-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by University of Bath Research Portal

Citation for published version:
Longridge, TN 2005, Developing an XCS Framework. Computer Science Technical Reports, ho. CSBU-2005-11,
Department of Computer Science, University of Bath.

Publication date:
2005

Link to publication

©The Author October 2005

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

https://core.ac.uk/display/161910294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/developing-an-xcs-framework(065807a2-9871-40a8-979c-2eb5083fc40d).html

UNIVERSITY OF

Department qf \@ BATH

Computer Science

Technical Report

Undergraduate Dissertation: Developing an XCS Framework

Thomas N Longridge

Technical Report 2005-10 October 2005
ISSN 1740-9497

Copyright ©October 2005 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 7TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Developing an XCS Framework

Thomas N Longridge

BSe (Hons) in Computer Science

May 2005

Developing an XCS Framework

Submitted by Thomas N Longridge

Copyright

Attention is drawn to the fact that copyright of this thesis rests with its author.
The Intellectual Property Rights of the products produced as part of the project
belong to the University of Bath (see http://www.bath.ac.uk/ordinances/
#intelprop).

This copy of the thesis has been supplied on condition that anyone who
consults 1t 1s understood to recognise that its copyright rests with its author
and that no quotation from the thesis and no information derived from it may
be published without the prior written consent of the author.

Declaration

This dissertation 18 submitted to the University of Bath in accordance with the
requirements of the degree of Bachelor of Science in the Department of Computer
Science. No portion of the work is this dissertation has been submitted in
support of an application for any other degree or qualification of this or any other
university of institution of learning. Except where specifically acknowledged, it
is the work of the author.

This thesis may be made available for consultation within the University Ti-
brary and may be photocopied or lent to other libraries for the purposes of
consultation.

Abstract

XCS is a relatively recent development of Learning Classifier System that has
proven to be more effective than previous algorithms. These systems are forms
of machine learning algorithm that can be used to provide an agent with the
means of evolving “desirable” behaviour within a given environment. Several
implementations of the XCS algorithm have been written in programming lan-
guages such as C and Java. They are used both as learning tools and to further
research in the area. This study documents the development of an XCS imple-
mentation in the Python programming language. Tt aims to provide a more ac-
cessible framework for XCS research and development based on the algorithmic
description given by Butz & Wilson (2000). Tnitially a procedural implemen-
tation is developed that closely emulates this description. The components are
then reconstructed into an object-oriented structure that forms the basis of the
framework along with some standard environments and a controller class that
controls the whole experiment.

A cknowledgements

T would like to thank Dr Alwyn Barry for his initial concept and his continuing
support and enthusiasm for the project. Also many thanks Jan Drugowitsch for
his advice and to those who helped proof read the various drafts.

Contents

1 Introduction

I Background

2 Learning Classifier Systems & XCS

2.1 TIntroduction to Learning Classifier Systems
2.2 XOS Performance Component
2.3 XCOS Reinforcement Component
2.4 XCOS Discovery Component,

3 Existing XCS Implementations

3.1 Java Implementations
3.2 ClImplementations
3.3 Conclusion L
IT Design
4 Requirements Analysis & Specification
4.1 General Requirements
4.2 “User” Requirements
4.3 “Developer” Requirements

5 About Python

5.1 Code Aesthetics
5.2 Object-Oriented Support
5.3 FExecution Speed Lo
5.4 Conclusion

6 Top-level Design

6.1 The Environment Lo
6.2 The Reinforcement Program
6.3 The X-Classifier System
6.4 The Experiment

7

10
11
12

15

16
17

18

19
19
20
21

24
24
25
26
27

28
28

IIT TImplementation 31

7 Environment & Reinforcement Program 32
7.1 The Abstract Classes 32
7.2 Situation and Classifier Condition Format 34
7.3 Environment Types 34

8 Procedural XCS 37
8.1 Design 37
8.2 Testing 40

9 Object-oriented XCS 42
9.1 Candidate Classes 42
9.2 Classifier Class 42
0.3 XClassifierSystem & ClassifierSet Classes 43
9.4 Algorithm Encapsulation 43
9.5 TLearning Parameters 49
9.6 Selection Mechanismso 49
9.7 Other Classes 51

10 Experimenting in the Framework 53
10.1 What is an Experiment? 53
10.2 The Experiment Class 54
10.3 Creating an Experiment L. 57

11 Framework Distribution 59
11.1 Code Structure 59
11.2 Other Files 60
11.3 Package Name 61

IV Results 62

12 System Testing 63
12.1 Boolean Multiplexer 63
12.2 Woods 67

13 Conclusion 70
13.1 Revisiting the Requirements Specification 70
13.2 Future Worko 76
13.3 Concluding Remarks 78

V Appendices 79

A Sources of Existing Implementations 80

B Requirements Specification 81

Test Environments
C.1 Boolean Multiplexer
C.2 Mazes

Framework Schema

Experiment T-Tests
E.1 Boolean 6-Multiplexer
E.2 Woods2

Profile of an Experiment

Program Listing

84
84

87

90
90
91

92

94

Chapter 1

Introduction

A Learning Classifier System (1.CS) (Holland 1986) is a machine learning algo-
rithm inspired by processes in the natural world. Tn order to obtain “desirable”
behaviour in a given environment, the L.CS is rewarded for performing an action
that is correct (or is punished for undesirable behaviour). This reinforcement
learning technique, often used to train animals, drives the L.CS to develop a set
of internal rules that describe the correct responses to particular environmental
conditions. Tn order to learn from its mistakes and explore new possibilities the
I.CS employs a Genetic Algorithm (GA) that acts on the rule-base in a way
that emulates the principles of sexual reproduction, random gene mutation and
“survival of the fittest” in the natural world.

These mechanisms make an L.CS well suited for use in complex problems
where a programmer would not be able to provide a solution methodically either
because the domain is not well understood or is too large to be adequately
handled. Such applications include data mining (Barry, Holmes & Tlora 2004)
of areas such as financial markets; and modelling or controlling complex systems
such as communication networks (Carse, Fogarty & Munro 1996).

XCS (Wilson 1995) is a form of LCS that was developed to improve on some
of the short-comings of Holland’s .CS. Tn particular it aimed to produce systems
with an optimal set of rules that accurately describe correct behaviour. Wilson
bases the learning phase of XCS on the accuracy of the rules that the system
uses, rather than the value of the reward itself.

Numerous implementations of XCS have been developed in a variety of pop-
ular programming languages such as C and Java. Due to the repeatative nature
of the algorithm the code for these implementations needs to be fast and effi-
cient. However this comes at the cost of obscuring the original algorithm. This
means that development of the code by anyone unfamiliar with the specific
implemenation is often very difficult and time-consuming.

This project aims to provide an XCS framework primarily designed for both
research and development, and educational use. Tn order to do so, it will use
a language more capable of representing the algorithmic processes described by
Wilson. As a further tool for education purposes, we also implement, as closely
as possible, the algorithmic description of an XCS as given by Butz & Wilson
(2000).

The first part of this report provides a background on XCS theory and
an analysis of the two main software implementations that are currently in

use. Part TI describes the preliminary design processes undertaken during the
project; including requirements analysis and the top-level design. The detail
of the framework’s implementation is described in Part 111, giving justification
for the various design decisions. Finally, an analysis of the performance of the
developed framework 1s given along with a disscussion on its effectiveness and
the potential for future development.

Part 1

Background

Chapter 2

Learning Classifier Systems

& XCS

2.1 Introduction to Learning Classifier Systems

“Find a bug in a program, and fix it, and the program will work
today. Show the program how to find and fix a bug, and the program
will work forever.”

Hearst & Hirsh (2002)

This sentiment goes a long way to describe the rationale for the development of
so-called “machine learning” software agents. Give an agent the ability to learn
appropriate behaviour from its environment and you remove the limitations of a
human programmer’s logic. This is especially pertenant to domains that contain
vast amounts of data with complex relationships such as data mining, network
routing, speech recognition and gaming strategies.

Developing a machine learning agent is by no means an easy task. Many
techniques have been developed with no one algorithm proven with universal
success. The algorithms can usually be categorised into three groups: super-
vised learning, unsupervised learning and reinforcement learning. In supervised
learning, the agent is given some correct inputs and outputs, then develops a
function to produce the correct mapping. Unsupervised learning algorithms are
only given inputs which it clusters into groups of similar data to build a model.
In reinforcement learning, the agent receives input data, but also a reward re-
lating to the “correctness” of its chosen actions which it uses when selecting
actions in the future.

First proposed by Holland in 1986, Learning Classifier Systems (LCS) are one
form of reinforcement learning technique in machine learning. In broad terms,
an LCS seeks to classify inputs from its environment via a set of rules that
determine the correct action to take in the given situation. Figure 2.1 shows
the relationship between an LCS and its environment. The LCS can detect
particular attributes of the environment using a number of sensors and can
perform a finite set of actions on the environment using its effectors. Messages
are passed from the sensors to the L.CS, in the form of a binary string in which
each bit corresponds to the state of a particular sensor. GGiven this information,

Environment

Reinforcement
Program

!

Sensors | Effectors

LCS

Figure 2.1: The current environment state is determined by the LCS using
sensors. Based on this, an action is executed on the environment using the
I.CS’s effectors. Both inputs and outputs are also sent to the Reinforcement
Program and it is based on this information that a reward is granted to the

I.CS.

the LCS decides on an action and sends a message to the effectors to carry it
out.

An LCS is a rule-based learning system and works by maintaining a set of
“if-then” rules called classifiers. Fach classifier proposes an action to take if
particular conditions are detected in the environment. The conditional state-
ment of a classifier is a string {0, 1, #}" where I, is the length of the sensor’s
binary message and # is a wild card that allows the value of the particular bit
to be either 0 or 1.

Those classifiers that match the current input message take part in a bid-
ding process (described in Section 2.2) whereby the winning classifier’s action
is passed to the effectors to be executed in the environment.

The L.CS learns correct behaviour using a reinforcement learning technique
in which the system receives rewards for performing correct actions given the
state of the environment. Tt does this with no prior guidance or knowledge
about the problem space, but merely seeks to maximise the reward it can earn.
This reward-based technique is adapted from learning techniques often used to
train animals or young children. In such situations the reward is granted to
the pupil by another individual; similarly rewards are granted to the L.CS by
an external program, called the reinforcement program (RP) (Butz & Wilson
2000).

The T.CS uses the reward from the RP to credit the classifier (or classifiers)
that proposed the action that brought about the reward. An average reward
is recorded for each classifier and it is this value that 18 used in future bidding
processes. In this way, classifiers that propose correct behaviour are more likely
to be selected in future.

The system also uses a Genetic Algorithm (GA) to perform operations on
the population of classifiers to create new, and potentially useful classifiers. As
the name suggests, the (GA models the genetic operations that occur in the
DNA of living organisms. In particular, it creates offspring classifiers that have

a combined version of the characteristics of their parents. During the process
there is also a small possibility of a random mutation. These operations are
string manipulations on the conditional statements of the parent classifiers.

An LCS can therefore be described in terms of the following components:

e Performance: The selection of an appropriate action, given the current
state of the environment.

¢ Reinforcement: Rewarding those classifiers that describe behaviour that
is desirable/optimal.

e Discovery: Striving to discover better classifiers to bring about consis-
tently higher reward or more constant performance.

The problem that an L.CS attempts to solve can be categorised as either a single
step or multiple step problem. As the name suggests, single step problems only
last for a single cycle of input processing, action selection and action execution.
After this, any reward earned is awarded and a new problem begins. In a
multiple step problem, the I.CS may have to go through a number of these cycles
before a reward is earned and/or the problem is solved. Tn both problems types,
once a particular scenario has been solved, the problem is restarted a number
of times with different starting conditions. During each problem, the classifier
population evolves and so should become increasingly skilled at selecting the
correct actions. The two scenarios often used as examples, or test environments,
for T.OS implementations are the single step “Boolean Multiplexer”, and the
multi-step “Woods” (Wilson 1985) problems. See Appendix C for definitions.

To enable an .CS to support potentially long chains of actions in multi-step
problems, Holland proposed a complex message-passing framework in which
internal messages could be passed between classifiers as well as the external
messages between the T.CS and the environment. However, as Wilson (1994)
notes, attempts at implementation have met with “mixed success”:

Though a number of researchers were inspired by Holland’s frame-
work to investigate classifier systems .. .efforts to realize the frame-
work’s potential have met with mixed success, primarily due to
difficulty understanding the many interactions of the classifier sys-
tem mechanisms that Holland outlined. The most successful studies
tended in fact to simplify and reduce the canonical framework, per-
mitting better understanding of the mechanisms which remained.

Wilson’s Zeroth-level Classifier System (7ZCS) (Wilson 1994) was an attempt to
simplify Holland’s framework and “to provide a viable foundation for building
toward the aims of Holland’s full framework”. Later Wilson describes the XCS
(Wilson 1995) form that builds on the ZCS and has been shown to be effective
and stable where other LCS implementations have failed. TIn particular the
tendency of an T.OS’s population of classifiers to be taken over by those that
receive high rewards in some situations but low rewards in other areas. These
over-general classifiers are selected for reproduction because of the high reward
they receive in some areas. However, they do not represent accurate or complete
solutions for the problem space. Thisis analogous to an ecosystem of cooperative
populations in the natural world. Populations of organisms will specialise in
the various different, environmental situations (or niches) and live cooperatively

| 0011 Environment

I e
Effectors
[P] match

#1101
1134 :00
#o#t o 11 01

001# : 01
#0111
1#01 :10

(Reward)
1[*1{?;&211 Set Action Set

A 4 Prediction [A]
#011.01 43 01 99 Array wtion [301107 7 o7 o8

#o## 11 14 05 52 Ty
001#:01 27 24 3 —P 001#:01 27 24 3

011 18 02 82 selection
A r
discount (| - 'Ey: 1
P
@ Update: \r
predictions, Previous Action Set
errors, - [A] 1 <

fitnesses

Figure 2.2: Schematic illustration of XCS (taken from “Generalization in the

XCS Classifier System”, Wilson 1998).

because they are not competing for the same resources. In the same way, Wilson
proposed that a classifier system should be able to maintain cooperative sets of
classifiers, thus enabling the system as a whole to cover more of the problem
space.! To enable this to happen, Wilson based the reproductive capabilities of
classifiers in an XCS on accuracy of predicting reward rather than the actual
amount of reward received. Tn this way accurate classifiers in all niches have an
equal chance of reproducing regardless of the value of the reward they predict.

Figure 2.2 shows the XCS and its components. These are described in detail in
the following sections.

2.2 XCS Performance Component

At each discrete time step, the system receives an input message from the en-
vironment and forms a subset of classifiers whose condition statements match
the current, message. This subset is known as the match set [M]. For example,
the message 101101001, could contain classifiers with the following conditions:
101101001, 104401001, H#HAHO01001, FHAH#HEHFEFFE.

The members of [M] may propose a range of different actions. A conflict
resolution subsystem (Barry 2000) is therefore required to select an action to he
executed. Tn XCS this is done by creating a prediction array in which is placed
the system’s prediction for the reward for each action represented in [M]. The

T Alternatively this can be thought of as a set of rules that provide a complete and accurate
mapping of conditions and actions to a reward: X x A = P.
pping

10

prediction for a particular action is calculated as fitness-weighted average of all
classifiers that propose a particular action.? Using this array, the XCS can either
select the action with the highest prediction or use a random selection process.
These two techniques demonstrate the trade-off that the system must manage
between maximising reward and evolving an accurate rule-base. By selecting
the highest prediction, the system is seeking to gain maximum reward; in a
random selection, the system executes sub-optimal rules in order to bring new
rules into use and identify inaccurate rules in the population. These different
selection techniques are often called exploit and explore, respectively. Tn XCS,
the parameter Py, is used to denote the probability of using the explore policy
in a given cycle.

Following this selection process, the selected action is sent to the effectors
to be executed and an action set [A]is formed that contains those classifiers
from [M] that proposed the executed action. The members of [A] are given a
share in any reward earned, and in multi-step problems members of [A] in steps
leading up to the earning of a reward are also granted a share. This is discussed
in more detail in the next section.

2.3 XCS Reinforcement Component

As discussed earlier, the Discovery Component of an XCS (and to some extent
the Performance Component) is based on a classifier’s ability to accurately pre-
dict the value of reward that will be earned if its action is executed. This fitness
value is a function of the relative accuracy of the classifier with respect to other
classifiers in action sets to which the classifier has belonged.

In previous I.CS theory there was simply a “performance” parameter main-
tained for each classifier an average of reward earned that was used for both
action selection and GGA selection. In order to calculate fitness in XCS, three
parameters are required:

e p: The classifier’s reward prediction.

e ¢: The average error in this prediction (when the prediction is compared
to the actual reward that was received).

e F': The resulting fitness value for the classifier.

Tt is therefore the purpose of the Reinforcement Component to update these
parameters for members of [A] after an action has been executed.
In a single step problem, the prediction parameter p is updated for each

classifier, j, using the Widrow-Hoff delta rule (Widrow & Hoff 1960):

p; — pj + B(R —pj) (2.1)

where R is the reward earned and g8 (0 < 8 < 1) is the learning rate a system
parameter that, when varied, changes the balance between speed and accuracy
of discovery (Butz, Sastry & Goldberg 2003).

However, in multi-step problems, the XCS must reward a chain of action
sets that have led to a reward. In order to avoid a complex system involving
recording the histories of each classifier, XCS uses the a payoff mechanism from

2 As mentioned earlier, fitness in an XCS is based on accuracy. See Section 2.3.

11

the current action set, [A], to the previous one, [A]_1. Tnstead of updating p
using a reward value, the payoft value, P, is used. P takes the maximum value
from the current prediction array, discounts it by v (0 < v < 1) and adds in
any reward earned in the previous time step.

€, the error parameter, is similarly updated, using the Widrow-Hoff technique
with the absolute difference between the prediction p; and the reward P (or R):

=GB P—pi|—¢) (2.2)

Finally, the fitness parameter, F' can be calculated:

Fi = Fy + B(kj — Fy) (2.3)

where k’ is the relative accuracy of the classifier within the action set. This is
achieved by first calculating the actual accuracy, k, and then dividing & by the
number of classifiers in the action set. Accuracy is an inverse function of € and
is often calculated as:

ki = exp((Ina)(e; — €n)) for €; > €y otherwise 1 (2.4)

where o (0 < o < 1) is a system parameter that can be altered to increase the
rate of decline in accuracy as error increases, and €, acts as a threshold, after
which error is considered negligible. The function causes accuracy to decrease
exponentially for error values greater than .

However, in the above calculations the Widrow-Hoff technique is only used
to update the parameters if the classifier 18 thought to have had sufficient ex-
perience that its parameters have reached a stable value. The threshold value
is set, to 1/3 time steps, before which the parameters are updated as a simple

average of the existing and new values.?

2.4 XCS Discovery Component

Tt is the job of the Discovery Component to introduce improved classifiers into
the population classifiers are more accurate or more general than existing
members; and to remove under-performing classifiers those who are inaccurate
or too specific. This process is driven by a genetic algorithm (the GA), which
emulates the evolutionary processes found in nature, to produce new classifiers
and remove others.

Most reproduction in nature is carried out sexually in other words, off-
spring are produced from two parents and inherit a genotype that reflects this
combination of the adult genes. The process by which the genotypes of the
adults are combined, and so the attributes that the offspring exhibits, is ran-
dom. However, given parents with some set of useful attributes there is a chance
that the offspring will gain a sizable proportion of desirable traits. In this way,
the population can evolve better members as the child is likely to be able to
out-compete its peers and so propagate its genes to a greater extent.

This principle of “survival of the fittest” 18 modelled by the GA| by select-
ing two classifiers from the population who are deemed “fit” and performing a

3 A consequence of this is that an additional parameter, exp, is required for each classifier.
erp is a count of the number of times the classifier has belonged to [A] and is updated durin
g g
the Reinforcement Component.

12

crossover operation on their conditional statements. Tn this process the string
is separated into two sub-strings at the same random point on both parents.
The second string from each parent is then switched to produce two offspring.
During this process in nature, a mistake sometimes occurs whilst combining
the genes n offspring. Tt is possible that this random mutation will benefit the
offspring and it will bring about a change in the population behaviour in the
same way as previously described. Therefore allowances are made for this in
the GA: when creating a new classifier there is a small probability that a bit
will be changed in the process of replication.

Arguably, i1t is the way in which classifiers are selected for replication that
separates XCS from ZCS and other systems. As we have already seen, classifiers
in an XCS have separate fitness and prediction parameters. This allows the GA
in an XCS to select classifiers for reproduction based on their relative accuracy
and hence eliminate the competitive pressures between classifiers in different
niches. In another change from LCS, the GA in an XCS operates on members
of [A] rather than [P]. This niche GA was first suggested by Booker (1989) and
used in XCS as a further way to reduce competition between niches. Booker
also points out that the offspring of parents in separate niches are less likely to
exhibit useful attributes than those with parents in the same niches.

The actual selection of classifiers to be bred is usually done using a roulette-
wheel technique to randomly select two parents with a probability proportional
to the classifier’s fitness. More recently, tournament selection has been proposed
as a more effective method of selecting parents. In this process, a number of
classifiers are selected at random and the two fittest are then selected from this
pool (Butz et al. 2003).

To ensure uniform evolutionary pressure in each niche, the GA is not applied
on the formation of each action set. Rather, the average time since the last GA
invocation is calculated for the current members of [A], and if it exceeds a certain
threshold, ©g 4, the GA is executed.”

There are occasions when a classifier 1s produced that is identical to an-
other classifier in [P]. Tn a measure to save computation time, these classifiers
are merged to form a macroclassifier. In effect all classifiers in an XCS are
macroclassifiers that contain a numerosity field that records the number of mi-
croclassifiers that it represents (initially 1). When a new classifier is generated,
[P] is scanned for a duplicate classifier. If found, the numerosity of the existing
classifier is incremented and the new classifier is deleted. The terms classifier
and macroclassifier are usually interchangeable. However there are occasions
when this distinction is necessary; for example when calculating relative accu-
racy in the Performance Component, 1t is necessary to consider the total number
of microclassifiers.

An T1.CS can be seeded with either a population of randomly generated classi-
fiers; a collection of potentially useful ones; or none at all. And in the same way
as a natural population has an upper size limit, the LCS imposes a maximum
population size; usually referred to as N. Therefore, if a population size is less
than N, new classifiers can be generated and simply inserted into the popula-
tion. However, once the population size reaches N, a number of microclassifiers
must first be removed from the population before any new members can be

4To facilitate the calculation of this average, each classifier records the time step that the
last GA invocation occurred in an action set that it belonged to (referred to as ts).

13

added. Deletion also occurs using a random-based technique; Wilson describes
the use of a roulette-wheel technique in which the probability of selection for
deletion 1s increased if the classifier belongs to action sets whose average size
is relatively large and further still if the classifier’s fitness is less than a cer-

tain small proportion of the population’s average fitness.”.

In targeting these
under-performing classifiers, we can expect the removal of inaccurate classifiers
and the maintenance of equal size niches. As with subsumption, classifiers are
not considered for deletion until their experience reaches a predefined threshold,
Oger.

Tn a later addition to the XCS, Wilson (1998) describes subsumption dele-
tron. This was suggested after the identification of “accurate, but unnecessarily
specialised classifiers”. This should not be the case as, in theory, general classi-
fiers will occur in more action sets and so out-compete more specific classifiers.
However, Wilson suggests that in certain cases, where the inputs received from
the environment were sparse, this was not occurring. Wilson suggests that
newly created classifiers are checked for specificity in conditions against their
parents and the other members of the current action set.® Tf the offspring are
simply a less general case of another acccurate classifier they are subsumed
the numerosity of the existing classifier is incremented and the new classifier 1s

deleted.

5 Again, an extra field, as, is required to record an average of the action set size that a
classifier has belonged to.

6 Wilson defines subsumption of a child by a parent being when the set of possible strings
matched by the offspring is a proper subset of the set matched by the parent.

14

Chapter 3

Existing XCS

Implementations

Various XCS implementations have been produced in programming languages
such as C (Barry’s XCSC and Butz’s Tlligal C-XCS) and Java (Barry’s JXCS
and Butz’s Tlligal Java-XCS)." Their uses are twofold: they allow a user to apply
their own problem, or test environment, to the XCS algorithm; and they allow a
developer to modify the operations of the XCS algorithm for research purposes.
This section analyses these implementations from the perspective of these two
programmers: the User and the Developer.?

3.1 Java Implementations

One of the main benefits of a Java implementation, over those written in a pro-
cedural language such as C, is that it provides an object-oriented code structure
to represent data and separate the functionality into logical groups.

Butz uses a minimal structure with regards to the number of object classes
defined. The library uses objects to represent a classifier (XClassifier); a
prediction array (PredictionArray); a classifier set (XClassifierSet); an XCS
(Xcs); and the collection of parameters XCSConstants. Further to this it defines
an interface, Environment, to be implemented when creating a test environment.

Although many of these classes are similarly defined in Barry’s structure, he
defines several others in addition. Where Butz has used primitives to represent
conditions, actions, messages, and reward; Barry has defined further classes. In
doing so, Barry has provided a means for easier development from a Developer’s
view-point. For example, alternative message encodings can be researched and
developed by simply modifying the Message class. Providing the object imple-
ments the same methods, this data cohesion means that the programmer should
not have to worry about the effects of the change in any other part of the sys-
tem. Barry also includes a more flexible reporting mechanism to allow for any

1See Appendix A for details

2Tn this section, and for the remainder of the project, the words “User” and “Developer”
have been capitalised so as to distiguish them from their more general usage, when used in
reference to the two user groups identified.

output format.? However, a significant draw-back in Barry’s library is that it
only handles single-step problems. Although there is probably no reason why
this could not be added at some point in the future.

A significant difference that a User will encounter when creating test environ-
ments in both libraries is that Barry does not use an interface to define how an
environment class should be written. Instead, test environments are subclasses
of an Environment class. In terms of object-oriented design, Butz’s solution
does seem to solve the problem in a neater way; allowing the User to create
a new class however they like, providing they implement the vital methods to
communicate with the XCS. Barry’s solution does have the advantage of being
able to lay-down some base code and variables that allow the User to gradually
create a class that overrides the superclass, instead of having to implement a
class in one go.

An interesting difference in approach is also found in the way they deal with
sets of classifiers. Butz uses a single class to represent, all sets; [P], [M] and [A].
Three separate constructors handle creating [P] as an empty population with
a specified number of actions; [M] by specifying (amongst others) the current
inputf message; and [A] by specifying the selected action. Each set also keeps a
reference to its parent, set. Conversely, Barry uses separate classes to define [P],
[M]* and [A]. Again, Butz’s implementation has, arguably, the purer object-
oriented approach; there is presumably some redundant code when defining
two classes to handle classifier sets. However it does mean that the class only
contains functionality specific to the particular type of set, whereas with Butz’s
XClassifierSet, it was necessary to include functionality relating to [P], [M]
and [A].

Both implementations provide some standard test environments. Both pro-
vide the single-step Boolean Multiplexer, and Butz includes the multi-step Maze
environment.®

3.2 C Implementations

Both implementations use data structures to represent similar objects to their
respective Java implementations. However, the readability of the code suf-
fers from the syntactic obscurities involved with C programming and are a
long way from the algorithmic description described by Butz & Wilson (2000).
This means from the point of view of both the User and the Developer
particularly the Developer significant time would need to be devoted into
acquiring implementation-specific knowledge and becoming familiar with the
code.

The benefit of using C, however, is its speed. The fact that C is a relatively
low-level language does not help readability, but it does mean that we can expect
a faster execution time from the resulting program. With an XCS that iterates
through thousands of cycles per experiment this is a significant factor, especially

3He also defines a separate user interface package that reports information to a user graph-
ically. This is a useful feature, but for the purposes of this comparison, we will focus on the
XCS package.

4 Although the Match Set is combined with the Prediction Array in the SystemPrediction
class.

5This includes a useful text file parsing functionality to allow a User to create new mazes
easily.

16

if the programmer expects to need to run an experiment many times in order
to collect thorough results.

Butz attempts to split the functionality within his code into functionality
for classifier lists, action selection, environments, XCS constants and the general
XCS system. This does make Butz’s code slightly more modularised, as Barry
keeps all the functionality in a single file. However, like the Java implementation,
Barry’s libraries are designed more flexibly; with tighter cohesion allowing a
programmer to safely modify a component without fear of interfering with the
results of others.

3.3 Conclusion
An ideal XCS implementation would:

e Minimise syntactic clutter of the implementing language and represent
as closely and as clearly as possible the algorithmic processes in the system.

e Employ flexible object-oriented techniques, specifically tight cohe-
sion of data that aids development within modules; and low coupling of
objects for flexible use.

e Fast execution of code at run-time.

These attributes of a good implementation are often contradictory. For example
in producing code that is readable, it may be necessary to use extra statements
to clarify the semantics of a code block but which may also increase its execution
time. Tt is therefore a matter of finding a suitable balance between the three
attributes. We have seen that the existing implementations are perhaps lacking
with regards to the first point; that of representing the process clearly and
algorithmically.

17

Part 11

Design

18

Chapter 4

Requirements Analysis &
Specification

In Chapter 2 the two stakeholders in the framework were identified as the User
and the Developer. The former being interested in setting up environments for
the system to act in, and the latter wishing to adapt the behaviour of the system
for research purposes. In this section these activities will be further discussed
and analysed to form the basis of the Requirements Specifiication on which the
framework will be developed. The Specification can be found in Appendix B
(p- 81).

Before exploring the specific requirements of these two users, it is worth
discussing some of the aspects that are common to both groups. Including the
positive attributes discussed in the previous section.

4.1 General Requirements

Framework Code

The framework is an XCS framework and so obviously its primary requirement 1s
that 1t should contain a working XCS algorithm as a basis for any development.
Implicit as this may seem, it 18 worth remembering that XCS is a branch of
the T.CS tree and there are also several variations in its implementation. The
framework will be based on the papers by Wilson (1998) and particularly the
algorithmic description proposed by Butz & Wilson (2000). Any deviations or
enhancements made to the core functionality should be clearly explained and
justified. As described in Chapter 2, one of the core development objectives
for the framework is to maintain this algorithmic description and readability
of code. However, every effort. should be made to keep the code as efficient as
possible. This is especially true of the core XCS algorithm which is executed
many thousands of times.

Another general requirement that should be placed on the framework is for
it to be written in an object-oriented way. The paradigm is so commonly used
in modern programming that it needs little justification here, except to say
that failure to use it is very likely to inhibit the framework’s use and further
development.

19

Documentation

Documentation is also vital to the framework’s usability as an XCS development
tool. With many programming languages, automatic documenting tools are
available to convert structured code comments into either hypertext or static
documentation. By including substantial commenting on all functions within
the framework, the need for single line comments within the function body
is reduced. Again this is important for the core XCS algorithm where the
readability of comments may compromise the readability of the algorithm.

4.2 “User” Requirements

The User should only be concerned with creating an ezternal environment for
the XCS to operate in. The framework should therefore be encapsulated in such
a way that the User should then able to “plug in” a newly created environment
and expect the correctt XCS behaviour to ensue. In order for this to happen,
the framework must define an interface from which the User can develop their
environment. From the XCS algorithm described in the previous section, we
can see that this interface consists of the following:

e Supplying a percept of the current environment state.
e Performing the action proposed by the system.
e Rewarding the system appropriately for its advice.

e Informing the system that a problem has ended.

As there are some system parameters that are problem-dependant, the environ-
ment must also expose the number of actions it 18 able to perform, the length
of a percept message, and the maximum reward that is available.

However the XCS can only be expected to successfully solve the problem if
the reward schedule created is providing the correct reinforcement to the system
and the system parameters are set correctly. This has two consequences for the
framework. Firstly the system parameters should be easy to modify. Although
it 1s unlikely that they would be modified during an experiment, it is possible
that modifications would be required between experiments without the need to
revisit the code. Secondly, as the User is often concerned with analysing the
performance of the system and the rules it has evolved, the framework must
also have a good reporting system.

There are two common types of report that a User may require from an
XCS experiment and that the framework should include: the final population
of classifiers; and some step-by-step performance statistics. These performance
statistics are commonly the system’s performance (either in terms of reward
earned or, in multi-step problems, number of steps taken), the system’s error
(the difference between the predicted and actual reward), and the macroclassifier
population. The User should also be able to write their own statistical functions,
using data from the classifier system, and register them to occur on particular
events during the experiment.

T This is used when calculating the value of «.

20

4.3 “Developer” Requirements

In order to gather requirements from a Developer’s perspective, current areas of
XCS research should be considered in order to identify the type of modifications
that a Developer is likely to require, and so develop a framework in which they
can be made relatively easily. Three such topics that T have considered in
particular are continuously-valued inputs (Wilson 1999), messy coding (Lanzi
1999) and tournament selection (Butz et al. 2003).

XCSR — Continuously-Valued Inputs

Wilson (1999) discusses the development of a classifier system, XCSR, that uses
continuously-valued inputs, as opposed to the binary values used in a traditional
system. Such as system would be much better suited to real-world scenarios
where a sensor is not simply “off” or “on”, but have a quantitative value. As
Wilson speculates:

Continuous variables such as temperature, concentration, or age may
be decisive in classification, with certain ranges of the variables im-
plying one class and other ranges implying another.

In his paper Wilson suggests using “interval predicates” in place of each bit in
a traditional XCS input string. BEach predicate, int; = (¢;,s;) where ¢; and s;
are reals, specifies a rule such that a classifier matches an input if and only if
c; — 8 < x; < ¢; 4+ s; for all x;. ¢; is thought of as the centre value of the
interval, and s; as the “spread” or delta defined with respect to ¢;.

The mechanics of an XCSR implementation only differ to that of XCS with
respect to 1ts condition matching, mutation operator and covering mechanism.
Condition matching is simply a matter of implementing the logic described
above. Mutation involves adding a random small amount to each allele with the
usual probability. Covering occurs in at the usual times, generating a value of
¢ equal to the current situation and s as a random number typically between ()

and 0.5.

XCSm — Messy Coding

Lanzi (1999) proposes a classifier system in which the chromosomes of the clas-
sifiers are not of a set length. Tn such a system, a chromosome may not specify
every gene (under-specification) and may specify some genes more than once
(over-specification). Tn doing so, the relationship between the position of bits
in the classifier’s condition and the position of sensor bits 1s removed. Tanzi
experiments with knowledge reuse as one of the benefits that this brings:

Accordingly, classifiers evolved to solve a certain problem can be
reused in another application assuming that the tags of the messy
genes are still valid in the new application.

He goes on to experiment with a maze in which only due north, east, south and
west are available actions. After the population fail to find an optimal solution,
the four other movements (NE, SE; SW, NW) are made available to resulting

21

population. He showed that using only mutation to introduce the new actions,
the population learned an optimal solution.

Thus the primary difference between XCS and XCSm 1s that tags are re-
quired in the messy coded chromosome to associate it with the sensor as its
position can no longer be used. FEach gene now consists of a pair; the first
element, denoting the gene number (or sensor’s identification) and the second
giving the value of the allele.

Matching 1s also embellished to deal with over- and under-specified genes.
Genes that are under-specified are treated as though their bits were “don’t care”
symbols. Tf a gene is over-specified, the classifier is only matched if the current
situation matches all of the alleles.

Covering i1s handled in the same way buy uses a probability, Ps, that each
gene is present in the chromosome at all. T.anzi uses a relatively high value for
P, of 0.8 or more.

The crossover mechanism in XCSm works in much the same way but uses
a modified probability of being invoked. Tn XCS the probability of crossover
occurring is a fixed probability, x, whereas XCSm uses a calculation: pg(A —1)
where p; 18 the probability of cutting a single gene and A is the length of the
shorter chromosome. Mutation 1s modified so that the tag can also be mutated
with probability p, and genes can be added and removed from the chromosome,
also with probability u.

XCSTS — Tournament Selection

Tournament selection in XCS (Butz et al. 2003) is an alternative selection mech-
anism to the fitness-weighted “Roulette Wheel” that is traditionally used to
select parents in the GA. To select a parent using tournament selection, a pro-
portion of the population is randomly selected and the fittest member of this
subset is chosen. Tt is argued by Butz et al. that tournament selection makes
the process more independent, from the problem and system parameter values.
This modification introduces a system parameter, 7 € (0, 1], that specifies
the size of the tournament as a proportion of the total population. Tt modifies
only the selection mechanism, no other aspects of the system are affected.

Returning to the Requirements

Of these modifications the first two real-valued inputs and messy coding
exemplify modifications at the classifier level; they make no difference to the
higher level XCS theory. This highlights the need for a neatly encapsulated
model that makes modification via inheritance simple and logical. All func-
tionality that directly manipulates the classifier values, especially the condition,
should be enclosed in the same place.

Conversely, tournament selection is an example of a modification that af-
fects a higher level XCS process. Modifications to mechanisms such as par-
ent selection, the GA’s macro-operations and action selection should be easily
changeable. This is likely to involve “pluggable” functions to allow for run-time
alterations. Although modification through inheritance could equally be used.

All three of these research areas also introduce new system parameters. For
example, Wilson uses m in the mutation operator for real-valued classifiers as the
maximum change possible for each interval, and in Butz’s tournament selection

22

7 18 the tournament size. Therefore the input system for system parameters in
the framework should be easily extensible and allow additional parameters to

be added.

23

Chapter 5

About Python

Python is a high-level, interpreted and object-orientated language, developed
n 1990 by CWI, Amsterdam. Tts current development is very much open-
source and is owned by the Python Software Foundation (PSF). Tn Python’s
introductory documentation', the PSF claim that:

[Python] has an elegant (but not over-simplified) syntax; a small
number of powerful high-level data types are built in. Python can
be extended in a systematic fashion by adding new modules imple-
mented in a compiled language |[...]

This section is an evaluation of the Python programming language with respect
to the attributes identified in Chapter 3 1n order to justify it as a good candidate
for an effective framework.

5.1 Code Aesthetics

Tt is a reasonably safe assumption that users of the framework would have a
good grasp of programming concepts, as XCS is 1tself deeply routed in Com-
puter Science. However it cannot be assumed that they have any experience
of the implementation language. Python is well-known for the ease at which
it can be learnt; it has a relatively compact syntax with few exceptions, short-
cuts or anomalies. Tt therefore makes it a good candidate for the framework
as code should be understandable, at least at a high-level, by an experienced
programmer who has at least a basic knowledge of Python.?

Python has several features that differentiate it from most high-level lan-
guages around today. Tt uses indentation to form blocks of code rather than
explicitly enclosing them in brackets as 1s the case for most C-like languages.
Similarly, expressions are separated using new lines rather than using a delimiter
such as a semi-colon. This has a big impact on the readability of Python code.
Not only does it remove the need to use these delimiting symbols in the code,

Thttp://www.python.org/doc/Introduction.html

21f a “basic knowledge” definition were needed a suitable bench mark would be the Python
Software Foundation’s tutorial (http://www.python.org/doc/2.4.1/tut/tut.html). A reason-
able requirement for the user would be an understanding of Chapters 3-5 for the basic syntax
and Chapter 9 for its object-oriented principles.

24

it also enforces the practice of indentation that is simply suggested in other
languages. However this implicit notation should also be treated with caution
as 1t also means that any mis-alignment of statements will cause the code to
behave in an unexpected way. For example, statements can “fall off” the end
of a conditional or looping block.

As with many interpreted languages, Python is dynamically typed and vari-
able declarations are implicit. Although an explicit declaration provides a guide
to the reader as to how to expect the variable to be used (e.g. numeric data
versus a string), it does take another step to removing syntax that is not directly
related to the algorithm being implemented.

The language has several useful features built into it that help make pro-
grams less verbose. Tt supports optional function arguments with default values
if no actual argument is supplied; automatic code documentation using a string
placed 1n the first line of a function definition; high-level data types such as lists,
tuples, sets and dictionaries; and concise list comprehension, making iterating
through lists simple and concise.

5.2 Object-Oriented Support

When programming in Python, the developer has a choice whether or not to
use the object oriented paradigm. Code can be written procedurally and can be
kept manageable in a sophisticated system of modules and packages. However,
as we have already 1dentified, it 1s often preferable to encapsulate data and
functionality into objects. Python’s object oriented support 1s comparable to
many other such languages, such as Java, but in a less strict way. The official
tutorial® states:

[C]lasses in Python do not put an absolute barrier between definition
and user, but rather rely on the politeness of the user not to “break
into the definition.”

As an example of this, Python has no explicit concept of private or public
data members within objects. However, by inserting two underscore characters
before a variable, the compiler prefixes the variable name with the class name.
This allows a class to define private variables but does not prevent an external
process access to the variable by prefixing the class name manually.

In other ways however, Python has object oriented support at a much deeper
level. All data types, including primitives, are objects and can be subclassed.
This includes classes themselves; enabling classes to be passed to, and return
from, methods. Python also supports multiple inheritance; allowing one class
to inherit data and functionality from more than one parent class.

Python does not, however, support Java-style interfaces that define rules for
the methods an object should contain. Such an interface was used in Butz’s
Java library to define how an object that represents an Environment should be
composed. However, it is possible to emulate the behaviour of an interface using
Python’s multiple inheritance with abstract classes that contain “empty” func-
tions. This does not, however, force the programmer to implement each method
as a true interface would, but provides some guidance to the programmer.

Shttp://www.python.org/doc/current /tut /nodel 1. html

25

In summary, we can see that the language provides a level of support that
would be conducive to producing a classifier system in the object oriented
paradigm. Tt is also possible to produce manageable and readable procedural
code if areas are unsuitable for an object oriented approach.

5.3 Execution Speed

Python is an interpreted (or scripted) language and, similarly to Java, it pro-
duces a platform-independent byte-code that is executed by a virtual machine.*
This means that Python programs can be run on any platform that has an
interpreter installed. However, this flexibility means that the execution speed
of Python is slow in comparison to languages such as Java and C. There are
several ways to address this problem:

Code Optimisation

As with all languages, optimisation in the use of code is a technique used to
increase performance. One of Python’s standard library items is the timeit
module. Tt contains functionality to accurately time the execution of pieces of
code. Using this, differing techniques can be analysed for speed and efficiency.

There are several sources for Python code optimisation available. Most cen-
tre around efficient methods for using loops and for string and list manipulation.
Lundh (2005) and van Rossum (2005) propose a variety of optimisation tech-
niques. For example, Python is written for fast list processing so it is often
expedient to handle data in lists rather than string or other representations.
Also, the map function can be used to apply a function to all items in a list.
This is often more efficient than using a control loop as the map function is writ-
ten in C. However, a trade-off exists between the speed gain and the readability
of code.

Python Compilers

Python “Just Tn Time” compilers such as Psyco® have been developed that
generates machine code at run-time rather than interpreting the Python code.
Psyco 1is designed to be as transparent as possible and its developers boast
anything from double to a hundred times the performance of Python to that
approaching (. However, to take full advantage of its increased execution speed
requires some changes to the source code that could, in theory, impact on the
readability of the code.

Modules in C

As with many high-level scripting languages, Python has the ability to use
components compiled in other languages. For the purposes of an XCS imple-
mentation, stable modules that are not being developed by the programmer

4 Although the byte-code is generated at Tun-time rather than pre-compiled as with Java
5See http:/ /psyco.sourceforge.net for more details

26

could be written and compiled in a language such as C. For example if a De-
veloper was seeking to improve certain processes in the GA| they could use C
modules for the rest of the XCS.

5.4 Conclusion

Having addressed these issues, we can see that Python is a good candidate for
an XCS implementation. However, it 18 not the only language of its type; many
of its advantages are exhibited by languages such as T.ua, Perl, Ruby and Tecl.
These last two languages in particular would also be suitable candidates for
an implementation. There is a good deal of debate between supporters of all
four languages along similar issues of the readability of code, purity of object
orientation support and execution speed. Tt is therefore difficult to conclude
with certainty that Python is the better of the three, however it does have a
couple of advantages over Ruby and Tecl with regards to an XCS implementation.

e Ruby is a not as well established as Python. Tt was first developed in 1995
in Japan, but has only become popular since around 2000. In terms of a
useful XCS library, it would seem wise to select a language with a more
established support and developer community.

e Ruby is a pure object oriented language. Although Python has deep object
oriented concepts, Ruby is a more pure approach in the sense that there
are no exceptions to the rules. For example the number 1 is an object
of type Fixnum. Tt is likely that these strict rules will lead to code that
contains unnecessarily convoluted (and unintuitive) code in some cases.

e Tcl was first developed for use as an embedded language and has been
adapted for use as a language in its own right. Tt therefore as a very
simplistic syntax making it easy to write small programs but can become
difficult for larger projects.

e Tcl does not have an intermediate byte-code. The code is therefore in-
terpreted each time it 18 run. Whereas Python stores the byte-code for a
faster execution on successive runs.

Although these are not reason in themselves for dismissing implementations in
such languages, 1t perhaps provides sufficient reason for choosing Python as the
language in which to implement an XCS library in this project.

27

Chapter 6

Top-level Design

This section describes, at a high level, an object-oriented design for the frame-
work and provides justification for these design decisions.

The main components of an XCS experiment were described by Butz &
Wilson (2000), as detailed in Chapter 2 (see also Figure 2.1 on page 8). Be-
tween them, these high-level components contain the environmental data and
mutators, reinforcement schedule and XCS algorithm required for an XCS ex-
periment;:

e An X-Classifier System: The action-selecting agent containing the per-
formance, reinforcement and discovery components.

e The Environment: Provide an interface between the classifier system
and the “real world”.

e The Reinforcement Program: Provides feedback in the form of reward
to the classifier system for actions it has done.

e A set of Sensors: The mechanisms that produce the environment percepts
(or sensor readings).

o A set of Actuators: The mechanisms that act on the environment.

These components make ideal concepts with which to base the main classes for
the framework. The following section introduces and justifies these proposed
classes and their interactions.

6.1 The Environment

The Environment should provide all information about the external environ-
ment (or the “real world”). Tn the concept, described by Butz & Wilson (2000)
the sensors and actuators that actually interact with the environment are part
of the classifier system. However, in this framework they will be part of this
Environment class. This was done to separate the XCS from the environment as
much as possible. Tn theory, to have been conceptually correct the classifier sys-
tem could have been designed to be instantiated with a list of function objects,
indexed numerically, that it would fire at the appropriate time. This, however,
seems to be overly elaborate just to maintain a more conceptual model. Tt would
also have made a significant breakaway from the existing XCS implementations

28

and could have formed a barrier to the framework’s use. Therefore the sensor
and actuator functionality is encapsulated in this Environment class.

The class’ interface will consist primarily of two public methods: one to
execute an action; the other to generate and return the current state of the
environment. In addition it will also need to expose some properties to provide
the classifier system with some initial information. These are the number of
actions that it is possible to execute (n) and the length of a percept (I.).

Because the environment and reinforcement program concepts are specific
to the particular environment they represent, this Environment class and the
Reinforcement Program class that follows are abstract. This means that they
would need to be made concrete (i.e. overridden with actual functionality) by
the user when implementing a specific environment into which the XCS will be
applied.

6.2 The Reinforcement Program

The Reinforcement Program class consists mainly of two definitions that provide
the classifier system with feedback on its performance. The first is a function
that returns a reward based on a proposed action and the current environment
state. The second element of the class is a public property that informs the
classifier system whether the current problem has been solved. Tn single-step
problems this will always return True. In multi-step problems this will depend
on whether specific conditions have been met to end the problem.

Specifying a separate class for the reinforcement program is another trade-
off that had to be made between keeping the framework conceptually similar to
its written description and not confusing the user by diverging from the norms
of other XCOS implementations. In this case it was decided to make a distinction
between the two classes knowing that, owing to Python’s multiple inheritance
mechanism, an aggregate class can be formed that would be equivalent to the
Environment classes defined in the implementations of Butz and Barry.

6.3 The X-Classifier System

The X-Classifier System’s main operation is to run through one cycle of the
XCS algorithm action selection (performance), reinforcement and discovery
as described in previous sections.

Tt differs conceptually from Butz & Wilson (2000)’s description in that its
main “run” method in fact only runs through one cycle reads a percept, sug-
gests an action and updates its rules depending on the result. The amount of
times it does this has been put into the control of a higher controlling object.
The reason for this alteration was to extract the less defined “termination crite-
ria” from the classifier system and reduce the likelihood that a user will need to
customise this component. Instead termination of the experiment is controlled
by a higher level component, (such as the Experiment class described in the next
section) that repeatedly asks the system to select an action.

29

6.4 The Experiment

In addition to these classes that were based on Butz’s description, a controlling
object is required that initialises each of these components, starts and terminates
the experiment after a number of problems/steps and facilitates reporting the
results. The class is not designed to be subclassed, but allows most of its settings
to be modified at run-time. To run an experiment at least some of the following
features are required:

e An XCS object

e An environment object and a reinforcement program
e Termination criteria

e System parameters

e Step, episode and experiment listeners

Of these features, only the environment and reinforcement program need to
be supplied for an experiment to run. The XCS object can also optionally be
supplied if the user has a modified algorithm to use. The termination criteria
is set to a default that ends the experiment after a number of steps. The
system parameters can be optionally specified to override the default values. Tn
addition, the Experiment class should allow users to register listener functions
to be fired either at the end of every step, every episode (on multi-step problems)
or at the end of each experiment.

The experiment also creates two reports that are generated, if requrested by
the user: the final classifier population and the performance statistics. These
are written to a file specified by the user.

Part 111

Implementation

31

Chapter 7

Environment &
Reinforcement Program

As a first step in implementing the framework, we decided to develop the
environment structure on which the XCS component would be based the
Environment and Reinforcement Program.

7.1 The Abstract Classes

The interface for the abstract Environment and ReinforcementProgram classes
are shown in Figure 7.1. Tt also shows how these classes can be used to form an
aggregate data type that can be used as both the environment and reinforcement
program.

The Python language does not provide explicit syntax for creating abstract
classes; as 1s the case in other languages such as Java. TInstead the classes
will simply be treated as though they are abstract and, in-keeping the Python
ethos, we will leave it to the politeness of the user not to “break into the
definition”. There is an exception type provided in Python for this use; the
NotImplementedError is placed in the function definitions of the abstract class.
If the user attempts to use any of the functions from the abstract class, this ex-
ception will be raised.

In addition to the EOP property, it was also decided that other information
would need to be exposed in order to produce statistics during the experiment.
Therefore the maximum number of steps expected, and the maximum and min-
imum rewards possible were added as properties to the ReinforcementProgram
class.

Another addition was a reset method to the Environment class. Tt was
decided to add this explicit reset mechanism mainly for multi-step problems in
order to allow the user to define exactly when the environment starts the next
problem. Although this is not as necessary in single step problems, where the
end of a problem occurs on each step, it was thought that implicit resetting
caused confusion in multi-step problems as it is not obvious when the reset
should occur.

Environment

ReinforcementProgram

n:int

L:int

getSituation() : list

executeAction(action: int) : void

reset() : void

EOP : boolean
max_steps : int
max_reward : float

min_reward : float

getReward(action: int) : float

BooleanMultiplexer

n:int

L:int

EOP : boolean
max_steps : int
max_reward : float
min_reward : float
no_address_bits : int
no_registers : int
situation : list

getSituation() : list
executeAction(action: int) : void
getReward(action: int) : float
reset() : void

generateSituation() : void

Figure 7.1: The BooleanMultiplexer class inherits from the Environment and

ReinforcementProgram classes to form an aggregate type.

7.2 Situation and Classifier Condition Format

A fundamental design decision needed to be made at this point; the format of
the message (o) that is passed to the classifier system. Traditionally this is a
binary string composed of the sensor readings. However, as described in Section
4.3 (page 21) there is currently a good deal of research into alternative encodings
for the percepts and the closely related classifier conditions.

An alternative to a string would be to use Python’s list type to represent
percepts and conditions. This has two main advantages over a string: lists in
Python are mutable, strings are not'; lists elements can be of any data type,
including other lists or tuples.

The immutability of strings mean that we would expect the cut and splicing
operations that take place in the (GA to be more memory intensive than if
they were performed on a mutable data type such as a list. Mutability would
also mean that the code generated to manipulate the conditions should be less
convoluted. During the crossover process, for example, the two conditions can
be switched directly allele-by-allele, rather than having to construct two new
conditions and reassign the classifier’s condition to them. However, the efficiency
savings of lists during the GA are also likely to cost time during other operations
such as iterations, counting and copying where the more complex data type has
a disadvantage.

The decision to use lists over strings was made primarily owing to the greater
advantages of having an extensible format for encoding and the potential for
clearer code, over the more marginal efficiency issues.?

7.3 Environment Types

Classifier system research generally centres around two main types of problem:
the single step “Boolean Multiplexer”; and the multi-step “Woods” problems.
For a detailed description of these problems see Appendix C. These are therefore
the two environments that need to be included as standard in the framework
and that will be used later on in the project for testing purposes (See Chapter
12).

As Figure 7.1 shows, the BooleanMultiplexer is inherited from the two
environmental abstract classes. Tt accordingly redefines the abstract methods
and properties with functionality and data for the Multiplexer problem. The
class has been designed to be as flexible as possible and can vary in size (6, 11,
20, etc) by supplying a value of k to the constructor. A random generator is
used to create situations when required and these are tested against an action
when getReward is called. A reward of 1000 is returned for the correct action
and 0 otherwise.? The max_reward and min_reward are therefore set to return

TTn other words, strings cannot be modified once they are created. Any mutating opera-
tions, such as concatenation) applied to the string result in the creation of a new string

2This decision was also helped by a discussion on the comp.lang.python newsgroup and
having taken into account much of the literature on the problems of string manipulation in
Python. The interested reader may like to read: http://www.python.org/moin/PythonSpeed/
PerformanceTips.

3There are variations on this reward schedule; we have implemented the most com-
mon. To modify the environment the user would simply have to further subclass the
BooleanMultiplexer and override the rewards.

Woods

types : dict

directions : dict
default_pattern : String
n: list

L:int

EOP : boolean
max_steps : int
max_reward : float
min_reward : float

maze : list
width : int
height : int

animat : tuple

getSituation() : list
executeAction(act: int) : void
getReward(act: int) : int

reset() : void
selectRandomLocation() : tuple
look(direction: int) : String
getCurrentObiject() : String
getObjectAt(location: tuple) : String

addObjectType(code: String,name: String,binary: list,reward: int,allowed: boolean) : void

Figure 7.2: The Woods class.

1000 and 0 respectively, and the EOP property always returns True.

Figure 7.2 is the Woods class, which is a more complex derivation of the
Environment and ReinforcementProgram classes. An object is instantiated
using a text file that specifies the layout of the maze to use. The types prop-
erty is a dictionary of object types that can appear in the maze and by default
contains the food and rocks of Woods2 (although more can be added using the
addType method. The animat tuple 1s used to keep track of the creature’s hori-
zontal and vertical position within the maze and when executelAction is called
its co-ordinates are modified accordingly. This movement has a few subtleties.
Firstly the maze pattern repeats indefinitely, so when the animat’s co-ordinates
must loop around the pattern in both directions. Secondly, the movement must
be checked against the type of object on the square to see if 1t is a legal move
(i.e. not a rock). Whether or not the animat can move onto an object type is
specified 1n the types dictionary. The types dictionary also contains the re-
ward and binary encoding for each object type that is used when the getReward
method is called and when building the percept list, respectively.

Both environments have test applications written alongside their definitions.
Tf the modules in which the respective classes are defined are run (as opposed
to being imported), an interactive test environment is started.* This allows the

4This follows a popular Python convention of including test code when a module is run

35

Woods Test Application

>> Please enter maze file location :

Animat: (4, 3)
Message: 0000000000001010

>> Enter action 0-7 [”"x” to Exit]:

mavze . txt

Figure 7.3: Output from the Woods test application.

user to control the environment in the same way as the XCS will be able to.
The user is simply fed a continuous stream of problems to solve and is prompted

for an action and informed of the reward due for the selected action.

instead of imported. We have tried to apply to this framework wherever possible.

36

Chapter 8

Procedural XCS

In order to produce an XCS implementation that was an accurate representation
of the algorithm described by Butz & Wilson (2000), a preliminary procedural
version was produced in Python.

8.1 Design

This module, named ProceduralXCS, contains the suite of functions described
in the aforementioned paper. For its environmental information it uses the
Environment and ReinforcementProgram classes defined in the previous chap-
ter. Tt also defines a Classifier class to encapsulate data relating to an indi-
vidual classifier as defined by Butz: condition (U, action A, prediction p, error i,
fitness f, experience exp, timestep of last GA s, average action set size as and
numerosity num. Also, for completeness it also contains k, the accuracy value.

This version 18, where possible, a direct translation of the described algorithm
into Python. However, some adaptions were necessary in order to produce this
working implementation. The remainder of this section documents and justifies
these adaptions.

Main Loop

As described in Section 6.3, the largest alteration made to the algorithm in this
implementation was the fact that control of the main loop has been moved to a
user-defined function. In practical terms, the RUN EXPERIMENT procedure
from the paper is implemented as the run method which contains the equivalent,
of lines 2-21 of the algorithm (the body of the main loop). For the suite to be
used, the user should write their own loop with their own termination criteria
and call the run method within it. Although this creates more work for the
user, 1t allows the module to be more easily customised with various termination
criteria.’
Also added to the main run method is a step count that is set to force the
end of a multi-step problem if it exceeds the maximum step count specified by
the environment. This mechanism simply prevents the system becoming stuck

TTn Chapter 10 (p. 53) a wrapper class is created that provides the functionality for this
outer loop.

in a loop during the initial phases of an experiment because it has not built up
enough rules.

Action Selection Strategies

Butz & Wilson (2000) differentiate between exploration and exploitation cycles
when choosing an action, the cycles are not treated differently during the re-
inforcement and discovery phases. This is the case in both Butz and Barry’s
implementations: the (GA is only run on exploration cycles, and reinforcement 1s
also only run on exploration cycles in single-step problems. In addition, it is not
usual for the action selection strategy to change between steps in a multi-step
problem as is the case in the described algorithm.

Tt was therefore necessary to add these clauses into the main loop. Also, the
choice of strategy has been removed from the selectAction function and moved
to the start of the cycle where it checks whether a new selection is required (i.e.
whether it is the start of a new problem).

Action Set Subsumption

A check for subsumption of a classifier by members of the Action Set is carried
out on each cycle in the algorithm. However, Butz and Wilson also comment,
that:

Besides checking if an offspring is subsumed by a parent, one could
also check if it is subsumed by other classifiers in the action set, or
even the population as a whole.

This was Wilson’s original proposal for subsumption and this is a technique
used in other implementations such as Barry’s JXCS. Therefore this check has
been added to the GA algorithm in the form of the actionSetSubsumeInsert
function which does this check before inserting a new classifier into the Popu-
lation. As this is not a standard part of the algorithm, a boolean parameter,
do_GA_subsume_insert, has been added to control whether it is used or not.

Classifier Condition Format

As discussed in Section 7.2 (page 34) the percept (o) received from the envi-
ronment, is encoded in a list of 1’s and 0’s (or True and False values which
have the same numerical value) indexed from left-to-right. Tn order to encode a
classifier’s condition, a wild card convention is required. For this it was logical
to use Python’s None data type. For example:

014144 — [False, True, None, True, None, None]
11##4#0 — [True, True, None, None, None, False]
H###H#H## — [None, None, None, None, None, None]

Global Variables

In order to facilitate the use of these procedures the following global variables
are defined in the module and initialised in a setup function:

mu = _params [mu’]
n — _params[’'n’]

i =0
while i < len (c¢l.C):

if random.random() < mu:

Figure 8.1: The values of the learning parameters are stored into local variables
of the same name before being used in the main algorithm. This simplifies the
reading of the code.

e _env: The environment object.
e _rp: The reinforcement program object.
e _t: The current timestep.

e _params: A dictionary containing the learning parameters required to run
the experiment.

e _record: A dictionary that records the data during a cycle of the main
loop.

The first four variables are present to give access to vital information from
any method. Tt is done in this way, rather than passing the values into the
sub-procedures as arguments, to minimise the code and to keep it close to
the algorithmic description which also gives these variables global scope. As
described later, the final variable is used as a means of keeping state between
function calls.

In order not to interfere with the algorithm within a procedure, all retrieval
of values from a dictionary is done in the first line (or lines) of code and stored
in a local variable (as shown in Figure 8.1). This means that the local variable
can be used in the body of the algorithm in the same way as was described
in the paper, rather than the less obvious code involved in retrieving the value
from the dictionary.

This convention was extended to procedures in which preliminary calcula-
tions were required before the body of the algorithm could be run. For exam-
ple, on line 8 of the GENERATE COVERING CLASSIFTER procedure: A, —
random action not present in [M]. Tn such cases it is difficult and often
inefficient to include the semantics in-line when implementing the statement
in a programming language. Where possible in the implementation, the value
of these statements has been moved to the beginning of a procedure. The fol-
lowing code segment, taken from the UPDATE SET procedure, is an example
of this. Tt would be inefficient, as well as distracting to the reader, to calculate
the total numerosity in its described l