
        

Citation for published version:
Longridge, TN 2005, Developing an XCS Framework. Computer Science Technical Reports, no. CSBU-2005-11,
Department of Computer Science, University of Bath.

Publication date:
2005

Link to publication

©The Author October 2005

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/developing-an-xcs-framework(065807a2-9871-40a8-979c-2eb5083fc40d).html


Department of
Computer Science

Technical Report

Undergraduate Dissertation: Developing an XCS Framework

Thomas N Longridge

Technical Report 2005-10 October 2005
ISSN 1740-9497



Copyright cOctober 2005 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497



Developing an XCS FrameworkThomas N LongridgeBSc (Hons) in Computer ScienceMay 2005



Developing an XCS FrameworkSubmitted by Thomas N LongridgeCopyrightAttention is drawn to the fact that copyright of this thesis rests with its author.The Intellectual Property Rights of the products produced as part of the projectbelong to the University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).This copy of the thesis has been supplied on condition that anyone whoconsults it is understood to recognise that its copyright rests with its authorand that no quotation from the thesis and no information derived from it maybe published without the prior written consent of the author.DeclarationThis dissertation is submitted to the University of Bath in accordance with therequirements of the degree of Bachelor of Science in the Department of ComputerScience. No portion of the work is this dissertation has been submitted insupport of an application for any other degree or quali�cation of this or any otheruniversity of institution of learning. Except where speci�cally acknowledged, itis the work of the author. Signed .................................................................This thesis may be made available for consultation within the University Li-brary and may be photocopied or lent to other libraries for the purposes ofconsultation. Signed .................................................................



AbstractXCS is a relatively recent development of Learning Classi�er System that hasproven to be more e�ective than previous algorithms. These systems are formsof machine learning algorithm that can be used to provide an agent with themeans of evolving \desirable" behaviour within a given environment. Severalimplementations of the XCS algorithm have been written in programming lan-guages such as C and Java. They are used both as learning tools and to furtherresearch in the area. This study documents the development of an XCS imple-mentation in the Python programming language. It aims to provide a more ac-cessible framework for XCS research and development based on the algorithmicdescription given by Butz & Wilson (2000). Initially a procedural implemen-tation is developed that closely emulates this description. The components arethen reconstructed into an object-oriented structure that forms the basis of theframework along with some standard environments and a controller class thatcontrols the whole experiment.
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Chapter 1IntroductionA Learning Classi�er System (LCS) (Holland 1986) is a machine learning algo-rithm inspired by processes in the natural world. In order to obtain \desirable"behaviour in a given environment, the LCS is rewarded for performing an actionthat is correct (or is punished for undesirable behaviour). This reinforcementlearning technique, often used to train animals, drives the LCS to develop a setof internal rules that describe the correct responses to particular environmentalconditions. In order to learn from its mistakes and explore new possibilities theLCS employs a Genetic Algorithm (GA) that acts on the rule-base in a waythat emulates the principles of sexual reproduction, random gene mutation and\survival of the �ttest" in the natural world.These mechanisms make an LCS well suited for use in complex problemswhere a programmer would not be able to provide a solution methodically eitherbecause the domain is not well understood or is too large to be adequatelyhandled. Such applications include data mining (Barry, Holmes & Llora 2004)of areas such as �nancial markets; and modelling or controlling complex systemssuch as communication networks (Carse, Fogarty & Munro 1996).XCS (Wilson 1995) is a form of LCS that was developed to improve on someof the short-comings of Holland's LCS. In particular it aimed to produce systemswith an optimal set of rules that accurately describe correct behaviour. Wilsonbases the learning phase of XCS on the accuracy of the rules that the systemuses, rather than the value of the reward itself.Numerous implementations of XCS have been developed in a variety of pop-ular programming languages such as C and Java. Due to the repeatative natureof the algorithm the code for these implementations needs to be fast and e�-cient. However this comes at the cost of obscuring the original algorithm. Thismeans that development of the code by anyone unfamiliar with the speci�cimplemenation is often very di�cult and time-consuming.This project aims to provide an XCS framework primarily designed for bothresearch and development, and educational use. In order to do so, it will usea language more capable of representing the algorithmic processes described byWilson. As a further tool for education purposes, we also implement, as closelyas possible, the algorithmic description of an XCS as given by Butz & Wilson(2000).The �rst part of this report provides a background on XCS theory andan analysis of the two main software implementations that are currently in4



use. Part II describes the preliminary design processes undertaken during theproject; including requirements analysis and the top-level design. The detailof the framework's implementation is described in Part III, giving justi�cationfor the various design decisions. Finally, an analysis of the performance of thedeveloped framework is given along with a disscussion on its e�ectiveness andthe potential for future development.

5



Part IBackground
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Chapter 2Learning Classi�er Systems& XCS2.1 Introduction to Learning Classi�er Systems\Find a bug in a program, and �x it, and the program will worktoday. Show the program how to �nd and �x a bug, and the programwill work forever." { Hearst & Hirsh (2002)This sentiment goes a long way to describe the rationale for the development ofso-called \machine learning" software agents. Give an agent the ability to learnappropriate behaviour from its environment and you remove the limitations of ahuman programmer's logic. This is especially pertenant to domains that containvast amounts of data with complex relationships such as data mining, networkrouting, speech recognition and gaming strategies.Developing a machine learning agent is by no means an easy task. Manytechniques have been developed with no one algorithm proven with universalsuccess. The algorithms can usually be categorised into three groups: super-vised learning, unsupervised learning and reinforcement learning. In supervisedlearning, the agent is given some correct inputs and outputs, then develops afunction to produce the correct mapping. Unsupervised learning algorithms areonly given inputs which it clusters into groups of similar data to build a model.In reinforcement learning, the agent receives input data, but also a reward re-lating to the \correctness" of its chosen actions which it uses when selectingactions in the future.First proposed by Holland in 1986, Learning Classi�er Systems (LCS) are oneform of reinforcement learning technique in machine learning. In broad terms,an LCS seeks to classify inputs from its environment via a set of rules thatdetermine the correct action to take in the given situation. Figure 2.1 showsthe relationship between an LCS and its environment. The LCS can detectparticular attributes of the environment using a number of sensors and canperform a �nite set of actions on the environment using its e�ectors. Messagesare passed from the sensors to the LCS, in the form of a binary string in whicheach bit corresponds to the state of a particular sensor. Given this information,7



L C SS e n s o r s E f f e c t o r s
E n v i r o n m e n tR e i n f o r c e m e n tP r o g r a mFigure 2.1: The current environment state is determined by the LCS usingsensors. Based on this, an action is executed on the environment using theLCS's e�ectors. Both inputs and outputs are also sent to the ReinforcementProgram and it is based on this information that a reward is granted to theLCS.the LCS decides on an action and sends a message to the e�ectors to carry itout.An LCS is a rule-based learning system and works by maintaining a set of\if-then" rules called classi�ers. Each classi�er proposes an action to take ifparticular conditions are detected in the environment. The conditional state-ment of a classi�er is a string f0; 1;#gL where L is the length of the sensor'sbinary message and # is a wild card that allows the value of the particular bitto be either 0 or 1.Those classi�ers that match the current input message take part in a bid-ding process (described in Section 2.2) whereby the winning classi�er's actionis passed to the e�ectors to be executed in the environment.The LCS learns correct behaviour using a reinforcement learning techniquein which the system receives rewards for performing correct actions given thestate of the environment. It does this with no prior guidance or knowledgeabout the problem space, but merely seeks to maximise the reward it can earn.This reward-based technique is adapted from learning techniques often used totrain animals or young children. In such situations the reward is granted tothe pupil by another individual; similarly rewards are granted to the LCS byan external program, called the reinforcement program (RP) (Butz & Wilson2000).The LCS uses the reward from the RP to credit the classi�er (or classi�ers)that proposed the action that brought about the reward. An average rewardis recorded for each classi�er and it is this value that is used in future biddingprocesses. In this way, classi�ers that propose correct behaviour are more likelyto be selected in future.The system also uses a Genetic Algorithm (GA) to perform operations onthe population of classi�ers to create new, and potentially useful classi�ers. Asthe name suggests, the GA models the genetic operations that occur in theDNA of living organisms. In particular, it creates o�spring classi�ers that have8



a combined version of the characteristics of their parents. During the processthere is also a small possibility of a random mutation. These operations arestring manipulations on the conditional statements of the parent classi�ers.An LCS can therefore be described in terms of the following components:� Performance: The selection of an appropriate action, given the currentstate of the environment.� Reinforcement: Rewarding those classi�ers that describe behaviour thatis desirable/optimal.� Discovery: Striving to discover better classi�ers to bring about consis-tently higher reward or more constant performance.The problem that an LCS attempts to solve can be categorised as either a singlestep or multiple step problem. As the name suggests, single step problems onlylast for a single cycle of input processing, action selection and action execution.After this, any reward earned is awarded and a new problem begins. In amultiple step problem, the LCS may have to go through a number of these cyclesbefore a reward is earned and/or the problem is solved. In both problems types,once a particular scenario has been solved, the problem is restarted a numberof times with di�erent starting conditions. During each problem, the classi�erpopulation evolves and so should become increasingly skilled at selecting thecorrect actions. The two scenarios often used as examples, or test environments,for LCS implementations are the single step \Boolean Multiplexer", and themulti-step \Woods" (Wilson 1985) problems. See Appendix C for de�nitions.To enable an LCS to support potentially long chains of actions in multi-stepproblems, Holland proposed a complex message-passing framework in whichinternal messages could be passed between classi�ers as well as the externalmessages between the LCS and the environment. However, as Wilson (1994)notes, attempts at implementation have met with \mixed success":Though a number of researchers were inspired by Holland's frame-work to investigate classi�er systems . . . e�orts to realize the frame-work's potential have met with mixed success, primarily due todi�culty understanding the many interactions of the classi�er sys-tem mechanisms that Holland outlined. The most successful studiestended in fact to simplify and reduce the canonical framework, per-mitting better understanding of the mechanisms which remained.Wilson's Zeroth-level Classi�er System (ZCS) (Wilson 1994) was an attempt tosimplify Holland's framework and \to provide a viable foundation for buildingtoward the aims of Holland's full framework". Later Wilson describes the XCS(Wilson 1995) form that builds on the ZCS and has been shown to be e�ectiveand stable where other LCS implementations have failed. In particular thetendency of an LCS's population of classi�ers to be taken over by those thatreceive high rewards in some situations but low rewards in other areas. Theseover-general classi�ers are selected for reproduction because of the high rewardthey receive in some areas. However, they do not represent accurate or completesolutions for the problem space. This is analogous to an ecosystem of cooperativepopulations in the natural world. Populations of organisms will specialise inthe various di�erent environmental situations (or niches) and live cooperatively9



Figure 2.2: Schematic illustration of XCS (taken from \Generalization in theXCS Classi�er System", Wilson 1998).because they are not competing for the same resources. In the same way,Wilsonproposed that a classi�er system should be able to maintain cooperative sets ofclassi�ers, thus enabling the system as a whole to cover more of the problemspace.1 To enable this to happen, Wilson based the reproductive capabilities ofclassi�ers in an XCS on accuracy of predicting reward rather than the actualamount of reward received. In this way accurate classi�ers in all niches have anequal chance of reproducing regardless of the value of the reward they predict.Figure 2.2 shows the XCS and its components. These are described in detail inthe following sections.2.2 XCS Performance ComponentAt each discrete time step, the system receives an input message from the en-vironment and forms a subset of classi�ers whose condition statements matchthe current message. This subset is known as the match set [M]. For example,the message 101101001, could contain classi�ers with the following conditions:101101001, 10##01001, ####01001, #########.The members of [M ] may propose a range of di�erent actions. A conictresolution subsystem (Barry 2000) is therefore required to select an action to beexecuted. In XCS this is done by creating a prediction array in which is placedthe system's prediction for the reward for each action represented in [M ]. The1Alternatively this can be thought of as a set of rules that provide a complete and accuratemapping of conditions and actions to a reward: X � A) P .10



prediction for a particular action is calculated as �tness-weighted average of allclassi�ers that propose a particular action.2 Using this array, the XCS can eitherselect the action with the highest prediction or use a random selection process.These two techniques demonstrate the trade-o� that the system must managebetween maximising reward and evolving an accurate rule-base. By selectingthe highest prediction, the system is seeking to gain maximum reward; in arandom selection, the system executes sub-optimal rules in order to bring newrules into use and identify inaccurate rules in the population. These di�erentselection techniques are often called exploit and explore, respectively. In XCS,the parameter Pexp is used to denote the probability of using the explore policyin a given cycle.Following this selection process, the selected action is sent to the e�ectorsto be executed and an action set [A] is formed that contains those classi�ersfrom [M ] that proposed the executed action. The members of [A] are given ashare in any reward earned, and in multi-step problems members of [A] in stepsleading up to the earning of a reward are also granted a share. This is discussedin more detail in the next section.2.3 XCS Reinforcement ComponentAs discussed earlier, the Discovery Component of an XCS (and to some extentthe Performance Component) is based on a classi�er's ability to accurately pre-dict the value of reward that will be earned if its action is executed. This �tnessvalue is a function of the relative accuracy of the classi�er with respect to otherclassi�ers in action sets to which the classi�er has belonged.In previous LCS theory there was simply a \performance" parameter main-tained for each classi�er { an average of reward earned { that was used for bothaction selection and GA selection. In order to calculate �tness in XCS, threeparameters are required:� p: The classi�er's reward prediction.� �: The average error in this prediction (when the prediction is comparedto the actual reward that was received).� F : The resulting �tness value for the classi�er.It is therefore the purpose of the Reinforcement Component to update theseparameters for members of [A] after an action has been executed.In a single step problem, the prediction parameter p is updated for eachclassi�er, j, using the Widrow-Ho� delta rule (Widrow & Ho� 1960):pj  pj + �(R � pj) (2.1)where R is the reward earned and � (0 < � � 1) is the learning rate { a systemparameter that, when varied, changes the balance between speed and accuracyof discovery (Butz, Sastry & Goldberg 2003).However, in multi-step problems, the XCS must reward a chain of actionsets that have led to a reward. In order to avoid a complex system involvingrecording the histories of each classi�er, XCS uses the a payo� mechanism from2As mentioned earlier, �tness in an XCS is based on accuracy. See Section 2.3.11



the current action set, [A], to the previous one, [A]�1. Instead of updating pusing a reward value, the payo� value, P , is used. P takes the maximum valuefrom the current prediction array, discounts it by  (0 <  � 1) and adds inany reward earned in the previous time step.�, the error parameter, is similarly updated, using the Widrow-Ho� techniquewith the absolute di�erence between the prediction pj and the reward P (or R):�j  �j + �(j P � pj j ��j) (2.2)Finally, the �tness parameter, F can be calculated:Fj  Fj + �(k0j � Fj) (2.3)where k0 is the relative accuracy of the classi�er within the action set. This isachieved by �rst calculating the actual accuracy, k, and then dividing k by thenumber of classi�ers in the action set. Accuracy is an inverse function of � andis often calculated as:kj = exp((ln�)(�j � �0)) for �j > �0 otherwise 1 (2.4)where � (0 < � < 1) is a system parameter that can be altered to increase therate of decline in accuracy as error increases, and �0 acts as a threshold, afterwhich error is considered negligible. The function causes accuracy to decreaseexponentially for error values greater than �0.However, in the above calculations the Widrow-Ho� technique is only usedto update the parameters if the classi�er is thought to have had su�cient ex-perience that its parameters have reached a stable value. The threshold valueis set to 1=� time steps, before which the parameters are updated as a simpleaverage of the existing and new values.32.4 XCS Discovery ComponentIt is the job of the Discovery Component to introduce improved classi�ers intothe population { classi�ers are more accurate or more general than existingmembers; and to remove under-performing classi�ers { those who are inaccurateor too speci�c. This process is driven by a genetic algorithm (the GA), whichemulates the evolutionary processes found in nature, to produce new classi�ersand remove others.Most reproduction in nature is carried out sexually { in other words, o�-spring are produced from two parents and inherit a genotype that reects thiscombination of the adult genes. The process by which the genotypes of theadults are combined, and so the attributes that the o�spring exhibits, is ran-dom. However, given parents with some set of useful attributes there is a chancethat the o�spring will gain a sizable proportion of desirable traits. In this way,the population can evolve better members as the child is likely to be able toout-compete its peers and so propagate its genes to a greater extent.This principle of \survival of the �ttest" is modelled by the GA, by select-ing two classi�ers from the population who are deemed \�t" and performing a3A consequence of this is that an additional parameter, exp, is required for each classi�er.exp is a count of the number of times the classi�er has belonged to [A] and is updated duringthe Reinforcement Component. 12



crossover operation on their conditional statements. In this process the stringis separated into two sub-strings at the same random point on both parents.The second string from each parent is then switched to produce two o�spring.During this process in nature, a mistake sometimes occurs whilst combiningthe genes in o�spring. It is possible that this random mutation will bene�t theo�spring and it will bring about a change in the population behaviour in thesame way as previously described. Therefore allowances are made for this inthe GA: when creating a new classi�er there is a small probability that a bitwill be changed in the process of replication.Arguably, it is the way in which classi�ers are selected for replication thatseparates XCS from ZCS and other systems. As we have already seen, classi�ersin an XCS have separate �tness and prediction parameters. This allows the GAin an XCS to select classi�ers for reproduction based on their relative accuracyand hence eliminate the competitive pressures between classi�ers in di�erentniches. In another change from LCS, the GA in an XCS operates on membersof [A] rather than [P ]. This niche GA was �rst suggested by Booker (1989) andused in XCS as a further way to reduce competition between niches. Bookeralso points out that the o�spring of parents in separate niches are less likely toexhibit useful attributes than those with parents in the same niches.The actual selection of classi�ers to be bred is usually done using a roulette-wheel technique to randomly select two parents with a probability proportionalto the classi�er's �tness. More recently, tournament selection has been proposedas a more e�ective method of selecting parents. In this process, a number ofclassi�ers are selected at random and the two �ttest are then selected from thispool (Butz et al. 2003).To ensure uniform evolutionary pressure in each niche, the GA is not appliedon the formation of each action set. Rather, the average time since the last GAinvocation is calculated for the current members of [A], and if it exceeds a certainthreshold, �GA, the GA is executed.4There are occasions when a classi�er is produced that is identical to an-other classi�er in [P ]. In a measure to save computation time, these classi�ersare merged to form a macroclassi�er. In e�ect all classi�ers in an XCS aremacroclassi�ers that contain a numerosity �eld that records the number of mi-croclassi�ers that it represents (initially 1). When a new classi�er is generated,[P ] is scanned for a duplicate classi�er. If found, the numerosity of the existingclassi�er is incremented and the new classi�er is deleted. The terms classi�erand macroclassi�er are usually interchangeable. However there are occasionswhen this distinction is necessary; for example when calculating relative accu-racy in the Performance Component, it is necessary to consider the total numberof microclassi�ers.An LCS can be seeded with either a population of randomly generated classi-�ers; a collection of potentially useful ones; or none at all. And in the same wayas a natural population has an upper size limit, the LCS imposes a maximumpopulation size; usually referred to as N . Therefore, if a population size is lessthan N , new classi�ers can be generated and simply inserted into the popula-tion. However, once the population size reaches N , a number of microclassi�ersmust �rst be removed from the population before any new members can be4To facilitate the calculation of this average, each classi�er records the time step that thelast GA invocation occurred in an action set that it belonged to (referred to as ts).13



added. Deletion also occurs using a random-based technique; Wilson describesthe use of a roulette-wheel technique in which the probability of selection fordeletion is increased if the classi�er belongs to action sets whose average sizeis relatively large and further still if the classi�er's �tness is less than a cer-tain small proportion of the population's average �tness.5. In targeting theseunder-performing classi�ers, we can expect the removal of inaccurate classi�ersand the maintenance of equal size niches. As with subsumption, classi�ers arenot considered for deletion until their experience reaches a prede�ned threshold,�del.In a later addition to the XCS, Wilson (1998) describes subsumption dele-tion. This was suggested after the identi�cation of \accurate, but unnecessarilyspecialised classi�ers". This should not be the case as, in theory, general classi-�ers will occur in more action sets and so out-compete more speci�c classi�ers.However, Wilson suggests that in certain cases, where the inputs received fromthe environment were sparse, this was not occurring. Wilson suggests thatnewly created classi�ers are checked for speci�city in conditions against theirparents and the other members of the current action set.6 If the o�spring aresimply a less general case of another acccurate classi�er they are subsumed {the numerosity of the existing classi�er is incremented and the new classi�er isdeleted.

5Again, an extra �eld, as, is required to record an average of the action set size that aclassi�er has belonged to.6Wilson de�nes subsumption of a child by a parent being when the set of possible stringsmatched by the o�spring is a proper subset of the set matched by the parent.14



Chapter 3Existing XCSImplementationsVarious XCS implementations have been produced in programming languagessuch as C (Barry's XCSC and Butz's Illigal C-XCS) and Java (Barry's JXCSand Butz's Illigal Java-XCS).1 Their uses are twofold: they allow a user to applytheir own problem, or test environment, to the XCS algorithm; and they allow adeveloper to modify the operations of the XCS algorithm for research purposes.This section analyses these implementations from the perspective of these twoprogrammers: the User and the Developer.23.1 Java ImplementationsOne of the main bene�ts of a Java implementation, over those written in a pro-cedural language such as C, is that it provides an object-oriented code structureto represent data and separate the functionality into logical groups.Butz uses a minimal structure with regards to the number of object classesde�ned. The library uses objects to represent a classi�er (XClassifier); aprediction array (PredictionArray); a classi�er set (XClassifierSet); an XCS(XCS); and the collection of parameters XCSConstants. Further to this it de�nesan interface, Environment, to be implementedwhen creating a test environment.Although many of these classes are similarly de�ned in Barry's structure, hede�nes several others in addition. Where Butz has used primitives to representconditions, actions, messages, and reward; Barry has de�ned further classes. Indoing so, Barry has provided a means for easier development from a Developer'sview-point. For example, alternative message encodings can be researched anddeveloped by simply modifying the Message class. Providing the object imple-ments the same methods, this data cohesion means that the programmer shouldnot have to worry about the e�ects of the change in any other part of the sys-tem. Barry also includes a more exible reporting mechanism to allow for any1See Appendix A for details2In this section, and for the remainder of the project, the words \User" and \Developer"have been capitalised so as to distiguish them from their more general usage, when used inreference to the two user groups identi�ed. 15



output format.3 However, a signi�cant draw-back in Barry's library is that itonly handles single-step problems. Although there is probably no reason whythis could not be added at some point in the future.A signi�cant di�erence that a User will encounter when creating test environ-ments in both libraries is that Barry does not use an interface to de�ne how anenvironment class should be written. Instead, test environments are subclassesof an Environment class. In terms of object-oriented design, Butz's solutiondoes seem to solve the problem in a neater way; allowing the User to createa new class however they like, providing they implement the vital methods tocommunicate with the XCS. Barry's solution does have the advantage of beingable to lay-down some base code and variables that allow the User to graduallycreate a class that overrides the superclass, instead of having to implement aclass in one go.An interesting di�erence in approach is also found in the way they deal withsets of classi�ers. Butz uses a single class to represent all sets; [P ], [M ] and [A].Three separate constructors handle creating [P ] as an empty population witha speci�ed number of actions; [M ] by specifying (amongst others) the currentinput message; and [A] by specifying the selected action. Each set also keeps areference to its parent set. Conversely, Barry uses separate classes to de�ne [P ],[M ]4 and [A]. Again, Butz's implementation has, arguably, the purer object-oriented approach; there is presumably some redundant code when de�ningtwo classes to handle classi�er sets. However it does mean that the class onlycontains functionality speci�c to the particular type of set, whereas with Butz'sXClassifierSet, it was necessary to include functionality relating to [P ], [M ]and [A].Both implementations provide some standard test environments. Both pro-vide the single-step Boolean Multiplexer, and Butz includes the multi-step Mazeenvironment.53.2 C ImplementationsBoth implementations use data structures to represent similar objects to theirrespective Java implementations. However, the readability of the code suf-fers from the syntactic obscurities involved with C programming and are along way from the algorithmic description described by Butz & Wilson (2000).This means from the point of view of both the User and the Developer|particularly the Developer|signi�cant time would need to be devoted intoacquiring implementation-speci�c knowledge and becoming familiar with thecode.The bene�t of using C, however, is its speed. The fact that C is a relativelylow-level language does not help readability, but it does mean that we can expecta faster execution time from the resulting program. With an XCS that iteratesthrough thousands of cycles per experiment this is a signi�cant factor, especially3He also de�nes a separate user interface package that reports information to a user graph-ically. This is a useful feature, but for the purposes of this comparison, we will focus on theXCS package.4Although the Match Set is combined with the Prediction Array in the SystemPredictionclass.5This includes a useful text �le parsing functionality to allow a User to create new mazeseasily. 16



if the programmer expects to need to run an experiment many times in orderto collect thorough results.Butz attempts to split the functionality within his code into functionalityfor classi�er lists, action selection, environments, XCS constants and the generalXCS system. This does make Butz's code slightly more modularised, as Barrykeeps all the functionality in a single �le. However, like the Java implementation,Barry's libraries are designed more exibly; with tighter cohesion allowing aprogrammer to safely modify a component without fear of interfering with theresults of others.3.3 ConclusionAn ideal XCS implementation would:� Minimise syntactic clutter of the implementing language and representas closely and as clearly as possible the algorithmicprocesses in the system.� Employ exible object-oriented techniques, speci�cally tight cohe-sion of data that aids development within modules; and low coupling ofobjects for exible use.� Fast execution of code at run-time.These attributes of a good implementation are often contradictory. For examplein producing code that is readable, it may be necessary to use extra statementsto clarify the semantics of a code block but which may also increase its executiontime. It is therefore a matter of �nding a suitable balance between the threeattributes. We have seen that the existing implementations are perhaps lackingwith regards to the �rst point; that of representing the process clearly andalgorithmically.
17
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Chapter 4Requirements Analysis &Speci�cationIn Chapter 2 the two stakeholders in the framework were identi�ed as the Userand the Developer. The former being interested in setting up environments forthe system to act in, and the latter wishing to adapt the behaviour of the systemfor research purposes. In this section these activities will be further discussedand analysed to form the basis of the Requirements Speci�ication on which theframework will be developed. The Speci�cation can be found in Appendix B(p. 81).Before exploring the speci�c requirements of these two users, it is worthdiscussing some of the aspects that are common to both groups. Including thepositive attributes discussed in the previous section.4.1 General RequirementsFramework CodeThe framework is an XCS framework and so obviously its primary requirement isthat it should contain a working XCS algorithm as a basis for any development.Implicit as this may seem, it is worth remembering that XCS is a branch ofthe LCS tree and there are also several variations in its implementation. Theframework will be based on the papers by Wilson (1998) and particularly thealgorithmic description proposed by Butz & Wilson (2000). Any deviations orenhancements made to the core functionality should be clearly explained andjusti�ed. As described in Chapter 2, one of the core development objectivesfor the framework is to maintain this algorithmic description and readabilityof code. However, every e�ort should be made to keep the code as e�cient aspossible. This is especially true of the core XCS algorithm which is executedmany thousands of times.Another general requirement that should be placed on the framework is forit to be written in an object-oriented way. The paradigm is so commonly usedin modern programming that it needs little justi�cation here, except to saythat failure to use it is very likely to inhibit the framework's use and furtherdevelopment. 19



DocumentationDocumentation is also vital to the framework's usability as an XCS developmenttool. With many programming languages, automatic documenting tools areavailable to convert structured code comments into either hypertext or staticdocumentation. By including substantial commenting on all functions withinthe framework, the need for single line comments within the function bodyis reduced. Again this is important for the core XCS algorithm where thereadability of comments may compromise the readability of the algorithm.4.2 \User" RequirementsThe User should only be concerned with creating an external environment forthe XCS to operate in. The framework should therefore be encapsulated in sucha way that the User should then able to \plug in" a newly created environmentand expect the correct XCS behaviour to ensue. In order for this to happen,the framework must de�ne an interface from which the User can develop theirenvironment. From the XCS algorithm described in the previous section, wecan see that this interface consists of the following:� Supplying a percept of the current environment state.� Performing the action proposed by the system.� Rewarding the system appropriately for its advice.� Informing the system that a problem has ended.As there are some system parameters that are problem-dependant, the environ-ment must also expose the number of actions it is able to perform, the lengthof a percept message, and the maximum reward that is available.1However the XCS can only be expected to successfully solve the problem ifthe reward schedule created is providing the correct reinforcement to the systemand the system parameters are set correctly. This has two consequences for theframework. Firstly the system parameters should be easy to modify. Althoughit is unlikely that they would be modi�ed during an experiment, it is possiblethat modi�cations would be required between experiments without the need torevisit the code. Secondly, as the User is often concerned with analysing theperformance of the system and the rules it has evolved, the framework mustalso have a good reporting system.There are two common types of report that a User may require from anXCS experiment and that the framework should include: the �nal populationof classi�ers; and some step-by-step performance statistics. These performancestatistics are commonly the system's performance (either in terms of rewardearned or, in multi-step problems, number of steps taken), the system's error(the di�erence between the predicted and actual reward), and the macroclassi�erpopulation. The User should also be able to write their own statistical functions,using data from the classi�er system, and register them to occur on particularevents during the experiment.1This is used when calculating the value of �0.20



4.3 \Developer" RequirementsIn order to gather requirements from a Developer's perspective, current areas ofXCS research should be considered in order to identify the type of modi�cationsthat a Developer is likely to require, and so develop a framework in which theycan be made relatively easily. Three such topics that I have considered inparticular are continuously-valued inputs (Wilson 1999), messy coding (Lanzi1999) and tournament selection (Butz et al. 2003).XCSR { Continuously-Valued InputsWilson (1999) discusses the development of a classi�er system, XCSR, that usescontinuously-valued inputs, as opposed to the binary values used in a traditionalsystem. Such as system would be much better suited to real-world scenarioswhere a sensor is not simply \o�" or \on", but have a quantitative value. AsWilson speculates:Continuous variables such as temperature, concentration, or age maybe decisive in classi�cation, with certain ranges of the variables im-plying one class and other ranges implying another.In his paper Wilson suggests using \interval predicates" in place of each bit ina traditional XCS input string. Each predicate, inti = (ci; si) where ci and siare reals, speci�es a rule such that a classi�er matches an input if and only ifci � si � xi < ci + si for all xi. ci is thought of as the centre value of theinterval, and si as the \spread" or delta de�ned with respect to ci.The mechanics of an XCSR implementation only di�er to that of XCS withrespect to its condition matching, mutation operator and covering mechanism.Condition matching is simply a matter of implementing the logic describedabove. Mutation involves adding a random small amount to each allele with theusual probability. Covering occurs in at the usual times, generating a value ofc equal to the current situation and s as a random number typically between 0and 0.5.XCSm { Messy CodingLanzi (1999) proposes a classi�er system in which the chromosomes of the clas-si�ers are not of a set length. In such a system, a chromosome may not specifyevery gene (under-speci�cation) and may specify some genes more than once(over-speci�cation). In doing so, the relationship between the position of bitsin the classi�er's condition and the position of sensor bits is removed. Lanziexperiments with knowledge reuse as one of the bene�ts that this brings:Accordingly, classi�ers evolved to solve a certain problem can bereused in another application assuming that the tags of the messygenes are still valid in the new application.He goes on to experiment with a maze in which only due north, east, south andwest are available actions. After the population fail to �nd an optimal solution,the four other movements (NE, SE, SW, NW) are made available to resulting21



population. He showed that using only mutation to introduce the new actions,the population learned an optimal solution.Thus the primary di�erence between XCS and XCSm is that tags are re-quired in the messy coded chromosome to associate it with the sensor as itsposition can no longer be used. Each gene now consists of a pair; the �rstelement denoting the gene number (or sensor's identi�cation) and the secondgiving the value of the allele.Matching is also embellished to deal with over- and under-speci�ed genes.Genes that are under-speci�ed are treated as though their bits were \don't care"symbols. If a gene is over-speci�ed, the classi�er is only matched if the currentsituation matches all of the alleles.Covering is handled in the same way buy uses a probability, Ps, that eachgene is present in the chromosome at all. Lanzi uses a relatively high value forPs, of 0.8 or more.The crossover mechanism in XCSm works in much the same way but usesa modi�ed probability of being invoked. In XCS the probability of crossoveroccurring is a �xed probability, �, whereas XCSm uses a calculation: pk(�� 1)where pk is the probability of cutting a single gene and � is the length of theshorter chromosome. Mutation is modi�ed so that the tag can also be mutatedwith probability �, and genes can be added and removed from the chromosome,also with probability �.XCSTS { Tournament SelectionTournament selection in XCS (Butz et al. 2003) is an alternative selection mech-anism to the �tness-weighted \Roulette Wheel" that is traditionally used toselect parents in the GA. To select a parent using tournament selection, a pro-portion of the population is randomly selected and the �ttest member of thissubset is chosen. It is argued by Butz et al. that tournament selection makesthe process more independent from the problem and system parameter values.This modi�cation introduces a system parameter, � 2 (0; 1], that speci�esthe size of the tournament as a proportion of the total population. It modi�esonly the selection mechanism, no other aspects of the system are a�ected.Returning to the RequirementsOf these modi�cations the �rst two|real-valued inputs and messy coding|exemplify modi�cations at the classi�er level; they make no di�erence to thehigher level XCS theory. This highlights the need for a neatly encapsulatedmodel that makes modi�cation via inheritance simple and logical. All func-tionality that directly manipulates the classi�er values, especially the condition,should be enclosed in the same place.Conversely, tournament selection is an example of a modi�cation that af-fects a higher level XCS process. Modi�cations to mechanisms such as par-ent selection, the GA's macro-operations and action selection should be easilychangeable. This is likely to involve \pluggable" functions to allow for run-timealterations. Although modi�cation through inheritance could equally be used.All three of these research areas also introduce new system parameters. Forexample, Wilson uses m in the mutation operator for real-valued classi�ers as themaximum change possible for each interval, and in Butz's tournament selection22



� is the tournament size. Therefore the input system for system parameters inthe framework should be easily extensible and allow additional parameters tobe added.
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Chapter 5About PythonPython is a high-level, interpreted and object-orientated language, developedin 1990 by CWI, Amsterdam. Its current development is very much open-source and is owned by the Python Software Foundation (PSF). In Python'sintroductory documentation1, the PSF claim that:[Python] has an elegant (but not over-simpli�ed) syntax; a smallnumber of powerful high-level data types are built in. Python canbe extended in a systematic fashion by adding new modules imple-mented in a compiled language [...]This section is an evaluation of the Python programming language with respectto the attributes identi�ed in Chapter 3 in order to justify it as a good candidatefor an e�ective framework.5.1 Code AestheticsIt is a reasonably safe assumption that users of the framework would have agood grasp of programming concepts, as XCS is itself deeply routed in Com-puter Science. However it cannot be assumed that they have any experienceof the implementation language. Python is well-known for the ease at whichit can be learnt; it has a relatively compact syntax with few exceptions, short-cuts or anomalies. It therefore makes it a good candidate for the frameworkas code should be understandable, at least at a high-level, by an experiencedprogrammer who has at least a basic knowledge of Python.2Python has several features that di�erentiate it from most high-level lan-guages around today. It uses indentation to form blocks of code rather thanexplicitly enclosing them in brackets as is the case for most C-like languages.Similarly, expressions are separated using new lines rather than using a delimitersuch as a semi-colon. This has a big impact on the readability of Python code.Not only does it remove the need to use these delimiting symbols in the code,1http://www.python.org/doc/Introduction.html2If a \basic knowledge" de�nition were needed a suitable bench mark would be the PythonSoftware Foundation's tutorial (http://www.python.org/doc/2.4.1/tut/tut.html). A reason-able requirement for the user would be an understanding of Chapters 3-5 for the basic syntaxand Chapter 9 for its object-oriented principles.24



it also enforces the practice of indentation that is simply suggested in otherlanguages. However this implicit notation should also be treated with cautionas it also means that any mis-alignment of statements will cause the code tobehave in an unexpected way. For example, statements can \fall o�" the endof a conditional or looping block.As with many interpreted languages, Python is dynamically typed and vari-able declarations are implicit. Although an explicit declaration provides a guideto the reader as to how to expect the variable to be used (e.g. numeric dataversus a string), it does take another step to removing syntax that is not directlyrelated to the algorithm being implemented.The language has several useful features built into it that help make pro-grams less verbose. It supports optional function arguments with default valuesif no actual argument is supplied; automatic code documentation using a stringplaced in the �rst line of a function de�nition; high-level data types such as lists,tuples, sets and dictionaries; and concise list comprehension, making iteratingthrough lists simple and concise.5.2 Object-Oriented SupportWhen programming in Python, the developer has a choice whether or not touse the object oriented paradigm. Code can be written procedurally and can bekept manageable in a sophisticated system of modules and packages. However,as we have already identi�ed, it is often preferable to encapsulate data andfunctionality into objects. Python's object oriented support is comparable tomany other such languages, such as Java, but in a less strict way. The o�cialtutorial3 states:[C]lasses in Python do not put an absolute barrier between de�nitionand user, but rather rely on the politeness of the user not to \breakinto the de�nition."As an example of this, Python has no explicit concept of private or publicdata members within objects. However, by inserting two underscore charactersbefore a variable, the compiler pre�xes the variable name with the class name.This allows a class to de�ne private variables but does not prevent an externalprocess access to the variable by pre�xing the class name manually.In other ways however, Python has object oriented support at a much deeperlevel. All data types, including primitives, are objects and can be subclassed.This includes classes themselves; enabling classes to be passed to, and returnfrom, methods. Python also supports multiple inheritance; allowing one classto inherit data and functionality from more than one parent class.Python does not, however, support Java-style interfaces that de�ne rules forthe methods an object should contain. Such an interface was used in Butz'sJava library to de�ne how an object that represents an Environment should becomposed. However, it is possible to emulate the behaviour of an interface usingPython's multiple inheritance with abstract classes that contain \empty" func-tions. This does not, however, force the programmer to implement each methodas a true interface would, but provides some guidance to the programmer.3http://www.python.org/doc/current/tut/node11.html25



In summary, we can see that the language provides a level of support thatwould be conducive to producing a classi�er system in the object orientedparadigm. It is also possible to produce manageable and readable proceduralcode if areas are unsuitable for an object oriented approach.5.3 Execution SpeedPython is an interpreted (or scripted) language and, similarly to Java, it pro-duces a platform-independent byte-code that is executed by a virtual machine.4This means that Python programs can be run on any platform that has aninterpreter installed. However, this exibility means that the execution speedof Python is slow in comparison to languages such as Java and C. There areseveral ways to address this problem:Code OptimisationAs with all languages, optimisation in the use of code is a technique used toincrease performance. One of Python's standard library items is the timeitmodule. It contains functionality to accurately time the execution of pieces ofcode. Using this, di�ering techniques can be analysed for speed and e�ciency.There are several sources for Python code optimisation available. Most cen-tre around e�cient methods for using loops and for string and list manipulation.Lundh (2005) and van Rossum (2005) propose a variety of optimisation tech-niques. For example, Python is written for fast list processing so it is oftenexpedient to handle data in lists rather than string or other representations.Also, the map function can be used to apply a function to all items in a list.This is often more e�cient than using a control loop as the map function is writ-ten in C. However, a trade-o� exists between the speed gain and the readabilityof code.Python CompilersPython \Just In Time" compilers such as Psyco5 have been developed thatgenerates machine code at run-time rather than interpreting the Python code.Psyco is designed to be as transparent as possible and its developers boastanything from double to a hundred times the performance of Python to thatapproaching C. However, to take full advantage of its increased execution speedrequires some changes to the source code that could, in theory, impact on thereadability of the code.Modules in CAs with many high-level scripting languages, Python has the ability to usecomponents compiled in other languages. For the purposes of an XCS imple-mentation, stable modules { that are not being developed by the programmer4Although the byte-code is generated at run-time rather than pre-compiled as with Java5See http://psyco.sourceforge.net for more details26



{ could be written and compiled in a language such as C. For example if a De-veloper was seeking to improve certain processes in the GA, they could use Cmodules for the rest of the XCS.5.4 ConclusionHaving addressed these issues, we can see that Python is a good candidate foran XCS implementation. However, it is not the only language of its type; manyof its advantages are exhibited by languages such as Lua, Perl, Ruby and Tcl.These last two languages in particular would also be suitable candidates foran implementation. There is a good deal of debate between supporters of allfour languages along similar issues of the readability of code, purity of objectorientation support and execution speed. It is therefore di�cult to concludewith certainty that Python is the better of the three, however it does have acouple of advantages over Ruby and Tcl with regards to an XCS implementation.� Ruby is a not as well established as Python. It was �rst developed in 1995in Japan, but has only become popular since around 2000. In terms of auseful XCS library, it would seem wise to select a language with a moreestablished support and developer community.� Ruby is a pure object oriented language. Although Python has deep objectoriented concepts, Ruby is a more pure approach in the sense that thereare no exceptions to the rules. For example the number 1 is an objectof type Fixnum. It is likely that these strict rules will lead to code thatcontains unnecessarily convoluted (and unintuitive) code in some cases.� Tcl was �rst developed for use as an embedded language and has beenadapted for use as a language in its own right. It therefore as a verysimplistic syntax making it easy to write small programs but can becomedi�cult for larger projects.� Tcl does not have an intermediate byte-code. The code is therefore in-terpreted each time it is run. Whereas Python stores the byte-code for afaster execution on successive runs.Although these are not reason in themselves for dismissing implementations insuch languages, it perhaps provides su�cient reason for choosing Python as thelanguage in which to implement an XCS library in this project.
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Chapter 6Top-level DesignThis section describes, at a high level, an object-oriented design for the frame-work and provides justi�cation for these design decisions.The main components of an XCS experiment were described by Butz &Wilson (2000), as detailed in Chapter 2 (see also Figure 2.1 on page 8). Be-tween them, these high-level components contain the environmental data andmutators, reinforcement schedule and XCS algorithm required for an XCS ex-periment:� An X-Classi�er System: The action-selecting agent containing the per-formance, reinforcement and discovery components.� The Environment: Provide an interface between the classi�er systemand the \real world".� The Reinforcement Program: Provides feedback in the form of rewardto the classi�er system for actions it has done.� A set of Sensors: The mechanisms that produce the environment percepts(or sensor readings).� A set of Actuators: The mechanisms that act on the environment.These components make ideal concepts with which to base the main classes forthe framework. The following section introduces and justi�es these proposedclasses and their interactions.6.1 The EnvironmentThe Environment should provide all information about the external environ-ment (or the \real world"). In the concept described by Butz & Wilson (2000)the sensors and actuators that actually interact with the environment are partof the classi�er system. However, in this framework they will be part of thisEnvironment class. This was done to separate the XCS from the environment asmuch as possible. In theory, to have been conceptually correct the classi�er sys-tem could have been designed to be instantiated with a list of function objects,indexed numerically, that it would �re at the appropriate time. This, however,seems to be overly elaborate just to maintain a more conceptual model. It wouldalso have made a signi�cant breakaway from the existing XCS implementations28



and could have formed a barrier to the framework's use. Therefore the sensorand actuator functionality is encapsulated in this Environment class.The class' interface will consist primarily of two public methods: one toexecute an action; the other to generate and return the current state of theenvironment. In addition it will also need to expose some properties to providethe classi�er system with some initial information. These are the number ofactions that it is possible to execute (n) and the length of a percept (L).Because the environment and reinforcement program concepts are speci�cto the particular environment they represent, this Environment class and theReinforcement Program class that follows are abstract. This means that theywould need to be made concrete (i.e. overridden with actual functionality) bythe user when implementing a speci�c environment into which the XCS will beapplied.6.2 The Reinforcement ProgramThe Reinforcement Program class consists mainly of two de�nitions that providethe classi�er system with feedback on its performance. The �rst is a functionthat returns a reward based on a proposed action and the current environmentstate. The second element of the class is a public property that informs theclassi�er system whether the current problem has been solved. In single-stepproblems this will always return True. In multi-step problems this will dependon whether speci�c conditions have been met to end the problem.Specifying a separate class for the reinforcement program is another trade-o� that had to be made between keeping the framework conceptually similar toits written description and not confusing the user by diverging from the normsof other XCS implementations. In this case it was decided to make a distinctionbetween the two classes knowing that, owing to Python's multiple inheritancemechanism, an aggregate class can be formed that would be equivalent to theEnvironment classes de�ned in the implementations of Butz and Barry.6.3 The X-Classi�er SystemThe X-Classi�er System's main operation is to run through one cycle of theXCS algorithm { action selection (performance), reinforcement and discovery {as described in previous sections.It di�ers conceptually from Butz & Wilson (2000)'s description in that itsmain \run" method in fact only runs through one cycle { reads a percept, sug-gests an action and updates its rules depending on the result. The amount oftimes it does this has been put into the control of a higher controlling object.The reason for this alteration was to extract the less de�ned \termination crite-ria" from the classi�er system and reduce the likelihood that a user will need tocustomise this component. Instead termination of the experiment is controlledby a higher level component (such as the Experiment class described in the nextsection) that repeatedly asks the system to select an action.29



6.4 The ExperimentIn addition to these classes that were based on Butz's description, a controllingobject is required that initialises each of these components, starts and terminatesthe experiment after a number of problems/steps and facilitates reporting theresults. The class is not designed to be subclassed, but allows most of its settingsto be modi�ed at run-time. To run an experiment at least some of the followingfeatures are required:� An XCS object� An environment object and a reinforcement program� Termination criteria� System parameters� Step, episode and experiment listenersOf these features, only the environment and reinforcement program need tobe supplied for an experiment to run. The XCS object can also optionally besupplied if the user has a modi�ed algorithm to use. The termination criteriais set to a default that ends the experiment after a number of steps. Thesystem parameters can be optionally speci�ed to override the default values. Inaddition, the Experiment class should allow users to register listener functionsto be �red either at the end of every step, every episode (on multi-step problems)or at the end of each experiment.The experiment also creates two reports that are generated, if requrested bythe user: the �nal classi�er population and the performance statistics. Theseare written to a �le speci�ed by the user.
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Part IIIImplementation
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Chapter 7Environment &Reinforcement ProgramAs a �rst step in implementing the framework, we decided to develop theenvironment structure on which the XCS component would be based { theEnvironment and Reinforcement Program.7.1 The Abstract ClassesThe interface for the abstract Environment and ReinforcementProgram classesare shown in Figure 7.1. It also shows how these classes can be used to form anaggregate data type that can be used as both the environment and reinforcementprogram.The Python language does not provide explicit syntax for creating abstractclasses, as is the case in other languages such as Java. Instead the classeswill simply be treated as though they are abstract and, in-keeping the Pythonethos, we will leave it to the politeness of the user not to \break into thede�nition". There is an exception type provided in Python for this use; theNotImplementedError is placed in the function de�nitions of the abstract class.If the user attempts to use any of the functions from the abstract class, this ex-ception will be raised.In addition to the EOP property, it was also decided that other informationwould need to be exposed in order to produce statistics during the experiment.Therefore the maximumnumber of steps expected, and the maximum and min-imum rewards possible were added as properties to the ReinforcementProgramclass.Another addition was a reset method to the Environment class. It wasdecided to add this explicit reset mechanism mainly for multi-step problems inorder to allow the user to de�ne exactly when the environment starts the nextproblem. Although this is not as necessary in single step problems, where theend of a problem occurs on each step, it was thought that implicit resettingcaused confusion in multi-step problems as it is not obvious when the resetshould occur. 32



Environment

n : int

L : int

getSituation() : list

executeAction(action: int) : void

reset() : void

ReinforcementProgram

EOP : boolean

max_steps : int

max_reward : float

min_reward : float

getReward(action: int) : float

BooleanMultiplexer

n : int

L : int

EOP : boolean

max_steps : int

max_reward : float

min_reward : float

no_address_bits : int

no_registers : int

situation : list

getSituation() : list

executeAction(action: int) : void

getReward(action: int) : float

reset() : void

generateSituation() : voidFigure 7.1: The BooleanMultiplexer class inherits from the Environment andReinforcementProgram classes to form an aggregate type.
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7.2 Situation and Classi�er Condition FormatA fundamental design decision needed to be made at this point; the format ofthe message (�) that is passed to the classi�er system. Traditionally this is abinary string composed of the sensor readings. However, as described in Section4.3 (page 21) there is currently a good deal of research into alternative encodingsfor the percepts and the closely related classi�er conditions.An alternative to a string would be to use Python's list type to representpercepts and conditions. This has two main advantages over a string: lists inPython are mutable, strings are not1; lists elements can be of any data type,including other lists or tuples.The immutability of strings mean that we would expect the cut and splicingoperations that take place in the GA to be more memory intensive than ifthey were performed on a mutable data type such as a list. Mutability wouldalso mean that the code generated to manipulate the conditions should be lessconvoluted. During the crossover process, for example, the two conditions canbe switched directly allele-by-allele, rather than having to construct two newconditions and reassign the classi�er's condition to them. However, the e�ciencysavings of lists during the GA are also likely to cost time during other operationssuch as iterations, counting and copying where the more complex data type hasa disadvantage.The decision to use lists over strings was made primarily owing to the greateradvantages of having an extensible format for encoding and the potential forclearer code, over the more marginal e�ciency issues.27.3 Environment TypesClassi�er system research generally centres around two main types of problem:the single step \Boolean Multiplexer"; and the multi-step \Woods" problems.For a detailed description of these problems see Appendix C. These are thereforethe two environments that need to be included as standard in the frameworkand that will be used later on in the project for testing purposes (See Chapter12).As Figure 7.1 shows, the BooleanMultiplexer is inherited from the twoenvironmental abstract classes. It accordingly rede�nes the abstract methodsand properties with functionality and data for the Multiplexer problem. Theclass has been designed to be as exible as possible and can vary in size (6, 11,20, etc) by supplying a value of k to the constructor. A random generator isused to create situations when required and these are tested against an actionwhen getReward is called. A reward of 1000 is returned for the correct actionand 0 otherwise.3 The max reward and min reward are therefore set to return1In other words, strings cannot be modi�ed once they are created. Any mutating opera-tions, such as concatenation) applied to the string result in the creation of a new string2This decision was also helped by a discussion on the comp.lang.python newsgroup andhaving taken into account much of the literature on the problems of string manipulation inPython. The interested reader may like to read: http://www.python.org/moin/PythonSpeed/PerformanceTips.3There are variations on this reward schedule; we have implemented the most com-mon. To modify the environment the user would simply have to further subclass theBooleanMultiplexer and override the rewards.34



Woods

types : dict

directions : dict

default_pattern : String

n : list

L : int

EOP : boolean

max_steps : int

max_reward : float

min_reward : float

maze : list

width : int

height : int

animat : tuple

getSituation() : list

executeAction(act: int) : void

getReward(act: int) : int

reset() : void

selectRandomLocation() : tuple

look(direction: int) : String

getCurrentObject() : String

getObjectAt(location: tuple) : String

addObjectType(code: String,name: String,binary: list,reward: int,allowed: boolean) : voidFigure 7.2: The Woods class.1000 and 0 respectively, and the EOP property always returns True.Figure 7.2 is the Woods class, which is a more complex derivation of theEnvironment and ReinforcementProgram classes. An object is instantiatedusing a text �le that speci�es the layout of the maze to use. The types prop-erty is a dictionary of object types that can appear in the maze and by defaultcontains the food and rocks of Woods2 (although more can be added using theaddType method. The animat tuple is used to keep track of the creature's hori-zontal and vertical position within the maze and when executeAction is calledits co-ordinates are modi�ed accordingly. This movement has a few subtleties.Firstly the maze pattern repeats inde�nitely, so when the animat's co-ordinatesmust loop around the pattern in both directions. Secondly, the movement mustbe checked against the type of object on the square to see if it is a legal move(i.e. not a rock). Whether or not the animat can move onto an object type isspeci�ed in the types dictionary. The types dictionary also contains the re-ward and binary encoding for each object type that is used when the getRewardmethod is called and when building the percept list, respectively.Both environments have test applications written alongside their de�nitions.If the modules in which the respective classes are de�ned are run (as opposedto being imported), an interactive test environment is started.4 This allows the4This follows a popular Python convention of including test code when a module is run35



Woods Test Appl i cat ion======================>> Please enter maze f i l e l o c a t i on : maze . txt. . . . ..OOF..OOO..OOO�. . . . .Animat : (4 , 3)Message : 0000000000001010>> Enter a c t i on 0�7 [ "x" to Exit ] :Figure 7.3: Output from the Woods test application.user to control the environment in the same way as the XCS will be able to.The user is simply fed a continuous stream of problems to solve and is promptedfor an action and informed of the reward due for the selected action.

instead of imported. We have tried to apply to this framework wherever possible.36



Chapter 8Procedural XCSIn order to produce an XCS implementation that was an accurate representationof the algorithm described by Butz & Wilson (2000), a preliminary proceduralversion was produced in Python.8.1 DesignThis module, named ProceduralXCS, contains the suite of functions describedin the aforementioned paper. For its environmental information it uses theEnvironment and ReinforcementProgram classes de�ned in the previous chap-ter. It also de�nes a Classifier class to encapsulate data relating to an indi-vidual classi�er as de�ned by Butz: condition C, action A, prediction p, error i,�tness f , experience exp, timestep of last GA ts, average action set size as andnumerosity num. Also, for completeness it also contains k, the accuracy value.This version is, where possible, a direct translation of the described algorithminto Python. However, some adaptions were necessary in order to produce thisworking implementation. The remainder of this section documents and justi�esthese adaptions.Main LoopAs described in Section 6.3, the largest alteration made to the algorithm in thisimplementation was the fact that control of the main loop has been moved to auser-de�ned function. In practical terms, the RUN EXPERIMENT procedurefrom the paper is implemented as the run method which contains the equivalentof lines 2-21 of the algorithm (the body of the main loop). For the suite to beused, the user should write their own loop { with their own termination criteria{ and call the run method within it. Although this creates more work for theuser, it allows the module to be more easily customised with various terminationcriteria.1Also added to the main run method is a step count that is set to force theend of a multi-step problem if it exceeds the maximum step count speci�ed bythe environment. This mechanism simply prevents the system becoming stuck1In Chapter 10 (p. 53) a wrapper class is created that provides the functionality for thisouter loop. 37



in a loop during the initial phases of an experiment because it has not built upenough rules.Action Selection StrategiesButz & Wilson (2000) di�erentiate between exploration and exploitation cycleswhen choosing an action, the cycles are not treated di�erently during the re-inforcement and discovery phases. This is the case in both Butz and Barry'simplementations: the GA is only run on exploration cycles, and reinforcement isalso only run on exploration cycles in single-step problems. In addition, it is notusual for the action selection strategy to change between steps in a multi-stepproblem as is the case in the described algorithm.It was therefore necessary to add these clauses into the main loop. Also, thechoice of strategy has been removed from the selectAction function and movedto the start of the cycle where it checks whether a new selection is required (i.e.whether it is the start of a new problem).Action Set SubsumptionA check for subsumption of a classi�er by members of the Action Set is carriedout on each cycle in the algorithm. However, Butz and Wilson also commentthat: Besides checking if an o�spring is subsumed by a parent, one couldalso check if it is subsumed by other classi�ers in the action set, oreven the population as a whole.This was Wilson's original proposal for subsumption and this is a techniqueused in other implementations such as Barry's JXCS. Therefore this check hasbeen added to the GA algorithm in the form of the actionSetSubsumeInsertfunction which does this check before inserting a new classi�er into the Popu-lation. As this is not a standard part of the algorithm, a boolean parameter,do GA subsume insert, has been added to control whether it is used or not.Classi�er Condition FormatAs discussed in Section 7.2 (page 34) the percept (�) received from the envi-ronment is encoded in a list of 1's and 0's (or True and False values whichhave the same numerical value) indexed from left-to-right. In order to encode aclassi�er's condition, a wild card convention is required. For this it was logicalto use Python's None data type. For example:01#1##! [False, True, None, True, None, None]11###0! [True, True, None, None, None, False]######! [None, None, None, None, None, None]Global VariablesIn order to facilitate the use of these procedures the following global variablesare de�ned in the module and initialised in a setup function:38



mu = params [ 'mu' ]n = params [ 'n ' ]i = 0while i < l en ( c l .C) :i f random. random( ) < mu:. . .Figure 8.1: The values of the learning parameters are stored into local variablesof the same name before being used in the main algorithm. This simpli�es thereading of the code.� env: The environment object.� rp: The reinforcement program object.� t: The current timestep.� params: A dictionary containing the learning parameters required to runthe experiment.� record: A dictionary that records the data during a cycle of the mainloop.The �rst four variables are present to give access to vital information fromany method. It is done in this way, rather than passing the values into thesub-procedures as arguments, to minimise the code and to keep it close tothe algorithmic description which also gives these variables global scope. Asdescribed later, the �nal variable is used as a means of keeping state betweenfunction calls.In order not to interfere with the algorithm within a procedure, all retrievalof values from a dictionary is done in the �rst line (or lines) of code and storedin a local variable (as shown in Figure 8.1). This means that the local variablecan be used in the body of the algorithm in the same way as was describedin the paper, rather than the less obvious code involved in retrieving the valuefrom the dictionary.This convention was extended to procedures in which preliminary calcula-tions were required before the body of the algorithm could be run. For exam-ple, on line 8 of the GENERATE COVERING CLASSIFIER procedure: Acl  random action not present in [M ]. In such cases it is di�cult|and oftenine�cient|to include the semantics in-line when implementing the statementin a programming language. Where possible in the implementation, the valueof these statements has been moved to the beginning of a procedure. The fol-lowing code segment, taken from the UPDATE SET procedure, is an exampleof this. It would be ine�cient, as well as distracting to the reader, to calculatethe total numerosity in its described location as it is repeated unnecessarily forevery classi�er in the set.for each classifier cl in [A]. . . ascl  ascl + � � (Pc2[A] numc � ascl)=expcl39



Another design decision regarding the system parameters was the namingconvention to use for the Greek symbols of the parameters. In many implemen-tations the name of the letter is simply written in English. However this is notvery succinct and does not lend itself to symbols such as �del. Therefore, wherepossible the letter is used in its Latin form (e.g. \a" for �, B for �, etc) and theLATEXconvention of using an underscore for subscript is adopted (e.g. \T GA"for �GA). Where this is not obvious the name of the symbol has been used (e.g.\nu" for �).In the algorithmic description, the population, action set, reward and situa-tion are stored on each iteration of main loop for (possible) use on the next step.Because we have moved control of the outer loop to a user-de�ned function, amechanism to maintain the state between function calls is therefore required.This is achieved using the global record variable into which the data generatedduring a cycle is stored. This data serves two purposes. Firstly it allows us toextract the previous state of the system during the subsequent step. Secondly,by returning this variable to the user-de�ned function, we expose useful datato the user for statistical purposes. The use of a dictionary rather than use aseries of global variables, was simply to encapsulate all this information in onevariable.This had a repercussion for the algorithm in the main loop as resettingvariables such as [A]�1 and the action selection strategy at the end of a problemwould have provided inaccurate information to the user. Therefore the codeinvolved in readying the system for the next step was moved to the beginningof the cycle.8.2 TestingPython's standard library includes several utilities for unit testing. In order totest the low-level procedures in this suite we have used the unittest module.By subclassing the TestCase class, a set of unit tests can built up to assertstatements about each procedure.For example, to test the couldSubsume sub-procedure, that tests whether aclassi�er can legally subsume another, the following test case was built:class CouldSubsumeTest( un i t t e s t . TestCase ) :def setUp ( s e l f ) :. . . s e l f . c l = C l a s s i f i e r ( [ . . . ] )s e l f . c l . exp = 21s e l f . c l . e = 9.0def te s tCorre c tCas e ( s e l f ) :s e l f . a s s e r t ( xcsp . couldSubsume ( s e l f . c l ) ,"Valid c l a s s i f i e r not i d e n t i f i e d . " )def t e s t I n e x p e r i e n c e dC l a s s i f i e r ( s e l f ) :s e l f . c l . exp = 19s e l f . f a i l I f ( xcsp . couldSubsume ( s e l f . c l ) ,40



" Inexper i e nc ed c l a s s i f i e r not [ . . . ] " )def t e s t I n a c c u r a t eC l a s s i f e r ( s e l f ) :s e l f . c l . e = 11s e l f . f a i l I f ( xcsp . couldSubsume ( s e l f . c l ) ," Inaccur ate c l a s s i f i e r not [ . . . ] " ). . .A test case such as this was derived for each of the lower-level procedures inthe algorithm. By \black box" testing each of the sub-procedures we can hopeto achieve an accurate program. The inputs for each test case was derivedby considering all possible pre-conditions (the states of the input variables forexample) and checking that the correct post-conditions were created. Howeverdue to the non-deterministic nature of much of the algorithm it is not alwaysso easy to create a reproducible test for each of the higher-level functions. Forexample, to test the applyMutation sub-procedure, it was necessary to changethe value of the parameter � �rst to 0 and check that no mutation occurred,then to 1 and check that mutation always occurred.Once we had achieved a working set of functions, the system could be testedas a whole in order to test the higher-level functions (such as RUN GA andRUN EXPERIMENT). The results of this are described in Chapter 12.
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Chapter 9Object-oriented XCSWe now move on to develop the working ProceduralXCS implementation intoan object-oriented one.9.1 Candidate ClassesWhen designing an object-oriented system it is often useful to highlight thenouns in the particular domain one is working on and using them as a basisfor the objects in the design (Abbott 1983). This was the case when designingthe XCS component; the following candidate classes were found. The merits ofimplementing each of these candidate classes could then be weighed against thepotential for causing ine�ciency and over-complication.� Classi�er System: A top-level container class.� Classi�er Set: A classi�er container (e.g. [P ], [M ] and [A])� Classi�er: An individual in the population.� The Prediction Array (PA)� The Genetic Algorithm (GA)� Roulette Wheel: A selection device used in selecting classi�ers to repli-cate and delete.� Learning Parameter: A system-wide value used in the algorithm.� Situation: The percept sent from the environment (�).� Reward: The reward sent from the reinforcement program (�).� Condition: The pattern matching attribute of a classi�er.� Attribute: An individual allele in the condition of a classi�er.� Action: The proposed action of a classi�er.9.2 Classifier ClassProbably the most straight-forward decision was to implement a Classifierclass { it is so fundamental to the algorithm that we have already implementeda data storage version of this class in the ProceduralXCS module.42



There were a variety of options for the composition of this class; mainlywhether to use the built-in data types for all of its attributes or to implementcondition, attribute and action classes (or a mixture of both). For a numberof reasons, the former option was chosen. Firstly, it was decided not to use anaction class as there did not seem to be any suggestion that XCS research willstart to diverge from the convention of using an integer to refer to an action.Therefore we could see no real gains for the cost of the added complexity of aseparate class.There was greater feasibility in implementing a condition class and possiblyan attribute class. Such a classes could encapsulate all the operations related tothe condition's encoding and separate it from the other classi�er functionality.This cleaner division is of bene�t to a Developer wishing to implement a newencoding for their system. However, once again the added complexity of theseclasses was thought to outweigh the bene�ts that it would bring. Primarily,allowing the user to subclass their own condition and attribute classes wouldrequire a complex system of \builder" methods to construct the classi�ers cor-rectly. This may have been worthwhile if the class contained many other typesof operations, unrelated to the condition. However there are actually very few;related to �tness calculation and subsumption. Therefore the Classifer classcontains only built-in data types and encapsulates all the \classi�er-level" oper-ations. The condition is represented in the same way as in the ProceduralXCSmodule; as a list.9.3 XClassifierSystem & ClassifierSet ClassesThe need for a container for the whole system and a container for sets of classi-�ers was similarly obvious. However the way in which they were implemented|as built-in data types or classes|and how the functionality was encapsulatedbetween the system and the set concepts was an important design decision.One approach would be to store Classi�er objects in a list container. Thisway, all the procedures from the algorithm relating to sets of classi�ers would bein a classi�er system class. This class performs the necessary append, remove,count and iterative operations on the lists. The other approach would be tomake a classi�er set class that encapsulates the set-level procedures itself.After some deliberation it was decided to go for the latter approach andcreate both a XClassifierSystem class and a ClassifierSet class. The mainreason for this choice was the ease in which the procedures appear to fall intothese three levels of operation: system, set and classi�er.9.4 Algorithm EncapsulationAt �rst glance, a logical separation of the algorithm's procedures is as follows:43



System Set Classi�errun[Experiment] generateMatchSet doesMatchselectAction generateCoveringClassi�er applyCrossoverrunGA generatePredictionArray applyMutationgenerateActionSet deletionVoteupdateSet doesSubsumeupdateFitness couldSubsumeselectO�spring isMoreGeneralinsertIntoPopulationdeleteFromPopulationactionSetSubsumeInsertdoActionSetSubsumptionThere are however some subtleties to be considered before we can accept thisdesign.Environment and Reinforcement Program ReferencesFirstly, in order to separate the environment from the classi�er system it wasdecided that the system should not keep references to the environment or re-inforcement program. Instead, the information is to be fed to the system asmethod arguments. There are three pieces of information required by the clas-si�er system on each cycle of the algorithm: �, � and EOP . Unfortunately only� can be supplied at the start of the run method and � and EOP are a con-sequence of action selection. The solution chosen was to separate the methodinto run and update phases.1 � is supplied to the run method which representsthe performance component of the algorithm, and an action is returned. � andEOP are supplied to the update method which represents the reinforcementand discovery components. This neat separation of the phases of the algorithmcomes at the cost of delegating the responsibility of calling these methods atthe correct time to the user-de�ned top-level function.Prediction and Fitness UpdatesNext, the updateSet procedure could be described as being a classi�er-level op-eration as it loops through each classi�er in turn and updates its attributes di-rectly using formulae that would be better suited to the Classifier class. Also,the use of the classi�er's attributes directly increases the coupling between thetwo classes which is not a desirable feature in a class structure. Consequently,three methods were added to the Classifier class to update prediction, �t-ness and action set size. And the classi�er set procedure was left only with theresponsibility of calling these methods.Crossover and Mutation OperatorsA third consideration is the class of operation that the applyMutation andapplyCrossover procedures fall under. Where it might be logical to use the1Another solutionwould have been tomove the update phase to the start of the method andsupply the method with the reward from the previous step and the next situation. Howeverthis proved unintuitive and confusing, especially in multi-step problems where the so-calledprevious Action Set was in fact two steps old!44



following code to mutate a classi�er:c1 . mutate ( s )The same convention to perform the crossover operation, would be:c1 . c r o s s ov e r ( c2 )This second use does not work as well as the �rst because it implies that thereis a di�erence between the e�ect on the two classi�ers { should you use thecrossover method of c1 or c2? It therefore seems that the crossover operatorwould �t better as a class method, taking as parameters the two classi�ers tooperate on. Because the mutation operator is so closely related, it would alsofollow that it should be made a class method:C l a s s i f i e r . c r o s s ov e r ( c1 , c2 )C l a s s i f i e r . mutate ( c1 , s )Creating Covering Class��ersThe generateCoveringClassifier procedure is the one procedure de�ned atthe set level|rather than classi�er level because it involves creating a classi�er|that directly manipulates the condition string and so is a�ected by any alter-ations in its encoding. Consequently it was decided, as with the updating ofthe set, that the procedure should be separated between the two classes. Themajority of the work to be done in the constructor of the Classifier classby specifying the current value of �. The set only needs to decide on an ac-tion, instantiated a the new classi�er object then do the necessary insertion anddeletion.Also, in this version we also introduce a second covering operation that wasintroduced by Wilson in his 1995 paper but not included in the algorithmicdescription. This covering is provided to prevent the system becoming stuckin a loop and is invoked if the system's combined Match Set prediction fallsbelow a certain proportion (�, set to 0.5 by default) of the average predictionof the Population. This is e�ective because the discounted payo� will causethe prediction of the classi�ers to fall. Introduction of a new classi�er, with adi�erent action, should help break this loop { if not the �rst time, eventually arandomly selected action will work.The second form of covering shares the same functionality for both the cov-ering itself and the resulting classi�er's insertion into the Population. As thefunctionality for creating the classi�er is now encapsulated in the constructor ofthe Classifier class, it therefore made sense to abstract the entire process intoa addCoveringClassifier function in the ClassifierSet class. This functionselects an action from unused actions in the set, instantiates a classi�er, theninserts it into the set (with any necessary deletion).22For extensibility the function takes an optional argument as the list of actions to choosefrom { the unused actions of the set being its default value.45



Pluggable System-level FunctionsThe XClassifierSystem class contains two important functions other than runand update. Action selection and the GA are both key pieces of the XCSalgorithm that are likely to be targeted by Developers wishing to alter theirfunctionality. Therefore they have been written without reference to the systemobject that encloses them; all the required data is passed into the functions asarguments. In this way the functions can be easily replaced with customisedones either dynamically (at run-time by replacing the function variable in theXCS object) or statically (at compile-time by subclassing XClassifierSystem).Also, the functionality that chooses the strategy for selecting an action (i.e.explore or exploit) has been separated from the SELECT ACTION procedureinto a the useExplore function. This explicitly exposes the strategy selectionmechanism and makes it easily accessible for adaption in the same way as above.Insertion and Deletion from SetsAs a �nal consideration, the mechanisms for inserting and removing classi�ersfrom the system needed to be addressed. If we wish to add a new classi�er tothe Action Set [A] (during covering for instance), we need also add the classi�erto the superset of [A] { the Population [P ]. Otherwise the classi�er will be lostwhen [A] is regenerated. Ideally we would prefer not to have to pass referencesto [P ] explicitly as arguments to methods as this is rather cumbersome. Wetherefore need to relate the sets to one another with a reference to their parent(the superset from which they were created). This linked list structure allowsus to perform a cascading insert or deletion when required. However, there aremany di�erent scenarios for insertion and deletion in the algorithm; some requirethis cascading e�ect, others do not; some require subsumption and equalitychecks, others do not. Consider the following insertion scenarios. (A similar setof scenarios also exists for deletion.)1. runGA: A new classi�er is created and can be added to the set and itssuperset if it does not match, or get subsumed by, any members of theset.2. doActionSetSubsumption: A new classi�er is created and can be addedto the set and its superset if it does not match any members of the set.3. addCoveringClassifier: A new classi�er is created and can be added tothe set and its superset with no checks.4. generateMatchSet: A subset is being created, classi�ers can be addedwith no checks to the set alone.To allow for the needs of these four di�erent scenarios a series of insertion anddeletion has been used:� insert: Inserts a new classi�er to a set and supersets if it doesn't match.The subsumption check is also done if speci�ed as a parameter.� doDeletion: Selects and deletes a classi�er from the set and superset.� add and delete: Adds and removes classi�ers from the set and superset.� append and remove: Basic insertion and deletion of classi�er.46



Revised Algorithm EncapsulationSo the revised method list for these three classes, with some rewording whereappropriate, looks like this:System Set Classi�errun generateMatchSet doesMatchupdate addCoveringClassi�er updatePredictionuseExplore generatePredictionArray updateActionSetEstimateselectAction generateActionSet updateFitnessrunGA update calculateDeletionVotedoActionSetSubsumption doesSubsumeselectO�spring couldSubsumeinsert isMoreGeneraldoDeletion crossoveradd mutatedeleteappendremoveOther FunctionsIn the procedural version there was functionality within some of the proceduresthat can now be extracted into separate methods. For example calculating totalnumerosity, average �tness and the average time since the last GA invocation.This allows us to remove the less important functionality and leave the basicalgorithm in a purer form. Also, in the case of the total numerosity, this hasthe e�ect of removing duplicate code3 and exposing the value for use in otherplaces such as reporting.The classes also take advantage of Python's \special" methods to enhancetheir behaviour. The str method is one example of a special method thatdetermines how the object will be displayed as a string. It is similar to Java'stoSting method, but Python calls the method automatically when the objectis used in a string context. When used in a print statement, for example:>>> c l = C l a s s i f i e r ( [ . . . ] )>>> print '%s ' % c l010010 :0 => 0 .0000 (k=0, f =0.0000 , num=1)The str should return a human-readable representation of the object. An-other special method, repr , should return a more machine-readable repre-sentation that should contain all the data contained in the object. Thereforein the case of the Classifier class, this representation is a comma-separatedstring of values:>>> c l = C l a s s i f i e r ( [ . . . ] )>>> print '%r ' % c l0 10010 , 0 , 0 . 0 000 , 0 . 0 000 , 0 . 0 000 , 0 . 0000 , 0 , 1 1 , 1 , 13As it occurs both in UPDATE SET and DO DELETION.47



In addition to str and repr , the eq and neq functions are imple-mented for the Classifier class to rede�ne the equality and inequality opera-tors between Classifier objects:i f c1 == c2 :# Cl a s s i f i e r a l ready e x i s t s , don ' t add i t !. . .This achieves a more useful meaning of equally; that c1 has the same conditionand action as c2, rather than verifying if the two variables refer to the sameobject.In the case of the ClassifierSet class, special methods allow us to makeour set class act more like a container for the classi�ers rather than having theclassi�ers simply being a property. For example, instead of accessing the �rstclassi�er in the Population using the expression population.classifiers[0],we implement the getitem function to allow us to treat the set as the con-tainer and access the classi�er thus: population[0].In addition, the contains , iter and len methods were also im-plemented for the ClassifierSet class to allow us to check whether a classi�eris in a set; iterate through the set; and get the length of the set, respectively.In the example below, notice how an instance of our set class is now behavingas if it were a list:i f l en (P) >= max:return Falseelse :for c l in P:i f c l == ch i l d :return FalseP. append( ch i l d )The set also contains a sorting method to rearrange the order the classi�ersare displayed in. Lists in Python contain a sort method that uses the greater-than and less-than operators to sort its members into order. sort also takesas an optional argument, a custom comparison function to use instead of theinequality operators. This function should take two members of the set asarguments and return -1, 0 or 1 depending on whether the �rst member is lessthan, equal to, or more than the second. The sort function was implementedfor the ClassifierSet in the same way, but if no sorting function is supplied,the default order class function of the Classifier class is used. This functionsorts by accuracy, then numerosity and then experience.Added to the XClassifierSystem class was a reset function that reverts thesystem back to the state it was in before any steps were run. To enable an initialpopulation to be reused, a deep copy of the set was taken in the constructor.Upon being reset the system takes another copy for the next experiment.The XClassifierSystemwill also maintain counters on the number of prob-lems and steps it has taken. These can then be used by the controlling class forstatistical purposes or to decide upon termination. The following counters willbe stored:� explore step count 48



� exploit step count� explore problem count� exploit problem count� current step count (the number of steps taken on the current problem)Finally, in order for the class of classi�er set to be changed easily via subclassing,the getDefaultClassifierSet function was added. This simply moves thefunctionality involved in instantiating the set away from the constructor so thatit can be easily overridden.9.5 Learning ParametersThe learning parameters in this implementation were handled as class variablesbelonging to either the XClassifierSystem, ClassifierSet or Classifierclass. Not only does this produce neater code when accessing the values, com-pared to accessing them from a dictionary, it also has the advantage of givingthe parameters global scope. The parameters have been separated between theclasses according to the procedure that it is primarily used for. This was notstrictly necessary as, due to this global scope, they could have all belonged toone class. However, it seemed to help distinguish between the parameters andtheir uses to separate them as shown in Figure 9.1.In other languages class variables cannot be de�ned at run-time, so the valuesof parameters would have to be static (de�ned at compile-time). However, inPython everything is an object and class variables can be modi�ed using theclass objects. This means that the system will still be able to change thedefault values for the parameters at run-time. If we wish to read them from atext �le, for example. However, there are some parameters (shown in Figure9.1 in italics) whose values are dependent on the environment and so couldnot be given default values. The value of these parameters is None until theyare set by the XClassifierSystem constructor using values passed to it fromenvironment.This version introduces four new parameters: do performance coveringand phi control the new covering mechanism described earlier in the section;also X reduct e and X reduct f were added to parameterise the reduction inthe error and �tness values given to o�spring.9.6 Selection MechanismsThe algorithm contains several selection processes:� Strategy: Explore strategy is chosen with a probability Pexp, otherwiseexploit is chosen.� Action (Explore): Action is randomly selected from the PA.� Action (Exploit): Action with maximum system prediction is selectedfrom the PA.� Replication: Classi�er is selected for replication with probability pro-portional to �tness. 49



Systemg  Discount factor for payo�.T GA �GA Experience threshold for GA.P exp Pexp Probability of choosing explore strategy.SetN N Maximum macroclassi�er population.phi Used in performance cover calculation.T mna �mna Minimum number of actions before covering occurs.Classi�ern n Number of actions.L L Length of a situation.B � Learning Rate.p 1 p1 Initial prediction of a new classi�er.e 1 �1 Initial error of a new classi�er.f 1 f1 Initial �tness of a new classi�er.P X � Probability of crossover occuring.X reduct e Proportion of error to pass to o�spring.X reduct f Proportion of �tness to pass to o�spring.P mu � Probability of mutation occuring.a � Used in accuracy calculation.nu � Used in accuracy calculation.e 0 �0 Threshold below which error is considered zero.e 0 d �0� Proportion of maximum reward to set �0.P wc P# Probability of a wild card being used in covering.d � Used in deletion vote calculation.T del �del Experience threshold for deletion.T sub �sub Experience threshold for subsumption.In addition, the following boolean values are de�ned for XClassifierSystem:do GA subsumption Whether to check parents for subsump-tion of o�spring after GA.do AS subsumption Whether to perform a periodic subsump-tion check in [A]; subsuming at most oneclassi�er per timestep.do GA subsume insert Whether to check [A] for subsumption ofo�spring after GA, before insertion intothe population.do performance covering Whether to perform covering if the totalprediction for [M ] falls below � of the av-erage prediction for [P ] (Wilson 1995).Figure 9.1: The Learning Parameters used in the framework.50



� Deletion: Classi�er is selected for deletion with probability proportionalto deletion vote.We could implement a class with a standard interface and allow these se-lection mechanisms to become objects. These objects could then be plug-gable in the XClassifierSystem to allow the user to easily change the waythese selections are done. In order to do this we add an abstract base class,SelectionMechanism, with three methods: add, select and reset. From thiswe simply need to derive concrete classes to produce actual selection mecha-nisms; RouletteWheel or Tournament for example.We have so far been vigilant in maintaining the simplicity of the code andit could well be argued that the introduction of this class is an unnecessaryabstraction. This is particularly the case for the �rst three selection processesdescribed above; to use a selection object is likely to be an unnecessary convolu-tion as it would involve recreating the Prediction Array in the object. However,for replication and deletion, the process demands that we construct some sortof data structure to add the candidates to { it may just as well be in our customobject.The SelectionMechanism class was thus implemented and subclassed toform the RouletteWheel class for use, by default, in replication and deletion.The user can modify this selection object dynamically using properties of theClassifierSet object.4 Alternatively, they can subclass the set class and over-ride the getDefaultReplicationSelector and getDefaultDeletionSelectormethods.9.7 Other ClassesAt the beginning of this section we identi�ed many of the candidates for classesin the framework. Of these, the Prediction Array and Genetic Algorithm con-cepts remain to be examined. Both have potential to be implemented as classesin this framework, however both were eventually rejected.Despite having relatively few classes, Butz includes a Prediction Array classin his Java implementation. Conversely Barry encapsulates the Prediction Ar-ray with the Match Set functionality in his SystemPrediction class. A classcould be created that encapsulates the array itself and the functionality for itsconstruction and for selection from it. However this seemed an unnecessarydispersion of the original algorithm and would require the class to be closelycoupled to other elements of the framework; with knowledge of the action se-lection strategy, Action Set and classi�er attributes. In the case of the selectionmechanism, the class was justi�able because it only removed code that wasunrelated to the XCS algorithm itself (i.e. the mechanics of selecting an indi-vidual object from a set of weighted objects). Its functionality was also muchless related, and so less tightly coupled, to the actual classi�ers.During the initial design stages the GA was a strong contender due to the factthat they are part of the wider research area of \Evolutionary Computing". Wecan therefore envisage new developments in genetic algorithms from this �eldbeing applied to the GA in our XCS framework. The GA is concerned with4The same object is passed to any subsets created from the set, so the properties(replication selector and deletion selector) only needs to be set in the population set.51



three activities of the discovery phase: selection of parents, and the crossoverand mutation of o�spring. We could therefore have constructed the GA as acomposite class (Gamma, Helm, Johnson & Vlissides 1994) consisting of eachof these operations either as three further classes or three function objects. Asingle GA object, whatever its internal functionality, could then be plugged intothe system. It cannot be argued that this is not very neat solution, howeverto allow the GA to manipulate the classi�ers' conditions (for crossover andmutation) would violate the design rules we have so far adhered to. Thereforethe use of a GA class was abandoned and its functionality dispersed; with top-level operation and o�spring selection in XClassifierSystem; and crossoverand mutation in the Classifier class.
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Chapter 10Experimenting in theFrameworkHaving implemented both the environment and classi�er system, the frameworkis near completion and we can begin setting up experiments. This section looksat exactly what is involved in creating experiments and how the framework canprovide an Experiment class to help.10.1 What is an Experiment?Assuming we use the object-oriented version of the XCS algorithm, a basicexperiment can be easily created:1 env = BooleanMult ip lexer (2)2 xcs = XClass i f i e rSys tem ( env . n , env .L , env . max reward )3 while xcs . exp lo i t prob lem count < 5000 :4 s = env . g e tS i t ua t i on ( )5 act = xcs . run ( s )6 r = env . getReward ( act )7 xcs . update ( r , env .EOP)8 env . executeAct ion ( act )9 env . r e s e t ( )The �rst two lines instantiate the environment and classi�er system objectswhich are then used in the main loop to run the experiment. First the currentsituation is retrieved (line 4) and fed into the classi�er system to select an action(line 5). The reward for the proposed action is then stored into r (line 6) whichis used to update the classi�er system (line 7). Finally the action is executed(line 8) and the environment is reset for the next problem (line 9).We could have constructed an initial population to be used by the classi�ersystem by passing it to the constuctor. We could also have made changes to thevalues of the learning parameters before the experiment begins, either by makingthe changes statically (as below) or by reading some form of representation froma text �le. 53



C l a s s i f i e r .P mu = 0.05The next step in the development of this experiment code would be to addsome feedback to the user. The simplest form of feedback would be to reportthe resulting population of classi�ers to the user:for c l in xcs .P: print c lWe may also wish generate statistics from each step of the algorithm { such asa moving average of the population of macroclassi�ers.[ . . . ]populat ion = [ ]while xcs . exp lo i t prob lem count < 5000 :[ . . . ]i f xcs . exp lore == False :populat ion . i n s e r t (0 , l en ( xcs .P) )i f l en ( populat ion ) > 50 : populat ion . pop ( )population sum = 0for p in populat ion : population sum += pprint population sum / len ( populat ion )Of course in both cases the output could easily be written to text �les ratherthan the screen. This would allow it to be analysed by external applicationsand processes.We may also wish to re-run our experiment a number of times in order toverify the data that is collected or perhaps iteratively modify the value of alearning parameter.10.2 The Experiment ClassThe Experiment class is designed as the default controlling class for the frame-work and allows the user to customise their experiments in all of the waysdescribed in the previous section.However, before we move on to a more detailed description of this class,it needs to be emphasised that this is just one method of implementing anexperiment. The class hides all of the code previously described and gives theuser a simple interface to provide the inputs of an experiment|an environmentat least|and receive its outputs. It is expected that the class will not beexible enough to satisfy the needs of all users; they will need to write theirown programs similar to the code described in the previous section.Class DeconstructionThe class is created by supplying an environment object and four other optionalelements: a reinforcment program object (if seperate from the environment); a54



classi�er system object (if the standard XClassifierSystem is not to be used);the location of an XML �le containing learning parameters; and a logging object.The XML parsing uses the Sax module (one of Python's standard librarymodules). The �le itself should be structured in the following way:<parameters><class name=`Classifier'><param name=`B'>0.2</param></class><class name=`ClassifierSet'><param name=`N'>800</param></class><class name=`XClassifierSystem'><param name=`g'>0.71</param></class><class name=`my_classifier' module=`my_mods'><param name=`j'>8</param></class></parameters>As this snippet shows, not all parameters have to be speci�ed; default valuesare used if not value is given. Also, new classes can be speci�ed in the XML�le and their class variables will be updated accordingly. If a custom class, suchthe my classifier class, is found, it is imported from the speci�ed module.Therefore if the class if not found, a warning is generated and no updates aredone. Similarly if the speci�ed parameter is not found, a warning is producedand the default value is used.These warnings, and others that can be generated by the Experiment classare reported using Python's logging module. The built-in Logger class is usedto con�gure the destination of di�erent levels of system messages. If no loggingobject is speci�ed to the constructor, it con�gures an object that displays errorsand warnings to the screen. The user may wish to con�gure their own objectto display information and debug messages as well, or to place the messages ina text �le or streamed to another destination. An initial population can also bespeci�ed using the setInitialPopulation function. The set is copied so thatthe experiment can be reset and run again if required.To run an experiment, the user simply calls the run method. This methodtakes as an optional argument the number of times to repeat the experiment.Termination of an experiment is con�gured beforehand using one of the followingfunctions:� setTerminationStepCount: Sets a maximumnumber of steps after whichthe experiment will terminate. The user can also specify whether thesesteps are explore, exploit or both.� setTerminationProblemCount: Sets a maximumnumber of problems af-ter which the experiment will terminate. Again, the user can specifywhether these problems are explore, exploit or both.� setTerminationFunction: Registers a function that is called at the startof every step with a reference to the classi�er system as a parameter. Ifthe function returns True, the experiment terminates.55



The default action is for termination after 5000 problems in total. If more thanone of these are set, the most recent critereon is used. In fact, the latter functionsets the experiment's private terminate variable to the speci�ed function; the�rst two functions set the same variable with prede�ned functions for countingsteps and problems.In order to allow other processes to access information from the experimentwhile it is running, the user can register their own functions to be triggeredon certain events. registerStepListener, registerProblemListener andregisterExperimentListener can are therefore used to add as many func-tions to each event as the user requires. The listening functions for the �rsttwo events must take two arguments: the number of the experiment that iscurrently running; and a reference to the classi�er system. Experiment listenersmust take the experiment number, the time (in seconds) the experiment tookto run and the �nal set of classi�ers.As reporting is such a common task for an XCS experiment, the Experimentclass contains the functionality to generate reports for the statistics and resultsof an experiment (or series of experiments). For e�ciency reasons, these re-ports are only generated if the setResultsReport or setStatisticsReportfunctions are called to speci�y a �le location for the report. The results reportsimply writes the machine-readable representation (as a comma-seperated list)of each macroclassi�er at the end of an experiment to the �le. The statisticsreport is a more complex set of �gures that are generated at the end of eachproblem. These are moving averages over a period of 50 problems (by default)and measure performance, error and population size. However performance istypically measured di�erently for single- and multi-step problems, therefore fourvalues are calculated:� Step Count: The average number of steps took to solve the problem. Onsingle step problems this is obviously always 1, but on multi-step problemsthis is used as the performance indicator.� System Performance: The average reward earned on each step. Onmulti-step problems this means little, however on single-step problemsthis is used as the performance indicator.� System Error: The average di�erence between the reward earned andreward predicted.� Macroclassi�er Population: The average number of macroclassi�ers inthe Population.It is unfortunate that an extra performance value will always be calculated, butthe framework does not distinguish between the two problem types. The useris therefore free to select the meaningful values from the four supplied.The reporting functionality has two solutions for dealing with successiveexperiments. The user has the option to either append data to the same �leor generate multiple �les for each run. This is done using the setReportModefunction to specify whether this \append mode" should be used or not. Thefunction also takes an optional second string argument which has di�erent usesdepending on the mode being used. If append mode is used, the string de�nesthe separator line to be printed between runs. If append mode is not used, thestring de�nes the su�x (i.e. the text between the name of the report and the56



extention) to be used for each �le. The separator string can contain the \%n"placeholder which is replaced by the experiment number during the experiment.This must be included when append mode is o� in order to generate unique �lenames.Finally, the Experiment class also records the time, in seconds, that is takento run each experiment. This is crudely obtained by calculating the di�erencein time between the start of the experiment and the �nish (excluding report-ing). This means that it does not take into account external inuences such asbackground processes starting or stopping during the experiment and e�ectingperformance. However it sometimes serves as a useful indicator, especially ifaveraged over a number of runs. The time is reported in the default results�le and is passed into experiment listeners. A list of times can also be retrievdusing the getExperimentTimes function.10.3 Creating an ExperimentTo create a simplistic experiment using this developed class, we now only needa few lines of code:env = BooleanMult ip lexer (2)exp = Experiment ( env , parameters =`params . xml ' )exp . setTerminationProblemCount (5000 , exp lore=False )exp . se tResu l t sRepor t ( r e s u l t s . csv ' )exp . s e t S t a t i s t i c sR e po r t ( s t a t s . log ' , exp lore=False )exp . run (10)Two experiment programs have been written and included in Appendix G.These create an Experiment object interactively using input from the com-mand prompt. Output from the Multiplexer program (mux.py) is shown inFigure 10.1.
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Boolean Multiplexer Environment===============================>> Enter number of experiments to run [1]: 10>> Enter the size of multiplexer, k [2]:>> Enter number of problems to test [5000]:>> Count Exploit problems? [y]:>> Count Explore problems? [n]:>> Enter file for system parameters [None]: params.xml>> Enter output file for results [None]: results.csv>> Enter output file for statistics [None]: stats.log>> Record Exploit problems? [y]:>> Record Explore problems? [n]:Running Experiments ... (Press Ctrl-C to cancel)Experiment 1 Complete. (13.489000 secs)[...]Experiment 10 Complete. (16.654000 secs)Complete.(Total: 143.366000 secs, Average: 14.336600 secs)>> Press any key to exit.Figure 10.1: Output from the interactive Multiplexer program (mux.py)
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Chapter 11Framework DistributionHaving created the classes that make up the framework they need to be struc-tured into a package that can be easily distributed.11.1 Code StructureWhen writing large programs in Python, such as this framework, the code isseparated into modules and packages. Unlike languages such as Java, Python�les does not usually just contain a single class de�nition (unless a single class isthe most logical content). Instead, the contents of one �le is known as a moduleand usually contains a range of associated classes, methods and global variables.The classes making up the framework that we have described in the previoussections have been organised into the following modules:� Experiment: Experiment (abstract) class.� Environment: Environment and ReinforcementProgram classes.� BooleanMultiplexer: BooleanMultiplexer class.� Woods: Woods class.� ProceduralXCS: setup method, XCS algorithm methods and t, env,rp, params and record global variables.� test ProceduralXCS: Test case classes for ProceduralXCS module� XClassi�erSystem: XClassifierSystem, ClassifierSet andClassifier classes.� test XClassi�erSystem: Test case classes for XClassi�erSystem mod-ule.� SelectionMechanisms: SelectionMechanism (abstract) class and theRouletteWheel and Tournament classes.In a similar way to other object-oriented programming languages, Python usespackages to create namespaces to avoid variable naming clashes and provide ameans to logically group modules. Packages are simply directories containing59



the module �les (or further subpackages) and a (usually empty) Python �lenamed \ init .py" to signify to the Python interpreter that the directory is apackage.The framework has been organised into the packages shown below. This wasdone simply to separate the XCS functionality from the implemented environ-ments and test suites. It is expected that in future versions, the environmentpackage will be augmented with other useful environments and any modi�ca-tions to XCS functionality (e.g. XCSm, XCSC, etc) will either be placed intothe root or into further subpackages.{ xcs/{ Experiment{ Environment{ ProceduralXCS{ XClassi�erSystem{ SelectionMechanisms{ environments/{ BooleanMultiplexer{ Woods{ test/{ test ProceduralXCS{ test XClassi�erSystemPython uses the same dotted notation as Java when referring to packages andmodules. We therefore require the following import statements at the top of atypical experiment:from xcs . Experiment import Experimentfrom xcs . environments .Woods import Woods11.2 Other FilesThe framework will als be distributed with an installation script, documenta-tion, interactive scripts for the Multiplexer and Woods experiments and a \ReadMe" �le containing installation, copyright and contact information.The installation script was generated using Python's distutils module.When run with the \install" option it installs the relevant source �les intothe library of the user's Python installation. There is also a self-containedinstallation executable �le that was also generated by the distutils module.The documentation has been generated using the Epydoc module; an au-tomated documentation tool for Python. This uses a structured commentingsystem for all modules, classes, functions, properties and class variables, andproduces documentation in a variety of formats. Contained in the package areboth PostScript and HTML versions of this documentation.60



11.3 Package NameFinally, the package was named \pyXCS". This follows the Python packagenaming convention of using the \py" pre�x. This name is not mentioned inany of the code, but is used simply to distinguish the package from other XCSimplementations and other Python packages.
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Part IVResults
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Chapter 12System TestingThis section documents the results of the system testing that was carried outon both the object-oriented and procedural versions of the algorithm. We lookat both the accuracy of the results that it generates (i.e. the �nal population ofclassi�ers generated in an experiment) and the system's performance in terms ofthe problem-by-problem statistics generated during an experiment. We also useButz's Java XCS implementation to generate data that we can compare withour own results.As it is based on the same algorithm, Butz's Java XCS should provide auseful comparator. However, in order to compare the statistics we had to setupan experiment with modi�ed reporting function to match the Java version. Themain di�erence is that the default report for the Experiment class reports amoving average at the end of each problem, whereas Butz produces an averagevalue every 50 problems. The values used in the report also had to be scaled inthe same way as Butz's results were. In addition, the mechanism for selectingwhether to use exploration or exploitation was also modi�ed to match the Javaimplementation so that the strategies alternated on each problem, rather thanbeing selected randomly.12.1 Boolean MultiplexerFigure 12.1 shows the �nal population in the 6-Multiplexer environment of atypical experiment run in the object-oriented framework. The classi�ers shownin bold are the 16 maximally general rules that are required to accurately predictan action.1The rules are not simply present in the population, they make up the 16most numerous classi�ers. The results in Figure 12.1 show these 16 accuratemacroclassi�ers in the process of taking over the population. The existence ofother rules is due to the GA's continual generation of new classi�ers. Howeverthe experience and numerosity of these rules is small, suggesting that they willsoon be subjected to deletion.An experiment was set up using the 6-Multiplexer over 5000 exploit steps onthe procedural and object-oriented versions, as well as Butz's Java-XCS. The1For more information on these rules, see Appendix C (p. 84).63
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Figure 12.2: The averaged (and scaled) results from running the Boolean Mul-tiplexer on the ProceduralXCS version of pyXCS. (Signi�cant parameters: N= 400, � = 0.04.)experiments used equivalent learning parameter values and were repeated 30times. The averaged performance statistics are shown in Figures 12.2 { 12.4.Looking at the statistics for the procedural and object-oriented algorithms;we appear to have achieved something close to the expected behaviour. Thebehaviour of the system's error and performance over time are as expected {error decreases while performance increases as the system develops better, moreaccurate rules. The population of macroclassi�ers initially rises then graduallyfalls away. This is also the expected behaviour, as the number of di�erentclassi�ers is initially high whilst the system is discovering and trying manydi�erent classi�ers. However, gradually the accurate classi�ers start to dominatethe population, and the macroclassi�er count falls as the numerosity of theaccurate classi�ers increases.Although generally the Python algorithms exhibit the same behaviour asobserved by the Java implementation, there are noticeable di�erences betweenthe exact paths of each of the lines in the three experiments. T-tests takenat four samples (250, 1000, 2000 and 5000) over the time period con�rm thatthere are some statistically signi�cant di�erences between the samples. Mostnotably between the procedural version and the Java implementation, and in thelatter stages between the object-oriented version and the Java implementation.Further results are shown in Appendix E.Finally, as an interesting demonstration, Figure 12.5 shows a typical runusing the object-oriented version (with default reporting) on the 11-Multiplexerproblem over 15000 exploit problems. It too shows the classi�er system learningcorrect behaviour over time, with macroclassi�er population dropping to around65
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Figure 12.3: The averaged (and scaled) results from running the Boolean Mul-tiplexer on the object-oriented version of pyXCS. (Signi�cant parameters: N =400, � = 0.04.)
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Figure 12.4: The averaged (and scaled) results from running the Boolean Multi-plexer on Butz's Java XCS implementation. (Signi�cant parameters: N = 400,� = 0.04.) 66
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Figure 12.5: The averaged (and scaled) results from running the Boolean 11-Multiplexer on the object-oriented version. (Signi�cant parameters: N = 800,� = 0.04.)100 and performance and error tending towards the maximum and minimum,respectively.12.2 WoodsThe Woods1 maze was also tested in the three implementations under the sameconditions as the Multiplexer2 and the statistics are shown in Figures 12.6 -12.8. However, these do not show the Python framework behaving in such asexpected way.The object-oriented version (Figure 12.7) does mirror the Java implemen-tation's behaviour to some extent; we see the rise and fall in population and aleveling out of the number of steps taken. However the number of steps in thePython version uctuates more than the Java version and averages around 2.5,whereas the optimum number of steps, as shown by the Java version, is around1.7.In the Woods environment, when we look at the �nal populations of classi-�ers produced we should see that if they are sorted in order of prediction, theclassi�ers are grouped according to how many steps away from the food thecondition they match is. Therefore we expect to see a relatively small groupthat are one step away and so predict the maximum reward (in this case 1000);another group that are two steps away and predict the maximum reward dis-2Although the system parameters were modi�ed to set N as 800 and � as 0.01 { a morestandard con�guration for the Woods environment.67
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Figure 12.6: The averaged (and scaled) results from running the Woods1 envi-ronment on the ProceduralXCS version of pyXCS. (Signi�cant parameters: N= 800, � = 0.01.)counted once (around 709); and some that are three steps away and predict atwice-discounted reward (around 503). This is certainly the case with Butz'sresults; the vast majority of the classi�ers fall into one of these three categories.It is also the case to some extent with the object-oriented version, althoughthere appears to be more of a dispersal in the values of predictions which mightaccount for the higher average step count of the Python version.The procedural version, however, does not appear to be working as expectedat all. Population does not fall away after reaching around 80% and the numberof steps uctuates dramatically with an average of just over 3 steps.T-tests were conducted on the object-oriented version compared to the Javaimplementation in the same way as the Multiplexer. This found signi�cantdi�erences in half of the samples.3 Despite many e�orts to remedy the problemsfound in the multi-step environments, it was not possible to identify the exactcause of the problem. The code for running multi-step problems is conceptuallythe same as both Butz and Barry's implementation, yet fails to exhibit thecorrect behaviour. This is discussed later in Section 13.2 (p. 76.3It was not thought neccessary to perform a t-test on the results from the proceduralversion as these results can be seen visually as being di�erent.68
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Figure 12.7: The averaged (and scaled) results from running the Woods1 envi-ronment on the object-oriented version of pyXCS. (Signi�cant parameters: N= 800, � = 0.01.)
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Chapter 13ConclusionIn the last section we looked at the performance of the system as an XCSimplementation. We have found that the framework performs as expected forthe single-step Boolean Multiplexer; it generates the correct end population andthe performance is very similar to the Java version. However, the multi-stepenvironments have shown to be more problematic to for Python algorithms.Whilst the object-oriented version does get some way to solving the problem,the procedural version does not exhibit the correct behaviour at all.In this section we analyse and critique the system's overall e�ectiveness as aframework for development. In order to do this, we will be referring back to theformal requirements speci�cation (see Appendix B, p. 81) that was developedduring the design stage of the project. Results from this analysis can then leadto plans for future development of the framework.13.1 Revisiting the Requirements Speci�cationWhilst developing the framework the more practical functional requirements1were used to guide development and were all met with little further commentneeded:� Programming Language Constraints (Requirements 1c { 1f): Theframework was developed using just the standard libraries fromPython 2.4(the most recent at this time of writing) and written (with the justi�ableexception of the ProceduralXCS module) in an object-oriented structure.� Documentation (Requirement 2): An automated documentation toolwas used to facilitate the documentation. This also meant that the com-ments used in the documentation accompanied each of the functions withinthe code itself as a prompt for those reading the source code.� Learning Parameters (Requirement 3): Using class variables and abuilt-in XML parsing library these were easily modi�able.� Reporting (Requirement 4): This was implemented according to thespeci�cation in the Experiment class.1That is, those requirements that related to speci�c functionality and features of the frame-work. 70



� Environment Creation (Requirement 5): A lot of design e�ort wasplaced into the separation of the environment from the classi�er system.Also, through the use of Python's multiple inheritance mechanism theconceptual separation of the environment from the reinforcement programwas also achieved without the added complication of extra concrete classes.The other requirements, however, do warrant further discussion and analysis.Code Clarity (Requirement 1a)During the development of the core classes (the system, set and classi�er) thetrade-o� between clarity and e�ciency was prominent. Some functions bene�tedfrom the transformation between a procedural and object-oriented structure.For example the update function of the ClassifierSet is reduced from 21 linesof code to 11. The code, that contained some relatively obscure calculations, ispresented more clearly in its object-oriented form and gives a better overviewof the update process.1 accuracy sum = 02 to t a l nume ro s i t y = s e l f . t o t a l nume ro s i t y3 for c l in s e l f :4 c l . exp += 15 c l . updatePred ic t ion ( payof f )6 c l . updateActionSetEstimate ( t o t a l nume ro s i t y )7 accuracy sum += c l . k8 for c l in s e l f :9 c l . updateFitness ( accuracy sum )10 i f XClass i f i e r Sys tem . do AS subsumption :11 s e l f . doActionSetSubsumption ( )This function also shows an example of the clarity versus speed trade-o�. Line2 is used to prevent the total numerosity being calculated for each classi�er.The resulting update would be the same if it were calculated each time, butit would take longer. It was decided for situations like this, Requirement 1bregarding speed and e�ciency takes precedence over Requirement 1a regardingthe emulation of the original algorithm.Two features of the object-oriented approach stand out as having su�eredfrom the transformation from their procedural equivalents. Firstly, by allowingthe user to use any derived classi�er and set class meant that the following linesof code were used to create their respective objects:c l = s e l f . c l a s s i f i e r t y p e ( t , act , s=s )s e t = s e l f . c l a s s ( s e l f . c l a s s i f i e r t y p e , s e l f )Instead of the more readable:c l = C l a s s i f i e r ( t , act , s=s )s e t = C l a s s i f i e r S e t ( s e l f ) 71



Some similar modi�cations were required that meant obscuring the underlyingalgorithm, but were required to allow the framework to be exible enough tomeet requirements for its use (Requirements 5 and 6).The second area that stands out as having su�ered in the transition is theinsertion and deletion functionality. As described in Section 9.4 (p. 43), thiswas required to deal with the various types of insertion and deletion that takeplace during the algorithm. The result is a exible insertion and deletion sys-tem that should be capable of dealing with any future developments withoutmajor rework. It also succeeds in reducing the number of lines of code in thedeleteFromPopulation procedure from 21 to 12, and in doing so adds clarityto the overall process. However, compared to the original algorithm or the pro-cedural version, it requires a novice to the system to spend a greater amount oftime to comprehend the subtleties of the di�erent functions (i.e. the di�erencesbetween append, add and insert).One other criticism that could be leveled at the core structure is the use ofclass variables for the system parameters. This was reasoned in Section 9.5 (p.49) and was a suitable mechanism to comply with Requirement 3. However thefact that the value of some of these parameters was initially None is not ideal.Speed (Requirement 1b)As Figure 13.1 shows, the object-oriented framework comes at a signi�cant costin running time. In fact, during these informal tests on the Boolean Multi-plexer environment, the time is nearly double that of the procedural version(15.33 seconds compared to 8.62 seconds). The Experiment class, with andwithout report generation, was also compared against an equivalent programusing the object-oriented framework directly. This showed a negligible di�er-ence in the time taken compared to when the Experiment class is used directly(15.33 seconds compared to 15.14 seconds for direct use), with an increase ofaround 3 seconds when the extra burden of reporting was added.It should be noted at this point that these are not accurately measuredtimings and do not take into account background processes during the runningperiod. However they were averaged over 90 experiments (3 runs of 30 experi-ments) and at the very least give the reader an idea of the relative timings.Perhaps more signi�cant is the comparison to Butz's Java implementation.The same experiment, including reporting, takes less than a second to run.To some extent this relative speed was expected due to the fact that Pythonis an interpreted language an has known performance issues in some areas.2However, it is somewhat disappointing that the Python framework should be sodramatically slower than its Java counterpart.By analysing the code further it may be possible to identify some areas thatwould bene�t from code optimisation. Using Python's hotshot module, it ispossible to produce a pro�le of an experiment as it is executed. This records thenumber of function calls that were made and the relative time spent executingeach one. These statistics can then be used to identify the functions that arecalled often and that occupy a signi�cant proportion of processing time. The�rst 10 functions|when ordered by number of calls|are shown in the tablebelow, see Appendix F for the full pro�le.2See http://www.python.org/moin/PythonSpeed/PerformanceTips for more information.72



Figure 13.1: A comparison of the time taken to run 5000 exploit problems in theBoolean Multiplexer environment using �ve equivalent programs: (1) using theProceduralXCS module, (2) using the object-oriented framework, (3) using theExperiment class, (4) using the Experiment class with reporting functionalityenabled, and (5) using Butz's JXCS. Results are an average of 90 experiments(or 3 runs of 30 experiments).
73



# Calls Class Function Time863239 Classi�er doesMatch 10.316462530 SelectionMechanisms add 1.941432142 Classi�er calculateDeletionVote 5.42268383 Classi�er ne 1.664268254 Classi�er eq 6.195149154 Classi�erSet append 0.645130716 Classi�erSet iter 1.228118912 Classi�erSet len 0.45651066 Classi�erSet sum attribute 7.12340194 Classi�er couldSubsume 0.346Total Time 71.959As the pro�le shows, the doesMatch method is called substantially more timesthan any of the other methods and occupies a large proportion of the executiontime. Butz & Wilson (2000) describe the procedure thus:f o r each a t t r i bu t e x in Ccli f ( x 6= # and x 6= the corresponding a t t r i bu t e in � )re turn falsere turn trueThis was implemented in the procedural module using the most direct transla-tion, shown below.3 To run this method in isolation on 100 000 classi�ers/situ-ations took 9.467743 seconds (averaged over ten separate experiments).for c , s x in map(None , c l .C, s ) :i f c != None and c != s x : return Falsereturn TrueIn an attempt to optimise this function, we could rewrite the function to accessthe list elements using an index. The code, shown below, took 9.261004 secondsunder the same conditions as before.for i in range (L ) :i f c l .C[ i ] != None and c l .C[ i ] != s [ i ] : return Falsereturn TrueIn a further attempt to reduce the computation time, we use a while loop. Thiswas timed at 8.915548 seconds, a reduction of just under 6%.i = 0while i < l en ( c l .C) :i f c l .C[ i ] != None and c l .C[ i ] != s [ i ] : return Falsei += 1return TrueAs the function is called so frequently in the algorithm, this �nal version was3The map function is a built-in function that applies its �rst argument (usually a function)to the successive arguments. However it is used in this context to allow us to iterate throughmore than one list at a time. 74



used in the object-oriented framework in place of the more direct translationthat was used in the procedural version.This sort of optimisation is low-level and the lessons learnt can be replicatedthroughout the framework without much change to the overall algorithm. Lessstraightforward optimisation are higher-level design decisions, that also e�ectthe readability of the code. For example, the calculateDeletionVote functionis near the top of the function calls list; we could attempt to make the calculationof the deletion vote more e�cient. One method would be to store the value of thevote and only recalculate it when the classi�er's data is modi�ed (as the deletionoccurs in the entire population and only the Action Set classi�ers are updated oneach step). A similar technique could be applied to other scenarios such as thesummation of attributes in the a set. The value could also be modi�ed \on-the-y"; keeping a running total or average of certain set attributes. For example,a total numerosity value is maintained by adding the value of new or subsumedclassi�ers and removing the value of old ones. Whether these solutions providean improvement in speed or not will depend on the ratio of function calls tothe rate of change in the dependant data. However, the introduction of thisauxiliary code would certainly have an e�ect on the quantity of code in theframework and its overall legibility.Therefore, considering the sharp contrast in execution time between thisframework and the Java implementation, we consider this trade-o� to featureheavily in any future development of the framework.XCS Research and Development (Requirement 6)It would be di�cult to conclude with certainty that whether the frameworkdoes indeed provide a useful tool for research, as this will hopefully emerge oncethe framework is put to use. However, as anecdotal evidence here we show theimplementation of the Tournament Selection modi�cation described in Section4.3 (p. 22). This is admittedly one of the more basic modi�cations that havebeen suggested, but it serves to highlight some of the issues involved.Being a selection mechanism, we plan to augment the basic XCS functional-ity by subclassing the SelectionMechanism class to create a Tournament classwith a speci�c constructor and the add, select and reset functionality oftournament selection:from xcs . Se l ec t ionMechanisms import SelectionMechanismclass Tournament ( SelectionMechanism ) :def i n i t ( s e l f , tournament s i ze =0.4) :[ . . . ]def add ( s e l f , weight , item ) :[ . . . ]def s e l e c t ( s e l f ) :[ . . . ]def r e s e t ( s e l f ) :[ . . . ]The second step is to use this selection mechanism in an experiment. This75



requires us to create an instance of the ClassifierSet class; set instances ofthe tournament selector for use during replication and deletion; then specify theset as an initial population for an experiment:env = BooleanMult ip lexer (2)exp = Experiment ( env )c s e t = C la s s i f i e r S e t ( C l a s s i f i e r )c s e t . r e p l i c a t i o n s e l e c t o r = Tournament ( )c s e t . d e l e t i o n s e l e c t o r = Tournament ( )exp . s e t I n i t i a lP op u l a t i on ( c s e t )exp . run ( )Alternatively, the mechanism could be changed statically by subclassing theClassifierSet to produce a class, such as ClassifierSetTS, that overridesgetDefaultDeletionSelector and getDefaultReplicationSelector to re-turn tournament selector objects rather than roulette wheels.In both Butz's and Barry's Java implementation such an alteration wouldnot be possible dynamically and would be arguably more di�cult to achievestatically (via inheritance). It is more likely that a developer would modify theoriginal source code as a means of inserting the functionality.With regards to a modi�cation such as classi�er condition encoding, the useof lists for conditions means that the framework o�ers a very exible basis forfurther development. For example, the list can store oats for continuous-valuedinputs (Wilson 1999) or tuples for messy encoding (Lanzi 1999)4. However, asis the case with the other XCS implementations, there is still a tight couplingbetween the environment and the classi�ers in this respect. To implement oneof the aforementioned encodings, the developer would need to ensure that theenvironment generated situations in the format expected by the classi�er con-ditions.13.2 Future WorkThe release of the �rst version of the framework concludes the current stageof development. There is, however, much scope for future development thatwas not possible within the scope of this project. This includes entirely newareas of functionality as well as improvements and enhancements to the existingframework.Multi-step EnvrionmentsIn this project we have mainly concentrated on the single-step Multiplexer prob-lems. This was mainly due to the fact that the original algorithm was writtenmainly for single-step problems. Although the algorithm contains some func-tionality for multi-step problems, we were required to add more logic to ourimplementation in order to get the multi-step to work at all. However as thesystem testing showed, neither version of the algorithm is producing results withthe same accuracy as for the single-step problems.4See also Section 4.3 (p. 21) 76



Therefore the �rst step of any further development would be tackle thisproblem. One possibility is create separate run methods: one for single-stepand one for multi-step problems. This was initially decided against as it wasthought possible to run both problem types in the same code as was describedin the algorithm. However this added complexity may be shielding the problemswe are encountering with the multi-step problems.Another way of tackling the problem would be to run the Python versionagainst the Java version more exactly, using a seed classi�er population and�xing the \random" selections so that both algorithms should behave exactlythe same. In this way, the results could be analysed step-by-step and whendi�erences occur the problem can be traced more accurately than simply bytrying to analyse the performance statistics and �nal population.Further Code OptimisationAlthough it is perhaps over-optimistic to expect a reduction in execution timeto that of the Java or C implementations, it is hoped that substantial gainscould be made. In Section 5.3 (p. 26) three methods were proposed in orderto obtain a fast execution time; code optimisation, using Python compilers andwriting modules in C. It was beyond the scope of this project to explore muchfurther into the e�ects of these techniques; so far we have only considered codeoptimisation, and this has not been an exhaustive search of the possibilities. Wewould expect that subsequent versions of the framework would focus heavily onthis area to obtain a more satisfactory speed, without the loss of clarity.Generating Statistics GraphicsThe framework currently only outputs the statistics as a text �le and relieson external scripts written for programs such as Gnuplot5 to create graphicrepresentations of the data.One of the bene�ts of Python and other scripting languages is that it canbe used to join together other processes and programs, even those written indi�erent languages. There are several such packages that could be used to addthe generation of the aforementioned statistics graphics. The Gnuplot package6is a set of Python modules that use Gnuplot directly and so can create anyplot available in a standard Gnuplot package. Alternatively SciPy7 is a stand-alone set of scienti�c tools for Python and is capable of a vast set of functionsincluding data plotting and interpolation.The use of these packages requires that the user has them installed on theirsystem. Therefore we would not want to build such functionality into the core ofthe framework. However derivations of the Experiment class could be createdthat use one of these external libraries. This would allow the user to generatethese plots quickly, easily and consistently.5See http://www.gnuplot.info/ for more information.6See http://gnuplot-py.sourceforge.net/ for more information.7See http://www.scipy.org/ for more information77



GUI . . . and beyond!Although it is not possible to remove the user entirely from the need to under-stand the algorithm and write code to implement their own environments andideas, a graphical user interface could be of signi�cant bene�t to the framework.If a GUI were developed to enable the user to setup, run and analyse experi-ments it would allow the user to concentrate on actual XCS functionality ratherthan the application-speci�c code required to use the Experiment class.Python contains several toolkits for producing such interfaces; of these thecross-platform Tk-based Tkinter package is the most widely used. It should bepossible to build a graphical interface on top of the existing framework with fewalterations required. The preliminary requirements of the experiment, such asinitialising the environment and setting learning parameters, could be achievedrelatively easily via a GUI. Assuming the it is running on a separate threadto the classi�er system, the user interface can also register listener functionsin the Experiment class to update its state and provide feedback during theexperiment. With the addition of the relevant functions to the Experimentclass some extra controls could also be added to pause and resume the algorithmduring execution.Python's introspection capabilities also generate a large range of possibilitiesfor future development that ultimately lead towards a primitive IDE (IntegratedDevelopment Environment) in which the user develops their code through theuser interface without directly creating or managing the Python �les themselves.It should be said at this point that development of such a system is no smalltask. However, it does provide an example|if an extreme one|of the bene�tsthat the Python framework could bring about.13.3 Concluding RemarksAlthough the �nal system testing revealed two major aws in the framework{ inaccuracy of multi-step problems and slow execution time { we believe theframework developed can still be a useful tool in XCS research. Especially ifthe issues regarding the multi-step environment can be solved.In particular we can see a bene�t as an educational tool for XCS. For acomputer scientist who is new to XCS, the code in both the procedural andobject-oriented version should be much easier to follow than that of either theJava or C implementations. Also, as it mirrors the description given by Butz &Wilson (2000), it can be used in combination with the paper to aid understand-ing of the algorithm.In addition, the framework's exible design and the accompanying documen-tation should make it relatively easy for a user with experience in XCS to useit for new research ideas. In fact it will probably be the use of the frameworkin the \real world" that will drive the direction of any future development andimprovements. 78
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Appendix ASources of ExistingImplementationsThis study has focused mainly on the following XCS implementations for com-parison purposes as they are the most commonly used implementations that arecurrently being used.Alwyn Barry Java http://www.cs.bath.ac.uk/~amb/LCSWEB/jxcsawt.zipC http://www.cs.bath.ac.uk/~amb/LCSWEB/xcsc.zipMartin Butz Java ftp://ftp-illigal.ge.uiuc.edu/pub/src/XCSJava/XCSJava1.0.tar.ZC ftp://ftp-illigal.ge.uiuc.edu/pub/src/XCS/XCS.tar.Z
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Appendix BRequirements Speci�cationThe following is the requirements speci�cation to which to the framework wasdeveloped. The sources of these requirements are documented and discussed inChapter 4 (p. 19).1. The code should be clear to read and understand for users new to XCStheory and/or the programming language used.(a) Where possible the code should emulate the algorithm described byButz & Wilson (2000).i. Where changes have been made or extra functionality included,it should optional and fully documented.(b) Optimisations should be made to the algorithm where they give aclear speed advantage and do not a�ect Requirement 1a substantially.(c) The framework should be designed in an object-oriented structure.(d) The code should adhere to the common standards of the program-ming language (where this does not interfere with Requirement 1a).(e) The most recent stable version of the programming language shouldbe used.(f) No external libraries or resources should be used that would requirethe user to install additional components.2. The framework should be fully documented.(a) An automated documentation tool should be used to ensure uniformcoverage and style.(b) Each function and module of the framework should be extensivelycommented.(c) Documentation should include installation and usage instructions.(d) Documentation should include both dynamic (e.g. hypertext) andstatic (e.g. PostScript) versions.3. The system's learning parameters must be modi�able at run-time.81



(a) Newly developed components should have access to these parameters.(b) Newly developed components should be able to de�ne their own pa-rameters.4. The framework should facilitate reporting of the data generated during anXCS experiment.(a) A report listing all the data about each classi�er in the �nal popula-tion should be generated at the user's request.(b) A report listing moving averages of the system performance, systemerror and macroclassi�er population during the experiment shouldbe generated at the user's request.i. The user should be able to specify whether explore or exploitproblems should be included in the report.ii. System performance in single-step problems should be calculatedas the reward earned on each step.iii. System performance in multi-step problems should be calculatedas the number of steps taken to solve the problem.iv. System error should be calculated as the di�erence between thepredicted and the actual reward earned.v. The statistics should be reported as a fraction of their maximumvalues to allow them to use the same scale.(c) The user should be able to register functions to be �red at key eventsduring an experiment.i. The user should be able to register functions to be executed atthe end of each step.ii. The user should be able to register functions to be executed atthe end of each problem.iii. The user should be able to register functions to be executed atthe end of each experiment.iv. There should be no limit to the number of functions registeredfor each event.v. The functions should have access to all the current data in theXCS system.5. The framework should facilitate the creation of new environments.(a) The environment's interface should be clearly de�ned for the userattempting to implement a new environment.(b) The user should only have to write the code to create the environ-ment, no extra code should be required to apply it to the XCS algo-rithm.6. The framework should facilitate the further development of the XCS al-gorithm.(a) The high-level operations of the algorithm (the main loop, actionselection, GA and parent selection) should be modi�able dynamically.82



(b) A logical class hierarchy should be used to enable fundamental changes(such as classi�er condition encoding) to the system through subclass-ing.
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Appendix CTest EnvironmentsThere are two standard test environments often used in classi�er system researchand in this project. This section documents the \Boolean Multiplexer" and\Maze" environments in detail.C.1 Boolean MultiplexerA multiplexer has k input channels and 2k data channels, with one outputchannel. The data channels are labelled with addresses from zero to 2k � 1and the multiplexer chooses to output the data channel at the address givenby the k input channels. Figure C.1 shows a circuit diagram of a multiplexerwith two addressing channels (k = 2) and four data channels. As an exampleof its operation; if the address channel inputs were 0 and 0 respectively, themultiplexer would output the signal given by the �rst data channel (00).With regards to the multiplexer problem for classi�er systems; their taskis to learn from an input message composed of the k + 2k binary inputs (theaddress channels plus the data channels), which output is correct. For example,if the address channels' values are 1 and 0, and the data channels are 0, 1, 1 and0 respectively, then the classi�er system is passed as an input string \100110".From this the classi�er system should propose action 1 (the value of the thirddata channel) to receive a reward.
Address Channels

Data Channels

Output Channel

00

01

10

11

Figure C.1: A Boolean-6 Multiplexer84



000### : 0! 1000 000### : 1! 0001### : 1! 1000 001### : 0! 001#0## : 0! 1000 01#0## : 1! 001#1## : 1! 1000 01#1## : 0! 010##0# : 0! 1000 10##0# : 1! 010##1# : 1! 1000 10##1# : 0! 011###0 : 0! 1000 11###0 : 1! 011###1 : 1! 1000 11###1 : 0! 0Figure C.2: The 16 optimal rules for a Boolean-6 multiplexer. To the left of thecolon is the string representation of the inputs and immediately to the right isthe proposed action. The value to the right of the arrow is the predicted reward.The Boolean-6 Multiplexer is a relatively straight-forward, single-step prob-lem for an XCS to solve. It is a reasonable expectation that it should havereached high performance (or low error) within 5000 repeatitions. After thistime the population should be composed mainly of the 16 maximally generalrules needed to succesfully classify the inputs. Figure C.2 shows these rules fora Boolean-6 Multiplexer with a reward of 1000 for correct classi�cation. Largermultiplexers (11 and 20 inputs) are more complex common tests for classi�ersystems.C.2 MazesThe second class of environment are mazes. Wilson (1994) introduced the\Woods1" environment for the ZCS. This environment, and those that followedin XCS research, are known as Class 1 environments because the system's nextinput and possible reward depends only on the current input and action, andno other historical data.1Woods1 uses an in�nitly repeating pattern of spaces, rocks and food to de�nea maze. In the maze is an \animat" (denoted by an \*") that is controlled bythe classi�er system. The animat is placed randomly in the maze and can moveinto any adjacent spaces not occupied by a rock. It receives reward for �ndingfood, at which point the problem is reset and the animat begins from anotherrandom location. Figure C.3 shows a typical maze pattern.The classi�er system therefore receives sensor readings from the animatabout the 8 adjacent squares. Each type of square is encoded into binary:\00" for a blank; \10" for a rock; and \11" for food. The animats 8 movementsare translated into actions numbered 0 to 7 in the order: N, NE, E, SE, S, SW,W, NW.A later maze introduced by Wilson (1995) adds a further intricacy to thisbasic problem. In\Woods2", an extra rock and food type are added. Althoughboth food types and both rock types have the same consequences for the animat,it means that three bits are used to encode the sensor reading. This encodingis done in such a way that the right-most bit is not much use to the animat asit does not distinguish between rock and food. As a consequence the classi�ersystem has more scope for generalisation of its condition strings.1Or alternatively this is known as Markovian with delayed rewards.85



................OOF..OOF..OOF..OOO..OOO..OOO..OOO..OOO..OOO................................OOF..OOF..OOF..OOO..OOO..OOO..OOO..OOO..OOO................Figure C.3: A example of the Woods1 environment. It is usual to refer to blankspaces with a \.", rocks as \0" and food as \F".A further environment, \Woods7", was also introduced for ZCS (Wilson1994). It uses the same objects as Woods1 but has a much larger pattern thatis more randomly distributed than Woods1. Woods7 is known as a Class 2problem2. This increase in complexity is described by Wilson:[T]o know one's position in Woods1 (with respect to the basic con-�guration), it is su�cient to know the current input. In Woods7,however, it is necessary either to see more than one step away, or toremember some recent sensory inputs.This second class of problem poses a more di�cult challenge as sensor read-ings do not cover spaces more than one step away. Also ZCS/XCS systems donot have the use of temporary memory as other branches of classi�er systemsdo. However, although it is expected that performance will drop substatially,Woods7 is often of interest simply to see how well it can do using simply itsdiscounting reward algorithm.
2Or Non-Markovian with delayed rewards86
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Appendix EExperiment T-TestsThe t-tests carried out for the purposes of this project were two-tailed t-testsfor unrelated samples with a signi�cance level of 5automatically using a custom-built Python script to extract and analyse the data direct from the statisticsoutput (see the program listing of average.py and ttest.py in Appendix Gfor more information).The results from the t-test give a statistical judgement on whether the twopopulations being compared are the same or di�erent. With 58 degrees offreedom (as there were 2 sets of 30 samples taken), the signi�cance value at5around 1.671. The tables below show the t values for each t-test, the �guresin bold are the samples showing sign�cant di�erence (i.e. those greater than1.671).E.1 Boolean 6-MultiplexerProcedural vs. JXCSSample Point Performance Error Population250 0.583075 1.368201 2.5373011000 3.294280 3.685720 5.0677992000 4.511831 4.098217 2.0916585000 1.682043 6.319991 1.375837Object-oriented vs. JXCSSample Point Performance Error Population250 1.414732 0.480466 2.5500731000 0.574452 1.131931 1.2141272000 2.335014 2.724308 0.4459685000 1.682043 6.613716 3.382524Procedural vs. Object-orientedSample Point Performance Error Population250 0.877357 1.079390 0.7236991000 1.536505 1.735508 3.3247982000 1.157364 1.234692 1.9172585000 0.000000 1.241375 0.23286290



E.2 Woods2 Object-oriented vs. JXCSSample Point Performance Error Population250 1.414732 0.480466 2.5500731000 0.574452 1.131931 1.2141272000 2.335014 2.724308 0.4459685000 1.682043 6.613716 3.382524
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Appendix FPro�le of an Experiment# Calls Class Function Time863239 Classi�er doesMatch 10.316462530 SelectionMechanisms add 1.941432142 Classi�er calculateDeletionVote 5.42268383 Classi�er ne 1.664268254 Classi�er eq 6.195149154 Classi�erSet append 0.645130716 Classi�erSet iter 1.228118912 Classi�erSet len 0.45651066 Classi�erSet sum attribute 7.12340194 Classi�er couldSubsume 0.34626036 Classi�erSet calculate total numerosity 3.99924564 Classi�er updatePrediction 0.40424564 Classi�er updateActionSetEstimate 0.37224564 Classi�er updateFitness 0.32819827 Classi�erSet init 0.69219826 Environment is eop 0.1416494 Classi�er isMoreGeneral 0.08111670 Classi�er doesSubsume 0.38711417 Classi�erSet get super set 0.53311164 SelectionMechanisms select 0.38211164 SelectionMechanisms reset 0.39943 Classi�erSet calculate action count 1.2099914 Environment get situation length 0.0839913 Classi�erSet generateMatchSet 21.0269913 Classi�erSet generatePredictionArray 1.439913 Environment generateSituation 1.519913 Classi�erSet generateActionSet 1.439913 XClassi�erSystem update 44.9349913 XClassi�erSystem run 23.4779913 ReinforcementProgram getReward 0.5889913 Classi�erSet calculate average prediction 3.9039913 XClassi�erSystem selectAction 0.24192



# Calls Class Function Time9913 Classi�erSet calculate total prediction 0.6389913 Environment reset 1.6429913 Environment executeAction 0.0659913 XClassi�erSystem useExplore 0.0619913 Environment getSituation 0.066006 Classi�erSet doDeletion 18.9265960 Classi�erSet selectO�spring 0.8215960 Classi�er mutate 0.0325598 Classi�erSet insert 8.8485204 Classi�erSet calculate average �tness 2.0534913 Classi�erSet update 2.2934913 XClassi�erSystem runGA 35.9144913 Classi�erSet calculateTimeSinceGA 0.2222980 Classi�er crossover 0.2381514 Classi�erSet add 0.062479 Classi�erSet remove 0.942479 Classi�erSet delete 0.95346 Classi�erSet addCoveringClassi�er 0.01146 Classi�er init 0.00130 Classi�erSet get unused actions 0.0016 SelectionMechanisms init 01 XClassi�erSystem reset 0.0011 XClassi�erSystem init 0.0011 Environment get no actions 01 Environment get max steps 01 Environment get max reward 01 Experiment run 71.959
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Appendix GProgram ListingThe framework is organised into the following package for distribution. Thesource code for the core modules is shown in the following section.{ doc/{ HTML Documentation{ PostScript Documentation{ gnuplot/{ Multiplexer GNUPlot script{ Woods GNUPlot script{ src/{ ProceduralXCS{ XClassi�erSystem{ SelectionMechanisms{ Experiment{ test/{ test ProceduralXCS{ test XClassi�erSystem{ environments/{ Environment{ BooleanMultiplexer{ Woods{ scripts/{ Interactive Multiplexer Experiment{ Interactive Woods Experiment{ Statistics Averaging Script{ T-test Script 94



{ Read Me{ setup.py{ setup.exe
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XClassi�erSystem.pyContains the object-oriented version of the core XCS algorithm.Module Contents:� Classes: XClassi�erSystem, Classi�erSet, Classi�er
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]

101



[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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[XClassi�erSystem.py]
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ProceduralXCS.pyContains the procedural version of the core XCS algorithm.Module Contents:� Classes: Classi�er� Global Variables: env, rp, t, params, record� Functions: setup, run, generateMatchSet, doesMatch, generateCovering-Classi�er, generatePredictionArray, selectAction, generateActionSet, up-dateSet, updateFitness, runGA, selectO�spring, applyCrossover, apply-Mutation, actionSetSubsumeInsert, insertInPopulation, deleteFromPopu-lation, deletionVote, doActionSetSubsumption, doesSubsume, couldSub-sume, isMoreGeneral, reset, output stats, number of actions, get environment,set environment, get reinforcement program, set reinforcement program,get timestep, set timestep, get parameter, set parameter.
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[ProceduralXCS.py]
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[ProceduralXCS.py]

109



[ProceduralXCS.py]
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[ProceduralXCS.py]
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[ProceduralXCS.py]
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[ProceduralXCS.py]
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[ProceduralXCS.py]
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[ProceduralXCS.py]
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[ProceduralXCS.py]
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Environment.pyContains abstract classes that de�ne the environment external to the classi�ersystem.Module Contents:� Classes: Environment, ReinforcementProgram
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[Environment.py]
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[Environment.py]

119



SelectionMechanism.pyContains the abstract class for a selection mechanism and two concrete classesthat implement roulette wheel and tournament selection.Module Contents:� Classes: SelectionMechanism, RouletteWheel, Tournament
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[SelectionMechanism.py]
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[SelectionMechanism.py]
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[SelectionMechanism.py]
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BooleanMultiplexer.pyContains a concrete derivation of the Environment and Reinforcement classesto de�ne the Boolean Multiplexer problem.Module Contents:� Classes: BooleanMultiplexer
124



[BooleanMultiplexer.py]
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[BooleanMultiplexer.py]
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Woods.pyContains a concrete derivation of the Environment and Reinforcement classesto de�ne the Woods problem.Module Contents:� Classes: Woods
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[Woods.py]
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[Woods.py]
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[Woods.py]
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average.pyAverages out a text �le containing XCS statistics taken from numerousexperiments.
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[average.py]
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ttest.pyCalculates a t-test for the samples in the two speci�ed �les and works out ifthey are signi�cantly di�erent at the speci�ed signi�cance level.
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[average.py]
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