to-own-base)
        (find-base (trigger((reachable-nav-point)))
            walk-to-nav-point)
        (find-nav-point (trigger((succeed))) rotate  10)
        (wander-base (trigger((succeed))) wander-ar ound)
      )
    )
  )
        
  
  (AP go-to-own-flag (minutes 10) (to-own-flag))
  (AP go-to-enemy-flag (minutes 10) (to-enemy-flag) )
  
  ; no point having these stay on the stack for
  ; long as they get called very often anyway
  (AP expire-the-damage-info (seconds 8) (expire-da mage-info))
  (AP expire-the-focus-info (seconds 10) (expire-fo cus-info))
  (AP expire-the-reachable-info (seconds 6)
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      (expire-reachable-info))
  (AP expire-the-projectile-info (seconds 2)
      (expire-projectile-info))
  
  ; may need a better goal, but timeout should do i t for now
  (C respond-to-attack (seconds 10) (goal ((fail)))
    (elements
      (
        (attack-visible-attacker
            (trigger ((taken-damage-from-specific-p layer)))
                respond-to-visible-attacker)
        (find-attacker (trigger ((succeed))) try-to -find-attacker)
      )
    )
  )
  
  (AP respond-to-visible-attacker (seconds 4)
      (set-attacker face-attacker shoot-attacker))
  
  ; may need a better goal, but timeout should do i t for now
  (C try-to-find-attacker (seconds 3) (goal ((fail) ))
    (elements
      (
        (found-attacker (trigger ((see-enemy)))
            respond-to-visible-attacker)
        (spin (trigger ((succeed))) big-rotate 1)
      )
    )
  )
  
  (AP attack-enemy-carrying-our-flag (minutes 20)
      (shoot-enemy-carrying-our-flag
      run-to-enemy-carrying-our-flag))
  (AP get-medkit (minutes 1) (runto-medical-kit))
  (AP get-weapon (minutes 1) (runto-weapon))
  
  (RDC life (goal ((fail)))
      (drives
        ;((expire-our-projectile-info (trigger ((su cceed)))
            ;expire-the-projectile-info (seconds 3) ))
        ((expire-our-damage-info (trigger ((succeed )))
            expire-the-damage-info (seconds 10)))
        ((expire-our-reachable-info (trigger ((succ eed)))
            expire-the-reachable-info (seconds 20)) )
        ((expire-our-focus-info (trigger ((succeed) ))
            expire-the-focus-info (seconds 30)))
        
        ((pickup-our-flag-from-ground
            (trigger ((our-flag-on-ground))) go-to- own-flag))
        ;will be something particular if required i n future
        ;((avoid-being-shot (trigger ((incoming-pro jectile)))
            ;wander-around))
        ((pickup-enemy-flag-from-ground
            (trigger ((enemy-flag-on-ground))) go-t o-enemy-flag))
        ((pickup-medkit-as-health-low
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            (trigger ((see-reachable-medical-kit)
                (own-health-level 30 <))) get-medki t))
        ((pickup-weapon-as-unarmed
            (trigger ((see-reachable-weapon) (are-a rmed False)))
                get-weapon))
        
        ((respond-to-attack-since-health-low
            (trigger ((taken-damage) (own-health-le vel 30 <)
                (armed-and-ammo))) respond-to-attac k)) 
        ((attack-enemy-with-our-flag
            (trigger ((see-enemy-with-our-flag)))
                attack-enemy-carrying-our-flag))
        ((take-enemy-flag-from-base
            (trigger((enemy-flag-reachable)
                (have-enemy-flag False))) go-to-ene my-flag)) 
        ((respond-to-attack-health-not-low
            (trigger ((taken-damage) (armed-and-amm o)
            (is-responding-to-attack False)))
                    respond-to-attack))
        ((hit (trigger((hit-object)(is-rotating Fal se))) avoid))
        ((go-home (trigger((have-enemy-flag))) go-t o-own-base))
        ((get-yourself-to-enemy-base (trigger((succ eed)))
            get-to-enemy-base))
      )
  )
)
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Appendix B: Initial Behaviour Decomposition
High-Level Descriptions

For simplicity, descriptions (and sequences) are grouped under two roles – attacker and
defender.  In reality, as alluded to below, bots will take on different roles at different times
as circumstances require.  However, it is useful to have an explicit role at the start of the
game as there are not yet any circumstances to react to and the bot needs to know what to
do: we do not wish all bots to run to the enemy base and neither do we wish none of them
to.

Furthermore, the plans below assume no communication between bots as, at this stage, it is
not certain whether time will permit a team of agents to be created or simply a single agent.
It is also assumed that agents will not have an internal map of the play-area.  Again, this will
be added (and thus plans updated) if time permits.

Attackers should make their way to the enemy base, capture their flag and return to their
own base.  They will need to able to discover where the enemy base is, and should be able
to deal with (using either stealth / avoidance or firepower) any members of the opposing
team whom they encounter.  In some cases, this may involve a temporary change in role:

If an attacker encounters an enemy who is carrying a flag from the attacker’s team, then he
(the attacker) should switch to the defender role, and thus attempt to kill the enemy and
retrieve the flag.  If the attacker is carrying the enemy flag and his health is dangerously low,
and there are other teammates around who could attack the enemy instead, then he should
run away as were he to be killed, he would drop the flag and the enemy could possibly
retrieve it.

Defenders should either wander around near their flag or, if a suitable nearby vantage point
is found (for example, a doorway through which an attacker must enter), move to it.  Upon
encountering an enemy player, they should begin to attack him (chasing him if necessary)
and prevent him from reaching the flag by moving between him and it as well as just
shooting.  If a number of enemies are encountered, the defender should prioritise attacking
those who are attacking him most aggressively, and those at highest risk of reaching the flag.
If a flag-carrying enemy begins to return to his base then he should be pursued and attacked
as far as required – there is nothing left at the bot’s own base to defend!

If a bot (in either the role of defender or attacker) sees the enemy’s flag lying on the ground,
he should pick it up and attempt to return to his base.

All bots need to consider their own health and resources, collecting weaponry, ammunition
and medical supplies as required.  Specifically, bots should gather weaponry and
ammunition at the start of the game, to enable them to deal with enemies they meet whilst
carrying out their roles.

Sequences of Actions

Capture Flag: collect weaponry and ammunition, move to the enemy base, capture their flag
(i.e. move to it) and return to own team’s base.

Defend Flag: (no enemies present) collect weaponry and ammunition, wander around near
base or near vantage point.

Defend Flag (Enemy/ies present): determine highest priority enemy (see above), if chosen
enemy too far away or too near flag, move nearer, shoot enemy repeatedly.
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Encounter Enemy not carrying team’s flag (attacker): If enemy has noticed us and there’s
only one enemy and health above a certain threshold, attack enemy.  Otherwise, run towards
target.

Respond to enemy attack: If don’t know who attacker is, do nothing.  Otherwise, face
attacker (and keep facing him/her if move elsewhere) and shoot.

Attack enemy: Run towards the enemy, shooting him/her.

Collect inventory item (e.g. weaponry / ammunition / health): if we are not being attacked,
wander around near walls, run to required item if seen.  Otherwise, run away until no longer
being attacked.  If see required item while running, collect it.

Run away: run backwards in a slight zig-zag, continuing to shoot at any enemy which is
shooting us.  If hit wall, turn 90E clockwise and continue.  If turning 90Eclockwise  means
we are running in the direction of the enemy, turn anticlockwise instead.

Sensory Primitives

The bots will need to be able to see flags and identify their location.  They will need to be
able to detect walls when wandering around.  Enemies will need to be seen and their position
relative to other objects (e.g. the flag, the bot itself) identified.  Furthermore, the bot will
need to be able to identify whether the enemy has noticed him, whether a given enemy is
carrying the bot’s flag  and whether a particular enemy is shooting at him.  Determining the
highest-priority enemy to shoot is a further required sense.

The bot will need to be able to see objects such as medical kits, ammunition, weapons and
body-armour.

A sense of the bot’s own health level, ammunition level and weapons held / currently in use
is required.  The bot is required to know whether or not he is currently being shot at.

Action Primitives

The bot needs to be able to run and walk.  The bot needs to be able to shoot at a particular
target.  The bot needs to be able to collect items (although this is in fact simply a case of
running or walking into them).  The bot needs to be able to turn both clockwise and
anticlockwise.

Required State

State is required to store the position of the bot’s own base and the enemy’s base.  State
should be provided to give the bot’s own health level, ammunition level and weapons held
/ currently in use.  State should also show where the bot currently is, both in terms of an
absolute location (co-ordinates) and a conceptual location (e.g. “at enemy base”).

The bot needs state to store details of the enemies currently in his locality, and their state
(e.g. ignorant of his presence, shooting him, carrying the flag, etc).  State should also
indicate the enemy with the highest priority for shooting.  Similarly, state is required to give
details of the other teammates in his vicinity.

Some state should also give details of the enemy’s flag and the bot’s own flag (e.g. at base,
captured, dropped).

Based on these details of state, we can imagine the following behaviours:

• Movement – containing state to do with positions of objects, bases and the bot
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himself.

• Status – containing state regarding health level, weapons held and so on.

• Combat – state about who is attacking the bot, what enemies are around and what
teammates are around.

Goals and Drives

The following is a list of goals or drives the bot should be expected to act on, in descending
order of priority.  This first list assumes that, in situations where either role can be taken, the
bot is an attacker rather than a defender.  Note that actions such as Attack enemy who is
carrying our flag assume that the bot can see this enemy – he would not abandon an almost-
complete attempt to pick up the enemy flag to run after the enemy who has taken our flag,
for example.

1. Pick up our team’s flag from where it has been dropped

2. Avoid incoming projectile

3. Pick up the opposing team’s flag from where it has been dropped

4. Pick up nearby medical kit (if health in dangerous range)

5. Pick up nearby weapon (if unarmed)

6. Pick up nearby ammunition (if have none)

7. Respond to enemy attack (if health in dangerous range)

8. Attack enemy who is carrying our flag

9. Attack enemy who is near our flag

10. Pick up nearby ammunition (if already have some)

11. Pick up enemy flag (i.e. when it’s at their base and so are we)

12. Respond to enemy attack

13. Run to our base (i.e. with the flag)

14. Pick up nearby weapon (if already armed)

15. Find medical kit, weapon or ammunition (as required).

16. Run to enemy base

17. Pick up nearby medical kit (if health not in dangerous range)

If the bot were a defender by default, the list would be as above, but with the following
changes:

The following drive would be inserted between 8 & 9:

Run after enemy carrying our flag

Item 11 would be removed and items from 14 onwards would be replaced by the following:

14. Run to own base
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15. Find medical kit, weapon or ammunition (as required).

16. Look for vantage point

17. Wander around near our flag / vantage point

18. Pick up nearby medical kit (if health not in dangerous range)



10 The e-mail addresses given in this document have been written with “AT” in place of the @ symbol.  This is
to prevent e-mail-harvesting robots from successfully extracting them from online versions of this document.
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Appendix C: E-mail from John Laird
This e-mail is part of Laird’s response to my questions about his development of the Soar
Quakebot (Laird and Duchi, 2000).

Date: Wed, 9 Mar 2005 10:30:35 -0500
From: John Laird <laird AT umich.edu>10

To: 'Sam Partington' <sam AT samsolutions.co.uk>
Subject: RE: Soar Quakebot Development Process? (Research for Dissertation)

We maintain a combination of data from different "sources":
1. When the system gets a mission either at start up or from another entity
(such as a commander), it creates a mission structure that describes its
role, the role of other agents, its goals, etc.
2. For many of the systems, they "live" in buildings and they will create an
internal map of the building either from recalling it from previous runs (we
have to explicitly save it now, but that is a detail), or from the current
run. The agent annotates the map with relevant information such as path data
(what door should I go through in this room to go to some other room),
observability data - what rooms can I see from this room, etc.
3. During a run the agent will further annotate the map and mission
structure with its specific progress and relevant tactical information that
it accumulates from its sensors. Where am I in the world, what parts of the
mission have I completed, what is the most important threat, where is the
threat - what door is the threat likely to come through, what door in the
current room can I use to escape, where are attack points in the current
room, ...

None of this is hard-coded.  I might be wrong, but I think this is where the
behavior-based approaches really make it tough on themselves by not making
it easy to encode complex state information, derived from many sources and
both about the past and the current situation.

John
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Appendix D: Readme from Distribution
The distribution is discussed briefly in section 8.4.  The version of the readme given here
is slightly updated from that which I originally distributed, but I hope to make this improved
version available shortly.

################################################### #########
BODbot

################################################### #########

=======
Installing
=======

1) First of all, install pyposh (see
http://www.cs.bath.ac.uk/~jjb/web/pyposh.html)

2) Put the bodbot directory and its contents (inclu ding
subdirectories) as a subdirectory of "modules"

3) Replace the relevant files in the main pyposh di rectory
with those in "pyposh fixes"

4) Put CTF-Simple2dt.unr into your Unreal Tournamen t maps
folder.  This is the map I've tested the agents on most, as
it's pretty simple.  I suggest you use it too.  It' s a
slight tweak of CTF-Simple2.unr, the map the Gamebo ts people
made.

5) Run PyPOSH as per Andy's instructions.  Although  the plan
will work for agents on either team, I've tested it  mainly
for the blue team's agent.

======
BODbot
======

Known Issues
---------------------

1) The biggest outstanding problem is that when the  bodbot
receives messages from Gamebots which require it to  update
its internal knowledge (e.g. the "pth" message abou t a
recommended path), those are updated immediately (s ee
functions such as pass_pth_details).

This can cause a problem if this updating interrupt s a
running action as it can clear some variable which the
action is using.  The best example of this is when passing
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details of whether a point is reachable (pass_rch_d etails
etc).  It only happens occasionally, but is a probl em!

This should be modified so that updating this infor mation is
another item run as part of running the plan (like the
"expire" stuff already there) as two actions cannot  execute
at the same time.  I may do this myself if I have t ime.

2) One other thing is that the bot does not seem ve ry good
at noticing when the player has its flag.  It does
sometimes, but less often than I'd expect.  Not sur e about
the cause of this.

3) Projectile information (i.e. the "prj" message f rom
Gamebots) is *never* sent from Gamebots.  This is a  problem
with Gamebots, not with my code (see http://www.
andrew.cmu.edu/user/roman/15396/game_bots_api.html) . 
Similarly, parameters to "init" are ignored, so you  cannot
specify the team or name of your bot (although you must
provide a name for pyposh to be happy, even though Gamebots
then ignores it).  Both these problems are correcte d in a
new version of Gamebots, available from
http://www.cs.rit.edu/~jdb/gameAI/gamebots/codechan ge.html,
although I have not tested this new version myself.

4) Have not managed to get the debugger or profiler  working
with pyposh.  I've managed to get the profiler to p rofile
the GUI, but not the stuff which that then runs.  T hese two
problems probably stem from my python ignorance.

Debug output
-------------------

I've left lots of this in, feel free to comment / r emove as
necessary.

(If you're interested in detail, things to look out  for
include "is stuck?" when the bot gives up trying to  follow
navpoints and wanders around as per Andy's poshbot.   In
general, output with question marks indicates a sen se
running, though not all senses give output.)

===================
Tweaks / Fixes to pyposh
===================

Multiple Behaviour files
----------------------------------

The most interesting difference with the main bodbo t agent
file (bodbot.py) is the make_behaviour function.  U nlike all
of Andy Kwong's agents, this allows multiple behavi our
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files.  Note that it now returns a *list* of behavi ours.

This change required quite a few changes to PyPOSH.   For
instance, posh_agent.py's self.behavior_instance va riable is
now a list rather than a reference to a single obje ct  (so
it's differently initialised and tested than before ).

Furthermore, posh_agent has been modified to includ e sense
and action dictionaries (lines 89 & 90) and functio ns which
use these (i.e. get_act and get_sense) have also be en
modified.  Similarly, the add_act and add_sense fun ctions
add details to these central dictionaries, rather t han
passing them on to the behaviour file.

The behaviour functionality is fairly logically sep arated,
except that andybehaviour.py contains a range of th ings
which should probably be in movement.py.  I gave th em their
own file to separate those primitives written by An dy from
those written by me (although big_rotate is mine).

pyposh.py
----------------
*None of the changes here are essential* but were a ll
included to speed up testing.  You can find them in  the code
by searching for "################################# #######",
as they're highlighted by comment blocks.

A couple of tweaks which selected the right options  in the
lists are commented as your setup may vary.  The on es which
populate the options table and position the windows  have
been left in.

posh_agent.py
---------------------
The frequency attribute of POSH elements caused a c rash,
thanks to a problem on line 923 of this file.  See the
comment for details of what's changed.
Similarly, using limits on the number of retires ca used a
crash, as the relevant plan element was not being c ast to an
integer before being modified.  This was also fixed  (see
line 624 and associated comment).
I've also modified it to allow for multiple behavio ur files
(see above).

=======
old plans
=======

These are provided in case you want to try a simple r agent.
(Note that bodbotattack[3].lap doesn't execute corr ectly --
see comment)
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========
Other files
========

The text files (*.txt) in the bodbot folder are for  your
interest only and *can be ignored*.  They show prin touts of
various bits of information from Gamebots, as repre sented in
pyposh.  (If I remember rightly, the "R>>" in sampl e
Gamebots info.txt is debug output and can be ignore d)

(The weird line breaks in these are simply due to t he width
of my command window).

=====================
Feedback / Document details
=====================

This version of the readme produced 26/3/2005
Comments / Questions to sam AT samsolutions.co.uk
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Appendix E: Code Listings and CD Contents
The independently-numbered pages which follow give code listings for the following files:

• bodbot.py  – this is the main agent file.  It coordinates communication with
Gamebots and manages the dictionaries of the actions and senses from the various
behaviour modules.

• combat.py  – this is one of the behaviour modules (CombatBehaviour  class).
It also contains the CombatInfoClass  class (see section 5.3.2)

• movement.py  – another behaviour module (MovementBehaviour  class).  This
also contains the PositionsInfo  class (again, section 5.3.2).

• status.py  – the third behaviour module (StatusBehaviour  class).  The final
behaviour module (AndyBehavior  class in andybehaviour.py ) is not listed
as the majority of the code is taken directly from Kwong (2003).  It is given on the
enclosed CD, however.

• utilityfns.py  – this file holds utility functions, described in section 5.3.2.

Plan code is not given, that can be found in Appendix A.

As well as these files, the enclosed CD contains the following:

• andybehaviour.py  – the final behaviour module (see note above).

• Compiled versions of bodbot.py , combat.py , movement.py , status.py ,
utilityfns.py  and andybehaviour.py .

• The 1st distribution  folder, containing those files distributed as described
in section 8.4 (but with the updated readme file).  Note that this is where the
modified PyPOSH files (chapter 8) may be found.

• to weapon brightened.jpg , a colour version of figure 4.1.

• The plans given in Appendix A

• A PDF [Portable Document Format] version of this document.

All these files, with the exception of the PDF, are to be found in the zipped file
sampartington-full-2004-5.zip .  This zip file also contains a second (identical)
copy of the PDF.

The behaviour modules and plans are organised in the bodbot  directory and subdirectory
in such a way that this directory can be copied into the modules  directory of a PyPOSH
distribution and used from there.  For this reason, the directory also contains the
initialisation file __init__.py  (and a compiled version thereof).  Further details about
how the code can be run can be found in Appendix D.
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1 #  BODbot created as a means of evaluating Behaviour Oriented Design [BOD]
2 #  Much code here re-used from Andy Kwong's poshbot
3
4 #  We need to start a comms thread in order to get updates
5 #  to the agent status from the server.
6
7 from socket import *
8 from posh_core import *
9 import re #re is for Regular Expressions
10 import thread
11 import posh_utils
12 import utilityfns
13
14 # import any behaviour files
15 import andybehaviour
16 import movement
17 import status
18 import combat
19
20 # Init world in this example connects to gamebots server
21 def init_world( *args, **kw):
22     pass
23     
24
25 # Returns a list of behavior objects
26 def make_behavior(ip, port, botname, agent, *args, **kw):
27     bot = Bot_Agent(ip, port, botname) # Bot_Agent keeps a local copy of the 

bot state
28     BList = []
29     
30     agent.bot = bot
31     bot.agent = agent # was done in bind_bot, now moved here as doing it in ab 

is too low-level
32     
33     # Andy's primitives
34     ab = andybehaviour.AndyBehavior(agent = agent)
35     ab.bind_bot(bot) #sets ab's bot to the arg sent
36     #ab.bot.connect() now done below
37     BList.append(ab)
38     
39     PosInfo = movement.PositionsInfo()
40     CombatInfo = combat.CombatInfoClass()
41     
42     mb = movement.MovementBehaviour(PosInfo, CombatInfo, agent = agent)
43     mb.bind_bot(bot)
44     BList.append(mb)
45     
46     sb = status.StatusBehaviour(PosInfo, agent = agent)
47     sb.bind_bot(bot)
48     BList.append(sb)
49     
50     cb = combat.CombatBehaviour(PosInfo, CombatInfo, agent = agent)
51     cb.bind_bot(bot)
52     BList.append(cb)
53     
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54     bot.connect()
55
56     return BList
57
58 # Called when pyposh is shutting down
59 def destroy_world():
60     pass
61
62
63
64 # Keeps a local copy of the bot state. Gamebots does not support
65 # queries on the agent sense, it sends a copy of the environment
66 # to the agent periodically.
67 class Bot_Agent:
68     def __init__(self, ip, port, botname):
69         self.ip = ip
70         self.port = port
71         self.botname = botname
72         self.events = [] #things like hitting a wall
73         self.conninfo = {}
74         self.gameinfo = {}
75         self.view_players = {}
76         self.view_items = {}
77         self.nav_points = {}
78         self.botinfo = {}
79         self.s_gameinfo = {}
80         self.s_view_players = {}
81         self.s_view_items = {}
82         self.s_nav_points = {}
83         self.s_botinfo = {}
84         self.msg_log = [] # Temp Log for message received
85         self.msg_log_max = 4096 # Max Temp Log size
86         self.sent_msg_log = [] # Temp Log for messages sent
87         self.sent_msg_log_max = 6 # Max Temp Log size
88         self.hit_timestamp = 0 # Used to inhibit was_hit()
89         self.thread_active = False
90         self.kill_connection = False
91         self.rotation_hist = []
92         self.velocity_hist = []
93         self.thread_active = False
94         self.conn_ready = False
95         self.conn_thread_id = None
96                              
97
98     def debug(self, level, message):
99         try:
100             self.agent.debugboard.add(level, message)
101         except:
102             print "Critical Failure - BotAgent cannot write to debugboard"
103             print message
104             raise
105
106     def proc_item(self, string):
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107         (cmd, varstring) = re. compile('\s+').split(string, 1) #\s is a special 
escape character, which matches any white-space, varstring will hold 
flags returned from regular expression creation (see sre.py)

108         vars = re. compile('\{(.*?)\}').findall(varstring)
109         var_dict = {}
110         for var in vars:
111             (attr, value) = re. compile('\s+').split(var, 1)
112             var_dict[attr] = value
113         return (cmd, var_dict)
114
115     # Calls connect_thread in a new thread
116     def connect(self):
117         self.debug(5, "Connecting to Server")
118         if not self.conn_thread_id:
119             self.thread_active = True
120             self.conn_thread_id = thread.start_new(self.connect_thread, ())
121             return True
122         else:
123             self.debug(1, "Attempting to Connect() when thread already active")
124             return False
125
126
127     # This method runs inside a thread updating the agent state
128     # by reading from the network socket
129     def connect_thread(self):
130         self.kill_connection = False
131         try:
132             self.sockobj = socket(AF_INET, SOCK_STREAM)
133             self.sockobj.connect((self.ip, int(self.port)))
134             self.sockin = self.sockobj.makefile('r')
135             self.sockout = self.sockobj.makefile('w')
136         except:
137             self.debug(1, "Connection to server failed")
138             self.kill_connection = True # Skip the read loops
139         else:
140             self.debug(1, "Connected to server")
141             self.kill_connection = False
142         
143         # This loop waits for the first NFO message
144         while not self.kill_connection:
145             try:
146                 x = self.sockin.readline()
147             except:
148                 self.debug(1, "Connection Error on readline()")
149                 self.kill_connection = True
150                 break
151                 
152             if not x:
153                 self.debug(1, "Connection Closed from Remote End")
154                 self.kill_connection = True
155                 break
156             
157             #print x
158             (cmd, dict) = self.proc_item(x)
159             if cmd == "NFO":
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160                 # Send INIT message
161                 self.conninfo = dict
162                 self.send_message("INIT", {"Name" : self.botname})
163                 self.conn_ready = True # Ready to send messages
164                 break
165
166         # Now the main loop
167         # Not everything is implemented. Just some basics
168         while not self.kill_connection:
169             try:
170                 x = self.sockin.readline()
171             except:
172                 self.debug(1, "Connection Error on readline()")
173                 break
174                 
175             if not x:
176                 self.debug(1, "Connection Closed from Remote End")
177                 break
178             
179             #print "R>> " + x
180             (cmd, dict) = self.proc_item(x)
181             sync_states = ("SLF","GAM","PLR","NAV","MOV","DOM","FLG","INV")
182             events = ("WAL", "BMP")
183             self.msg_log.append((cmd, dict))
184             if cmd == "BEG":
185                 # When a sync batch is arriving, make sure the shadow
186                 # states are cleared
187                 self.s_gameinfo = {}
188                 self.s_view_players = {}
189                 self.s_view_items = {}
190                 self.s_nav_points = {}
191                 self.s_botinfo = {}
192             elif cmd in sync_states:
193                 # These are sync. messages, handle them with another method
194                 self.proc_sync(cmd, dict)
195             elif cmd == "END":
196                 # When a sync batch ends, we want to make the shadow
197                 # states that we were writing to to be the real one
198                 self.gameinfo = self.s_gameinfo
199                 self.view_players = self.s_view_players
200                 self.view_items = self.s_view_items
201                 self.nav_points = self.s_nav_points
202                 self.botinfo = self.s_botinfo
203                 # Also a good time to trim the events list
204                 # Only keep the last 50 events
205                 self.events = self.events[ -50:]
206                 self.msg_log = self.msg_log[ -1000:]
207             elif cmd in events:
208                 # The bot hit a wall or an actor, make a note
209                 # of it in the events list with timestamp
210                 self.events.append((posh_utils.current_time(), cmd, dict))
211             elif cmd == "SEE":
212                 # Update the player positions
213                 self.view_players[ dict["Id"]] = dict
214             elif cmd == "PTH":
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215                 # pass the details to the movement behaviour
216                 self.pass_pth_details( dict)
217             elif cmd == "RCH":
218                 self.pass_rch_details( dict)
219             elif cmd == "PRJ": # incoming projectile
220                 self.pass_prj_details( dict)
221             elif cmd == "DAM": # damage taken
222                 self.pass_dam_details( dict)
223             elif cmd == "KIL": # some other player died
224                 self.pass_kil_details( dict)
225             elif cmd == "DIE": # this player died
226                 self.pass_die_details( dict)
227             else:
228                 pass
229
230         self.debug(5, "Closing Sockets and Cleaning Up...")
231         try:
232             self.sockout.flush()
233             self.sockout.close()
234             self.sockin.close()
235             self.sockobj.close()
236         except:
237             self.debug(1, "Error closing files and sockets")
238             
239         self.thread_active = False
240         self.conn_ready = False
241         self.conn_thread_id = None
242         self.debug(5, "Connection Thread Terminating...")
243
244     def disconnect(self):
245         self.kill_connection = True
246
247     def send_message(self, cmd, dict):
248         string = cmd
249         
250         self.sent_msg_log.append((cmd, dict))
251         # does the list need truncating?
252         if len(self.sent_msg_log) > self.sent_msg_log_max:
253             del self.sent_msg_log[0 : -self.sent_msg_log_max]
254         
255         for (attr, value) in dict.items():
256             string = string + " {" + attr + " " + value + "}"
257         #print "About to send " + string
258         string = string + "\r\n"
259         # print >> self.sockout, string
260         # print "S>> " + string
261         try:
262             self.sockout.write(string)
263             self.sockout.flush()
264         except:
265             self.debug(1, "Message : " + string + " unable to send")
266             return False
267         else:
268             return True
269
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270     #handles synchronisation messages
271     def proc_sync(self, command, values):
272         if command == "SLF": #info about bot's state
273             self.s_botinfo = values
274             # Keep track of orientation so we can tell when we are moving
275             # Yeah, we only need to know the Yaw
276             self.rotation_hist.append( int(
277                 re.search(',(.*?),', values['Rotation']).group(1)))
278             # Trim list to 3 entries
279             if len(self.rotation_hist) > 3:
280                 del(self.rotation_hist[0])
281             # Keep track of velocity so we know when we are stuck
282             self.velocity_hist.append(self.calculate_velocity( \
283                 values['Velocity']))
284             # Trim it to 20 entries
285             if len(self.velocity_hist) > 20:
286                 del(self.velocity_hist[0])
287             
288         elif command == "GAM": #info about the game
289             self.s_gameinfo = values
290         elif command == "PLR": #another character visible
291             # For some reason, this doesn't work in ut2003
292             self.s_view_players[values["Id"]] = values
293         elif command == "NAV": #a path marker
294             # Neither does this
295             #print "We have details about a nav point at " + values["Location"]
296             self.s_nav_points[values["Id"]] = values
297         elif command == "INV": #an object on the ground that can be picked up
298             #print values
299             self.s_view_items[values["Id"]] = values
300         elif command == "FLG": #info about a flag
301             #pass these details to the movement behaviour as that stores 

details of locations etc and may need them
302             self.pass_flag_details(values)
303             #print("We have details about a flag.  Its values is: " + 

values["State"]);
304         else:
305             pass
306
307     def find_movement_behaviour(self):
308         #find the movement behaviour, if there is one
309         BList = self.agent.behavior_instance
310         for CurrentB in BList:
311             if isinstance(CurrentB, movement.MovementBehaviour):
312                 return CurrentB
313         return None
314         
315     def find_combat_behaviour(self):
316         #find the combat behaviour, if there is one
317         BList = self.agent.behavior_instance
318         for CurrentB in BList:
319             if isinstance(CurrentB, combat.CombatBehaviour):
320                 return CurrentB
321         return None
322     
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323     def pass_flag_details(self, values):
324         
325         MB = self.find_movement_behaviour()
326         if MB != None:
327             MB.receive_flag_details(values)
328             
329         # inform the combat behaviour as well
330         CB = self.find_combat_behaviour()
331         if CB != None:
332             CB.receive_flag_details(values)
333     
334     def pass_pth_details(self, valuesdict):
335         #print "in pass_pth_details"
336         #print valuesdict
337         MB = self.find_movement_behaviour()
338         if MB != None:
339             MB.receive_pth_details(valuesdict)
340             
341     def pass_rch_details(self, valuesdict):
342         #print "in pass_rch_details"
343         #print valuesdict
344         MB = self.find_movement_behaviour()
345         if MB != None:
346             MB.receive_rch_details(valuesdict)
347             
348     # tell the combat behaviour about incoming projectile
349     def pass_prj_details(self, valuesdict):
350         CB = self.find_combat_behaviour()
351         if CB != None:
352             CB.receive_prj_details(valuesdict)
353             
354     # tell the combat behaviour about damage taken
355     def pass_dam_details(self, valuesdict):
356         CB = self.find_combat_behaviour()
357         if CB != None:
358             CB.receive_dam_details(valuesdict)
359             
360     # tell the combat behaviour about the death of another player
361     def pass_kil_details(self, valuesdict):
362         CB = self.find_combat_behaviour()
363         if CB != None:
364             CB.receive_kil_details(valuesdict)
365             
366     # tell the combat & movement behaviours about our death
367     def pass_die_details(self, valuesdict):
368         CB = self.find_combat_behaviour()
369         if CB != None:
370             CB.receive_die_details(valuesdict)
371             
372         MB = self.find_movement_behaviour()
373         if MB != None:
374             MB.receive_die_details(valuesdict)
375     
376     def turn(self, degrees):
377         utangle = int((degrees * 65535) / 360.0)
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378         self.send_message("ROTATE", {"Amount" : str(utangle)})
379         # self.send_message("TURNTO", {"Pitch" : str(0)})
380         
381     def get_yaw(self):
382         if self.botinfo.has_key("Rotation"):
383             return int(re.search(',(.*?),', self.botinfo["Rotation"]).group(1))
384         else:
385             return None
386         
387     def get_pitch(self):
388         if self.botinfo.has_key("Rotation"):
389             return int(re.match('(.*?),', self.botinfo["Rotation"]).group(1))
390         else:
391             return None
392         
393     def move(self):
394         self.send_message("INCH", {})
395         return True
396
397     # Was the bot hit in the last 2 seconds
398     def was_hit(self):
399         lsec = 2 # How many seconds to look back to
400         isec = 0 # Number of seconds to inhibit consecutive was_hits
401         now = posh_utils.current_time()
402         def timefilter(item):
403             (timestamp, command, value) = item
404             if timestamp > now - lsec:
405                 return True
406             else:
407                 return False
408         
409         # Filter the events from the last lsec seconds
410         lastevents = filter(timefilter, self.events)
411
412         if self.hit_timestamp > now - isec:
413             # Update the last hit timestamp
414             return False
415         else:
416             # Update the last hit timestamp
417             self.hit_timestamp = now
418             if len(lastevents) > 0:
419                 return True
420             else:
421                 return False
422
423     def turning(self):
424         # compares the most recent to the leat recent rotation_hist
425         # entry. If there is a descrepancy beyond the error fudge,
426         # then we say we are rotating
427         fudge = 386 # in UT units, roughly 2 degrees
428         if len(self.rotation_hist) > 0:
429             c_rot = self.rotation_hist[0]
430             e_rot = self.rotation_hist[ -1]
431             diff = abs(c_rot - e_rot)
432             if diff > fudge:
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433                 return True
434             
435         return False
436         
437     def moving(self):
438         # If there is recent velocity, return true
439         if len(self.velocity_hist) > 0:
440             if self.velocity_hist[0] > 0:
441                 return True
442         return False
443
444     def stuck(self):
445         # If there is a period of no movement, then return true
446         fudge = 0
447         for v in self.velocity_hist:
448             if v > fudge:
449                 return False
450         return True
451         
452     def calculate_velocity(self, v):
453         (vx, vy, vz) = re.split(',', v)
454         vx = float(vx)
455         vy = float(vy)
456         return utilityfns.find_distance((0,0), (vx, vy))
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1 from posh_core import *
2 import utilityfns
3
4 class CombatBehaviour(Base):
5     def __init__(self, PosInfo, CombInfo, **kw):
6         Base.__init__(self, **kw) # Call the ancestor init
7         
8         # set up variables
9         self.CombatInfo = CombInfo
10         self.PosInfo = PosInfo
11         self.bot = None
12         
13         # register behaviours and senses
14         self.init_acts()
15         self.init_senses()
16         
17     def init_acts(self):
18         self.agent.add_act("shoot-enemy-carrying-our-flag", 

self.shoot_enemy_carrying_our_flag)
19         self.agent.add_act("run-to-enemy-carrying-our-flag", 

self.run_to_enemy_carrying_our_flag)
20         self.agent.add_act("expire-damage-info", self.expire_damage_info)
21         self.agent.add_act("expire-focus-info", self.expire_focus_info)
22         self.agent.add_act("expire-projectile-info", 

self.expire_projectile_info)
23         self.agent.add_act("face-attacker", self.face_attacker)
24         self.agent.add_act("set-attacker", self.set_attacker)
25         self.agent.add_act("shoot-attacker", self.shoot_attacker)
26         
27     def init_senses(self):
28         self.agent.add_sense("see-enemy-with-our-flag", 

self.see_enemy_with_our_flag)
29         self.agent.add_sense("our-flag-on-ground", self.our_flag_on_ground)
30         self.agent.add_sense("enemy-flag-on-ground", self.enemy_flag_on_ground)
31         self.agent.add_sense("incoming-projectile", self.incoming_projectile)
32         self.agent.add_sense("taken-damage-from-specific-player", 

self.taken_damage_from_specific_player)
33         self.agent.add_sense("taken-damage", self.taken_damage)
34         self.agent.add_sense("is-responding-to-attack", 

self.is_responding_to_attack)
35         
36     def bind_bot(self, bot):
37         self.bot = bot
38     
39     # === SENSES ===
40     
41     def see_enemy_with_our_flag(self):
42         #print "in see_enemy_with_our_flag sense"
43         if len(self.bot.view_players) == 0:
44             #print "  no players visible"
45             return False
46         
47         #else check through every player we can see to check whether they're 

the one holding our flag
48         players = self.bot.view_players.values()

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\combat.py

11/05/05 17:53 :: page 2

49         for CurrentPlayer in players:
50             #print CurrentPlayer
51             if CurrentPlayer["Id"] == self.CombatInfo.HoldingOurFlag:
52                 print "  can see the player holding our flag"
53                 self.CombatInfo.HoldingOurFlagPlayerInfo = CurrentPlayer
54                 return True
55         #print "  cannot see the player holding our flag (",
56         #print self.CombatInfo.HoldingOurFlag,
57         #print ")"
58         return False
59         
60     def our_flag_on_ground(self):
61         if self.PosInfo.OurFlagInfo == {}:
62             return False
63         else:
64             # in case the flag was returned but we didn't actually see it 

happen
65             if not self.bot.gameinfo.has_key("EnemyHasFlag"):
66                 self.PosInfo.OurFlagInfo["State"] = "home"
67             
68             if self.PosInfo.OurFlagInfo["State"].lower() == "dropped":
69                 #print "our flag is dropped!"
70                 return True
71         return False
72         
73     def enemy_flag_on_ground(self):
74         if self.PosInfo.EnemyFlagInfo == {}:
75             return False
76         elif self.PosInfo.EnemyFlagInfo["State"].lower() == "dropped":
77             return True
78         return False
79         
80     def incoming_projectile(self):
81         if self.CombatInfo.ProjectileDetails != None:
82             print "incoming-projectile returning True"
83             return True
84         return False
85         
86     def taken_damage_from_specific_player(self):
87         if self.CombatInfo.DamageDetails != None and 

self.CombatInfo.DamageDetails.has_key("Instigator"):
88             print "taken_damage_from_specific_player returning True"
89             return True
90         # alternatively, even if we don't know who shot us this time, we may 

know from another recent attack
91         elif self.CombatInfo.KeepFocusOnLocation != None:
92             return True
93         else:
94             return False
95             
96     def taken_damage(self):
97         if self.CombatInfo.DamageDetails != None:
98             return True
99         return False
100         
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101     # returns true if we're already responding to the most recent attack
102     # At present just test against KeepFocusOnID.  However, that doesn't 100% 

guarantee that we've started shooting,
103     # just that we know who we ought to shoot.  For now, however, I will use 

this check.
104     def is_responding_to_attack(self):
105         if self.CombatInfo.KeepFocusOnID != None:
106             return True
107         else:
108             return False
109             
110     # === ACTIONS ===
111     
112     def shoot_enemy_carrying_our_flag(self):
113         if self.CombatInfo.HoldingOurFlag != None and 

self.CombatInfo.HoldingOurFlagPlayerInfo != None:
114             Target = self.CombatInfo.HoldingOurFlag
115             Location = self.CombatInfo.HoldingOurFlagPlayerInfo["Location"]
116             self.bot.send_message("SHOOT", {"Target" : Target, "Location" : 

Location})
117         return True
118             
119     def run_to_enemy_carrying_our_flag(self):
120         print "in rtecof very start"
121         if self.CombatInfo.HoldingOurFlag != None and 

self.CombatInfo.HoldingOurFlagPlayerInfo != None:
122             print "in rtecof, past initial if"
123             
124             #Target = self.CombatInfo.HoldingOurFlag
125             #if not utilityfns.is_previous_message(self.bot, ("RUNTO", 

{"Target" : Target})):
126             #    self.bot.send_message("RUNTO", {"Target" : Target})
127             #    print "running after enemy"
128             
129             Location = self.CombatInfo.HoldingOurFlagPlayerInfo["Location"]
130             if not utilityfns.is_previous_message(self.bot, ("RUNTO", 

{"Location" : Location})):
131                 self.bot.send_message("RUNTO", {"Location" : Location})
132             print "running after enemy"
133         return True
134         
135     # not the usual sort of action, but ensures that details about e.g. damage 

taken doesn't reside forever and inform decisions too far into the future
136     def expire_damage_info(self):
137         #print "                ex di"
138         self.CombatInfo.DamageDetails = None
139         #self.CombatInfo.KeepFocusOnID = None
140         #self.CombatInfo.KeepFocusOnLocation = None
141         #self.CombatInfo.TriedToFindAttacker = False
142         return True
143         
144     def expire_focus_info(self):
145         self.CombatInfo.KeepFocusOnID = None
146         self.CombatInfo.KeepFocusOnLocation = None
147         self.bot.send_message("STOPSHOOT", {}) # no-one to focus on
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148         
149     def expire_projectile_info(self):
150         self.CombatInfo.ProjectileDetails = None
151         return True
152         
153     #def set_tried_to_find_attacker(self):
154     #    self.CombatInfo.TriedToFindAttacker = True
155         
156         
157     # if we can see the player currently, store his ID so e.g. runtos will be 

replaced by strafes to keep him in focus
158     # and issue a turnto command
159     def face_attacker(self):
160         print "in face_attacker"
161         if self.CombatInfo.KeepFocusOnLocation == None and 

self.CombatInfo.KeepFocusOnID == None:
162             return True
163
164         if self.CombatInfo.KeepFocusOnID == None: #just provide location
165             Location = self.CombatInfo.KeepFocusOnLocation
166             Msg = ("TURNTO", {"Location" : Location})
167             utilityfns.send_if_not_prev(self.bot, Msg)
168         else:
169             Target = self.CombatInfo.KeepFocusOnID
170             Location = self.CombatInfo.KeepFocusOnLocation
171             self.bot.send_message("TURNTO", {"Target" : Target})
172         return True
173     
174     # sets the attacker (i.e. the keepfocuson one) to be the first enemy player  

we have seen
175     # or the instigator of the most recent damage, if we know who that is
176     def set_attacker(self):
177         print "in set_attacker"
178         
179         def find_enemy_in_view():
180             # work through who we can see, looking for an enemy
181             OurTeam = self.bot.botinfo["Team"]
182             print "OurTeam:",
183             print OurTeam
184             Players = self.bot.view_players.values()
185             for CurrentPlayer in Players:
186                 if CurrentPlayer["Team"] != OurTeam:
187                     self.CombatInfo.KeepFocusOnID = CurrentPlayer["Id"]
188                     self.CombatInfo.KeepFocusOnLocation = 

CurrentPlayer["Location"]
189                     return True
190         
191         if len(self.bot.view_players) == 0 or self.bot.botinfo == {}: #if 

botinfo is {}, we can't yet set anything
192             return True
193         else:
194             if self.CombatInfo.DamageDetails != None and 

self.CombatInfo.DamageDetails.has_key("Instigator"):
195                 InstID = self.CombatInfo.DamageDetails["Instigator"]
196                 if self.bot.view_players.has_key(InstID):
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197                     # set variables so that other commands will keep him in 
view

198                     self.CombatInfo.KeepFocusOnID = InstID
199                     self.CombatInfo.KeepFocusOnLocation = 

self.bot.view_players[InstID]["Location"]
200                 else:
201                     find_enemy_in_view()
202             else:
203                 find_enemy_in_view()
204             return True
205         
206     def shoot_attacker(self):
207         print "in shoot_attacker"
208         if self.CombatInfo.KeepFocusOnLocation == None:
209             return True
210
211         if self.CombatInfo.KeepFocusOnID == None: #just provide location
212             Location = self.CombatInfo.KeepFocusOnLocation
213             if not utilityfns.is_previous_message(self.bot, ("SHOOT", 

{"Location" : Location})):
214                 self.bot.send_message("SHOOT", {"Location" : Location})
215         else:
216             Target = self.CombatInfo.KeepFocusOnID
217             Location = self.CombatInfo.KeepFocusOnLocation
218             if not utilityfns.is_previous_message(self.bot, ("SHOOT", {"Target" 

: Target, "Location" : Location})):
219                 self.bot.send_message("SHOOT", {"Target" : Target, "Location" : 

Location})
220         return True
221         
222     # === OTHER FUNCTIONS ===
223     
224     def receive_flag_details(self, values):
225         # if its status is "held", update the CombatInfoClass to show who's 

holding it
226         # otherwise, set that to None as it means no-one is holding it
227         
228         #print "in rfd"
229         #print values
230         
231         if self.bot.botinfo == {}: #if botinfo is {}, we can't yet set anything
232             return
233         
234         OurTeam = self.bot.botinfo["Team"]
235         #print "OurTeam is of type",
236         #print type(OurTeam),
237         #print " and value is",
238         #print OurTeam
239         #print "values[\"Team\"] is ",
240         #print values["Team"]
241         
242         if values["Team"] == OurTeam:
243             if values["State"].lower() == "held":
244                 #print "setting holder"
245                 self.CombatInfo.HoldingOurFlag = values["Holder"]
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246             else:
247                 #print "not being held"
248                 self.CombatInfo.HoldingOurFlag = None
249                 self.CombatInfo.HoldingOurFlagPlayerInfo = None
250                 
251     def receive_prj_details(self, valuesdict):
252         print "received details of incoming projectile!"
253         print valuesdict
254         self.CombatInfo.ProjectileDetails = valuesdict
255         
256     def receive_dam_details(self, valuesdict):
257         self.CombatInfo.DamageDetails = valuesdict
258         
259     # handle details about a player (not itself) dying
260     # remove any info about that player from CombatInfo
261     def receive_kil_details(self, ValuesDict):
262         print "receive_kil_details",
263         print ValuesDict
264         print "-----"
265         print self.CombatInfo.HoldingOurFlag
266         if ValuesDict["Id"] == self.CombatInfo.HoldingOurFlag:
267             self.CombatInfo.HoldingOurFlag = None
268             self.CombatInfo.HoldingOurFlagPlayerInfo = None
269             self.bot.send_message("STOPSHOOT", {})
270         
271         if ValuesDict["Id"] == self.CombatInfo.KeepFocusOnID:
272             self.CombatInfo.KeepFocusOnID = None
273             self.CombatInfo.KeepFocusOnLocation = None
274             self.bot.send_message("STOPSHOOT", {})
275             
276     
277     # clean-up after dying
278     def receive_die_details(self, ValuesDict):
279         self.expire_damage_info()
280         self.expire_focus_info()
281             
282     
283 class CombatInfoClass:
284     def __init__(self):
285         self.HoldingOurFlag = None # the ID of the player holding our flag
286         self.HoldingOurFlagPlayerInfo = None # details about that player
287         
288         self.ProjectileDetails = None
289         self.DamageDetails = None
290         self.KeepFocusOnID = None
291         self.KeepFocusOnLocation = None
292         
293         #self.TriedToFindAttacker = False
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1 from posh_core import *
2 import utilityfns
3
4 class MovementBehaviour(Base):
5     def __init__(self, PosInfo, CombatInfo, **kw):
6         Base. __init__(self, **kw) # Call the ancestor init
7         
8         # set up variables
9         self.PosInfo = PosInfo
10         self.CombatInfo = CombatInfo
11         self.bot = None
12         
13         # register behaviours and senses
14         self.init_acts()
15         self.init_senses()
16         
17         # set up useful constants
18         self.PathHomeID = "PathHome"
19         self.ReachPathHomeID = "ReachPathHome"
20         self.PathToEnemyBaseID = "PathThere"
21         self.ReachPathToEnemyBaseID = "ReachPathThere"
22         
23     def init_acts(self):
24         self.agent.add_act("walk-to-nav-point", self.walk_to_nav_point)
25         self.agent.add_act("to-enemy-flag", self.to_enemy_flag)
26         self.agent.add_act("to-own-base", self.to_own_base)
27         self.agent.add_act("to-own-flag", self.to_own_flag)
28         self.agent.add_act("to-enemy-base", self.to_enemy_base)
29         self.agent.add_act("inch", self.inch)
30         self.agent.add_act("runto-medical-kit", self.runto_medical_kit)
31         self.agent.add_act("runto-weapon", self.runto_weapon)
32         self.agent.add_act("expire-reachable-info", self.expire_reachable_info)
33         
34     def init_senses(self):
35         self.agent.add_sense("at-enemy-base", self.at_enemy_base)
36         self.agent.add_sense("at-own-base", self.at_own_base)
37         self.agent.add_sense("know-enemy-base-pos", self.know_enemy_base_pos)
38         self.agent.add_sense("know-own-base-pos", self.know_own_base_pos)
39         self.agent.add_sense("reachable-nav-point", self.reachable_nav_point)
40         self.agent.add_sense("enemy-flag-reachable", self.enemy_flag_reachable)
41         self.agent.add_sense("our-flag-reachable", self.our_flag_reachable)
42         self.agent.add_sense("see-enemy", self.see_enemy)
43         self.agent.add_sense("see-reachable-medical-kit", 

self.see_reachable_medical_kit)
44         self.agent.add_sense("see-reachable-weapon", self.see_reachable_weapon)
45         self.agent.add_sense("too-close-for-path", self.too_close_for_path)
46         
47     def bind_bot(self, bot):
48         self.bot = bot
49     
50     # === SENSES ===
51     
52     def at_enemy_base(self):
53         #print "in at_enemy_base sense"
54         if not self.bot.botinfo.has_key("Location"):
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55             return False
56         LocTuple = 

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
57         
58         if self.PosInfo.EnemyBasePos == None:
59             return False
60         else:
61             (SX, SY, SZ) = LocTuple
62             (EX, EY, EZ) = 

utilityfns.location_string_to_tuple(self.PosInfo.EnemyBasePos)
63             if utilityfns.find_distance((SX, SY), (EX, EY)) < 100: # this 

distance may need adjusting in future (we may also wish to consider  
the Z axis)

64                 return True
65             else:
66                 return False
67                 
68     # returns true if we're near enough to our own base
69     def at_own_base(self):
70         if not self.bot.botinfo.has_key("Location"):
71             return False
72         LocTuple = 

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
73         
74         if self.PosInfo.OwnBasePos == None:
75             return False
76         else:
77             (SX, SY, SZ) = LocTuple
78             (HX, HY, HZ) = 

utilityfns.location_string_to_tuple(self.PosInfo.OwnBasePos)
79             if utilityfns.find_distance((HX, HY), (SX, SY)) < 10: # this 

distance may need adjusting in future (we may also wish to consider  
the Z axis)

80                 return True
81             else:
82                 return False
83     
84     # returns True if we have a location for the enemy base
85     def know_enemy_base_pos(self):
86         #print "in know_enemy_base_pos sense"
87         if self.PosInfo.EnemyBasePos == None:
88             return False
89         else:
90             return True
91             
92     # returns True if we have a location for our own base
93     def know_own_base_pos(self):
94         if self.PosInfo.OwnBasePos == None:
95             return False
96         else:
97             return True
98             
99     # returns True if there's a reachable nav point in the bot's list which 

we're not already at
100     def reachable_nav_point(self):
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101         # setup location tuple
102         if not self.bot.botinfo.has_key("Location"):
103             # if we don't know where we are, treat it as (0,0,0) as that will 

just mean we go to the nav point even if we're close by
104             (SX, SY, SZ) = (0, 0, 0)
105         else:
106             (SX, SY, SZ) = 

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
107         
108         # is there already a navpoint we're aiming for?
109         DistanceTolerance = 30 # how near we must be to be thought of as at the  

nav point
110         if self.PosInfo.ChosenNavPoint != None:
111             (NX, NY, NZ) = self.PosInfo.ChosenNavPoint
112             if utilityfns.find_distance((NX, NY), (SX, SY)) > 

DistanceTolerance:
113                 return True
114             else:
115                 self.PosInfo.VisitedNavPoints.append((NX, NY, NZ)) # set this 

NP as visited
116                 self.PosInfo.ChosenNavPoint = None
117         
118         # now look at the list of navpoints the bot can see
119         if self.bot.nav_points == None or len(self.bot.nav_points) == 0:
120             return False
121         else:
122             # nav_points is a list of tuples.  Each tuple contains an ID and a 

dictionary of attributes as defined in the API
123             # Search for reachable nav points
124             PossibleNPs = 

self.get_reachable_nav_points(self.bot.nav_points.items(), 
DistanceTolerance, (SX, SY, SZ))

125             
126             # now work through this list of NavPoints until we find one that we  

haven't been to
127             # or the one we've been to least often
128             if len(PossibleNPs) == 0:
129                 return False # nothing found
130             else:
131                 self.PosInfo.ChosenNavPoint = 

self.get_least_often_visited_navpoint(PossibleNPs)
132                 return True
133             
134     def get_least_often_visited_navpoint(self, PossibleNPs):
135         CurrentMin = self.PosInfo.VisitedNavPoints.count(PossibleNPs[0])
136         CurrentMinNP = PossibleNPs[0]
137         for CurrentNPTuple in PossibleNPs:
138             CurrentCount = self.PosInfo.VisitedNavPoints.count(CurrentNPTuple)
139             if CurrentCount < CurrentMinNP:
140                 CurrentMin = CurrentCount
141                 CurrentMinNP = CurrentNPTuple
142         return CurrentMinNP
143         
144     # also performs a distance tolerance check, (SX, SY, SZ) is position of 

player
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145     def get_reachable_nav_points(self, NPList, DistanceTolerance, (SX, SY, 
SZ)):

146         PossibleNPs = []
147         for CurrentNP in NPList:
148             #print type(CurrentNP)
149             #print " is the type\n"
150             #print type(CurrentNP[1])
151             #print " is the type of its 2nd element\n"
152             (NX, NY, NZ) = 

utilityfns.location_string_to_tuple((CurrentNP[1])["Location"])
153             if CurrentNP[1]["Reachable"] == "True" and 

utilityfns.find_distance((NX, NY), (SX, SY)) > DistanceTolerance:
154                 PossibleNPs.append((NX, NY, NZ))
155         return PossibleNPs
156             
157     # returns true if the enemy flag is specified as reachable
158     def enemy_flag_reachable(self):
159         
160         #debug
161         #print "in enemy_flag_reachable"
162         
163         #if self.PosInfo.EnemyFlagInfo != {}:
164         #    print self.PosInfo.EnemyFlagInfo
165             
166         if self.PosInfo.EnemyFlagInfo == {}:
167             return False
168         elif self.PosInfo.EnemyFlagInfo["Reachable"] == "True":
169             return True
170         return False
171             
172     def our_flag_reachable(self):
173         print "in our_flag_reachable"
174         if self.PosInfo.OurFlagInfo == {}:
175             return False
176         elif self.PosInfo.OurFlagInfo["Reachable"] == "True":
177             print "  is reachable!"
178             return True
179         return False
180         
181     def see_enemy(self):
182         if len(self.bot.view_players) == 0 or self.bot.botinfo == {}: #if 

botinfo is {}, we can't yet set anything
183             return False
184         else:
185             # work through, looking for an enemy
186             OurTeam = self.bot.botinfo["Team"]
187             Players = self.bot.view_players.values()
188             for CurrentPlayer in Players:
189                 #print CurrentPlayer
190                 if CurrentPlayer["Team"] != OurTeam:
191                     print "we can see an enemy!"
192                     return True
193         return False
194         
195     def see_reachable_medical_kit(self):
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196         if len(self.bot.view_items) < 1:
197             return False
198         else:
199             # look through for a medical kit
200             ItemValues = self.bot.view_items.values()
201             for CurrentItem in ItemValues:
202                 if (CurrentItem["Class"].find("Health") != -1 or 

CurrentItem["Class"].find("MedBox")) and 
CurrentItem["Reachable"] == "True":

203                     return True
204             return False
205             
206     def see_reachable_weapon(self):
207         if len(self.bot.view_items) < 1:
208             return False
209         else:
210             # look through for a weapon
211             ItemValues = self.bot.view_items.values()
212             for CurrentItem in ItemValues:
213                 if utilityfns.is_known_weapon_class(CurrentItem["Class"]) and 

CurrentItem["Reachable"] == "True":
214                     return True
215             return False
216             
217     # see PositionsInfo class for comments on TooCloseForPath
218     def too_close_for_path(self):
219         if self.PosInfo.TooCloseForPath:
220             print "we are too close for path"
221         return self.PosInfo.TooCloseForPath
222                 
223     # === ACTIONS ===
224     
225     def runto_medical_kit(self):
226         if len(self.bot.view_items) < 1:
227             return True
228         else:
229             # look through for a medical kit
230             ItemValues = self.bot.view_items.values()
231             for CurrentItem in ItemValues:
232                 if (CurrentItem["Class"].find("Health") != -1 or 

CurrentItem["Class"].find("MedBox")) and 
CurrentItem["Reachable"] == "True":

233                     
self.send_runto_or_strafe_to_location(CurrentItem[ "Location"

234             return True
235             
236     def runto_weapon(self):
237         if len(self.bot.view_items) < 1:
238             return True
239         else:
240             # look through for a weapon
241             ItemValues = self.bot.view_items.values()
242             for CurrentItem in ItemValues:
243                 if utilityfns.is_known_weapon_class(CurrentItem["Class"]) and 

CurrentItem["Reachable"] == "True":
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244                     print "runto weapon",
245                     print CurrentItem["Class"]
246                     

self.send_runto_or_strafe_to_location(CurrentItem[ "Location"
247                     return True
248             return True
249     
250     # Runs to the ChosenNavPoint
251     def walk_to_nav_point(self):
252         #print "walk_to_nav_point: " + 

utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)
253         
254         # have we already sent it?
255         #if not utilityfns.is_previous_message(self.bot, ("RUNTO", {"Location" 

: utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)})):
256         #    self.bot.send_message("RUNTO", {"Location" : 

utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)})
257             #print "sending message"
258         #else:
259             #print "already sent"
260             
261         # new version just calls the utility function
262         #utilityfns.send_if_not_prev(self.bot, ("RUNTO", {"Location" : 

utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)}))
263         
264         #even newer version has a strafe check
265         

self.send_runto_or_strafe_to_location(utilityfns. location_tuple_to_string
266         
267         return True
268             
269     # runs to the enemy flag
270     def to_enemy_flag(self):
271         print "!!in to_enemy_flag"
272         if self.PosInfo.EnemyFlagInfo != {}:
273             self.bot.send_message("RUNTO", {"Target" : 

self.PosInfo.EnemyFlagInfo["Id"]})
274         return True
275             
276     def to_own_flag(self):
277         if self.PosInfo.OurFlagInfo != {}:
278             # was self.bot.send_message("RUNTO", {"Location" : 

self.PosInfo.OurFlagInfo["Location"]})
279             

self.send_runto_or_strafe_to_location(self.PosInfo.OurFlagInfo[ "Location"
280         return True
281             
282     # runs to the bot's own base by getting a list of navpoints showing the way  

there
283     def to_own_base(self):
284         print "to_own_base"
285         DistanceTolerance = 30
286         # If we don't know where our own base is, then do nothing
287         # However, this action should never fire unless we do know where our 

base is
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288         if self.PosInfo.OwnBasePos == None:
289             print "Don't know where own base is!"
290             return True
291         
292         def send_getpath():
293             print "in send_getpath"
294             if not utilityfns.is_previous_message(self.bot, ("GETPATH", 

{"Location" : self.PosInfo.OwnBasePos, "Id" : self.PathHomeID})):
295                 self.bot.send_message("GETPATH", {"Location" : 

self.PosInfo.OwnBasePos, "Id" : self.PathHomeID}) # the ID 
allows us to match requests with answers

296                 print "sent GETPATH"
297             else:
298                 print "GETPATH already sent"
299         
300         # if we haven't already got a list of path nodes to follow then send 

the GETPATH message
301         # to try and mitigate the problem of pathhome being cleared part way 

through this, we assign
302         # the relevant value to a variable and then use that throughout, so the  

array is checked as infrequently as possible
303         # it's not an ideal fix though!
304         if self.PosInfo.PathHome == []:
305             send_getpath()
306         else:
307             if not self.to_known_location(self.PosInfo.PathHome, 

DistanceTolerance):
308                 print "DT check failed, tailing"
309                 self.PosInfo.PathHome = utilityfns.tail(self.PosInfo.PathHome)
310                 if self.PosInfo.PathHome != []:
311                     print "tail not empty"
312                     PathLoc = self.PosInfo.PathHome[0]
313                     self.send_runto_or_strafe_to_location(PathLoc)
314                 else:
315                     send_getpath()
316     
317         #before we return, send a checkreach command about the current 

navpoint.  That way the list can be recreated if it becomes incorrect
318         if self.PosInfo.PathHome != [] and self.PosInfo.PathHome != None:
319             self.bot.send_message("CHECKREACH", {"Location" : 

self.PosInfo.PathHome[0], "Id" : self.ReachPathHomeID, "From" : 
self.bot.botinfo["Location"]})

320         print "about to return from to_own_base"
321     
322     # runs to the enemy's base by getting a list of navpoints showing the way 

there
323     def to_enemy_base(self):
324         print "to_enemy_base"
325         DistanceTolerance = 30
326         # If we don't know where the base is, then do nothing
327         # However, this action should never fire unless we do know where it is
328         if self.PosInfo.EnemyBasePos == None:
329             print "Don't know where enemy base is!"
330             return True
331         

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py

11/05/05 17:55 :: page 8

332         def send_getpath():
333             print "in send_getpath"
334             utilityfns.send_if_not_prev(self.bot, ("GETPATH", {"Location" : 

self.PosInfo.EnemyBasePos, "Id" : self.PathToEnemyBaseID}))
335         
336         # if we haven't already got a list of path nodes to follow then send 

the GETPATH message
337         # to try and mitigate the problem of pathhome being cleared part way 

through this, we assign
338         # the relevant value to a variable and then use that throughout, so the  

array is checked as infrequently as possible
339         # it's not an ideal fix though!
340         if self.PosInfo.PathToEnemyBase == []:
341             send_getpath()
342         else:
343             if not self.to_known_location(self.PosInfo.PathToEnemyBase, 

DistanceTolerance):
344                 print "DT check failed, tailing"
345                 self.PosInfo.PathToEnemyBase = 

utilityfns.tail(self.PosInfo.PathToEnemyBase)
346                 if self.PosInfo.PathToEnemyBase != []:
347                     print "tail not empty"
348                     PathLoc = self.PosInfo.PathToEnemyBase[0]
349                     self.send_runto_or_strafe_to_location(PathLoc)
350                 else:
351                     send_getpath()
352     
353         #before we return, send a checkreach command about the current 

navpoint.  That way the list can be recreated if it becomes incorrect
354         if self.PosInfo.PathToEnemyBase != [] and self.PosInfo.PathToEnemyBase 

!= None:
355             self.bot.send_message("CHECKREACH", {"Location" : 

self.PosInfo.PathToEnemyBase[0], "Id" : 
self.ReachPathToEnemyBaseID, "From" : 
self.bot.botinfo["Location"]})

356         print "about to return from to_enemy_base"
357     
358     # returns true and sends a runto message for the provided location if the 

DistanceTolerance check passes
359     # otherwise returns false
360     def to_known_location(self, Location, DistanceTolerance):
361         if len(Location) == 0:
362             return True # even though we failed, we return true so that it 

doesn't tail the list
363         # to first point in current list, if we're not already there
364         Location0 = Location[0]
365         (HX, HY, HZ) = utilityfns.location_string_to_tuple(Location0)
366         (SX, SY, SZ) = 

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
367         if utilityfns.find_distance((HX, HY), (SX, SY)) > DistanceTolerance:
368             print "DistanceTolerance check passed"
369             
370             print "About to send RUNTO to",
371             print Location0
372             print "Current location",
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373             print self.bot.botinfo["Location"]
374             
375             self.send_runto_or_strafe_to_location(Location0, False)
376             # was
377             #if not utilityfns.is_previous_message(self.bot, ("RUNTO", 

{"Location" : PathLoc})):
378             #    self.bot.send_message("RUNTO", {"Location" : PathLoc})
379             #    print "Running to " + PathLoc
380             return True
381         else:
382             return False
383         
384     #not used at present (18/2/2005)
385     def inch(self):
386         # just add a bit to the x value
387         print "in inch"
388         (SX, SY, SZ) = 

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
389         NewLocTuple = (SX + 150, SY, SZ)
390         

self.send_runto_or_strafe_to_location(utilityfns. location_tuple_to_string
391         
392     # just because something was reachable the last time we knew about it 

doesn't mean it still is
393     def expire_reachable_info(self):
394         if self.PosInfo.OurFlagInfo != {} and 

self.PosInfo.OurFlagInfo.has_key("Reachable"):
395             self.PosInfo.OurFlagInfo["Reachable"] = "False"
396         if self.PosInfo.EnemyFlagInfo != {} and 

self.PosInfo.EnemyFlagInfo.has_key("Reachable"):
397             self.PosInfo.EnemyFlagInfo["Reachable"] = "False"
398         
399         self.PosInfo.TooCloseForPath = False
400     
401     # === OTHER FUNCTIONS ===
402     
403     # checks the previous sent message against the provided one, returning True  

if they match
404     # now replaced by is_previous_message(bot, Msg) in utilityfns
405     #def is_previous_message(self, Msg):
406     #    if self.bot.sent_msg_log == None or \
407     #    len(self.bot.sent_msg_log) == 0 or \
408     #    self.bot.sent_msg_log[-1] != Msg:
409     #        return False
410     #    return True
411     
412     # updates the flag positions in PositionsInfo
413     # also updates details of bases, if relevant info sent
414     # the position of a flag is how we determine where the bases are
415     def receive_flag_details(self, values):
416         #print "f",
417         #print values["Reachable"]
418         if self.bot.botinfo == {}: #if botinfo is {}, we can't yet set anything
419             return
420         
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421         #print "in receive_flag_details.  Values are:"
422         #print values
423         
424         #set flag stuff
425         OurTeam = self.bot.botinfo["Team"]
426         if values["Team"] == OurTeam:
427             self.PosInfo.OurFlagInfo = values
428             #print "our flag"
429         else:
430             self.PosInfo.EnemyFlagInfo = values
431             #print "enemy flag"
432         
433         # now set base stuff if appliable
434         if values["State"] == "home":
435             if values["Team"] == self.bot.botinfo["Team"]:
436                 self.PosInfo.OwnBasePos = values["Location"]
437             else:
438                 self.PosInfo.EnemyBasePos = values["Location"]
439                 #print "enemy base at",
440                 #print self.PosInfo.EnemyBasePos
441                 #print "self.PosInfo.EnemyBasePos has type",
442                 #print type(self.PosInfo.EnemyBasePos)
443     
444     # if the 'ID' key is PathHome then it tells the bot how to get home.
445     # we need to turn the dictionary into a list, ordered by key ('0' ... 'n')
446     # at present other IDs are ignored
447     def receive_pth_details(self, ValuesDict):
448         if not ValuesDict.has_key("ID"):
449             return
450         elif ValuesDict["ID"] == self.PathHomeID:
451             self.PosInfo.PathHome =  

utilityfns.nav_point_dict_to_ordered_list(ValuesDict)
452         elif ValuesDict["ID"] == self.PathToEnemyBaseID:
453             print "Set PathToEnemyBase"
454             self.PosInfo.PathToEnemyBase =  

utilityfns.nav_point_dict_to_ordered_list(ValuesDict)
455             
456         # if there's no 0 key we're being given an empty path, so set 

TooCloseForPath accordingly
457         if not ValuesDict.has_key("0"):
458             self.PosInfo.TooCloseForPath = True
459         else:
460             self.PosInfo.TooCloseForPath = False
461             
462     
463     # used in validating the bot's path home or to the enemy flag
464     # if the thing has the right ID, then clear the relevant path if it's not 

reachable
465     def receive_rch_details(self, ValuesDict):
466         print "in receive_rch_details"
467         if not ValuesDict.has_key("ID"):
468             return
469         elif ValuesDict["ID"] == self.ReachPathHomeID and 

ValuesDict["Reachable"] == "False":
470             self.PosInfo.PathHome = []
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471             print "Cleared PathHome"
472         elif ValuesDict["ID"] == self.ReachPathToEnemyBaseID and 

ValuesDict["Reachable"] == "False":
473             self.PosInfo.PathToEnemyBase = []
474             print "Cleared PathToEnemyBase"
475         
476     # if the combatinfo class specifies that we need to remain focused on a 

player, send a relevant strafe command
477     # to move to the provided location.  Otherwise, a runto
478     def send_runto_or_strafe_to_location(self, Location, PerformPrevCheck = 

True):
479         if self.CombatInfo.KeepFocusOnID != None:
480             Message = ("STRAFE", {"Location" : Location, "Target": 

self.CombatInfo.KeepFocusOnID})
481             if PerformPrevCheck:
482                 utilityfns.send_if_not_prev(self.bot, Message)
483             else:
484                 self.bot.send_message(Message[0], Message[1])
485             
486         else:
487             Message = ("RUNTO", {"Location" : Location})
488             if PerformPrevCheck:
489                 utilityfns.send_if_not_prev(self.bot, Message)
490             else:
491                 self.bot.send_message(Message[0], Message[1])
492                 print "have just sent",
493                 print Message
494                 
495     # clean-up after dying
496     def receive_die_details(self, ValuesDict):
497         self.PosInfo.PathHome = []
498         self.PosInfo.PathToEnemyBase = []
499         self.PosInfo.VisitedNavPoints = [] # this is new
500         self.PosInfo.OurFlagInfo = {}
501         self.PosInfo.EnemyFlagInfo = {}
502                 
503     
504 # This class stores details about where things are
505 class PositionsInfo:
506     def __init__(self):
507         self.OwnBasePos = None
508         self.EnemyBasePos = None
509         self.VisitedNavPoints = []
510         self.ChosenNavPoint = None
511         self.OurFlagInfo = {}
512         self.EnemyFlagInfo = {}
513         
514         # a list of nav points showing the way to various places
515         self.PathHome = []
516         self.PathToEnemyBase = []
517         self.TooCloseForPath = False # set to true if we're sent a blank path.  

Blank paths indicate that we're right next to something but can't 
actually see it

518     
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1 from posh_core import *
2 import utilityfns
3
4 # the status behaviour has primitives for stuff to do with finding out the bot's  

state (e.g. amount of health)
5
6 class StatusBehaviour(Base):
7     def __init__(self, PosInfo, **kw):
8         Base.__init__(self, **kw) # Call the ancestor init
9         
10         # set up variables
11         self.bot = None
12         self.PosInfo = PosInfo
13         
14         # register behaviours and senses
15         self.init_acts()
16         self.init_senses()
17         
18     def init_acts(self):
19         pass
20         
21     def init_senses(self):
22         self.agent.add_sense("have-enemy-flag", self.have_enemy_flag)
23         self.agent.add_sense("own-health-level", self.own_health_level)
24         self.agent.add_sense("are-armed", self.are_armed)
25         self.agent.add_sense("ammo-amount", self.ammo_amount)
26         self.agent.add_sense("armed-and-ammo", self.armed_and_ammo)
27         #self.agent.add_sense("holding-enemy-flag", self.holding_enemy_flag)
28         
29     def bind_bot(self, bot):
30         self.bot = bot
31     
32     # === SENSES ===
33     
34     # returns true if we are carrying the enemy's flag
35     def have_enemy_flag(self):
36         #print "have_enemy_flag?"
37         if not self.bot.gameinfo.has_key("HaveFlag"):
38             return False
39         else:
40             #print "have enemy flag!"
41             return True
42             
43     def own_health_level(self):
44         HealthLevel = int(self.bot.botinfo["Health"])
45         #print "Our bot has health ",
46         #print HealthLevel
47         return HealthLevel
48         
49     def are_armed(self):
50         if self.bot.botinfo == {}:
51             return False
52         else:
53             if self.bot.botinfo["Weapon"] == "None":
54                 print "unarmed",
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55                 print self.bot.botinfo["Weapon"]
56                 return False
57             else:
58                 print "armed",
59                 print self.bot.botinfo["Weapon"]
60                 return True
61         
62     def ammo_amount(self):
63         if self.bot.botinfo == {}:
64             return 0
65         else:
66             return int(self.bot.botinfo["CurrentAmmo"])
67             
68     def armed_and_ammo(self):
69         #return True
70         return (self.are_armed()) and (self.ammo_amount() > 0)
71         
72     # use have_enemy_flag instead
73     #def holding_enemy_flag(self):
74     #    if self.PosInfo == None or self.PosInfo.EnemyFlagInfo == {}:
75     #        return False
76     #   elif self.PosInfo.EnemyFlagInfo["State"] == "held" and 

self.PosInfo.EnemyFlagInfo["Holder"] == self.bot.bot_info["Id"]:
77     #        return True
78     #    else:
79     #        return False
80             
81     # === ACTIONS ===
82     
83     # none at present
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1 import string
2
3 # Some utility functions
4 def find_distance(one, two):
5     (x1, y1) = one
6     (x2, y2) = two
7     return ((((x1-x2)**2) + ((y1-y2)**2))**0.5)
8     
9 # takes a string of the form 'x,y,z' and converts it to a tuple (x,y,z)
10 def location_string_to_tuple(LocationString):
11     LocList = string.split(LocationString, ",")
12     if len(LocList) != 3:
13         return (0,0,0)
14     LTuple = (float(LocList[0]), float(LocList[1]), float(LocList[2]))
15     return LTuple
16     
17 def location_tuple_to_string(LocationTuple):
18     LString = str(LocationTuple[0]) + "," + str(LocationTuple[1]) + "," + 

str(LocationTuple[2])
19     return LString
20     
21 # returns negative if the number a represents is < the number b represents.  0 

if equal, positive if >
22 def compare_number_strings(a, b):
23     anum = int(a)
24     bnum = int(b)
25     if anum < bnum:
26         return -1
27     elif anum == bnum:
28         return 0
29     else:
30         return 1
31     
32 # lists of nav points arrive as dicts with an "ID" key and keys "0", "1", .... 

"n" these need converting to lists
33 def nav_point_dict_to_ordered_list(ValuesDict):
34     del ValuesDict["ID"] #remove the ID key to leave just numbers
35     #now get a list of just keys, and sort it to use in extracting the key:value  

pairs
36     KeyList = ValuesDict.keys()
37     
38     # debug
39     if ValuesDict.has_key("Reachable"):
40         print ValuesDict
41         print "-------"
42     
43     KeyList.sort(compare_number_strings) #need a home-grown sort function as 

although they're strings, we don't want "10" < "2"
44     
45     #now use the keylist to create an ordered list of location strings
46     LocList = []
47     CurrentLoc = 0
48     while CurrentLoc < len(ValuesDict):
49         #need to strip out the ID by including only everything after the first 

space 

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\utilityfns.py

11/05/05 17:56 :: page 2

50         LocString = ValuesDict[str(CurrentLoc)]
51         LocString = LocString[string.find(LocString, " ") : len(LocString)]
52         LocString = LocString.strip()
53         LocList.append(LocString)
54         CurrentLoc = CurrentLoc+1
55     
56     return LocList
57
58 def tail(SentSequence):
59     if SentSequence == [] or len(SentSequence) == 1:
60         return []
61     else:
62         return SentSequence[1 : len(SentSequence)-1]
63         
64 # checks the bot's previous sent message against the provided one, returning 

True if they match
65 def is_previous_message(bot, Msg):
66     if bot.sent_msg_log == None or \
67     len(bot.sent_msg_log) == 0 or \
68     bot.sent_msg_log[-1] != Msg:
69         return False
70         return True
71         
72 def send_if_not_prev(bot, Msg):
73     if not is_previous_message(bot, Msg):
74         bot.send_message(Msg[0], Msg[1])
75         
76 def is_known_weapon_class(SentClass):
77     if SentClass == None:
78         return False
79     else:
80         if SentClass.find("goowand") != -1:
81             return True
82     return False


