

Citation for published version:
Beach, C 2005, Opinion sharing on the web: Uings a distributed architecture and trusted social networks.
Computer Science Technical Reports, no. CSBU-2005-06, Department of Computer Science, University of Bath.

Publication date:
2005

Link to publication

©The Author July 2005

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/opinion-sharing-on-the-web-uings-a-distributed-architecture-and-trusted-social-networks(6c69a5fc-e4be-4812-a7d9-cee4a7e14613).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: Opinion Sharing on the Web
Uings a Distributed Architecture and Trusted Social Net-
works

Chris Beach

Technical Report 2005-06 July 2005
ISSN 1740-9497

Copyright cJuly 2005 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

i

OP IN ION SHA R IN G ON THE WEB U SIN G A

DISTR IBU TED AR C H ITEC TU R E A N D

TR U STED SOC IA L NETWOR KS

CHRIS BEACH

BSC IN COMPUTER SCIENCE

MAY 12
TH

 2005

ii

OP IN ION SHA R IN G ON THE WEB U SIN G A

DISTR IBU TED AR C H ITEC TU R E A N D

TR U STED SOC IA L NETWOR KS

SUBMITTED BY CHRIS BEACH

Copyright

Attention is drawn to the fact that copyright of this dissertation rests with its author.

The Intellectual Property Rights of the products produced as part of the project belong

to the University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no

quotation from the dissertation and no information derived from it may be published

without the prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the

requirements of the degree of Bachelor of Science in the Department of Computer

Science. No portion of the work in this dissertation has been submitted in support of

an application for any other degree or qualification of this or any other university or

institution of learning. Except where specifically acknowledged, it is the work of the

author.

Signed.......................................

This dissertation may be made available for consultation within the University

Library and may be photocopied or lent to other libraries for the purposes of

consultation.

Signed.......................................

iii

Abstract

Online shops and service providers often require a leap of faith from the consumer. It

is important to identify unreliable vendors. Whilst opinion-pooling sites offer a

measure of reputation, they are subject to untraceable, anonymous votes. They also

require several steps of interaction from the user.

A system is implemented to share reputation ratings between individuals using trusted

social networks. A client, integrated into the user’s web browser, shows the rating of a

vendor website as it is browsed. The system distributes storage and computation load,

making it inherently scalable. Additionally, the reputation data is exposed through

Web Services, allowing interaction with other software clients and agent-based

systems.

Current research in the field of recommender systems is considered, and issues of

security, trust and privacy are investigated in the context of the implemented system.

Acknowledgements

I would like to thank my supervisor Julian Padget for his helpful insight and direction

into the research surrounding the project

iv

Contents

1 INTRODUCTION ... 1

2 LITERATURE SURVEY.. 2

REPUTATION MECHANISMS IN ECOMMERCE ... 2
eBay ... 2
Epinions ... 3

TRUST MECHANISMS APPLIED TO EMAIL FILTERING ... 3
TRUST AND REPUTATION IN AGENT-BASED SOCIETIES ... 3
TRUST WITHIN DISTRIBUTED NETWORKS AND DDTM .. 5
SEMANTIC WEB ... 6
FOAF PROJECT.. 7

3 FEASIBILITY AND EXPANSION OF PROPOSED SYSTEM ... 8

CHOICE OF ARCHITECTURE .. 8
CHOICE OF WEB BROWSER... 9
CHOICE OF SERVER-SIDE SCRIPTING LANGUAGE... 10
BUILDING THE SOCIAL NETWORK... 11
REVIEWING REVIEWERS ... 11

4 REQUIREMENTS .. 12

4.1 INTEGRITY/TRUSTWORTHINESS OF DATA .. 12
4.2 SCALABILITY.. 12
4.3 SECURITY... 13
4.4 INTEROPERABILITY... 13
4.5 PERFORMANCE OF CLIENT .. 13
4.6 PORTABILITY.. 13
4.7 USABILITY.. 13
4.8 REUSABILITY.. 13
4.9 RELIABILITY... 14
4.10 MAINTAINABILITY.. 14

5 SPECIFICATION ... 15

5.1 PHASE 1 (BASIC RATINGS).. 15
5.2 PHASE 2 (CLASSIFICATION-SPECIFIC WEBSITE REVIEWING) .. 17

6 DESIGN ... 18

OVERVIEW... 18
SECURITY CONSIDERATIONS .. 19

HTTP Protocol ... 19
FTP Protocol.. 19
Reconsidering the HTTP Protocol .. 19

SEQUENCE DIAGRAMS.. 21
User Browses to Webpage .. 21
User Places Rating ... 22

DATA STRUCTURES.. 23
Request for Ratings... 23
Response to Request for Ratings ... 23
Client-Side Ratings Cache .. 23

AGGREGATION AND RATING DISPLAY .. 24
Social Network Topology .. 24

v

Recursion Limit .. 25
WEIGHTING THE RATINGS .. 26

Rating Value Icons.. 26
USER INTERFACE DESIGN, FIRST ITERATION... 27

Review Menu .. 27
Help.. 28

USER INTERFACE DESIGN, SECOND ITERATION... 28

7 IMPLEMENTATION ... 30

FIREFOX EXTENSION FRAMEWORK... 30
Unique Identification for an Extension.. 30
Overlays ... 30
Extension Installation ... 30
Extension Updates .. 31

MODEL-VIEW-CONTROLLER (MVC) PARADIGM .. 32
CODING STANDARDS.. 33
CLIENT USER INTERFACE ... 33
BRIDGING THE CLIENT AND SERVER... 34

Web Services... 34
XMLHttpRequest .. 34

PHP SERVER-SIDE... 36
NuSOAP ... 36
The Rating Object ... 36

FEATURES NOT YET IMPLEMENTED.. 37
FTP Support ... 37
Phase 2... 37
Caching .. 37
Minor Features... 37

FEATURES ADDITIONAL TO DESIGN.. 38
Build Script... 38
Automated Bug Reporting... 38
Debugging Mechanism ... 38

DIRECTION FOR IMPROVEMENT .. 39
Caching .. 39
Hash-Encrypting Passwords ... 39
Improving the Rating Weighting Algorithm... 40
Visualisation... 41
Comparing Similar Sites ... 41
FOAF Production ... 42
Protocol for Non-Human Users to Include Metadata .. 42
Integration with Del.icio.us... 42

8 TESTING... 43

RATING AGGREGATION BEHAVIOUR... 44
No Home Server.. 44
Home Server Set ... 45
One Subscription .. 46
Simple Recursive Case .. 47
Cyclic Subscription Case .. 48
Double-Linked Cyclic Subscription Case .. 49
Larger Cycle Case .. 50
Recursion Limit .. 52

USABILITY TESTING ... 53
PORTABILITY ... 53

vi

9 CONCLUSION.. 54

10 BIBLIOGRAPHY.. 55

11 APPENDIX A (SOURCE CODE)... 56

11.1 DSA CLIENT .. 56
11.1.1 contents.rdf... 56
11.1.2 constants.js ... 57
11.1.3 dsaOverlay.css.. 58
11.1.4 dsaOverlay.js.. 59
11.1.5 dsaOverlay.xul.. 65
11.1.6 io.js .. 67
11.1.7 protectServer.xul .. 72
11.1.8 Rating.js ... 74
11.1.9 Review.xul .. 75
11.1.10 SiteState.js .. 76
11.1.11 takeOwnershipOfServer.xul .. 78
11.1.12 util.js .. 79

11.2 DSA SERVER.. 81
11.2.1 dsa.php... 81

1

1 Introduction
After the `dot com' explosion of the 90's we find ourselves in a world where almost

anything can be purchased online. Many online retailers have made a good name for

themselves. However, blind faith is required when making purchases from less well-

known sources, particularly if they are not based in this country (and not subject to

stringent e-commerce law).

Dooyoo
1
, Dealtime

2
, and various opinion-polling web sites offer feedback to help the

buyer form an opinion. However, there are a number of issues with such sites. Their

independence is not guaranteed, particularly as many of them are subject to

commercial sponsorship. It is possible to place multiple ratings against the same

vendor, and there is no mechanism to prevent an individual promoting their own site.

From the user’s point of view, several steps are required to use opinion-polling sites

to discover the reputation of a vendor. Likewise, before submitting ratings, a user

generally is required to fill forms and create an account. Can this lack of trust,

immediacy and usability be addressed?

This paper describes the implementation of a system that provides an instant and

highly trustworthy means of finding the reputation of an online retailer. The design,

technical implementation and testing will be described in detail. The final chapters

will critically evaluate the system and draw conclusions.

In terms of development style, the evolutionary methodology has been used

throughout the project. This paradigm offers many advantages over traditional

approaches such as the waterfall model, which impose rigid structures and fixed

deliverables. Instead, throw-away prototyping, rapid development and a non-linear

development of ideas have all been key to the success of this project.

1
 http://www.dooyoo.com

2
 http://www.dealtime.com

2

2 Literature Survey
This chapter will survey the current state of research in fields related to the proposed

recommender system. The survey will focus on areas where existing research can be

expanded and applied, and acknowledge the original sources.

The proposed system draws from the following fields:

• Measurement of trust/reputation

• Distributed architecture

• Social networks

• The application of semantics to the web

Reputation Mechanisms in eCommerce

eBay

The world’s largest online auction, eBay
3
, has a

well-established mechanism for recording the

reputation of sellers. After a transaction has been

completed, the buyer and seller are invited to leave

a rating and comment for each other indicating

their satisfaction with the transaction. These ratings

and comments are then publicly available to other

eBay users, who can use it to decide whether to

deal with a particular individual.

At least two independent studies have shown that

the reputation ratings have an effect on the success

of eBay sellers. In a controlled experiment, Resnick

et al demonstrate that buyers were willing to pay a

strong-reputation seller 8.1% more on average than a new seller for a given item [10].

Likewise, Melnik and Alm have shown a statistical significance between reputation

ratings and auction end price [7]. However, both studies show only a moderate

correlation between seller success and reputation, considering the extremes in

reputation tested. This may be a result of several factors, including eBay’s various

buyer protection mechanisms that negate some of the risk involved in transactions

with low-reputation users. It is likely that being associated with a well-known brand

such as eBay will give all users a baseline level of perceived reputation.

On the Internet at large, no such baseline exists. In the absence of word-of-mouth

recommendation, a user may judge the trustworthiness of a web site merely by

superficial factors such as its visual appearance. [3]

3
 http://www.ebay.com

3

Epinions

Epinions
4
 is an online review site for products and services. It is innovative in

allowing reviewers to be themselves reviewed. This mechanism allows users to

become trusted peers, and gain authority for their opinions. Whilst Epinions is a

promising system, it relies on users performing several time-consuming steps (search,

browse ratings, consider bias) before getting a rating. Also, ratings from anonymous

users with potential vested interests are still considered.

Trust Mechanisms applied to Email Filtering

With spam becoming widespread and problematic, a great deal of investment has

been made in systems that can catch and prevent it. Golbeck et al propose an email

client, TrustMail, that uses knowledge of social networks to filter incoming mail. [4]

This is similar to the “whitelist” mechanism, whereby a finite list of known email

senders is built, and mail from an unknown source is automatically moved to a low

priority list or automatically deleted. Users may assign a level of trust to known

contacts, and using a recursive algorithm, the system will aggregate trust ratings for

contacts on other people’s lists.

Many common email clients support filtering by whitelist, but TrustMail automates

this process by querying existing social networks to build the whitelist. There is,

however, a burden on the user in adding trust ratings for the contacts. This is reduced

by the inferred ratings that propagate through the social network.

For TrustMail the social network is constructed from FOAF data, extended to allow

the storing of reputation data against people. However, as discussed earlier, the

adoption of Semantic Web technologies is largely restricted to the academic

community and FOAF is not ubiquitous on the World Wide Web (WWW). To be

useful on the WWW, Golbeck et al. suggest that existing social networks such as

Microsoft Networks (MSN), Yahoo! Mail, and America Online (AOL) might be

adapted to allow additional meta-data to be stored on users.

Unfortunately the authors of the paper appear not have implemented a TrustMail

client and therefore can draw only limited conclusions on its possible effectiveness.

Trust and Reputation in Agent-Based Societies

Multi-Agent Systems (MAS) is a software field empowered by the rise of ubiquitous

and distributed computing. Agents are software systems that model human social

norms and conventions and autonomously solve problems. They are designed to run

independently on behalf of humans or other agents.

“An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its

design objectives.”

Wooldridge and Jennings 1999

4

Measuring trust and reputation is intrinsic to the process of decision-making in

intelligent agents. Although they can work in conjunction with other agents, their goal

may have requirements that lead them to compete with other agents for limited

resources. Since the environment is entirely open, an agent may encounter other

agents that are uncooperative or even deceptive. The benevolent agent assumption [5]

is not applicable in such an environment. With no guarantee of reliability, an agent in

a complex multi-agent society needs to be able to determine which agents it can trust.

Whilst trust is an intuitive principle in human societies, in a computer system it must

be quantified in order that it can be expressed. Sabater i Mir proposes a trust

mechanism named ReGreT [8] that calculates not just trust values, but also reputation

and credibility values, providing a degree of reliability for each. An agent may then

use this data in decision-making. To achieve this sophistication, ReGreT takes into

account direct experiences and information from other agents, and social network

analysis. It considers several types of relation between agents, and uses these in the

calculation of credibility and reputation. Furthermore, ontologies are used to reason

about different types of related reputation. For example (taken from page 43 of

thesis), it can be assumed that the reputation of being a good airline summarises the

reputation of having good planes, the reputation of never losing luggage and the

reputation of serving good food. In turn the reputation of having good planes

summarises the reputation of having a good maintenance service, and the reputation

of frequently renewing the fleet.

Sabater i Mir’s analysis is comprehensive. He presents a testing framework named

SuppWorld, which models a supply chain. This is then used to investigate the

effectiveness of agents that use the ReGreT system, comparing with several other

trust frameworks. The study concludes that the addition of witness information and

social network analysis can radically improve the performance of an agent.

The Semantic Web Agents Project (MIND SWAP)
5
 is also coordinating key research

in the field of agent-based trust mechanisms.

4
 http://www.epinions.com

5
 http://www.mindswap.org

5

Trust within Distributed Networks and DDTM

Creating security systems within large distributed networks such as the Internet is

problematic. Individuals are hard to uniquely identify, and a unified trust system must

be extremely scalable and flexible. Enforcement of a uniform access control policy is

not suitable for the large number of entities in a distributed system. Instead, Lei and

Shoja propose a system that uses a tree of trusted peers to delegate trust decision

making through the network [6]. For each pair of entities, three numerical measures

are calculated by the proposed Dynamic Distributed Trust Model (DDTM): the direct

trust value, indirect trust value and the authorisation level.

• The direct trust value is calculated by measuring performance (a measure of

reliability, based on the proportion of transactions with a successful outcome),

and loyalty (a value which increases after a threshold amount of successful

transactions).

• If an entity a directly trusts another entity b, the authorisation level is a

measure of how much entity a trusts the recommendations made by entity b.

• The indirect trust value is a measure of how much an entity trusts another

unknown entity, calculated using a Dempster-Shafer reasoning algorithm that

attempts to model uncertainty by a degree of belief. Subjective parameters are

used, such as risk, indemnity (trust is recommended by a third party) and

inclination to suspicious usage patterns.

The DDTM is designed to authorise access to content within a distributed

environment. A content owner gives access to a node he directly trusts, and allows

this node authority to delegate access to others. This trusted node becomes the root of

a Trust Delegation Tree. Two types of certificate (signed message) are issued in order

to expand the tree and distribute the responsibilities of the root:

• A delegate certificate is used to delegate authority from one entity to another,

and contains the full path from the root to itself in order to verify its

trustworthiness. The certificate is valid for a finite time period.

• A recommendation certificate is used to authorise a requestor, and contains

the delegation chain. This is then authorised by the content owner, who checks

that the delegate chain is valid.

A supporting protocol (Dynamic Distributed Trust Protocol) is specified, which

supports the process of certificate submission and verification, and updating of the

TDT (Trust Delegation Tree). The protocol has been validated by the SPIN model

checker.

Lei and Shoja’s proposal represents a detailed mechanism for evaluating and

propagating trust through a distributed network. The system is interesting as it is

generic, and could be applied to many different application domains on the Internet.

However, it does not seem truly scalable. The advantages of distributing authorisation

6

responsibility seem to be largely negated by the reliance on the content owner for

verifying the trust certificate chain.

It would be interesting to see an applied DDTM model to test performance, and also

to test the accuracy of ratings using control data.

Semantic Web

The Semantic Web [1] is a term used to describe many different concepts. The overall

aim is for pervasive meta-data in documents, allowing machines to locate and reason

about content. Ideally software agents will do the hard work of locating resources on a

distributed network (ie the Internet), allowing humans to concentrate on the content.

The W3C (World Wide Web Consortium) is responsible for standards such as OWL

(the Web Ontology Language) [11] and RDF (Resource Description Framework)

[12]. These standards are means of sharing semantic data. RDF is a form of XML

(eXtensible Markup Language, a text markup language for the interchange of

structured data). The semantics of RDF can be defined for a specific application

domain. Triples of subject, verb and object are defined, and collections of these triples

form ontologies. In the context of distributed networks, ontologies are shared

vocabularies that give meaning to data. Uniform Resource Identifiers (URIs) are a

fundamental component of the current Web and are a foundation of the Semantic

Web.

The Semantic Web is an evolving and enabling technology. In the context of the

recommender system it offers an extensible data format for storing reputation and

social network data. It may also allow integration with existing social networks (see

FOAF Project). Berners-Lee predicts that URIs will “break out of the virtual realm”

and start to point to real-world entities such as mobile phones and TVs. As the

Semantic Web begins to integrate everyday life with computer systems, the proposed

system for making trustworthy recommendations (i.e. “digitising word-of-mouth”)

will enable software agents to make far better choices on behalf of their human

counterparts.

"The Semantic Web is an extension of the current web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation."

Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific American, May

2001

7

FOAF Project

As a means to store social network data, the FOAF (Friend of a Friend) project is a

Semantic Web vocabulary that aims to build machine-readable social network data

into the World Wide Web. It was originated by Dan Brickley and Libby Miller. The

principle types of data stored are:

• Profile information (name, email address, employer, homepage etc.)

• Relationships with other individuals

Individuals are identified by email address. In order to avoid harvesting by spammers,

email addresses are often concealed by a hash code generated by the sha1sum

algorithm. An email address can be mapped to a sha1sum hash, but not vice-versa.

Data is stored in RDF format. This is an example of the layout of a FOAF file:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:foaf="http://xmlns.com/foaf/0.1/"

 xmlns:admin="http://webns.net/mvcb/">

<foaf:PersonalProfileDocument rdf:about="">

 <foaf:maker rdf:nodeID="me"/>

 <foaf:primaryTopic rdf:nodeID="me"/>

 <admin:generatorAgent rdf:resource="http://www.ldodds.com/foaf/foaf-a-matic"/>

 <admin:errorReportsTo rdf:resource="mailto:leigh@ldodds.com"/>

</foaf:PersonalProfileDocument>

<foaf:Person rdf:nodeID="me">

<foaf:name>Chris Beach</foaf:name>

<foaf:title>Mr</foaf:title>

<foaf:givenname>Chris</foaf:givenname>

<foaf:family_name>Beach</foaf:family_name>

<foaf:nick>Beachy</foaf:nick>

<foaf:mbox_sha1sum>ec28eb17fb7f3213ee0a610f7a2e13cced8f2cd3</foaf:mbox_sha1sum>

<foaf:homepage rdf:resource="http://www.chrisbeach.co.uk/"/>

<foaf:depiction

rdf:resource="http://www.chrisbeach.co.uk/images/uploaded/image5517.jpg"/>

<foaf:phone rdf:resource="tel:07971634090"/>

<foaf:workplaceHomepage rdf:resource="http://www.bath.ac.uk"/>

<foaf:knows>

 <foaf:Person>

 <foaf:name>Stephen Bellamy</foaf:name>

 <foaf:mbox_sha1sum>8bfe452af76581f7a13f41c3987d0a8f19ff13be</foaf:mbox_sha1sum

>

 </foaf:Person>

</foaf:knows>

<foaf:knows>

 <foaf:Person>

 <foaf:name>Alex Hliton</foaf:name>

 <foaf:mbox_sha1sum>7a90d1482a8603541dd8ed6b0e6ceeac59e02d7d</foaf:mbox_sha1sum

>

 </foaf:Person>

</foaf:knows>

</foaf:Person>

</rdf:RDF>

The proposed recommender system could interoperate with existing FOAF files,

providing a test-bed of data. In this report we have seen TrustMail, an application of

8

this technology, which extends the FOAF vocabulary to include reputation data on

individuals.

3 Feasibility and Expansion of Proposed System
The correlation between reputation and seller success in eBay has shown that

electronic reputation ratings have an impact on consumers. The proposed system will

further expand on eBay’s successful mechanism by tying ratings to individuals within

a social network. In doing so it will largely mitigate biased reviews from parties with

a vested interest. Additionally, it will offer traceability for opinions, removing the veil

of anonymity from current electronic opinion systems.

Choice of Architecture

The original project proposal suggested a peer-to-peer (also known as P2P)

architecture be used to connect rating sources and establish the social network.

Ratings would be propagated in a similar fashion to illegally-distributed MP3s.

In discussions with researchers at Bath the initial proposal has been changed and P2P

architecture will not feature in the implementation. A P2P system would be reliant

upon clients running on users PC’s and would suffer overheads in making

connections and handshaking between clients. In addition, IP addresses for other users

must be found in order to make a connection. It was suggested that instant messenger

systems might provide this information. However, further investigation of the popular

MSN Messenger protocol showed that all communication between clients passes

through central servers and client IP addresses are not exposed to each other. It is

likely that the other IM clients work in a similar fashion.

So, the new proposal is that web-based server infrastructure will be used to store

relationship and rating data. The system will remain decentralised and the data will be

stored in the personal web-space of users. Since the initial community of users is

likely to be within the academic and technical community, the requirement for

personal web-space should not be an issue. To write and read the data, a server-side

API can be implemented. This will allow data-access through the HTTP protocol.

This approach offers several advantages over P2P:

• Rating data will always be available, whether the user is currently using the

system or not.

• Users can be uniquely identified by their personal website URL. This avoids

the problem of ‘ballot stuffing’ votes from anonymous users.

• Communication between servers on the Internet is less likely to be restricted

by firewalls than communication between clients.

• Autonomous software ‘spiders’ similar to those used by search engines may

aggregate ratings data.

9

Choice of Web Browser

The following browsers are the dominant products in terms of market share (shown in

brackets, figures taken from 2005 survey by onestat.com
6
)

• Internet Explorer (86.63%) is Microsoft’s web browser, packaged with all

versions of their operating system since Windows 95 OSR-2.

• Firefox (8.69%) is an open-source browser developed by the Mozilla

Foundation, which borrows from the Mozilla browser and former Netscape

code-base. It may be downloaded free-of-charge.

• Safari, (1.26%) written by Apple, is packaged as the default browser of their

operating system OS X (version 10.3 and later).

• Netscape (1.08%) takes several forms, the earliest being written by the now-

defunct Netscape Communications Corporation. The most recent version has

been written for AOL (America Online) by Mercurial Communications.

• Opera (1.03%) is a browser developed by Opera Software, which has an

excellent reputation for security. It does not support extensions.

Internet Explorer is the most highly used web browser on the Internet at time of

writing. However, Firefox is gaining market share due in part to its aggressive

marketing campaign, which has included grass-roots publicity and a two-page advert

in the New York Times. In the academic and technical community, usage of Firefox

is much more common. W3schools.com (an online web development resource)

reports that 24.6% of its visitors are Firefox users (as of May 2005). Opera and

Netscape have negligible market share, and neither have shown growth in the last few

months.

Firefox allows extensions to be written using text-based layout and scripting

languages. It exposes a rich API to the extension developer, with access to the core

browser components. There is no requirement for a proprietary development

environment, unlike Internet Explorer, which requires code to

be compiled into a proprietary .DLL (Dynamic Link Library)

file or ActiveX control. Opera and Safari both have very

limited support for extensions.

The browser plug-in will be developed for the Mozilla Firefox

browser. Unlike Safari and Internet Explorer, Firefox is cross-

platform compatible (though earlier versions of IE were

released for UNIX and Apple platforms). Unlike Opera, it is available free-of-charge.

6
 http://www.onestat.com/html/aboutus_pressbox37.html

10

Choice of Server-side Scripting Language

• ASP (Active Server Pages) is a server-side scripting language introduced by

Microsoft for use with its IIS (Internet Information Services) server. Its syntax

is the same as that of VBScript but it has an additional library of built-in

objects for use in generating dynamic web pages.

• Servlets are JIT (Just In Time)-compiled programs that handle HTTP requests

and responses. They leverage the Java Servlet API. Servlets can be generated

from JSP (JavaServer Page) files, which are templates containing program

logic inline with HTML. Servlets are executed within a servlet container, such

as Apache Jakarta Tomcat, which manages servlet deployment, session state

and database connectivity.

• PERL (Practical Extraction and Report Language) is an interpreted language

with excellent text processing features and a vast collection of third-party

modules. PHP is prevalent in UNIX based systems and has also been ported to

most major operating systems including Windows and Mac OS X. Critics

argue that PERL’s wide support for different dialects, paradigms and shortcuts

leads to code that is difficult to read.

• PHP (PHP Hypertext Pre-processor) is a popular open-source interpreted

language that is used for creating both dynamic web content and standalone

applications using the PHP-GTK library. It is loosely typed, but supports

object orientation. PHP runs on most major operating systems including

UNIX, Linux, Windows, and Mac OS X.

The server-side component of the DSA system will be

written in PHP. Like Firefox, the PHP server platform is

cross-platform compatible and unlike ASP, it is available

free-of-charge. The language of PHP is expressive,

allowing object orientation, reflection and a vast collection of APIs. It is also very

well documented online
7
. The documentation includes user-submitted examples and

commentary.

PHP is enabled on the campus web servers, with web-space available to all students

and academic staff at the University of Bath. Unlike Servlets, PHP is commonly

supported by commercial web hosts.

7
 http://www.php.net

11

Building the Social Network

Semantic Web technologies may help automate and enrich the social network

required to provide reputation ratings. Pujol suggests the following factors that

indicate relationships between individuals [9]:

• Personal web pages

• Authorship of joint reports or documents

• Participation in projects

• Hierarchical structure in the community or organisation

• Sharing of physical resources

• Sharing of virtual resources such as news groups, forums etc.

• Email traffic

All of these factors can be easily represented and analysed using existing Semantic

Web technologies. If the proposed system were aware of these relationships it would

be able to construct a richer social network and therefore gain more reputation ratings.

With more ratings, a statistically more accurate average can be calculated.

Reviewing Reviewers

Investigating the online opinion site Epinions has revealed another feature that can be

naturally integrated into the proposed system. Since the subject of recommendations

are web sites, and recommenders themselves are also identified by their personal web

site, reviewers can be rated by the system.

When browsing to the homepage of a friend who uses the system, the software client

would find the ratings data-file (since it has a standardised filename) and identify the

friend as a possible source of ratings. With a single click on the browser plug-in

client, the friend could be added to one’s list of trusted peers. The simplicity of this

mechanism would enable a social network to be built quickly by a user of the system.

Research in the field of collaborative reputation mechanisms demonstrates that

reviewing reviewers is an effective strategy to increase the overall relevance of

ratings [2, 13]. It is worth noting that the problem of “transitive trust” remains. If

person A trusts person B and person B trusts person C, should it be inferred that

person A trusts person C? There may be personal reasons why person B trusts person

C (love, for example), and these may be incompatible with inferring the trust onwards

to another person.

However, the idea of ratings on reviewers could enable an interesting technical

feature in the proposed system. Frequent and accurate reviewers will become

authoritative ‘super-nodes,’ who are characterised by having received a large quantity

of high ratings. A spider could be deployed to identify such users and publish their

URI on a central website. Thus the system client can immediately present a list of

12

‘super-nodes’ to new users of the system, avoiding the need for them to build a large

social network of their own.

Not only would this solve the problem of initiating social networks for new users, the

prospect of having one’s homepage address published on a ‘top-ten’ list would also

serve as a tantalising reward for highly participative users.

4 Requirements

Since the development process is evolutionary, the requirements of the system have

emerged throughout the project. However, the basic functional requirements for the

system remain the same:

• The system should provide a reputation rating upon browsing to a website.

• The rating value should be represent the opinions of trusted peers

• The system should expose its reputation data via Web Services

These requirements will be further analysed in the specification section. Prior to this,

more general issues will be considered:

4.1 Integrity/Trustworthiness of Data

The system will provide a mechanism to measure the integrity of commercial

websites. If the system itself lacks integrity then it is useless. In the worse case,

information provided by the system may be deceptive to the user and lead them to

disreputable vendors. Therefore, it is important that the following conditions are met:

• The source of a rating cannot be anonymous. Each rating should be traceable

in order that it can be (potentially) verified. Traceability should be

straightforward to implement, since the network of users will already be

socially connected.

• All ratings supplied by a user should be accessible to other users. With this

data, when one user subscribes to the ratings of another user, it is an informed

decision.

• A user must specify the source of ratings used by the client. The system will

not have a pre-defined list of ratings providers, since this would distort the

aim of using entirely social networks. The networks should be built based on

real-world relationships.

4.2 Scalability

The system will operate on the Internet and it may develop a vast user-base. It must

deliver an acceptable level of performance under conditions of heavy use. Therefore

is must be designed in such a way that the computational power available may be

increased to compensate for increases in load. If the system uses recursive calls over

several clients or servers, maintaining performance will be an important concern as

the social network grows.

13

4.3 Security

There are many individuals who would have an interest in breaking the socially

distributed nature of the system. For example, stakeholders in an online service

provider would stand to gain from saturating the system with positive ratings for their

own site and negative ratings for competing service providers. To do so they would

have to affect the ratings of other people, since in normal system operation their own

ratings will only be visible to individuals that have subscribed to them.

The system must be impenetrable to outside interference in order to preserve its

reputation and usefulness.

4.4 Interoperability

Reputation data in the system shall be made available to other systems. Discussions

with members of Bath’s @lis research team revealed a possible application of the

system with an agent-based project to deliver personalised tourism/cultural

information (further details in the Conclusions section). SOA (Service Oriented

Architecture, also known as Web Services) is the preferred technology for

interoperating with the agent framework.

4.5 Performance of Client

The DSA client should not have a detrimental affect on the user’s browsing

experience. It should load and display rating data quickly, and should not significantly

affect the time taken to load a webpage.

4.6 Portability

Users of the system will be running various different operating systems, including

Linux, UNIX, Windows and Mac OS X. They will also be operating on different

platforms, including x86 machines and Macintosh computers. The choice of

implementation language and APIs should take this into account.

Rather than coding different implementations for different platforms, a single code-

base written for a multi-platform framework will save development time and improve

maintainability.

4.7 Usability

The system should be easy to use and the user should not require detailed usage

instructions. Where possible, context-sensitive help should be included.

4.8 Reusability

The system should be constructed in a modular fashion, and ‘coupling’ between

component parts should be kept to a minimum

14

4.9 Reliability

Since the DSA client will interoperate with the user’s web browser, a fault in the DSA

client may affect web browser functions. Therefore it is especially important that the

client is reliable and well tested.

4.10 Maintainability

The system should be written in accordance with published coding standards and well

commented. This will aid any further development and debugging.

15

5 Specification

A successful implementation of the DSA system should demonstrate the following

behaviour:

5.1 Phase 1 (Basic Ratings)

1. Upon browsing to an online service provider (e.g. a website selling holidays, or

the website of a broadband provider), a reputation rating of the site will be shown

within five seconds.

1.1. The displayed rating will be one of six icons (see User Interface Design in the

Design chapter), or blank if no ratings have been found

1.2. The icon representing the lowest trust rating should be animated in order to

draw attention to the bad reputation of the site

2. The client should allow a positive (thumbs up) or negative (thumbs down) rating

to be given to the website currently being browsed.

2.1. Only one click should be required for a positive vote. A further click will

open a dialog, where the user may write a short review (up to 255 characters).

2.2. When clicking to make a negative vote, the review dialog is opened after the

first click.

3. The rating / review of a site may be modified by the user when returning to the

website.

3.1. A click on the same vote option will (re)open the review dialog, with an

option to edit the review given previously.

3.2. A click on the alternative vote option will change the saved rating for the site.

The review dialog will be shown if the new vote is negative.

4. The review dialog will allow a rating/review to be deleted.

5. A website with a particularly bad rating (a negative:positive vote ratio of at least

5:1) should be indicated distinctly by the client. This will be referred to as a

‘risky’ rating in documentation.

6. Upon browsing to a website which has existing reviews, this should be indicated

to the client.

7. The user should be able to view at least five existing reviews for the website with

a single click or mouse hover.

7.1. These reviews should be sorted in order of trust (e.g. taking into account the

number of “hops” along the social network)

7.2. The user should also have the option to view more reviews

16

8. Sites may be repositories for DSA rating data (e.g. personal homepages of DSA

users). Upon browsing to such a site, the client should be given the option to

subscribe to the DSA rating data it provides if a subscription relationship does not

exist already.

8.1. The user should be able to browse a list of ratings available on the server

before (or after) subscribing to that server.

9. The client should be able to subscribe to up to 10 DSA rating providers.

10. The DSA rating server should allow up to five levels of recursion when searching

ratings from other servers.

11. Online and context-sensitive documentation should be made available.

12. The DSA server will provide the following Web Services in order to interoperate

with other software, including agents within the @lis Technology Net:

Rating[] getRatings(String domain, String requestChain)

• This method will return an array of Rating objects (see Data Structures).

• The requestChain argument will hold a semicolon-delimited string list of

servers. These are the DSA servers through which the request has passed

during the aggregation process. In general, this argument is used internally

within the DSA system and may be supplied as an empty string when called

from another system.

void addRating(Rating rating, String password)

• This method takes a Rating object and password string.

• If the password is found to match the server’s password, the rating will be

saved to the server. If not, an error will be thrown by the method

void changePassword(String oldPassword, String newPassword)

• This method takes two strings. oldPassword should be set to the existing

password of the server (which will be an empty string if the server has been

freshly installed)

• If the oldPassword value is found to match the server’s existing password,

the server will set its password to the value of newPassword. If the old

password is invalid, an error will be thrown by the method

17

5.2 Phase 2 (Classification-Specific Website Reviewing)

1. Upon browsing to a website, its classification should be determined where

possible.

2. At least five classifications should be entered into the system as test data, and

the DSA client should be able to correctly identify sites of these classifications

with 90% accuracy.

3. Up to five additional criteria for review may be presented for a site of given

classification.

4. The classifications and criteria will be stored in such a way that they may be

updated by the client.

5. Classifications should be standardised. A mechanism must exist to merge

classifications that are very similar.

6. When placing a review against these additional criteria, a scale of 1

(unacceptable) to 5 (excellent) should be used.

18

6 Design

Overview

The Don’t Shop Alone (DSA) system will comprise two components: a web browser

extension (the DSA client) and scripts that operate on a web server (providing the

DSA server).

• The DSA server application will store ratings and reviews. It will also contain

logic to aggregate ratings and reviews from other DSA servers. The system

does not rely on a single server; it is not a conventional client-server

application. Instead, users who have access to web-space may host a DSA

server that will store their ratings. It will also store a list of other DSA server

addresses (hosted by trusted individuals) from which to aggregate ratings.

• The DSA client application will run within the web browser and allow the

user to view, add and edit ratings and reviews of websites. Initially, the client

will not be configured to access a server. Upon browsing to a DSA server, the

client will offer the option to subscribe to ratings and reviews provided by the

server. If the server is owned by the by the user, the DSA client will allow

ratings/reviews to be added, edited and removed (see Security Considerations

for further details on the protection

Internet

DSA Client running on

user’s PC

DSA Home Server

Ratings

returned

Request

for ratings

Requests

for ratings Ratings

Requests

for ratings Ratings

DSA Server DSA Server DSA Server

DSA Server DSA Server

DSA Server DSA Server

DSA Server

Ratings

Requests

for ratings

The DSA Client is assigned

one DSA server as it’s ‘home’.

This server provides a source

of ratings

This server may be owned by

the user, allowing ratings to be

added, edited and deleted.

Figure 1 - Overview of a request for ratings

19

Security Considerations

The system must be impenetrable to outside interference in order to preserve its

reputation and usefulness, as discussed in the Requirements Specification chapter.

The social network used by the DSA system should represent the real-world links that

exist between the user and other individuals. With no central server, the effects of

malicious hacking would be localised within a social network cluster and effects on

the system as a whole would be mitigated.

Security was a major factor in the choice of protocol.

HTTP Protocol

The HTTP protocol is traditionally used for requesting and receiving webpages. It

communicates using IP (Internet Protocol) packets over TCP (Transmission Control

Protocol). Although HTTP supports user authentication, this requires a degree of

authority on the web server that many DSA users will not have. On Apache web

servers, a configuration file named .htaccess can simply be placed in a directory

to protect it. On other platforms, however, the procedure is more complicated.

Enabling authentication has the further drawback of requiring additional interaction

by the user when installing the DSA server. It is therefore not viable for this system.

FTP Protocol

The FTP protocol would offer a convenient layer of protection when publishing

ratings to a DSA server. It supports user authentication and is widely trusted by web

developers. The user could supply the username and password for an FTP server,

which would then be used by the DSA client to publish ratings onto the Internet. If the

user did not have access to an FTP server they would still be able to use the DSA

client in a limited capacity (subscribing to other people’s ratings but not able to

publish ratings).

FTP has obvious advantages, but unfortunately it will not be implemented.

Development of the prototype DSA client exposed the lack of support for FTP in the

APIs of Firefox. The only way to implement FTP support would be to write an

interface that communicated at the socket level and parsed the FTP protocol. This is

not viable given the time constraints on the project.

Reconsidering the HTTP Protocol

As a compromise solution, ratings will be published using the HTTP protocol, but

authenticated using a password set once on the DSA server.

The DSA server stores its password in a file with a .php extension. Opening and

closing PHP tags and comment tags surround the preference data. Therefore anyone

not local to the PHP host (i.e. all Internet users) trying to access the data will get a

blank response (the PHP server tries to pre-process the data but only finds comments

so returns nothing). However, the DSA server is able to interogate the preferences

since it can access the file without the PHP pre-processor kicking in.

20

Upon installing a new DSA server, the client toolbar prompts the user for a password

to assign to the server. In its unprotected state, the server will save this password

down to a PHP file as described above. The server will then block any future ratings

submissions that are not accompanied by this password.

21

Sequence Diagrams

User Browses to Webpage

1. Get the domain of the webpage

2. Is the webpage on the same domain as the previously browsed page? If so, stop

3. Are there sufficient up-to-date ratings for the domain cached by the DSA client? If

so, display the cached ratings and stop

4. Client sends the domain string to the user’s DSA home server

5. DSA home server sends domain string to all known DSA servers

6. DSA servers respond to home server with ratings

7. Aggregated ratings are sent from DSA home server to DSA client

8. Client displays rating.

9. Stop

Figure 2 – Sequence Diagram for Steps 4-8

22

User Places Rating

1. a) If placing a negative vote, the DSA client prompts the user for a short review.

1. b) If placing a positive vote, the DSA client only prompts the user for a short

review on the second click on the toolbar button.

2. DSA client calls addRating() method of the home server

3. DSA server checks password

4. a) Password incorrect, error returned to DSA client

4. b) Password correct, DSA server saves domain, rating and review to the resource

file.

5. Stop

Figure 3 - Sequence diagram showing steps 1-5, with correct password and no review

entered

23

Data Structures

This section specifies the attributes of objects/data structures that are passed through

the system.

Request for Ratings

Name Type Notes

domain String The domain to be rated

requestChain String A semicolon-delimited list of servers from which the request

has passed

The DSA client will send the domain as a string eg. “onlineshop.co.uk,” and the

requestChain will be null initially. When a server forwards a request for ratings, it

will add its URI to the requestChain list.

Response to Request for Ratings

The response will contain an array of Rating objects, with the following attributes:

Name Type Notes

domain String The domain to be rated

rating Integer -1 for negative, 1 for positive

review String Up to 255 characters of optional free text elaborating on the

rating

serverChain String[] The list of servers from which the request has passed (the first

in the list will be the source of the rating)

Client-Side Ratings Cache

Name Type Notes

domain String The domain to be rated

rating Integer -1 for negative, 1 for positive

review String Up to 255 characters of optional free text elaborating on the

rating

sourceServerAddress String The address of the server from which the rating originated

downloadTimestamp Date/Time The time at which the rating was received

To minimise unnecessary traffic and load on the server, the client will store ratings

and comments that it has received. The DSA client records a timestamp against

ratings downloaded from the DSA server. This timestamp represents the time of

download.

When browsing to a domain, the client-side cache will be checked before a request for

ratings is sent to the server. If client-side cached ratings exist for the domain, they will

be used and no request will be sent to the server. If any of the client-side ratings are

found to be older than a threshold age, the request for ratings is sent and cached

ratings for the domain are replaced with the new ratings received

24

Aggregation and Rating Display

The aggregation process described in the previous section will supply the client with

an array of Rating objects (see previous section for the structure of a Rating object).

The client should summarise this data in a form that gives the user a rapid indication

of the reputation of the site.

Several properties can be considered when weighting the importance of ratings. The

design of this process should also consider the aggregation of ratings from social

networks with various different topologies.

Social Network Topology

In most cases the connections between DSA servers do not form a simple tree-like

“fan-out” from the user. There are likely to be cycles in graph, as shown in this

example:

Figure 4 - A cyclic DSA server network

In this case, the requestChain variable of the request for ratings (see Data Structures)

serves to prevent loops within recursion. The request will not be forwarded to a server

that it has already passed through.

In this case, the connection from dsa-b to dsa-a will be effectively ignored by dsa-

home’s aggregation. The request from dsa-home would pass through dsa-a, dsa-b and

then be prevented from passing to dsa-a again.

Without this prevention, infinite loops would occur. Servers connected in cycles

would pass requests endlessly round the cycle.

25

Now we shall consider the following case, where dsa-home subscribes to both dsa-a

and dsa-b:

Figure 5 - A doubly-subscribed cyclic graph of DSA servers

This case raises a question: how many times should the ratings from dsa-a and dsa-b

be considered?

Sending a request from dsa-home to dsa-a will return two ratings, as will the request

from dsa-home to dsa-b. However, there are only two original ratings. Here we have

two possible courses of action:

• Cull duplicate ratings keeping the version that came from the node closest to

the requestor on the graph.

• Consider all four ratings. The dense linkage in this graph indicates that the

individuals represented by the nodes form a well-connected group (perhaps a

family, project team or a clique of friends).

In the interests of mirroring the real-world process of opinion sharing, the latter

option has been selected. Opinions within a close-knit group should naturally carry

more authority than those of a disparate individual at the outer region of the graph

Recursion Limit

If the social network of a user is large and well connected, rating requests will take

longer to propagate. In order to prevent performance issues, an arbitrary limit shall be

drawn on the aggregation process. A rating request will not be passed through more

than five DSA servers.

26

Weighting the Ratings

Some ratings come directly from servers chosen specifically by the user. These

servers are likely to be owned by individuals with a relationship to the user in the real

world. Such individuals are likely to be highly trusted by the user. Other ratings come

from servers connected to these subscribed servers, and servers connected to those,

and so on. With each ‘hop’ from server to server, the user is less likely to know the

owner of the server.

Therefore, the weighting of a rating is assigned based on the number of servers

between the author and the recipient user. The weight of a rating is halved for each

DSA server it has passed through before reaching the user.

A rating received from the home DSA server is assigned a weighting of one, so its

weighted value is either 1.0 (a positive rating) or -1.0 (a negative rating). Ratings

received from DSA servers subscribed by the home server are given a weighting of

0.5. Servers subscribed by those are given a weighting of 0.25 and so on.

Rating Value Icons

The following icons are used to display the rating of a site. The selection of image is

determined by the ratio of total positive weighting to total negative weighting. Note

the numbers are completely arbitrary. The thresholds may need to be modified

depending on the usage of the system in production. For example, if people are

inclined to make many positive votes for websites, the thresholds may need to be

raised. If, on the other hand, people do not tend to give positive votes (in spite of good

service), the thresholds may need to be lowered. Without this calibration, the rating

icon shown will always indicate an extreme.

Ratio (positive:negative)

Greater Than

Image

50:1

20:1

10:1

5:1

1:5

Ratio (positive:negative)

Less Than

Image

1:5 (risky)

27

The lowest rating icon may only be displayed when 3 or more ratings have been

placed.

The client should highlight an especially risky site. The icon that represents the lowest

rating (shown above) should be animated such that it is more obvious. The animation

should be a subtle increase/decrease in the brightness of the graphic.

User Interface Design, First Iteration

The extension will display a toolbar in the browser as follows:

The toolbar has been designed to be unobtrusive since it consumes part of the website

“real estate”. Rather than filling the toolbar with buttons, only three clickable areas

are made available. This reduces the visual impact and complexity of the client,

although further options are available by clicking the reviews button.

Colours are largely shades of grey rather than solid black or vibrant hues. The icons

are simple and shadowed to match the style of other toolbars.

Review Menu

The review menu shows a selection of reviews, and two other items: ‘Options’ and

‘Help’

In order that ratings are distinct, and separated, they are given background colours

that alternate between two shades of blue. This helps differentiate them from menu

Clicking here

opens the review

menu shown in

the next mock-up

Up to ten reviews

are shown,

prioritised by the

number of hops

taken to

aggregate them.

Reviews from

users nearby on

the social

network are

shown at the top

of the list

28

commands. There is a line separator between the ratings and the other two menu

options.

Help

The help option on the context menu opens online documentation in the web browser.

Such web-based documentation will be easier to keep up-to-date, and allow a

mechanism for users to give direct feedback.

The help webpages will be hosted at http://www.dontshopalone.co.uk, and use the

content management system written previously by the author of this project. The

system allows content to be edited using a web browser, and also allows users to write

comments that are displayed inline the content.

User Interface Design, Second Iteration

Whilst creating a reusable prototype and consulting with expert users, several

improvements were made to the original user interface design.

• The Help elements did not belong in the Reviews menu. A DSA menu with a

Help option was created on the left hand side of the toolbar. In a right hand side

position, the menu would be visibly shifted when the reviews and ratings elements

of the toolbar became shown or hidden.

• Wording was changed on negative voting button. An expert user commented that

the original wording was negative and not intuitive enough.

• The relevant rating button is emboldened to represent the user’s vote for the

current website

• A logo has been added in order to give identity to the toolbar and make it more

distinctive.

• The background colour of items on the reviews menu indicates whether each

review is positive (pale green background) or negative (pale red background)

Figure 6 - Toolbar showing a positive rating

Figure 7 - Toolbar showing a subscribed DSA server

29

Figure 8 - Toolbar showing a home server

Figure 9 - Toolbar showing review menu

30

7 Implementation

The Don’t Shop Alone (DSA) system comprises two components: a web browser

extension (the DSA client) and scripts that operate on web servers (the DSA server).

This section of documentation will detail the implementation of the extension and

scripts.

Firefox Extension Framework

Extensions for Firefox (also referred to as addons or plugins) are written to a

documented set of standards. This ensures they operate with the Firefox’s built-in

installation and update service. An online tutorial
8
 provided much of the following

information.

Extension source code is zipped into in an .XPI file. The code is divided as follows:

• Program logic is coded in JavaScript

• User interface is described in XUL (see Client User Interface)

• Two installation configuration files are written, one in RDF and one (for

legacy versions of Firefox) in JavaScript.

Unique Identification for an Extension

Hundreds of extensions have been written for Firefox. Each different extension is

keyed with a globally-unique identifier (GUID) by its developer. This helps Firefox to

ensure that only one version of an extension is installed at any time.

An online tool
9
 has been used to generate the GUID for the DSA client.

Overlays

Overlays
10

 are XUL user interface files that allow the user interface of the browser to

be extended in several ways. For example, a toolbar may be added or new options

may be introduced into a menu or context menu. XUL also allows the reuse of

standard browser components such as the auto-completing address bar and the various

navigation buttons.

Extension Installation

The XPI installer can be loaded directly by the Firefox browser to begin installation.

The extension is then registered by the browser and the source code is copied into the

“chrome” directory within the user’s profile.

Upon a restart of the browser, the overlay of the extension user interface is activated.

8
 http://roachfiend.com/archives/2004/12/08/how-to-create-firefox-extensions/

9
 http://extensions.roachfiend.com/cgi-bin/guid.pl

10
 http://www.mozilla.org/xpfe/xptoolkit/overlays.html

31

Extension Updates

In order to check whether an extension is up-to-date, Firefox polls its homepage on

the Internet. If a newer version of an extension has been released, the browser will

indicate this to the user and automate the update process. To facilitate this feature, the

.RDF installation configuration file of each extension contains a URI that points to a

Internet server hosting the latest version of the extension. For the DSA client, the URI

is:

http://www.dontshopalone.co.uk/update.rdf

The file update.rdf contains two important details:

• The current version number of the extension

• The location of the .XPI file which contains the latest extension code

<?xml version="1.0"?>

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.mozilla.org/2004/em-rdf#">

<r:Description about="urn:mozilla:extension:{37d4fa3f-0f09-4631-92eb-e0f60e474238}">

 <updates>

 <r:Seq>

 <r:li>

 <r:Description>

 <version>0.0.1</version>

 <targetApplication>

 <r:Description>

 <id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</id>

 <minVersion>0.8</minVersion>

 <maxVersion>1.2</maxVersion>

 <updateLink>http://www.dontshopalone.co.uk/dsa.xpi</updateLink>

 </r:Description>

 </targetApplication>

 </r:Description>

 </r:li>

 </r:Seq>

 </updates>

 <version>0.0.1</version>

 <updateLink>http://www.dontshopalone.co.uk/dsa.xpi</updateLink>

</r:Description>

</r:RDF>

Figure 10 - example update.rdf

32

Model-View-Controller (MVC) Paradigm

The first working prototype of the DSA client had several bugs related to the

interaction between control logic and the user interface. These bugs manifested

themselves as buttons unexpectedly disabling and enabling, options appearing and

disappearing and general glitches in toolbar behaviour.

The problem was down to the disparate nature of callback functions used in

asynchronous calls. Upon detection of a server, a callback function would suddenly

execute in JavaScript, independent of any other running function. The same would

happen for a rating response, or a rating save confirmation, or several other actions.

All of these callback functions would make visual changes to the user interface. For

example, if a DSA server was detected, the ‘subscribe’ button might be displayed.

However, another callback could then conflict with this, requiring the ‘subscribe’

button to be hidden (if it was discovered that the server was already subscribed,

indicated by a rating response). In the worst case, the conflicting updates to the user

interface would leave it in an incorrect state. This is clearly unacceptable.

In order to resolve this issue, concepts from the Model-View-Controller (MVC)

paradigm were employed. This aims to separate the user interface, the state model and

the controlling program logic.

In the DSA client, the state of the currently browsed website is modelled in a single

object, named gSiteState, which is instantiated in global scope when the user

browses to a new domain. This object completely encapsulates the known state of the

website, and contains functions that operate on this information to:

• indicate whether or not the site is subscribed

• indicate whether or not the site is the user’s home server

• parse the rating array and serverChain string

• indicate whether the site state is displayable (that is, whether sufficient

callbacks have been received)

There is a controller function called updateUI(), which uses the gSiteState

object to update the entire user interface in one operation. This controller function is

called at browser start-up, webpage navigation, and in each callback function. It only

updates the user interface if gSiteState indicates an update is necessary.

Since control logic, user interface and state model were separated, the system works

much more predictably and the code is decidedly neater.

33

Coding Standards

Maintaining code is easier if all developers adhere to a set of formatting and naming

standards. Mozilla has published a list of standards for JavaScript
11

, including:

• Prefixing global objects with a ‘g’ e.g. gSiteState

• Using upper case when naming constants e.g. DSA_FILE

• Beginning the name of a constructor with an upper case character

These coding standards have been used throughout the project.

Client User Interface

The extension user interface is written in XUL
12

, a proprietary XML-based markup

language created by the Mozilla Foundation. CSS (Cascading Style Sheets) are used

to control the look-and-feel where possible. This approach centralises the formatting

into a single file and allows a common theme to be used for components of the

interface.

XUL documents have been created for the browser toolbar (in the form of an

“overlay”) and for the dialogs that request review and server password.

The principle tags used in the toolbar overlay are:

• <toolbox> is a container for a toolbar

• <toolbar> encapsulates a toolbar to be displayed under the menu (and

other toolbars within the browser

• <toolbarbutton> represents a button with optional graphic to be

displayed within a toolbar

• <vbox> is styled with CSS (class=”dsaSeparator”) and used to create

a vertical separator between elements in the toolbar

• <menupopup> represents a popup menu

• <menuitem> represents an item within a menu, which is usually assigned a

JavaScript function in its oncommand attribute

• <menuseparator> is used to display a vertical line between menu items

Please see Appendix A for the XUL source code used to create the DSA client

interface.

11
 http://kb.mozillazine.org/JavaScript_coding_guidelines

12
 http://www.mozilla.org/projects/xul/

34

Bridging the Client and Server

The interaction between the client (toolbar) and servers is fundamental to the

implementation. The choice of protocol and technique will directly influence the

performance and reliability of the system.

The two mechanisms used in the implementation are mature, proven technologies,

described in more detail below.

Web Services

In order that the JavaScript client can communicate with the PHP-based server, a

common protocol is required.

The HTTP protocol is used to request and receive web pages across the Internet. It

also allows data to be passed in a request.

Web Services (sometimes referred to as SOA – Service Oriented Architecture) is a

standard that uses the HTTP protocol to send and receive data in a well-defined form.

An application server hosts a web service at a URI (universal resource identifier). An

accompanying definition of its data structures and methods is published there in a

form of XML called WSDL (Web Service Description Language).

Since WSDL is machine-readable, web services can be automatically discovered and

interrogated. This makes the technology particularly interesting in the field of Multi-

Agent Systems (MAS).

The major selling point of Web Services is that unlike other communication protocols

(eg DCOM), they operate on the same port as web traffic are therefore generally not

blocked by firewalls. Another feature of most Web Service implementations is

support for asynchronous behaviour, which avoids the client from being halted

whilst waiting for a response from the server. Such protection is required, particularly

on the Internet, which offers few guarantees of bandwidth or connection reliability.

XMLHttpRequest

XMLHttpRequest is a proprietary technology first introduced by Microsoft into the

JavaScript implementation of Internet Explorer version 5. Like Web Services, it

allows scripts on a client to communicate asynchronously with scripts on a server.

XMLHttpRequest became a de-facto standard, and was implemented in the Safari

browser on the Apple platform, and also in Firefox.

In the context of the DSA client, the XMLHttpRequest class is used to discover a

server script and interrogate it to find its version, and whether it is protected with a

password.

35

There are three principle methods and properties of the XMLHttpRequest object

which have been used in the DSA client implementation:

• open(method, URI, async) method sets the server URI to receive

the request.

o The method argument may either be “GET” (for sending requests

with simple parameters) or “POST”

o The URI argument is the Web address of the server to receive the

request. This may include parameters in a ‘query string.’ For example:
http://www.dontshopalone.co.uk/dsa.php?sniff=true

o The async argument is a boolean to indicate whether the call will be

made asynchrously. If this is set to false, the program flow will be

halted whilst waiting for a response.

• onreadystatechange property is set to a JavaScript function (referred to

as the call-back function) to receive status updates as the request is fulfilled

• send(content) method initiates the request

o The content argument is optional and may be used to pass an XML

document or URL-encoded form data (when the method is set to

“POST”) within the request.

The call-back function assigned to the onreadystatechange property must have

access to the XMLHttpRequest object. Therefore the XMLHttpRequest object is

made global. As a response is received, the callback function queries several

properties of the XMLHttpRequest object:

• The readyState property contains the phase of communication. Its initial

value is 1 when the request is originally sent. When a well formed response

has been received its value is 4. Note that the callback function is called for

each of the four phases.

• The responseText property holds the text of the response from the server

• The responseXML property is similar to the responseText property

except that it contains a XML DOM object when the response is in the form of

XML. If the response is not in XML format, this property is unavailable.

36

PHP Server-Side

The DSA server has several responsibilities:

• Storing ratings and reviews for the user

• Fulfilling requests for ratings from either a DSA client or DSA server

• Sending requests for ratings to DSA servers

NuSOAP

In order to use Web Services, a third-party helper API called nuSOAP
13

 has been

leveraged. NuSOAP provides objects and methods to allow the creation and

consumption of SOAP-compatible Web Services.

NuSOAP is mature project, and released under the Lesser General Public License

(LGPL)
14

. This allows its use in any other projects, whether distributed as free

software or otherwise. There are some restrictions in place but these apply more to the

LGPL software than the software that leverages it. Under the LGPL, the only real

condition for the DSA system is that it must be possible for it to be linked with a

newer version of nuSOAP. Such non-static linking can be achieved simply using a

PHP include() statement to incorporate the nuSOAP library file at runtime.

The Rating Object

The PHP script has been implemented in a partially object-oriented fashion. This

helps to ‘wrap’ related functionality within the source code. It makes software reuse

more practical and code more readable.

A class of object encapsulates a rating/review. It has methods for getting:

• an HTML representation (as a row of a <table>)

• a name-indexed array, suitable for transmission via the NuSOAP API

• a delimited string representation, suitable to save to a file

A class of object encapsulates a DSA server. It has methods to produce an HTML

representation for the subscribed server list page.

13
 http://sourceforge.net/projects/nusoap/

14
 http://en.wikipedia.org/wiki/LGPL

37

Features Not Yet Implemented

FTP Support

In the original design, FTP was to be used as a secure means to publish ratings to the

server, and also to install the server-side PHP script.

Unfortunately it was found that at time of writing, the support for FTP interaction in

Firefox is very limited. There appears to be no documented API for the FTP protocol.

It would be possible to establish a connection and communicate at the socket level.

However, implementing the FTP protocol is secondary to the aims of this project, and

hence support has been dropped.

As described earlier in this chapter, the client is able to save ratings with a good

degree of security over HTTP.

Phase 2

The classification-specific reviewing feature was not implemented due to time

constraints.

Caching

Neither the client nor the server caches ratings at present. This feature will be

important in a production release of the system. See Direction for Improvement

section for more details

Minor Features

The following features have not yet been implemented. The specification number is

indicated in brackets

• Screen for displaying more reviews (6.2), although the reviews menu currently

shows all reviews

• Sorting displayed reviews in order of trust (6.1)

• Adding review for positive ratings (2.1)

• Removing ratings (a user may only change an existing rating from negative to

positive or vice versa). This should be included as a button in the review

dialog (4)

• Animation of the lowest rating icon (1.2)

• Imposed upper limit on the number of subscriptions that a DSA server will

accept (9)

38

Features Additional to Design

Some technical features were added during implementation:

Build Script

A UNIX build script was written. This compiles the extension by compressing the

source code and interface into a JAR file and then copying this file into the Firefox

profile directory. It was found that this was sufficient to apply any The script then

runs Firefox from the console, allowing debugging messages to be shown.

The build script aided rapid code development and debugging.

Automated Bug Reporting

Although debugging during development was difficult, the situation will be much

improved upon release.

An error handler in the PHP server-side script saves a log (phperror.log) of all

errors it encounters. Just like the ratings, this error log is accessible over the Internet.

Hence the developer can get quick access to a verbose description of any problem

when the system is in production (no user action required).

Debugging Mechanism

Debugging a program written solely in JavaScript or PHP is straightforward.

However, when a JavaScript function is calling a PHP script via Web Services, the

extra communication layer makes it hard to follow control flow from one function call

to another.

This is made especially complicated when the JavaScript is calling PHP which then

recursively calls more PHP scripts.

There are debugging mechanisms designed for this scenario. Remote debugging is a

language feature that allows a desktop client to establish a TCP session with the

application server in order to receive errors and warnings as they happen. However,

this feature is unsupported in PHP 4.

Instead, a custom error handler function was built into the PHP script. This sent

emails with error logging information, and also wrote this output to a file

(phperror.log). This is an example of the output during development:

1024: getRatingsFromDSAServers: Checking server [http://www.chrisbeach.co.uk/] in

/homepages/15/d83177889/htdocs/dontshopalone/dsa.php [226]

(http://dontshopalone.co.uk/)

1024: getRatingsFromDSAServers: Checking against already-requested server

[http://www.chrisbeach.co.uk/] in

/homepages/15/d83177889/htdocs/dontshopalone/dsa.php [232]

(http://dontshopalone.co.uk/)

1024: Received request chain:

[;http://www.chrisbeach.co.uk/;http://dontshopalone.co.uk/;http://chrisbeach.co.uk/]

in /homepages/15/d83177889/htdocs/dontshopalone/dsa.php [191]

(http://dontshopalone.co.uk/)

Figure 11

39

Direction for Improvement

Caching

Testing shows that aggregation over several levels of recursion performs within

timing specifications, and that caching is not required for the system under test

conditions. However, in future, it will be crucial to implement this feature in order to

reduce the load on well-subscribed DSA servers. In production, the DSA server may

be hosted on slower, less reliable hardware, which will radically affect performance

of the system.

Caching will also increase performance both client-side and server-side, and will

allow the recursion limit to be increased. This will increase the number of rating

providers that can be aggregated. A DSA server could be designed to store all the

ratings of its trusted peers, therefore reducing the process of aggregation by one

recursion level.

A recommended technique for implementing caching is a functional programming

style called memoisation
15

. This preserves existing code but ‘wraps’ certain functions

with a higher-order function that caches their results. For example, the client-side

initGetRating(domain) function may be wrapped in a memoise function that

will check a local table of cached ratings before making a call to the server. If a local

result (from a previous server call) is found, then use of the results of this previous

call will avoid a new call to the server.

Clearly the client should not permanently cache all ratings received from the home

DSA server. This would result in stale data, which may have changed on the server-

side. Cached data could be given a lifetime, after which it will be deleted. In the

simplest case the cache will be flushed when the browser is closed.

Hash-Encrypting Passwords

It is vitally important that the saving of ratings to a DSA server is restricted to the

owner of that server.

Therefore the DSA server is protected by a password that is initialised by the user

after installation. The user’s DSA client will then send this password to the server

with every request to save a rating. Whilst this offers some protection, the password is

currently sent in plain text form (inside the XML SOAP request over HTTP). Whilst

very unlikely, this request may be intercepted by a third party. The interceptor would

then be able to save ratings to the DSA server using the same password.

In order to protect against this, the password should be converted to a hash code

before being sent. This process, sometimes called ‘hashing,’ is designed to mask the

original password whilst retaining its unique ‘signature’. A hashing function takes a

string and generates another string, usually of fixed length, which is as unique as

possible. The hashed password can then be verified by the server, which compares the

hash codes of the sent password and the known password.

15
 http://en.wikipedia.org/wiki/Memoisation

40

This is clearly not yet secure, since the interceptor could merely send the intercepted

hash code in future requests.

So, the combination of password, rating value and domain is hashed, rather than just

the password. The server is able to verify the combination-generated hash code

because it knows each of the original constituent parts. However, an interceptor

cannot ‘reverse engineer’ the hash code back to the password, so will be unable to

generate valid combination hashes for future requests. All (s)he is able to do is save

the same ratings that user has already saved (duplicate values which will be ignored

by the system).

Improving the Rating Weighting Algorithm

At present ratings are simply weighted by the path length and by the amount of

clustering in the social network. There are many other important factors that should

contribute to the authority of a rating, or a user of the system.

The age of the rating is inversely proportional to its importance. Opinions represent a

instant in time, a mere snapshot of a situation. A rogue vendor is likely to remain a

rogue vendor and previous ratings will therefore retain their deterrent significance.

However, if a good vendor turns bad, old ratings would be deceptive, and it would

take much new reputation data before the average rating better represented the new

situation. Therefore, the perceived weight of a rating should be reduced with time.

The authority of a user could be measured by several criteria including:

• Links to his personal webpage, measured using the Google pagerank

algorithm

• Authorship of joint projects, reports or documents. This data can be

represented in FOAF format

• Hierarchical structure in the community or organisation. This data can also be

represented in FOAF format

• Sharing of virtual resources such as news groups, forums etc.

• Email traffic, which would require interaction with a mail server.

As described in the Literature Survey, using such data would give context and weight

to the links between individuals. It would also identify individuals with many

incoming connections. Such users are most likely to be authoritative.

41

Visualisation

The graph structure of the social network may be navigated crudely by browsing

between DSA servers, following subscribed server links. Much more could be done

with the social graph data present in the system.

Visualisation of this structure would reveal a macroscopic picture of connections

between DSA servers. In particular, two properties could be highlighted:

• The authority of nodes, measured by the number of incoming links

• The strength of a link between nodes, using additional data such as

o Sharing physical resources, such as host

o Geographical proximity

o Email traffic

The graph visualisation could be built by a Macromedia Flash program, for example,

which spiders the DSA servers, following subscription links and builds a graphic such

as the following:

Figure 12 - Example visualisation

In Figure 12, the thickness of the connecting lines indicates the strength of the

connection between nodes, taking into account external factors listed above. The

thickness of the border around a node indicates its authority, based on the number of

incoming links. Clicking a node would centre it on the screen and load its connected

nodes

Comparing Similar Sites

It would be very useful for the DSA system to compare sites of the same

classification. Automatically finding the classification of a site is a difficult task for a

machine. Ideally there should be some user input into the process.

The DSA client could provide a mechanism for comparing the current site’s rating

with another similar site. This would provide a useful tool to the user, and could also

capture pairs of similar sites for the purposes of the system. Therefore, given enough

pairs, the system can construct a graph of related sites. Heavily connected nodes in

42

the graph would be sites of the same type (eg ryanair.com, easyjet.com and

bmibaby.com). This would allow the user to get a ‘top-10’ list of related sites (eg

‘Top 10 airlines’), sorted by rating.

FOAF Production

As described in the Literature Survey chapter, FOAF (Friend of a Friend) is a data

format for expressing profiles and relationships of individuals. The subscriptions

between servers indicate trust relationships between people, and to a large extent, the

domain of a user’s server is a unique identifier for that individual.

Therefore, it would be useful for the DSA server to output an RDF file with FOAF

data in order that other systems can use this standardised data in mining operations.

The Semantic Web will become much more significant when well-formed data like

this becomes ubiquitous on the Web.

Protocol for Non-Human Users to Include Metadata

Currently, the review attribute of a rating allows the user to elaborate on the reasons

behind the rating. Could this also be used for non-human users of the system?

Many agents implementations use RDF data to describe knowledge. Such data could

be encoded into the review, for example:

<rdf:RatingRationale about=’www.vendor.com’>

 <rat:service>Shipping</rat:service>

 <rat:issue>Wrong Address</rat:issue>

</rdf:RatingRationale>

Figure 13 - Example RDF rating metadata

This format allows software agents to parse the rationale behind a rating and make

logical inferences or compare one rationale with another, like-for-like.

Integration with Del.icio.us

Del.icio.us
16

 is a website that offers collaborative bookmarking of websites. It has

been suggested that the DontShopAlone should publish positive-rated sites to a user’s

del.icio.us profile. This would save the user effort in publishing bookmarks.

It is also possible that del.icio.us could feed useful information back into the

DontShopAlone system. Del.icio.us has a system for collaboratively tagging websites

with arbitrary strings to indicate their nature. Such user-supplied metadata would be

ideal for feeding the site classification system proposed in phase two of the design. A

protocol would need to be implemented to merge, or standardise tags so that a

definite, concise list could be constructed over time.

16
 http://del.icio.us/

43

8 Testing

The DSA client is designed to conceal the technical processes that lead to the display

of a rating for the current website. However, for testing purposes, the browser has

been loaded from a terminal session, which shows detailed debugging messages.

Messages include:

• Sequence of function calls

• Time taken to receive and aggregate ratings

• Weighting of ratings received

• URIs used in Web Service calls / XMLHTTPRequest calls

• Values of state variables

Figure 14 - The DSA client in debugging mode

44

Rating Aggregation Behaviour

Several cases have been chosen to test the aggregation algorithm. For a description of

the design of the algorithm, please refer to the design chapter.

Care was taken to ensure uniform conditions (eg network infrastructure, browser,

platform, network congestion, DSA server URIs etc) when timing the rating

aggregation process.

No Home Server

When no home server is set, the client should display the following:

Figure 15 - No rating source

No ratings can be aggregated or saved since there is no home server set. This should

be the case after a fresh installation of the DSA client (no previous installation). When

the user browses to a DSA sever they should see the following:

Figure 16 – Browsing to a rating source

The test results are as follows:

Test Expected Result Result

Fresh client installation,

Mac OS X

‘No ratings source’ message shown, no other toolbar

buttons

Fresh client installation,

Microsoft Windows XP

‘No ratings source’ message shown, no other toolbar

buttons

Browsed to rating source ‘This site provides ratings’ message and ‘Get ratings

from here’ option

45

Home Server Set

When a home server is set, ratings may be saved and loaded. This simple test case

assumes the user has browsed to www.vendor.com and has previously saved a

positive rating for it.

In this case the client should receive one rating for www.vendor.com, and weight it

with a magnitude of 1.0

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

A number of tests were carried out in order to measure the average performance:

Test # Time Taken (s) Notes

1 0.40 First browse after browser startup

2 0.36

3 0.34

4 0.37

5 0.35

Average Time (s): 0.36

Note that URIs described in the tests (eg www.vendor.com, www.dsa-a.com etc) are

for illustration only. The actual tests were carried out hosting the DSA server on

various domains including:

• www.chrisbeach.co.uk

• www.dontshopalone.co.uk

• www.essexclubbing.co.uk

• www.conygre4.co.uk

• www.pokerclock.co.uk

46

One Subscription

In this case a home server is set with one subscription. This test should demonstrate

that a rating from a subscribed server carries half the weight of a rating from the home

server

In this case the client should receive two ratings for www.vendor.com, weighted

accordingly:

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

www.dsa-a.com

www.dsa-home.com

0.5

A number of tests were carried out in order to measure the average performance:

Test # Time Taken (s) Notes

1 1.08 First browse after browser startup

2 0.61

3 0.64

4 0.80

5 0.51

Average Time (s): 0.73

47

Simple Recursive Case

In this case a home server is set with one subscription, and the subscribed server has a

subscription to one other server.

In this case the client should receive three ratings for www.vendor.com, weighted

accordingly:

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

www.dsa-a.com

www.dsa-home.com

0.5

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.25

A number of tests were carried out in order to measure the average performance:

Test # Time Taken (s) Notes

1 0.82 First browse after browser startup

2 0.87

3 0.84

4 0.76

5 0.86

Average Time (s): 0.83

48

Cyclic Subscription Case

In this case a home server is subscribed to a second server, and the second server has

a subscription to a third DSA server. The third DSA server also has a subscription to

the second, forming a cycle.

In this case the client should receive just three ratings for www.vendor.com, weighted

accordingly:

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

www.dsa-a.com

www.dsa-home.com

0.5

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.25

A number of tests were carried out in order to measure the average performance:

Test # Time Taken (s) Notes

1 1.39 First browse after browser startup

2 0.79

3 0.71

4 0.97

5 0.76

Average Time (s): 0.92

49

Double-Linked Cyclic Subscription Case

In this case a home server is subscribed to a second and third server, and the second

server has a subscription to the third DSA server. The third DSA server also has a

subscription to the second, forming a cycle.

In most cases, the client should prevent this arrangement from occurring. It will not

allow www.dsa-b.com to be subscribed by www.dsa-home.com, because it will detect

the presence of www.dsa-b.com in the existing subscription chain from www.dsa-

a.com. However, if both www.dsa-a.com and www.dsa-b.com are subscribed before

the cycle is created between them, the scenario may be created as follows:

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

www.dsa-a.com

www.dsa-home.com

0.5

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.25

www.dsa-b.com

www.dsa-home.com

0.5

www.dsa-a.com

www.dsa-b.com

www.dsa-home.com

0.25

50

Test # Time Taken (s) Notes

1 1.31 First browse after browser startup

2 1.41

3 1.24

4 1.30

5 1.26

Average Time (s): 1.30

Larger Cycle Case

In this case a home server is subscribed to a second server, the second server is

subscribed to a third server and the third server is subscribed to a fourth. The fourth

DSA server also has a subscription to the second, forming a three-node cycle.

51

Expected serverChain Expected Weight Result

www.dsa-home.com 1.0

www.dsa-a.com

www.dsa-home.com

0.5

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.25

www.dsa-c.com

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.125

Test # Time Taken (s) Notes

1 1.29 First browse after browser startup

2 1.18

3 1.16

4 1.11

5 1.17

Average Time (s): 1.18

52

Recursion Limit

In this case a home server is subscribed to a long chain of DSA servers. Since the

recursion limit is arbitrarily set to five servers, only five ratings should be aggregated.

53

Expected serverChain Expected Weight Result

www.dsa-home.com 1.000

www.dsa-a.com

www.dsa-home.com

0.500

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.250

www.dsa-c.com

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.125

www.dsa-d.com

www.dsa-c.com

www.dsa-b.com

www.dsa-a.com

www.dsa-home.com

0.063

Test # Time Taken (s) Notes

1 1.52 First browse after browser startup

2 1.40

3 1.45

4 1.34

5 1.37

Average Time (s): 1.42

Usability Testing

The system has not yet been fully tested for usability. Instead, testing has focussed on

the accuracy and performance of the rating aggregation process. Studies into the

usability of the system would be necessary before a production release.

Portability

The system has been tested on Microsoft Windows XP and Mac OS X. Further tests

should be carried out in other platforms supported by the Firefox web browser:

• Windows 98/ME

• Windows 2000

• Windows NT

• Linux-based operating systems

54

9 Conclusion

Whilst similar systems exist, the approach taken by this implementation appears to be

unique, in that it distributes load, uses social networks to calculate authority and

provides relevant information to the user while they browse the Internet. The DSA

client combines the advantages of many systems: the simplicity of eBay’s

positive/negative ratings, the ability to find the reputation of a source of ratings (as in

Epinions), and the automated interoperability of agent-based systems (through Web

Services).

Despite technological stalling points and changing requirements, the first prototypes

were reusable so development continued rapidly. Evolutionary development served

the purposes of the project well. The process was unhindered by a reliance on rigid

planning techniques.

Testing demonstrated a sound performance of the DSA client and server. Further

rigorous usability and load testing would be required before putting the system into

production. In particular, the synchronous calls made between DSA servers could

prove to introduce a critical bottleneck in complex social networks. To address this

problem, an asynchronous-capable Web Services API could be substituted in place of

the existing library.

In terms of research contribution, the system does not introduce a groundbreaking

new algorithm for reputation analysis. However, of particular interest is its application

of social networks and its ability to quickly combine and present traceable reputation

data. The system’s underlying connection with the Internet, both in terms of

infrastructure and data domain means it will scale and become semantically richer

with time. It ties in nicely with the concepts of the Semantic Web, as described in the

Literature Survey section.

One of the first applications of the system will be with the

@lis Technology Net Project. This is a continuously live

running network populated by autonomous agents,

spanning Europe and Latin America. The DSA system

will provide reputation data to the @lis personalised

cultural/tourism services. The aim is that software agents and human users can share

reputation and the planner agents of the @lis system can use this data when

automatically building tourism packages. The system will take advantage of the

always-available DSA rating data, and Web Services support built into the DSA

server.

55

10 Bibliography

[1] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific

American, 2001.

[2] M. Chen and J. P. Singh, Computing and Using Reputations for Internet

Ratings, ACM (2001).

[3] C. Dudek, Visual Appeal and the Formation of Trust in E-Commerce Web

Sites, Carleton University, 2003.

[4] J. Golbeck and J. Hendler, Reputation Network Analysis for Email Filtering,

University of Maryland, 2004.

[5] N. R. Jennings, Towards a Social Level Characterisation of Socially

Responsibble Agents, Proceedings on Software Engineering, 144 (1997), pp.

11-25.

[6] H. Lei and G. C. Shoja, A Distributed Trust Model for e-Commerce

Applications, PANDA Group, Computer Science Department, University of

Victoria, 2004.

[7] M. I. Melnik and J. Alm, Does a Seller's eCommerce Reputation Matter?

Evidence from eBay Auctions, The Journal of Industrial Economics

(2002).

[8] J. S. i. Mir, Trust and Reputation for Agent Societies, Consell Superior

d'Investigacions Cientifiques (2003).

[9] J. Pujol, Dynamics of Social Structures in Multi-Agent Systems, Universitat

Politècnica de Catalunya, 2003.

[10] P. Resnick, R. Zeckhauser, J. Swanson and K. Lockwood, The Value of

Reputation on eBay: A Controlled Experiment, ESA Conference, 2002.

[11] W3C, http://www.w3.org/2004/OWL/, 2004.

[12] W3C, http://www.w3.org/RDF/, W3C, 2004.

[13] G. Zacharia, A. Moukas and P. Maes, Collaborative Reputation Mechanisms

in Electronic Marketplaces, 32nd Hawaii International Conference on System

Sciences, 1999.

56

11 Appendix A (Source Code)

11.1 DSA Client

11.1.1 contents.rdf

This resource description file describes various properties of the Firefox extension

<?xml version="1.0"?>

<RDF:RDF xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:chrome="http://www.mozilla.org/rdf/chrome#">

 <RDF:Seq RDF:about="urn:mozilla:package:root">

 <RDF:li RDF:resource="urn:mozilla:package:dsa"/>

 </RDF:Seq>

 <RDF:Seq RDF:about="urn:mozilla:overlays">

 <RDF:li RDF:resource="chrome://browser/content/browser.xul"/>

 <RDF:li RDF:resource="chrome://navigator/content/navigator.xul"/>

 </RDF:Seq>

 <RDF:Seq RDF:about="chrome://browser/content/browser.xul">

 <RDF:li>chrome://dsa/content/dsaOverlay.xul</RDF:li>

 </RDF:Seq>

 <RDF:Seq about="chrome://navigator/content/navigator.xul">

 <RDF:li>chrome://dsa/content/dsaOverlay.xul</RDF:li>

 </RDF:Seq>

 <RDF:Description RDF:about="urn:mozilla:package:dsa"

 chrome:displayName="Don't Shop Alone"

 chrome:author="Chris Beach"

 chrome:authorURL="mailto:chris@chrisbeach.co.uk"

 chrome:name="dsa"

 chrome:extension="true"

 chrome:description="Automatically shares website reviews between friends for

trustworthy online shopping.">

 </RDF:Description>

</RDF:RDF>

57

11.1.2 constants.js

This JavaScript file defines constants used elsewhere in the implementation

const DSA_VERSION = "0.2.6";

// UI Files

const XUL_REVIEW = "chrome://dsa/content/review.xul";

const XUL_OPTIONS = "chrome://dsa/content/options.xul";

const XUL_PROTECT_SERVER = "chrome://dsa/content/protectServer.xul";

const XUL_TAKE_OWNERSHIP_OF_SERVER = "chrome://dsa/content/takeOwnershipOfServer.xul";

// URIs, Files, Named Anchors and Query Strings

const URI_FAQ_NO_HOME = "http://www.dontshopalone.co.uk/core/scripts/entryViewer.php?ID=7973";

const URI_FAQ = "http://www.dontshopalone.co.uk/core/scripts/entryViewer.php?ID=7972";

const DSA_SERVER_FILE = "dsa.php";

const QS_SNIFF = "?sniff=true";

const QS_RATINGS_LIST = "?list=true";

const DOMAIN_SEPARATOR = ";";

// Naming of parameters used in WS interaction

const VERSION = 'version';

const DOMAIN = 'domain';

const REVIEW = 'review';

const RATING = 'rating';

const PASSWORD = 'password';

const OLD_PASSWORD = 'oldPassword';

const NEW_PASSWORD = 'newPassword';

const RATING_VALUE = 'ratingValue';

const SERVER_CHAIN = 'serverChain';

const IS_DSA_SERVER = 'isDSAServer';

const IS_PROTECTED = 'isprotected';

const DSA_PREFS_ROOT = "dsa.";

// Rating values

const RATING_NEGATIVE = -1;

const RATING_POSITIVE = 1;

// CSS CLASSES

const CSS_POSITIVE = 'positive';

const CSS_NEGATIVE = 'negative';

const CSS_USER_CHOICE = 'userChoice';

58

11.1.3 dsaOverlay.css

This is a cascading style sheet document that sets styles for the toolbar interface.

.negative

{

 background-color: #fee;

 color: #633

}

.positive

{

 background-color: #efe;

 color: #363

}

.dsaSeparator

{

 margin: 2px; width: 2px; height: 16px;

 border-left: 1px dotted #999;

 border-right: 1px dotted #ccc

}

.userChoice { font-weight: bold }

.odd { background-color: #cce }

.even { background-color: #dde }

#ratingValue[value="5"] { list-style-image: url("chrome://dsa/content/skin/3ThumbsUp.png"); }

#ratingValue[value="4"] { list-style-image: url("chrome://dsa/content/skin/2ThumbsUp.png"); }

#ratingValue[value="3"] { list-style-image: url("chrome://dsa/content/skin/thumbsUp.png"); }

#ratingValue[value="2"] { list-style-image: url("chrome://dsa/content/skin/thumbsDown.png"); }

#ratingValue[value="1"] { list-style-image: url("chrome://dsa/content/skin/2ThumbsDown.png"); }

#ratingValue[value="0"] { list-style-image: url("chrome://dsa/content/skin/3ThumbsDown.png"); }

59

11.1.4 dsaOverlay.js

This JavaScript file contains the program logic for the toolbar

/**

 * Don't Shop Alone (DSA) Client

 * Chris Beach 2005

 */

// Global variables

var gIsInitialised = false;

var gObjURIHome = null;

var gIsHomeOwner = false;

var gPassword = "";

var gSiteState = null;

var gPrefs = null;

// DOM UI Objects

var gObjRatingValueButton;

var gObjRatingValue;

var gObjRatingButtons;

var gObjPositiveRating;

var gObjNegativeRating;

var gObjReviewsMenuButton;

var gObjReviewsMenu;

var gObjMenuitemListRatings;

var gObjMenuitemWarnAgainst;

var gObjMenuitemTakeOwnership;

var gObjMyHomeServer;

var gObjInfoNoHome;

var gObjDSAServerFound;

var gObjSubscribe;

var gObjSubscribed;

var gObjWaitImage;

// Get IO Server

var gIOService = Components.classes["@mozilla.org/network/io-service;1"].getService();

gIOService = gIOService.QueryInterface(Components.interfaces.nsIIOService);

// Initialise the client when the browser loads

document.addEventListener("load", initialiseClient, true);

/**

 * Called after the browser has finished loading

 */

function initialiseClient()

{

 if (gIsInitialised) return false;

 gIsInitialised = true;

 // Set global references to UI DOM objects

 gObjRatingValueButton = document.getElementById("ratingValueButton");

 gObjRatingValue = document.getElementById("ratingValue");

 gObjRatingButtons = document.getElementById("ratingButtons");

 gObjPositiveRating = document.getElementById("positiveRating");

 gObjNegativeRating = document.getElementById("negativeRating");

 gObjReviewsMenuButton = document.getElementById("reviewsMenuButton");

 gObjReviewsMenu = document.getElementById("reviewsMenu");

 gObjMenuitemListRatings = document.getElementById("menuitemListRatings");

 gObjMenuitemWarnAgainst = document.getElementById("menuitemWarnAgainst");

 gObjMenuitemTakeOwnership = document.getElementById("menuitemTakeOwnership");

 gObjMyHomeServer = document.getElementById("myHomeServer");

60

 gObjInfoNoHome = document.getElementById("noDSAHome");

 gObjDSAServerFound = document.getElementById("dsaServerFound");

 gObjSubscribe = document.getElementById("subscribe");

 gObjSubscribed = document.getElementById("subscribed");

 gObjWaitImage = document.getElementById("waitImage");

 dump("Initialising DSA Client Version " + DSA_VERSION + "\n\n");

 // Apply listener function to webpage load events

 document.getElementById("content").addProgressListener(dsaListener,

 Components.interfaces.nsIWebProgress.NOTIFY_STATE_DOCUMENT);

 // Apply listener function to webpage unload events

 document.getElementById("content").addEventListener("unload", pageUnloadHandler, true);

 // Get preferences from Mozilla preferences table

 gPrefs = getPrefs();

 try { gPassword = gPrefs.getCharPref(PASSWORD); }

 catch(e) { gPrefs.setCharPref(PASSWORD, ""); }

 try { gIsHomeOwner = gPrefs.getBoolPref("isHomeOwner"); }

 catch(e) { gPrefs.setBoolPref("isHomeOwner", false); }

 // Get the URI of the DSA home server (if exists)

 var objURI = null;

 try { objURI = gIOService.newURI(gPrefs.getCharPref("uri.home"), null, null); }

 catch(e) { gPrefs.setCharPref("uri.home", ""); }

 setHomeURI(objURI);

}

/**

 * Called on the loading of a new page

 */

function pageLoadHandler(objURI)

{

 if (!objURI || !objURI.host)

 return;

 dump("\npageLoadHandler() currentURI = [" + objURI.host + objURI.path + "]\n");

 if (!gSiteState || objURI.host != gSiteState.objURI.host)

 {

 dump('Browsed to new domain\n');

 // Instantiate a whole new site state

 gSiteState = new SiteState(objURI);

 updateUI();

 // We have browsed to a new domain

 // Check if the current site is the user's DSA home server

 if (!gSiteState.isMyHome())

 {

 dump('Site is not my home, getting ratings\n');

 // Initiate a request for ratings

 // The callback function will display the rating

 initGetRating(gSiteState.objURI);

 }

 else

 {

 dump('Site is my home, not getting new ratings\n');

 gSiteState.gotRatings = true;

 }

 // Initiates sniffer function to detect DSA server

 // perform domain and path-level searches

 dump("pageLoadHandler()::initSniffServer([uri], true)\n");

 initSniffServer(gSiteState.objURI, true);

 }

 else if (objURI.host == gSiteState.objURI.host && objURI.path == gSiteState.objURI.path)

 {

 // No change of domain or path

61

 dump('No change of URI\n');

 return;

 }

 else

 {

 dump('Browsed to new path\n');

 gSiteState.objURI = objURI;

 updateUI();

 // Initiates sniffer function to detect DSA server

 // perform just path-level search

 dump("pageLoadHandler()::initSniffServer([uri], false)\n");

 initSniffServer(gSiteState.objURI, false);

 }

}

/**

 * Sets the home server from which to source ratings

 * Takes a URI of the form http://www.dontshopalone.co.uk/

 */

function setHomeURI(objURI)

{

 var strURI = "";

 if (objURI)

 {

 dump("setHomeURI(" + objURI.spec + ")\n");

 strURI = objURI.spec;

 }

 else

 {

 dump("setHomeURI(null)\n");

 gPrefs.setCharPref(PASSWORD, "");

 gIsHomeOwner = false

 gPrefs.setBoolPref("isHomeOwner", gIsHomeOwner);

 }

 gObjURIHome = objURI;

 gPrefs.setCharPref("uri.home", strURI)

 // Refreshes relevant UI elements

 updateUI();

}

/**

 * Opens the help system

 */

function openDSAHelp()

{

 window._content.document.location.href = URI_HELP;

}

/**

 * Called when a webpage is closed or navigated away from

 */

function pageUnloadHandler(e)

{

 dump('pageUnloadHandler\n');

}

/**

 * Takes an array of rating objects and updates the toolbar

 * to display them (adds any reviews to review menu)

 */

function displayRatings(ratingArray)

{

 if (!ratingArray)

 return;

 //dump('displayRatings(array.length=' + ratingArray.length + ')');

 if (gObjURIHome && gSiteState.objServerURI &&

 gObjURIHome.spec == gSiteState.objServerURI.spec)

 // User is browsing their own DSA server - don't show ratings

 return;

62

 var ratingSum = 0;

 var reviewCount = 0;

 // Flush reviews from menu

 for(var i = gObjReviewsMenu.childNodes.length - 1; i >= 0; i--)

 {

 gObjReviewsMenu.removeChild(gObjReviewsMenu.childNodes.item(i));

 }

 var consideredServers = new Array();

 if (ratingArray.length > 0)

 {

 var positiveCount = 0;

 var negativeCount = 0;

 var positiveWeight = 0.0;

 var negativeWeight = 0.0;

 // Populate menu and average the ratings

 for(var i = 0; i < ratingArray.length; i++)

 {

 // Check to see if we've already seen a rating from this server

 var alreadyConsidered = false;

 for(var j = 0; j < consideredServers.length; j++)

 {

 if (consideredServers[j] == ratingArray[i].getAuthorURI())

 {

 alreadyConsidered = true;

 continue;

 }

 }

 if (!alreadyConsidered)

 consideredServers[consideredServers.length] =

ratingArray[i].getAuthorURI();

 var cssClass;

 ratingSum += ratingArray[i].ratingValue;

 if (ratingArray[i].ratingValue == RATING_POSITIVE)

 {

 positiveCount++;

 positiveWeight += ratingArray[i].getWeightedValue();

 }

 else if (ratingArray[i].ratingValue == RATING_NEGATIVE)

 {

 negativeCount++;

 negativeWeight -= ratingArray[i].getWeightedValue();

 }

 if (ratingArray[i].review && !alreadyConsidered)

 {

 // Sets CSS (stylesheet) class - modifies colour of menuitem

 if (ratingArray[i].ratingValue == RATING_POSITIVE)

 cssClass = CSS_POSITIVE;

 else

 cssClass = CSS_NEGATIVE;

 var newMenuItem = document.createElement("menuitem");

 newMenuItem.setAttribute("class", cssClass);

 newMenuItem.setAttribute("tooltiptext", ratingArray[i].serverChain);

 newMenuItem.setAttribute("label",

 ratingArray[i].getAuthor() + ": \"" +

 ratingArray[i].review + "\"");

 gObjReviewsMenu.appendChild(newMenuItem);

 reviewCount++;

 }

 }

 if (reviewCount > 0)

 {

 if (reviewCount == 1)

 gObjReviewsMenuButton.label = reviewCount + " review";

63

 else if (reviewCount > 1)

 gObjReviewsMenuButton.label = reviewCount + " reviews";

 }

 var ratingValue;

 // No negative votes

 if (negativeCount == 0 && positiveWeight > 5)

 ratingValue = 5;

 else if (negativeCount == 0 && positiveWeight > 1)

 ratingValue = 4;

 else if (negativeCount == 0)

 ratingValue = 3;

 // One or more negative vote(s)

 else if (positiveWeight / negativeWeight > 50)

 ratingValue = 5;

 else if (positiveWeight / negativeWeight > 20)

 ratingValue = 4;

 else if (positiveWeight / negativeWeight > 10)

 ratingValue = 3;

 else if (positiveWeight / negativeWeight > 5)

 ratingValue = 2;

 else if (positiveWeight / negativeWeight > 0.2)

 ratingValue = 1;

 else if (negativeCount > 2)

 ratingValue = 0;

 else

 ratingValue = 1;

 gObjRatingValueButton.setAttribute("tooltiptext",

 positiveCount + " positive vote(s), " +

 negativeCount + " negative vote(s)");

 dump("positive weighting: " + positiveWeight +

 ", negative weighting: " + negativeWeight + "\n");

 // Change the arbitrary "value" attribute added to the DOM object

 // the stylesheet will then change the image accordingly

 gObjRatingValue.setAttribute("value", ratingValue);

 }

}

/**

 * Updates all elements of the user interface depending on the site state

 */

function updateUI()

{

 if (!gSiteState)

 {

 dump('No SiteState\n');

 return false;

 }

 var isDisplayable = gSiteState.isDisplayable();

 // Show/hide the animated hourglass icon

 gObjWaitImage.hidden = isDisplayable;

 // Disable/enable controls is the site state is not displayable

 gObjPositiveRating.disabled = !isDisplayable;

 gObjNegativeRating.disabled = !isDisplayable;

 gObjReviewsMenuButton.disabled = !isDisplayable;

 gObjRatingValue.disabled = !isDisplayable;

 gObjMyHomeServer.disabled = !isDisplayable;

 gObjDSAServerFound.disabled = !isDisplayable;

 gObjSubscribe.disabled = !isDisplayable;

 gObjSubscribed.disabled = !isDisplayable;

 if(!isDisplayable)

 {

 dump('SiteState not displayable: gotRatings=' + gSiteState.gotRatings +

 ', gotSniff=' + gSiteState.gotSniff + '\n');

 return false;

64

 }

 if (gSiteState.isUnprotectedServer)

 {

 // Found a virginal unprotected server

 foundUnprotectedServer();

 return;

 }

 displayRatings(gSiteState.ratings);

 if (!gSiteState.usersRating)

 {

 // User has not rated the current site

 gObjPositiveRating.setAttribute("class", "");

 gObjNegativeRating.setAttribute("class", "");

 }

 else if (gSiteState.usersRating.ratingValue == RATING_POSITIVE)

 {

 gObjPositiveRating.setAttribute("class", CSS_USER_CHOICE);

 gObjNegativeRating.setAttribute("class", "");

 }

 else if (gSiteState.usersRating.ratingValue == RATING_NEGATIVE)

 {

 gObjPositiveRating.setAttribute("class", "");

 gObjNegativeRating.setAttribute("class", CSS_USER_CHOICE);

 }

 if (gSiteState.isDSAServer())

 {

 // User has browsed to a DSA server

 gObjSubscribe.setAttribute("oncommand",

 "getRatingsFrom(\"" + gSiteState.objServerURI.spec + "\");");

 gObjMenuitemTakeOwnership.setAttribute("oncommand",

 "takeOwnership(\"" + gSiteState.objServerURI.spec + "\");");

 // Set the logic for the 'list ratings' button

 gObjMenuitemListRatings.setAttribute("oncommand",

 "navigateToURI(\"" + gSiteState.objServerURI.spec + DSA_SERVER_FILE +

QS_RATINGS_LIST + "\");");

 }

 dump("State: isMyHome()=[" + gSiteState.isMyHome() +

 "], isDSAServer()=[" + gSiteState.isDSAServer() +

 "], isSubscribed=[" + gSiteState.isSubscribed + "]\n");

 gObjRatingButtons.hidden = gSiteState.isDSAServer() || gSiteState.isMyHome() || (

gObjURIHome == null) || !gIsHomeOwner;

 gObjMyHomeServer.hidden = !gSiteState.isMyHome();

 gObjDSAServerFound.hidden = !gSiteState.isDSAServer();

 gObjSubscribe.hidden = !gSiteState.isDSAServer()

 gObjMenuitemTakeOwnership.hidden = gSiteState.isMyHome();

 gObjMenuitemWarnAgainst.hidden = !gSiteState.isDSAServer() ||

 !gIsHomeOwner ||

 gSiteState.isMyHome();

 gObjInfoNoHome.hidden = gSiteState.isDSAServer() || (gObjURIHome != null);

 gObjSubscribed.hidden = !gSiteState.isDSAServer() ||

 !gSiteState.isSubscribed ||

 gSiteState.isMyHome();

 gObjSubscribe.hidden = !gSiteState.isDSAServer() ||

 gSiteState.isSubscribed ||

 gSiteState.isMyHome();

 var showRatingsAndReviews = (gSiteState.ratings && gSiteState.ratings.length > 0) &&

 !gSiteState.isMyHome();

 gObjRatingValue.hidden = !showRatingsAndReviews;

 gObjReviewsMenuButton.hidden = !showRatingsAndReviews || gSiteState.reviewCount == 0;

}

65

11.1.5 dsaOverlay.xul

This XML file describes the toolbar user interface

<?xml version="1.0"?>

<?xml-stylesheet href="dsaOverlay.css" type="text/css"?>

<overlay id="dsaOverlay"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

// Imports JavaScript

<script type="application/x-javascript" src="constants.js" />

<script type="application/x-javascript" src="util.js" />

<script type="application/x-javascript" src="Rating.js" />

<script type="application/x-javascript" src="SiteState.js" />

<script type="application/x-javascript" src="io.js" />

<script type="application/x-javascript" src="dsaOverlay.js" />

// DSA Toolbar

<toolbox id="navigator-toolbox">

<toolbar id="dsaToolbar" class="chromeclass-toolbar"

 toolbarname="Don't Shop Alone Toolbar">

 // Options Menu

 <toolbarbutton type="menu" id="optionsMenuButton" label=""

 showlabel="" container="true" tooltiptext="Set options"

 image="chrome://dsa/content/skin/dsaLogo.png">

 <menupopup id="optionsMenu">

 <!--<menuitem label="Setup" oncommand="openDSAOptions();" />-->

 <menuitem label="Help" oncommand="navigateToURI(URI_FAQ);" />

 </menupopup>

 </toolbarbutton>

 // Sniffed DSA Server

 <hbox id="dsaServerFound" hidden="true">

 <toolbarbutton type="menu" container="true"

 tooltiptext=" This site provides ratings"

 label=" This site provides ratings">

 <menupopup id="serverSniffMenu">

 <menuitem id="menuitemListRatings"

 label="View ratings from this DSA server" />

 <menuitem id="menuitemTakeOwnership"

 label="This is my own server (requires password)" />

 <menuitem id="menuitemWarnAgainst" oncommand="saveRatingValue(-1);"

 tooltiptext="Warn against this ratings source"

 label="The ratings provided are unrepresentative"

 src="chrome://dsa/content/skin/thumbsDown.png" />

 </menupopup>

 </toolbarbutton>

 // Subscribe

 <toolbarbutton id="subscribe" image="chrome://dsa/content/skin/subscribe.png"

 label=" Get ratings from here" />

 // Subscribed

 <hbox id="subscribed" hidden="true">

 <vbox class="dsaSeparator" />

 <toolbarbutton image="chrome://dsa/content/skin/info.png"

 label=" I receive ratings from here">

 </toolbarbutton>

 </hbox>

 </hbox>

 // Rating buttons

 <hbox id="ratingButtons" hidden="true">

 <vbox class="dsaSeparator" />

 <toolbarbutton id="positiveRating" onclick="saveRatingValue(1);"

 tooltiptext="Recommend this site"

 showlabel=" I recommend this site"

 label=" I recommend this site" firstlabel=" I recommend this site"

 image="chrome://dsa/content/skin/thumbsUp.png" />

66

 <toolbarbutton id="negativeRating" onclick="saveRatingValue(-1);"

 tooltiptext="Warn against this site"

 showlabel=" I received bad service from this site"

 label=" I received bad service from this site"

 firstlabel=" I received bad service from this site"

 image="chrome://dsa/content/skin/thumbsDown.png" />

 </hbox>

 // Rating Text

 <hbox id="ratingValue" hidden="true">

 <vbox class="dsaSeparator" />

 <toolbarbutton id="ratingValueButton" onclick="" disabled="true"

 tooltiptext="Rating Value" showlabel="Rating: "

 label="Rating: " firstlabel="Rating " dir="rtl" />

 </hbox>

 // Review Menu

 <toolbarbutton type="menu" hidden="true" id="reviewsMenuButton"

 container="true" tooltiptext="Read top reviews">

 <menupopup id="reviewsMenu">

 </menupopup>

 </toolbarbutton>

 // Home server

 <toolbarbutton id="myHomeServer"

 label=" (This is my home server)" hidden="true">

 </toolbarbutton>

 // No Home

 <hbox id="noDSAHome" hidden="true">

 <vbox class="dsaSeparator" />

 <toolbarbutton type="menu" id="infoMenuButton"

 container="true" image="chrome://dsa/content/skin/info.png"

 label=" No ratings source">

 <menupopup id="noHomeMenu">

 <menuitem label="What does this mean?"

 oncommand="navigateToURI(URI_FAQ_NO_HOME);" />

 </menupopup>

 </toolbarbutton>

 </hbox>

 <spring flex="1"/>

 // Animated hourglass icon

 <toolbarbutton id="waitImage" image="chrome://dsa/content/skin/hourglass.gif" />

</toolbar>

</toolbox>

</overlay>

67

11.1.6 io.js

This JavaScript file contains methods that communicate with external hosts

/**

 * Initialises Web Services call to save a rating

 */

function initSaveRating(rating)

{

 dump("initSaveRating()\n");

 // Change state information and update the UI to show the hourglass

 gSiteState.gotRatings = false;

 updateUI();

 if (gObjURIHome == null)

 {

 alert("You have not configured a DontShopAlone server to save ratings to.");

 return false;

 }

 if (rating.uri == gObjURIHome.spec && rating.ratingValue == RATING_NEGATIVE &&

 confirm("You will no longer receive ratings from this server. Continue?"))

 {

 dump('User has deemed his home server untrustworthy\n');

 setHomeURI(null);

 return false;

 }

 if(rating.uri != gObjURIHome.spec && rating.ratingValue == RATING_NEGATIVE)

 {

 // Negative rating - Prompt the user for a review

 window.openDialog(XUL_REVIEW,

 "Review", "chrome,modal,dialog,dependent,centerscreen", rating);

 if (rating.review == "")

 {

 dump("Rating is negative and no review given; not saving the rating\n");

 return false;

 }

 }

 var call = new SOAPCall();

 call.transportURI = gObjURIHome.spec + DSA_SERVER_FILE;

 call.actionURI = gObjURIHome.spec + DSA_SERVER_FILE + "/addRating";

 dump('Saving rating: [' + rating + ']\n');

 var params = new Array(

 new SOAPParameter(rating, RATING),

 new SOAPParameter(gPassword, PASSWORD)

);

 call.encode(0, "addRating", "urn:RatingService", 0, null, params.length, params);

 var callRequest = call.asyncInvoke(function(callResponse, call, status)

 {

 if (callResponse.fault)

 {

 alert(callResponse.fault.faultString);

 }

 // Load new rating

 dump("Getting new rating: initGetRating on [" + rating.uri + "]\n");

 initGetRating(gIOService.newURI(rating.uri, null, null));

 });

 if (callRequest.fault)

 {

 alert(callRequest.fault.faultString);

 }

 return true;

}

/**

 * Initialise an XMLHTTPRequest to find the DSA server at the currently

 * browsed site

68

 */

function initSniffServer(objURI, isDomainLevelScan)

{

 dump("initSniffServer(" + objURI.host + ", " + isDomainLevelScan + ")\n");

 var uriHasPath = hasPath(objURI);

 var objScanURI = null;

 if (isDomainLevelScan)

 objScanURI = truncateURIPathAndFile(objURI);

 else

 objScanURI = truncateURIFile(objURI);

 var strScanURI = objScanURI.spec + DSA_SERVER_FILE + QS_SNIFF;

 // Create a new XMLHTTPRequest

 var reqSniff = new XMLHttpRequest();

 // Set the call-back function for the request

 reqSniff.onreadystatechange = function()

 {

 if (reqSniff.readyState == 4)

 {

 if (reqSniff.status == 200)

 {

 // DSA file was FOUND

 gSiteState.gotSniff = true;

 try

 {

 dump("sniffDSAServer callback: readyState = [" +

reqSniff.readyState +

 "], status=[" + reqSniff.status + "]\n");

 if (!reqSniff.responseXML) return false;

 var responseXML = reqSniff.responseXML.documentElement;

 // Extract attributes from the XML response

 var dsaVersion = responseXML.attributes[VERSION].value;

 var isProtected = responseXML.attributes[IS_PROTECTED

].value;

 gSiteState.objServerURI = objScanURI;

 gSiteState.isUnprotectedServer = (isProtected == 'false')

 }

 catch (e) { dump("Error in sniffDSACallback - [" + e + "]\n"); }

 updateUI();

 }

 else if (reqSniff.status == 404 && isDomainLevelScan && uriHasPath)

 {

 // Server not found. Try again at the path level

 dump("No DSA server found on domain-level, performing path-level

scan\n");

 // No server found at domain level -- attempt at the file level

 initSniffServer(objURI, false)

 }

 else

 {

 gSiteState.gotSniff = true;

 updateUI();

 }

 }

 }

 dump("sniffing for (" + strScanURI + ")\n");

 reqSniff.open("GET", strScanURI, true)

 reqSniff.send(null);

}

function initGetRating(objURI)

{

 dump("initGetRating(" + objURI.host + ")\n");

 if (!objURI.host) return false;

 if (gObjURIHome == null) return false;

69

 gSiteState.initGetRatingsTimestamp = new Date();

 var call = new SOAPCall();

 dump("transportURI = [" + gObjURIHome.spec + DSA_SERVER_FILE + "]\n");

 call.transportURI = gObjURIHome.spec + DSA_SERVER_FILE;

 call.actionURI = gObjURIHome.spec + DSA_SERVER_FILE + "/getRatings";

 var params = new Array();

 params[0] = new SOAPParameter(objURI.host, DOMAIN);

 params[1] = new SOAPParameter("", SERVER_CHAIN);

 call.encode(0, "getRatings", "urn:RatingService", 0, null, params.length, params);

 var callRequest = call.asyncInvoke(getRatingResponse);

 if (callRequest.fault)

 {

 alert(callRequest.fault.faultString);

 }

 return true;

}

/**

 * Callback function from initGetRating()

 */

function getRatingResponse(callResponse, call, status)

{

 gSiteState.gotRatings = true;

 dump("getRatingResponse(...)\n");

 if (callResponse.fault)

 {

 dump(callResponse.fault.faultString);

 return false;

 }

 var params = callResponse.getParameters(false, {});

 if (!params)

 {

 dump("No return data\n");

 updateUI();

 return false;

 }

 var ratingArray = new Array();

 try

 {

 var domRatingArray = params[0].element.getElementsByTagName("item");

 for(var i = 0; i < domRatingArray.length; i++)

 {

 var rating = new Rating();

 if (domRatingArray[i].getElementsByTagName(RATING_VALUE)[0].firstChild)

 rating.ratingValue = parseInt(

 domRatingArray[i].getElementsByTagName(RATING_VALUE

)[0].firstChild.nodeValue);

 else

 continue;

 if (domRatingArray[i].getElementsByTagName(REVIEW)[0].firstChild)

 rating.review = domRatingArray[i].getElementsByTagName(REVIEW

)[0].firstChild.nodeValue;

 if (domRatingArray[i].getElementsByTagName(SERVER_CHAIN)[0].firstChild)

 rating.serverChain = domRatingArray[i].getElementsByTagName(

SERVER_CHAIN)[0].firstChild.nodeValue;

 if (domRatingArray[i].getElementsByTagName(IS_DSA_SERVER)[0].firstChild)

 {

 dump('getRatingResponse rating.isDSAServer=[' +

domRatingArray[i].getElementsByTagName(IS_DSA_SERVER)[0].firstChild.nodeValue + ']\n');

 rating.isDSAServer = (domRatingArray[i].getElementsByTagName(

IS_DSA_SERVER)[0].firstChild.nodeValue == 'true');

 }

 dump("Got rating: [" + rating.ratingValue + "], review: [" + rating.review +

"], weighted: [" + rating.getWeightedValue() + "], serverChain: [" + rating.serverChain + "]\n");

 ratingArray[i] = rating;

 }

 }

 catch(e) { dump('Exception parsing ratings return [' + e + '] ' + e.stack + '\n') }

 gSiteState.setRatings(ratingArray);

70

 try

 {

 var timeNow = new Date();

 var msTaken = timeNow.getTime() - gSiteState.initGetRatingsTimestamp.getTime();

 dump("Time taken to get ratings: " + (msTaken / 1000) + "s\n");

 }

 catch(e) { dump(e + ' ' + e.stack); }

 updateUI();

}

/**

 * Wrapper function for initSaveRating - takes only a rating value (numeric)

 */

function saveRatingValue(ratingValue)

{

 dump("saveRatingValue(" + ratingValue + ")\n");

 var rating;

 rating = new Rating();

 if (gSiteState.usersRating &&

 gSiteState.usersRating.ratingValue == ratingValue)

 {

 // Give the user back their previous review

 rating.review = gSiteState.usersRating.review;

 }

 rating.domain = gSiteState.objURI.host;

 rating.uri = truncateURIFile(gSiteState.objURI).spec;

 rating.ratingValue = ratingValue;

 initSaveRating(rating);

}

/**

 * Prompts user for password for the currently-browsed DSA server

 * If password correct, set the DSA server to be the user's DSA home

 */

function takeOwnership(strURI)

{

 dump("takeOwnership(" + strURI + ")\n");

 var objURI = gIOService.newURI(strURI, null, null);

 var password = new String();

 window.openDialog(XUL_TAKE_OWNERSHIP_OF_SERVER, "Take Ownership of Server",

 "chrome,modal,dialog,centerscreen,dependent,titlebar", password);

 dump("password=[" + password.value + "]");

 if (!password.value) return false;

 // Set the client preference entry

 gPrefs.setCharPref(PASSWORD, password.value);

 // Check the server password by attempting to change it (to the same value)

 changePersonalServerPassword(

 password.value,

 password.value,

 function(callResponse, call, status)

 {

 if (callResponse.fault)

 {

 // Should detect the fault code rather than assume it is this:

 alert("Password incorrect");

 //alert(callResponse.fault.faultString);

 }

 else

 {

 alert(objURI.host + " is now set as your DontShopAlone home server"

);

 gIsHomeOwner = true;

 gPrefs.setBoolPref("isHomeOwner", gIsHomeOwner);

 gPassword = password.value;

 gPrefs.setCharPref(PASSWORD, gPassword);

 setHomeURI(objURI);

71

 }

 }

);

}

/**

 * User has browsed to a virgin, unprotected DSA server

 * Prompt the user for a password to initialise the server

 */

function foundUnprotectedServer()

{

 var password = new String();

 window.openDialog(XUL_PROTECT_SERVER, "Protect Server",

 "chrome,modal,dialog,centerscreen,dependent,titlebar", password);

 dump("password=[" + password.value + "]");

 if (!password.value) return false;

 // Set the client preference entry

 gPrefs.setCharPref(PASSWORD, password.value);

 // Set the server preference entry

 changePersonalServerPassword(

 "",

 password.value,

 function(callResponse, call, status)

 {

 gSiteState.isUnprotectedServer = false;

 if (callResponse.fault)

 {

 alert(callResponse.fault.faultString);

 }

 else

 {

 alert("Password set");

 gIsHomeOwner = true;

 gPrefs.setBoolPref("isHomeOwner", gIsHomeOwner);

 gPassword = password.value;

 gPrefs.setCharPref(PASSWORD, gPassword);

 setHomeURI(gSiteState.objServerURI);

 }

 }

);

}

/**

 * Initialise the Web Services call to change the password of a DSA server

 * Use the passed callback function to receive the result

 */

function changePersonalServerPassword(oldPassword, newPassword, callback)

{

 if(!gSiteState.objServerURI)

 {

 dump("Error: changePersonalServerPassword() - no detected DSA server\n");

 return false;

 }

 var call = new SOAPCall();

 dump('transportURI = ' + gSiteState.objServerURI.spec + DSA_SERVER_FILE + "\n");

 call.transportURI = gSiteState.objServerURI.spec + DSA_SERVER_FILE;

 call.actionURI = gSiteState.objServerURI.spec + DSA_SERVER_FILE + "/changePassword";

 var params = new Array();

 params[0] = new SOAPParameter(oldPassword, OLD_PASSWORD);

 params[1] = new SOAPParameter(newPassword, NEW_PASSWORD);

 call.encode(0, "changePassword", "urn:RatingService", 0, null, params.length, params);

 var callRequest = call.asyncInvoke(callback);

 if (callRequest.fault)

 {

 alert(callRequest.fault.faultString);

 }

}

/**

 * If the user is a homeowner, subscribe to ratings from this DSA server

72

 * (add a positive rating for it)

 * If the user is not a homeowner, set this DSA server to be the user's home

 */

function getRatingsFrom(strURI)

{

 var objURI = gIOService.newURI(strURI, null, null)

 if (gObjURIHome != null && gIsHomeOwner)

 {

 // User owns a server, subscribe to this source

 var rating = new Rating();

 rating.ratingValue = RATING_POSITIVE;

 rating.domain = objURI.host;

 rating.uri = objURI.spec;

 rating.isDSAServer = true;

 initSaveRating(rating)

 }

 else

 {

 // Set this to be the new ratings source

 var objURIServer = truncateURIFile(objURI);

 setHomeURI(objURIServer);

 // Required in order to update site state

 initGetRating(objURIServer);

 }

}

11.1.7 protectServer.xul

This XML file describes the dialog presented when the user browses to an unprotected server.

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog id="dsaProtectServerDialog" title="Don't Shop Alone - Protect Server"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

 buttons="accept,cancel"

 ondialogaccept="return onAccept();"

 ondialogcancel="return onCancel();">

<script type="application/x-javascript">

<![CDATA[

function onAccept()

{

 // The rating is passed to this dialog as an argument

 var password = window.arguments[0];

 password.value = document.getElementById("txtPassword").value;

 if (!password.value)

 {

 alert("Please enter a password");

 return false;

 }

 else

 return true;

}

function onCancel()

{

 return confirm("Are you sure you want cancel setting a password?");

}

]]>

</script>

<vbox>

 <label control="txtReview" value="Please choose a password for your DontShopAlone server:"

/>

 <textbox id="txtPassword" maxlength="25" />

 <description style='max-width: 400px'>

73

 This is mandatory. The password will be used by the server to ensure that noone

 else can save ratings onto it.

 </description>

</vbox>

</dialog>

74

11.1.8 Rating.js

This JavaScript file describes a Rating object

/**

 * Rating object encapsulates a rating on a domain

 */

function Rating()

{

 this.domain = "";

 this.uri = "";

 this.ratingValue = 0;

 this.review = "";

 this.serverChain = "";

 this.isDSAServer = false;

 this.toString = ratingToString;

 this.getAuthor = ratingGetAuthor;

 this.getWeightedValue = ratingGetWeightedValue;

 this.getAuthorURI = ratingGetAuthorURI;

}

/**

 * Returns a string representation of the rating

 */

function ratingToString()

{

 var str = "";

 str += "domain=" + URLEncode(this.domain);

 str += "&uri=" + URLEncode(this.uri);

 str += "&ratingValue=" + this.ratingValue;

 str += "&review=" + URLEncode(this.review);

 str += "&isDSAServer=" + (this.isDSAServer ? "true" : "false");

 str += "&serverChain=" + URLEncode(this.serverChain);

 return str;

}

/**

 * Returns the ratingValue, halved for each hop it has travelled

 */

function ratingGetWeightedValue()

{

 var hopCount = this.serverChain.split(DOMAIN_SEPARATOR).length - 1;

 return this.ratingValue / Math.pow(2, hopCount);

}

function ratingGetAuthorURI()

{

 if (!this.serverChain)

 return "";

 else

 return this.serverChain.split(DOMAIN_SEPARATOR)[0];

}

/**

 * Get the domain name of the first in the server chain (the rating author)

 */

function ratingGetAuthor()

{

 var uri = this.getAuthorURI();

 if (!uri)

 return "";

 if (gObjURIHome && gObjURIHome.spec == uri)

 return "Me";

 var uriParts = uri.match('^http://(www.)?([^?]+)/*/');

 if (uriParts.length >= 3)

 return uriParts[2];

 else

 return uri;

}

75

11.1.9 Review.xul

This XML file describes the user interface of the review dialog.

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog id="dsaOptionsDialog" title="Don't Shop Alone - Options"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

 buttons="accept,cancel"

 ondialogaccept="return onAccept();"

 ondialogcancel="return onCancel();">

<script type="application/x-javascript" src="constants.js" />

<script type="application/x-javascript" src="util.js" />

<script type="application/x-javascript" src="Rating.js" />

<script type="application/x-javascript" src="io.js" />

<vbox>

 <label control="txtReview" value="Please explain briefly why you have rated this site:" />

 <textbox id="txtReview" maxlength="255" multiline="true" rows="3" />

 <description style='max-width: 400px'>

 Note that ratings are used to assess the reputation of the company behind the website

 (eg their customer service, product quality etc).

 Please do not assess the quality of the website itself.

 </description>

</vbox>

<script type="application/x-javascript">

<![CDATA[

var rating = window.arguments[0];

document.getElementById("txtReview").value = rating.review;

function onAccept()

{

 // The rating is passed to this dialog as an argument

 rating.review = document.getElementById("txtReview").value;

 if (rating.review == "" && confirm("No review entered. Would you like to retry?"))

 return false;

 else

 return true;

}

function onCancel()

{

 return true;

}

]]>

</script>

</dialog>

76

11.1.10 SiteState.js

This JavaScript file describes the object that holds the state of the currently-browsed website

/**

 * SiteState object encapsulates the state of a site being browsed

 */

function SiteState(argObjURI)

{

 this.objURI = argObjURI;

 this.objServerURI = null;

 this.ratings = null;

 this.initGetRatingsTimestamp = null;

 this.gotRatings = false;

 this.gotSniff = false;

 this.isUnprotectedServer = false;

 this.isSubscribed = false;

 this.reviewCount = 0;

 this.usersRating = null;

 this.isDSAServer = siteIsServer;

 this.setRatings = setRatings;

 this.parseRatings = parseRatings;

 this.isMyHome = siteIsMyHome;

 this.isDisplayable = siteIsDisplayable;

}

/**

 * Site is displayable if it has received the sniff and got ratings (if

 * there is a home server available

 */

function siteIsDisplayable()

{

 return (this.isMyHome() ||

 (!gObjURIHome || this.gotRatings) && this.gotSniff);

}

function siteIsServer()

{

 return (this.objServerURI != null);

}

function siteIsMyHome()

{

 if (!this.objServerURI || !gObjURIHome)

 return false

 return this.objServerURI.spec == gObjURIHome.spec;

}

function setRatings(argRatings)

{

 this.ratings = this.parseRatings(argRatings);

 this.gotRatings = true;

}

// Process ratings, setting other state variables where necessary

function parseRatings(ratings)

{

 if (!ratings)

 return false;

 this.reviewCount = 0;

 this.isSubscribed = false;

 for(var i = 0; i < ratings.length; i++)

 {

 // Check for user's vote amongst the ratings

 if (gObjURIHome &&

 ratings[i].serverChain.indexOf(gObjURIHome.spec) == 0)

 {

 // User has submitted this rating

 this.usersRating = ratings[i];

77

 }

 if (ratings[i].review)

 this.reviewCount++;

 }

 // Check if the rating indicates a subscribed DSA server

 this.isSubscribed = (this.usersRating &&

 this.usersRating.ratingValue == RATING_POSITIVE &&

 this.usersRating.isDSAServer);

 return ratings;

}

78

11.1.11 takeOwnershipOfServer.xul

This XML file describes the dialog presented when the user attempts to set the current protected

server as their home server.

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog id="dsaProtectServerDialog" title="Don't Shop Alone - Protect Server"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

 buttons="accept,cancel"

 ondialogaccept="return onAccept();"

 ondialogcancel="return onCancel();">

<script type="application/x-javascript">

<![CDATA[

function onAccept()

{

 // The rating is passed to this dialog as an argument

 var password = window.arguments[0];

 password.value = document.getElementById("txtPassword").value;

 if (!password.value)

 {

 alert("Please enter a password");

 return false;

 }

 else

 return true;

}

function onCancel()

{

 return true;

}

]]>

</script>

<vbox>

 <label control="txtReview" value="Please enter the password for your DontShopAlone server:"

/>

 <textbox id="txtPassword" maxlength="25" />

 <description style='max-width: 400px'>

 This is the password you chose when first installing this server

 </description>

</vbox>

</dialog>

79

11.1.12 util.js

This JavaScript file contains utility functions used elsewhere in the system.

var parity;

function getParity()

{

 if (parity = 'odd')

 parity = 'even';

 else

 parity = 'odd';

 return parity;

}

/**

 * Returns the URI currently being browsed

 */

function getCurrentURI()

{

 return window._content.document.location;

}

/**

 * Open the given URI in the browser

 */

function navigateToURI(URI)

{

 window._content.document.location.href = URI;

}

/**

 * Character encodes a string to be compatible with query string format

 */

function URLEncode(str)

{

 // Additional 'replace' calls are for URL-encoding quotes and double quotes

 return escape(str).replace(/\+/g, '%2C').replace(/\"/g,'%22').replace(/\'/g, '%27');

}

/**

 * Regular expression taken from http://4umi.com/web/regex/domainfromurl.htm

 */

/* function getDomain(URI)

{

 var strURI = new String(URI);

 if (!strURI || strURI == "") return null;

 var domain = strURI.match(".?://(www\.)?([^/:]+)");

 domain = (domain && domain[2]) ? domain[2] : '';

 return domain;

} */

/**

 * Take a DOM element and recursively output its elements to the console

 */

function dumpRecursively(objElement, index, level)

{

 var dumpText = ""

 for (var i = 0; i < level; i++)

 {

 dumpText += " ";

 }

 if(!objElement) return false;

 dumpText += "Element " + index + ": [" + objElement.tagName + "]";

 if(objElement.nodeValue)

 {

 dumpText += " = [" + objElement.nodeValue + "]";

 }

 dump(dumpText + "\n");

80

 if (!objElement.childNodes) return;

 // Recurse into the element's children

 for (var i = 0; i < objElement.childNodes.length; i++)

 {

 dumpRecursively(objElement.childNodes[i], i, level + 1);

 }

}

/**

 * A listener object that detects browser location changes and calls

 * the pageLoadHandler method

 */

var dsaListener =

{

 QueryInterface: function(aIID)

 {

 if (aIID.equals(Components.interfaces.nsIWebProgressListener) ||

 aIID.equals(Components.interfaces.nsISupportsWeakReference) ||

 aIID.equals(Components.interfaces.nsISupports))

 return this;

 throw Components.results.NS_NOINTERFACE;

 },

 onStateChange : function(aProgress,aRequest,aFlag,aStatus) {return 0;},

 onLocationChange: function(aProgress, aRequest, aURI)

 {

 pageLoadHandler(aURI);

 return 0;

 },

 onProgressChange : function(a,b,c,d,e,f){},

 onStatusChange : function(a,b,c,d){},

 onSecurityChange : function(a,b,c){},

 onLinkIconAvailable : function(a){}

}

function truncateURIFile(objURI)

{

 // Strip file / query string / named anchor from the path to get subpath

 var reGetSubpath = new RegExp('.*/')

 var subpath = objURI.path.match(reGetSubpath)[0];

 return gIOService.newURI('http://' + objURI.host + subpath, null, null)

}

function truncateURIPathAndFile(objURI)

{

 // Strip file / query string / named anchor from the path to get subpath

 return gIOService.newURI('http://' + objURI.host + "/", null, null)

}

function hasPath(objURI)

{

 var reGetSubpath = new RegExp('.*/')

 var subpath = objURI.path.match(reGetSubpath)[0];

 return (subpath != "" && subpath != "/");

}

function getPrefs()

{

 dump("Getting DSA preferences\n");

 try

 {

 var prefRoot = Components.classes["@mozilla.org/preferences-service;1"].

 getService(Components.interfaces.nsIPrefService);

 return prefRoot.getBranch(DSA_PREFS_ROOT);

 }

 catch(e)

 {

 dump("Exception getting main preferences branch " + e);

 return null;

 }

}

81

11.2 DSA Server

11.2.1 dsa.php

This file contains all the functionality of the DSA server. It has been deliberately combined into a

single file in order to simplify the installation of the DSA server.

<?php

// Define constants

define('FILENAME', $_SERVER['DOCUMENT_ROOT'] . '/dsa.rdf');

define('FILENAME_PREFS', $_SERVER['DOCUMENT_ROOT'] . '/dsaPrefs.php');

define('DSA_VERSION', '0.5.0');

// Number of levels of recursion when querying servers for ratings

define('MAXIMUM_RECURSION_LEVELS', 5);

// Mappings for query string arguments

define('DOMAIN', 'domain');

define('URI', 'uri');

define('RATING_VALUE', 'ratingValue');

define('REVIEW', 'review');

define('SERVER_CHAIN', 'serverChain');

define('REQUEST_CHAIN', 'requestChain');

define('PASSWORD', 'password');

define('LIST_RATINGS', 'list');

define('IS_DSA_SERVER', 'isDSAServer');

define('RATING_POSITIVE', 1);

define('RATING_NEGATIVE', -1);

define('WSDL', 'wsdl');

define('SNIFF', 'sniff');

define('QS_LIST', '?list=true');

define('DSA_FILE', 'dsa.php');

define('SEPARATOR', '&');

define('DOMAIN_SEPARATOR', ';');

// Web Service Namespace

define('WS_NS', "urn:RatingService");

require_once("nusoap.php");

// Enable verbose error reporting

error_reporting(E_ALL);

// Error handler function

function errorHandler($errno, $errstr, $errfile, $errline)

{

 $message = $errno . ": " . $errstr . "\n in " . $errfile . " [" .

 $errline . "] (" . getScriptPath() . ")\n\n";

 error_log($message, 1, "chris@chrisbeach.co.uk");

 error_log($message, 3, $_SERVER['DOCUMENT_ROOT'] . "/phperror.log");

 //die();

}

// set to the user defined error handler

$oldErrorHandler = set_error_handler("errorHandler");

// Choose a response based on the request

if (isset($_GET[SNIFF]))

{

 // Respond to a server 'sniff'

 header("Content-Type: text/xml");

 echo (xmlWrap(null));

}

/* else if (isset($_POST[RATING_VALUE]) || isset($_GET[RATING_VALUE]))

{

 // Save a rating to this server

 header("Content-Type: text/xml");

 echo (xmlWrap(saveRating()));

} */

else if (isset($_GET[LIST_RATINGS]))

{

82

 // List the ratings in HTML format

 echo getRatingsHTML();

}

else

{

 // Run the Web Service server

 webservice();

}

class Rating

{

 var $domain;

 var $uri;

 var $ratingValue;

 var $review = null;

 var $serverChain = "";

 var $isDSAServer = false;

 function Rating($data)

 {

 if (!$data)

 {

 trigger_error("Invalid array passed to Rating constructor", E_USER_ERROR);

 }

 if (is_array($data))

 {

 // Data is already in the form of an array

 $dataArray = $data;

 }

 else

 {

 // Deserialise data from string to array

 $dataArray = array();

 $params = explode(SEPARATOR, $data);

 foreach($params as $param)

 {

 $paramSplit = explode("=", $param);

 if (isset($paramSplit[1]))

 $dataArray[$paramSplit[0]] = $paramSplit[1];

 }

 }

 if (isset ($dataArray[DOMAIN]))

 $this->domain = $dataArray[DOMAIN];

 if (isset ($dataArray[URI]))

 $this->uri = $dataArray[URI];

 if (isset ($dataArray[RATING_VALUE]))

 $this->ratingValue = $dataArray[RATING_VALUE];

 if (isset ($dataArray[REVIEW]))

 $this->review = $dataArray[REVIEW];

 if (isset ($dataArray[SERVER_CHAIN]))

 $this->serverChain = $dataArray[SERVER_CHAIN];

 if (isset ($dataArray[IS_DSA_SERVER]))

 {

 if ($dataArray[IS_DSA_SERVER] == 'true')

 $this->isDSAServer = true;

 else

 $this->isDSAServer = false;

 }

 }

 function toString()

 {

 $str = '';

 $str .= DOMAIN . '=' . $this->domain . SEPARATOR;

 $str .= URI . '=' . $this->uri . SEPARATOR;

 $str .= RATING_VALUE . '=' . $this->ratingValue . SEPARATOR;

 $str .= REVIEW . '=' . $this->review . SEPARATOR;

 $str .= SERVER_CHAIN . '=' . $this->serverChain . SEPARATOR;

 $str .= IS_DSA_SERVER . '=' . ($this->isDSAServer ? 'true' : 'false');

 return $str;

 }

83

 function getHeaderHTML()

 {

 $html = '';

 $html .= "<table>\n";

 $html .= " <tr>\n";

 $html .= " <th>Domain</th>\n";

 $html .= " <th>Rating</th>\n";

 $html .= " <th>Review</th>\n";

 $html .= " </tr>\n";

 return $html;

 }

 function getFooterHTML()

 {

 $html = '';

 $html .= "</table>\n";

 return $html;

 }

 function getHTML()

 {

 // Separate domains with a comma

 $cssClass = ($this->ratingValue == RATING_POSITIVE ?

 'positive' : 'negative');

 $ratingValue = ($this->ratingValue == RATING_POSITIVE ?

 'positive' : 'negative');

 $html = '';

 $html .= " <tr class='$cssClass'>\n";

 $html .= " <td>{$this->domain}</td>\n";

 $html .= " <td>$ratingValue</td>\n";

 $html .= " <td>{$this->review}</td>\n";

 $html .= " </tr>\n";

 return $html;

 }

 function getNameIndexedArray()

 {

 return array(

 DOMAIN => $this->domain,

 URI => $this->uri,

 RATING_VALUE => $this->ratingValue,

 REVIEW => $this->review,

 SERVER_CHAIN => $this->serverChain,

 IS_DSA_SERVER => $this->isDSAServer);

 }

}

class Server

{

 var $uri;

 function Server($uri)

 {

 $this->uri = $uri;

 }

 function getHeaderHTML()

 {

 $html = '';

 $html .= "<table>\n";

 $html .= " <tr>\n";

 $html .= " <th>URI</th>\n";

 $html .= " <th></th>\n";

 $html .= " </tr>\n";

 return $html;

 }

 function getFooterHTML()

 {

 $html = '';

 $html .= "</table>\n";

 return $html;

 }

84

 function getHTML()

 {

 $listURI = $this->uri . DSA_FILE . QS_LIST;

 $html = '';

 $html .= " <tr class='dsaServer'>\n";

 $html .= " <td>uri}'>{$this->uri}</td>\n";

 $html .= " <td>[list ratings]</td>\n";

 $html .= " </tr>\n";

 return $html;

 }

}

function getSubscribedDSAServers()

{

 $ratings = getRatingsFromFile();

 $servers = array();

 foreach($ratings as $rating)

 {

 if ($rating->isDSAServer && $rating->ratingValue == RATING_POSITIVE)

 $servers[] = $rating;

 }

 return $servers;

}

function getRatings($domain, $requestChain = '')

{

 if (isset($requestChain['!xsi:nil']) && $requestChain['!xsi:nil'] == 'true')

 $requestChainArray = array();

 else

 $requestChainArray = explode(DOMAIN_SEPARATOR, $requestChain);

 $soapRatings = array();

 foreach(getAggregatedRatings($domain, $requestChainArray) as $rating)

 {

 if ($rating->serverChain)

 $rating->serverChain .= DOMAIN_SEPARATOR;

 $rating->serverChain .= getScriptPath();

 $soapRatings[] = $rating->getNameIndexedArray();

 }

 return $soapRatings;

}

function getRatingsFromDSAServers($domain, $requestChainArray)

{

 $ratings = array();

 // Put a maximum limit on the level of recursion

 if (count($requestChainArray) >= MAXIMUM_RECURSION_LEVELS)

 return $ratings;

 //trigger_error("getRatingsFromDSAServers([" . $domain . "], [" .

 // arrayStr($requestChainArray) . "]");

 $dsaServers = getSubscribedDSAServers();

 foreach($dsaServers as $dsaServer)

 {

 foreach($requestChainArray as $alreadyVisitedServer)

 {

 if (!$alreadyVisitedServer)

 continue(1);

 if (stripURIScheme($dsaServer->uri) ==

 stripURIScheme($alreadyVisitedServer))

 {

 // Don't aggregate the same server twice

 // (prevents circular loops)

 continue(2);

 }

 /* else

 {

85

 trigger_error("unmatched [" . $alreadyVisitedServer .

 "] and [" . $dsaServer->uri . "]");

 } */

 }

 $newRequestChainArray = $requestChainArray;

 $newRequestChainArray[] = getScriptPath();

 $wsdl = $dsaServer->uri . "dsa.php?" . WSDL;

 $client = new soapclient($wsdl, WSDL);

 $param = array(

 DOMAIN => $domain,

 REQUEST_CHAIN => implode(DOMAIN_SEPARATOR, $newRequestChainArray)

);

 $soapRatings = $client->call('getRatings', $param);

 if ($err = $client->getError())

 {

 trigger_error("WS Error detected: " . $err);

 }

 if (!$soapRatings) continue;

 foreach($soapRatings as $soapRating)

 {

 $ratings[] = new Rating($soapRating);

 }

 }

 return $ratings;

}

function getAggregatedRatings($domain, $requestChainArray)

{

 $ratings = getRatingsFromFile($domain);

 $ratings = array_merge($ratings, getRatingsFromDSAServers($domain, $requestChainArray));

 return $ratings;

}

function getRatingsFromFile($domain = '')

{

 $ratings = array();

 if (!file_exists(FILENAME))

 return $ratings;

 // Get ratings on this server

 $fileString = file_get_contents(FILENAME);

 $ratingArray = explode("\n", $fileString);

 foreach ($ratingArray as $ratingString)

 {

 if (!$ratingString)

 continue;

 $rating = new Rating($ratingString);

 if (!$domain || $rating->domain == $domain)

 $ratings[] = $rating;

 }

 return $ratings;

}

/**

 * Add a rating, or if ratingValue = 0, delete the rating

 */

function addRating($rating, $password)

{

 $newRating = new Rating($rating);

 if (stripURIScheme($newRating->uri) == stripURIScheme(getScriptPath()))

 return new soap_fault('Client','','You cannot rate your own server');

 if (!isPasswordCorrect($password))

 return new soap_fault('Client','','Password incorrect');

 $oldRatingsArray = getRatingsFromFile();

 $newRatingsArray = array();

86

 foreach($oldRatingsArray as $rating)

 {

 // Purge any ratings with the same domain as the new rating

 if ($rating->domain != $newRating->domain)

 $newRatingsArray[] = $rating;

 }

 if ($newRating->ratingValue != 0)

 $newRatingsArray[] = $newRating;

 $fileString = '';

 // Concatenate string output from ratings objects

 foreach($newRatingsArray as $rating)

 {

 $fileString .= $rating->toString() . "\n";

 }

 $fp = fopen(FILENAME, 'w');

 if(!$fp)

 return new soap_fault('Client','','Could not open file');

 $bytesWritten = fputs($fp, $fileString);

 fclose($fp);

 if($bytesWritten == 0)

 return new soap_fault('Client','','Data failed to save');

 return true;

}

function changePassword($oldPassword, $newPassword)

{

 if(!isPasswordCorrect($oldPassword))

 return new soap_fault('Client','','Could not change password - old password

incorrect');

 addPref(PASSWORD, $newPassword);

 return true;

}

/**

 * Checks whether the password is correct for this server

 * - If preference file exists, check against the password stored there

 * - If not, save the given password and return true

 */

function isPasswordCorrect($password)

{

 $prefs = getPrefs();

 if (isset($prefs[PASSWORD]))

 {

 return ($prefs[PASSWORD] == $password);

 }

 else

 {

 addPref(PASSWORD, $password);

 return true;

 }

}

/**

 * Serve the webservices

 */

function webservice()

{

 $httpRawPostData = file_get_contents('php://input');

 //trigger_error("webservice() HTTP_RAW_POST_DATA=[$httpRawPostData]");

 $server = new soap_server();

 $server->configureWSDL('RatingsService', WS_NS);

 $server->wsdl->schemaTargetNamespace = WS_NS;

 $server->wsdl->addComplexType(

 'Rating', 'complexType', 'struct', 'all', '',

 array(

 DOMAIN => array('name' => DOMAIN, 'type' => 'xsd:string'),

87

 URI => array('name' => URI, 'type' => 'xsd:string'),

 RATING_VALUE => array('name' => RATING_VALUE, 'type' => 'xsd:integer'),

 REVIEW => array('name' => REVIEW, 'type' => 'xsd:string'),

 SERVER_CHAIN => array('name' => SERVER_CHAIN, 'type' => 'xsd:string'),

 IS_DSA_SERVER => array('isDSAServer' => IS_DSA_SERVER, 'type' =>

'xsd:boolean')

)

);

 $server->wsdl->addComplexType(

 'RatingArray', 'complexType', 'array', '', 'SOAP-ENC:Array', array(),

 array(array('ref'=>'SOAP-ENC:arrayType', 'wsdl:arrayType'=>'tns:Rating[]')),

'tns:Rating');

 $server->register('addRating', array(

 'rating' => 'tns:Rating',

 'password' => 'xsd:string'),

 array('return' => 'xsd:boolean'), WS_NS

);

 $server->register('getRatings', array(

 'domain' => 'xsd:string',

 'requestChain' => 'xsd:string'),

 array('return' => 'tns:RatingArray'), WS_NS

);

 $server->register('changePassword',

 array(

 'oldPassword' => 'xsd:string',

 'newPassword' => 'xsd:string'),

 array('return' => 'tns:RatingArray'), WS_NS

);

 $server->service($httpRawPostData);

}

function getRatingsHTML()

{

 $ratingsAndServers = getRatingsFromFile();

 $html = '';

 $html .= "<html>\n";

 $html .= "<head><title>Ratings</title>\n";

 $html .= " <style type='text/css'>\n";

 $html .= " body { font-family: verdana }\n";

 $html .= " h1, h2, body { color: #333 }\n";

 $html .= " h1 { font-size: 14pt }\n";

 $html .= " h2 { font-size: 12pt }\n";

 $html .= " table { border-collapse: collapse; border: 1px solid #333 }\n";

 $html .= " tr { text-align: left }\n";

 $html .= " th { background-color: #333; color: #fff; font-weight: normal }\n";

 $html .= " td, th { padding: 0 6px 0 3px; font-size: 10pt }\n";

 $html .= " td { border-left: 1px solid #999; border-bottom: 1px solid #999 }\n";

 $html .= " tr.positive td { background-color: #cec; color: #242 }\n";

 $html .= " tr.negative td { background-color: #ecc; color: #422 }\n";

 $html .= " tr.dsaServer td { background-color: #cce; color: #224 }\n";

 $html .= " </style>\n";

 $html .= "</head>\n";

 $html .= "<body>\n";

 $servers = array();

 $ratings = array();

 $html .= "<h1>DontShopAlone Server - " . stripURIScheme(getScriptPath()) . "</h1>\n";

 foreach($ratingsAndServers as $ratingOrServer)

 {

 if ($ratingOrServer->isDSAServer)

 $servers[] = new Server($ratingOrServer->uri);

 else

 $ratings[] = $ratingOrServer;

 }

88

 if ($ratings)

 {

 $html .= "<h2>Ratings:</h2>\n";

 $html .= Rating::getHeaderHTML();

 foreach($ratings as $rating)

 {

 $html .= $rating->getHTML();

 }

 $html .= Rating::getFooterHTML();

 }

 else

 $html .= "<h2>No Ratings Yet</h2>";

 if ($servers)

 {

 $html .= "<h2>Subscribed Servers:</h2>\n";

 $html .= Server::getHeaderHTML();

 foreach($servers as $server)

 {

 $html .= $server->getHTML();

 }

 $html .= Server::getFooterHTML();

 }

 $html .= "</body>\n";

 $html .= "</html>\n";

 return $html;

}

function xmlWrap($argXML)

{

 $prefs = getPrefs();

 $isProtected = isset($prefs[PASSWORD]) ? 'true' : 'false';

 $xml = '';

 $xml .= "<?xml version='1.0' encoding='UTF-8' standalone='yes'?>\n";

 $xml .= "<dsaresponse version='" . DSA_VERSION . "'";

 $xml .= " isprotected='" . $isProtected . "'>\n";

 $xml .= $argXML . "\n";

 $xml .= "</dsaresponse>\n";

 return $xml;

}

/**

 * Add the given preference to the preferences file

 */

function addPref($newKey, $newValue)

{

 $prefs = getPrefs();

 $prefs[$newKey] = $newValue;

 // Create the content for the file

 $fileString = '';

 $fileString .= "<?php\n";

 $fileString .= "/* DontShopAlone Preferences\n";

 $fileString .= " * Please do not modify this file\n";

 foreach($prefs as $key => $value)

 {

 $fileString .= "$key=$value\n";

 }

 $fileString .= " */\n";

 $fileString .= "?>";

 // Open and write the file

 $fp = fopen(FILENAME_PREFS, 'w');

 $bytesWritten = fputs($fp, $fileString);

}

/**

 * Get a name-indexed array of preferences

 */

function getPrefs()

89

{

 $prefs = array();

 if (file_exists(FILENAME_PREFS))

 {

 $fileString = file_get_contents(FILENAME_PREFS);

 // Parse the file, looking for the password setting

 $filePrefs = explode("\n", $fileString);

 foreach ($filePrefs as $pref)

 {

 $prefParts = explode("=", $pref);

 if (isset($prefParts[1]))

 $prefs[$prefParts[0]] = $prefParts[1];

 }

 }

 return $prefs;

}

function getScriptPath()

{

 if (ereg ('.*/', $_ENV['SCRIPT_URI'], $regs))

 {

 return $regs[0];

 }

 else

 return $_ENV['SCRIPT_URI'];

}

function truncate($str, $maxLength)

{

 $trailing = ' ...';

 if (strlen($str . $trailing) < $maxLength)

 return $str;

 else

 return substr($str, 0, $maxLength - $trailing) . $trailing;

}

function arrayStr($arr)

{

 $str = '';

 if (!is_array($arr))

 return $arr;

 foreach($arr as $key=>$val)

 {

 if(is_array($val))

 {

 $str .= "[$key = {". arrayStr($val)."}] , ";

 }

 else

 {

 $str .= "[$key=$val] , ";

 }

 }

 return substr($str, 0, strlen($str)-3);

}

function getParity()

{

 global $parity;

 if ($parity == "odd")

 $parity = "even";

 else

 $parity = "odd";

 return $parity;

}

function stripURIScheme($argURI)

{

 $uri = str_replace("http://www.", "", $argURI);

 return str_replace("http://", "", $uri);

}

90

?>

