-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by University of Bath Research Portal

Citation for published version:

Partington, SJ 2005, A critical analysis of Behaviour-Oriented Design (BOD), based on experiences in using it to
create an Unreal Tournament Capture-the-Flag (CTF) team. Computer Science Technical Reports, no. CSBU-
2005-05, University of Bath, Department of Computer Science.

Publication date:
2005

Link to publication

©The Author May 2005

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

https://core.ac.uk/display/161910313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/a-critical-analysis-of-behaviouroriented-design-bod-based-on-experiences-in-using-it-to-create-an-unreal-tournament-capturetheflag-ctf-team(e0a05738-c780-45d9-bb11-2aa568b1eab8).html

Department of %@s ﬁK’SIIT‘YIii

Computer Science

Technical Report

Undergraduate Dissertation: A critical analysis of Behaviour-
Oriented Design (BOD), based on experiences in using it
to create an Unreal Tournament Capture-the-Flag (CTF)
team.

Samuel J. Partington

Technical Report 2005-05 May 2005
ISSN 1740-9497

Copyright (©May 2005 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 7AY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

A critical analysis of Behaviour-Oriented Design (BOD), based on
experiences in using it to create an Unreal Tournaenmt
Capture-the-Flag (CTF) team.

Samuel J. Partington

BSc (Hons) in Computer Science, 2005

A CRITICAL ANALYSIS OF BEHAVIOUR-ORIENTED DESIGN (BD), BASED ON
EXPERIENCES IN USING IT TO CREATE AN UNREAL TOURNAENT
CAPTURE-THE-FLAG (CTF) TEAM.

submitted by Samuel Partington

COPYRIGHT

Attention is drawn to the fact that the copyright g tthesis rests with its author. The
Intellectual Property Rights of the products producegaas of the project belong to the
University of Bath (see http://www.bath.ac.uk/ordiresi¢intelprop).

This copy of the thesis is has been supplied on conditiat anyone who consults it is
understood to recognise that its copyright rests itgtauthor and that no quotation from
the thesis and no information derived from it may be pldiswvithout the prior written
consent of the author.

Declaration

This dissertation is submitted to the University affBin accordance with the requirements
of the degree of Batchelor of Science in the Departwie@omputer Science. No portion
of the work in this dissertation has been submitteipport of an application for any other
degree or qualification of this or any other univgrsir institution of learning. Except
where specifically acknowledged, it is the workloé awuthor.

This thesis may be made available for consultatiohinvthe University Library and may
be photocopied or lent to other libraries for the purpo$esnsultation.

Abstract

Computer Science is full of interesting ideas, but withevaluation and
testing there is no way of determining a good iffean one which has
simply been well-publicised. This dissertation providesevaluation of
Bryson’s (2001) Behaviour Oriented Design [BOD], a metthagy for the

development of complex agents. This evaluation is basezkperiences
gained whilst developing a computer-controlled pla$feot() for the game

Unreal Tournament, and on comparisons with existirdpitectures and
methodologies. BOD is shown to be a useful and powsréthodology,

applicable to a wide range of situations. The documsat describes the
development of the bot and its eventual performancelidgiging issues

relating to BOD and to game-agent development iergén

The development process made use of the Gamebotsagé¢aminka et
al., 2002) and the PyPOSH implementation of BOD’s Actabection
mechanism (Kwong, 2003), both of which are described anunented
upon here. Improvements made to PyPOSH are also skstus

Acknowledgements

My thanks to my supervisor Dr. Bryson for her encounsege, support and useful ideas,
and to Andy Kwong whose work was invaluable to me. Iko ¢éike to thank contributors
at WordPerfect Universe for their help with someutoent formatting issues and, on a
similar note, to apologise to those who felt offehddy my decision not to use LaTeX.
(Don't take of it as a criticism of LaTeX; it's nateant as such.) Finally, I'd like to thank
my parents and friends for all their support.

Contents

1.

INtrodUCHiON 10
1.1. Contributions, Key Concepts, and Justification10
1.1.1. Behaviour-Oriented Design [BOD] 10
1.1.2. Unreal Tournament [UT] and Capture the Flag. 11
1.1.3. Justification e 11
1.2. Document Structuret e, 12
1.2.1. ROAAMAPS ..ottt e e 12
Introduction to Behaviour-Oriented Design cuee it 14
2.1, Introduction 14
2.2. Development Process and Development Principles14
23. Behaviours 15
2.4, Action Selection 16
2.4.1. BasicReactive Planst auu. 16
2.4.2. Sensory and Action Primitives16
2.4.3. ActionPatterns i 17
244, COMPELENCES . . i 17
2.45. DriveCollectionso ittt 17
2.5. Adefence of pre-writtenplans 17
2.5.1. Pre-written plans are both biologically plausible suiciently
FEACHIVE. e 17
2.5.2. Existing Al is not yet sufficiently advanced 18
2.6. PyPOSHand Python i mnnn.. 18
Introduction to Other Architectures 19
3.1. INtroduction 19
3.2. S0A . 19
3.2.1. GoalContext 19.
3.2.2. WorkingMemory 20.
3.2.3. Long-TermMemoryooiiiiiinnn.. 20.

3.2.4. The Perception / Motor Interface 20

3.25. TheDecisionCycle 20
3.2.6. IMPaASSESttt 21
3.27. Chunkingci i e 21
3.2.8. SUMMAIY . ..o e 21
3.3. EPIC [Executive Process-Interactive Control]22
3.3.1. EPICinTheory 22
3.3.2. EPICinPractice.......... 22
3.3.3. ProductionRuleexample 23
3340 SUMMANY . ..o 23
34, ACT-R ... 24
3.4.1. Declarative Memory and Pattern Matching24
3.4.2. ProceduralMemory 26.
3.43. Learningin ACT-R 27
3.5. SUMMAIY . . e e e 28
The Botin ACHION e e e 29
4.1. Introduction 29
4.2, TheScenariosouuiuiiiiiiniennenn 29
4.2.1. Walking To Navigation Points 29
4.2.2. A Greater Awarenessof Flags 31
4.2.3. Respondingto Attack 34
4.3. SUMMAY . oot e e e e 36
The Development ProCesSttt e e e e 37
5.1. Introduction 37
5.2. Initial Behaviour Decompositioncco. ..., 37
5.2.1. TheProCessottt 37
5.2.2. My Experience of the Process 37
5.3. Evolutionary Design and Development38

53.1.
5.3.2.
5.3.8.
5.3.4.

The ProCesst e i e s 38
Behaviour Modules, State and Utility Functions 38
The Primitives 40
Problems Encountered 44. .

5.3.5. Evaluation of the BODProcess46

5.3.6. POSH’s Contribution to Development 48
5.4. SUMMAY ..ottt e 50
Comparison with Other Architecturesccouiiiii... 51
6.1. Introduction 51
6.2. The Rational Rose Approach couu.. 51

6.3. Getting Started with Developmentc.......51
6.4. Evolutionary Design and Development53
6.5. Goal-Driven Development i i 54
6.6. The Architecture 54
6.6.1. POSH'’s Hierarchical Structure54
6.6.2. Priorities and Emergent Behaviour55

6.6.3. FrequencyandRetries 55
6.6.4. Modularityand Re-usecc i 55
6.6.5. ExplicitGoals i 57.
6.7. Further Analysis of the Rational Rose Approach 58
6.8. Comparisons with the Subsumption Architecture 58

6.8.1. Incremental Development and Behaviour-Interactian 58

6.8.2. RODUSINESS
6.8.3. OverallComparisoniiiiiiennnn 60
General BOD Evaluationt ia e 61
7.1. Introduction 61
7.2. The Methodology i 61
7.2.1. Lessons from Extreme Programming 61
7.3. POSHPIans 63
7.3. 1. SyntaxX 63.
7.3.2. Sharingand Redundancy 64.
7.3.3. ParallelPlanElementso 67
7.3.4. Improvements to Documentation/ 6.7

7.4. Testing POSH against Action-Selection Criteria 68
7.4.1. Dealing with all types of sub-problem68

7.4.2. Contiguous action SeqUeNCESo v ittt it 69

7.4.3. Compromise candidates 69.
744, ConClusion 71.
8. PyPOSH: Problems, Alterations, Corrections and Rewndations 72
8.1. Multiple Behaviour Files 72
8.1.1. How to Write a Behaviour Module 72
8.2. Problems Corrected 73
8.2.1. Timeouts for Drive Collection Elements73
8.2.2. Retry Limits for Competence Elements74
8.3. Other Issues and Suggestions¢cceeeeer. ... 14
8.3.1. Debugging i 74
8.3.2. Profiling........ 74
8.3.3. Issues with Primitives ann. 75
8.4. Distribution 75
9. CONCIUSIONS . . . oot e 76
9.1. Summary of Achievements 76
9.1.1. A Discussion of Architectures 76
9.1.2. TheBodbotProject............. ... i iiiiininn 76
9.1.3. An Evaluation of BOD, and Improvements to PyPOSH . . 76
9.2. Future Work, and Limitations of this Dissertation. 76
9.2.1. Significant Developments v 76
9.2.2. Tweaks 78
9.2.3. Further Evaluation and Development of BOD78
9.24. OtherWork 79.
9.3. Summary of Evaluation 79
9.3.1. Methodology i 79.
9.3.2. POSH Action Selection iiun 79
9.33. PlanFiles e 80
9.3.4. OverallSummaryc .. 80.
Bibliography 81

Appendix A: Sample Plan Files 85

Appendix B: Initial Behaviour Decompositioncou ... 90
Appendix C: E-mail fromJohn Laird uuiiii 94
Appendix D: Readme from Distribution 95
Appendix E: Code Listings and CD Contentso .. 99

1. Introduction

Computer Science is full of interesting ideas, but withevaluation and testing there is no
way of determining a good idea from one which hagply been well-publicised. This
dissertation provides an evaluation of Bryson's (200HaBeur Oriented Design [BOD],
a methodology for the development of complex agenthis evaluation is based on
experiences gained whilst developing a computer-coatrglayer (“bot”) for the game
Unreal Tournament, and on comparisons with existingitentbres and methodologies.
BOD is shown to be a useful and powerful methodology, afyiica a wide range of
situations. The document also describes the developofifiie bot and its eventual
performance, highlighting issues relating to BOD tangaame-agent development in general.

The development process made use of the Gamebots iatéaminka et al., 2002) and
the PyPOSH implementation of BOD’s Action Selectiorcihamism (Kwong, 2003), both
of which are described and commented upon here. Irepr@ws made to PyPOSH are also
discussed.

1.1. Contributions, Key Concepts, and Justification

The principal contributions of this dissertation are:

. The development, using Behaviour-Oriented Design, oot for Unreal
Tournament's Capture-the-Flag mode, and a discussitiisoflevelopment. The
POSH plan developed as part of this is more complexdhgrexisting published
POSH plan. (POSH is BOD’s Action Selection Mechamistroduced in section
2.4).

. An evaluation of BOD in light of this development anith reference to existing
architectures and methodologies for Agents and Adlfilntelligence. These
include Soar (Lehman et al. 1996), EPIC (Kieras and Mel@®7), ACT-R
(ACT-R Research Group, 2004a), the Subsumption ArchitectuookB, 1986),
JACK (Howden et al., 2001), agent modelling via UML &ational Rose (section
6.2), Kinny et al.’s (1996) Beliefs-Desires-Intentionsdelp and Tyrrell's (1993)
criteria for Action Selection Mechanisms.

Additional contributions of this dissertation incluithe following:

. A summary and evaluation of a number of Atrtificial dligence / Agents
architectures and methodologies.

. Improvements to the PyPOSH implementation of BOD’stigh Selection
mechanism.

1.1.1. Behaviour-Oriented Design [BOD]

Behaviour-Oriented Design (Bryson, 2001) is a methayolfor the development of
complex agents. There is much debate over the exaitidefof an “agent”, but a well-
respected definition is that given by Wooldridge (20025 phis emphasis):

An agentis a computer system thatsguatedin someenvironmentand that is
capable ofautonomous actiofn this environment in order to meet its design
objectives.

10

Bryson (2001) defines @omplex agenas one which must deal with goals and behaviours
which may be conflicting.

BOD is both methodological and architectural: it sfiesian iterative development process,
a system of behaviour decomposition and a mechanisAcfion Selection (POSH). BOD
draws on ideas from Behaviour-Based Al (e.g., Matd®97) and Object-Oriented Design
(Booch, 1990). Itis introduced in detail in chapter 2.

1.1.2. Unreal Tournament [UT] and Capture the Flag.

Unreal Tournament (Epic Games, 2004) is a First-Persont&HFPS] game. As the name
suggests, the viewpoint adopted by the player in FP&ganthat of the character he or she
is controlling: the player sees the world throughdheracter's eyes. (Some FPS games also
offer a third-person “over the shoulder” view option.)

The single-player version of Unreal Tournament pits thredn player against computer-

controlled players (“bots”) in kill-or-be-killed deatlatches spread over a wide range of
expansive 3D environments. The aim of the gamedsfeat all competitors in every arena.

The multi-player mode is similar, except that it issothuman players who are fought, rather
than computer-controlled ones. The complete storylimetife game can be found at

http://www.planetunreal.com/utguide/story.shtml

This project, however, concentrates on a specificeganode within UT: Capture the Flag
[CTF]. Inthis mode, two teams (or possibly two terglayers) compete against each other.
Each team has a base in which their flag is locatés: object of the game is to obtain your
opponents’ flag (done by running into it), and return titio your flag. This counts as a
flag capture. Once a specified number of captures hamneslob@eved, the game is won.

However, the opposing team can obviously capture your Bag dn this case, you must
recover it before you can make a successful capturetasing to your base with the
enemies’ flag achieves nothing if your own team&gfis not there. Once a player has
captured a flag, s/he may be forced to drop it by bellegl Kusing the usual UT weaponry).
The flag then lies on the ground waiting for someoneeitbier team) to pick it up. If you
pick up your own flag dropped by an escaping enemy, itmetiar your base instantly.

Teams in CTF may be composed of human players alor@, @mixture of human and
computer players.

1.1.3. Justification

This project is significant for a number of reasolbe primary reason is that BOD has not
previously been evaluated in detail except by its developér.is important that
developments in any scientific field are criticadlyaluated if they are to be truly understood
and reach their full potential. Similarly, the PyPOBhplementation of POSH Action
Selection has not previously been evaluated by a thig-pa

Furthermore, the bot developed as part of the implementptiase of this project has a
more complex POSH plan than any published to date (seersB.3.6). The development
therefore provides much insight into the effectivenasd scalability of all aspects of the
BOD process and acts as evidence of the power of¢tieodology.

Finally, this dissertation provides information udefua number of areas: Evaluation of
BOD is a major part, but this project also contributesexisting literature on the

11

development of agents and specifically of agentsdanputer games (e.g. Laird and Duchi,
2000). The evaluation itself is relevant from both aiékcal and a practical perspective.

Are computer games really a valid field for the exploratn of Artificial Intelligence?

Although computer gaming may appear a trivial use of coemputcomputer games’
contribution to Al research is far from insignificaritaird and van Lent (2000) go so far as
to describe interactive computer games as the “Kélfglication” for pursuing the goal of
Human-level Al. However, the usefulness of computer gaextends far beyond just
pursuing this particular goal. McCarthy (1998; p.1), for exapg#scribes using the game
Lemmingsas an ideal model for “Al research connecting logftaimalizations with
information that is incompletely formalizable in piiaet, whilst Veksler and Gray (2004)
have made use of tAetris game for experiments with reinforcement learning.

A key motivation for the use of computer games in Aeggch is that they offer complex
interactive environments in which artificially-itiigent agents can operate. These
environments are usually highly customizable and ctem dife created from scratch to suit
particular needs. The cost and complexity of using anoenvironment in comparison to,
say, robotics are negligible.

Readers interested in further justification are eregenl to read Laird and van Lent’s article
(2000). In particular, it offers a list of “reasonsAdresearchers to take the computer game
industry seriously” (p. 1172).

1.2. Document Structure

This document is made up of three main sections:

. Chapters 2 and 3 summarise and comment on most afc¢hitectures studied.
Chapter 2 introduces BOD whilst other architecturesrareduced in Chapter 3.

. Chapters 4 and 5 discuss tHevelopment process and the bot produced
including some brief evaluation.

. Chapters 6, 7 and 8 provide thealuation of BOD and a brief evaluation of
PyPOSH, the Python implementation of POSH. Theuew®n is summarised as
part of theconclusionsin chapter 9.

This document contains no explicit “Literature Reviesgttion. Rather, the work done for
my Literature Survey is spread throughout the documanthrof it in chapters 2 and 3.

1.2.1. Roadmaps

If you just wish to read abouifferent architectures, chapters 2 and 3 are the most
important ones to read. You should also read sectiont&&(tbsumption Architecture).
You may also like to read about JACK in section 6.6.4,thadRational Rose approach”
in section 6.2.

If your main interest ighe development parts of this project you should read the
scenarios in chapter 4, as these describe the behafiadhe created bot. You should
definitely read chapter 5, the primary place wherediheelopment process is discussed.
You may find section 2.4 (an explanation of POSH actielecton) useful in your
understanding of chapter 4, as this chapter makes rafegmce to POSH plans and action
selection. You should also read Appendix B which dessrthe bot's specification, and
possibly Appendix D, as this discusses part of the develoipof the Soar Quakebot (Laird

12

and Duchi, 2000). Chapter 8 is probably worth reading ®pas of the development time
was spent working on modifications to PyPOSH.

If your interest is only ithe methodological side of BODyou should read sections 2.1 and
2.2 (although these might make more sense if you under8taBdfully, so you may find

it useful to read all of that chapter). You should tread chapter 5, probably omitting the
section which discusses POSH (5.3.6), and read theossaif evaluation which detail
specifically with the methodology (6.3 and 6.4). Theusion with reference to Extreme
Programming in section 7.2.1 would also be worth reading

Finally, if your interest in BOD is limited tBOSH action selectionyou should begin by
reading chapter 2 (probably omitting section 2.2). Chaptscribes the behaviour of the
bot in relation to the plans created and so shoulditéd§i be read. POSH’s contribution
to the development process is discussed in section \wt€ the comparisons in section
6.6 deal with action selection. POSH plan filesemaduated in section 7.3, whilst section
7.4 tests POSH against Tyrrell's (1993) criteria for éwtbelection mechanisms. Section
8.2 of the chapter on PyPOSH might also be useful: dudi&es some of the problems
corrected with this implementation of POSH. Final\ppendix A gives a number of
sample plan files.

13

2. Introduction to Behaviour-Oriented Design

2.1. Introduction

Introduced in Bryson (2001), Behaviour-Oriented Desig®I[B is a methodology for
developing complex agents. Bryson (2001, p. 59) summarise®tiponents of BOD as
follows (her emphasis):

Behaviour-oriented design consists of three equalhortant elements:

. an iterative [development] process
. parallel, modulabehaviourswhich determinéow an agent behaves, and
. action selectionwhich determines/hen a behaviour is expressed.

This chapter explores these three elements in mdad.ddt also provides a theoretical
defence of pre-written plan files, introduces the PyR®$thon implementation of POSH
and introduces the Python language itself.

2.2. Development Process and Development Principles

BOD aims to facilitate rapid, efficient and simpleelepment. These goals are the driving
force of the development process itself, and arerdieon d'etreof BOD's development
principles.

The design process begins with the initial behaviooomgosition, discussed in section 2.3
below. The core of the design process, howevengifotlowing iterative sequence (Bryson,
2001, p. 120):

1. Select a part of the specification to implement next.
2. Extend the agent with that implementation:
. code behaviors [sic] and reactive plans, and
. test and debug that code.
3. Revise the current specification.

The iterative nature of this process allowsrfpid prototyping different approaches can
be tried, rolling back to the previous iteration if otevelopment is found to be ineffective.

The key principle for revision of specifications isHen in doubt, favour simplicity’il§id,

p. 121). In practice, this means using the simplestrastitection component possible in
any given situation, refactoring action-selectiomponents to avoid overly complex or
overly long elements, and both eliminating redundar@y maximising re-use.

Bryson (2001) gives three further recommendations toenaveloping with BOD as
efficient and effective as possible:

1. Document the agent specification in program code
2. Use a Revision-Control system
3. Use debugging tools.

These recommendations and others are discussedérdetail in Chapter 8 dbid.

14

2.3. Behaviours

Separating a large system into more manageable subsyista long-established software-
engineering principle, and behaviour decomposition igftettive way of breaking down
the capabilities of an agent. Brooks (1991; p. 87) descttilseccinctly (his emphasis):

[The] fundamental slicing up of an intelligent system. dividing it intoactivity
producing subsystems. Each activity, or behaviour progwgistem, individually
connects sensing to action.

Contrast this with applying the principle of breaking davaystem into areas of specific
functionality “One needs a long chain of modules to connect pgoteto action. In order
to test any of them they must all first be built. Butil realistic modules are built it is
highly unlikely that we can predict exactly what moduéll be needed or what interfaces
they will need.” {bid; p. 87).

However, this activity-based approach to decompositiomot without its problems,
primarily in the interaction between the behaviour meslulThis can be seen in Behaviour-
Based Al (for example, Mat&ri1997) where a high level of coupling is required to ensur
that the right module runs at the right time (by hgthlese modules interact to suppress or
activate each other, for example). BOD offers a m@ynd this problem: its hierarchical
reactive plans mean that behaviours can run withoutyimgrabout the interactions of other
behaviours, yet with the assurance that should some mpertant situation arise, the
relevant behaviour will be triggered to handle it.isTib particularly significant as it means
that the developer is free to concentrate on wheagent actually does.

As with other aspects of the design process, BOD peswiglidelines to follow for initial
behaviour decomposition (Bryson, 2001; pp. 119-120):

1. Specify at a high level what the agent is interidetb.

2. Describe likely activities in terms of sequences agtions. These
sequences are the basis of the initial reactive plans.

3. Identify an initial list of sensory and action priiés from the previous
list of actions.

4, Identify the state necessary to enable the desqpitimitives and drives.
Cluster related state elements and their primitises $pecifications for
behaviors [sic]. This is the basis of the behaviorlipr

5. Identify and prioritize goals or drives that themigmay need to attend to.
This describes the initial roots for the POSH actieledtion hierarchy
[explained below].

6. Select a first behavior to implement.

An important point is that BOD's emphasis on revisiorspEcifications means that no
assumption is made that the initial decompositionfitepe The developer is free to modify
the decomposition if new issues arise, and the lackupling between components means
that this can be easily achieved.

The use of behaviours in BOD draws inspiration from Gbfgriented Design [OOD]
(Booch, 1990). Specifically, behaviours are usually codenbgcts, and the basic actions
in Reactive Plans (see section 2.4.2) are then mettsl on these objects. OOD also

15

influences BOD’s iterative design process where, asriteed above, cyclic design with
rapid prototyping is emphasised.

| imagine that this use of OOD would be a contributagtdr to the acceptance of BOD as
a methodology: it is a technique with which the migjoof software engineers would
already be familiar, and one which has proven suadesstl useful. The advantages (and
disadvantages) of drawing on OOD for agent mettoggiled is discussed further in Inglesias
et al. (1999).

2.4. Action Selection

Action Selection is the mechanism which controlemhactions are executed. In BOD this
is controlled by Parallel-rooted Slip-stack Hierarehif®OSH] reactive plans, described
below. Note that “reactive planning” is somethingaahisnomer as reactive planning is not
planning in the traditional sense (Nilsson, 1998 pp. 117-214)nofe accurate phrase

would be “reactive action selection” (Bryson, 2001; p. 60).

2.4.1. Basic Reactive Plans

Basic Reactive Plans [BRPs] are the theoreticalsbfasi many of the elements used in
POSH plans. BRPs are ordered groupseafse> action pairs (production rules). Figure
2.1 is an example.

(full) = goal
(have a peeled banana)eat a banana
(have a banana) peel a banan
= get a banan

(have hunger= 1

Figure 2.1 (from Bryson, 2001)

This BRP groups together all the rules to do withettt@ns to be performed when the agent
has hunger. The rules have a priority (increasitigardirection of the vertical arrow). The
rule which fires is that which has the highest ptyodf all those whose preconditions are
satisfied. Note thgoal element. This indicates that the task is compkte, the BRP
terminates when it fires. BRPs can also termidateto none of their conditions being able
to fire.

Plans which contain sub-plans are caflegtarchical It has been argued (e.g. Maes, 1991)
that hierarchical approaches to action selection auexrly restrictive, and that full
parallelism is a superior approach. This argument ige@fin Bryson (2000c).

POSH plans themselves are made up of 5 types of comp&azsory Primitives, Action
Primitives, Action Patterns, Competences and DrigeCtions. The plans are written in
Bryson’'s own LAP [Learnable Action Pattern] formatich uses a Lisp-like syntax.

2.4.2. Sensory and Action Primitives

Sensory and Action primitives are the lowest-lev@hponents in POSH, specifying how
the available actions and senses should be carried~outexample, these may be coded as
methods in a behaviour module.

16

2.4.3. Action Patterns

Action Patterns are the simplest type of plan, beimplsia list of actions. For example:
(get a banana peel a banana eat a bananaFigure 2.2 (from Bryson, 2001)

2.4.4. Competences

Competences are a special form of BRP with two amfditi(1) competences offer the option
to specify a maximum number of retries for each actaod,(2) competences return a value:
T if the competence ends because the goal-trigger éirek. if it ends because no element
can fire.

2.4.5. Drive Collections

A Drive Collection is also a special type of BRP, usatuly as the top level of the

hierarchy. Whilst each BRP element contains a ipyioeleaser (i.e. preconditions) and the
action itself, Drive Collection elements also camta maximum frequency at which the
element fires (e.g. the element may only fire at nurste per two minutes, even if its

preconditions are met more often than that). D@a#lection elements also contain a fifth
item: A, the root of a BRP Hierarchy.

The action element, in a Drive Collection points to tlwirrently activeelement ofA. This
allows Drive Collections to force the plan executiorrémain focussed on a lower-level
plan element: ify turns out to be a competence which then triggers aetmce or action-
pattern, then actioru is set to point to the root @f(hence the “Slip-stack” in “POSH”").
Altering whereg, points means that next time the competence elemast fiontrol jumps
straight to this sub-element. Control is returneth&higher element whehterminates.
This return of control is accomplished by setting point to the root of, which is where
it points when then element runs for the first time.

One further difference between Drive Collections BRiIPs or Competences is that multiple
drives (i.e. Drive Collection elements) may effeeljvbe active simultaneously (hence
“Parallel-rooted” in “POSH"). For example, whilstedrive is pointing to some lower-level
task which is part way through being executed, a higherigridrive may fire instead,
temporarily moving control into that drive.

2.5. A defence of pre-written plans

Some might argue that by pre-writing reactive plansamenot creating a system which is
“artificially intelligent” at all. (For instancet could be argued that the system itself should
write its own plans.) However, this is not the ca$éere are two key points here:

2.5.1. Pre-written plans are both biologically plausible andufficiently reactive.

Section 4.2.2 of Bryson (2001) cites much evidence to stippese points, which | shall
not repeat here. Bryson (2000a) also studies the isshbielofiical plausibility in great
detail; its central hypothesis is that “natural, appedprand alert behaviour can be exhibited
by agents executing actions prestored as hierarchiesegences” (p. 33).

Furthermore, it is important to note that pre-codingplains in no way compromises an
agent’'sautonomy Consider Barber and Martin's (1999; p. 9) comprehermgfiaition of
autonomy, which draws together ideas from a widgeani existing sources:

An agent's degree of autonomy, with respect to saakthgat it actively uses its
capabilities to pursue, is the degree to which the ideeisaking process, used to

17

determine how that goal should be pursued, is freeifitervention by any other
agent.

In choosing actions via POSH plans, it is clear thataent is acting without any
intervention and thus is autonomous.

2.5.2. Existing Al is not yet sufficiently advanced

Whilst it is a dream for many to be able to releagmsic agent into an environment and
have it learn everything necessary without any pigemrplans, the science of Al is still a
long way from achieving this (after all, it took hans four billion years of evolution!). In
fact, BOD is arguably an excellent compromise of reabsd idealism, as it does enable
a large amount of learning (e.g. Bryson, 2001, Ch. 7)thnough the non-linear execution
of actions brought about by structures such as competdac#isates much in the way of
emergent behaviour.

Furthermore, the “learn everything” approach would megai huge amount of search to
create its own plans. Wolpert and Macready’s (1996) fee lunch” theorems claim that

for any algorithm (and thus for search such as thiggreral-purpose optimal solution is
impossible: an improvement in performance on one sptatflems is matched exactly by

a decrease in performance for some other set. flaes severe constraints on the
feasability of agents which do not use any pre-wripiems.

2.6. PyPOSH and Python

PyPOSH (Kwong, 2003) is “an agent framework built in BgtiiDavids, 1997) which
supplies POSH action selection mechanisms for dggmt25). Using PyPOSH with the
Gamebots interface (Kaminka et al., 2002) allows agetdsreal Tournament to be guided
by POSH plans to perform actions coded in the Pythogramming language. A simple
agent, “poshbot”, was developed as part of PyPOSH'slgfmwent, and the agent | have
developed builds on this. My choice of Python as gnaroming language is driven by the
fact that PyPOSH is written to use behaviours cod&yihon. A rationale behind the use
of Python for PyPOSH can be found in Kwong (2003), pp. 17-21.

Python is a general purpose Object-Oriented languagehwiiludes garbage collection.
Python programs are highly portable, as (like programitten in Java, for example) they
compile to an intermediate language which is then ruarbynterpreter. Python is also
embeddable and extendable, able to load compiled filagcesdiles or object code
dynamically.

One interesting syntactic aspect of Python is thhitespace is not ignored. Rather,
indentation is used to define blocks. Another igriteresting aspect is Python’'s expression
evaluation, which allows expressions such as the foltp@Davids, 1997):

a=b=c=0 multiple assignments
[a, b] =['a’, ‘b] multiple different assignments
w<x<y<z multiple range testing

18

3. Introduction to Other Architectures

3.1. Introduction

Since one of the primary parts to this project is anluatan, it is desirable to have
alternatives to compare against, as well as just experiin the methodology to be
evaluated. Some of these alternatives, primarily,&RIC and ACT-R, are outlined below.
These architectures are those studied as part ofitla Literature Survey | performed.
Although, unlike BOD, these are all cognitive arattitlees, | chose to study in these detail
as they are more complex than most other architectures

Other architectures were studied as part of the tat@parisons and these are introduced
at the relevant stages of this document. These atbhitectures include the Subsumption
Architecture, JACK, agent modelling via UML and Ratl Rose, and Kinny et al.’s (1996)
Beliefs-Desires-Intentions model.

3.2. Soar

The Soar architecture (Lehman et al. 1996) was desfgnedodelling human cognition,

with the specific aim of creating a unified theorycofynition [UTC]. Work on Soar began
around 1980. Soar projects have included at least oiterdgioomy work with UT: The Soar

Quakebot (Laird and Duchi, 2000).

The Soar architecture is designed around a partici#arof cognition. This view specifies
that cognition:

. is goal-oriented

. reflects a rich, complex, detailed environment

. requires a large amount of knowledge

. requires the use of symbols and abstractions

. is flexible, and a function of the environment

. requires learning from the environment and experience

(This list and the subheadings below adapted from Lehebeal., 1996). The view of
cognition is important as it affects the structured amechanisms which underlie Soar.
These are outlined below.

3.2.1. Goal Context

The Goal Context structure is central to Soar. Soalsdeith four kinds of conceptual
object: goals (why something is being done), problentespga method of partitioning
knowledge), states (internal representation of thes@n) and operators (maps from state
to state), and a goal context encapsulates a partingtance of these.

For example, consider a model of a student working alissertation. In this case, the
model could contain a goal context with objects thattevgomething like the following:

. Goal: produce an optimal dissertation report
. Problem spacethe set of knowledge related to report creation
. Statesreport title, deadline, supervisor, etc

19

. Operators:schedule meeting with supervisor, drink coffee, iaakr, etc

The above may seem very general. However, Soéerrbhical (seémpassedelow) and
so the goal context outlined above would have sevatatentexts which would be more
specific.

3.2.2. Working Memory

Working Memory [WM] contains the current situation {@hmay include past states and
hypothetical states as required for reasoning),dridim of one or more goal contexts. The
results of perception are also held here.

3.2.3. Long-Term Memory

The knowledge in Long Term Memory [LTM] is proces$sdthe architecture to produce
behaviour. The knowledge is stored in the form ebamtions which map the current goal
context (in WM) to a new goal context.

With the student example above, some associations malhtle the following:
(al) If | perceive that | have finished reading a paper
then suggest a goal to summarise that paper.
(a2) If there is a goal in WM to summarise a paper
then suggest achieving it using the Summary Creatialolgmn space with
an initial state havingum_words 0 andamount_summarisedO.
(a3) If using the Summary Creation problem space andntioeint_summarisedis <100
then ...

Note that the exact format of the associations isypartant. | have used if-then structures
as that is the style adopted in Lehman et al. (1996). Kfegls on how the “then” parts
of associations are handled are given in Sectio® d&low.

A further point is that “Soar’s long-term memoryingpenetrable This means that a Soar
system cannot examine its own associations diratdlynly window into LTM is through
the changes to working memory that are the restiisamciations firing.”ibid, p. 34; their
emphasis). | believe that this is likely to leaditmore human-like model of cognition but
at the expense of ease of programming and debugging.

3.2.4. The Perception / Motor Interface

The Perception / Motor Interface defines mappings ftben external world to internal
representations in Working Memory, and from interregresentations to action in the
external world.

3.2.5. The Decision Cycle

The Decision Cycle is the primary process underlyiogrS cognition. The cycle is made
up of two phases: elaboration and decision. In elabotathe architecture attempts to
match the contents of WM against associations meldTM. Any that match fire in
parallel. Any changes to the state happen immediatelchmriges to the context (e.g.
changing to a new problem space, adding a new gotextprare simply added to a list of
suggestions. Elaboration repeats (as changes tomsgtenean that new associations can
fire) until no further associations match.

20

At this point the decision phase begins. This phasidekewhich one (and only one) of the
suggested context changes to perform and performsé.process uses those associations
from LTM which suggest which context change is thestb® enable it to make a decision.

If the decision process cannot decide, then we aairapasse
3.2.6. Impasses

As outlined above, impasses occur when a decision caenatade about which context
change should be applied. Note that since knowled@oar is compartmentalised into
problem spaces, the solution may be found in another pnapace. When an impasse
arises, a new sub-goal is created to find the kn@elewcessary to make this decision.
Impasses therefore provide an opportunity iearning The model would include
associations suggesting how impasses could be resblydooking in a specific problem
space, for example).

When a solution is found, a new association is atéde original problem space in LTM
so that next time the situation is encountered an isgpagl no longer occur.

Inability to make a decision is just one type of impags®ther may be the lack of
information on how to perform a required action, dgample). However, all impasses are
solved in the same way.

Impasses are what give Soar its hierarchical structnoglels are given an initial goal
context, and any further sub-goals are generated dofeljnpasses. For example, our
student might have a goal of writing a dissertatidich might lead him to determine that
he must read papers. However, if the knowledge ontbaie this is not available in his
report creation problem space then an impasse will lerafea and sub-goals generated in
the technical reading problem space.

3.2.7. Chunking

Chunking is the name given to the procedure by whishassociations are added to LTM.

These new associations are created automatically wdreresults are generated from an
impasse. This involves looking at all contextualiinfation which generated the impasse’s
result. The process is explained in more detail itige8 of Lehman et al. (1996).

The concept of Problem Spaces seems to me to be a aisefus partitioning knowledge
can make search more effective. However, | woulddmeerned that this could result in a
lot of redundancy once chunking has been performeeraletimes, as similar or related
associations would be found in different problem spaces.

3.2.8. Summary

In summary, Soar uses goal contexts (goals, problemspaates and operators) to store
knowledge. Knowledge in Working Memory holds detafighe current situation, whilst
Long-Term Memory holds associations which map one gumatext to another. Learning
comes about as a result of impasses, i.e. situations teecurrent problem space does not
provide a solution to the current problem. Once a swidtas been found, chunking is used
to add relevant new associations to Long-Term Mgmor

21

3.3. EPIC [Executive Process-Interactive Control]
3.3.1. EPIC in Theory

The EPIC architecture is being developed for the miadelbf human cognition and
performance (Kieras and Meyer, 1997). A key theoretspéet of EPIC is that it is uses
embodied cognition: i.e. constraints imposed by thegmtual-motor system are considered.
In short, “how long it takes an EPIC model to dmask depends intimately on how EPIC's
eyes, perceptual mechanisms, and effectors are utieeltimsk” (Kieras and Meyer, 1997;
p. 395). This allows EPIC to model human behaviour nféeetevely and more accurately.

Another important aspect of EPIC is that of multiplektperformance. It is known that the
capacity a human has for information-processing igdanand this has been traditionally
expressed by a single-channel bottleneck. Despitentiigever, it appears that humaane
able to perform multiple tasks simultaneously. EPICesa& fairly radical approach,
described by Kieras and Meyer (1997; p. 397) as follows:

With EPIC ... we do not make the assumption that aettxpacity for cognitive
processing is limited. Such an assumption is tiaditibut lacks both empirical
and metatheoretical justification. In contrastassume that limitations on human
ability are all structural; that is, performance oktasay be limited by constraints
on peripheral-perceptual and motor mechanisms or byetimierbal working
memory capacity, rather than by a pervasive limit ogniive-processing
capacity.

3.3.2. EPIC in Practice

The EPIC architecture includes perceptual processorsafviand auditory), cognitive
processors and motor processors. The details of piercetd motor processing are not
relevant to this project and so these processorsnaillbe examined here. Cognitive
processing, by contrast, is of interest:

Cognitive Processing

EPIC's cognitive processor is programmed via productitas which use the Parsimonious
Production System [PPS] interpreter (Bovair et al., 199e rules have the following
format:(<rule-name> IF <condition> THEN <actions>) . Rules are limited
in what they can do: “[conditions] can test only tt@ntents of the production-system
working memory. The rule actions can add and reritewes from working memory or send
a command to a motor processor” (Kieras and Meyer, 199103). Working memory is
explained below.

EPIC’s cognitive processing operates in cycles. hatstart of a cycle, working memory is
updated with the output from perceptual processors and kétimbdifications from the
previous cycle; at the end of a cycle, the productyatesn working memory is updated and
any required commands are sent to the motor prosessor

As alluded to above, EPIC allows more than one praaluctile to fire at a time, so-called
“Cognitive Parallelism”ipid; p. 403). In factall ruleswhose conditions match the contents
of working memory are fired on each cycle, and @ltheir actions are executed.

The current version of EPIC does not offer supportaming.

22

Working Memory

Although PPS has only one working memory structuréCEReats it as several partitions.
The first four of these relate to particular processassial memory, auditory memory and
tactile memory contain information from perceptual pssors, whilst motor memory
contains “information about the current state of tlmtamprocessors, such as whether a
hand movement is in progres#iifl, p. 404).

Another form of working memory is the control storEhe control store contains items to
represent the current goals and the steps for acctimglithese goals. As this shows,
control information in PPS is a type of working meynitem like anything else which the
model “knows” (and can therefore be manipulated by ruliers). This greatly assists
cognitive parallelism, as it allows running tasksaoatrol other tasks by manipulating their
goals and actions.

The final form of working memory is simply referremlas General WM and is used to store
miscellaneous information for and about tasks.

3.3.3. Production Rule example

The following example is part of a model of the sébecof items from a drop-down list
(pull-down menu):

(if-not-target-then-saccade-one-item

if

(goal do menu task)
(step visual-search)
(wm current-item is ?object)
(visual ?object is-above ?next-object)
(not (visual ?object is-above nothing))
(motor ocular processor free)
(visual ?object label ?nt)
(not (wm target-text is ?nt)))

then

((deldb (wm current-item is ?object))
(adddb (wm current-item is ?next-object))
((send-to-motor ocular move ?next-object)))

Figure 3.1 (adapted slightly from Kieras and Meyer, 1997, p. 414)

This rule causes the model to move its eye downighgdend-to-motor ocular

move ?next-object)) until the object currently being looked at (storethimvariable
?0bject) is that with label?nt or the end of the list is reacheghdt (visual
?0bject is-above nothing))). As well as moving the eye, tlileen actions
update working memory to show that the current obgeobiv the next object (theeldb
andadddb instructions).

3.3.4. Summary

In summary, EPIC is designed to model human cognitionlike many other models, it
does not assume a cognitive bottleneck. Rather, rp@fece is limited by the size of
working memory, and the fact that only one task mmsg/a given motor (e.g. eyes) at a time.
Cognitive processing is done via Production Rules hvhige the PPS interpreter and test
against working memory. Rules’ actions may modify tlenery and send commands to
the motors.

23

| find the EPIC architecture very interesting in titatloes not have this in-built limit on
cognitive performance. Similarly, the idea of cogmitparallelism is an interesting one,
although I imagine that it could lead to problems whemmber of incompatible actions
attempt to control the motors simultaneously — intgnlgpthese actions could lead to very
strange movement sequences, for example. Attemptiaglte this problem by allowing
tasks to manipulate the goals and actions of othks tasuld lead to interaction problems
similar to those encountered with the Subsumption Aechite (see section 6.8.1).

3.4. ACT-R

Like EPIC, ACT-R is “a cognitive architecture, aahg for simulating and understanding
human cognition” (ACT-R Research Group, 2004a). In fact, R¥I'modules which
interact with the environment are adapted from thédePdC. However, as will become
clear, there are differences between the two.

The ACT-R architecture has two types of memory: datile (facts) and procedural (rules).
It is goal-driven, goals being placed in a specifialdauffer. All other modules in the
system also have buffers, this being the only wayttieproduction system (see below) can
interact with them. The system’s modules are shawine overview diagram (Figure 3.2).

3.4.1. Declarative Memory and Pattern Matching

Items in declarative memory are called chunks. Céinakve a name, a category (specified
by an “isa” slot) and any number of additional slotstaming further information. For
example, the following chunk holds the fact 3 + 4 = RisExample is taken from Anderson
et al. (1997; p. 441).

fact3+4
isa addition-fact
addendl three
addened2 four
sum seven

ACT-R attempts to simulate the working of the humamdnm its knowledge-recall process.
This is done by pattern-matching of facts and tha afectivation

Items in declarative memory (“chunks”) are retriefrenin declarative memory via pattern
matching. For example, to help decide what to do nexbdehmay request an instance
from declarative memory (using the retrieval buffehich describes a situation matching
the one it currently finds itself in. If no exact wifatis found, a partial match may be
returned (see below).

Which instance is returned depends on activation, feadily available the fact is in
memory. Chunks that have been used recently or chbaksare used very often end up
with a high activation. Activation decays over dimas the chunk is not used. Activation
models the human recall process whereby knowledgeragatarly (e.g. using a kettle) or
recently (the previous key | have pressed as | tym tisi easily accessed but other
knowledge (e.g. a discussion from several weeksiad@rd or even impossible to retrieve.

The activation of a chunk depends on its usefulness ipase(base-level activation) and
its relevance to the current context (associative a@itiv). The equation for this, and
further explanation, is given in Taatgen et al. (in gredNoise is added to the activation,
meaning that alternative strategies may be triednast increasing the overall quality of
solutions chosen and providing further opportunitiesearning.

24

| believe that the use of noise could produce more huseaming behaviour, as humans do
not always solve problems in the same way, even whemown effective solution exists.
It could be argued that an agent which was specifiedangh detail would do this anyway,
as the complexity of the environment would result w eenergent behaviours. However,
| do not believe that this could be relied on completespecially with relatively simple
environments or agents.

Intentional Module Declarative Module
(not identified) (Temporal / Hippocampus)
Goal Buffer Retrieval Buffer
(DLPFC) (VLPFC)

Matching (Striatum)

Execution (Thalamus)

Productions
(Basal Ganglia)

|
| Selection (Pallidum) |
|

Visual Buffer

Manual Motor

(Parietal) (Motor)
Visual Module
ue - Manual Module
(Occipital/Parietal) (Motor/Cerebellum)

N X

| External World

Figure 3.2: An overview of ACT-R 5.0 (adapted from Taatgen et al., in
press).

Partial Matching

If partial matching is required, then this is madesjis by decreasing the activations of
chunks which do not match. The greater the mismatehhigher the penalty and thus the
lower the likelihood that the chunk will be returnd@inabling partial matching means that,
whilst it is still the chunk with highest activatiovhich is returned, the chunk’s slot values
need not match those requested exactly. Taatgén(iet@ress) give an example of the use
of partial matching with th8ugar Factoryexample. In this, the model was able to improve
performance by analysing past settings, actions and #fiects (even if the previous
settings did not match the current situation exacthdhout needing to know the rules
which governed success.

Partial Matching appears a very useful procedure fonileguwvhich | believe could go some

way towards removing the need to completely specifyyesituation that an agent might

encounter. However, it does seem a little haphage the discussion of learning past-
tenses in section 3.4.3).

25

3.4.2. Procedural Memory

Rules in procedural memory (known @soduction3 drive behaviour in ACT-R by
specifying what should be done and when (i.e. in regpmng/hat conditions) it should be
done.

The general form of a production rule is as followsr{f ACT-R Research Group, 2004b,
Unit 1):

(p Name

list of buffer tests

==>

list of buffer changes

)

The following example shows the rule to count to a padicaumber. An English
description is on the right. (Example and descripitiom ibid):

(P increment If the goal is
=goal> to count from
ISA the number =num1
count-from])
start =num1l and =numl is not the final
igit
-end =numl dig))
step count and one is counting
ing and a chunk has been
=retrieval> retrieved
ISA of type count-order
count-order where the first number is
first =numl =numi
secoznd: and it is followed by
num =num?2
==>
Then
=goal>
start = change the goal
num?2 to continue counting from
+retrieval> =num2
ISA and request a retrieval
count-order of a count-order fact
first = for the number that
num2

follows =num2
) and output =num1 in the

trace
Like chunks, productions are also chosen by patternhingtc (1.e. attempting to find rules
whose conditions match the contents of buffers.) Where than one production rule is
applicable thautility attribute is used.

loutput! (=num1)

Conceptually, utility is how useful a production is imetcurrent context. ACT-R
automatically keeps track of the estimated cost atichated probability of success for each
rule, and the utility of a ruleis calculated by the following equation (from Taatgel.,

in press; p. 13):

U=RG-G

26

P, is the probability of succes§ is the value assigned to the current goal @ni the
estimated cost. The actual production choice equétibich determines the probability of
choosing production from a matched set of productions) is given iibid and, as with
pattern matching for chunks, includes a noise element.

Probability is calculated as the ratio of successestémpts (i.e. the sum of successes and
failures). Cost is similar: “the sum of the effoimsested in a goal ... divided by the total
number of experiences (both successes and failuriés); . 14). Equations for these
elements and a discussion of their initial valueskmafound in p. 14 dbid.

The concept of utility for action selection is foundother architectures. For example, the
idea of a option’s “score” in Stone and McAllest20@1).

3.4.3. Learning in ACT-R

As shown above, the values of a production’s Probalaifity Cost alter as successes and
failures are experienced. THilility Learningis one type of learning in ACT-R.

Learning is also accomplished via production compitatatescribed neatly in Taatgen et
al. (in press; p. 23) as follows:

Production compilation ... learns new rules by combitivg existing rules that
fire in sequence into one new rule. If the firsth@ two rules makes a request to
declarative memory the result of which is used by dbeond rule, then the
retrieved chunk is submitted into the new rule, effetyieliminating the retrieval.

Although it may not be obvious at first reading, thisqedure enables genuinely useful
learning and not just the creation of ever-more sigeaiid efficient rules. This is often
shown by the example of learning the past tense of \(ddssribed briefly inbid and in
detail in Taatgen and Anderson, 2002).

In this example, the past tenses of verbs are origigafierated by two rules: One of these
searches for a chunk stating the past tense of ayartverb, whilst the other (initiated if
the direct match fails) attempts to match by analbgyinding a pattern in the existing facts
about other verbs. Discovering that many verbs appen@dsuffix, new rules will be
composed for the verbs with previously unknown past s&nseegular verbs will have to
be learned by example as this analogy method doesonktfav them.

The production compilation may appear to be a little-@eadous for this sort of example,
in that all sorts of incorrect past-tense rules anohkfi may be constructed (e.g. swim
swimmed). However, the use of utility and activatiopattern matching (see above) should
mean that incorrect examples will gradually be ignorederand more often as they fail to
achieve the goal (i.e. a correct sentence) and thereade in utility, whilst the incorrect
chunks (i.e. those facts which describe the past tdnseerb incorrectly) will be retrieved
less and less frequently as their activation wilrdase. However, Taatgen and Anderson
(2002, p. 138) do admit that “there is no mechanism ttyreafeguard this”.

! Examples of verbs with this pattern will be reen more frequently than those such "hit" whicldb
change in the past. The reason for this is thibveebs are more common and so more examples rofiile
be available in declarative memory.

27

3.5. Summary

This section has described Soar, EPIC and ACT-Re fdllowing table illustrates some of
the key points of comparison.

BOD Soar EPIC ACT-R
Decomposition by activity
rather than function? v X X X
Hierarchical? v v X X
Associations / Production- v v v v
Rules?
How are multiple possible priorities decision- cognitive utility
actions handled? phase, i.e. parallelism
’ further
associations
Parallel Actions? v X 4 X
Learning? Updating of chunking probability
state, (dynamic X & cost,
plan-writing) production
compilation
Partial Matching &
g X X X v

Noise?
Table 3.1 Summary of Architectures

28

4. The Botin Action

4.1. Introduction

This chapter presents a number of scenarios demongtithag actions of the bot that |
created (the “bodbot”) and relates these back to #refides created. The chapter’s purpose
is threefold:

. To demonstrate the development of the plan files.
. To illustrate how the actions of the bot are guidedhigyplan file it uses.
. To give examples of the bodbot’s actions, and thus gea@vimore concrete starting-

point for the discussion of the development processhafiollows in chapter 5.

The plan files control the execution of sensory and agiiamitives; these primitives are
discussed as part of the explanation of the develogonecéss in chapter 5.

The actions of the bot are illustrated by a seriescawhmentary-style descriptions
(recognizable both by their indentation and by the stfleriting they use) which are

interleaved with brief analysis and samples of plastecoThe complete texts of the plan
files demonstrated in this chapter are given in Appefd

To improve the examples, some plans are illustratedebgdtions of a bot on the red team
and others by the actions of a bot on the blue team. pftwsdes more of a difference as

might be imagined as, for reasons which are not,dbarblue bot always began the game
facing a certain direction regardless of map settingbkis means that many of the early
plans do not work very effectively for a blue bot aslibt never sees any navigation points
at all (they're all behind her).

Which bot is used in the scenarios below can be detednfiom whether male or female
pronouns are used: the red player is represented inki&tariey a male wizard, whilst the
blue player is represented by a female character.

4.2. The Scenarios

4.2.1. Walking To Navigation Points

The initial plan was based upgoshbotfollow.lap the plan created by Kwong's
(2003) for his “poshbot”. This original plan had the bot e&ing around and following
any players he saw.

The first plan | created removed the player-followatgment, replacing it with one which
attempted to follow navpoints (navigation-points, pkéhnodes):

Yes, the bodbot has just this moment spawned into #lyeguka. He’s wasting no
time running off that ledge and towards the tunnegnss to be having a bit of
trouble on the corners, though: he's paying more attertpo that wall than it

really deserves ... no, here he goes off againokd.dike he’'s missed that vital
turning though, seems more interested in the waltheftunnel again, no wait,
he's coming back, takes the turning, now he’'s lookingund again, trying to
decide where to go. He’s finally decided and neveimerges from the tunnel.

29

The important part of this plan is the competence belde top-level Drive Collection
only contains two drives and thus almost always finés competence as the other is only
triggered when the bot walks into something:

(C get-to-enemy-base (minutes 10) (goal ((at-enemy- base)))
(elements

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)
(wander-base (trigger((succeed))) wander-arou nd)

)
)
)

When the bot starts up, he can see a navigation gugnified as reachable and so he runs
off the ledge (only a short drop) to get to it. Sisi because thieachable-nav-point

trigger returns true. This sense (described in metaldn section 5.3.3) also sets a variable
to contain the location of the navpoint which talk-to-nav-point action then uses
when communicating with Gamebots.

On the occasion of his trouble in the tunnel, the prolidethat because of the curve of the
tunnel he can no longer see any navpoints. For ¢aison thevander-base element
takes over (a trigger (fucceed means that it always fires if no higher-priority edrin
can). wander-base triggers the following competence:

(C wander-around (minutes 10) (goal((see-player)))
(elements
((stuck (trigger ((is-stuck))) avoid))
((pickup (trigger ((see-item))) pickup-item))
((walk-around (trigger ((is-rotating False))) w alk))

)
)

This version of the competence is taken directiynfiGwvong’s poshbotfollow.lap
The bot walks towards the walvélk-around , the lowest-priority element, fires) and,
when he hits it, thetuck element is triggeredavoid is the following Action Pattern:

(AP avoid (minutes 10) (stop-bot rotate then-walk))

This causes the bot to rotate and attempt to walk ag&wentually he sees another
navigation point and continues as described. Themndaes doubles back after missing the
turning is again that he hits a wall, and his rotats such as to make him face back the way
he came.

get-to-enemy-base andwander-around provide an example of POSH’s Slip-Stack
(see section 2.4.5)et-to-enemy-base is fired by a Drive Collection elemerit-
enemy-base . Since get-to-enemy-base then triggers a further competence
(wander-around), to-enemy-base ’s active element is set to point directly to the
root ofwander-around rather than to the root gét-to-enemy-base , thus missing
out a link in the hierarchy. fander-around triggers theavoid action pattern, then
o will point to that instead, missing out another linkhe hierarchy.

Out of the tunnel, the bot’s now running towards the Bage... yes, he’s got it!
What a performance! Seems in no hurry to be going agngafiow though. In
fact, he’s wandering around. I've never seen angtlike it... Is he going to just
throw that early lead away?

30

Finally, the bot grabs the blue flag. This is at thage a mere side-effect of his navpoint-
following behaviour (the points lead directly ther€nce he is there he can see no further
navigation points and so resumesw@nder-around behaviour.

A point worth noting is that this plan is not ofteneffective as in the example above — the
bot usually spends large amounts of time wandering arthendame few navpoints, or
getting stuck in rooms. The example above was chasirisamore interesting.

4.2.2. A Greater Awareness of Flags

The plan used for this scenario is a quite major exiensf the previous one, as the
following commentary shows. For brevity, | have mafuded a commentary on the entire
run, just the points of interest. Note that the reglgslanentioned is the one controlled by
me.

And here comes the blue bodbot now. She’s looking arouondering where to
go next. And now she’s off, running towards the tlinne

The “looking around” at the beginning comes from aification to theget-to-enemy-
base competence, whose elements are now the followirgsgcond is new):

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)
(wander-base (trigger((succeed))) wander-around)

Although two of the elements have triggersotceed (the function which always returns
true), the retries limit0) onfind-nav-point means that the lowest-priority element
does sometimes get a chance to fire. In the exagiyale above, however, the rotating leads
to a position where the bot can see a reachable navanththus the first element fires. A
trigger of succeed is used rather than jusirue as this was the style used in
poshbotfollow.lap

The running through the tunnels, omitted from the cortamgnis very similar to the
behaviour described in section 4.2.1.

The bodbot emerges from the tunnel, she’s almost aertbety base now, the
prize in her sights. Yes, | think she’s going tdkend! She makes a clear run for
the red flag and grabs it! Nice work there, but dam capitalise on this early
success? Remember, she’s still got to take it home.

To understand the bot’s next actions (running to tleengrflag), we need to consider the
top-level Drive Collection:

(RDC life (goal ((fail)))
(drives
((pickup-our-flag-from-ground
(trigger ((our-flag-on-ground))) go-to-own- flag))
((pickup-enemy-flag-from-ground
(trigger ((enemy-flag-on-ground)))
go-to-enemy-flag))
((attack-enemy-with-our-flag
(trigger ((see-enemy-with-our-flag)))
attack-enemy-carrying-our-flag))
((take-enemy-flag-from-base
(trigger((enemy-flag-reachable)

31

(have-enemy-flag False)))
go-to-enemy-flag))

((hit (trigger((hit-object)(is-rotating False)))
avoid))
((go-home (trigger((have-enemy-flag))) go-to-ow n-base))

((to-enemy-base (trigger((succeed)))
get-to-enemy-base))
)

)

Until now, the main element which has been firingignemy-base , which has resulted
in the competence discussed above being used. Once thpdroaiches the enemy flag,
however, the triggegnemy-flag-reachable returns true anglo-to-enemy-flag

is fired instead (as it has a higher priority, hagde-enemy-flag already returnBalse

as required.). This is a single-element Action éattvhich fires theo-enemy-flag
primitive. This primitive simply sendsRUNTQmessage to Gamebots, giving it the ID of
the flag and causing the bot to run straight there.

Wait a minute, John, there seems to be some sort of apet other end of the
arenal! Yes, the bodbot’'s quest for glory has left tven flag dangerously

unguarded and the red player has stolen it! He lpodtsy pleased about that one,
and is heading for home. He passes the bodbot tarthel but she ignores him!
Whatis she thinking?

To demonstrate a situation more similar to genuingt@a the Flag games, | intervened at
this point and, playing as the red player, stole the Bag. The reasons for the bodbot’s
ignoring of the red player are unclear. | believe iha a limitation of the bot’s sensory
abilities as the relevant plan elements do fire lter occasion (see below). It could be
connected to the UT skill-level of the bot (set tovVice” during this scenario), as these do
have an effect on all bots, not just those that comevgteen with UT. Brief preliminary
tests suggest that a higher skill level does imppaveeption by a small amount, but not by
as much as would be expected. | have not had timeefailatl tests, however, and it
remains an area for future work (section 9.2).

It is also worth noting that, unlike the previous scienahe bodbot is able to return home
once she has captured the flag. The reason fastthie addition of thgo-home element,
whosehave-enemy-flag trigger now returns true, meaning thathome now executes
instead oto-enemy-base as before. As the bot recorded the location obher base
when she saw her own flag at the start of the g#ésee the discussion of the
Positionsinfo class in section 5.3.2), she was able to send tloismation to the UT
server and retrieve a list of navigation points te tessget home (the ETPATHommand).
Section 5.3.2 discusses some of the functions used asf plait.

Well Clive, the red player seems to have a prettythndox style himself — he’s
running back to the blue team’s base. Is he just watttitagnt his opponent with
his advantage? Has he forgotten that the blue plageris own flag herself?
Well, he won't forget it much longer as she’s emsggrom the tunnel now, this
confrontation could spell trouble!

Too right, John, the bodbot rounds on the red playeming towards him and
shooting and ... it's a success! He's been taggetiha drops the blue flag to the
ground where the bodbot grabs it, restoring it to itktfigy place! Yes, nothing

32

can stop her now! She’s running back to her own ag;s made it now, the blue
team scores!!

In an attempt to get the blue player to notice me (amzk di cannot win whilst the other
team has my own flag), | returned to the blue playeise. On this occasion the bodbot did
notice that | had her team’s flag. Doing so méhat her current action of going home was
interrupted as thattack-enemy-with-our-flag Drive Collection element fired
instead (it has a higher priority) and the bot begaattack me.

Upon being tagged (killed), the red player drops the lidgeHe has been carrying and the
bodbot's current undertaking is again interrupted, agitieup-our-flag-from-

ground element now fires (it has an even higher priorityicking up one’s own flag
returns it instantly to the base, and the bodbot seunes returning to her own flag while
carrying the red one. The bot only moves towarde®ta flag as the list of navpoints leads
there: at this stage there is no specific drivauitodirectly there once it is reachable.

Well, that certainly was impressive. The bodbot setanbave had enough
though, she’s not going anywhere! This is remarkablés gt standing there!
What it she thinking?!

This final segment illustrates a problem discusse@dtian 5.3.4: the expiry of out-dated

‘it Unreal Tournament

Figure 4.1: the blue bot runs towards the goowand on the floor.

state the bot holds. In this case, the instantdgedfositionsinfo class held out-dated
information about the enemy flag, claiming that itswaachable from the bot's current
location (as that had the been the case until thedooed and the red flag was returned to

33

the red base). This out-dated information resultémih of the following element’s triggers
succeeding
((take-enemy-flag-from-base
(trigger((enemy-flag-reachable)
(have-enemy-flag False)))
go-to-enemy-flag))

The bot therefore attempted to send a command to Barse¢o make it run directly to the
enemy flag. This was not possible from its currenttion, and so nothing happened.
Making the agent more robust to handle this sort ddiriaiis discussed briefly in section
6.8.2.

4.2.3. Responding to Attack

This final scenario introduces a number of new eleséné most important being the bot’s
ability to respond when it is attacked. As befordy part of the run is described.

For those of you who've just joined us, we're seeifigerrun by the blue bodbot.
She’s part way through the first stage of the turimetsuh oh, it looks like she’s
going to miss that turning. No, it's okay, she’s sgabit, and is running to pick
up that goowand. Her supporters will be breathing a sigklief that she’'s no
longer unarmed.

The bot begins, as in the previous scenarios, by followavigation points as part of the
get-yourself-to-enemy-base Drive Collection element. This is interrupted by the
following higher-priority element:

((pickup-weapon-as-unarmed

(trigger ((see-reachable-weapon) (are-armed Fa Ise)))
get-weapon))

As described, this results in the bot running to pickhgpgbowand (one of the weapons the
Gamebots interface adds to the game). This istaresting example of a case where an
outside observer may attribute different intentions # ahtions of an agent than those
which are actually underlying the agent’s actionsi(@es, 1998): The only reason that the
agent made the turning in this case was that sheridne tgoowand which then resulted in
her seeing new navpoints. Had the wand not been thenght have taken her longer to
find the turning. Figure 4.1 shows the blue bot runnimgtds the goowand.

Continuing through the tunnels she makes a dash éoreth flag and takes it!
Where are the defence? Well, someone’s tryingndotsher but not doing a very
good job of it, that shot landed just in front of h&ortunately for the red team,
that goo will stay there for a while before it expledd_ooks like the bodbot’s a
little confused though — looking around for where tanggt... yes, she’s off now,
and ouch! That goo-explosion’s got to hurt.

The assailant was a bot controlled by me. The godviegs blobs of goo which stick to
walls and floors and remain there for a few seconderbetxploding. The bodbot’s
confusion described here was due to the bot receivomgrapt Gamebots message of the
form described in section 5.3.4.

Not one to let that sort of behaviour go unnoticed, sleeking around for the
assailant, she’s spotted him now and begins to shamih, right in the stomach!
Keen not to throw that lead away though, she’s neadimg back to her own base.
Obviously doesn’t want another surprise attack, sheepikg firmly focussed on

34

that attacker as she runs back through the tunnelsy’lsesm to be shooting
him, though!

The response to attack comes as a result of theviiogdrive Collection element:

((respond-to-attack-health-not-low
(trigger ((taken-damage) (armed-and-ammo)
(is-responding-to-attack False)))
respond-to-attack))

This element has a higher priority thgo-home , the drive element previously being
attended to, and so the following competence igéried:

(C respond-to-attack (seconds 10) (goal ((fail)))
(elements

(attack-visible-attacker
(trigger ((taken-damage-from-specific-player))
respond-to-visible-attacker)
(find-attacker (trigger ((succeed)))
try-to-find-attacker)
)

)
)

In some cases, the bot will receive details of t&a#ant when receiving a message from
Gamebots about damage inflicted. For example, if thadtaglly sees the shot being fired.
This was not the case in this example, however, afidd-attacker is triggered. This

in turn triggers the following competence:

(C try-to-find-attacker (seconds 3) (goal ((fail)))
(elements

(found-attacker (trigger ((see-enemy)))
respond-to-visible-attacker)
(spin (trigger ((succeed))) big-rotate 1)

)
)

This competence is the reason the bot looks arounthéoattacker: thepin element
causes the bot to perform thig-rotate action. Note the limit on retries here: the bot
shouldn’t keep on turning around as it may never betaldee the attacker. In this case the
search was successful, leading toghe-enemy sense returning true and tveind-
attacker element running. It is this element which makeshbt shoot the attacker.

Furthermore, finding an attacker results in variabking set telling the bot to keep looking
at the attacker whilst performing other actidte¢pFocusOnID inCombatinfoClass
see section 5.3.2). In practice, this means that whening, the bot instead sends a
command testrafe Strafing is running in one direction while faciagother.

Such strafing makes it possible for the bot to contshomting the assailant. This happens
successfully much of the time but was not the caskeirexample above. The reason for
this is that the behaviour relies on the fact thas loohtinue shooting until either explicitly
told to stop or until their target is no longer visiblin this case the bot briefly lost sight of
her assailant and so stopped shooting prematurelyrc@wmmg this sort of problem is an
area for future work (see section 9.2).

35

Into the home strait now, she turns around for thel §print, she’s nearly there,
yes ... she scores! Now she’s going back to trjren@apture, it could be a high-
scoring game, folks!

The Drive Collection used for this scenario cont@osie unexciting but nevertheless very
important elements: those which expire state:

((expire-our-damage-info (trigger ((succeed)))
expire-the-damage-info (seconds 10)))

((expire-our-reachable-info (trigger ((succeed)))
expire-the-reachable-info (seconds 20)))

((expire-our-focus-info (trigger ((succeed)))
expire-the-focus-info (seconds 30)))

The need to expire state is discussed in section 51&l4ha previous scenarios give some
examples of the problems brought about by not doing sthislscenario, the reason the bot
stopped facing her assailant was becausexpiee-our-focus-info element fired.

The three elements given here are the highest fyriartheir Drive Collection. However,
their limits on frequency mean that other elemestgtenty of chance to run.

The bot’s attempt to capture the flag again will beclaethe fact that she now knows the
location of the enemy base (this information isexfan an object of theositionsinfo

class). This means that she can obtain a listwgdaiats from the server which give her the
path she needs to follow. Note another advantage oéxpiey of data: unlike in the
previous scenario, the bot no longer believes the eflamyo be reachable once it has been
returned to the enemy basxpire-our-reachable-info handles this).

4.3. Summary

This chapter has demonstrated a number of plan fileefasing complexity, highlighting

both the connection between plan files and actions, anidus problems encountered
during development. How the actions and sensesteddyy the plan file actually work is
explored as part of the next chapter.

36

5. The Development Process

5.1. Introduction

This chapter has a dual purpose: First, it provides a daration of some of the
development work | undertook as part of this projeett{ens 5.3.2 and 5.3.3, primarily).
Secondly, it evaluates BOD's contribution to the precasd the effectiveness of those
principles and practises BOD introduces.

There are two main sections to this chapter: sed&i@ndescribes the Initial Behaviour
Decomposition (i.e. preparation for development), whilsttion 5.3 describes the main
iterative cycle of development itself.

5.2. Initial Behaviour Decomposition
5.2.1. The Process

As with other aspects of the design process, BOD pes\vdidelines to follow for initial
behaviour decomposition (Bryson, 2001; p.133):

1. Specify at a high level what the agent is interidesb.

2. Describe likely activities in terms of sequences agtions. These
sequences are the basis of the initial reactive plans.

3. Identify an initial list of sensory and action pities from the previous
list of actions.

4, Identify the state necessary to enable the desqoitiitives and drives.
Cluster related state elements and their primitises $pecifications for
behaviors [sic]. This is the basis of the behaviorlipr

5. Identify and prioritize goals or drives that themigmay need to attend to.
This describes the initial roots for the POSH actefection hierarchy
[explained below].

6. Select a first behavior to implement.

An important point is that BOD's emphasis on revisibspecifications in the development
cycle (see below) means that it is not assumedltbanitial decomposition is perfect. The
developer is free to modify the decomposition if issaeise, and the lack of coupling
between components means that this can be easilyedhie

5.2.2. My Experience of the Process
Revision of the Specification

The full initial decomposition | produced is given ipgendix B. In my experience, | found
that revision of this specification document only hagetmree times during development
despite the fact that the project did depart from trexifipation laid down by the initial
decomposition. Theonceptof revision of specification was one | found very usefiodi
made use of and the initial decomposition provided a vesfulustarting point. However,
the specific action of rewriting the initial documeveis not one | found helpful.

The main reason for this is that it felt like unneaegsedundancy to have, for example,
information about sensory and action primitives both imseof methods in the behaviour

37

modules and as items in a list in the specificatioouchent. This point is particularly
relevant in light of BOD’s encouragement of selfwalmenting code.

Furthermore, moving from coding to something atcgodii level of abstraction (specification
writing) interrupted the natural flow of development.

Other Points

The list of goals and drives proved to be very helpfid &ggh-level guide to what needed
to be developed. | concentrated on one drive per iterafitiie development cycle (see
below).

5.3. Evolutionary Design and Development

Creating the agent was a major undertaking, involigagning the Python language, the
syntax for POSH plans and how best to use the Gam@BdtsThis section explains and
evaluates BOD’s development process, and explores thel atguelopment work |
performed.

5.3.1. The Process
The core of the BOD process is the following itergequence (Bryson, 2001, p. 120):

1. Select a part of the specification to implement next.
2. Extend the agent with that implementation:
. code behaviors [sic] and reactive plans, and
. test and debug that code.
3. Revise the current specification.

The iterative nature of the process allowsragid prototyping different approaches can
be tried, rolling back to the previous iteration if ®odevelopment is found to be ineffective.

5.3.2. Behaviour Modules, State and Utility Functions

This section explains some of the specific developmenmk that my project involved,
outlining behaviour modules, classes used for agetd-atal utility functions. Action and
sensory primitives are discussed in the next section.

A discussion of the development of the plan file \&gias part of chapter 4.
Behaviour Modules

A discussed in the Initial Decomposition (Appendix Bg bot’s behaviour is split into three
modules:

. Movement— containing state to do with positions of objectasds and the bot
himself.

. Status- containing state regarding health level, weapeitsdnd so on.

. Combat- state about who is attacking the bot, what enemgaraund and what

teammates are around.

Each of these is stored as a separate Python elads;ontains methods for action and
sensory primitives. These primitives are registengith the agent (clasg\gent in

38

posh_agent.py 2 viathenit_acts andinit_senses functions, which allows the
plan interpreter to call them. Allowing primitives rieside in multiple files is one change
I made to the original PyPOSH (see section 8.1 fliseussion).

I made much use of code from the “poshbot”, an Unreairffament agent designed by
Kwong (2003) as part of the development of PyPOSH. ifibisded classes to store agent
state and classes for communicating with Gamebdis.AhdyBehavioubehaviour module
holds those primitives developed for the poshbot. cdigin this meant that the behaviour
decomposition was not as logical as it could be (naditlyese primitives would be logically
suited to thenovement module instead), | felt that such a distinction betw#he simple
behaviour of the original bot and the more advancedwbetr of the bot | developed was
useful.

Classes for Agent State

Apart from the general agent information provided gjpadly by Gamebots, and stored in
Kwong'sBot_Agent class, | developed two further classes specificalhold agent state:

. CombatinfoClass - this holds state relating to combat (for examplgildeof
the player holding the bot’s flag), and is used by bbthrmovement and combat
behaviours.

. Positionsinfo — this class holds state relating to the positiothefbot and

position of the game objects (e.g. flags and naviggibints), and is used by all
three behaviour modules | developed.

The theoretical considerations concerning agent arateliscussed in section 5.3.5 below.
Functions for Updating State

TheBot_Agent class (inbodbot.py) coordinates communication with Gamebots and
handles some of the agent state. As part ofithisgludes a number of functions to pass
updating information to the behaviours (ggss_flag_details). When the relevant
information arrives from Gamebots, these functiores taiggered and call the relevant
“receiving” functions in the behaviour modules (ergceive_dam_details in
CombatBehaviour). These receiving functions update state as requireeflest the
new information.

See section 5.3.5 for a discussion of problems with theerumethod of handling these
updates.

Utility Functions

The file utilityfns.py is not a class, simply a collection of functionshe3e help
reduce redundancy by providing useful functionality usedmumber of places.

Four examples worth particular note aie previous_message , send_if_
not_prev , nav_point_dict_to_ordered_list and compare_number_
strings , as they provide an insight into some of the isemesuntered when developing
a UT agent, especially one which uses Kwong's (2003setat interact with Gamebots.

2 This file is part of Kwong’s (2003) PyPOSH implemt&tion, as arposh_core.py andpyposh.py
(referred to elsewhere in this document).

39

is previous message and send if _not_prev

Kwong's Agent class, mentioned above, keeps a log of all mes#aggads to Gamebots.
There are times when this log needs checking to ekatehe same message is not sent
twice in a row. An example of when this might occsirwhen the bot is running from
navpoint (navigation-point, aka pathnode) to navpairan attempt to find the enemy base.
Consider the following competence elements (foamdbotattack.lap):

(run-to-base (trigger((know-enemy-base-pos)))
to-enemy-base)

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)
(wander-base (trigger((succeed))) wander-around)

If the bot can see a reachable navigation-point whibth & not already very close to
(reachable-nav-point sense), s/he will attempt to run themalk-to-nav-

point). This involves sending a message to Gamebotuatsty the bot to run to the
given point. Obviously this movement takes some tame, during that time it is likely that
the competence will run again. In that event, we dloneed to send another message
instructing the bot to run to the navpoint (in face @amebots API advises against sending
the same message repeatedly), we simply need walitftrot to arrive there, at which time
the distance-tolerance check will fail (i.e. the Wit be very close to the navpoint) and the
bot will attempt to find another point.

is_previous_message takes a message and a bot as its arguments, anmbrietie if
the message was sent to Gamebots by the bot as the rewmmit command.
send_if_not_prev uses this function but also sends the message to G@niebo
is_previous_message returns false. This removes the need for a langger ofif

not is_previous_message(... tests in the primitives themselves.

It is worth noting that since only the most recemtssage is checked, the instruction to run
to the navpoint will be re-sent if the bot is interrapéehilst running there.

nav_point_dict_to_ordered_list and compare_number_strings

One of the advantages of using Kwong's classesrtortmicate with Gamebots rather than
doing so directly is the classes parse attribute stisogthat attributes can be sent and
received as dictionaries (Pythomlkt type, essentially a hash-table). However, there is
one situation where this is less than ideal: listeavpoints generated by the UT server
giving the path to a specified location. Theseiats of triples containing a number, an ID
and a location. Python dictionaries are unordeaed,so a dictionary of these triples must
be converted into lists in the correct order. Tissaccomplished by the function
nav_point_dict_to_ordered_list . This sorts the list of dictionary keys (i.e. “1”,
“2" etc) using theecompare_number_strings function; normal sorting does not work
as the keys are strings so “10” would be treated aghes “2” and so on.

5.3.3. The Primitives

This section illustrates part of the development probgspresenting some examples of
action and sensory primitives. In total, | coded 2loas and 23 senses, and re-used the 5
actions and 9 senses of the poshbot (Kwong, 2003). Thesaeiml senses shown in this
section have been chosen to demonstrate primitivésfefing complexity: the first two are

40

relatively simple, whilst the third is quite advancéthey were also chosen with a view to
demonstrating interesting features of the bot, sudts ase of state, the trade-offs between
plans and behaviours and so on.

are-armed sense (from thetatus module):

def are_armed(self):
if self.bot.botinfo == {}:
return False
else:
if self.bot.botinfo["Weapon"] == "None":
return False
else:
return True

Note that names with underscores as separators at@funames, whilst those separated
by hyphens are the names used in the plans.afeearmed is registered with the agent
asare-armed).

This function defines a sense. The only parametselfs , a required parameter for any
class method in Python (it is automatically seteffierrto the relevant class instance). The
function tests against an itemslf.bot.botinfo . botinfo is a dictionary of state
about the bot, filled automatically by Kwong's classabhtommunicates with Gamebots.
The fact that we are testing against a stritfpie”) reflects the fact that this dictionary
was originally derived from a string-based list tifilautes. The return value is eithiglue

or False (Python is case-sensitive). Senses need not be litoitegturning true/false
values &ammo_amount returns an integer, for example), but many of them do.

The following is the definition of thehoot-enemy-carrying-our-flag action
primitive (from thecombat module):
def shoot_enemy_carrying_our_flag(self):

if self.Combatinfo.HoldingOurFlag != None and
self.Combatinfo.HoldingOurFlagPlayerinfo != Non e:

Target = self.CombatInfo.HoldingOurFlag

Location = self.Combatinfo.
HoldingOurFlagPlayerinfo[“Location”]

self.bot.send_message("SHOOT",
{"Target" : Target, "Location" :Location})

return True

This primitive uses details from th@ombatinfo class (discussed in section 5.3.2):
HoldingOurFlag contains the ID of the flag-carrier (every objedtiT has a unique ID),
whilst HoldingOurFlagPlayerinfo is a dictionary of information about the flag-
carrier, including, as shown here, his/her location.

The astute reader may wonder why the checks adgéidingOurFlag andHolding
OurFlagPlayerinfo occur here rather than in a sensory primitive inaudehe plan.
In fact, the plan does include such a sease-gnemy-with-our-flag). However,
including these checks in the action increasesdbestness of the code.

41

As the penultimate line shows, messages are sent amekbts using Kwong's
send_message function. (This is found in tHBot_Agent class). As discussed above,
this accepts attributes in the form of dictionaries.

Actions must return true if they complete successfullyis is a general requirement of
POSH. For example, Action Patterns terminate as asame of their elements fails (i.e.
returns false). In fact, many of my actions retuureteven if they do not complete
successfully, the reason being that their failure tssmnificant enough to warrant the
termination of an entire sequence.

A Longer Example

The code for theeachable-nav-point sense follows. This is intended to provide an
example of a more complicated primitive and hopefudiylltstrate further features and
functions used. For ease of explanation, | have bribkgninto sections:

returns True if there's a reachable nav point in
the bot's list which we're not already at

def reachable_nav_point(self):
This is just a comment and a standard class-fundgénition.
setup location tuple
if not self.bot.botinfo.has_key("Location"):

if we don't know where we are, treat it a S
(0,0,0) as that will just mean we go to t he
nav point even if we're close by

(SX, 8Y, Sz)=(0, 0, 0)
else:
(SX, 8Y, Sz) =

utilityfns.location_string_to_tuple(self.bot.botinf o]
"Location"])

As part of this sense, we must already determine whetbeare already close to the
navpoint we are aiming for. Our location is stomredhebotinfo dictionary (discussed
above). However, this is stored as a string andriiust be converted into a tuple (in this
case, a triple) for comparison, hence the call tdilityfns.
location_string_to_tuple . This line also provides an example of Python’s @bili
to perform multiple-assignment.

If the location is not available, we can treat thedsobeing af0,0,0) . This might mean
that we are actually close to a navpoint but do ndiseei, but it is worth taking this minor
risk rather than doing nothing.

is there already a navpoint we're aiming for?

DistanceTolerance = 30 # how near we must be to
be thought of as at the nav point

if self.PoslInfo.ChosenNavPoint != None:
(NX, NY, NZ) = self.PosInfo.ChosenNavPoint

if utilityfns.find_distance((NX, NY),
(SX, SY)) > DistanceTolerance:

42

return True
else:

self.PosInfo.VisitedNavPoints.append((N X,
NY, NZ)) # set this NP as visited

self.PosInfo.ChosenNavPoint = None

It may be that the bot has already chosen a navigptimt to aim for gelf.PosInfo.
ChosenNavPoint , see above for a discussion of Besinfo class) and is currently
heading there. In this case, we test whether thbdwalready got there. This uses another
utility function, find_distance (inherited from Kwong's poshbot). If the bot is not
already there, then we need do nothing more — thbdsot location to head for so we can
simply return.

However, if the bot is there then we add the pointutolist of visited navpoints and clear
the variable stating where we are heading for. Wjead return from the function but rather
continue execution to find a new navpoint.

This extract of code is an interesting one as drisexample of something which could be
accomplished either by a behaviour (as here) or by maképlan file more complicated.
I.e. Adding a sense to check whether we are gildwe we're heading and an action to clear
it if we are. There is no overwhelming advantage teeeithethod, it is more a matter of
personal preference. The trade-off this demonstréietween complexity of plans and
complexity of behaviours) is an important one, however.

now look at the list of
navpoints the bot can see

if self.bot.nav_points == None or
len(self.bot.nav_points) == 0:

return False

If the bot cannot see any navpoints then the senseugty fails.
else:

nav_points is a list of tuples. Each tup le
contains an ID and a dictionary of
attributes as defined in the API

Search for reachable nav points

PossibleNPs = self.get_reachable_nav_points (
self.bot.nav_points.items(),
DistanceTolerance, (SX, SY, SZ))

Theget_reachable_nav_points function takes a list of navpoints and returns a list
of all those which are specified as “reachable” ahatkvthe bot is more thabistance
Tolerance units away from

now work through this list of NavPoints
until we find one that we haven't been to

or the one we've been to least often

3 “Units” refers to Unreal Tournament distance urdiscussed in the Gamebots API:
http://www.andrew.cmu.edu/user/roman/15396/games_laqi.html

43

if len(PossibleNPs) == 0:
return False # nothing found
else:

self.PosInfo.ChosenNavPoint = self.
get_least_often_visited_navpoint(
PossibleNPs)

return True

The function now searches this returned list (untesseémpty) and finds the one visited
least often. This is accomplished by fet_least_often_visited_navpoint

function which searches the listgelf.PosInfo.VisitedNavPoints (see above).
self.PosInfo.ChosenNavPoint is set to this least-visited navpoint. This vamsabl
then used by thealk-to-nav-point action primitive to actually make the agent run

to this navpoint.
5.3.4. Problems Encountered

This section briefly outlines some of the problemsdoammtered during development. It is
intended to highlight difficulties with developingrfdJnreal and Gamebots rather than
problems with the BOD methodology (see elsewhere inctiigpter for evaluation of the

methodology itself). Errors with PyPOSH are disedss their own right in chapter 8.

Navigation is a major difficulty in Unreal Tournament as it isrgbotics and other areas.
There are various reasons for this, including tHeviahg:

. At the start of the game, the bot does not knowtloos of any other parts of the
level, and thus cannot use UT'’s built-in path-findingctions.

. There are no sensory functions available which elritte bot that it sees a wall,
a slope, a doorway etc. This means that the onlyitnegn discover these is by
walking into them.

. Even when the bot does know the location of a poirihtafrest there can still be
problems with the built-in path-finding functions. Fowmaeple, if the bot is very
close to the desired location but facing the wrong,vam empty list of navpoints
will be returned (as there are no points between tharmbits desired location) but
the bot will not be aware that it is so close todigstination. (This problem was
combatted with th&oo-close-for-path sense).

. It is very difficult to place navigation points in $ua way that the bot will be able
to follow them easily and not double back on itselfose the trail. (This does not
apply when the path-finding functions are used as thesédpra pre-defined list
of points for the bot so it does not matter whetherttot actually notices the points
or not). This may also be improved by setting thesbsKill level as something
higher than “novice”. Preliminary tests suggest thiag bot's perception is
improved by a higher skill level, but that this improvemienfact results in it
noticing the points it has already been to before geeégw ones and so still
doubling back on itself frequently. This suggests tbatmake the most of the
improved perception, the behaviour would also need matidic. However, this
has not been tested in detail and remains an ardatfive work (section 9.2).

44

. Unreal Tournament’s levels are completely 3D, as opptsaimple grid-based
layouts.

Expiry of data is a key issue affecting various aspects of the betwviour. For example,

if the bot died at a location where the enemy flags weachable it still believed it to be
reachable when it respawned, despite then being impletly different locatiof. Similar
problems occurred because the bot only receives infonrmabiout objects when it sees
them. This means that it could receive informatioat ta flag was reachable and then
continue to believe this even if it moved a long vaaway: if it did not see the flag again, it
would not receive a message informing it that thg thas no longer reachable. This is an
example of the Frame Problem (McCarthy & Hayes, 1969).

Such expiry problems were combatted in three ways. Hieway was the creation of a
number of expiry actions which were called periodicallclear particular items of state
(e.g.expire-reachable-info). As well as this, various items of state weraudd
when the bot died. Finally, Gamebo€CHECKREACHInction was used. This function
allows the bot to check whether a given location lgea is reachable from the current
location.

Some other problems encountered are worth mentioning but do not merit ilddta
discussion. These are listed below:

. Forgetting to rebuild a UT map before saving it mehaschanges are not reflected
when playing the map. This is because rebuilding cakesilzow the changes will
actually affect what the player sees when the mapagedl For example, it
performs rendering and raytracing.

. As suggested in section 5.3.3, tests against attriboresGamebots should test for
“True” and‘False” rather than the standard booldane andFalse . This
is because information from Gamebots is sent as string

. Sending an extra space at the front of a locatigmgstesults in the location being
ignored and the bot just standing around.

Gamebots-specific Problems
One problem with Gamebots is that some commands &mtisedo not work:

. PRJ is supposed to provide details of incoming projectilesowever, these
messages are never generated.

. INIT is the message sent to generate a bot. The attribeé with this message
(name and team) are ignored.

These problems (and others) are fixed in the neworec§iGamebots, available frdmttp://
www.cs.rit.edu/~jdb/gameAl/gamebots/codechange. httolwever, | was not aware of this
version at the time of development.

4 “Respawning” is UT-jargon for what happens whegiager (including computer-controlled bots) diée t
player is returned to his/her own base (or andtiespawn point”) and given full health. Howevéhesloses
all ammunition, weapons and armour. The concegirigar to “losing a life” in other computer games
except that there is usually no limit to the numdfimes it may occur.

45

When keeping attention on an assailant, the botestr@fe. runs in one direction while
facing another) rather than just running. However IN@H command (moving a small
amount forwards) has no strafe equivalent.

Occasionally, the list of navpoints sent from the Uliveeseems to be corrupted. For
example, consider the following printout of these latiies (the problematic data isbiald):

{'11": 'CTF-Simple2dt.PathNode20 306.283630,-943.96 9238,
-205.899719', '10": 'CTF-Simple2dt.PathNode19 179.5 91705,
-1001.335571,-205.900146', '13": 'CTF-Simple2dt.Pat hNode22
409.230133,-551.878540,-205.899963', '12":

'‘CTF-Simple2dt.PathNode21 397.411743,-817.479858,-2 05.900085',

'15" 'CTF-Simple2dt.FlagBase0
0. 99\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ xO
0\ x00\ x00\ x00\ x00\ x00\ xO0\ x00\ x00\ x00\ x0O0\ XxO0\ xO0\ xOORCH{ID

ReachPathThere', '14": 'CTF-Simple2dt.PathNode37 2. 160962,
347.320404,-137.227463', '1": 'CTF-Simple2dt.PathNo del4 389.730133,
-1862.520874,-205.900085', '0": 'CTF-Simple2dt.Path Nodel5
383.894440,-2076.516846,-205.900116', '3":

'CTF-Simple2dt.PathNode12 242.659698,-1564.088623,- 205.899902',

'2': 'CTF-Simple2dt.PathNode13 355.602875,-1704.071 777,
-205.900024', '5": 'CTF-Simple2dt.PathNode17 6.0000 00,-1346.876953,
-206.516571", '4": 'CTF-Simple2dt.PathNode27 8.0000 00,-1458.000000,
-204.000000', '7": 'CTF-Simple2dt.PathNode4-6.20000 5,-1248.000000,
-203.000000', '6": 'CTF-Simple2dt.InventorySpot21 - 0.891642,
-1266.071045,-203.000000', '9": ‘CTF-Simple2dt.Inve ntorySpot16
2.643697,-1023.192627,-203.000000', '8": 'CTF-Simpl e2dt.PathNode0
51.432945,-1158.075439,-207.000000', 'Reachable’: ' True', 'From":

'90.789177,-2312.877930,-212.100006'}

In this example it appears that two messages — a lisbd#s and & CHmessage (i.e. a
response to thEHECKREACEommand) — have been mixed together. This problem and
possible solutions are discussed briefly in the futurésection of this document.

5.3.5. Evaluation of the BOD Process
Types of Behaviour

One conceptual problem | encountered was that | foundlhsigbconsciously treating the
bot’s “physical” actions (e.g. running, shooting) and fita' actions (e.g. remembering
information it was provided with from the server, ‘getting” out-of-date knowledge) as
fundamentally separate types of entity. Therefore, & @&sy to forget the plan file when
coding this “mental” functionality. This lead togilems as whilst action primitives run
atomically, other aspects of the agent may run in |ghreith them. Therefore, coding a
mental function as part of the main agent contrgb iaher than as an action meant that the
mental function could alter a variable used by an aetiaifst that action was running and
thus lead to exceptions being raised. For examplejradeatist of navigation-points whilst
an action was searching the list.

Problems with functions overwriting data whilst anotherction was reading it occurred

several times before the simple solution became appahnengction plans should contain

both mental and physical actions. An example of this lmarseen in actions such as
expire-reachable-info in themovement behaviour library. Due to constraints on
time, however, | was not able to correct this flaw &ll cases. This is discussed in the
Future Work section (9.2).

It could be argued that this leads to untidy planshegrix both tangible actions of the bot
with general housekeeping functionality. However, eftection | believe that it leads in
fact to plans which relate more closely to the actefection of humans: humans must

46

choose (even if only subconsciously) to devote sontieedf time to purely mental activities
such as remembering information they are presentdd a$ well as the more obvious
physical tasks.

Roll-backs

Whilst | found iteration and prototyping very useful ¢ireating the functionality to take the
bot to the enemy base, for example), | found that gpbiack to a previous iteration was not
a technique | ever made use of. The primary reasothifowas that rolling back would
have removed other useful code | had written duriegitération as well as removing the
code which proved to be ineffective. It was alsoddge that removing the code “by hand”
rather than by rolling-back was simple and error-fneegning that “automatic” removal by
rolling back would not have been an advantage.

This problem of removing useful code when rolling basjgests that my iterations were
too large. However, the usefulness of rolling badkally decreasesvith smaller iterations
as it then become easier simply to remove the codehbg. It could be argued that the
work done during an iteration was too wide-rangmgrolling-back to be effective but, even
if this were true, | certainly did not notice it aproblem during development.

Specification Revision

Although, as discussed above, | did not perform mamyadions to the initial decomposition
produced, revision of specifications was still sonmgtHifound useful. For example, there
were a number of occasions when | modified action itivies to facilitate re-use of
functionality.

One example of maximisation of re-use was separatirfgriconality which recorded who

recently attacked the bot from that which made thetdrm to face him/her. This in turn

allowed the plan file to be simplified by combining two idatPatterns into one. In fact,
the combining could have been performed without separttercode, but the plan with the
separated code was clearer and thus made this pogsibileuse more obvious to me.

Another form of refactoring specifically suggested byddn (2001) is to use the simplest
type of POSH component possible (i.e. a primitive mrathan a sequence rather than a
competence). The recording / facing situation mentioabdve also provided an
opportunity for this: by increasing the complexity of se¢-attacker primitive, | was
able to use it (and thus the entire Action Pattern) th bme case when an attacker was
spotted actually attacking the bot, and when the botibvdook around before finding an
enemy it believed was the assailant.

There are a number of cases, however, where | deigherdid not combine sequence
elements into new primitives. For example, the elésnehthe following sequence are used
nowhere else:

(AP respond-to-visible-attacker (seconds 4)
(set-attacker face-attacker shoot-attacker))

However, there are two reasons for keeping these separae first is that these some of
these actions are likely to be required in their oight in future plans. The second is that
this separation makes the plan file far more readable.

Agent State
As discussed in section 5.3.2, and highlighted in tlie @xamples in that section, | made
substantial use of state to store details about theaUmverld. Like the primitive-

a7

complexity vs plan-complexity tradeoff (see section 5.3®¥e is also a trade-off between
plan-complexity and the amount of state required. kample, Bryson (2001; section 6.5)
gives the example of an insect which could either hawn@ plan elements for hitting
something on its left side or its right, or havensostate indicating which side it hit
something on, and a single plan element whose pramitses this state to decide whether
to move left or right.

| believe that the complexity of the information my betuires means that the need for
extra state usually prevails. For example, the states hiblel attacker’'s ID, something
dynamically generated by UT and thus not usable in-avgteen plan. Furthermore, even
if it were, the need fopersistenceagain suggests that state is required: the bot needs
“remember” that a certain agent attacked it whehakent is no longer shooting at it (and
thus there are no external cues).

The need for complex state is a point made by Laird (20@5fuil e-mail is given in
Appendix D):

I might be wrong, but I think this is where the behatiased [sic] approaches
really make it tough on themselves by not makingdyeto encode complex state
information, derived from many sources and both abdmupast and the current
situation.

5.3.6. POSH’s Contribution to Development

The POSH plan produced was the most complex ever publisheéd) found the POSH
Action Selection mechanism a great help in the devedoprof the agent. This section
explores three of the key advantages: more focusseslogevent, multi-threading, and
frequency & retries. It begins, however, with a fitsgtion of my claim of the complexity
of the plan:

The most complex POSH plan ever published

This section compares the final plan given in Append{a Aersion obodbotattack.

lap) with the most complex plans published to datay-groom.lap (see Bryson,
2003) anceducate-me+monk.lap (see chapter 9 of Bryson, 2001). Both these plans
are available fronhttp://www.cs.bath.ac.uk/~jjb/web/posh.html

The following table provides various relevant staissti

bodbotattack stay-groom educate-me+monk

Drive Collections 1 1 1

Competences 6 2 4

Action Patterns 118 of which are (0% 1
multi-element)

Drives 14 4 5

Deepest Nesting 4 0 2

Table 5.1 Statistical comparison of POSH plans.

5 This plan file includes an Action Pattern as péits documentation, but no others.

48

The bracketed figure given foodbotattack is the number of Action Patterns with more
than one element. Single-element patterns are eehjas PyPOSH does not allow Drive
Collection elements to trigger action primitivesedity (see section 8.3.3).

“Deepest Nesting” refers to the depth of nested competeand action patterns. The
deepest potential nestinghiodbotattack is 4: The top-level Drive Collection triggers
the get-to-enemy-base competence which can in turn triggeander-around

This can then trigger trevoid pattern which triggers thben-walk competence. By
contrast,stay-groom ’'s competences only trigger primitives whilstlucate-me+
monk’s deepest nesting is 2.

A final point worth noting is that whilsieducate-me+monk comes closest to
bodbotattack in terms of statisticseducate-me+monk is not a real-time plan.
Working in real-time throws up many additional chadles for development and control of
agents. Similarly, whilst robots developed using B@3. Bryson, 2001; Chapter 7) may
have very complekehaviourstheir plans are still simpler than that which | proed.

More Focussed Development

The greatest advantage of having an Action Selectiechanism was simply the fact that
| needed not code it for myselfl However, the adage is greater than mere convenience:
Not needing to think aboutow action selection was going to work left me freehmk
aboutwhat| should make the bot do, thus making development footessed as less of my
attention was on secondary concerns and more axctbal behaviour of the bot.

Weiser (1994; abstract) summarises this advantage neatly:

For thirty years most interface design, and mostprder design, has been headed
down the path of the “dramatic” machine. Its highdsal is to make a computer
so exciting, so wonderful, so interesting, that we nexanmt to be without it. A
less-traveled [sic] path | call the "invisible"; iigghest ideal is to make a computer
so imbedded, so fitting, so natural, that we usethamit even thinking about it.

Multi-threading

“Multi-threading” here refers to both the use of thieavithin Kwong's (2003) poshbot, and
to the parallel nature of POSH. In practice, this wasdticularly useful in two areas:
synchronous interaction with Gamebots and the botitendbility for higher-priority drives
to interrupt lower-priority ones.

I nteraction with Gamebots and the Plan Driver

UT is a dynamic environment and as such messages thieonbrld and the player may be
received and must be dealt with at any time. | vemtuhate in being able to build on
poshbot(designed by Kwong (2003) as a means of demonstragir@8H), which already
contained the necessary multi-threading functionality handle synchronous and
asynchronous messages from Gamebots whilst plansiagegsecuted.

I nterruptions

The ability for an agent to temporarily stop doing stimmg to deal with a more pressing
need is a fundamental part of action selection dodrid this to be well-supported in POSH
Action Selection. The existence of a schedule, @ligunterrupted tasks to be continued,
was a major boon: coding such functionality by hand dvnslve been very difficult and

would probably not have resulted in such a general-purpbsios.

49

Frequency and Retries

Many of the “mental” actions (see section 5.3.5) reglihefrequencyattribute of POSH’s
drive collection elements. For example, every 30 sectiredbot “forgets” the details of
whether flags are still reachable (otherwise it warddtinue to think they were reachable
even when it had moved far away from them, asishimly set when it sees the flag). This
proved a very useful feature and, in my opinion, malkesonstruction of realistic action
selection far easier.

Theretries limit for competence elements was also useful to help reprse“try x and
then try y if x doesn’t work” structure. Considerstlextract from one of the competences:

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 10)
(wander-base (trigger((succeed))) wander-around)

The use of retry limits allows both the final two elersetat have a trigger of succeed (i.e.
the function which always returns true) yet still bmtthave a chance to run: if rotating does
not result in a navigation point becoming visible (#masfind-base being triggered),
the bot will attempt to wander around. The limitéswuseful as it means that the bot does
not continue rotating forever if no navigation pagmvisible, but equally that is does try this
action before it wanders around.

Limitations of these attributes

Whilst, as mentioned above, being able to specify the fneguand retries limit for
elements was very useful, there were occasions wheit tdnstrained by this. For
example, the bot’s “forgetting” of flag details wagaably sub-optimal: a better solution
would have the bot forgetting 30 seconds after reagithie information. By contrast, a
frequency of 30 seconds means that the time between tkediog the flag and forgetting
about it is anything up to 30 seconds, but potentially mess) bs it is 30 seconds after the
last “forgetting”. However, it could also be arguédttsuch an element of randomness
makes the bot more human-like. This frequency problemdanf course be solved by
having the behaviour set a timer, another exampleeofrtide-off between complexity of
plans and complexity of behaviours.

5.4. Summary

This chapter has introduced BOD’s development processvgy experiences of using it.
Specific information about development has been proyidetuding details of behaviour
modules, and classes and functions relating to at&te. The development of sensory and
action primitives has been illustrated by discussion etres of examples. Problems
encountered have been discussed, including some spedcd@mebots. Finally, the process
and POSH'’s contribution to it have been evaluated tiaadomplexity of my POSH plan
demonstrated. A summary of my evaluation of BOD lmafound in Chapter 9. The next
chapter, however, continues evaluation by way of a casgrawith other architectures.

50

6. Comparison with Other Architectures

6.1. Introduction

A large part of my analysis of BOD is based on conggas with other architectures and

methodologies. One problem | encountered was that #rera surprisingly small number

of existing methodologies for complex agents. Thisitpbas been noted elsewhere (e.qg.
Kinny et al., 1996).

There are a number of methodologies Kulti-Agent Systems [MAS], and a review of
several of these can be found in Inglesias et al. (1998yvever, although the majority of
these MAS methodologies do refer to the structuiedifidual agents, most do not go into
enough detail to be interesting (although see the disrusf Kinny et al's methodology in
section 6.3). One possibility would be to examine whethege multi-agent methodologies
could be adapted for complex agents. However, inkfrénation suggests that this would
not be very enlightening: common concepts from theselels (such as roles and
organisations) seem too broad for meaningful adaptatio

This chapter makes much reference to ACT-R, SoarE®E. These architectures are
introduced in Chapter 3.

6.2. The Rational Rose Approach

One approach studied in this chapter (hereafter refesras the “Rational Rose approach”)
but which has not been previously introduced is thapeti§ying agents via UML [Unified
Modelling Language, e.g. Odell (1998)] diagrams and autoafigtgenerating code from
this specification using Rational Rose software

Although there does not appear to be a huge amount omafion available about this
method of agent creation, and | do not have prdaiqaerience with it, it has been included
as it is considerably different to the other approachEurthermore, it is currently being
used to create Unreal Tournament agents as part @nassits at Carnegie Mellon
University (e.g. Douglas, accessed 2005; Carnegie Melhiversity, accessed 2005). The
approach is touched on briefly in various sections af ¢hapter, and analysed in its own
right in section 6.7. The Rational Rose approach atemse of subsumption, discussed
in section 6.8.

6.3. Getting Started with Development

This section compares BOD’s Initial Behaviour Deconitjys to the initial processes of
other architectures. BOD's approach is evaluated iovin right in section 5.2.2.

The fact that BOD supplies relatively detailed instiarng as to how development should
begin is an important point which can easily be takergfanted. It could be argued that
doing so is going beyond what is required of an &chire. However, even the best-
designed architecture is little practical use if ne-oan develop with it. Bryson (2000b)
even goes as far as stating that the best way to corajdat architectures is as design
methodologies.

6 Seehttp://www.rational.com

51

An important distinction between the initial developimerocesses of BOD and of ACT-R
or Soar is that using BOD one begins by considering &bants shouldlo whereas in
ACT-R and Soar one must consider what an agent rteekisow (This could be a
reflection of the fact that ACT-R and Soar wereigtesd primarily for the modelling of
human cognition.) | believe that BOD’s approach Isetter fit to the problem, since to
discover what an agent needs to know, you in any gasst first consider what the agent
should do. Furthermore, putting the components of aza Biodel together is a precise
process: the division of knowledge into problem-spasest be done with consideration of
the relationships between impasses to ensure thainig@asmuseful. BOD's iterative process
which allows for easy alterations appears far simpler.

Arguably, one could begin development in ACT-R or Soambiing production rules
(“associations” in Soar terminology). However vesl as going against the recommended
process (e.g. Lehman et al. 1996 p. 13) this would be raitfieult since writing
production-rules relies on a substantial amount of irdion about what knowledge is held
in the model and how that knowledge is structured.

Nevertheless, there are situations where the appa§a®BT-R or Soar would be a better
fit to the problem. For example, the modelling of huroagnition and recall. However, |
believe that this side of Artificial Intelligenceasly a small part of the agent domain, which
encompasses far more than Al alone.

EPIC’s approach is a little more similar to that @B. Kieras and Meyer (1997; p. 409)
state that the builder of an EPIC model must supplydf@fing information:

1. A production-rule representation of the task procedures

2. Task-specific sensory availabilities and perceptualgssmr encodings
and timings.

3. Any movement styles not determined by the task rexpgints.

This process begins with the writing of production-rulesaning that, like BOD, there is
at this stage more emphasis on what is done tharanis known.

The Rational Rose approach is similar to BOD in thateals with tasks (“Use Cases”)
rather than knowledge. Again, however, the inisthges of development with this
technique are not discussed in detail. Rather, therityagd UML techniques relate to
interactions between objects or to decomposition ofcblgjata (e.g. Entity-Relationship
modelling), areas which are less relevant here.

There are ways in which BOD'’s Initial Decompositmould be improved, however. This
becomes apparent when comparing it with Kinny et dl%96; p. 61, my emphasis)
methodology for BDI [Beliefs-Desires-Intentions]esds:

Our methodology for the development of these modetstlfe internal structure

of agents] begins from the services provided by teatsand the associated events
and interactions. These define its purpose, andrdigietthe top-level goals that
the agent must be able to achievAnalysis of the goals and their further
breakdowns into subgoals leads naturally to the identification of different means
i.e., plans, by which a goal can be achieved

There are many parallels between this process and 8ifial Decomposition. However,
the key difference is that the top-level goals aexlus establish the means by which they

52

may be achieved. In BOD, the list of top-level gaalereatedafter sequences of actions
are created.

| believe that, for an agent such as mine, BOD’srandas slightly confusing: it is easier
to determine likely sequences of actions once togd-tmads are identified (as per Kinny et
al's method). However, there are also areas wB@&M@'s method would be preferred. For
example, if one aims to replicate some simple real-wadgnt” but to a great degree of
detail, it would make sense to identify what it can(elg. sensory and action primitives)
before identifying top-level goals. This is becauseptimitives are a relatively fixed-size
set, whereas the set of goals is likely to growhasaigent is developed to match the range
of abilities of the real-world version ever moresely.

Overall, | believe that for creating a complex agenthsas mine, BOD's Initial
Decomposition process is superior to the correspondiogegures of EPIC, ACT-R or
Soar. There are three reasons for this:

1. The process is specified in more detall
2. The process is a closer map to the actual taskedaut when designing an agent
3. The process requires less detail at earlier stati@sjng instead for highly iterative

development as requirements and constraints beconeeapparent.

However, as comparison with the methodology of Kinhwle (1996) suggests, in some
cases a slight re-ordering of the stages of thesgsocould make it more effective.

6.4. Evolutionary Design and Development

Soar, ACT-R and EPIC do not explicitly state the preegswhich should be followed
during development. As with Initial Decomposition fhet that BOD does could again be
considered an advantage. It could also be arguedikaifying this is overly prescriptive.
However, it makes sense to develop in a way whidis $ué architecture one is developing
in, and by providing detail on the design process BfidBes this easier.

Attempting BOD’s iterative, evolutionary development ggss in Soar could lead to
complications. The primary reason is the complexidégendencies of Soar’s production
rules. Consider the following extract from the exangdsociations given in section 3.2.3:

(al) If | perceive that | have finished reading a paper
then suggest a goal to summarise that paper.

(a2) If there is a goal in WM to summarise a paper
then...

(a2) clearly depends to some extent on (al), as (algstsgipe goal which triggers (a2).

However, such dependencies are not recognised by theatlependency exists only in the
mind of the developer. | claim, therefore, that itldobe very difficult to see what rules

would be affected when a rule is modified, deletecdaued. Furthermore, consider the
difficulties arising from moving something to a difént problem-space: This would result
in an entirely new set of impasses being created #geemodel runs, potentially drastically
transforming the relationships between elementscdByrast, BOD is specifically designed
so that changes can easily be made at any stalge dévelopment process.

The fact that in Soar and ACT-R knowledge is specifiefbre an agent’s actions would
also make iterative development more difficult: chemtp what the agent does would be

53

likely to also require changes to be made to the krdgelen agent holds, thus leading to
further alterations and risking affecting other paftthe system.

The Rational Rose approach seems to suggest increndentlbpment, with an agent
gradually being extended with further Use Cases. Henyétvappears to suffer from a
similar problem to Soar: that of dependencies betwesnponents. Carnegie Mellon
University (accessed 2005) gives an example of avoidingnpally problematic

interactions between actions by manual insertion lafydgtates, a rather inelegant solution.

Revision of specifications and the supporting of neiahce via structured commenting
(Bryson, 2001; section 8.4.1) are concepts which couldne xtent, be applied to ACT-R
and EPIC. Again, however, the complex dependenci€oar would make such revision
more difficult. Rational Rose allows documentation toasociated with any diagram
element which should ease the process of creating wtedctiocumentation. However, |
expect that this would also produce disjoint, fragmeni@climentation, as it would be
spread across all the diagram and sub-diagram elements

The opportunities for incremental development givenhHeySubsumption Architecture are
discussed in section 6.8.1, where this architectursasiatroduced.

6.5. Goal-Driven Development

The central thrust of the development process involkidg goals from the list identified
as part of the Initial Decomposition, and coding tleeresponding plan and behaviour
elements to support them. | believe that such a focgeals leads to more robust designs
as a domain’s high-level goals are less volatda thehaviours or lower-level plan elements.
Therefore, any changes to behaviours or low-level plamegits can be easily coded as
another (or a replacement) way of achieving the-fg@gél goal. This point is also discussed
in Kinny et al. (1996).

6.6. The Architecture

The very fact that BOD provides the POSH architectsireni advantage. For example,
whilst the Rational Rose approach does enable a tmde to be automatically generated,
it requires much of the action selection mechanistretonanually coded. This can easily
become a complicated and daunting task.

6.6.1. POSH's Hierarchical Structure

One of POSH's greatest strengths is its hierarclsicacture. This greatly increases the
clarity of the plan files. On a basic level, deconmpgps$he plans into sub-components makes
them easier to read. On a more technical levelsthecture leads to simpler triggers.
Consider rule (a3) from the example Soar associatiossdtion 3.2.3:

If using the Summary Creation problem space andrfi@int_summarisedis <100

Soar’s associations are required to explicitly stia¢edroblem space. A more hierarchical
approach such as BOD’s means that triggers can benddsigth more certainty about
context (e.g. we are already in the context of thergaztompetence).

The use of UML means that the Rational Rose apprsadry hierarchical. However, this
hierarchical decomposition requires a large numberubfdiagrams. | believe that this
could become confusing, especially as it could mearthbadetail of one part of the system
may only be examined in isolation from other partdie Teasons for this could include a

54

lack of screen space, or the use of modal windowsdmponent properties (only one of
which may be open at any given time).

6.6.2. Priorities and Emergent Behaviour

As well as the contextual information provided by the piamarchy (discussed above),
BOD’s priority system means that if a given componaessfithen we can be certain that
nothing more important can fire, reducing the needefdra “negative triggers” testing

against the preconditions of more important elements.

EPIC’s approach to this issue is its cognitive paiaitelvhereby all rules which match are
fired simultaneously. Whilst this has advantagesei@s and Meyer (1997) suggest a closer
match to the cognitive processing of humans), | sugpatthis would cause problems with
regard to interactions between the items whichwameing in parallel. For example, it could
make consistent behaviour difficult to achieve, andentiebugging very complicated as the
cause of some event could be emergent from thesadtiters rather than something
obviously pre-coded.

Although ACT-R'’s pattern matching / utility-based retdl system is also arguably a close
match to human cognition, the issue of emergent bemavs again likely to make
debugging and consistent or predictable behaviour difftouttchieve. Note particularly
that a new chunk may be retrieved in place of some mxistie in some cases but not
others. To discover exactly when this would occur daobolve studying much of the
existing facts. By comparison, modifying BOD plandds simpler as such dependency
issues do not arise.

Further discussion of utility-based action selection

BOD supports what could be called “manual” utility alléaata programmer is able to try
a number of approaches for responding to a given sityatipting the one he or she finds
most useful. This method is arguably more accurateeggrogrammer can adopt a broader
view of the situation than the system’s simple “Has worked in the past?” For example,
it allows side effects to be considered, and camsiden more complex outcomes than the
simple success and failure used in ACT-R.

However, the issue of emergent behaviour means thaprdgmse effects of different

approaches may not always be obvious to the programmetheFmore, it may require

extensive testing to determine which method is seshething which is especially difficult

if the programmer has only limited control over thewdation, as is the case in Unreal
Tournament. One area where “automatic” utility altmsacould certainly be useful is

where an environment cannot be simulated accurat@yexample sending a robot to a
previously unexplored planet.

6.6.3. Frequency and Retries

As discussed in section 5.3.6, | found the ability tat frequency and the number of retries
to be a useful feature. Achieving such effects in ACTwduld require chunks to be

extended with further slots, increasing the complesfityre system and potentially requiring
many chunks to be modified beyond just the one whitd ke limited.

6.6.4. Modularity and Re-use

The fact that POSH plans are stored as entirelyragpéiles from the code for behaviour
primitives and from the Action Selection mechanisra major advantage. Specifically, this
means that radically different agents can be created & single set of primitives simply

55

by supplying a different plan. This appears to be a f&efand simpler approach than, for
example, rewriting production rules for Soar, ACT-R &E.

A Comparison with JACK

As well as BOD, another agent framework designed miodularity and re-use as primary
objectives is JACK (Howden et al., 2001). JACK is aenadramework which extends the
Java language with both new syntax and new classes.ofdhe key ways in which the
concepts of modularity and re-use are supported is by GQitipabiCapabilities allow agents
to share plans, event-handlers and state. They walksimilar way to macro expansion:
code of the forn#thas capability <Capability Name> <Local Name> is
replaced by the statements stored in the relevanbiitpéile.

This sharing of plans can be likened to BOD’s usextdraal plan files, whilst the sharing
of state can be likened to several BOD agents maldgegof an external class designed to
store agent state.

Whilst | believe that Capabilities seem to perform dulsele in JACK in drawing various
aspects together, |1 do not believe that BOD is we#dtenot have such an encompassing
component. The reason for this is that BOD agemtslas enough to share many
components in common would probably use the same classesehaviour modules) and
only differ in their plan files. Thus only a singlet of classes would be required, not one
for each agent, and so the issue of sharing woulenes.

Furthermore, whilst it is true that Capabilities effeslyy modularise functionality, similar
modularisation is already very easy in BOD via bethavilecomposition and the structuring
of plan files.

However, there is one area where further sharingddoellbeneficial, the sharing of plan
components across plan files. Consider this extraan the Initial Decomposition (see
Appendix B):

If the bot were a defender by default, the list [@iahdrives and goals] would be
as above, but with the following changes:

The following drive would be inserted between 8 & 9:
Run after enemy carrying our flag

Item 11 would be removed and items from 14 onwards would beceeplry the

following:

14. Run to own base

15. Find medical kit, weapon or ammunition (as required).
16. Look for vantage point

17. Wander around near our flag / vantage point

18. Pick up nearby medical kit (if health not in dangetaungie)

The current implementations of POSH would require tletsments used by both attackers
and defenders (i.e. most of the plan) to be repeatdtiLAP file for each. Redundancy
could be reduced by allowing the sharing of plan elesrecttoss files.

One possible way to achieve this would be via pre-processingexample, the plan files
could contain code such#igses <element name> from <file name> . During

56

pre-processing, this would be replaced with the releR@%BH element. For systems where
a number of similar plans are used, a plan file could émtdd as “abstract” (i.e. not
designed to be run directly) and this file could cong&dl the elements shared between the
plans.

Sharingwithin plan files is discussed in section 7.3.2.
6.6.5. Explicit Goals

Kinny et al. (1996, section 4.3) discuss how plans using Bigirmethodology are both
event-driven and goal-driven, i.e. actions can iggéred in response to some external event
or as a means of achieving some internal goals iBhirue to some extent of POSH: the
execution of competences and drive collections idralled by goals (i.e. execution
terminates if the goal condition is met), whilst tdements of competences and drive
collections are more like event-driven elementsndias a response to triggers evaluating
to true.

The firing of elements could be made more goal-dribgnexplicitly storing goals and
providing sensory primitives to test against thenaweler, | believe that this would be an
unnecessary extra level of abstraction.

Furthermore, | believe that such goal-directed thopkaan cause problems for the
programmer also, by forcing him or her into a simpdifiview of the world. Consider the
following fictitious scenario: A bot is busy defendihgnself from attack when he sees
another enemy player running away with his teamis fldowever, he does not run after the
flag-carrier as his own dangerously low health meiduag killing his attacker is more

important.

The programmer needs to ensure that something tsigjgeibot to run after the flag-carrier
after the current attacker has been killed. In a purehl-directed world, this would be
accomplished by adding a “chase flag-carrier” go#théogoal list. This goal would then not
be found for execution until the “kill assailant” goaldhbeen accomplished. However, this
apparently simple solution would cause problems: there ggiarantee that the flag-carrier
is still visible after the attacker has ben killddclaim that a programmer thinking in terms
of events rather than just goals would know thatgyoah be an unnecessary abstraction and
so would instead be drawn to considering how thetesaud be replicated. In this case,
storing details of the flag-carrier in some statacl could then be checked by sensory
triggers. Since more detail is stored than justfict that the bot needs to chase the flag-
carrier, there is a higher chance of the bot knowimgugh to be able to catch him.

It could be argued that a greater use of goals makesiier for partial plan representation
to be used. For example, Ingrand et al. (1996, sectiord@d)ss how PRS [Procedural
Reasoning System] allows plans to add goals toishefl active goals and rely on some
other plan which can satisfy them being chosen bynita-interpreter. This is possible as
plans declare explicitly which states they bring abobilsivgoals describe desired states.

However, similar things are achievable in POSHbIhe action causes an event, it can be
guaranteed that if some component can deal withetrett in the current context (i.e. all
other required triggers return true), and its prioigthigh enough, then that will fire. All

" For example, if the bot had recorded the teanfidigecarrier was on, he could use his knowledgeluére
that team’s base was to guess where the flag-ceraie headed.

57

goals must be a result of some event or conditioar(iat or external) and POSH is simply
concerned with the event rather than the assoaoimizd

6.7. Further Analysis of the Rational Rose Approach

This section outlines aspects of the Rational Rosebapprwhich are noteworthy but do not
relate specifically to the comparisons in earlietisas of this chapter. The Rational Rose
approach itself is introduced in section 6.2 above.

The fact that the Rational Rose approach provides at#dmoade generation could make
it easier to use for those unfamiliar with programmik¢pwever, even the simplest agents
still seem to require some programming (e.g. Carndgikon University, accessed 2005).

Furthermore, the fact that the code is spread betvardwus diagram components could be
confusing, as the connections between the differettepi of code are not immediately
apparent.

Code generation can be performed with a number of térggtiages. However, the fact

that some code must be written manually makes this appiless useful as this code must
be rewritten. (The code must also be found, which coeddire quite a lot of searching

through diagrams and properties-windows.)

One important point about the Rational Rose approach vssital nature. This could be
very useful for people who find diagrams easier to undaedsthan text. Furthermore, the
connection with UML modelling could make it easyafapt existing specifications. UML
also provides an existing, relatively well-known struwe within which to work. However,
the approach is arguahigo abstract. Kinny et al's (1996, section 4.3) plan nwodee
similar to some of the diagrams used by the RatiBiagk approach but are in my opinion
superior as they offer a better fit to the situatiomdp@nodelled (i.e. they are less abstract).
For example, states can cause the generation of sulzgwhisiay contain programming
constructs such as loops.

6.8. Comparisons with the Subsumption Architecture

The Subsumption Architecture was introduced in Bro@R86). Its influence on BOD is
apparent in BOD’s use of behaviours, discussed in se&iBonThis section introduces the
architecture, examines its support for incrementakldewment compared to BOD, and
explores how its structure leads to robustness.

6.8.1. Incremental Development and Behaviour-Interaction

The Subsumption Architecture is designed for incremetgatlopment whereby a simple
system is expanded by adding further behaviours (“levietompetence”,bid, p. 10).
These behaviours are entirely self-contained, in thaé @ne is added it is not changed.
Rather, new higher-level behaviours can interact ivitta suppression and inhibition:

. A higher-level layer mayuppressthe inputs of lower-level layers. l.e. it may
replace the existing input with one of its own.

. A higher-level layer may alsahibit the outputs of lower-level layers. |.e. destroy
the signal before it is acted upon.

Brooks (1986) describes a navigation robot which waraienkessly, avoiding obstacles.
The robot is then augmented with a new level of coemget which allows it to move
purposefully towards areas of interest. This nevellemust inhibit the output of the

58

wandering layer so that the robot only wanders whéh not required to move towards
some particular location instead.

This incremental approach offers some obvious paraliéls the BOD development

process. However, the concepts of subsumption andtiohilmhean that there are some
important differences also. The predominant factothat subsumption and inhibition
greatly increase the interdependencies between demerThis means that while
development may be incremental, adding new behaviowst he done with great

consideration for potentially every other behaviouthim system. In BOD this difficulty is

far reduced.

I claim that this constraint means that more carsition need be given to the order in
which new behaviours are added in the Subsumption Arahitect-or example, if a new
behaviour is added which is at a higher level than arstiegione then all that need be
considered is which lower behaviours it must subsumehibit. However, if a behaviour
is added “between” two existing ones (i.e. a higherripyithan one and a lower priority
than the other), then the programmer must considéchwlbwer behaviours the new
behaviour must subsume / inhiaibd which higher behaviours must subsume / inhibit the
new one. Even if the programmer decides to avdsl ghoblem by only ever adding
behaviours which are a higher priority than all exgtiones (as the Subsumption
Architecture in fact requires), there is then thest@int that these lower levels must be
perfect the first time they are created, as theypaine modified.

In fact, even assuming that lower-level layers arapletely correct, things are not simple.
Consider the following slightly simplified extracbfn thebodbotattack.lap plan:

((pickup-weapon-as-unarmed
(trigger ((see-reachable-weapon)
(are-armed False))) get-weapon))

((respond-to-attack-since-health-low
(trigger ((taken-damage) (own-health-level 30 <)
(armed-and-ammo))) respond-to-attack))

((attack-enemy-with-our-flag
(trigger ((see-enemy-with-our-flag)))
attack-enemy-carrying-our-flag))

((take-enemy-flag-from-base
(trigger((enemy-flag-reachable)
(have-enemy-flag False))) go-to-enemy-flag))

((respond-to-attack-health-not-low
(trigger ((taken-damage) (armed-and-ammo)
(is-responding-to-attack False)))

respond-to-attack))

((hit (trigger((hit-object)(is-rotating False)))
avoid))

((go-home (trigger((have-enemy-flag)))
go-to-own-base))

((get-yourself-to-enemy-base (trigger((succeed)))
get-to-enemy-base))

To achieve this prioritisation of tasks in the Subsuonp#irchitecture could, | claim, require
almost every element to subsume many of the elemeiois e For example, the drive to

59

respond to an attack when the bot's health is l®sfond-to-attack-since-

health-low) should initially prevent the bot from taking the eyeflag, from attempting
to go to the enemy base and from attempting to eetbome base. Even the lower-priority
drive to respond to an attack when health is notM@wld need a more complicated trigger
to prevent it running in parallel and thus commands bsémg twice. However, since the
lower-level behaviours are not modified once they adeed, this would need to be
accomplished by subsumption also! For a system of aey suibsumption and inhibition
would clearly lead to a large number of very complegranttions.

One possible way to simplify this tangle of interaasiovould be via the idea of action
groupings. For exampleutputs from go-home , get-yourself-to-enemy-

base andake-enemy-flag-from-base could all pass through a single “forwarding”
point. Thus only the outputs of this forwarding point wionked suppression. However,
this approach has two major disadvantages:

. It is very coarse-grained and inexact. There iketylto be occasions where only
outputs from some items in the group need suppression, ddirigieith these cases
separately makes it less worthwhile having the grauwgl.a

. When considering interactions with different higkel behaviours, the lower-level
behaviours could need grouping differently.

Overall then, this problem of interaction is a majbstacle to the creation and development
of systems. However, it is unfair to end on thisenand not to consider the area of
robustness, one where the Subsumption Architecture cteam&or advantage:

6.8.2. Robustness

The key role played by subsumption means that the Subsunfptibitecture is fairly
robust. For example, if a higher-level behaviour failadt in time to suppress a lower-level
one (or fails to act at all), the robot being cotélwill continue to act intelligently, albeit
at a lower competence level.

The fact that the failure of a high-level behaviouultss(even though only indirectly) in a
lower-level behaviour running instead is one advanthgeSubsumption Architecture has
over POSH. In POSH, a “broken” or ineffective plamponent will simply continue to be
executed until its trigger is no longer true, or urdgihe higher-level element takes priority.

One could possibly imagine increasing the robustnead df agent by keeping track of the
number of messages sent to Gamebots. If no messagesent for a substantial period of
time then it could be assumed that the current high-thee had failed and the plan
interpreter could attempt to execute a drive elemert lfwer priority. However, this
would be a very imprecise mechanism and would involvieelagant overlap between the
plan interpreter and the low-level agent actions (essages to Gamebots).

6.8.3. Overall Comparison

Overall | believe BOD offers significant advantagesrabe Subsumption Architecture.
True evolutionary development is possible, without thesitaints of messy component
interaction or the requirement that development wofefelevel layers be frozen once the
layers have been included in the architecture. Howd®®D’s lack of robustness is
unfortunate.

60

7. General BOD Evaluation

7.1. Introduction

Whilst much evaluation of BOD can be done in the forfrc@amparisons with other
architectures (as in chapter 6), the architecture alsissnamalysis in its own right. This
chapter performs such analysis. This chapter alsaaesl POSH with respect to criteria
for action-selection mechanisms proposed in Tyrrell (19883 summarises existing
analyses of Extreme Programming, a technique wighaating similarities to BOD’s design
methodology.

7.2. The Methodology

7.2.1. Lessons from Extreme Programming

The central role of iteration in the BOD processitess parallels with the Extreme
Programming [XP] methodology (Beck, 1999): XP involeefequently repeated cycle of
Analysis, Design, Implementation and Testing, wiBIElD’s cycle involves implementing

functionality from the pre-written specification, iegtand debugging this new functionality
and revision of specifications. Similarly, BOD’svison of specification is parallelled by
XP’s emphasis on refactoring.

The popularity of Extreme Programming has lead to a nurmobevaluations, both
experimental and theoretical, from which further opiniaws the value of iterative
development and of refactoring can be gained. Obwotkes overview is far from
comprehensive, but it does provide some interestingonsin

The Evaluations
| considered the following XP evaluations:

Rumpe and Schrdder’'s (200Quantitative Survey on Extreme Programming Projects
presents the results of a detailed questionnairete&i developers who are or have been
using XP for a project.

Muller and Tichy (2001) discuss their observations of XiBé&sby students at the University
of Karlsruhe in Germany.

Karlstrém(2002) reports on the use of XP for a small developmejeqgtrfor the company
Online Telemarketing in Sweden. XP was choserhasastomer had a poor idea of the
system required at the start of the project.

Bossi (2003) discusses the use of XP in the developmenparftfolio-watching application
for Credit Suisse lItaly.

Lappo (2002) describes how a group of Masters studentsgit@riUniversity fared using
XP for a 12-week project for web-based resource managiemen

As might be expected from the title, Keefer's (20BR)reme Programming Considered
Harmful for Reliable Software Developmeatints a negative picture of XP for anything
except small projects with talented engineers andashdatchnical specifications. The
report has a mainly theoretical basis but also dravi&eefer’s experiences as part of an XP
team.

61

Iterative Development

XP’s “Small Releases” (i.e. iterative developmertpred quite highly in Rumpe and

Schréder’s survey: The XP elements were rated frgnoOused at all) to 9 (strongly used),
with Small Releases scoring an average of 6.86. Fumthe, Small Releases were viewed
as very helpful and caused difficulties in only 4.4%asdes.

Muller and Tichy’'s students, by contrast, nicknamedigiténg in small increments

“designing with blinders” since they felt limited byt being able to look at the more
general picture. However, the paper admits that thig be due to the students’ lack of
experience, and that incremental design did ensure feggdback about code. In fact, BOD
would solve this “blinders” problem: whilst it does makeuch use of incremental

development, performing initial behaviour decomposifgection 5.2) allows the developer
to consider the bigger picture, something kept in rtiindughout development.

Karlstrém and Lappo both found that the initial itesatiook longer than the others due to
a lack of initial familiarity with the technologyHowever, Lappo observed that frequent
iteration forced simpler designs to be created.

Keefer claims that iterative development makes theutation of total project cost or

schedule very difficult. | believe, however, thatstlibnclusion is not especially relevant:
a key reason for the use of XP is when a projeattwimiay change frequently and rapidly.
Any cost or time estimates for such a project arelylito be inaccurate, whatever the
methodology followed.

Refactoring

Rumpe and Schroder also report positively on Refagioitis average on the not-used (0)
to strongly-used (9) scale being 7.27 and participantanieglit helpful. Rumpe and
Schréder also hypothesise that refactoring was bile easons that respondents found the
cost of late changes lower in projects using XP. él@r; the survey also reports that 20%
of respondents had difficulties with refactoring.

Although Bossi found that more of the development tinaes wpent on refactoring than
coding (44% vs 37%), he reports favourably on it, notieg less code was wasted and
more code was able to be re-used. These advantagamang those outlined by Bryson
(2001) as the reasons for revision of specificatior30D.

The general consensus from those using XP with stuieea that projects were either too
small to warrant (major) refactoring or that studetitl not appreciate the importance of it.

Keefer argues that refactoring leads to the needlterations to the test suites and risks
introducing further errors, and that a better soluisosimply to write good code from the
start. | consider this a slightly naive view. Fermore, Keefer's argument ignores the fact
that well-designed test suites should operate on agrogmterfaces rather than on the
main program code. Refactoring this program codedvihwdn not affect the test suites as
the interfaces would not change. However, if theé testes are to remain entirely
unchanged throughout the development process thenténéages must be correct right
from the start.

Conclusions

The most detailed evaluation considered (Rumpe andb@afts) gives a positive view of
both iterative development and refactoring, suggestiagBOD is right to emphasis these
aspects of development. Although Miller and Tichyisdehts were not positive about

62

iterative development, | believe that the difficultidsey encountered with iterative
development would be solved by BOD’s Initial Decompositi Similarly, whilst Keefer is
doubtful about the effectiveness of either techniquéjdJumethat there are significant flaws
in his arguments, as explained above.

7.3. POSH Plans

This section explores some of the issues which becaperent during my use of POSH
plans. It covers syntax issues, improvements to shavireduce redundancy, POSH's use
of parallel plan elements, and possible improvementtardentation. The discussion
includes recommendations for changes to POSH andltre interpreter as well as
suggestions for things plan writers themselves cato damplify the development process.

7.3.1. Syntax

Whilst syntax issues will be largely avoided when &t I[Integrated Development
Environment] becomes available for POSH, they stdspnt a problem to the hand-coder
and are arguably reflective of deeper problems in sa®esc

Element Names

Consider the following extract from the descriptidrtte LAP file format (Bryson, 2001;
pp. 225 - 226):

drive-element :: (<name> (trigger <ap>) <name>
[<sol-time>])

This defines the structure of Drive Collection eletaesuch as the following from my
bodbotattack.lap file:

((attack-enemy-with-our-flag
(trigger ((see-enemy-with-our-flag)))
attack-enemy-carrying-our-flag))

The problem is that elements require two names: tke ii the element’s own name (hot
referred to elsewhere in the plan) and the secandadime of the POSH element to be fired
if the trigger evaluates to true. This double-namiaig make plan files harder to read as
they can contain many similar names, especially vinemames of any nested elements are
taken into consideration.

This syntax does have the advantage that it proeidesque name for each element. This
is an advantage in itself, and also provides greatepe for extensions (see section 7.3.2,
for example).

| suggest that, for simplification and clarity, the plaritev adopts naming conventions.
This is not something | have made much use of, butdvdalso were | to write any new
plans. For example, the names of Drive Collectiometfés could be identical to the names
of those components which they may trigger, but witlcaprefix. The fact that under
PyPOSH drive collection elements may not triggeioacprimitives directly (see section
8.3.3) meant that a large number of single-item actittenms were required. Conventions
for naming these would also help. For my developmeiten added the word “the” to the
action pattern’s name, so the pattern which exe@xpte-damage-info was called
expire-the-damage-info , for example.

A further possible improvement regarding names wouldHeeking for the existence of
plan elements at load time rather than run-time. prsent, references to non-existent

63

elements only become apparent when the plan intergiéenpts to call the element, and
generates a “not callable” exception. Checking @&inehts at load-time could reduce
development time, as such errors would be caught sodies.is especially important in
cases where setting up a situation to test the neveetdakes a substantial amount of time.
For example, when | had to wait for the bot to findwdg/ to the enemy base and pick up
the flag before the new plan components for returningehooald be tested. At present,
such existence checks are done by the Lisp versio®@8H? but not by PyPOSH.

Filenames

One of BOD’s development recommendations is thaptdd scripts should be kept. This
allows rolling-back to previous versions, and provide efulgyuide to the development

history of a bot. | simply named my old filebodbotattack[1].lap ,
bodbotattack[2].lap and so on. One possible improvement for future developm
would be to use more descriptive names @@dase and take flag.lap , to
base, take flag and return home.lap , flag capture and combat

response.lap). This would reduce the amount of time needed to gadicular old
plans. There would obviously be a trade-off between seness and clarity, but even
slightly more descriptive names could be useful. Combirdescriptive names with
sequential numbering could be particularly beneficial,héss would also provide a clear
sense of order and of the progress of development.

Magic Numbers

In the current structure of POSH plans the use ofdimitfrequency and retries, along with
the timeouts for elements, has required much use cdled “magic numbers”, i.e. numbers
hard-coded into the plans rather than specified aablas or constants.

The magic numbers problem is not only one of readalslitg maintainability but also
constrains the plan writer’'s ability to express refaiops between values. For example,
the timeout ofexpire-the-damage-info is very low (8 seconds) since the Drive
Collection element which calls it is written so s occur very frequently (every 10
seconds). Allowing variables or constants along withple operators would allow this
relationship to be expressed: the frequency for thingadlement could be set to some
variabledamage-expire-frequency and the timeout then @amage-expire-
frequency-2 , for example.

A relatively simple way to accomplish this would be wsttme form of pre-processing on
the files similar to that which makes Gtdefine statements possible. This would have
the added advantage that existing plan engines wotildeed altering. The pre-processed
file would not need saving to disk (this would add teluto plan directories) but could
simply be stored in memory before being parsed as noradolution using variables
would be more elegant, but would require existing plamesgio be modified.

7.3.2. Sharing and Redundancy

The structure of POSH plans could be modified to allow &irharing and to reduce
redundancy. For example, consider the following coempets, simplified versions of two
from thebodbotattack.lap plan (points of particular interest are in bold):

(C get-to-enemy-base (minutes 10)
(goal ((at-enemny- base)))
(elements

(

64

(check-immediate-vicinity
(trigger((too-close-for-path)))
big-rotate 2)

(run-to-base (trigger((know eneny- base- pos)))

to-enemy-base)
(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)
(find-nav-point (trigger((succeed))) rotate 1
(wander-base (trigger((succeed)))
wander-around)
)

)
)

(C go-to-own-base (minutes 10) (goal ((
(elements
(
(check-immediate-vicinity
(trigger((too-close-for-path)))
big-rotate 2)

0)

at - own- base)))

(run-to-own-base (trigger((know own- base- pos)))

to-own-base)
(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)
(find-nav-point (trigger((succeed))) rotate 1
(wander-base (trigger((succeed)))
wander-around)
)

)
)

0)

These competences are almost identical, the orflgrelifces being the goal condition and
the second element (i.e. which base it needs infasmabout). Some method of sharing

this structure would reduced redundancy.

One possibility would be allowing competence elementsetshared by using their name
(something which is not used at all at present). Tbidd result in the two competences

above being rewritten to look something like thediwihg:

(C get-to-enemy-base (minutes 10) (goal ((at-enemy-
(elements

(check-immediate-vicinity
(trigger((too-close-for-path))) big-rotat

(run-to-base (trigger((know-enemy-base-pos)))
to-enemy-base)

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate 1

(wander-base (trigger((succeed))) wander-arou

)
)
)

(C go-to-own-base (minutes 10) (goal ((at-own-base)

65

base)))

e?2)

0)
nd)

)

(elements

(check-immediate-vicinity)

(run-to-own-base (trigger((know-own-base-pos))
to-own-base)

(find-base)

(find-nav-point)

(wander-base)

)
)
)

Wherecheck-immediate-vicinity etc refer to the competence elements defined in
get-to-enemy-base

This is in fact a further example of the plan vs behavitade-off (e.g. section 5.3.3). The
problem above could also be solved by using a single cempeetand delegating to a
behaviour the job of deciding which base the bot is otlyrénterested in.

Priorities which vary with the value of some variable

A further area in which my plans contain redundanday responding to attack: The priority
of responding to attack is higher when the bot’'sthaalbelow a threshold value than when
it is not. In the plan this is accomplished by hgwiro similar drive elements, the higher-
priority one including a check against the threshqlth fact, the lower-priority one also
checks that the bot is not focussed on attacking @oenalready, but this difference can be
ignored for this part of the discussion).

Some way of removing this sort of redundancy could beuljget least because it could
make more precise differentiation easier (i.e. usirfiner-grained check than just testing
against a single threshold). One possibility wouldicb@llow pre-processing on triggers of
the following format:

([(variant-priority <threshold> <min-limit> <max-li mit>)]
<sensor-name> <value> <predicate>)

Pre-processing on drive elements with a variant ipyierould result in extra drive elements
being added. For example, consider a drive elef#emith the following trigger:

((variant-priority 10 10 70) health-level 30 <)

Pre-processing of this would result in copies of thatedelement being inserted into the
plan, each with a slightly different trigger. Fotaeple, an element with the following
trigger:

(health-level 20 <)

would be inserted two elements befdf¢thus having a higher priority than it and than the
element before it). An element whose trigger had laevaf 10 would be inserted two
elements before that. (The value decreases in dteplsreshold> down to a minimum

of <min-limit>). Similarly, elements with lower priorities woulte inserted which
tested against a higher health level (ugrmax-limit>).

However, | believe that while such preprocessing wouléhtezesting, it would only be
useful or applicable in a limited number of caseswdtid also risk making the bot’s
behaviour hard to understand, as the version of thetp&abot actually used would have
many more elements than that which the programmed smd! There are undoubtedly

66

alternative solutions to this problem which are mdegamnt, but | do not have time to
consider these here. The solution proposed above nmapnbielered a proof-of-concept.

Further possibilities could be developed to enable thénghaf more of the structure. This
would risk decreasing the plan’s clarity, however.

7.3.3. Parallel Plan Elements

Consider the following description of the structureDpifve Collection elements (from
Bryson, 2001; p. 226):

drive-elements :: (drives (<drive-element>+)+)

The drive elements in parentheses are ordered irs tefpriority. However, the innef
indicates that each set of parentheses may contamtiran one drive element. In this case,
these elements are taken to have equal priority lemddstherefore have mutually exclusive
triggers (behaviour if they do not is undefined). igirty, competence elements may also
be in parallel.

The astute reader will notice that this does nétdh add any expressive power to the plans:
if items have mutually exclusive triggers, then allom{edher) one to be one place above
the other in the priority list would result in the saaction selections as would occur if they
were at the same priority level.

However, despite this, and despite the fact thadl hdt use this functionality, | believe it

is an important part of POSH which should not be rechoigne reason for this is the subtle
difference in meaning which the alternative structoeveys, thus contributing to the self-
documenting nature of the code:

. Two items having the same priority level suggesds ttieither is more “urgent” than
the other. (l.e. neither requires the bot’s attentiefore the other).

. Two items having different priorities suggests tra is more urgent than the other.
The fact that the triggers are mutually exclusiveriislevant at this level of
meaning.

The only downside | can envisage from keeping tlsisndtion (apart from the fact that the
majority of Drive Collection elements will be surroeaddby double parentheses) is a slight
increase in maintenance: the programmer must ensatehé triggers remain mutually
exclusive even when they are altered (either by adutingmoving triggers, or by altering
the underlying senses). However, | believe thatishiot a sufficient reason to remove the
possibility for parallel elements, especially as thet fdat this functionality is used
infrequently means that the extra maintenance woutdibienal.

7.3.4. Improvements to Documentation

One useful improvement would be the documentation of lplessigger predicates. The
PyPOSH documentation does state that “triggers catainopredicates and values in
addition to sensor specified. This allows the outpuhfthe trigger function to be compared
against a value with a predicate.” (Kwong, 2003; p. &4J mentions that the default
predicate is the test for equality. However, theofiossible predicates are not mentioned.
The PyPOSH code, and my own experience, indicateéhidollowing are usable:

Values Meaning

eq, == sense’s value equals test value

67

It ,< sense’s value is less than test value

gt,> sense’s value is greater than test value

not ,!,!= sense’s value is different to test value
Table 7.1 Possible Predicate Values for PyPOSH

Plans for the Lisp version of POSH may use any valg comparator. However, this is
also not made clear by the documentation.

7.4. Testing POSH against Action-Selection Criteria

Tyrrell (1993) examines a large number of action seleati@shanisms from both a
practical perspective (controlling a creature in a satad environment) and a theoretical
one. As part of his report, he outlines fourteen req@ngsnwhich he claims such a
mechanism should meet. In this section, | introdusenall number of these criteria and
briefly explore how well POSH action-selection meéesm. (The list of criteria adapted
from pp. 214-216 oibid). For brevity, only those criteria which are migeresting with

relation to this discussion are included, but | cldiat those left out are met by POSH.

7.4.1. Dealing with all types of sub-problem

For brevity, | will not explore all Tyrrell's sub-probletypes here (I believe that POSH can
handle all these problem types, incidentally). Irstere readers are directed to section 7.2
of ibid. However, a number of problem types are worth discassio

Homeostatic sub-problemsconcern internal variables which should be kept agrtain
value or within a certain range. This has similesito goal-driven behaviour, discussed in
section 6.6.5. A goal- rather than event-driven agenild arguably provide a closer fit to
ths sort of problem. However, there is no reason WB@B agent could not handle such
problems. In fact, the bodbot does deal with such a gmghthat of keeping its health
sufficiently high. For example, the priority of respomgdio attack is different depending
on the bot’s health level. Similarly, the bot witllp pick up a medical kit if his health is
low, but getting it will become a high priority in thegse.

Periodic problems are those whose importance rises and falls witgtgalar rhythm (e.g.
sleeping). A naive approach might be to attempt thisaacontrol using the frequency
attribute of drive collection elements although, agige 5.3.6 suggests, this would not be
very effective. However, alternative solutions woldd possible, using comparison
predicates in triggers, for example. (l.e. “if tinfaday greater than x and less thany ...”.)
Section 7.3.2 outlines a potentially more optimal approadfis sort of problem in its
discussion of priorities which vary with the valuesofme variable.

Proscriptive problems require that certain actiomst be carried out (e.g. that the agent
avoids walking into a lake of lava). There is n@mrching mechanism in BOD which
prevents actions from being executed. However, suchstltiogld arguably be achieved
using POSH’s hierarchical structure. For example, denghe problem that an agent
should not shoot when a wall is in front of him, eviehe is “facing” the enemy (i.e. the
enemy is on the other side of the wall). Initigle component triggered could just be an
action primitive which communicates with Gamebotsmére complex version of the plan
could easily replace this with a reference to a coemget which first checks that the agent

68

is not facing a wall and then shoots if this cdodiis met. In short, plans and triggers can
be designed such that actions will not run in certases.

7.4.2. Contiguous action sequences

“Contiguous action sequences” refers to the idea dhaé an agent has started on one
sequence of actions, the likelihood of changing tahamosequence should be reduced.
Tyrrell claims that this is because of the cost aingfing (i.e. of moving to a situation where
some other goal can be successfully achieved). Fonmg&aonce an animal has started
drinking, it should be less inclined to go after hgafood as it would be “wasting” time in
getting to the food which could be used for the guaeghreward of continued drinking.
Rather, it should wait until the need for food is leigithan that which might normally
trigger a response, or until the need for water isiquaarly low.

There are few parallels to this in Unreal Tournan(emdical kits are picked up as soon as
they are touched and provide instant health improvenfientexample). However, one
situation which is relatively similar is that of afeleder finding a well-secluded vantage
point: once it is found, the bot should be reluctanbimaon it in case an enemy approaches
while s/he is “in the open” and will have less ofalvantage in terms of location.

POSH does not provide this emphasis on existing ac{imst doing so arguably helps it be
more reactive), although the slip-stack mechanisra ¢setion 2.4.5) is similar in some
respects. However, | believe that the number of oaoasn which such emphasis is
relevant is sufficiently small that such behaviour banaccomplished with triggers and
Action Patterns. Furthermore, | believe that a deefetbemphasis on contiguous action
sequences is too broad an approach: although achiechgeffects with triggers is more

complicated, it is also more precise.

7.4.3. Compromise candidates

Tyrrell (1993; p. 216) describes the idea of compromise dateti as “the need to be able
to choose actions that, while not the best choicefiy one sub-problem alone, are best
when all sub-problems are considered simultaneously”. xample from the UT domain
could be an unarmed bot taking a less direct routect@rlemy’s base as it increases his
chances of finding a weapon on the way, or runningyainom an assailant and towards a
medical kit rather than just taking the route whigh put the most distance between him
and his attacker. This sort of thing is far morenpticated in UT than in Tyrrell's
simulation (for example, Tyrrell's simulation takes placeidiscrete grid with discrete
timing). The selection of compromise candidatestilispossible in theory as any part of the
plan may include triggers used in any other part opthe, and primitives may examine any
of the bot's state which they need. However, in ficacthe selection of compromise
candidates would run into problems:

. Considering all, or even most, of the other caaudisl would result in long and
unwieldy triggers.

. Providing plan elements capable of producing a numbg@ossible compromise
candidates would result in unreasonably long competences

8 In reality, this problem would not arise as théib@ble to check whether other players are sibl
However, | chose it as it provides a useful, singxample.

69

Although extending the action selection mechanism witlalgility to choose compromise
candidates could possibly help with these problems, | leelleat the primary difficulty is
the complexity of the domain. This means that englality action selection mechanism to
choose compromise actions would be immensely diff{cwit least because it would require
the mechanism to have a huge amount of knowledge atheutdomain, violating
encapsulation rules).

These problems could be avoided by producing more complevloeirs which examined
state concerning other actions as well as that coingethe action which they wished to
perform. Such information could allow the final antioroduced to be chosen with other
candidates in mind. This would be possible (and couleebgeffective in some cases) but
is not a general-purpose solution.

Overall, | believe that it is unreasonable to expeatrel-purpose compromise-finder for
a domain as complicated as Unreal Tournament.

Transitions

A loosely-related area to that of interactions betwleehaviours to produce a compromised
outcome is that dfransitions an idea introduced by Sengers (1998). Sengers ar@ies th
current agent architectures result in agents whictisaztézophrenic” (p. 37). This term is
used to describe problems which occur as a result ohgtitey to reintegrate atomized
agent behaviours. For example:

. Agents attempting to undertake two incompatible behasgicimultaneously (e.g.
fighting and sleeping).

. Agents switching between behaviours in a way which agpgnnatural.

. Agents rapidly switching between behaviours rather thatually achieving

anything, or refusing to change behaviour when circaness required it.
. Agents rapidly switching back and forth between twiav@urs.

(These examples adapted frifmd, pp. 38-39.) The primary way in which Sengers suggests
such problems be combatted is via a change in thinkingglalesign: considering how an
agentappears to an observeshould be central to agent design. This is an stiegeand
novel approach which time unfortunately does not pedisitussion of here. (Interested
readers are encouraged to read Sengers’ thesisvevdn one of the concrete examples of
this principle is the idea of transitions: actiondgalboccur during the switch between two
behaviours.

As with compromise candidates, the POSH action-deteaiechanism does not contain
sufficient meta-level controls to implement such titzoss at a high-level. Rather, they
would need to be coded either in terms of more complegetrsgand longer competences,
or at the level of primitives themselves. Allowingora control over the meta-level
procedures of action selection could usefully make P@®Bke extensible in this area and
others, but would risk encouraging dilution and abusthefmechanism. Alternatively,

transitions could potentially be accomplished by megmitas to those used by Bryson and
Thoérisson (2000). They combined POSH action selectioh thié Ymir architecture

(Thorisson, 1996) to link high-level action selectionhwidwer-level control over actions

such as gestures and body language. Even without seitttoas, however, | believe that
POSH has other means of addressing all but the se€¢@ehgers’ concerns listed above.

70

7.4.4. Conclusion

In conclusion, | believe that all of Tyrrell's critarare met to some extent by POSH. POSH
could deal better with periodic goals but this is singiyatter of conciseness — triggers can
be designed which are sufficiently powerful for this.

POSH is not able to choose compromise candidates.evéow believe that for a domain
as complex as Unreal Tournament this is an unrealegigirement and, furthermore, that
sufficient “compromised” choices can be made by behasiouthe specific cases where
they are applicable. Similarly, POSH does not have udtipport for contiguous action
sequences (although keeping items on the schedulegualdy similar) but | again believe
that this is needed infrequently enough that accoimptisit with triggers is a reasonable
response.

71

8. PyPOSH: Problems, Alterations, Corrections and
Recommendations

During the implementation stage of my project, | mgdeat use of Kwong's (2003)
PyPOSH framework (see section 2.6). In doing sesdodtered and corrected a number of
problems with it. | also made some changes toritadgwork to make it more powerful and
better suited to my needs. These corrections amjebare discussed in some detail in this
section to facilitate understanding of the code analsiist anyone who wishes to compare
the original version with the modified one. Furthere, a number of problems I
encountered but was not able to correct are also detuss

8.1. Multiple Behaviour Files

The original version of PyPOSH only allowed actéond sensory primitives to be specified
in a single file. This is inconsistent with POSIdiinciple of decomposition of functionality
into behaviour modules (see section 2.3) and makesieffelevelopment more difficult.

| therefore modified PyPOSH so that behaviours coulgpeeified as multiple files. This
involved a number of changes:

. Dictionaries for actions and senses were addedibtxhosh_agent.py (lines
89 & 90), having previously been commented out. This pedvédcentral reference
point for the primitives, despite the fact that theyrevnow in multiple files.

. The functionget_act andget sense (againirposh_agent.py)werealso
modified. The original versions called their equinaléunction in the single
behaviour object to retrieve the relevant primitivene hew versions looked in the
new dictionaries instead.

. Similarly, the function@dd_act andadd_sense now add details of primitives
to the central dictionaries rather than passing therto the behaviour object.

. Themake_behavior function of the main agent file (in my cabedbot.py)
was originally defined to return a single behavioueobj | modified it to return a
list of behaviour objects. This meant tts#lf.behavior_instance in

posh_agent.py then needed initialising to be an empty list rathanNone
(Python’s null type), and various other pieces of asllieh used it needed slight
modification.

8.1.1. How to Write a Behaviour Module

As a means of further illustrating the multiple-behavifilermodification to PyPOSH, this
section explains the key steps involved in writing laav@ur module for an agent.

Creating the Class

1. Create a new class definition, extending the dGase .
2. The__init__ function should call the ancestor’s initialisatiemétion Base.
__init__(self, **kw)) and should set up any state. It should also call the

functions you have written for registering primitiygge below).

72

3. Include thebind_bot function:

def bind_bot(self, bot):
self.bot = bot

4, Write functions for your action and sensory primiiveNote that actions must
return True to indicate successful completion and Fatkerwise. (See the
examples in section 5.3.3.)

5. Write functions to register your primitives. The$®wdd call self.agent.
add_act for each action argklf.agent.add_sense for each sense. These
functions take two arguments: a string which will beduserefer to the primitive
in the plan, and a reference to the relevant function

Initialising the Class

An instance of the behaviour class will need to beaterk by themake behavior
function in your top-level agent file (in my cabedbot.py). This function should create
a class instance, passing it any relevant parameg@ne. required parameter is the agent.
This should be passed as a keyword parameteadient = agent). agent is one of
make_behaviour ’s parameters, so there is already a reference to it

Once this is done, the instancbiad_bot method should be called, passing it an instance
of Bot_Agent which in turn should be created in as partmatke behaviour . All
behaviour instances use the same bot. cbmmect function of this bot needs calling as
part of make_behaviour , but again only needs doing once, regardless of mawy
behaviour classes are instantiated.

Finally, the new behaviour instance should be appendethetdoehaviour list which
make_behaviour returns.
8.2. Problems Corrected

| discovered two quite important bugs in the PyPOSH: . c@he affected timeouts for Drive
Collection elements and the other retry limitsdompetence elements.

8.2.1. Timeouts for Drive Collection Elements

The code to test the frequency (lines 922 and 92Bosh_agent.py) originally
contained the following:

if (element.frequency <= 0) or \
(element.frequency > (time - element.last_fired)):

However,time is a Python module and thus cannot be subtracted froeplacedime
with timestamp , a variable which had previously ben instantiateth@original version
of the code) to hold the number of seconds since/ii&X epoch (line 912).

This modification meant that the code did not cradHowever, the element with the
frequency limit was then never called. The reasoritis was the greater-than operator in
the tes{element.frequency > (timestamp - element.last_fire d)) ,
which should instead have been less-than. Fixingsttieed the problem.

73

8.2.2. Retry Limits for Competence Elements
Attempting to use a retry limit for a competence elgmesulted in the following error:

File "C:\programming\Python\programs\fyp\pyposh\
posh_core.py", line 701, in fire_cel

competence_element.retries =
competence_element.retries - 1

TypeError: unsupported operand type(s) for -: 'str'
and 'int'

The reason for this problem could be foungdash_agent.py at line 624:
retries = elements[3]

The variableelements contains strings parsed from the plan file. Thegfthe line
needed changing to the following:

retries = int(elements[3])

Doing this solved the problem.
8.3. Other Issues and Suggestions

8.3.1. Debugging

| was unable to use the Python debugger on PyPOSH. Thidhawmaybeen due to my
inexperience with Python, but | cannot be sure. Thisiosedlustrates the problem
encountered.

The debugger is run using then function of thepdb object. Thus my call to the debugger
was as follows:

pdb.run(pyposh)

pyposh is the file which is run to launch the PyPOSH envinent and interpreter. Note
that the file as a whole is run, rather than a sigeftifction from it. | believe that this may
be the reason for the error | encountered:

Traceback (most recent call last):
File "<pyshell#8>", line 1, in ?
pdb.run(pyposh)
File "C:\programming\Python\lib\pdb.py", line 979 ,
in run
Pdb().run(statement, globals, locals)
File "C:\programming\Python\lib\bdb.py", line 347 ,
in run
cmd = cmd+'\n'
TypeError: unsupported operand type(s) for +:
‘module’ and 'str'

However, | cannot be certain of the reason forghier and so it is an area for future work
(see section 9.2).

8.3.2. Profiling

| was also unable to use the profiler successfully orOSHP. | set it up to profile the
calling ofapp.MainLoop() inpyposh.py , but this seemed only to record details of the

74

execution of functionality concerned with the PyPOSH GUbelieve that this may be
because code is loaded dynamically when agents arbutiagain | cannot be sure.

In an attempt to combat this, | tried to profile tlele which is executed when the agent is
“brought to life”, by using the following command:

profile.run('self.agent.execute_thread()',
‘profile.out")

However, the profiler uses tlexec statement to run code dynamically, and that cannot
understand the referencedelf asself is a local variable. Therefore, this was also
unsuccessful (it did not even run).

8.3.3. Issues with Primitives

PyPOSH does not allow Drive Collection elementgath action primitives directly, but
requires them to be contained within single-elemenioAdPatterns instead. This is not a
restriction derived from the original POSH specificatiut rather is an extra constraint.
I have not corrected this myself, but would suggest ithet considered in any further
development of PyPOSH.

8.4. Distribution

A number of other projects are making use of Unreal fament and POSH / PyPOSH and
for this reason | was asked to create a distribut@naining the current version of my bot
and my modified PyPOSH files. This has been citedlamong a number of researchers
and academics in both Europe and North America. €adme file | produced for this
release is given in Appendix D.

75

9. Conclusions

This chapter begins by summarising the achievements aldbigsnent. It then highlights
the document’s limitations, and gives suggestions faréunvork. Finally, a summary of
my evaluation of BOD is provided.

9.1. Summary of Achievements

9.1.1. A Discussion of Architectures

This dissertation has summarised Bryson'’s (2001) Beha@odented Design [BOD]. The
key features, both methodological and architectufsd ROSH architecture) have been
introduced, explored and discussed. A number of othehitectures for Artificial
Intelligence and Agent Development have also beendmter, discussed and compared
against. These architectures have included Soam@elet al. 1996), EPIC (Kieras and
Meyer, 1997), ACT-R (ACT-R Research Group, 2004a), the Subsumftihitecture
(Brooks, 1986), JACK (Howden et al., 2001), agent modeliadJML and Rational Rose
(section 6.2), and Kinny et al.’s (1996) Beliefs-Desirgentions model

9.1.2. The Bodbot Project

This dissertation has explored the bodbot project, whidbdes the most complex POSH
plan file ever published (and equally, a large number lmf\deur modules and primitives).
The development of this project has been discussed,B&id's part in this process
analysed. The dissertation has demonstrated théting behaviour of the created bot,
further illustrating the workings of POSH and the alepment undertaken for the bodbot
project.

9.1.3. An Evaluation of BOD, and Improvements to PyPOSH

BOD has been evaluated both in its own right and comipealsain light of significant
research into existing architectures and methodaodsiggestions for improvements have
ben identified, as have BOD'’s particular strengthfie PyPOSH Python implementation
of POSH (Kwong, 2003) has been discussed and furtheiogedzimproved and corrected.

9.2. Future Work, and Limitations of this Dissertation

Whilst this dissertation has accomplished a lotietlige still much which could be improved
and covered in more detail, and many possibilitieguther work. This section introduces
a number of the possibilities for future work.

Improvements to the bodbot fall into two categorigmificant developments and tweaks.
Both are important to create a better CTF player.

9.2.1. Significant Developments
Meeting the Specification

Whilst the developed bot provided many opportunities for aislgnd evaluation, and
proved an interesting (although not particularly challey) opponent, it requires further
development to meet the original specification asradlin Appendix B.

The most significant lacking is that the plan (asglagiated primitives) for a defender have
not been created. Creating a defender agent woulddfel in a number of ways:

76

. It would highlight general bot-development challengasd problems not
demonstrated by the attacker.

. It would make the development of teams and bot-vs-batlations (see below)
more feasible.

. It would be evidence of the usefulness of the fact the different bots (i.e.
attacker and defender) can be created from ond petmatives.

There are also a number of other ways in which thenéeds to be developed to meet the
provided specification. Specifically, the followindgh-level goals and drives require
attention:

. Avoid incoming projectile

. Pick up nearby ammunition (if have none)

. Attack enemy who is near our flag

. Find medical kit, weapon or ammunition (as required).

The drive “Avoid incoming projectile” would be particdla interesting, as that would
require the new version of the Gamebots interfatetosed (see section 5.3.4).

There are also a number of other minor discrepanciegebetthe created bot and the
specification which, for brevity, | will not list her

Teams and Bot-vs-Bot Challenges

BOD'’s suitability for Multi-Agent Systems [MAS] has tnbeen tested in great detail (but
see Bryson, 2003). Using the plan created (ideally mjuoction with a “defender” plan)
to control teams of bots could be very enlightening, least in the possibilities it would
open up for communication between agents. Similarlyerebgy bodbots playing against
each other would be very interesting and provide anfidior testing the bot in novel ways.

Internal Maps

| believe that the bodbot could be far more effectiveaviteto create an internal map as part
of its state. Among other things, this would adsltbe problem that Gamebots provides no
stimulus to represent “seeing” a wall — the bot onlywsabout walls when it walks or is
pushed into them. An annotated map of the type desdopéaird (2005; see Appendix
D) would be especially useful in the creation of a tachoa Potential annotations could
include:

. Paths from and to various useful points, even includiges where there are no
navpoints.

. Key doorways and tunnels, to help defenders idewéiftage points.

. Points where weapons, ammunition and health kits appea

. Common routes taken by opponents, and common hidingphnd vantage points

used by the other team.

. Routes worth avoiding (e.g. narrow tunnels, exposedsaor places where the risk
of long falls or falling into lava is particularlydti).

. Vantage points used by the defenders on the bot's@an, to help it identify how
likely an assailant is to escape and so the priofithasing him/her.

77

The above are just a few examples, experience aridgtesbuld probably reveal many
more.

9.2.2. Tweaks

Although listed as a “tweak” as it would be relativejyick to fix, the fact that some
updating functions still run in parallel with actions (thus causing exceptions and errors,
see section 5.3.5) is quite a major problem which shoutivected as a priority.

With some important exceptions (e.g. navpoints), theeatioot does not make much use
of the“reachable” attribute sent when it sees objects. The reason for thidbeas that

it often seems to be set to false when it shoulduze tHowever, this should be tested more
extensively, and the information made use of. For el@mvhen the bot decides whether
to run towards a flag on the ground. Like other pption problems, this “reachable
problem” could be due to the skill setting of the bobwiver, | have not had time even for
preliminary tests of this hypothesis.

The bot does not seem very goodhaticing enemiescarrying its flag (see section 4.2.2).
This problem should be examined in more detail. In @a&t, the theory that the UT skill
level affects this (section 4.2.2 again) should bedeste

The theory that a higher skill level improves the'daibility to notice navigation points
should also be tested, and modifications made toehaviour as required to maker the most
of the improved perception. (See section 5.3.4).

The user should be able specify the teamthat the bot is on. This would involve
modification of the parameters tmake_behaviour (in bodbot.py). As with
responding to incoming projectiles (see above), whigld involve use of the new version
of Gamebots.

Thelist of visited navigation-pointswhich the bot maintains should instead be a dictionar
with navpoints’ locations as its keys. This shoustkecalculating the least-visited navpoint
(see section 5.3.3) a far less expensive process.

As discussed in section 4.2.3, there are occasions tivadyot keeps looking at an attacker
whilst continuing to move around the level, liaits to keep shootingat him / her. This
sort of problem should be fixed, perhaps by resendin§it@OTmessage if it has not been
already sent more than once.

The problem withcorrupt Gamebots data demonstrated in section 5.3.4 could be
examined. First, the new version of Gamebots coultefted to see if the problem still
occurs. If it does, the code could probably be improwatktect the corrupt data (as the
corruption results in a string being present where gagén is expected) and the response
ignored.

9.2.3. Further Evaluation and Development of BOD

The evaluation of BOD performed as part of this docunsea good start, but there is still
much more which could be done. For example, more cosguerivith other architectures
could be carried out. Comparisons informed by experimentatould be particularly
valuable (i.e. attempting to develop the same bot indifferent architectures) as that is
something missing from this document.

| concentrated primarily on evaluating the methodoklgparts of BOD by experience and
by comparison with formal methodologies. It could be rimiative to analyse the

78

development processes of some agent-development projeicis did not use a formal
methodology.

This document has made a number of suggestions for\impenmts to the sharing of plan
elements both within and across plans (e.g. sect®g)7. These improvements should be
implemented and tested. Implementing these by pregsiogeon plans would mean that
the existing POSH interpreters would not need modifina

Chapter 8 details improvements to and problems withP§yi@OSH version of POSH.
Similar analysis of other implementations of POSH.(the Lisp version) would be useful,
not least in informing the development of new impletagons.

9.2.4. Other Work

As discussed in sections 8.3.1 and 8.3.2, | was unable tbaiBgthon debugger or profiler

with PyPOSH. Further attempts to get these toaltl successfully with PyPOSH would

be very useful. For instance, | was unable to deterpiacisely why the bodbot spent so
long doing nothing at the start of some runs; thi$ sf problem would be easier to identify
with a working profiler and debugger.

The BOD methodology recommends the use of profiling, dedyagagnd version control
software. The fact that | did not use any of theseweakness of my evaluation. (Version
control software was not used as | determined teileg curve to be too steep for the
perceived benefits. | reached this conclusion aftesidering the quality and quantity of
documentation available, and the fact that | alreadygreviously devised manual version
control procedures.)

9.3. Summary of Evaluation

BOD has been evaluated in light of both research andierpe, and a number of key
points have been identified in terms of both methagobnd architecture.

9.3.1. Methodology

The detail BOD provides about the development procesdefigitely useful, and an
improvement on that offered by most other architeststadied.

In terms of the initial stages of development, BOD'plkasis on what is done rather than
what is known is very useful. However, the proces®B@entifies could be improved in
many cases by a slight re-ordering of the stepsecétialysis (section 6.3). With regard to
the main development process, BOD greatly facilitaés®lutionary, incremental
development and enables existing elements to be chaemgty. By comparison,
architectures such as Soar, ACT-R and the Subsumptidntéeiure bring about many
complex dependencies between elements, making evolutideaejopment more difficult.
The lessons learned from projects using Extreme Progirgg (section 7.2.1) suggest that
BOD is right to emphasis iterative development antsi@n of specifications.

9.3.2. POSH Action Selection

The fact that BOD provides an action selection mdshamt all is a positive step. A
number of approaches require manual coding of actiostisele POSH's hierarchical
nature and the ability to set limits on frequency aatdes is also useful, whilst the simpler

% For example, work is currently underway on a Jaydementation of POSH.

79

relationships between elements (see previous sectiaké nebugging easier. There are
cases where the ability to consider utility (Taatgeale in press) would be useful when
choosing between elements, however (section 6.6.2)ile\Wiany approaches are much
more goal-directed than POSH, | claim that this neig|on goals can in fact be an
unnecessary and even confusing abstraction (sectids).6.600king at Tyrrell's (1993)
criteria for Action Selection Mechanisms, | clainatiPOSH meets all of them to some
extent (section 7.4).

One area in which POSH could be improved is thatlofisthess, e.g. how the system copes
with the failure of a plan element or primitive. Thigakness becomes apparent when
comparing with the Subsumption Architecture (section 6.8.2).

9.3.3. Plan Files

The ability use different plans to generate radicdifferent agents from one set of
behaviour modules gives BOD much power. However, tHigyaoi share elements across
plan files could be a useful simplification and is notrently supported. Further sharing
within plan files could also be useful, although the tradebefiveen redundancy and
readability is very important here (e.g. section 7.3™)e development of POSH plans can
be made easier by the adoption of naming conventimasign 7.3.1).

9.3.4. Overall Summary

Overall, | believe that BOD stands up well to scrutimhilst there are areas for
improvement, these do not detract significantly fitbin fact that this is a very useful and
powerful methodology, being both scalable and applicaldesti@e range of situations.

80

Bibliography

ACT-R Research Group, 2004ACT-R: Theory and Architecture of Cognitifamline].
Pittsburgh, USA: Department of Psychology, Carnegiéadéniversity. Available
from http://act-r.psy.cmu.edyAccessed 17 November 2004].

ACT-R Research Group, 2004B.CT-R Tutorial[online]. Pittsburgh, USA: Department
of Psychology, Carnegie Mellon University. Availalitomhttp://act-
r.psy.cmu.edu/tutorial§Accessed 17 November 2004].

Anderson, J.R., Matessa, M., Lebiere, C., 1997. ACA-Rheory of Higher Level
Cognition and Its Relation to Visual Attentidduman-Computer Interactiori2 (4), pp.
439 - 462.

Barber, K.S. and Martin, C.E., 1999. Agent Autonomy: Bisation, Measurement, and
Dynamic Adjustment.Proceedings of the Autonomy Control Software Workshop at
Autonomous Agents 1999 (Agents,'99May 1999, Seattle, Washington. University of
Texas at Austin, pp. 8 - 15.

Beck, K., 1999. Embracing Change with Extreme ProgragnitizE Computer32
(10), pp. 70 - 77.

Booch, G., 1990.0bject oriented design with applicatiorRedwood City, CA, USA:
Benjamin-Cummings Publishing Co., Inc..

Bossi, P., 2003. eXtreme Programming applied: a cabe iprivate banking domain.
Proceedings of the OOP2003 (Object-Oriented Programming) Confer2dezt
January 2003, Munich, Germaniublisher unknowrpage numbers unknown

Bovair, S., Kieras, D.E., Polson, P.G., 1990. The Asitjon and Performance of Text-
Editing Skill: A Cognitive Complexity Analysidduman-Computer Interactiorb (1), pp.
1-48.

Brooks, R.A., 1991. Intelligence without RepresentationBrooks, R.A.. Cambrian
Intelligence: the early history of the new. Alassachusetts, USA: The MIT Press, pp.
79 - 101.

Brooks, R.A., 1986. A Robust Layered Control Systenafttobile Robot.In Brooks,
R.A.. Cambrian Intelligence: the early history of the new Massachusetts, USA: The
MIT Press, pp. 3 - 26.

Bryson, J.J., 2001Intelligence by Design: Principles of Modularity and Coordination
for Engineering Complex Adaptive Ageriifesis (PhD). Massachusetts Institute of
Technology.

Bryson, J.J., 2000aThe Study of Sequential and Hierarchical Organisation of
Behaviour via Artificial Mechanisms of Action SelectiDissertation (MPhil).
University of Edinburgh.

Bryson, J.J. and Thérisson K., R., 2000. Dragons Bédtvil Knights: A Three-Layer
Design Approach to Character Based Creative Rlatual Reality 5 (2), pp. 57 - 71.

Bryson, J.J., 2000b. Cross-paradigm analysis of autonoageung architecturdournal
of Experimental & Theoretical Artificial Intelligencé2 (2), pp. 165 - 190.

81

Bryson, J.J., 2000c. Hierarchy and Sequence vs. Fualll&lsm in Reactive Action
Selection ArchitecturesProceedings of the Sixth International Conference on the
Simulation of Adaptive Behavior (SAB2000) - 15 September 2000, Paris, France.
MIT Press, pp. 147 - 156.

Bryson, J.J., 2003. Where Should Complexity Go? CooparatiGomplex Agents with
Minimal Communication.Proceedings of the First GSFC/JPL Workshop on Radical
Agent Concepts (WRAQ)7-29 September 2005, NASA Goddard Space Flight Center
Visitor's Center, Greenbelt, MD USA. Springer, pp. 2883.

Carnegie Mellon Universityl5-396: Agent 2 - a step by step tutofiahline]. Carnegie
Mellon University, USA: Department of Psychology,r@egie Mellon University.
Available fromhttp://www.andrew.cmu.edu/user/roman/15396/agent2.Andessed
22 March 2005].

Davids, A, 1997.Python: Yet Another Object Oriented Interpretive Scripting Language
[online]. Australia. Available fromttp://www.metva.com.au/av_paper_python.html
[Accessed 2 November 2004].

Douglas, S.1 [online]. Carnegie Mellon University, USA: Departm@f Psychology,
Carnegie Mellon University. Available frohitp://act-r.psy.cmu.edu/~douglass/
Douglass/Agents/1/Tutorial/Agent-01.hfAtcessed 22 March 2005].

Epic Games, 2004Unreal Tournamenfonline]. Available from
http://www.unrealtournament.com/utgoppccessed 2 November 2004].

Howden, N., Ronnquist, R., Hodgson, A., and Luca2091. Jack Intelligent Agents™
— Summary of an Agent Infrastructurgth International Conference on Autonomous
Agents May 28 - June 1, 2001, Montreal, Cana@ablisher unknowrpage numbers
unknown

Inglesias, C.A., Garijo, M., Gonzalez, J.C., 1999. uh8y of Agent-Oriented
Methodologies.Proceedings of the 5th International Workshop on Intelligent Agents V,
Agent Theories, Architectures, and Languadedy, 1998, Paris, France. Springer-
Verlag, pp. 317 - 330.

Ingrand, F.F., Chatila, R., Alami, R., Robert, F., 1989R:S: A High Level Supervision
and Control Language for Autonomous Mobile Robd&soceedings of the IEEE
International Conference on Robotics and Automati28 April 1996, St Paul,
Minnesota, USA.publisher unknownpp. 43 - 49.

Kaminka, G.A., Veloso, M.M., Schaffer, S., Sollittd., Adobbati, R., Marshall, A.N.,
Scholer, A., Tejada, S., 2002. GameBots: a flexiblebedtfor multiagent team
researchCommunications of the AGM5 (1), pp. 43 - 45.

Karlstrom, D., 2002. Introducing Extreme Programming -EXperience ReporkP
2002 . Available fromhttp://www.agilealliance.org/articles/articles/DanielKarlstrom--
IntroducingExtremeProgramming.ppccessed 7 March 2005]

Keefer, G., 2002. Extreme Programming Considered HarfmfiReliable Software
DevelopmentAVOCA [Advanced Visioning of Components and Architectures]
Technical Report. Available from
http://www.agilealliance.org/articles/articles/XPConsideredHarmfar&@dKeefer. pdf
[Accessed 7 March 2005]

82

Kieras, D.E. and Meyer, D.E., 1997. An Overview of H®EC Architecture for
Cognition and Performance with Application to Human¥pater InteractionHuman-
Computer Interactionl2 (4), pp. 391 - 438.

Kinny, D., Georgeff, M., Roa, A., 1996. A methodolagyd modelling technique for
systems of BDI agentsroceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent wo2@ - 25 January 1996, Institute for Perception
Research, Eindhoven - The Netherlands. Springdayy®&tew York, Inc., pp. 56 - 71.

Kwong, A, 2003. A Framework for Reactive Intelligence through Agile Component-
Based Behaviordissertation (MSc). University of Bath.

Laird, J., (laird AT umich.edu), 9 March 200RE: Soar Quakebot Development
Process? (Research for Dissertatiori-mail to S.J. Partington (sam AT
samsolutions.co.uk).

Laird, J.E. and Duchi, J.C., 2000. Creating Human-lij&t&tic Characters with
Multiple Skill Levels: A Case Study using the Soar QbakePapers from the AAAI
Fall Symposium: Simulating Human Agertevember 3 - 5 2000, North Falmouth,
Massachusetts. The American Association for Aréfintelligence page numbers
unknown

Laird, J.E. and van Lent, M, 2000. Human-level Al'deiApplication: Interactive
Computer GamesProceedings of the Seventeenth National Conference on Atrtificial
Intelligence July 30 - August 3, 2000, Austin, Texas. The American Aagonifor
Artificial Intelligence, pp. 1171 -1178.

Lappo, P., 2002. No Pain, No XP: Observations on TeadmddVientoring Extreme
Programming to University StudendP 2002 . Available from
http://www.agilealliance.org/articles/articles/PeterLappo--
ObservationsonTeachingandMentoringXP.patfcessed 7 March 2005]

Lehman, J.F., Laird, J., Rosenbloom, P., 19865entle Introduction to Soar, an
Architecture for Human Cognitiornited States of America: University of Southern
California. (Technical Report A096413).

Maes, P., 1991. A bottom-up mechanism for behaviour s@idctian artificial creature.
In Meyer, J.-A. and Wilson, S., (Edsfrom Animals to AnimatsCambridge, MA: MIT
Press, pp. 238 - 246.

Mataric, M.J., 1997. Behaviour-based control: Examples from a#ivig, learning, and
group behaviourJournal of Experimental and Theoretical Artificial Intelligen&e(2/3),
pp. 323 - 336.

McCarthy, J., and Hayes, P. J., 1969. Some philosopricblems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie (Eds.Machine Intelligence 4
Edinburgh: Edinburgh University Press, pp. 463 - 502.

McCarthy, J., 1998Partial Formalizations and the Lemmings Gafarline]. United
States of America: Stanford University. Availalien http://mww-
formal.stanford.edu/jmc/lemmings/lemmings.H#acessed 2 November 2004].

Mitchell, J.C., 2003.Concepts in Programming Languag€ambridge: Cambridge
University Press.

83

Muller, M.M. and Tichy, W.F., 2001. Case study: extren@y@mming in a university
environment.In IEEE Computer SocietylCSE '01: Proceedings of the 23rd
International Conference on Software Engineeridgronto, Ontario, Canada: IEEE
Computer Society, pp. 537 - 544.

Nilsson, N.J., 1998Artificial Intelligence: A New SynthesiSan Francisco: Morgan
Kaufmann Publishers, Inc.

Odell, J.J., 1998 Advanced Object-Oriented Analysis & Design Using UML
Cambridge, UK: Press Syndicate of the UniversitZambridge and SIGS Books.

Rumpe, B. and Schréder, A., 2002. Quantitative Surveyxtnetse Programming
ProjectsXP 2002 Available from
http://www.agilealliance.org/articles/articles/QuantitativeSurvey Jpdfcessed 7 March
2005]

Sengers, P., 1998Anti-Boxology: Agent Design in Cultural ConteXtesis (PhD).
Carnegie Mellon University.

Stone, P. and McAllester D., 2001. An architectureaftion selection in robotic soccer.
Proceedings of the fifth international conference on Autonomous ag@éts, Montreal,
Quebec, Canada. ACM Press, pp. 316 - 323.

Taatgen, N.A., Lebiere, C. & Anderson, J.R., (in prékis draft 2004). Modeling
paradigms in ACT-R.In Sun, R. (ed.).Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social SimulatiomNew York: Cambridge University Press,
Chapter 1.

Taatgen, N.A. and Anderson, J.R., 2002. Why do chilirarn to say "broke"? A
model of learning the past tense without feedba@ignition 86 (2), pp. 123 - 155.

Thérisson, K., R., 1996Communicative Humanoids: A Computational Model of
Psychosocial Dialogue Skill§hesis (PhD). MIT Media Laboratory.

Tyrrell, T., 1993. Computational Mechanisms for Action Selectibhesis (PhD).
University of Edinburgh.

Veksler, V.D., Gray, W.D., 2004. State Definition lre{Tetris Task: Designing a

Hybrid Model of Cognition.Proceedings of the International Conference on Cognitive
Modelling July 29 - August 1, 2004, Pittsburgh, PA, USA. LawrencebBarh, pp. 394
- 395.

Weiser, M, 1994. Creating the invisible interface: ifgd/ talk). UIST '94: Proceedings
of the 7th annual ACM symposium on User interface software and technology
November 2 - 4, 1994, Marina del Ray, CA USA. ACM Prpsk,

Wolpert, D.H. and Macready, W.G., 1997. No free lunelotéms for optimization.
IEEE Transactions on Evolutionary Computatidn(1), pp. 67 - 82.

Wooldridge, M.J., 2002An Introduction to MultiAgent Systentangland: John Wiley &
Sons Ltd.

84

Appendix A: Sample Plan Files

The plan files listed here are those demonstrat€hapter 4. Note that the plans shown
here are merely a representative sample of thoseedrdaring the development process:
many more plans were created than those shown here.

The format of plan files is given in Bryson (2001; pp. 2226). Note also that semicolons
(;) begin comments which last until the end of the. lifeirthermore, since some of these
plans were adapted during the writing of Chapter 4 &d&erthe given scenarios more
informative, | have not included header informafiery. date of creation).

Walking To Navigation Points
(

(C wander-around (minutes 10) (goal((see-player)))
(elements
((stuck (trigger ((is-stuck))) avoid))
((pickup (trigger ((see-item))) pickup-item))
((walk-around (trigger ((is-rotating False))) walk))

)

(AP avoid (minutes 10) (stop-bot rotate then-walk)

(C then-walk (minutes 10) (goal((is-walking)))

(elements
((try-walk (trigger ((is-rotating False))) wa 1k))
)
(C get-to-enemy-base (minutes 10) (goal ((at-enem y-base)))
(elements

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)
(wander-base (trigger((succeed))) wander-ar ound)
)
)
)

(RDC life (goal ((fail)))
(drives
((hit (trigger((hit-object)(is-rotating Fal se))) avoid))
((to-enemy-base (trigger((succeed))) get-to -enemy-base))
)
)
)

A Greater Awareness of Flags

(
(C wander-around (minutes 10) (goal((see-player)))
(elements
((stuck (trigger ((is-stuck))) avoid))
((pickup (trigger ((see-item))) pickup-item))
((walk-around (trigger ((is-rotating False))) walk))

85

)
)

(AP avoid (minutes 5) (stop-bot rotate then-walk)

(C then-walk (minutes 10) (goal((is-walking)))
(elements
((try-walk (trigger ((is-rotating False))) wa

)

(C get-to-enemy-base (minutes 10) (goal ((at-enem
(elements

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)
(find-nav-point (trigger((succeed))) rotate
(wander-base (trigger((succeed))) wander-ar
)
)
)

(AP go-to-own-base (minutes 10) (to-own-base))
(AP go-to-own-flag (minutes 10) (to-own-flag))
(AP go-to-enemy-flag (minutes 10) (to-enemy-flag)

(AP attack-enemy-carrying-our-flag (minutes 20)
(shoot-enemy-carrying-our-flag
run-to-enemy-carrying-our-flag))

(RDC life (goal ((fail)))
(drives
((pickup-our-flag-from-ground
(trigger ((our-flag-on-ground))) go-to-
((pickup-enemy-flag-from-ground
(trigger ((enemy-flag-on-ground))) go-t
((attack-enemy-with-our-flag
(trigger ((see-enemy-with-our-flag)))
attack-enemy-carrying-our-flag))
((take-enemy-flag-from-base
(trigger((enemy-flag-reachable)
(have-enemy-flag False)))
go-to-enemy-flag))
((hit (trigger((hit-object)(is-rotating Fal
((go-home (trigger((have-enemy-flag))) go-t
((to-enemy-base (trigger((succeed))) get-to

)
)

Responding to Attack

Ik))

y-base)))

10)
ound)

own-flag))

o-enemy-flag))

se))) avoid))
0-own-base))
-enemy-base))

Note the commented lines for avoiding projectilege section 5.3.4.

(C wander-around (minutes 10) (goal((reachable-na

86

v-point)))

(elements
((stuck (trigger ((is-stuck))) avoid))
((walk-around (trigger ((is-rotating False)))
)
)

(AP avoid (minutes 5) (stop-bot rotate then-walk)

(C then-walk (minutes 10) (goal((is-walking)))
(elements
((try-walk (trigger ((is-rotating False))) wa
)
)

(C get-to-enemy-base (minutes 10) (goal ((at-enem
(elements

(check-immediate-vicinity
(trigger((too-close-for-path))) big-rot

(run-to-base (trigger((know-enemy-base-pos)
to-enemy-base)

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate

(wander-base (trigger((succeed))) wander-ar

)
)
)

(C go-to-own-base (minutes 10) (goal ((at-own-bas
(elements
(

(check-immediate-vicinity (trigger((too-clo
big-rotate 2)

(run-to-own-flag (trigger((our-flag-reachab
to-own-flag)

(run-to-own-base (trigger((know-own-base-po
to-own-base)

(find-base (trigger((reachable-nav-point)))
walk-to-nav-point)

(find-nav-point (trigger((succeed))) rotate

(wander-base (trigger((succeed))) wander-ar

(AP go-to-own-flag (minutes 10) (to-own-flag))
(AP go-to-enemy-flag (minutes 10) (to-enemy-flag)

; o point having these stay on the stack for

; long as they get called very often anyway

(AP expire-the-damage-info (seconds 8) (expire-da
(AP expire-the-focus-info (seconds 10) (expire-fo
(AP expire-the-reachable-info (seconds 6)

87

walk))

k)

y-base)))

ate 2)
)

10)
ound)

e))

se-for-path)))

le)))
s)))

10)
ound)

mage-info))
cus-info))

(expire-reachable-info))
(AP expire-the-projectile-info (seconds 2)
(expire-projectile-info))

; may need a better goal, but timeout should do i
(C respond-to-attack (seconds 10) (goal ((fail)))
(elements

(attack-visible-attacker
(trigger ((taken-damage-from-specific-p
respond-to-visible-attacker)
(find-attacker (trigger ((succeed))) try-to
)
)
)

(AP respond-to-visible-attacker (seconds 4)
(set-attacker face-attacker shoot-attacker))

; may need a better goal, but timeout should do i
(C try-to-find-attacker (seconds 3) (goal ((fail)
(elements

(found-attacker (trigger ((see-enemy)))
respond-to-visible-attacker)
(spin (trigger ((succeed))) big-rotate 1)

)
)

(AP attack-enemy-carrying-our-flag (minutes 20)
(shoot-enemy-carrying-our-flag
run-to-enemy-carrying-our-flag))

(AP get-medkit (minutes 1) (runto-medical-kit))

(AP get-weapon (minutes 1) (runto-weapon))

(RDC life (goal ((fail)))
(drives

;((expire-our-projectile-info (trigger ((su
;expire-the-projectile-info (seconds 3)

((expire-our-damage-info (trigger ((succeed
expire-the-damage-info (seconds 10)))

((expire-our-reachable-info (trigger ((succ
expire-the-reachable-info (seconds 20))

((expire-our-focus-info (trigger ((succeed)
expire-the-focus-info (seconds 30)))

((pickup-our-flag-from-ground

(trigger ((our-flag-on-ground))) go-to-
;will be something particular if required i
;((avoid-being-shot (trigger ((incoming-pro

;wander-around))
((pickup-enemy-flag-from-ground

(trigger ((enemy-flag-on-ground))) go-t
((pickup-medkit-as-health-low

88

t for now

layer)))

-find-attacker)

t for now

)

cceed)))

)
)

eed)))

)
)

own-flag))
n future
jectile)))

o-enemy-flag))

(trigger ((see-reachable-medical-kit)
(own-health-level 30 <))) get-medki
((pickup-weapon-as-unarmed
(trigger ((see-reachable-weapon) (are-a
get-weapon))

((respond-to-attack-since-health-low
(trigger ((taken-damage) (own-health-le
(armed-and-ammo))) respond-to-attac
((attack-enemy-with-our-flag
(trigger ((see-enemy-with-our-flag)))
attack-enemy-carrying-our-flag))
((take-enemy-flag-from-base
(trigger((enemy-flag-reachable)
(have-enemy-flag False))) go-to-ene
((respond-to-attack-health-not-low
(trigger ((taken-damage) (armed-and-amm
(is-responding-to-attack False)))
respond-to-attack))
((hit (trigger((hit-object)(is-rotating Fal
((go-home (trigger((have-enemy-flag))) go-t
((get-yourself-to-enemy-base (trigger((succ
get-to-enemy-base))

89

t)

rmed False)))

vel 30 <)
K)

my-flag))
0)
se))) avoid))

0-own-base))
eed)))

Appendix B: Initial Behaviour Decomposition

High-Level Descriptions

For simplicity, descriptions (and sequences) are groupeer two roles — attacker and
defender. In reality, as alluded to below, bots talle on different roles at different times
as circumstances require. However, it is useful t@ lzavexplicit role at the start of the
game as there are not yet any circumstances totoeantl the bot needs to know what to
do: we do not wish all bots to run to the enemy basereither do we wish none of them
to.

Furthermore, the plans below assume no communicatioredetdots as, at this stage, it is
not certain whether time will permit a team of agdotbe created or simply a single agent.
It is also assumed that agents will not have anriatenap of the play-area. Again, this will
be added (and thus plans updated) if time permits.

Attackers should make their way to the enemy baggueatheir flag and return to their
own base. They will need to able to discover wheseettemy base is, and should be able
to deal with (using either stealth / avoidance agpiawer) any members of the opposing
team whom they encounter. In some cases, thismalvé a temporary change in role:

If an attacker encounters an enemy who is carryiftggafrom the attacker’s team, then he
(the attacker) should switch to the defender rahel thus attempt to kill the enemy and

retrieve the flag. If the attacker is carrying @memy flag and his health is dangerously low,
and there are other teammates around who could dtta@nemy instead, then he should
run away as were he to be killed, he would drop the dlad) the enemy could possibly

retrieve it.

Defenders should either wander around near theirofla a suitable nearby vantage point
is found (for example, a doorway through which an &amust enter), move to it. Upon
encountering an enemy player, they should begin talattin (chasing him if necessary)
and prevent him from reaching the flag by moving betwdéendnd it as well as just
shooting. If a number of enemies are encounterediefieader should prioritise attacking
those who are attacking him most aggressively tlaogk at highest risk of reaching the flag.
If a flag-carrying enemy begins to return to his kthsa he should be pursued and attacked
as far as required — there is nothing left at thestmt/n base to defend!

If a bot (in either the role of defender or attaglseres the enemy'’s flag lying on the ground,
he should pick it up and attempt to return to his base.

All bots need to consider their own health and ressyalecting weaponry, ammunition
and medical supplies as required. Specifically, botauldhgather weaponry and
ammunition at the start of the game, to enable thedeabwith enemies they meet whilst
carrying out their roles.

Sequences of Actions

Capture Flag: collect weaponry and ammunition, movked@nemy base, capture their flag
(i.e. move to it) and return to own team’s base.

Defend Flag: (no enemies present) collect weaponryaamdunition, wander around near
base or near vantage point.

Defend Flag (Enemy/ies present): determine highestitgrienemy (see above), if chosen
enemy too far away or too near flag, move neahamtsenemy repeatedly.

90

Encounter Enemy not carrying team'’s flag (attackégnemy has noticed us and there’s
only one enemy and health above a certain threshibétbk enemy. Otherwise, run towards
target.

Respond to enemy attack: If don't know who attadkerdo nothing. Otherwise, face
attacker (and keep facing him/her if move elsewhenel) shoot.

Attack enemy: Run towards the enemy, shooting him/he

Collect inventory item (e.g. weaponry / ammunitioredlth): if we are not being attacked,
wander around near walls, run to required item if sé€merwise, run away until no longer
being attacked. If see required item while runnimgject it.

Run away: run backwards in a slight zig-zag, contigpua shoot at any enemy which is
shooting us. If hit wall, turn 90clockwise and continue. If turning @flockwise means
we are running in the direction of the enemy, turtickatkwise instead.

Sensory Primitives

The bots will need to be able to see flags and idetitédir location. They will need to be

able to detect walls when wandering around. Enewileseed to be seen and their position
relative to other objects (e.g. the flag, the batlfisdentified. Furthermore, the bot will

need to be able to identify whether the enemy hasetbhim, whether a given enemy is
carrying the bot'’s flag and whether a particular gnenshooting at him. Determining the
highest-priority enemy to shoot is a further requsedse.

The bot will need to be able to see objects such d&abdits, ammunition, weapons and
body-armour.

A sense of the bot’'s own health level, ammunitioellemd weapons held / currently in use
is required. The bot is required to know whetheratrhe is currently being shot at.

Action Primitives

The bot needs to be able to run and walk. The bot nedutsable to shoot at a particular
target. The bot needs to be able to collect itentsafadih this is in fact simply a case of
running or walking into them). The bot needs to bé& db turn both clockwise and
anticlockwise.

Required State

State is required to store the position of the baotie base and the enemy’s base. State
should be provided to give the bot's own health levainanition level and weapons held

/ currently in use. State should also show wherébthieeurrently is, both in terms of an
absolute location (co-ordinates) and a conceptualitocée.g. “at enemy base”).

The bot needs state to store details of the enarureently in his locality, and their state
(e.g. ignorant of his presence, shooting him, cagryhre flag, etc). State should also
indicate the enemy with the highest priority foratinng. Similarly, state is required to give
details of the other teammates in his vicinity.

Some state should also give details of the eneragsaind the bot’s own flag (e.g. at base,
captured, dropped).

Based on these details of state, we can imagineltbeing behaviours:

. Movement— containing state to do with positions of objects, basesthe bot

91

himself.
. Status— containing state regarding health level, weapefddnd so on.

. Combat-— state about who is attacking the bot, what eneansround and what
teammates are around.

Goals and Drives

The following is a list of goals or drives the bbbald be expected to act on, in descending
order of priority. This first list assumes thatsituations where either role can be taken, the
bot is an attacker rather than a defender. Noteatttians such adttack enemy who is
carrying our flagassume that the bot can see this enemy — he wouddbantion an almost-
complete attempt to pick up the enemy flag to run afteemieeny who has taken our flag,
for example.

1. Pick up our team'’s flag from where it has been dropped
2. Avoid incoming projectile

3. Pick up the opposing team'’s flag from where it has begpped
4, Pick up nearby medical kit (if health in dangerougean

5. Pick up nearby weapon (if unarmed)

6. Pick up nearby ammunition (if have none)

7. Respond to enemy attack (if health in dangerousejang

8. Attack enemy who is carrying our flag

9. Attack enemy who is near our flag

10. Pick up nearby ammunition (if already have some)

11. Pick up enemy flag (i.e. when it’s at their basesmdre we)
12. Respond to enemy attack

13. Run to our base (i.e. with the flag)

14. Pick up nearby weapon (if already armed)

15. Find medical kit, weapon or ammunition (as required).
16. Run to enemy base

17. Pick up nearby medical kit (if health not in dangemaunge)

If the bot were a defender by default, the list wouldabeabove, but with the following
changes:

The following drive would be inserted between 8 & 9:
Run after enemy carrying our flag
Item 11 would be removed and items from 14 onwards wouteéfdaced by the following:

14. Run to own base

92

15.
16.
17.
18.

Find medical kit, weapon or ammunition (as required).
Look for vantage point
Wander around near our flag / vantage point

Pick up nearby medical kit (if health not in dangemaunge)

93

Appendix C: E-mail from John Laird

This e-mail is part of Laird’s response to my questions about his devaibpifthe Soar
Quakebot (Laird and Duchi, 2000).

Date: Wed, 9 Mar 2005 10:30:35 -0500

From: John Laird <laird AT umich.edt?>

To: '‘Sam Partington' <sam AT samsolutions.co.uk>

Subject: RE: Soar Quakebot Development Process? (Riedeafissertation)

We maintain a combination of data from differentulses":

1. When the system gets a mission either at start frpra another entity
(such as a commander), it creates a mission struttatreescribes its
role, the role of other agents, its goals, etc.

2. For many of the systems, they "live" in buildingsl éhey will create an
internal map of the building either from recallindgridm previous runs (we
have to explicitly save it now, but that is a detait)from the current

run. The agent annotates the map with relevant irgftbom such as path data
(what door should I go through in this room to gsame other room),
observability data - what rooms can | see from s, etc.

3. During a run the agent will further annotate the aragh mission
structure with its specific progress and relevantd¢atinformation that

it accumulates from its sensors. Where am | in thddwavhat parts of the
mission have | completed, what is the most importtaneat, where is the
threat - what door is the threat likely to comedtigh, what door in the
current room can | use to escape, where are attads froithe current
room, ...

None of this is hard-coded. | might be wrong, buiirik this is where the
behavior-based approaches really make it tough on thersd®s/ not making
it easy to encode complex state information, derfik@tt many sources and
both about the past and the current situation.

John

10 The e-mail addresses given in this document haea tritten with “AT” in place of the @ symbol. Ftis
to prevent e-mail-harvesting robots from succelyséxtracting them from online versions of this dotent.

94

Appendix D: Readme from Distribution

The distribution is discussed briefly in section 8.4.e Thrsion of the readme given here
is slightly updated from that which | originally dikuted, but | hope to make this improved

version available shortly.

HHHHH HHtHH T
BODbot

B R R TR R R HIHHH R

Installing

1) First of all, install pyposh (see

http://www.cs.bath.ac.uk/~jjb/web/pyposh.html)

2) Put the bodbot directory and its contents (inclu ding

subdirectories) as a subdirectory of "modules”

3) Replace the relevant files in the main pyposh di rectory

with those in "pyposh fixes"

4) Put CTF-Simple2dt.unr into your Unreal Tournamen t maps

folder. This is the map I've tested the agents on most, as

it's pretty simple. | suggest you use it too. It' sa

slight tweak of CTF-Simple2.unr, the map the Gamebo ts people

made.

5) Run PyPOSH as per Andy's instructions. Although the plan

will work for agents on either team, I've tested it mainly

for the blue team's agent.

BODbot

Known Issues

1) The biggest outstanding problem is that when the bodbot

receives messages from Gamebots which require it to update

its internal knowledge (e.g. the "pth" message abou ta

recommended path), those are updated immediately (s ee

functions such as pass_pth_details).

This can cause a problem if this updating interrupt sa

running action as it can clear some variable which the

action is using. The best example of this is when passing

95

details of whether a point is reachable (pass_rch_d
etc). It only happens occasionally, but is a probl

This should be modified so that updating this infor
another item run as part of running the plan (like
"expire" stuff already there) as two actions cannot
at the same time. | may do this myself if | have t

2) One other thing is that the bot does not seem ve
at noticing when the player has its flag. It does
sometimes, but less often than I'd expect. Not sur
the cause of this.

3) Projectile information (i.e. the "prj" message f
Gamebots) is *never* sent from Gamebots. This is a
with Gamebots, not with my code (see http://www.

andrew.cmu.edu/user/roman/15396/game_bots_api.html)

Similarly, parameters to "init" are ignored, so you
specify the team or name of your bot (although you
provide a name for pyposh to be happy, even though
then ignores it). Both these problems are correcte
new version of Gamebots, available from
http://www.cs.rit.edu/~jdb/gameAl/gamebots/codechan
although I have not tested this new version myself.

4) Have not managed to get the debugger or profiler
with pyposh. I've managed to get the profiler to p
the GUI, but not the stuff which that then runs. T
problems probably stem from my python ignorance.

Debug output

I've left lots of this in, feel free to comment/r
necessary.

(If you're interested in detail, things to look out

include "is stuck?" when the bot gives up trying to
navpoints and wanders around as per Andy's poshbot.
general, output with question marks indicates a sen
running, though not all senses give output.)

The most interesting difference with the main bodbo
file (bodbot.py) is the make_behaviour function. U
of Andy Kwong's agents, this allows multiple behavi

96

etails
em!

mation is
the
execute
ime.

ry good

e about

rom
problem

cannot
must
Gamebots
dina

ge.html,

working
rofile
hese two

emove as

for
follow
In
se

t agent
nlike all
our

files. Note that it now returns a *list* of behavi

This change required quite a few changes to PyPOSH.
instance, posh_agent.py's self.behavior_instance va
now a list rather than a reference to a single obje

it's differently initialised and tested than before

Furthermore, posh_agent has been modified to includ
and action dictionaries (lines 89 & 90) and functio
use these (i.e. get_act and get_sense) have also be
modified. Similarly, the add_act and add_sense fun
add details to these central dictionaries, rather t
passing them on to the behaviour file.

The behaviour functionality is fairly logically sep
except that andybehaviour.py contains a range of th
which should probably be in movement.py. | gave th
own file to separate those primitives written by An
those written by me (although big_rotate is mine).

pyposh.py

None of the changes here are essential but were a
included to speed up testing. You can find them in

by searching for "####HHHH B HHHHHHHH
as they're highlighted by comment blocks.

A couple of tweaks which selected the right options
lists are commented as your setup may vary. The on
populate the options table and position the windows
been left in.

posh_agent.py

The frequency attribute of POSH elements caused a c
thanks to a problem on line 923 of this file. See
comment for details of what's changed.

Similarly, using limits on the number of retires ca
crash, as the relevant plan element was not being c
integer before being modified. This was also fixed
line 624 and associated comment).

I've also modified it to allow for multiple behavio

(see above).

These are provided in case you want to try a simple
(Note that bodbotattack[3].lap doesn't execute corr
see comment)

97

ours.

For
riable is
ct (so

).

e sense
ns which
en
ctions
han

arated,
ings

em their
dy from

Il
the code
B

in the
es which
have

rash,
the

used a
ast to an
(see

ur files

r agent.
ectly --

The text files (*.txt) in the bodbot folder are for your
interest only and *can be ignored*. They show prin touts of
various bits of information from Gamebots, as repre sented in
pyposh. (If | remember rightly, the "R>>" in sampl e
Gamebots info.txt is debug output and can be ignore d)

(The weird line breaks in these are simply due to t he width

of my command window).

This version of the readme produced 26/3/2005
Comments / Questions to sam AT samsolutions.co.uk

98

Appendix E: Code Listings and CD Contents

The independently-numbered pages which follow give catiads for the following files:

. bodbot.py - this is the main agent file. It coordinates comigation with
Gamebots and manages the dictionaries of the actiot senses from the various
behaviour modules.

. combat.py - this is one of the behaviour modul€®batBehaviour class).
It also contains th€ombatinfoClass class (see section 5.3.2)

. movement.py —another behaviour modud@vementBehaviour class). This
also contains thBositionsinfo class (again, section 5.3.2).

. status.py —the third behaviour modulStatusBehaviour class). Thefinal

behaviour moduleAndyBehavior class irandybehaviour.py) is not listed
as the majority of the code is taken directly fridmong (2003). It is given on the
enclosed CD, however.

. utilityfns.py — this file holds utility functions, described in sent5.3.2.
Plan code is not given, that can be found in Appendix A.

As well as these files, the enclosed CD contaiagdtowing:

. andybehaviour.py — the final behaviour module (see note above).

. Compiled versions dfodbot.py ,combat.py ,movement.py ,status.py
utilityfns.py andandybehaviour.py

. The 1st distribution folder, containing those files distributed as dédwatti

in section 8.4 (but with the updated readme file). Nbtd this is where the
modified PyPOSH files (chapter 8) may be found.

. to weapon brightened.jpg , a colour version of figure 4.1.
. The plans given in Appendix A
. A PDF [Portable Document Format] version of thisudoent.

All these files, with the exception of the PDF, are lte found in the zipped file
sampartington-full-2004-5.zip . This zip file also contains a second (identical)
copy of the PDF.

The behaviour modules and plans are organised inatieot directory and subdirectory

in such a way that this directory can be copied intartbdules directory of a PyPOSH
distribution and used from there. For this reasithe directory also contains the
initialisation file__init__.py (and a compiled version thereof). Further details about
how the code can be run can be found in Appendix D.

99

IR N IR

T T Y
H56RGREE

18
19
20
21
22
23
24
25

27
28
29

30
31

53

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
BODbot created as a means of evaluating Behaviour Oriented Design [BOD]
Much code here re-used from Andy Kwong's poshbot

We need to start a comms thread in order to get updates
to the agent status from the server.

fromsocket inport *
fromposh_core inport *

inmport re #reis for Regular Expressions
import thread

i mport posh_utils

import utilityfns

#import any behaviour files
i npor t andybehaviour

i npor t movement

i nport status

i nport combat

Init world in this example connects to gamebots server

def init_world(*args, **kw):
pass

Returns a list of behavior objects

def make_behavior(ip, port, botname, agent, *args, **kw):
bot = Bot_Agent(ip, port, botname) # Bot_Agent keeps a local copy of the
bot state
BList =0
agent.bot = bot
bot.agent =agent #was done in bind_bot, now moved here as doing it in ab

is too low-level

Andy's primitives
ab = andybehaviour.AndyBehavior(agent = agent)
ab.bind_bot(bot) #sets ab's bot to the arg sent
#ab.bot.connect() now done below
BList.append(ab)

Posinfo = movement.PositionsInfo()
Combatinfo = combat.CombatinfoClass()

mb = 0, C agent
mb.bind_bot(bot)
BList.append(mb)

sh = status.StatusBehaviour(Poslnfo, agent = agent)
sh.bind_bot(bot)
BList.append(sb)

ch = combat.CombatBehaviour(PosInfo, Combatinfo, agent

cb.bind_bot(bot)
BList.append(ch)

11/05/05 17:52 :: page 1

= agent)

= agent)

54

o oo a
2

61

63

80

91

94

104
105
106

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
bot.connect()

return BList

Called when pyposh is shutting down
def destroy_world():
pass

Keeps a local copy of the bot state. Gamebots does not support
queries on the agent sense, it sends a copy of the environment
to the agent periodically.

cl ass Bot_Agent:

def __init__(self, ip, port, botname):
self.ip =ip

self.port = port

self.botname = botname

self.events =[] #things like hitting a wall
self.conninfo

self.gameinfo
self.view_players
self.view_items =
self.nav_points =
self.botinfo ={
self.s_gameinfo ={
self.s_view_players ={
self.s_view_items ={
self.s_nav_points =g
self.s_botinfo =
self.msg_log =[] #Temp Log for message received
self.msg_log_max =4096 # Max Temp Log size
self.sent_msg_log =[] #Temp Log for messages sent
self.sent_msg_log_max =6 # Max Temp Log size
self.hit_timestamp =0 # Used to inhibit was_hit()
self.thread_active = Fal se

self kill_connection = Fal se

self.rotation_hist =1

self.velocity_hist =0

self.thread_active = Fal se

self.conn_ready = Fal se

self.conn_thread_id = None

def debug(self, level, message):
try
elf.agent. add(level,
except :
print "Critical Failure - BotAgent cannot write to debugboard”
print message
raise

9

def proc_item(self, string):

11/05/05 17:52 :: page 2

107

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
(cmd, varstring) =re. conpil e(\s+)split(string, 1)
escape character, which matches any white-space, varstring will hold
flags returned from regular expression creation (see sre.py)
vars =re. conpil e(\{(*?)\}).findall(varstring)

#sis a special

var_dict
forvar in vars:
(attr, value) =re. conpil e(\s+).split(var, 1)
var_dict[attr] = value

return (cmd, var_dict)

Calls connect_thread in a new thread
def connect(self):
self.debug(5, "Connecting to Server")
if not self.conn_thread_id:
self.thread_active = True
self.conn_thread_id = thread.start_new(self.connect_thread, ())
return True
el se:
self.debug(1, "Attempting to Connect() when thread already active")
return False

This method runs inside a thread updating the agent state
by reading from the network socket
def connect_thread(self):

self kill_connection = Fal se
try:
self.sockobj = socket(AF_INET, SOCK_STREAM)
self.sockobj.connect((self.ip, i nt (self.port)))
self.sockin = self.sockobj.makefile(r')
self.sockout = self.sockobj.makefile(w')
except :

self.debug(1, "Connection to server failed")

self kill_connection = True # Skip the read loops
el se:

self.debug(1, "Connected to server")

self.kill_connection = Fal se

This loop waits for the first NFO message
whi | e not self.kill_connection:

try:
X = self.sockin.readline()
except :
self.debug(1, "Connection Error on readline()")
self.kill_connection = True
br eak
if not x:
self.debug(1, "Connection Closed from Remote End")
self kill_connection = True
br eak
#printx
(cmd, dict) = self.proc_item(x)

ifemd =="NFO"

11/05/05 17:52 :: page 3

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

187

190

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
Send INIT message
self.conninfo =dict
self.send_message("INIT", {"Name" : self.botname})
self.conn_ready = True # Ready to send messages
break

Now the main loop
Not everything is implemented. Just some basics
whi | e not selfkill_connection:

try:
X = self.sockin.readline()
except :
self.debug(1, "Connection Error on readline()")
break
if not x:
self.debug(1, "Connection Closed from Remote End")
break

#print "R>> " + x
(cmd, dict) =self.proc_item(x)
sync_states ("SLF","GAM","PLR","NAV","MOV","DOM","FLG","INV")
events = ("WAL", "BMP")
self.msg_log.append((cmd, dict))
if cmd "BEG":
When a sync batch is arriving, make sure the shadow
states are cleared

self.s_gameinfo ={
self.s_view_players =0
self.s_view_items =
self.s_nav_points =0
self.s_botinfo =g

elif cmd insync_states:
These are sync. messages, handle them with another method
self.proc_sync(cmd, dict)
elifcmd "END":
When a sync batch ends, we want to make the shadow
states that we were writing to to be the real one
self.gameinfo = self.s_gameinfo
self.view_players = self.s_view_players
self.view_items = self.s_view_items
self.nav_points = self.s_nav_points
self.botinfo = self.s_botinfo
Also a good time to trim the events list
Only keep the last 50 events
self.events = selfevents] - 50
self.msg_log = self.msg_log[-1000:]
elif cmd inevents:
The bot hit a wall or an actor, make a note
of it in the events list with timestamp
self.events.append((posh_utils.current_time(), cmd,

elif cmd "SEE"
Update the player positions
self.view_players[di ct ["Id"]] = dict

elif cmd =="PTH"

11/05/05 17:52 :: page 4

dict))

215
216
217
218
219
220
221

228

230
231
232
233
234
235
236
237
238
239
240
241
242
243

265
266
268
269

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
pass the details to the movement behaviour

self.pass_pth_details(dict)
elif cmd =="RCH"
self.pass_rch_details(dict)
elifcmd =="PRJ" #incoming projectile
self.pass_prj_details(dict)
elif cmd =="DAM" # damage taken
self.pass_dam_details(dict)
elif cmd =="KIL" # some other player died
self.pass_kil_details(dict)
elif cmd =="DIE" #this player died
self.pass_die_details(dict)
el se:
pass

self.debug(5, "Closing Sockets and Cleaning Up...")

try:

self.sockout.flush()

self.sockout.close()

self.sockin.close()

self.sockobj.close()
except :

self.debug(1, "Error closing files and sockets")

self.thread_active = Fal se
self.conn_ready = Fal se
self.conn_thread_id = None

self.debug(s, “Connection Thread Terminating...")

def disconnect(self):
self.kill_connection = True

def send_message(self, cmd, dict):
string =cmd

self.sent_msg_log.append((cmd, dict))
does the list need truncating?
if Ien(self.sent_msg_log) > self.sent_msg_log_max:
del self.sent_msg_log[O : - self.sent_msg_log_max]

for (attr, value) in dict.items():
string = string + " + attr +"" +value +"}"
#print "About to send " + string
string =sting +"\An"
print >> self.sockout, string
print "S>> " + string
try:
self.sockout.write(string)
self.sockout.flush()
except :
self.debug(1, "Message : " + string + " unable to send")
return False
el se:
return True

11/05/05 17:52 :: page 5

270
271
272
273
274
275
276
277

304
305
306
307
308
309
310
311
312
313

315
316
317
318
319
320
321

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
#handles synchronisation messages
def proc_sync(self, command, values):
if command "SLF" #info about bot's state
self.s_botinfo = values
Keep track of orientation so we can tell when we are moving
Yeah, we only need to know the Yaw
self.rotation_hist.append(int(
re.search(',(.*?),", values['Rotation).group(1)))
Trim list to 3 entries
if 1 en(self.rotation_hist) >3
del (self.rotation_hist[0])
Keep track of velocity so we know when we are stuck
self.velocity_hist.append(self.calculate_velocity(\
values['Velocity]))
Trim it to 20 entries
if I en(self.velocity_hist) > 20:
del (self.velocity_hist[0])

elif command "GAM": #info about the game

self.s_gameinfo = values
elif command =="PLR" #another character visible
For some reason, this doesn't work in ut2003
self.s_view_players[values["ld"]] = values
elif command =="NAV" #a path marker

Neither does this
#print "We have details about a nav point at " + values["Location"]

self.s_nav_points[values["ld"]] = values
elif command =="INV": #an object on the ground that can be picked up
#print values
self.s_view_items[values['Id"]] = values
elif command =="FLG" #info about a flag

#pass these details to the movement behaviour as that stores
details of locations etc and may need them
self.pass_flag_details(values)
#print("We have details about a flag. Its values is: " +
values["State"]);
el se:
pass

def find_movement_behaviour(self):
#find the movement behaviour, if there is one
BlList = self.agent.behavior_instance
for CurrentB in BList:
i f isinstance(Current, movement.MovementBehaviour):
return CurrentB
return None

def find_combat_behaviour(self):
#find the combat behaviour, if there is one
BlList = self.agent.behavior_instance
for CurrentB i n BList:
if isinstance(CurrentB, combat.CombatBehaviour):
return CurrentB
return None

11/05/05 17:52 :: page 6

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
def pass._flag_details(self, values):

MB = self.find_movement_behaviour()
if MB != None:
MB.receive_flag_details(values)

inform the combat behaviour as well
CcB = self.find_combat_behaviour()
if CB !'= None
CB.receive_flag_details(values)

def pass_pth_details(self, valuesdict):
#print "in pass_pth_details"
#print valuesdict
MB = self.find_movement_behaviour()
if MB != None:
MB.receive_pth_details(valuesdict)

def pass_rch_details(self, valuesdict):
#print "in pass_rch_details"
#print valuesdict
MB = self.find_movement_behaviour()
if MB !'= None
MB.receive_rch_details(valuesdict)

tell the combat behaviour about incoming projectile

def pass_prj_details(self, valuesdict):
CcB = self.find_combat_behaviour()
if CB !'= None

CB.receive_prj_details(valuesdict)

tell the combat behaviour about damage taken
def pass_dam_details(self, valuesdict):
CB = self.find_combat_behaviour()
if CB !'= None
CB.receive_dam_details(valuesdict)

tell the combat behaviour about the death of another player
def pass_kil_details(self, valuesdict):
CcB = self.find_combat_behaviour()
if CB !'= None
CB.receive_kil_details(valuesdict)

tell the combat & movement behaviours about our death
def pass_die_details(self, valuesdict):
cB = self.find_combat_behaviour()
if CB !'= None
CB.receive_die_details(valuesdict)
MB = self.find_movement_behaviour()
if MB !'= None
MB.receive_die_details(valuesdict)
def turn(self, degrees):
utangle = int((degrees * 65535) / 360.0)

11/05/05 17:52 :: page 7

395

400

406

410
411
412
413
414
415
416
417
418
419
420
421
422
423

425
426
427
428
429
430
431
432

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py

self.send_message("ROTATE", {"Amount": str (utangle)})
self.send_message("TURNTO", {*Pitch" : str(0)})

def get_yaw(self):
i f self.botinfo.has_key("Rotation"):
return int(re.search(,(.*?),', self.botinfo["'Rotation"]).group(1))
el se:
return None

def get_pitch(self):
i f self.botinfo.has_key("Rotation"):
return int (re.match('(.*?),', self.botinfo["Rotation"]).group(1))
el se:
return None

def move(self):
self.send_message("INCH", {})
return True

Was the bot hit in the last 2 seconds
def was_hit(self):
Isec 2 # How many seconds to look back to
isec 0 # Number of seconds to inhibit consecutive was_hits
now = posh_utils.current_time()
def timefilter(item):
(timestamp, command, value) =item
if timestamp >now - Isec:
return True
el se:
return Fal se

Filter the events from the last Isec seconds
lastevents = filter (timefilter, self.events)

if self.hit_timestamp >now - isec:
Update the last hit imestamp
return Fal se

el se:
Update the last hit imestamp
self.hit_timestamp = now
if |en(lastevents) >0
return True
el se:

return Fal se

def turning(self):
compares the most recent to the leat recent rotation_hist
entry. If there is a descrepancy beyond the error fudge,
then we say we are rotating

fudge =386 #in UT units, roughly 2 degrees
if 1 en(self.rotation_hist) >0
c_rot = self.rotation_hist[0]
e_rot = self.rotation_hist[-1]
diff = abs(c_rot - e_rot)

if diff > fudge:

11/05/05 17:52 :: page 8

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\bodbot.py
return True

return Fal se

def moving(self).
If there is recent velocity, return true
i f 1 en(self.velocity_hist) >0
i f self.velocity_hist[0] >0
return True
return False

def stuck(self):
If there is a period of no movement, then return true
fudge =0
for v in self.velocity_hist:
ifv >fudge:
return Fal se
return True

def calculate_velocity(self, v):

(vx, vy, vz) = re.split(’,", v)
VX = fl oat (vx)
vy = float (vy)

retur n utilityfns.find_distance((0,0), (vx, vy))

11/05/05 17:52 :: page 9

16
17
18

19
20
21
22
23
24
25
26
28
29
30

31
32

45

47

48

jEdit - C\Wwin8\doc\uni\Final Year Project\CD for zip\bodbot\conbat.py
from posh_core inport *
inport utilityfns

class Conbat Behavi our (Base) :
def __init__(self, Poslnfo, Comblnfo, **kw
Base. __init__(self, **kw) # Call the ancestor init

set up variables

sel f. Combat I nfo = Conbl nfo
sel f. Posinfo = Poslnfo

sel f.bot = None

register behaviours and senses
self.init_acts()
sel f.init_senses()

def init_acts(self):
sel . agent . add_act (" shoot - eneny- car ryi ng-our - f | ag”,
sel f.shoot _eneny_carrying_our_flag)
sel f.agent.add_act ("run-to-eneny-carrying-our-flag",
sel f.run_to_eneny_carryi ng_our_flag)
sel f. agent. add_act ("expi re- damage-i nfo", self.expire_damage_i nfo)
sel f. agent.add_act ("expire-focus-info", self.expire_focus_info)
sel f. agent. add_act ("expire-projectile-info",
sel f. expire_projectile_info)
sel f.agent.add_act ("face-attacker", self.face_attacker)
sel f.agent.add_act("set-attacker”, self.set_attacker)
sel f. agent.add_act ("shoot -attacker”, self.shoot_attacker)

def init_senses(self):
sel . agent . add_sense(" see- eneny-wi t h-our-f |l ag",
sel f. see_eneny_wi th_our_flag)
sel f.agent.add_sense("our-fl ag-on-ground”, self.our_flag_on_ground)
sel f. agent. add_sense("eneny-fl ag-on-ground", self.eneny_flag_on_ground)
sel f.agent.add_sense("incom ng-projectile”, self.inconing_projectile)
sel f. agent. add_sense("t aken- damage- f r om speci fi c- pl ayer”,
sel f. taken_damage_from speci fic_pl ayer)
sel f. agent. add_sense("taken- damage", self.taken_damage)
sel f. agent. add_sense("is-respondi ng-to-attack",
sel f.is_responding_to_attack)

def bind_bot(self, bot):
sel f.bot = bot

ENSES

def see_eneny_with_our_flag(self):
#print "in see_enemy_with_our_flag sens:
if len(self.bot.view players)
#print " no players visible"
return False

#else check through every player we can see to check whether they're
the one holding our flag
players = sel f.bot.view players. val ues()

11/05/05 17:53 :: page 1

70

76

78
79
80
81
82
83
84
85
86
87

88
89
90

91
92
93
94
95
96
97

98

100

jEdit - C\Wwi n8\doc\uni\Final Year Project\CD\for zip\bodbot\conbat.py

for CurrentPlayer in players:
#print CurrentPlayer
if currentPlayer["Id"] == sel f.Conbat I nfo. Hol di ngQur Fl ag:
print " can see the player holding our flag"
sel f. Combat I nf 0. Hol di ngQur Fl agPl ayer I nfo = Current Pl ayer
return True
#print " cannot see the player holding our flag (",
#print self. Combatinfo.HoldingOurFlag,
#print)"
return Fal se

our _flag_on_ground(self):
if self.Poslnfo.QurFlaginfo == {}:
return Fal se

el se:
#in case the flag was returned but we didn't actually see it
happen
if not self.bot.ganeinfo. has_key("EnenyHasFl ag"):
sel f. Posinfo.QurFlaglnfo["State"] = "home"
if self.Poslnfo.QurFlaglnfo["State"].|ower() "dropped":
#print "our flag is dropped!"
return True
return Fal se
eneny_flag_on_ground(sel f):
if self.Poslnfo.EnenyFlaglnfo == {}:
return Fal se
elif self.Poslnfo.EnenyFl aglnfo["State"] .| over () “dr opped" :

return True
return Fal se

inconing_projectile(self):

if self.Conbatlinfo.ProjectileDetails != None:
print "incom ng-projectile returning True"
return True

return Fal se

taken_damage_from specific_player(self):

if self.Conbat!nfo.DamageDetails != None and

sel f. Combat | nf 0. DamageDet ai | s. has_key("Instigator"):
print "taken_damage_from specific_player returning True"
return True

alternatively, even if we don't know who shot us this time, we may

know from another recent attack

elif self.Conbatlnfo.KeepFocusOnLocation ! = None:
return True

el se:
return Fal se

taken_damage(sel f):

if self.Conbat!nfo.DamageDetails != None:
return True

return Fal se

11/05/05 17:53 :: page 2

101
102

117

119
120
121

122
123
124
125

126
127
128
129
130

131
132
133
134
135

jEdit - C\Wwin8\doc\uni\Final Year Project\CD for zip\bodbot\conbat.py
returns true if we're already responding to the most recent attack
At present just test against KeepFocusOnID. However, that doesn't 100%
guarantee that we've started shooting,
#just that we know who we ought to shoot. For now, however, | will use
this check.
def is_responding_to_attack(self):
if self.Conbatlnfo.KeepFocusniD != None:
return True
el se:
return False

#

CTIONS

def shoot _eneny_carrying_our _flag(self):

if self.Conbatlnfo.Hol di ngQurFlag ! = None and

sel f. Conbat | nf 0. Hol di ngQur Fl agPl ayerInfo != None:
Target = sel f. Conbat I nfo. Hol di ngQur Fl ag
Location = sel f. Conbat I nf 0. Hol di ngQur Fl agPl ayer I nf of " Locat i on"]
sel f.bot.send_nessage("SHOOT", {"Target" : Target, "Location"
Location})

return True

def run_to_eneny_carrying_our_flag(self):
print “in rtecof very start"
if self.Conbatlnfo.Hol di ngQurFlag ! = None and
sel f. Conbat | nf 0. Hol di ngQur Fl agPl ayerInfo != None:
print "in rtecof, past initial if"

#Target = self.Combatinfo.HoldingOurFlag

#if not utilityfns.is_previous_message(self.bot, ("RUNTO",
{"Target" : Target})):

self.bot.send_message("RUNTO", {"Target" : Target})
print "running after enemy”

Location = sel f. Conbat | nfo. Hol di ngQur Fl agPl ayer | nf o[“Locat i on"]
if not utilityfns.is_previous_message(self.bot, ("RUNTO',
{"Location" : Location})):
sel f. bot.send_nmessage("RUNTO', {"Location" : Location})
print "running after eneny"
return True

not the usual sort of action, but ensures that details about e.g. damage
taken doesn't reside forever and inform decisions too far into the future
def expire_damage_i nf o(sel f)
#print” exdi*
sel f. Conbat I nf 0. DamageDet ai | s = None
#self.Combatinfo.KeepFocusOnID = None
#self.Combatinfo.KeepFocusOnLocation = None
#self.Combatinfo.TriedToFindAttacker = False
return True

def expire_focus_info(self):
sel f. Conbat | nf 0. KeepFocusOnl D = None
sel f. Conbat | nf 0. KeepFocusOnLocati on = None
sel f. bot. send_nessage(" STOPSHOOT", {}) # no-one to focus on

11/05/05 17:53 :: page 3

148
149
150
151
152
153
154
155
156
157

158
159
160
161

162
163
164
165
166
167
168
169

171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191

192
193
194

195
196

jEdit - C\Wwi n8\doc\uni\Final Year Project\CD\for zip\bodbot\conbat.py

def expire_projectile_info(self):
sel f. Conbat I nfo. Proj ectil eDetails = None
return True

#def set_tried_to_find_attacker(self):
self.Combatinfo.TriedToFindAttacker = True

if we can see the player currently, store his ID so e.g. runtos will be
replaced by strafes to keep him in focus
#and issue a turnto command
def face_attacker(self):
print “in face_attacker"
if self.Conbat ! nfo. KeepFocusOnLocati on
sel f. Conbat | nf 0. KeepFocusnl D == None:
return True

None and

if self.Conbat!nfo.KeepFocusOnl D == None: #just provide location
Location = sel f.Conbat I nfo. KeepFocusOnLocat i on
Msg = ("TURNTO', {"Location" : Location})
utilityfns.send_if_not_prev(self.bot, Mg)
el se:
Target = sel f. Conbat I nf 0. KeepFocusOnl D
Location = sel f. Conbat | nf 0. KeepFocusOnLocat i on
sel f. bot.send_message(" TURNTO', {"Target" : Target})
return True

sets the attacker (i.e. the keepfocuson one) to be the first enemy player
we have seen
or the instigator of the most recent damage, if we know who that is
def set_attacker(self):
print "in set_attacker”

def find_eneny_in_view):

work through who we can see, looking for an enemy

Qur Team = sel f. bot. boti nfo[" Tean{']

print "CQurTeam",

print QurTeam

Pl ayers = sel f.bot.view players.val ues()

for CurrentPlayer in Players:

if currentPlayer["Teant] != QurTeam

sel f. Conbat I nf 0. KeepFocusOnl D = Current Pl ayer ["1d"]
sel f. Conbat | nf 0. KeepFocusOnLocati on =
Current Pl ayer ["Location"]
return True

if len(self.bot.view players) == 0 or self.bot.botinfo == {}: #if
botinfo is {}, we can't yet set anything
return True
el se:
if self.Conbatlnfo.DamageDetails != None and
sel f. Conmbat | nf 0. DamageDet ai | s. has_key(" I nstigator")
InstI D = sel f.Conbat | nfo. DamageDetai | s["Instigator"]
if self.bot.view players. has_key(lnstlD):

11/05/05 17:54 :: page 4

198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218

219

220
221
222
223
224
225

jEdit - C\Wwin8\doc\uni\Final Year Project\CD for zip\bodbot\conbat.py

set variables so that other commands will keep him in
view
sel f. Conbat | nf 0. KeepFocusnl D = InstID
sel f. Conbat | nf 0. KeepFocusnLocat i on =
sel f. bot . vi ew pl ayers[InstID]["Location"]
el se:
find_eneny_in_view)
el se:
find_eneny_in_view)
return True

def shoot _attacker(self):
print "in shoot_attacker"
if self.Conbatlnfo.KeepFocusOnLocation == None:
return True

if self.Conbatnfo.KeepFocusOnl D == None: #ust provide location

Location = sel f. Conbat I nf 0. KeepFocusOnLocat i on

if not utilityfns.is_previous_nessage(self.bot, ("SHOOT",

{"Location" : Location})):

sel f.bot.send_nessage("SHOOT", {"Location" : Location})

el se:
Target = sel f. Conbat | nf 0. KeepFocusOnl D
Location = sel f.Conbat | nf 0. KeepFocusOnLocat i on

if not utilityfns.is_previous_message(self.bot, ("SHOOT", {"Target"

Target, "Location Location})):
sel f. bot.send_nessage("SHOOT", {"Target" : Target,
Location})
return True

OTHER FUNCTIONS ===

def receive_flag_details(self, values):
#if its status is "held", update the CombatinfoClass to show who's
holding it
otherwise, set that to None as it means no-one is holding it

#print "in rfd"
#print values

if self.bot.botinfo == {}: #ifbotinfois {}, we can' yet set anything
return

Qur Team = sel f. bot. boti nf o[" Teant]
#print "OurTeam is of type",

#print type(OurTeam),

#print " and value is",

#print OurTeam

#print "values[\"Team\"] is ",

#print values['Team"]

if values["Tean] Qur Team
if values["State"].lower() == "held":
#print "setting holder"
sel f. Combat | nf 0. Hol di ngQur Fl ag = val ues[" Hol der"]

11/05/05 17:54 :: page 5

"Location"

jEdit - C\Wwi n8\doc\uni\Final Year Project\CD\for zip\bodbot\conbat.py
el se:
#print "not being held”
sel f. Combat I nf 0. Hol di ngQur Fl ag = None
sel f. Conbat I nf 0. Hol di ngQur Fl agPl ayerInfo = None

def receive_prj_details(self, valuesdict):
print "received details of incoming projectile!"
print val uesdict
sel f. Conmbat | nfo. ProjectileDetails = val uesdict

def receive_damdetails(self, valuesdict):
sel f. Combat | nf 0. DamageDet ai | s = val uesdi ct

handle details about a player (not itself) dying
remove any info about that player from Combatinfo
def receive_kil_details(self, ValuesDict):
print "receive kil _details",
print Val uesDi ct

print "----- "
print self. Conbat | nfo. Hol di ngQurFl ag
if ValuesDict["Id"] == self.Conbatlnfo.Hol di ngQurFl ag:

sel f. Conbat | nf 0. Hol di ngQur Fl ag = None
sel f. Conbat | nf 0. Hol di ngQur Fl agP!l ayer I nfo = None
sel f. bot.send_message(" STOPSHOOT", {})

if ValuesDict["Id"] == self.Conbatlnfo.KeepFocusOnl D:
sel f. Combat | nf 0. KeepFocusOnl D = None
sel f. Combat | nf 0. KeepFocusOnLocat i on = None
sel f. bot. send_nessage(" STCPSHOOT", {})

clean-up after dying
def receive_die_details(self, ValuesDict):
sel f. expire_damage_i nfo()
sel f.expire_focus_info()

class Conbat|nfod ass:
def __init__(self)
sel f. Hol di ngQur Fl ag = None # the ID of the player holding our flag
sel f. Hol di ngQur Fl agPl ayer I nfo = None # details about that player

self.ProjectileDetails = None
sel f. DanmgeDetails = None
sel f. KeepFocusOnl D = None
sel f. KeepFocusOnLocation = None

#self. TriedToFindAttacker = False

11/05/05 17:54 :: page 6

18

28

31
32
33
34
35

36

38
39
40
4
42
43

44
45

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
fromposh_core inport *

i nport_utilityins

cl ass MovementBehaviour(Base):
def __init__(self, Posinfo, Combatinfo, “*law):
Base. __init__(self, **kw) # Call the ancestor init

set up variables

self.Posinfo = PoslInfo
elf.C =C
self.bot = None

register behaviours and senses
self.init_acts()
self.init_senses()

set up useful constants

self.PathHomelD = "PathHome"
self.ReachPathHomelD = "ReachPathHome"
self.PathToEnemyBaselD ="PathThere"
self.ReachPathT D =" There"

def init_acts(self):

self.agent.add_act("walk-to-nav-point”, self.walk_to_nav_point)
self.agent.add_act("to-enemy-flag", self.to_enemy_flag)
self.agent.add_act("to-own-base”, self.to_own_base)
self.agent.add_act("to-own-flag”, self.to_own_flag)
self.agent.add_act("to-enemy-base", self.to_enemy_base)
self.agent.add_act("inch, self.inch)
self.agent.add_act("runto-medical-kit", self.runto_medical_kit)
self.agent.add_act(‘runto-weapon", self.runto_weapon)
self.agent.add_act("expi info", self.expire_ . info)

def init_senses(self):
self.agent.add_sense("at-enemy-base”, self.at_enemy_base)
self.agent.add_sense("at-own-base", self.at_own_base)
self.agent.add_sense("know-enemy-base-pos", self.know_enemy_base_pos)
self.agent.add_sense("know-own-base-pos”, self.know_own_base_pos)
self.agent.add_sense("reachable-nav-point", self.reachable_nav_point)
self.agent.add_sense("enemy-flag-reachable”, self.enemy_flag_reachable)
self.agent.add_sense("our-flag: ", self.our_flag_
self.agent.add_sense("see-enemy", self.see_enemy)
self.agent.add_sense("see-reachable-medical-kit",
self.see_reachable_medical_kit)
self.agent.add_sense(" pon”, self.see_| . weapon)
self.agent.add_sense("too-close-for-path”, self.too_close_for_path)

def bind_bot(self, bot):
self.bot = bot

SENSES =:

def at_enemy_base(self):

#print "in at_enemy_base sense”
if not self.bot.botinfo.has_key("Location"):

11/05/05 17:55 :: page 1

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
return Fal se
LocTuple =
utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])

i f self.Posinfo.EnemyBasePos == None:
return Fal se
el se:
(SX, 8Y, S2) = LocTuple
(EX, EY, EZ) =
utilityfns.location_string_to_tuple(self.PosInfo.EnemyBasePos)
i f utilityfns.find_distance((SX, SY), (EX, EY)) <100:
distance may need adjusting in future (we may also wish to consider
the Z axis)
return True
el se:

return Fal se

returns true if we're near enough to our own base
def at_own_base(self):
if not self.bot.botinfo.has_key("Location"):
return Fal se
LocTuple =
utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])

i f self.Posinfo.OwnBasePos == None:
return Fal se
el se:
(SX, sY, 82) = LocTuple
(HX, HY, HZ) =
utilityfns.location_string_to_tuple(self.PosInfo.OwnBasePos)
i f utilityins.find_distance((HX, HY), (SX, SY)) <10:
distance may need adjusting in future (we may also wish to consider
the Z axis)
return True
el se:

return Fal se

returns True if we have a location for the enemy base
def know_enemy_base_pos(self):
#print "in know_enemy_base_pos sense”
i f self.PosInfo.EnemyBasePos == None:
return Fal se
el se:
return True

returns True if we have a location for our own base
def know_own_base_pos(self):
i f self.Posinfo.OwnBasePos == None:
return Fal se
el se:
return True

returns True if there's a reachable nav point in the bot's list which

we're not already at
def reachable_nav_point(self):

11/05/05 17:55 :: page 2

#this

#this

107
108
109

110
111
112

113
114
115

116
117
118
119
120
121
122

123
124

140
141
142
143
144

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
setup location tuple
if not self.botbotinfo.has_key("Location"):
#if we don't know where we are, treat it as (0,0,0) as that will
just mean we go to the nav point even if we're close by
(SX, SY, S2) =(0,0,0)
el se:
(SX, SY, S2) =
utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])

is there already a navpoint we're aiming for?

DistanceTolerance =30 # how near we must be to be thought of as at the
nav point
i f self.PosInfo.ChosenNavPoint !'= None:
(NX, NY, NZ) = self.PosInfo.ChosenNavPoint
if utiltyfns.find_distance((NX, NY), (SX, SY)) >

DistanceTolerance:
return True

el se:
self.Posinfo.VisitedNavPoints.append((NX, NY, NZ))
NP as visited
self.PosInfo.ChosenNavPoint = None

now look at the list of navpoints the bot can see

i f self.bot.nav_points == None or | en(self.bot.nav_points)
return False

el se:
nav_points is a list of tuples. Each tuple contains an ID and a
dictionary of attributes as defined in the API
Search for reachable nav points

PossibleNPs =

self.get_reachable_nav_points(self.bot.nav_points.items(),
DistanceTolerance, (SX, SY, SZ))

now work through this list of NavPoints until we find one that we

haven't been to

or the one we've been to least often

if Ien(PossibleNPs) ==0:
return Fal se # nothing found

el se:

self.PosInfo.ChosenNavPoint =

self.get_least_often_visited_navpoint(PossibleNPs)
return True

def get_least_often_visited_navpoint(self, PossibleNPs):

CurrentMin = self.Poslnfo.VisitedNavPoints.count(PossibleNPs[0])
[¢ i =
(0]
for CurrentNPTuple i n PossibleNPs:
CurrentCount = self.PosInfo.VisitedNavPoints.count(CurrentNPTuple)

if CurrentCount < CurrentMinNP:
CurrentMin = CurrentCount
CurrentMinNP = CurrentNPTuple
return CurrentMinNP

also performs a distance tolerance check, (SX, SY, SZ) is position of
player

11/05/05 17:55 :: page 3

set this

145

162

166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182

183
184

186
187
188
189
190
191
192
193
194
195

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
def get_reachable_nav_points(self, NPList, DistanceTolerance, (SX, SY,
2)):

PossibleNPs =0

for CurrentNP i n NPList:
#print type(CurrentNP)

#print " is the type\n”
#print type(CurrentNP[1])
#print " is the type of its 2nd element\n"

(NX, NY, N2) =
utilityfns.location_string_to_tuple((CurrentNP[1])["Location"])
i f CurrentNP[1]['Reachable"] =="True" and

utilityfns.find_distance((NX, NY), (SX, SY))
PossibleNPs.append((NX, NY, NZ))
return PossibleNPs

returns true if the enemy flag is specified as reachable
det enemy_flag_reachable(sel):

#debug
#print "in enemy_flag_reachable”

#if self.PosInfo.EnemyFlaginfo != {}:
print self.PosInfo.EnemyFlaginfo

i f self.PosInfo.EnemyFlaginfo
return Fal se

el if self.PosInfo.EnemyFlaginfo['Reachable"]
return True

return Fal se

}:

def our_flag_reachable(self):

print "in our_flag_reachable”

i f self.Posinfo.OurFlaginfo =={}
return Fal se

el i f self.Posinfo.OurFlaginfo['Reachable"]
print " is reachable!"
return True

return Fal se

def see_enemy(self):
if | en(self.bot.view_players)
botinfo is {}, we can't yet set anything
return Fal se
el se:

work through, looking for an enemy
OurTeam = self.bot.botinfo["Team"]
Players = self.bot.view_players.values()

for CurrentPlayer i n Players:

#print CurrentPlayer
i f CurrentPlayer['Team"]
print "we can see an enemy!
return True
return Fal se

==0 or self.bot.botinfo

def see_reachable_medical_kit(self):

11/05/05 17:55 :: page 4

> DistanceTolerance:

196
197
198
199

201
202

234
235

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\imovement.py
if |en(selfbotview_items) <1
return Fal se
el se:
look through for a medical kit

ItemValues = self.bot.view_items.values()
for Currentitem inltemValues:
i f (Currentitem["Class"].find("Health") I=-1or
Currentltem["Class"].find("MedBox")) and

Currentltem["Reachable”] True":
return True

return False

def see_reachable_weapon(self):
if |en(self.botview_items) <1
return Fal se
el se:
ook through for a weapon
ltemValues = self.bot.view_items.values()
for Currentitem inltemValues:
i f utilityfns.is_known_weapon_class(Currentitem["Class"]) and
Currentitem["Reachable”] =="True"
return True
return False

see PositionsInfo class for comments on TooCloseForPath
def too_close_for_path(self):
i f self.PosInfo.TooCloseForPath:
print "we are too close for path”
r et ur n self.PosInfo.TooCloseForPath

#

= ACTIONS ===

def runto_medical_kit(self):
if I en(self.bot.view_items) <1
return True
el se:
look through for a medical kit

ItemValues = self.bot.view_items.values()
for Currentitem inltemValues:
i f (Currentitem["Class"].find("Health") I=-1 or

Currentltem["Class"].find("MedBox")) and

Currentltem["Reachable”] True":

self.send_runto_or_strafe_to_location(Currentitem[“Location"
return True

def runto_weapon(self):
i f I en(self.bot.view_items) <1
return True
el se:
look through for a weapon

ItemValues = self.bot.view_items.values()
for Currentitem in ltemValues:
i f utilityfns.is_known_weapon_class(Currentltem["Class"]) and
Currentltem["Reachable”] =="True":

11/05/05 17:55 :: page 5

244
245
246

247

249
250
251
252

283
284
285
286
287

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
print “runto weapon"”,
print Currentitem[‘Class"]

self.send_runto_or_strafe_to_location(Currentitem[“Location"

return True
return True

Runs to the ChosenNavPoint

def walk_to_nav_point(self):
#print "walk_to_nav_point: " +
utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)

have we already sent it?
#if not utilityfns.is_previous_message(self.bot, ("RUNTO", {"Location"
: utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)})):
self.bot.send_message("RUNTO", {"Location" :
utilityfns.location_tuple_to_string(self.Posinfo.ChosenNavPoint)})
#print "sending message”
#else:
#print "already sent"

new version just calls the utility function
#utilityfns.send_if_not_prev(self.bot, ("RUNTO", {"Location" :
utilityfns.location_tuple_to_string(self.PosInfo.ChosenNavPoint)}))

#even newer version has a strafe check

self.send_runto_or_strafe_to_location(utilityfns. location_tuple_to_string

return True

#runs to the enemy flag
def to_enemy_flag(self)
print "llin to_enemy_flag"
i f self.Posinfo.EnemyFlaginfo
self.bot.send_message("RUNTO", {"Target" :
self.PosInfo.EnemyFlaginfo["Id"T})
return True

def to_own_flag(self):
i f self.PosInfo.OurFlaginfo I={
#was self.bot.send_message("RUNTO", {"Location” :
self.PosInfo.OurFlaginfo["Location]})

self.send_runto_or_strafe_to_location(self.Posinfo.OurFlaginfol
return True

runs to the bot's own base by getting a list of navpoints showing the way
there
def to_own_base(self):
print "to_own_base"
DistanceTolerance =30
If we don't know where our own base is, then do nothing
However, this action should never fire unless we do know where our
base is

11/05/05 17:55 :: page 6

“Locat

288
289
290
291
292
293
294

296
297
298
299
300

303
304
305
306
307

308
309
310
311
312
313
314
315
316
317

318
319

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
i f self.PosInfo.OwnBasePos == None:
print "Don't know where own base is!"
return True

def send_getpath():
print "in send_getpath”
if not utilityfns.is_previous_message(self.bot, ("GETPATH",
{"Location" : self.PosInfo.OwnBasePos, "Id" : self.PathHomelD})):
self.bot.send_message("GETPATH", {"Location" :
self.PosInfo.OwnBasePos, self.PathHomelD})
allows us to match requests with answers
print "sent GETPATH"
el se:
print "GETPATH already sent"

#if we haven't already got a list of path nodes to follow then send
the GETPATH message
10 try and mitigate the problem of pathhome being cleared part way
through this, we assign
the relevant value to a variable and then use that throughout, so the
array is checked as infrequently as possible
it's not an ideal fix though!
i f self.Posinfo.PathHome
send_getpath()
el se:

if not self.to_known_location(self.PosInfo.PathHome,
DistanceTolerance):
print "DT check failed, tailing"
self.PosInfo.PathHome
i f self.Posinfo.PathHome =1
print “tail not empty"
PathLoc = self.PosInfo.PathHome(0]
self.send_runto_or_strafe_to_location(PathLoc)
el se:
send_getpath()

#before we return, send a checkreach command about the current
navpoint. That way the list can be recreated if it becomes incorrect
i f self.PosInfo.PathHome I'=[] and self.PosInfo.PathHome
self.bot.send_message("CHECKREACH", {"Location" :
self.PosInfo.PathHome[0], “Id" : self. ReachPathHomelD, "From" :
self.bot.botinfo["Location"]})
pri nt “about to return from to_own_base"

#runs to the enemy’s base by getting a list of navpoints showing the way
there
def to_enemy_base(self):
print "to_enemy_base"
DistanceTolerance =30
If we don't know where the base is, then do nothing
However, this action should never fire unless we do know where it is
i f self.PosInfo.EnemyBasePos None:
print "Don't know where enemy base is!"
return True

11/05/05 17:55 :: page 7

#the ID

= utilityfns.tail(self.PosInfo.PathHome)

!'= None:

367
368
369
370
371
372

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
def send_getpath()
print "in send_getpath”
utilityfns.send_if_not_prev(self.bot, ("GETPATH", {"Location" :
self.PosInfo.EnemyBasePos, "Id" : self. PathToEnemyBaselD}))

if we haven't already got a list of path nodes to follow then send
the GETPATH message
to try and mitigate the problem of pathhome being cleared part way
through this, we assign
the relevant value to a variable and then use that throughout, so the
array is checked as infrequently as possible
it's not an ideal fix though!
i f self.PosInfo.PathToEnemyBase
send_getpath()
el se:
if not self.to_known_|
DistanceTolerance):
print "DT check failed, tailing”
self.PosInfo.PathToEnemyBase =
utilityfns.tail(self. PosInfo.PathToEnemyBase)
if self.Posinfo.PathToEnemyBase !
print "tail not empty"
PathLoc = self.PosInfo.PathToEnemyBase[0]
self.send_runto_or_strafe_to_location(PathLoc)
el se:
send_getpath()

Poslnfo.PathT 3

#before we retumn, send a checkreach command about the current
navpoint. That way the list can be recreated if it becomes incorrect
i f self.PosInfo.PathToEnemyBase =[] and self.Posinfo.PathToEnemyBase
!'= None:
self.bot.send_message("CHECKREACH", {"Location” :
self.Posinfo.PathToEnemyBase[0], "Id" :
self. ReachPathToEnemyBaselD, "From" :
self.bot.botinfo["Location"]})
print "about to return from to_enemy_base"

returns true and sends a runto message for the provided location if the
DistanceTolerance check passes
otherwise returns false
def to_known_location(self, Location, DistanceTolerance):
if | en(Location) 0:
return True # even though we failed, we return true so that it
doesn't tail the list
o first point in current list, if we're not already there

Location0 = Location[0]
(HX, HY, HZ) = utilityfns.location_string_to_tuple(Location0)
(SX, SY, S2) =

utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
i f utilityfns.find_distance((HX, HY), (SX, SY))
print "DistanceTolerance check passed"

> DistanceTolerance

print "About to send RUNTO to",
print Location0
print "Current location”,

11/05/05 17:55 :: page 8

404
405
406
407
408
409

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
print self.bot.botinfo["Location"]

self.send_runto_or_strafe_to_location(Location0, Fal se)

#was
#if not utilityfns.is_previous_message(self.bot, ("RUNTO",
{"Location" : PathLoc})):
self.bot.send_message("RUNTO", {"Location" : PathLoc})
print "Running to " + PathLoc
return True
el se:
return False

#not used at present (18/2/2005)
def inch(self):
#just add a bit to the x value
print “ininch"

(SX, SY, S2) =
utilityfns.location_string_to_tuple(self.bot.botinfo["Location"])
NewLocTuple =(SX +150,SY,SZ)

self.send_runto_or_strafe_to_location(utilityfns.

just because something was reachable the last time we knew about it
doesn't mean it still is
def expire_reachable_info(self):
i f self.PosInfo.Ourflaginfo '={} and
self.PosInfo.Ourflaginfo.has_key("Reachable"):
self.PosInfo.OurFlagInfo[‘Reachable"] = "False"
if self.PosInfo.EnemyFlaginfo 1=0 and
self.Posinfo. has_key(" "):
self.PosInfo.EnemyFlaginfo['Reachable"] = "False"

self.Posinfo.TooCloseForPath = Fal se

=== OTHER FUNCTIONS ===
checks the previous sent message against the provided one, returning True
if they match

now replaced by is_previous_message(bot, Msg) in utilityfns

#def is_previous_message(self, Msg):

if self.bot.sent_msg_log == None or \

len(self.bot.sent_msg_log] or\

self.bot.sent_msg_log[-1] '= Msg:
#
#

return False
return True

updates the flag positions in Positionsinfo
also updates details of bases, if relevant info sent
the position of a flag is how we determine where the bases are
def receive_flag_details(self, values):
#print "f",
#print values['Reachable"]

i f self.bot.botinfo =={} #if botinfo is {}, we can't yet set anything

return

11/05/05 17:55 :: page 9

location_tuple_to_string

jEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py

#print “in receive_flag_details. Values are:"
#print values

#set flag stuff

OurTeam = self.bot.botinfo["Team"]
if values['Team"] OurTeam:
self.PosInfo.OurFlaginfo = values
#print "our flag"
el se:
self.PosInfo.EnemyFlaginfo = values

#print "enemy flag”

now set base stuff if appliable
i f values['State"] “hol

me":

i values['Team"] self.bot.botinfo["Team"]:
self.Posinfo.OwnBasePos = values["Location’]

el se:
self.Posinfo.EnemyBasePos = values["Location’]

#print "enemy base at",

#print self.PosInfo.EnemyBasePos

#print "self.PosInfo.EnemyBasePos has type",
#print type(self. PosInfo.EnemyBasePos)

#if the 'ID" key is PathHome then it tells the bot how to get home.
we need to turn the dictionary into a list, ordered by key (‘0" ... 'n’)
at present other IDs are ignored
def receive_pth_details(self, ValuesDict):
if not ValuesDict.has_key("ID"):
return
el i f ValuesDict["ID"] == self.PathHomelD:
self.PosInfo.PathHome =
utilityfns.nav_point_dict_to_ordered_list(ValuesDict)
el i f valuesDict["ID"] self.PathToEnemyBaselD:
print "Set PathToEnemyBase"
self.Posinfo.PathToEnemyBase =
utilityfns.nav_point_dict_to_ordered_list(ValuesDict)

if there's no 0 key we're being given an empty path, so set
TooCloseForPath accordingly

if not ValuesDict.has_key("0"):

self.Posinfo. TooCloseForPath = True
el se:

self.PosInfo.TooCloseForPath = Fal se

used in validating the bot's path home or to the enemy flag
if the thing has the right ID, then clear the relevant path if it's not
reachable
def receive_rch_details(self, ValuesDict):

print "in receive_rch_details"

if not ValuesDict.has_key("ID"):

return
el if ValuesDict["ID"] == self.ReachPathHomelD and
ValuesDict["Reachable"]
self.Posinfo.PathHome =

11/05/05 17:55 :: page 10

471
472

473
474
475
476

477

479
480

481
482

503

506
507
508
509
510
511
512
513
514
515
516
517

JEdit - C:\Wpwin8\doc\uni\Final Year Project\CD\for zip\bodbot\movement.py
print "Cleared PathHome"
el i f ValuesDict["ID"] self. ReachPathToEnemyBaselD and
ValuesDict["Reachable’] =
self.Posinfo.PathToEnemyBase =0
print "Cleared PathToEnemyBase"

if the combatinfo class specifies that we need to remain focused on a
player, send a relevant strafe command
to move to the provided location. Otherwise, a runto

def send_runto_or_strafe_to_location(self, Location, PerformPrevCheck
True):
i f self.Combatinfo.KeepFocusOnID I'= None:
Message = ("STRAFE", {"Location" : Location, "Target":

self.Combatinfo.KeepFocusOnID})
i f PerformPrevCheck:
utilityfns.send_if_not_prev(self.bot, Message)

el se:
self.bot.send_message(Message[0], Message[1])
el se:
Message = ("RUNTO", {"Location" : Location})

if PerformPrevCheck:
utilityfns.send_if_not_prev(self.bot, Message)
el se:
self.bot.send_message(Message[0], Message[1])
print "have just sent",
print Message

clean-up after dying
def receive_die_details(self, ValuesDict):
self.PosInfo.PathHome =
self.PosInfo.PathToEnemyBase
self.Posinfo.VisitedNavPoints
self.Posinfo.OurFlaginfo
self.PosInfo.EnemyFlaginfo

this is new

This class stores details about where things are
cl ass Positionsinfo:
def __init__(self):
self.OwnBasePos = None
self. EnemyBasePos = None
self.VisitedNavPoints =
self.ChosenNavPoint = None
self.OurFlaginfo =4
self. EnemyFlaginfo =0

alist of nav points showing the way to various places

self.PathHome =0

self.PathToEnemyBase =

self.TooCloseForPath = Fal se # setto true if we're sent a blank path.
Blank paths indicate that we're right next to something but can't
actually see it

11/05/05 17:55 :: page 11

FNERININ

27
28
29
30
31
32
33
34
35
36

50

jEdit - C\Wwin8\doc\uni\Final Year Project\CD for zip\bodbot\status.py

from posh_core inmport *
import utilityfns

the status behaviour has primitives for stuff to do with finding out the bot's
state (e.g. amount of health)

class StatusBehavi our (Base):
def __init__(self, Posinfo, **kw:
Base. __init__(self, **kw) # Call the ancestor init

set up variables
sel f.bot = None
sel f. Posinfo = Poslnfo

register behaviours and senses
sel f.init_acts()
sel f.init_senses()

def init_acts(self):
pass

def init_senses(self):

sel f. agent. add_sense("have-eneny-flag", self.have_eneny_flag)
sel f.agent. add_sense("own-heal th-1evel ", self.own_heal th_level)

sel f.agent. add_sense("are-arned", self.are_armed)
sel f.agent. add_sense("amp-anount”, sel f.ammo_anount)

sel f. agent. add_sense("ar ned- and- ammo", sel f. ar ned_and_ammo)

#self.agent.add_sense("holding-enemy-flag", self.holding_enemy_flag)

def bind_bot (sel f, bot):
self.bot = bot

= SENSES =

returns true if we are carrying the enemy's flag
def have_eneny_flag(self):
#print "have_enemy_flag?"
if not self.bot.ganeinfo. has_key("HaveFl ag"):
return Fal se
el se:
#print "have enemy flag!"
return True

def own_heal th_l evel (sel f):
Heal thLevel = int(self.bot.botinfo["Heal th"])
#print "Our bot has health ",
#print HealthLevel
return Heal thLevel

o
o

are_armed(self):
if self.bot.botinfo == {}
return Fal se
el se:
if self.bot.botinfo["Wapon"] == "None":
print "unarmed",

11/05/05 17:56 :: page 1

oo o aaa
238893

62
63
64
65
66
67
68

jEdit - C\Wwi n8\doc\uni\Final Year Project\CD\for zip\bodbot\status.py

print self.bot. botinfol " Wapon"]
return Fal se

el se:
print “armed",
print self.bot. botinfof " Veapon"]
return True

def anmo_anount (sel f)
if self.bot.botinfo == {}:
return 0
el se:
return int(self.bot.botinfo[l"Current Ammo"])

def armed_and_amm(sel f):
#return True
return (self.are_armed()) and (self.ammo_amount() > 0)

use have_enemy._flag instead
#def holding_enemy_flag(self):

if self.PosInfo == None or self.PosInfo.EnemyFlaginfo == {}:
return False

elif self.PosInfo.EnemyFlaginfo["State"] == "held" and
self.PosInfo.EnemyFlaginfo["Holder"] == self.bot.bot_info["Id"]:
retumn True

else:

return False

#none at present

11/05/05 17:56 :: page 2

jEdit - C\Wwin8\doc\uni\Final Year Project\CDfor zip\bodbot\utilityfns.py

inport string

Some utility functions
def find_distance(one, two):

(x1, y1) = one

(x2, y2) = two

return ((((x1-x2)**2) + ((yl-y2)**2))**0.5)

takes a string of the form 'x,y,z' and converts it to a tuple (x,y,z)
def location_string_to_tuple(LocationString
LocList = string.split(LocationString,
if len(LocList) != 3:
return (0,0,0)
LTuple = (float(LocList[0]), float(LocList[1]), float(LocList[2]))
return LTuple

def | ocation_tuple_to_string(LocationTuple):
LString = str(LocationTuple[0]) + "," + str(LocationTuple[1]) + "," +
str(LocationTuple[2])
return LString

returns negative if the number a represents is < the number b represents. 0
if equal, positive if >
def conpare_nunber_strings(a, b):

anum = int(a)

bnum = int (b)

if anum < bnum

return -1
elif anum == bnum
return 0

el se:
return 1

lists of nav points arrive as dicts with an "ID" key and keys
"n" these need converting to lists
def nav_point_dict_to_ordered_|ist(ValuesDict):
del ValuesDict["ID'] #remove the ID key to leave just numbers
#now get a list of just keys, and sort it to use in extracting the key:value
pairs
KeyLi st = Val uesDi ct. keys()

debug
if Val uesDi ct. has_key(" Reachabl e"):
print Val uesDict

print "-------

KeyLi st . sort (conpar e_nunber _strings) #need a home-grown sort function as
although they're strings, we don't want "10" < "2"

#now use the keylist to create an ordered list of location strings
LocList =[]
CurrentLoc = 0
while CurrentLoc < |en(ValuesDict):
#need to strip out the ID by including only everything after the first
space

11/05/05 17:56 :: page 1

aaanaaaa
Joafaoned

@

59
60
61
62
64

jEdit - C\Wwin8\doc\uni\Final Year Project\CD\for zip\bodbot\utilityfns.py
LocString = Val uesDi ct [str(CQurrent Loc)]
LocString = LocString[string. find(LocString, " ") : len(LocString)]
LocString = LocString. strip()
LocLi st. append(LocSt ri ng)
CurrentLoc = CurrentLoc+l

return Loclist

def tail (SentSequence):
if SentSequence == [] or |en(SentSequence) == 1
return []
el se:
return SentSequence[1 : | en(Sent Sequence)- 1]

checks the bot's previous sent message against the provided one, returning
True if they match
def is_previous_message(bot, Mg):
if bot.sent_msg_log == None or \
I'en(bot . sent _msg_| og) 0or \
bot . sent _msg_l og[- 1] Msg:
return Fal se
return True

def send_if_not_prev(bot, Mg):
if not is_previous_nessage(bot, Msg):
bot. send_nessage(Msg[0], Msg[1])

def is_known_weapon_cl ass(Sent O ass) :
if sentQ ass None:
return Fal se
el se:
if Sentd ass.find("goowand") != -1:
return True
return Fal se

11/05/05 17:56 :: page 2

