

Citation for published version:
Day, C 2005, An ontological approach to song scheduling for an automated radio station. Computer Science
Technical Reports, no. CSBU-2005-10, Department of Computer Science, University of Bath.

Publication date:
2005

Link to publication

©The Author October 2005

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/161910293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/an-ontological-approach-to-song-scheduling-for-an-automated-radio-station(8ee2d9df-211d-4897-bc02-af5de3a2a07e).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: An ontological approach to song
scheduling for an automated radio station

Chris Day

Technical Report 2005-10 October 2005
ISSN 1740-9497

Copyright cOctober 2005 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

- 1 -

An ontological approach

to song scheduling for an

automated radio station

Chris Day

BSc (Hons) Computer Science

2005

- 2 -

An ontological approach to song

scheduling for an automated radio station

Submitted by Chris Day

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. The

Intellectual Property Rights of the products produced as part of the project belong

to the University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop). This

copy of the dissertation has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived

Declaration

This dissertation is submitted to the University of Bath in accordance with the

requirements of the degree of Batchelor of Science in the Department of

Computer Science. No portion of the work in this dissertation has been submitted

in support of an application for any other degree or qualification of this or any

other university or institution of learning. Except where specifically

acknowledged, it is the work of the author.

…………………………………………………………..

- 3 -

Abstract

In the competitive market of radio broadcasting it is imperative that radio stations

tailor their content to suit their target audience and this process of targeting starts

with the music policy. If a radio station gets the music wrong, then it risks

alienating its listeners. This process of developing a music policy is never an easy

process and what this project intends to do is implement a fully customisable song

recommender system making use of semantic web technology to specify the

relationship between songs and to allow the user to develop rules by which these

songs are recommended. This customisation must not come at a price, however,

and the system must continue to operate even if given bad or conflicting rules by

the administrator. Any system that is broadcast-critical must be seen to be reliable

whether it is for a national commercial station or a lowly student radio one.

- 4 -

Acknowledgements

Many thanks to my project supervisor Julian Padget for his support and guidance

towards the direction of technologies new. Thanks too to the entire committee at

URB (University Radio Bath) in particular David Mayo for imparting his intimate

knowledge of URB’s existing play-out system and finally a personal thanks to

Gareth Gwynn, Lyndsay Fenner and Diet Coke
TM

. Without them I would have

probably left the library in a straight-jacket.

- 5 -

Contents

1. Introduction ... 7

2. Literature Review.. 8

2.1. Introduction ...8

2.2. Agent Orientated Programming ..8

2.3. Introducing the semantic web ...11

2.4. Agents and the Semantic Web ..15

2.5. Introducing Ontologies and OWL...15

2.6. Related completed work..16

2.7. Summary ...17

3. Requirements Elicitation... 18

3.1. Methodology ...18

3.2. Music Metadata...18

3.3. System structure ..19

3.4. Song selector algorithm...20

3.5. Repetition of songs..21

3.6. Category inheritance ...22

3.7. Category limiting ..26

3.8. Coping with errors ..28

3.9. Scheduling features ...28

3.10. Summary ...29

4. Requirements Analysis.. 30

4.1. Recommending songs when rules clash..30

4.2. On-the-fly generation and song corruption ...31

4.3. Applying the user-rules to listener requests ..32

4.4. Ensuring category spread when prioritising the least recently played..........32

4.5. Music metadata versus system efficiency...32

4.6. Summary ...33

5. Design .. .34

5.1. Introduction ...34

5.2. Primary Design Stages ..34

5.3. The song selector algorithm..35

5.4. Limiting the set of songs for selection by category36

5.5. Recommending songs over time ...40

5.6. Enforcing the rules and guarding against failure ..43

5.7. Requesting Songs ..45

5.8. Scheduling features on time..46

6. Implementation ... 48

6.1. Overview...48

6.2. Metadata storage ...49

6.3. Database Platform Layer...51

- 6 -

6.4. Recommender Engine ...52

6.5. Category inference ..54

6.6. Summary ...58

7. Evaluation ... 59

7.1. Overview...59

7.2. Enqueue and dequeue test ...59

7.3. Weighted random category test: ‘How random is random’60

7.4. Enqueue, dequeue, queue monitoring and concurrency test61

7.5. Finding the parents and the children of a category61

7.6. Full-system test of stability ...62

8. Conclusion .. 66

8.1. Appraisal ...66

8.2. Extension and future work ..66

9. Bibliography.. 69

A. Requirements Appendix.. 72

B. Code Appendix ... 74

B1 recommendNextSong() of class JBDbase. ...74

B2 costToCat() of class JBDbase...75

B3 enQueue() of class JBDbase...76

B4 recommenderEngine (whole class)...77

B5 catReader (whole class)..78

C. Category permutations Appendix ... 80

D. Test Dump Appendix .. 81

- 7 -

1. Introduction

In July 2004, the Student Broadcast Network announced that it was going into

liquidation leaving student radio stations across the country without a music

satellite service and no way to broadcast relevant content outside of presenter

hours. Student radio, being an industry run by volunteers, do not have the

resources of commercial radio stations to broadcast twenty-four hours a day and

so with the demise of SBN another solution had to be sought. Many national

commercial radio stations expressed an interest in filling the void, but student

radio was not keen on the idea. The problem lies with station identity, for student

radio is a niche market where its main selling point is that it can be different. In

order to be different, it needs to have its own distinctive on-air identity, so many

student radio stations have gone down the route of designing their own play-out

computers to automate their on-air output whenever there are no volunteers

available to do a show. URB (University Radio Bath) also opted for this, and its

computer URB non-stop does an adequate job.

The problem is URB non-stop was never built with extendibility in mind, and as

the pressures of the modern world demand integration, student radio is in danger

of falling behind. This dissertation sets out to realise an autonomous song

recommender system whereby the musical content of the radio station can be

tailored using advanced categorisation of songs. The scope of this project is to

create a flexible yet safe system that extracts the metadata from songs, and based

upon this data makes decisions on the songs it plays. The system will be built with

maintainability in mind, to separate fully the distinct parts, namely the decision-

making part and the actual music player part. This prototype represents the base-

level of the ultimate goal, to create a completely autonomous radio station.

With system integration in mind, the first part of the report will focus on the area

of agent-orientated design and in particular its impact on the Semantic Web.

- 8 -

2. Literature Review

2.1. Introduction

The emphasis of this literature review will initially be split into two. First of all,

the area of agent design will be explored, and then the Semantic Web will be

explored. By Section 2.4, both of these concepts will be linked together in

conjunction with additional work on Ontologies and existing projects related to

this one.

2.2. Agent Orientated Programming

The term “Agent”, in many people’s eyes, is used rather loosely in Computer

Science. This is largely down to the fact that concepts such as this are very hard to

categorise absolutely, and in fact real world concepts like “Agents” only ever

yield fuzzy categories (Franklin & Graesser 1996). As such, there can be no

formal definitions as would be seen in a mathematical proof, only debatable

descriptions. This is the closest I have seen to a clear description of autonomous

agents:

“An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, over time, in pursuit of its own agenda

and so as to effect what it senses in the future.” – (Franklin & Graesser, 1996)

This statement was derived after analysis of several different definitions of agents.

The important thing that distinguishes agents from ordinary computer programs is

the idea of it pursuing its own agenda. That is to say, when a computer program

calls a function, the commands within the function will execute precisely. When a

computer program calls an agent to do something, the agent will decide whether it

is in its interest to act on the request or not. This concept becomes clearer to

understand if you take inspiration from biological theory, and make the analogy

that the adaptive and autonomous quality of agents is comparable to living

organisms (Steels, 1995). Indeed it could be said that humans are in fact just very

complicated agents, and an object a thermostat is in fact just a simple one

(Franklin & Graesser, 1996).

Agents in software have derived much inspiration from the Artificial Intelligence

and Object Orientation communities. In terms of data encapsulation and message

passing to execute methods, software agents can be said to have evolved from

objects and so the mechanisms to achieve this are very similar. This is where the

parallels end, however, since in order to be an agent, a role and an agenda is

required. Object Orientation is simply a more structured approach to procedural

programming and objects only ever respond to messages. To achieve autonomy

and hence achieve basic agent-like behaviour, mechanisms must be added to

analyse incoming messages and process them by first considering the internal

state of the agent object (Guessoum & Briot, 1999).

- 9 -

The author has introduced the notion of agents acting in a role (much like a

computer function) but only in accordance with its own agenda (unlike a

computer function). There is one important feature of agents that needs to be

emphasised. That is the agent’s ability not only to carry actions that affects an

environment, but also to sense the environment and to react to it accordingly. The

term environment can apply to anything, physical or conceptual, that affects and is

affected by the agent to some degree. Taking the previous example of a

thermostat, the room in which the thermostat is located would be the environment.

The thermostat senses the environment, and from that data decides whether to turn

on the heating. Environments do not need to have a physical existence, indeed

they do not need to only have one agent. In many environments there exist

multiple agents performing different roles. To expand the example of a room, the

thermostat may be one agent, the electric door may be controlled by another. This

adds a new level of complication, not only must an agent sense an environment

and react, but the agent may also need to know what other agents are doing. Let us

assume the electric door agent keeps the door permanently open, in this case the

thermostat may choose, given this data, to turn off the heating so as not to waste

energy heating up an open room. This is a trivial example, but a non-trivial

example could include a soccer match. The game is the environment, and the

players and referee are the agents. This represents a complex example of a multi-

agent system. There are agents on your team working with you towards a common

goal; this is collaborative behaviour. There are also agents working together

against you; this is adversarial behaviour (Stone, 1998). The other major factors

that make this example non-trivial is as follows:

• You must communicate with other agents effectively since, at the high-

level at least, you share a common goal with your team

• Accurate data on the environment is not complete as you cannot track the

movements of all 21 players and the ball exactly at every instant. In real

life soccer players can’t see exactly what is going on so make decisions

based on partial data.

• The game moves in real-time.

(List adapted from Stone, 1998)

There is a vast amount of debate regarding the scope and definition of agents.

Nwana (Nwana, 1996) presents a slightly different set of views. Nwana

attempts to condense down the wide ranging field of agents into 3 basic

preconditions to agent-hood: They are the ability to learn, cooperate, and to be

autonomous. To be an agent, it must have at least two of these properties. To

be a smart agent, it must have all three. Although Nwana does not necessarily

contradict Steels (1995), the approach taken to determine what is an agent is

different. Steels concentrated on agents ‘having their own agenda’ whereas

Nwana approaches the subject by studying an object’s specific behaviour to

determine agent-hood. The common ground in this debate is that agents do not

execute commands blindly like a procedure or robot. An agent ‘thinks’

whenever a request is received and decides what to do, if anything. What is

also agreed is that agents always must fulfil a role within a system or

- 10 -

environment. This is the reason why, when designing an agent-based system, a

different technique should be followed.

In order to design a database, an entity relationship diagram is needed. This

abstract model is then converted into something concrete (like tables in a

database). The same can be applied to an agent-based system. One of the

defining characteristics of agents and their relationship with each other and the

system is the role the agent has. A role has associated with it two attributes:

The permissions and rights and the responsibility (Wooldridge et al., 1999).

The permissions and rights outline what the agent is able to do and conversely

what it is not able to do; the agent’s scope. The responsibility outlines what

the agent should do in terms of functionality; the agent’s domain. By creating

a “role schemata”, the design models are expanded to include the interaction

protocols to show how the different roles interact. The combination of these is

the mainstay of the analysis. From the analysis an agent design model

consisting of the following can be created:

• The Agent Model: To document the various agent types used in the

system when developing it. An agent type is best thought of as a set of

agent roles.

• The Services Model: The equivalent model in Object Orientated

programming would be a model representing methods. The subtle

difference for agents is that agent ‘services’ are unavailable explicitly,

but instead the services can be requested.

• The Acquaintance Model: Documents what messages can be sent

between different agent types. This only covers potential

communication links, not ‘which messages will be sent and when’.

This model is used to identify potential information bottlenecks and to

evaluate how coupled a system is; how each agent is reliant on each

other.

(List adapted from Wooldridge et al., 1999)

This provides an abstract design model of the agent system, but the limitations of

this method is that the abstract model produced will not be sufficient to produce a

system. The agent-orientated design model, as proposed, will rigorously detail

what each agent should do and how it communicates. What the design fails to

address is system-specific design models. In essence, the design describes what

the agents should do, but not precisely how to do it. After producing the agent

design abstract model, what then needs to be done is to use traditional software

engineering techniques to convert these high-level concepts into lower-level

abstract models. This techniques will depend on the programming languages used

and the hardware associated.

My research into software agents is relevant to my project because the system I

attempting to development could potentially be implemented in an agent-

orientated fashion. The system is comprised of many parts, all requiring

interaction. The interaction element is, of course, not the deciding factor, but the

main engine of the project is the song recommender object. This object must act

- 11 -

autonomously and continue to recommend songs to be played by the playout

object, and the object must respond to song requests. A simple robot would

respond to requests to play them regardless, but this is not sufficient. The request

may be inadvertently be breaking the rules, for example, if the song has already

been played within 60 minutes. In this instance, the song request object would

send a message to the song recommender asking if song x could be played. The

song recommender will then decide whether the request is in keeping with the

rules and will accept or reject the request. I would interpret this as the song

recommender ‘having its own agenda’ as defined by Steels (1995); Guessoum &

Briot (1996). Taking inspiration from what the agent community can offer to my

final project design could be beneficial in designing a maintainable and robust

system.

2.3. Introducing the semantic web

2.3.1. Definition

One aspect of agent orientated design that I failed to mention in any great depth is

the mechanism that software agents use to communicate with each other. The

interactions between robots and agents in multi-agent systems are key factors in

the success of a system. In order for communication between agents to be

productive, they must share a common language. This does not mean that the

language for each agent must be identical, but as a subset of both agents’

languages must be this ‘common language’ where the vocabulary and the

semantics are the same. Developers of the World Wide Web have realised the

massive problem that this represents. Here I introduce the Semantic Web.

The Semantic Web has been cited as the next generation of the World Wide Web

by Berners-Lee and others (2001). Berners-Lee et al. (1992) first introduced the

World Wide Web as the ‘information universe’. W3, as it is also called, has meant

the Web can stretch seamlessly from personal notes on a local workstation to

mainframe databases on the other side of the world (Berners-Lee et al., 1992).

With W3, using simple text searches, anyone connected via a telephone line could

access any information from around the world. The flexibility and diversity of W3

is both the greatest asset and the greatest weakness. HyperText Markup Language

was designed so that the same information could be formatted in many ways, but

with agents and embedded systems ever evolving, so is the need for autonomous

systems. The major problem is HTML and most of the Web’s content today is that

the data presented is designed for humans to read (Costello et al., 1999), not for

computer programs to manipulate meaningfully (Berners-Lee et al. 2001). The

Semantic Web aims to rectify this problem by adding meaning to web pages.

Whereas somebody’s name would be often seen on the top of a W3 page, in a

Semantic Web page there would be a specific tag to say ‘Authored By’. W3

attempted to improve its semantics by the introduction of HTML 2.0 (Berners-Lee

& Connolly, 1995; cited by Luke et al., 1996) which included REL, REV and

CLASS subtags, and the META tags. These mechanisms were rather weak and

were really only used for document meta-information such as keywords. The

mechanism was hindered by the fact that relationships could only ever be formed

- 12 -

by creating hyperlinks (Luke at el, 1996). Simply extending HTML to include

semantics was not going to satisfy the vision of the Semantic Web. A new markup

language had to be created.

2.3.2. Introducing XML and RDF

Extensible Markup Language, abbreviated to XML, provides the flexibility

required to begin to define semantics of a web document. With XML, it is easy to

create a custom tag set which means instead on relying on the rather inflexible

HTML 2.0 META tags, tags can be created that can help identify the information

useful for search and retrieval of the document (Usdin & Graham, 1998). Indeed

the HTML language tags are fixed, meaning that domain-specific data like a

patient ID for a hospital application could not categorised (Costello et al., 1999).

It is important to note, however, that the emphasis in the sentence ‘XML can help

identify information for search and retrieval’ (Usdin & Graham, 1998), should be

on the ‘help identify’. XML does not provide semantics to the document, but is a

useful data definition language upon which semantic assertions can be made.

What needs to be built upon this is a data description language that not only

allows the web page to declare what data it contains, but also the relationships

between them. Decker et al. (2000) back up this view and clarify that XML

“address only document structure”. Decker et al. (2000) goes on to suggest that

Resource Description Framework (Klyne & Carroll, 2004), abbreviated to RDF, is

a suitable language to layer on top of XML. RDF has a web-orientated emphasis

so will often reference other web files, but RDF is not specific to any type of

resource. When addressing resources, RDF uses Universal Resource Identificators

(URI) which should not be confused with Universal Resource Locator (URL)

used by web pages to find other pages. While RDF does use XML to exchange

descriptions of Web resources, the resources being described can be of any type,

including XML and non-XML resources (Brickley & Guha, 2000) like sound

files. In the area of multimedia files, the primary domain for my project, the non-

specific flexibility offered by the RDF/XML combination is a positive point.

What RDF achieves is a data model by adopting a triple structure as illustrated in

Figure 1.0.

Figure 2.0: Structure of RDF statements

Adapted from Klyne & Carroll (2004)

An example of an RDF triple would be:

…

<#chris> <#age> 20

…

The subject in this case is <#chris>, the predicate is <#age> and the object is ‘20’.

Adding this triple would mean that an agent processing the .rdf file would know

- 13 -

that ‘chris’ has an ‘age’ property of 20. <#chris> and <#age> would have to be in

this case defined elsewhere in the document, but 20 is a literal. By having a series

of triples, further information can be elicited.

…

<#chris> <#age> 20

<#chris> <#wrote> <http://www.bath.ac.uk/~cs2ccd/PROJECT>

…

Now not only is the fact that <#chris> is 20 years old, but also wrote the afore

mentioned page. The more triples are adding to the document, the more semantics

agents will be able to derive from it. The use of RDF/XML layering has recently

received a W3C (The World Wide Web Consortium) Recommendation, however

this does not mean that the method is agreed by all. Carroll & Stickler (2004) are

highly critical of the current use of RDF/XML layering. Carroll & Stickler (2004)

present an alternative XML syntactic structure to RDF (entitled ‘TRiX’). Many of

syntactical problems have been fixed after a major clean-up of the syntax by the

W3C and it is possible to have good interoperability there is still the issue that

RDF is hard to validate when embedded in XML documents (Carroll & Stickler,

2004). On balance, Carroll & Stickler (2004) recognise that RDF is a concise

language and some of the syntactical features make it ideal when constructing

Ontologies. Haustein & Pleumann (2003) propose that the concept of Semantic

Web itself is not without problems. At present, the Semantic Web is still in the

concept stage, and there is not a sufficient base of RDF-annotated pages. This

means the current benefits to smaller institutions or individuals, who can ill-afford

the additional work, are minimal. These people are required for the Semantic Web

project to reach its ‘critical mass’ (Haustein & Plaumann, 2003). Although not

offering a solution to the problem highlighted by Haustein & Plaumann (2003),

Grau (2004) has put forward a possible simplification to the current Semantic

Web architecture to solve some of the layering problems highlighted by Carroll &

Stickler (2004). The proposed simplification will mean better layering, especially

when incorporating Ontology-based languages such as OWL (described later).

Instead of the Ontology language sharing a common syntax with RDF and merely

offering a semantic extension, the Ontology language will extend both the syntax

and semantics of RDF. The result would be reduced syntactic expressiveness of

RDF but would mean the architecture would be better designed (Grau, 2004).

Further research on Ontological languages will be conducted later.

2.3.3. A multimedia-specific alternative to RDF: MPEG-7

Multimedia and related information on W3 is vast, but much akin to the problem

with web pages; most of the information is not readily machine readable. As such,

research has been conducted into how multimedia can fit into the Semantic Web. I

have already explored RDF which is the general descriptor of resources, but there

is a much more multimedia-orientated metadata language being developed; this is

MPEG-7. The goals of MPEG-7 is vastly different to the audiovisual encoding

standards MPEG-1,2 and 3, since MPEG-7 is not a new method for compression

but a mechanism for extracting and exchanging features and metadata associated

- 14 -

with multimedia files (Crysandt & Wellhausen, 2003). MPEG-7 is not just a re-

write of the already common ID3-tags found in many MPEG-1 layer 3 music

files. Aside from the expected metadata such as artist, song title, genre, and the

like, MPEG-7 supports data to do with the actual sound wave itself such as Audio

Spectrum Spread (used to differentiate between tone-like and noise-like sounds),

Audio Spectrum Centroid (determines whether the power spectrum is dominated

by low or high frequencies) and the like (Crysandt & Wellhausen, 2003). Going

into any detail about the nature of these calculations is beyond the scope of this

literature review. This data can be used to automatically elicit information about

the waveform without having to use advanced sound evaluation techniques since

this data will be encoded automatically when the audio is recorded (see figure

1.1).

Figure 2.1: Automatic feature extraction of MPEG-7

(adapted from Crysandt & Wellhausen, 2003)

Further adaptations to the MPEG-7 framework will also include beat-analysis

which would mean automatic DJ programs could seamlessly mix audio clips

together with minimal effort. MPEG-7 is designed to be the complete content

management solution and is likely to become a standard in the near future. As you

can see from the diagram, the MPEG-7 standard extends from an XML syntax

much like RDF described before. In order for MPEG-7 to be considered, however,

more research will be needed to establish the practicalities of using MPEG-7.

2.3.4. Problems with the semantic web

In this subsection, there are two general method to represent multimedia metadata;

RDF and MPEG-7. The common element in both is the basic XML syntax

system. In this subsection about the Semantic Web, there has been no discussion

on Database Management Systems and their role. As XML technology is being

developed, so is the concept of XML databases. It is important to note that XML

- 15 -

databases are not being developed to replace Database Management Systems

(DBMS). XML and database technology are more complementary than

competitive (Costello et al., 1999). XML and databases are trying to achieve

different things entirely. Databases, although vital to the Web as we know it,

could not make up the basis of the Semantic Web. The ethos of the Semantic Web

is for data to be simple and to be portable. XML provides a data structure that is

semi-structured (Costello et al., 1999) whereas DBMS systems are organized

around rigid relational tables. For this reason, databases and other rigid-structured

data models could never be used in the World Wide Web, this would be the

equivalent of enforcing the rule that no hyperlink is allowed to be ‘broken’ or link

to a page that does not exist. Such a rule for something as diverse as the Web can

not be enforceable.

2.4. Agents and the Semantic Web

In this literature review, there have been two topics of discussion, Agents and the

Semantic Web. Agents were discussed in relation to the potential structure and

method of the code, whereas the Semantic Web is very much in the domain of

being able to distribute information. These topics are by no means mutually

exclusive. In Section 1.2 of this review, the problem of agent vocabulary was

discussed. In order for agents to collaborate with each other to monitor and

modify the environment, they must share a common vocabulary. Chen et al.

(2003), while developing the TAGA (Travel Agent Game in Agentcities) system

strongly advocates the use of Semantic Web technologies in the agent developed.

The main reason cited was that it this use ‘improves interoperability between

agents’. In other words, the ability to exchange and use information is easier. It

makes sense, since what the Semantic Web is trying to achieve (namely a world-

wide network of machine readable data) with technologies such as RDF, is

precisely what the agent community requires. RDF is a good fact-stating

language, but RDF alone is not sufficient to produce sufficient logical support for

agents. RDF is good at describing resources, like music files, but what it lacks is

the ability to declare classes and specific logical combinations of these classes

such as union and intersection; this is where OWL is introduced (Horrocks et al.,

2003).

2.5. Introducing Ontologies and OWL

OWL (Bechofer et al., 2004) stands for Ontology Web Language, to understand

how OWL differs from RDF, the concept of Ontologies must first be explored. In

philosophy, the word ontology means the study of things that exist. This generic

and all-encompassing term has been borrowed by computer science to mean the

structure of agreed knowledge or semantics within some domain or environment

(Chandrasekhan et al., 1999; Spyns et al., 2002). This definition can be easily

applied to the notion the Semantic Web. RDF and other ‘fact-stating’ languages

are not sufficient for something as complicated the World Wide Web. The Web,

due to the diversity of users and publishers, will have countless RDF classes

which essentially mean the same thing semantically but would be processed as

separate entities by a computer agent. The purpose of OWL, as an ontology

- 16 -

defining language, would be to bring together all of these classes that are

syntactically dissimilar, but semantically identical. In the same way the Semantic

Web can not rely on ‘fact-stating’ languages alone, neither can the field of agent

software. For example, music recommender and play out software, RDF (or

MPEG-7 either can be used interchangeably) would be sufficient to describe

songs, their artist, titles, genres, categories and any other meta-data associated

with them. In a song recommender software situation, however, knowing what

genre each song is, is simply not sufficient. The software may have rules such as

‘do not play the same song twice in the same hour’, or ‘in this hour do not play

songs from category A’. Such statements can not be expressed as facts; they are

rules. Rules, and their evaluation, require a Description Logic Language in order

to assert facts. OWL-Lite and OWL-DL (two variants of OWL that are described

soon) can be viewed as expressive Description Logics (Horrocks et al., 2003).

Hendler (2001) advocates the union of the Semantic Web technology and agent-

orientated design stating one of the reasons being the ease of communication

between agents since they share a common language (in the shared ontology).

As stated on the W3C Recommendation (Bechofer et al., 2004), there are three

distinct variants of OWL. They are called OWL-Lite, OWL-DL and OWL-Full.

Lite is a subset of DL which in turn is a subset of Full. The choice of the variant to

use really depends on the application of the ontology, as this choice like many

others is a trade-off. OWL-Full offers the greatest compatibility with the RDF

layer as it allows free mixing of OWL with RDF schema, and like RDF schema,

does not enforce the strict separation of classes (Bechofer et al., 2004). On the

hand, OWL-DL may put a constraint on the use of RDF (namely disjointness of

classes, properties, individuals and data values) but the adding benefit is the

OWL-DL can be reasoned using inference engines. Unlike OWL-Full, OWL-DL

is decidable and the same applies to OWL-Lite (where further constraints are

applied). For the purposes of agent software, OWL-Full would be inappropriate,

since agents require Ontologies to be reasonable.

OWL is very much ‘work-in-progress’, and as such the support for automatically

parsing OWL (vital for agents) is still under development. At present there are

only two reasoning engines for OWL, RACER (Haarslev & Moeller, 2003) and

JENA (Carroll et al., 2003). RACER is the engine used in ‘Protégé’, one of main

applications that can be used to develop Ontologies. More research is required to

provide better support for agent software.

2.6. Related completed work

There are many projects in the same domain as this one, but the one that is most

relevant to build upon was implemented by Papadakis & Douligeris (2002).

Papadakis & Douigeris design a system that automatically extracted the IDE tags

from MPEG 1 layer 3 files and created a metadata database in XML. This project

recognised the problem surrounding data about multimedia files, drawing Napster

and Gnutella as prime examples as their systems “relied on the filenames of the

mp3s”. As a digital library, it works well, but the only criticism would be that the

use solely of XML and not the other Semantic Web languages would limit what

- 17 -

could be done. Indeed, in terms of this project, use of XML would not be

sufficient.

2.7. Summary

This literature review has attempted to research the domain of agent design and

the Semantic Web with an emphasis on Ontologies, the linking factor between the

two concepts.

In agent design, the most important aspect for agents is that they are not simply

dumb robots (or objects in the case of object orientated programming). Agents

receive messages to methods, but instead of executing the method verbatim, the

agent will analyse the request according to its internal state (Guessoum & Briot,

1999). In short Agents have their own agenda and will act autonomously.

Another key factor regarding agents was the ability to communicate between

agents; collaborative behaviour. The review found that having a common

language between the agents and the environment was the only way meaningful

interaction can take place. It was established that the Semantic Web can help in

this process. The Semantic Web being the attempt to make the web, machine

understandable; the technologies of which are also usable for agents. The

conceptual overlap between agents and the Semantic Web is large. RDF (fact

declaring language for generic resources) and MPEG-7 (fact declaring language

specific to multimedia files) were also compared and contrasted.

The final area addressed by this review was the area of Ontologies. A new

Ontological language (OWL) designed to layer over RDF as part of the semantic

web is still in the research phase, but support is becoming more available to parse

it. Ontologies are needed to add more semantic meaning to the fact-declaring

languages by adding notions such as union and intersection between classes. More

research into the practicalities of OWL is needed as well a more in-depth analysis

of OWL as a language.

- 18 -

3. Requirements Elicitation

3.1. Methodology

In order to understand how to proceed in designing the system, it was important

first to understand the problem. The application of this system was to a very

specific environment, namely a radio station. Throughout this section University

Radio Bath (URB) will be used the main case-study and all the requirements and

analysis was based on discussions that took place with former station manager

David Mayo, the expert user. Mayo is very used to dealing with music play-out

systems and is one of the IT technicians in charge of URB’s existing automated

play-out software, URB Non-Stop, which was originally developed by Mark

Chappell. URB Non-Stop was the second main focus of this process, as its faults

and successes drove the analysis of the problem forward. The elicitation process is

divided in sub-sections, each covering an area of the system.

3.2. Music Metadata

3.2.1. What is stored

Music metadata was the crux of this problem as song recommendations are based

upon this information and so there needed to enough information about the songs

in order to carry this out. From the expert user’s report, it was indicated that the

following will need to be stored by the system about each song:

• The artist

• The title

• The album

• The category

• The year of release

• The length

It is worth noting that ‘The Category’ attribute is not the same as genre, this

important distinction is discussed later in this section.

3.2.2. Where it is stored

The question came down to a basic choice of storing the metadata in the same

location as the data or storing it elsewhere. Generally it is much better not to

separate the metadata and the data because of the risk of losing synchronisation.

This became a prudent question when considering the problem of file moving or

renaming as this means the file (essentially the ‘data’) is no longer addressable by

the same reference. If the metadata is located is another place, this change in

reference may not be updated, however if the metadata is stored actually within

the file itself there is no danger of this happening. It was clear that the safest way

to preserve the integrity of the data was to make sure that the metadata is stored at

- 19 -

the source. The integrity of this metadata is important to prevent songs being

recommended to play when actually they no longer exist, which could have

serious implications for the play-out engine which may not be expecting to have

to deal with an unplayable file.

3.2.3. How the existing system addresses this

URB non-stop, the existing system, adopts the method of storing the files in

directories meaning that conceptually the metadata is in indeed stored in the same

location as the file. The artist and title of the song is taken from the filename in

the form: artist – title.mp3 and the file lengths are taken by extracting tags

from the mp3 files themselves. URB non-stop does not use a database to store a

table of songs so although this method is rather crude, it does enforce referential

integrity of the data.

3.2.4. Requirements elicited

• The music meta data must contain:

o The artist

o The title

o The album

o The category

o The year of release

o The length

• The music metadata used for song decision making must be stored within

the music data file to preserve referential integrity

3.3. System structure

3.3.1. Combining the components

One thing that the expert user’s report made reference to is the requirement to

ensure that there is autonomy between the different modules. This meant there

must be a distinct separation between them and that they are not reliant on each

other. The rationale behind this requirement was because if they can operate

independently and only share enough data for all the modules to carry out their

tasks, then the system could be designed so that the different modules are

physically on different machines thus creating a certain level of redundancy. This

means that if one module fails, the other components will be able to cope

independently. An additional supporting argument for this requirement would be

the ease at which modules could be substituted for better ones. For example, if the

system is comprised of autonomous modules and the song recommender engine is

working well but the radio station would like to upgrade the play-out engine, this

process is made much easier because the only thing that the administrator would

need to consider is whether the new play-out engine’s interaction with the shared

data structure mirrors that of the old play-out engine. The recommender engine

would not have to be touched at all.

- 20 -

This distinct separation requirement brought with it a series of new requirements,

for if the core data was being shared between distinct modules then the data both

needed to have persistence (in other words whenever the data is accessed and

changed by one module, this change is automatically reflected in the other

modules’ view of the data) and needed to allow concurrency (as many modules

may access the data at the same time, the mechanism by which this is done needs

to work). A failure to do either would result in the system being in a serious

asynchronous state.

3.3.2. Requirements elicited

• Must have a distinct abstraction between the recommender engine, the

request engine and the playout simulator

• The song data must be shared available to all modules

• The song data must be persistent

• The song data must allow concurrency

3.4. Song selector algorithm

3.4.1. Deterministic or random

This question was raised because David Mayo stated that it is undesirable to have

a song scheduler that displays completely predictable behaviour. The justification

behind this statement was because some listeners would listen at regular times

during the week and if the scheduler were to be too predictable then the same

songs would end up getting played at the same time period. The chances of this

occurring are unlikely, since it would need exactly the right number of songs to

produce this effect; however it was significant enough for consideration.

Therefore it was sensible to stipulate that although parts of the recommender

engine may operate deterministically, there should at least be some random

element even if it is a weighted random.

3.4.2. Ensuring it is real-time

The efficiency of the song recommender engine only came into question really if

the required computational time is longer than the songs actually being played.

This was one requirement that was non-negotiable as failure to satisfy it would

mean the play-out engine would have periods of time where there was nothing

being played. For radio stations whose broadcasting licences depend on them

providing a reliable service, this matter was of utmost importance.

3.4.3. Taking requests from internet

One of the best ways of tailoring the radio station music output to suit the

audience is to allow the listener to request a song. This is a standard facility

- 21 -

offered by radio stations when there is a live presenter in the studio, but it would

much enhance the credibility of the station if this service was also offered outside

of live presenter hours. There should be a limiting factor to this as there is a

potential that one listener may be to hi-jack the radio station and use it as their

own personal jukebox. This would have the potential of alienating other listeners,

therefore it was only sensible to impose some sort of upper limit beyond which no

other requests will be accepted.

3.4.4. How the existing system addresses song selection

URB non-stop has an entirely random approach to selecting songs from a given

category. Regardless of any attributes, as long as the song belongs to the category

that is due to play next then each song has an equal chance of getting played.

Non-stop also has no problem with its recommender engine taking longer than the

length of songs as the non-stop works out the entire hour’s play-list beforehand.

The final facility, requests from the internet, is not possible using the URB non-

stop system for the simple reason that the entire hour’s play-list is predetermined

so there is no dynamic way of adding songs that the listeners want to hear. This

gave rise to another requirement, namely that songs should be recommended on a

by-need basis and not to generate an hour-long playlist to allow the requests to be

played as quickly as possible.

3.4.5. Requirements elicited

• The song selection process must not be entirely deterministic, there must

be a random element to it

• The song recommender engine must operate in realtime and be able to

recommend songs faster than it takes to play them

• The system shall be able to take listener requests as long as the number of

requests has not exceeded the request limit

• The system shall recommend songs on a by-need basis only

3.5. Repetition of songs

3.5.1. Ensuring variety

One of the highest sources of complaints received at URB regards the repetition

of songs. Part of this problem is due to the play-list system adopted and this is

discussed later, but also an important factor is way songs played are recorded and

how this information is factored in when making a song recommendation. David

Mayo suggested that there should be a period of time after a song has been played

where that song is banned and not considered for recommendation. Mayo had

stated that this requirement was a high priority not only because it may annoy

listeners but also may violate the copyright agreement (PPL, 2005) that URB has

in place for its web broadcasting. Further to the rule that prevents songs being

repeated, it was suggested that songs that have been least recently played should

get priority when a song needs to be recommended. The reasoning behind this

- 22 -

notion is because the content is then much likely to be varied which makes for a

better listening experience.

3.5.2. How the existing system addresses this

URB Non-stop has scheduling rules in place to ensure that songs are never played

twice in a given hour period. These rules are also extended to cover not only

individual songs being played twice, but also artists as well. This extended rule is

just as important as the rule that covers individual songs as not considering this

eventuality at all could lead to several songs by the same artist being played in a

row. This assertion was not strictly true, as non-stop does not apply this rule over

a time period; rather it applies it over the last fifteen songs played. This achieves

the goal it was intended to do, however it is much more intuitive for the user to

think in terms of time not number of songs since songs come in quite varying

lengths. The longest songs can be six minutes whereas the shortest songs can be

as short as one and a half minutes long. On the strength of this it was decided that

the user-defined repetition threshold should be defined only in terms of time, not

number of songs.

3.5.3. Requirements elicited

• Songs must not be repeated before the minimum period set by user has

elapsed

• Songs by the same artist must not be repeated before the same minimum

period has elapsed

• The minimum repetition value must be set based on time rather than

number of songs played.

• When recommending songs, priority should be given to songs less recently

played

3.6. Category inheritance

3.6.1. One size does not fit all

The traditional view that songs should be categorised into genres is unfortunately

an over-simplification of the situation. Radio stations do not only want to decide

the type of music they play based solely on genre, because other factors such as

how recent or how popular/mainstream the music is are just as important. This all

means that songs can and often will belong to more than one category. From the

discussions with the expert user, it was agreed that the following categories will

be required:

• Rock

• Dance

• HipHop

• ChillOut

• DnB

- 23 -

• SoulnRnB

• Pop

• Alternative

• Recent

• Classics

It might have been enough to say that songs should be allowed to belong to more

than one category, but the major objection to this was that this structure-less

approach could lead to logical contradictions such as a song being both a ‘Recent’

and a ‘Classic’, and it is such contradictions that are inherent in the design of

URB Non-Stop, an existing system which serves the same purpose as this project.

3.6.2. How the existing system addresses this

URB non-stop’s method to categorising songs is to use the physical directories the

files are stored in. Each ‘category’ is explicitly defined in text-files by stating

which directories belong to which category. Each directory could feed into more

than one category, and each category could have more than one directory feeding

into it, so it is a many-to-many relationship. This is a rather convoluted way of

saying that each song can belong to more than one category. There is one major

flaw with this method; however, as in order to be in more than one category, the

song needs to be in more than one directory, thus meaning the song must be

duplicated to achieve this.

Figure 3.1: The music directory structure of URB non-stop

- 24 -

This naturally is rather wasteful of disk space and has the unfortunate side effect

of being unable to determine the categories for any given song. It can only

determine the list of songs, given a category not vice-versa. There were some

merit in the method, however, as the way categories are mapped to directories

provided some clue as to how to approach the category problem especially

considering the idea that ‘Recent’ is sub-category of all genre categories. Another

way to achieve the effect of songs belonging to more than one category is to

create an inheritance hierarchy whereby some categories are children of others

and this is discussed next.

3.6.3. Mixing categories like colours

In much the same way that every shade of colour is made up from primary

colours, mixing two or three categories can create every specific sub-set of song

categories. If instead of saying colours are mixed, they are said to inherit from the

primary colours then from this a possible methodology was developed. Songs, as

discussed previously, had a stipulation that they must belong to one category;

however this one category will can be in turn related through inheritance to other

categories. Using an ever more complicated structure, any number of genre/era

cross-sections could be developed.

In order to propose a schema for song categories, the ‘primary colours’ of the

structure had to first be defined. It is important to note that this structure was

proposed for this specific environment only, for if this system were deployed in

another radio station then the structure of categories will most likely be different,

however the whole point of developing such a schema is to allow a level of

customisation. In sub-section 2.6.1 there was a list of categories, which need to be

structured into categories of a similar type. It was proposed to split it up as

follows:

Genres:

• Rock

• Dance

• HipHop

• ChillOut

• DnB

• SoulnRnB

Eras:

• Recent

• Classics

Descriptive Categories:

• Pop

- 25 -

• Alternative

It is important to note that Genres, Eras and Descriptive categories are not in

themselves categories; in fact they are in fact types of category. The reason it was

decided to define them as part of the schema was to allow a better control of how

categories can be combined, otherwise the number of combinations would not

only be very large and confusing, but many would not make sense (such as a

category ‘ChillOutDnB’, the combination of two generally mutually exclusive

genres as ChillOut is very slow music and Drum and Bass is extremely high-

paced music). The categories that belong to the category types ‘genres’,

‘descriptive categories’ and ‘eras’ can be thought of as the ‘primary colours’.

Combining two categories from two of the category types can create ‘Secondary

colours’, and ‘tertiary colours’ are created by mixing two ‘secondary colours’.

The production rules of this process were summarised like so:

Secondary Colours:

GenreEra -> Genre + Era (e.g. RockRecent -> Rock + Recent)
DescatEra -> Descat + Era (e.g. PopRecent -> Pop + Recent)
GenreDescat -> Genre + Descat (e.g. RockPop -> Rock + Pop)

Tertiary Colours:

GenreDescatEra -> GenreEra + DescatEra
GenreDescatEra -> GenreDescat + DescatEra
GenreDescatEra -> GenreEra + GenreDescat

It is important to point that the use of ‘+’ is purely notational only and although its

use implies that this is a union operation, it is in fact not, in fact it is the inter-

section of the two parents as illustrated by this venn diagram.

Figure 3.2: Venn diagram showing how primary categories can be mixed

- 26 -

Note in the production rules defined previously how tertiary colours are produced,

as it would appear to be much simpler to say that GenreDescatEra -> Genre + Era

+ Descat, but this was not an advisable way to produce it. The reason being that

just having this structure would lose the transitivity of the category inheritance in

that the tertiary colour ‘RockPopRecent’ should inherit from not only the primary

categories ‘Rock’, ‘Pop’ and ‘Recent’ but also the secondary categories

‘RockPop’, ‘PopRecent’ and ‘RockPop’. To achieve this, there should be direct

inheritance from the secondary categories so that inheritance from the primaries is

achieved transitively.

When applying these production rules to the previous defined set of categories

elicited from the expert user, it was found that there were 62 different

permutations including the original primary colour categories. This was derived

manually and the full set can be found in the appendix C.

The purpose behind this abstraction was to provide a flexible structure to

categorise songs without the danger of allowing the user too much freedom to let

songs belong to multiple categories, which may be logically incompatible.

3.6.4. Requirements elicited

• Each song must belong to one category

• Categories should be able to be defined as sub-categories or one or more

other categories

• Songs which belong to a category x must also belong to a category y

where y is a parent of x; the songs would also belong to category z where z

is the parent of y.

• Categories with no parents shall be defined as primary categories

• Categories that transitively inherit from three primary categories should

directly inherit from categories with two primary categories as parents

• Given a category the system must be able to determine the children and

parents

3.7. Category limiting

- 27 -

3.7.1. Structured scheduling

The main advantage with having the notion of categories and sub-categories is to

allow a much more ordered structure to the scheduling process. Radio stations

need to tailor their content to their target audience, and the music they play is

integral to this targeting. The targeting differences do not just occur between

stations, even within a station the music targeting will need to vary for different

times of the day. Using BBC Radio 1 as a case study, the music they play during

the daytime is vastly different to the music they play in the evening. The daytime

is generally mainstream, recent and popular music that could be found in any high

street record shop whereas evening and night-time shows tend to focus on music

that is up-and-coming or just obscure. URB follows much the same ethos in that

during daytime it is recent and mainstream, and at night the music is either more

obscure or it focuses on one genre. Focussing on the daytime music policy of a

radio station elicits another important aspect, the station’s play-lists. A ‘play-list’

is normally a restricted list of songs that are new releases and the station normally

plays these songs many more times than it plays other categories. This is because

these are the songs that the listeners are most likely to want to hear and record

companies are very keen to push for more airplay in order to promote their new

releases. This means that the system must be able to limit not only what categories

that songs can get recommended from, but also how many from each. It is

important to ensure that even though play-list tracks may get played more, they

still must obey the repetition requirements. In addition to this, it was also vital to

certify that there is always an even spread of categories so that there is enough

variety within the rigid scheduling structure. It is not a good scheduling technique

to recommend songs all from one category and then moving on to another

category.

3.7.2. How the existing system addresses this

Analysing the system URB Non-stop, it too has adopted a category-based

scheduling method. The system uses hour-file schemas to define what each hour

of scheduling should be structured as. These schemas explicitly state one by one

the order of categories from which a song will be chosen. It simply is a file

structured like so:

Recent
Classics
Rock
Recent
Classics
Rock
…

This method satisfies the requirements albeit in a slightly implicit fashion. The

categories will be evenly spread, there will be a limited number from each

category and certain categories will not be played simply. Although

computationally this makes the recommender engine easier to develop, the extra

burden on the user and the potential for human error is an unacceptable

- 28 -

compromise. It also makes the system vulnerable to serious errors, as David Mayo

reported that if someone, for instance, renamed the ‘Rock’ directory to ‘Guitars’

without updating the hour file schemas, the system would think that the category

‘Rock’ had no songs in it and then would be unable to schedule any songs.

3.7.3. Requirements Elicited

• The system must allow the user to specify which categories are allowed to

be used to recommend a song from

• The system must allow the user to restrict the number of songs from each

category that can be played

• The categories the songs belong to should be as evenly spread as possible

3.8. Coping with errors

3.8.1. Mismatching preferences

As with any scheduler system that relies on a human user setting the preferences,

there is the potential for the user to provide rules that limit what is allowed to be

played to the extent that the system will fail to recommend a song. In the worse

case scenario the rules specified by the user may be logically disjoint leaving no

songs available for selection.

3.8.2. Play-out engine dealing with corrupt files

Earlier, the mismatch between metadata and data was said to be a potential cause

for the play-out engine attempting to play a song, which no longer exists or at

least not in the same place. This problem of attempting to play a file that is

unplayable extends to the possibility that the file itself is corrupt. These reasons

led to an important requirement that the play-out software should not assume that

every file it is scheduled to play is playable and that it should deal with the

eventuality of unplayable files.

3.8.3. Requirements elicited

• Must be robust and must continue to operate even if given bad or

conflicting rules by the admin user

• The play-out engine should not assume that every song it is scheduled to

play will actually be able to be played so should be able to deal with them

should they arise.

3.9. Scheduling features

3.9.1. Background

A radio station play-out system is not just about playing songs, often there are

other features that need to be played as well, including the news on the hour and

- 29 -

the adverts. The reason features were needed to be considered when designing the

scheduler is because entities such as the news are fixed features meaning that the

time it is due to play is non-negotiable. The feature must be played at the time

stated and so this should dictate what songs should be allowed before the said

feature is played. There is another type of feature, a so-called ‘soft’ feature

whereby the timing of the feature is indicative only. Using URB as a case study,

the adverts that are played twenty minutes past the hour and twenty minutes to the

hour do not have to be played exactly on time, the timings are only indicative only

and there is no real need to get them perfect. This is different to the news as

listeners would expect the news to be on time, and so in that respect the timings

must be exact.

3.9.2. How the existing system addresses this

The system non-stop has the news facility hard-coded into its core programming

meaning that if the news slots change (which can happen for example in time of

war); the actual non-stop code would have to be modified. A further problem with

non-stop is that it does not consider the length of songs before the news at all.

Indeed in David Mayo’s report there was one incident where the song “Liam

Lynch – United States of Whatever” was scheduled to play three seconds before

the news, and so played those three seconds and cut to the news. This type of

incident can be very frustrating to the listener and would make the radio station

sound very unprofessional therefore it is wise to reduce the impact of this where

possible. To do this, all the new system needs to do is consider the length of songs

it is going to play before the news and make sure that it attempts to schedule a

song of appropriate length so minimise or eliminate the cutting of songs.

3.9.3. Requirements elicited

• Must ensure features are played at approximately on time (if a soft feature)

or exactly on time (if a fixed feature)

3.10. Summary

These are the raw requirements elicited by analysing the existing system URB

non-stop and interviewing the expert user David Mayo. In the next section the

requirements will be analysed to validate them and to resolve any conflicts.

- 30 -

4. Requirements Analysis

The core requirements were elicited but it was then important to ensure that there

were no contradictions and if there were how they could be mitigated. This

section is all about how the clashing requirements can be mitigated by considering

their relative priorities and this mitigation gave rise to further requirements.

4.1. Recommending songs when rules clash

As was found in the elicitation process, there was a potential conflict between

following the user defined rules and ensuring that a song always get played as it

might be the case that the user rules do not match causing there to be no songs

being valid. These requirements were potentially in direct discord so it was the

case of evaluating the priority of both requirements. Following the rules was an

important requirement, but ultimately it was these very rules being in error that

was causing this conflict and furthermore the importance of playing a song was of

highest priority. It was clear that in case of bad rules causing no songs being

recommended, there should be a back up plan so that the system recommends a

song even if this song violates one or many of the user defined rules.

In order to know which rules to undo first, it was best to define a rules hierarchy

in order of precedence.

Figure 4.0: Rule precedence hierarchy

As can be seen from Figure 4.0, the lowest precedence is finding matches by time

to fill a gap before a fixed feature. This was a relatively unimportant rule as this

limit is only applied to make the output sound more professional. After this there

were the category rules, firstly the rules that limited the categories by numbers

and then the rule that just limited the categories regardless of numbers. Finally in

the hierarchy was the rule that prevented songs being repeated, this was the last

- 31 -

rule to get broken but the chances of reaching that far were slim. The repetition

limit rule would only get violated if the total song length of the database were less

than the repetition limit set by user. It was proposed to edit the requirement so that

a song should always be played with the additional statement that said “even if the

choice does not quite match with the user’s preferences”. In addition to this there

was a new requirement that rules should be undone in accordance with the rules

precedence hierarchy.

4.1.1. Requirements additions/edits

• Must be robust and must continue to operate even if given bad or

conflicting rules by the admin user even if the choices go against some of

the user’s preferences

• Where the rules are such that no song will be recommended, the rules shall

be undone in accordance with the rules precedence hierarchy.

4.2. On-the-fly generation and song corruption

It was found in the requirement elicitation that it was necessary to calculate and

recommend songs on the fly in order to allow listeners to request songs,

unfortunately this requirement is slightly in conflict with the safeguards against

unplayable songs. This is because the time between the play-out engine reporting

that the song it was due to play is corrupt and the recommender engine

recommending another song could be of the order of a several seconds which for a

radio station was unacceptable. What was proposed was to introduce new

requirements which created a songs-to-play queue system. Instead of the

recommender engine just requesting one song ahead, it was decided that the

recommender engine should monitor a queue and recommend as many songs as is

required to make the songs-to-play queue of sufficient length to ensure that even

if one or two of the songs are indeed corrupt, there are enough songs in the queue

to absorb the pressure. This queue would be no less than six minutes long in terms

of combined song length and no less than three items long so that it is almost

certain that if the play-out engine is given a corrupt file, there will always be

another file next in the queue that can be played in lieu. Where the queue fails to

satisfy both criteria, songs will be recommended until they both hold true. This

design drew parallels with the existing system which predetermines an hour’s

worth of songs in a playlist, the only difference was that this design would only

ever predetermine approximately six minutes worth of songs thus allowing

requests to be scheduled, albeit not immediately. The fact that requests would not

be played immediately was an acceptable trade-off, since there would always be a

delay even if a live presenter took the request.

4.2.1. Requirements additions/edits

• Whenever a song is requested, it shall be added to a songs-to-play queue.

• The songs-to-play queue should never be less than six minutes in

combined song length and no less then three items long.

- 32 -

• Where the songs-to-play queue fails to meet the minimum song/item

length criteria, additional songs will be requested until both criteria are

met.

4.3. Applying the user-rules to listener requests

One of the first rules of DJ-ing in clubs is never play a request if it sounds out of

place compared to the rest of the music being played, and this rule applies to radio

stations as well. Listeners are often unaware of the radio stations intentions and

even on a specialist hard trance and dance show, people will still request “Queen

– We will rock you” which would sound horrendously out of place. It was

important to note that the system would want to satisfy the listener’s request but

only if it makes sense in the context. Therefore it was only sensible to stipulate an

edit to the listener request requirement by adding the caveat that this request

would only be accepted if it obeyed the user-defined rules.

4.3.1. Requirements additions/edits

• The system shall be able to take listener requests as long as the number of

requests has not exceeded the request limit and also if this request obeys

the user-defined rules.

4.4. Ensuring category spread when prioritising the

least recently played

It was found that there may be a minor conflict between the requirements that

state that priority should be given to those songs that have been least recently

played and that songs should be played from a even spread of categories. The

reason there may be a conflict was due to the fact that the all the least recently

played songs may belong to one category and therefore giving priority to these

songs would violate the even spread of categories restriction. The resolution of

this conflict laid in the fact that the system should only give priority to these

songs, not definitely play these songs first. On the matter of category spreading,

however, it was much more important to ensure a good variety within the

boundaries of the rules as both the casual short-term listener and the long-term

listener would get bored if music of the same ilk were to be played consecutively.

There was no need to change any requirements but this conflict had to be

considered in the design stage.

4.5. Music metadata versus system efficiency

This was only a potential conflict but one worth mentioning since the method of

music metadata could have a massive effect on the speed and efficiency of the

song recommendation process. This is because all song decisions are based on the

music metadata meaning that all files will need to be accessed. It cannot be

overemphasised how important it is to ensure that songs are recommended in a

time that has no risk of causing a play-out bottleneck where there are no songs in

- 33 -

the songs-to-play queue because the process cannot keep pace with the actual

song play-out itself. Therefore if the requirement that all song decisions should

utilise the song metadata stored in the datafile compromises the requirement for a

real-time system, then the implementation must be mitigated in favour of the real-

time requirement. At this stage there was no need to edit or add to the

requirements list on this matter, but this had to be considered in later sections of

this document.

4.6. Summary

There is now a full set of requirement from which to being to design a system.

Section 3 and section 4 have revealed that the common theme it seems is the

notion that the system must not fail and if errors are detected then the system must

fail safe. This applies also to the efficiency of the system which again is of highest

priority. A list of requirements can be found in the Appendix A.

- 34 -

5. Design

5.1. Introduction

The challenges when designing a play-out system like this is how to resolve the

sometimes conflicting rules that may arise. This problem can be simplified by

making sure the system is designed using an evolutionary life-cycle model as this

imitates how rules are naturally layered on top of each other. The requirements

analysis set the ‘last played’ attribute as one of the primary metrics by which a

song should be selected from a subset of songs and it is the user defined rules that

determine which songs are in the subset or not. This proposed method of selecting

from subsets draws many parallels with applying filters to a database table and

provides the rationale behind using an evolutionary model, since the more filter

criteria this system provides the more structured the song selection will be (see

sub-section 2.7.1, structured scheduling).

5.1.1. System overview

From the requirements, it was made clear that a modular approach to the system

design was needed. In many ways the ethos of the system was to develop a small-

scale multi-system whereby the different components communicate and display

autonomous qualities. Indeed, this project was introduced as a part of the future of

the fully-automated radio station and agent orientated would take a centre stage in

this whole. Moving on from the system as a whole, the first part of the design will

focus on how the system was designed from the ground up.

5.2. Primary Design Stages

Using an evolutionary approach, the design of the recommender engine can now

conceptually be split into two distinct algorithms:

1. Given an arbitrary set of songs (or the super-set of all songs) select a song
for recommendation

2. Given the user defined rules, select a set of songs

Algorithm one represents the fundamental algorithm which was the basis of the

recommender engine. It required as an input a set of songs, but for the first stages

of design the input was assumed to be, for simplicity’s sake, the set of all songs.

Algorithm two added structure to how songs are recommended and later on in the

design process fed into algorithm one. Having algorithm one on its own would

create a ‘free for all’ situation, but by combining it with algorithm two the design

allowed the administrator user greater customisation and limitation of songs thus

tailoring the output to suit the radio station’s output (see sub-section 2.7.1,

structured scheduling).

- 35 -

Figure 5.0: Basic flow diagram showing the relationship between the components

The above flow diagram shows the different modules that make up the system,

and one by one will be addressed by this design section. Firstly the song selector

algorithm will be discussed followed by the song set filter algorithm and how it is

layered on top.

5.3. The song selector algorithm

As mentioned before, the purpose of this part of the design is to select a song from

a given set therefore this is the base of the recommender engine. The fundamental

assumption is that this algorithm is the set of songs given contains only songs

allowed by the rules, there will be no checking that songs are of the right category

or when the songs were played. The grounding behind this design decision was

requirement 7.1 that states:

“The system must be robust and must continue to operate even if given bad rules

by the admin user even if the choices are slightly mismatched from user's desires”.

This was important, because the system could not assume that the user rules will

be consistent, indeed they may even be logically disjoint (see sub-section 3.1, rule

clashing) and in that instance the input set for this algorithm would be the empty

set. Even at this early stage this failure had to be considered, therefore this

algorithm must not check whether the input set of songs obey the rules, because as

an emergency measure when encountering an empty input set, the recommender

- 36 -

engine may choose to run this algorithm with the super-set (all songs) so that a

song will get chosen.

5.3.1. Deterministic versus random behaviour

Given that all songs in the input set are assumed as valid, there are no ‘wrong

answers’ when deciding which to choose, which is why a simple algorithm that

selects a random song from this set would work. Indeed, requirement 3.1 which

demands that all song decisions should not be entirely deterministic would appear

to support a random approach. It would have been a simple method to implement,

but it would not have taken into account requirement 4.4 which stipulates that

priority be given to songs played the longest time ago. The solution of the conflict

between requirement 3.1 and requirement 4.4 laid in the knowledge that the

method of selecting a song from a set forms only part of the entire

recommendation process. If the process by which category rules are applied to the

filtered set, which is fed to the song selector algorithm, has some random element

to it, then requirement 3.1 need not be applied to this algorithm specifically. Since

one the primary metric to decide between songs was the attribute ‘last played’, the

best design of this algorithm was to order the set of songs by that attribute and

select the song which has been played the longest time ago. This approach then

takes into account requirement 3.1 and does not violate requirement 4.4 although

a new design requirement had to be established to ensure that the set limiting

methods, carried out at the higher level, had to have a randomising element to

them.

In summary, this algorithm given a set of songs as an input selected the song least

recently played, it then updated its ‘last played’ attribute and added the song to the

list of songs to be played next (the songs-to-play queue).

5.4. Limiting the set of songs for selection by category

This was the first waypoint of the design process, and at this point the

recommender engine would be able to decide on songs to play, albeit in a

simplistic way because the song selector algorithm was only able to use the

universal set of all songs. This was really in essence more of a glorified queue

than a song recommender system. The next thing to address was the actual set that

is fed into the song selector algorithm, for instead of selecting a song based on all

the songs, the song should be selected based on a set that represents the valid

songs (i.e. songs that obey the user’s rules).

5.4.1. Song queues and sub-queues

Until now, the list from which a song would be recommended has been described

as a set but the proposed song selector algorithm conceptually changed this. In

effect, the input set of songs to the algorithm was no longer a set of songs; it

operated more like a queue of songs. Furthermore due to user rules (such as

limiting categories) there would be in fact any number of sub-queues (see figure

5.1) in much the same way as there were any number of sub-sets.

- 37 -

Figure 5.1: Showing how song queues and sub-queues are related

It is worth noting that in this case the ‘Queue of valid songs’ means the queue of

songs (regardless of category) that have not been more recently played than the

user-defined repetition threshold (see sub-section 2.5, repetition of songs). Not

repeating songs within the time limit was the primary rule of this system and in

fact by adding this filter rule to the queue before the song selection algorithm was

the second waypoint of the project.

5.4.2. Filtering song sets by categories

As shown in figure 5.1, many different sub-queues can be generated by applying

different constraints on the allowed songs. It is important to note that these sub-

queues are not ‘generated’ in the physical sense, they are only generated

conceptually. If the universal queue of all songs had {A, B, C}, by applying a

constraint a sub-queue e.g. {A, C} may be created. In the second waypoint, the

constraint was to filter out all songs played within the repetition time threshold

but this did not add structure to the recommending process, which is why the next

stage was to incorporate filters by category.

As demonstrated in figure 5.1, sub-queues overlap and this was explained in the

requirements analysis where the structure of categories was discussed (see sub-

section 2.6, category inheritance). If a category x was stated as being the sub-

category of categories y and z, then a song belonging to x would also belong to y

and z by transitive inheritance. This presented significant design implications and

- 38 -

came down to the choice of whether it was better to filter out or to limit to songs

belonging to a list of categories. Suppose this was the structure of the categories:

Figure 5.2: An example category structure

As requirement 6.4 states, the system must be able to limit the content to one

category. Taking figure 5.2 as an example scenario, how would the system be able

to satisfy this requirement given the two methods of applying category restrictions

on the song set. The filter out proposal would require both categories ‘Recent’ and

‘Classics’ to be filtered out, however the problem when this is done is that

‘RockRecent’ is a child category of ‘Recent’ so that would also be filtered out, the

same applies to ‘RockClassics’. This would create a situation whereby songs that

had ‘Rock’ as its category would be included in the set but not songs that were

‘RockRecent’ or ‘RockClassics’ which is a conceptual falsehood since these

songs have an equal right to be played. In stark contrast, it would be simple to

apply the limit to proposal to this scenario by limiting it to ‘Rock’ and through

inheritance both ‘RockRecent’ and ‘RockClassics’ would be also allowed but not

‘Classics’ and ‘Recent’. It was clear from this that the limit to method provided a

better solution, if anything because it was a more positive rule. By stipulating

certain categories are allowed rather than disallowed, there was a better chance of

maximising the number of valid songs in the set and there is no chance that all

categories get banned leading to an empty set of songs.

At this point, the design had achieved the next objective and in fact the system

was now able to select the least recently played song from a set of songs restricted

by a list of valid categories and upper limit for the ‘last played’ attribute. It was

not enough, however, just to limit the categories as there had to be some way of

keeping track of which categories were being played and to ensure the right

number of songs from each category gets played.

5.4.3. Limiting each category

An idea of how to do this was obtained from URB Non-Stop. The administrator

user would explicitly specify the categories to attempt to recommend songs from.

A typical file would read:

Recent
Rock
Recent
Recent
HipHop
Recent

- 39 -

Recent
Dance
Recent
Recent
…

The recommender engine would recommend a song from a set limited to ‘Recent’

followed one from ‘Rock’ (noting that from the previous section ‘Rock’ = ‘Rock’

& ‘RockRecent’…) and so on. Although this was the best way making sure of an

even spread of categories (requirement 6.3), the major drawbacks were the

inflexibility of the structure leading to an inability to cope when the

recommendation engine fails, for instance when an empty set of songs is produced

when applying the user rules. A better way was to specify how many of each

category was allowed to be played and assign a quota to each category. This

method had the advantage of giving the administrator user full flexibility to allow

some categories (by giving them a non-zero quota) and to ban others (by giving

them a zero quota). Every time a song is recommended, the quota of the category

it belongs is decremented. If a given quota is decremented to zero, songs from that

category would no longer be considered.

5.4.4. Limiting categories by explicit or implicit quotas

Given that there was great scope for categories to be very inter-connected, it

would cumbersome to force the user to specify a quota for each category. It made

more sense instead to allow some category quotas to be derived from their

parents. If a song belongs to category x where x is a sub-category of y, the song

also must belong to category y, as this is the inheritance structure that was agreed

as a requirement. As this inheritance applies to categories, it was fair to suggest

that it also applied to category quotas. In figure 5.2, a small part of the category

family tree was shown. It is sensible to set quotas for the primary categories

(‘Recent’, ‘Rock’ and ‘Classics’), but for the sub-categories

(‘RockRecent’,’RockClassics’) the user is less likely to have a specific preference

for how many are played from these categories. In this situation, not setting a

quota for the sub-categories would be most appropriate. Despite there not being

an explicit quota, there still needed to be a way of limiting the number of songs

that can be recommended from these categories. It was therefore decided that such

categories should implicitly inherit a quota from its parents. For instance, out of

all valid songs, a ‘RockRecent’ song may be selected but ‘RockRecent’ has no

quota, however its parents ‘Rock’ and ‘Recent’ both do therefore the selection is

valid. Since both are parents, both explicit quotas have an equal right to be

decremented by one (to cost the song to that category) but it would be

inappropriate to decrement both, therefore it was decided that the one with the

highest quota will be decremented. It is important to note that explicit quotas have

a higher precedence than implicit quotas which means that if a category has an

explicit quota, it would decrement from this and not even consider the quotas of

the parents, even if they do have higher quotas. This is called the song costing

algorithm (see Appendix B) and is the same algorithm used to determine which

quota should be decremented (or ‘costed to’) whenever a listener requests a song

(as per requirement 3.3).

- 40 -

It was now clear the recommender engine could now be customised to only

categories with positive quotas (and their children) then when a song is selected

by the song selection algorithm, the songs is then ‘costed’ to a quota (see

Appendix B).

5.5. Recommending songs over time

The recommender engine at this point was doing much of what was required as

the system had a fair way of selecting songs from song sets based on the last

played attribute, and a way of customising the selection set by category in a

quantitive manner. The next thing the design needed to address was the fact that

recommending songs is not an isolated process, the behaviour over time of the

recommender is just as important. Requirement 6.3 instructs the system to

recommend songs from an even spread of categories, but the first set

customisation algorithm (see Appendix B in no way explicitly enforced this. It

enforced the limitation of categories as per requirement 6.2 by using the quota

structure but there is no structure by which categories are explicitly selected.

5.5.1. Applying the design to the playlist scenario

The reason why requirement 6.3 was created was with the play-list scenario in

mind. Many radio stations have a play-list which is a list of songs (normally new

releases) with the intention of playing these songs fairly frequently. This poses a

scheduling problem in that the list of songs is small but the frequency of play (the

‘rotation’ of songs) is high. The problem this caused is because the rotation is

very high; every song in the play-list category will have a ‘last played’ attribute

that is fairly recent. Compare this to songs in category ‘Rock’, and it is likely that

songs in this category will have a ‘last played’ attribute that is less recent. Song

selection is based on the union of all sets of categories that have a positive quota,

so assuming that ‘Rock’ has a quota of 5 and ‘Play-list’ a quota of 20, then each

time a song is recommended it will be from a set that is the union of ‘Rock’ and

‘Playlist’. The problem with this lies in the fact highlighted earlier that the least

recently played song from ‘Playlist’ is probably still going to be more recently

played than the most recently played song from ‘Rock’. Thinking about this in

terms of queues, when ordering the union of the two sets, it is expected that 5

rocks songs will be recommended followed by 20 playlist (see Figure 5.3 below).

- 41 -

Figure 5.3: Showing an uneven spread of scheduled categories

This violated the requirement that over time categories should be scheduled with

an even spread. The flaw in this design highlighted the need to create an

additional algorithm that explicitly decides on a category first, then apply a song

set filter based on this one category which then is fed into the song selector

algorithm.

5.5.2. Adopting a top-down approach instead of bottom-up

Essentially what the system was doing at this point was using the quotas to find

out which categories (and their children) are allowed, and then applying this as set

filter to the song set which is then fed in the song selector algorithm. Although the

correct quota is decremented when a song is selected and is ‘costed’ to a category

thus ensuring that categories will not get over-played, there is however no control

over spread of category scheduling as highlighted by the scenario described in the

sub-section 4.5.1. This approach is best described as a bottom-up approach, as

first of all the set of all allowed songs is found, then a song is selected and finally

it is costed upwards to a category in order to decrement that category’s quota.

This approach would work very well when dealing with listener requests, as the

listener will request a song and this needs to be costed to a category but when the

recommender engine is trying to ensure an even spread of categories this approach

fails.

It was decided that in fact what was needed was a top-down approach. Top-down

means that the recommender engine will select a category first and then applies

the set filter based on that category (and by inheritance its children also) only. A

- 42 -

song will be then selected from this set and the quota of the category that formed

the filter criteria will then be decremented. The crucial difference with the top-

down approach is that the category is explicitly stated when applying the set filter,

meaning in order to ensure an even spread of categories some mechanism is

needed that selects a category.

5.5.3. Selecting a category for the top-down method

Referring back to sub-section 4.3 where the song selector algorithm was

discussed, a design requirement was set stating that set limiting methods should

have a random element to them in order to prevent the system from displaying

entirely deterministic behaviour. The category selection algorithm was the most

appropriate place to introduce this, as non-deterministic behaviour was required to

achieve an even spread. It could not be decided entirely randomly however; this

would also not make an even distribution over time as category quotas are

generally not equal. For instane, if there five ‘Rock’ and twenty ‘Playlist’ quotas

and the decision were made randomly each time, then statistically speaking

‘Rock’ is more likely to run out first, but for an even spread this should not be the

case. Instead, it was decided that the selection would not just be random, but a

weighted random based on quota remaining. Taking the previous scenario, the

sum of all the quotas is evaluated, then you generate a random number between

one and the sum value inclusive. The category selected will depend on this

number, if twenty or below ‘Playlist’ would be selected, if more than twenty then

‘Rock’ would be selected. That was an outline of the random category algorithm

that was decided, and this was extended to cater for an arbitrary number of valid

categories. When a category is selected, and the set filter is applied using this

category as a criteria (the other rules that have already been described) it produces

a subset from which the song least recently played can be selected by the song

selector algorithm. It is important to note that the category quota that gets

decremented is decided directly by the category selection algorithm and not by the

attribute data of the song. It is possible that the song selected could be ‘costed’ to

any number of different category quotas, but it should always be costed to the

parent category that filtered the song set. Figure 5.4 (below) illustrates the

problem faced.

Figure 5.4: Segment of the inheritance tree showing both categories having quotas

In this case, ‘Rock’ (in bold, on figure 5.4) has been selected as the category, but a

song of category ‘RockPop’ has been selected. This is allowed by the rules

- 43 -

because using inheritance, ‘RockPop’ is a specialised form of ‘Rock’. The

situation is confused by the fact that the user has chosen to give explicit quotas to

both ‘Rock’ and ‘RockPop’. Which one of the categories should have its quota

decremented? If the recommender was evaluating in a bottom-up manner,

‘RockPop’ would have its quota decremented and indeed if this very song were

requested by the listener via the request engine then this would have happened,

however unlike the request engine, the recommender engine uses the top-down

approach. This has the consequence of the ‘Rock’ quota being decremented

because it was the set of ‘Rock’that was selected to recommend a song from.

Bearing in mind this interpretation, it is irrelevant that the song is also a member

of the ‘RockPop’ set, the fact that it is a member of the ‘Rock’ set was the sole

reason why this song was considered for selection. On the basis of this reasoning,

the recommender engine was designed to decrement quotas based on the category

selected and not decrement the quota based on the song selected.

It seemed the proposed category selection algorithm was compatible with what

the recommender engine needed, for it was not entirely deterministic in its method

but it takes into account quota remaining. The major advantage of this is that it

would work effectively over time as every time a song is selected from a set, the

category that defined the set has its quota decremented. This means as the

category is selected by weighted random numbers; the category just selected

would have reduced its chance of getting selected again. Referring back to the

situation described earlier (where ‘Play-list’ has a quota of twenty and ‘Rock has

a quota of five), at the beginning ‘Play-list’ should have 20/25 chance of getting

selected compared to ‘Rock’ which has only a 5/25 chance. Due to the weighted

probabilities, ‘Play-list’ should get played more but each time it is, the quota will

decrement thus preserving the weighted balance. The spread will not be

completely even in that initially ‘Play-list’ will get played more but by the end it

should be the case that ‘Play-list’ and ‘Rock’ will have equal chance of being

played. It was a minor negative point and it was by far the best method to date of

ensuring good variety and balance to the schedule.

5.5.4. A Design running summary

The design at this point had created a well structured recommender engine

capable of ensuring the right balance between song-types, as well as giving

priority to songs that have been least recently played of the filter song-set. Before

the issue of requesting songs and scheduling in advanced features such as the

news is addressed, another important element to consider in the design was the

robustness of the recommender engine. It was designed with a high-level of

flexibility and user-customisation in mind, but with high user-customisation

comes also the inevitable possibility of bad instructions. Bad instructions could

mean that there are no songs that fit the criteria, so it was clear that some form of

backup plan needed to be designed so that the system could cope. This is

discussed in detail next.

5.6. Enforcing the rules and guarding against failure

- 44 -

If outside factors (such as hardware failures) are excluded, the actual song selector

should never fail unless the input song set it is provided is the empty set, therefore

the only modification that was needed for the song selector algorithm was to

indicate to the caller function when such a empty set failure has occurred. This

took the form of instead of returning the song index, it returned an error code (-1).

The potential error really lies in the song set filtering algorithm as whenever the

user rules or filter criteria are applied, there is a risk that the set produced is the

empty set.

5.6.1. Dealing with an empty song set generated after a category is

selected

The empty set will only be produced if the category to filter has no songs

belonging to it that have not been played less recently than the user defined

repetition limit. This is likely to happen if the category has too few songs for the

quota number it has been given. In this situation, a different category must be

selected using the weighted random numbers method. To ensure a different

category is chosen randonly, the category that produced the failure would be

placed temporarily in a banned list so even though it has a non-zero quota the

value, the category will not be considered. This was important because it cannot

be assumed that only one category with a non-zero quota will produce an empty

set error, so if an error occurs again with another category, this too is placed in the

banned list and another one is selected. This iterative process ensured that the

category chosen will always produce a valid song, and when this happens the

temporary banned list is flushed. The rationale behind flushing the temporary

banned list is because some categories may be only on this list because its least

recently song was 10 seconds away from reaching the repetition allowed threshold

and so the next time another song needs to be recommended, the category may

now be valid. Just because at some arbitrary time period a category does not

produce a valid song is no reason to assume this will always be the case.

5.6.2. Dealing with null category errors

The systematic method of choosing a category, testing whether it produces an

empty song set and then banning it and choosing another if it does, solved the no

valid songs in a valid category potential failure, but this extra caveat in itself

created the potential for another error. Assume there is a situation whereby there

are no categories with positive quotas that produce any valid songs; they all

produce the empty song set when applying the set filter algorithm. The afore

mentioned method will one by one test each category, find there are no valid

songs and so appends it to the banned list and tries another. It will get to the

situation where there are no more categories to choose and so there is not a valid

category. The error would lay in the fact that the weighted random category

selector algorithm only produces a null category. This error needed to be caught

before the null was applied as a set filter criteria. This is a bad situation to be in,

as it would mean that the user rules are now completely incompatible with the

current environment and there is no chance that the recommender engine can

suggest a song given the boundaries set by the user. This is a terminal situation, so

- 45 -

the recommender engine should resort to a default plan. The most sensible plan

would be to apply the song selector algorithm with the an unfiltered song set, and

as mentioned earlier in this design section this guaranteed that a song will be

selected even if it does not match with the user’s desires.

At the same time the recommender engine will also reset all category quotas back

to their defaults (the quotas values before they were decremented by song

recommendation), in order to guard against the possibility that all categories have

been decremented to zero and also to open up the possibility of being able to

schedule a song in the standard way the next time a song needs to be

recommended. Even if the problem is not rectified by the quota reset, the

hierarchy of the error handling will ensure that the system will always resort to the

default plan given this error.

Figure 5.5: An illustration of how errors are handled hierarchically

All errors were designed to be logged, to allow the human user to debug when the

error handling method are executed in the hope that the user can rectify the

problem.

5.7. Requesting Songs

- 46 -

As seen in Figure 5.5 there is an autonomous section that deals with listener

requests. It is worth noting again that all three grey boxes work independently

from each other, it is only the song metadata and songs to play queue that is the

shared data. The request engine was designed to be simple in operation and takes

as an input the song index that the listener wishes to request. This request is not

automatically accepted in the same as a computer recommended song, for it must

be checked against the rules. First and foremost, the requests have a special quota

which is defined by the user, and every time a request is accepted this is

decremented. When this reaches zero no more requests will be accepted.

Secondly, the song must not have been played within minimum repetition

threshold (see requirement 4.1); if it has then the request will not be played.

Finally, the song must be successfully costed to a category quota. If the song’s

category has an explicit quota then it is just the case of decrementing that quota, if

the quota is implicit then the bottom-up costing algorithm needs to be applied to

attribute the song play to a given category. If the explicit quota is zero or if

implicit, all parent categories have a zero-quota, then the request will be rejected.

Whenever a request is accepted, the song index is en-queued (see Appendix B for

function) for play-out by the play-out engine. The song is en-queued regardless of

the size of the queue to ensure it is played.

5.8. Scheduling features on time

This was the final requirement of the design and represented the most complicated

aspect of the scheduler. Features, as was analysed in the requirements section

include entities such as adverts and the news. They can be either be ‘fixed’

(meaning that the feature must be played at the time scheduled exactly) or ‘soft’

(meaning that the feature must be played only approximately at the scheduled

time). Quite obviously, scheduling ‘soft’ feature is a fairly trivial process but

‘fixed’ features represent a challenge. In order to schedule a feature exactly on

time, the songs preceding must be scheduled with the song length in mind.

5.8.1. Scheduling fixed features

A simple design to deal with this problem would have been just to say that one

song before the hard feature is due to play a song of matching length is found to

fill the gap. This idea was rejected on the grounds that only thinking one song

ahead would run the risk of leaving a gap as little thirty seconds, say, which could

not be filled by a song. The recommender engine needs to maximise its chances of

being able to schedule a right length song therefore it needs to know about what it

has to schedule with. It was decided that scheduling a hard feature on time takes a

lower precedence than the repetition rules and allowed category rules therefore the

set the algorithm has to select from is no different. The only difference is that

instead of just playing the song least recently played from a set filtered by a single

category, it will recommend songs based on its length from a set that includes all

allowed categories.

- 47 -

This method should begin to operate when the songs-to-play queue end time is

within twice the average length of all valid songs. The motivation behind this is

that the time left will most likely be able to be filled by two songs or one big song.

The algorithm first checks whether the gap can be filled by one song, but if this is

not the case then it will systematically check for song pairs that add up the gap

remaining. If no exact match is found, it will choose the pair that is slightly too

long but is the closest match. In this algorithm, to allow for natural error, an ‘exact

match’ was defined as exact or +2 seconds. This tolerance range also gives the

algorithm a greater chance of finding a good match.

- 48 -

6. Implementation

6.1. Overview

6.1.1. System structure

The distinct modules in this system, as shown in the design, were segregated to

the extent that the only communication between the segments of code is implicit

via the shared data sources. In essence they are designed to exhibit behaviour akin

to autonomous agents and so it was not unreasonable to suggest that these

different modules to the system could in fact be separate programs. The only

caveat this would add to the implementation would that the shared data source

must exhibit persistent qualities as none of the modules would be sharing any

runtime objects or data. From a prototyping perspective, the modular approach

made development far easier, as each segment could be considered separately so

as long as the interaction with the data store is consistent with the specification,

the modules could be overhauled and replaced at will. In order for all the engines

to communicate with the shared persistent data, there need to be two platforms,

one controlling access to the database which stores the song data and data about

quotas and another platform controlling access to the category relationship data.

Both platforms have enough methods to view the data and in the case of the

category relationship platform, methods to infer assertions to find out who are the

parents or children.

6.1.2. Use of existing tools

Due to the scope of the project, there were a number of tools required in the

implementation of the system. Most of them are APIs which can be packaged and

included as part the system. They will be introduced at this stage, and then later

on in the section their inclusion and selection will be justified.

Mp3Info: This was developed by Florian Heer at oeberdosis.de and it provides

extensive methods to read and write to ID3V1 and ID3V2 tags. Its source

language is written in Java and is a complete library to model and manipulate all

types of ID3 tags and frames.

Jena 2: Developed by HP labs it is a library that allows Ontology Web Language

schemas and data files to be unified into an inference model. From here, the OWL

ontology can be reasoned to get the vital children and parent data of categories.

Mysql-connector-java-3.1.7: Methods to connect to and query mysql databases

from java.

Protégé: Very useful ontology development package with the option of converting

Protégé format Ontologies into the semantic web standard OWL (Ontology Web

Language).

- 49 -

6.1.3. Choice of language

The choice of language was primarily by the current lack of OWL parsing and

inferring tools available in any language other than Java, besides the excellent

portability of java made it a prime candidate. By choosing Java, incorporating the

Jena OWL inference engine was the made much easier, so the choice was a fairly

obvious one.

6.2. Metadata storage

6.2.1. Choice of format and how to extract the data

The options of how the music file metadata is stored are limited by requirement

1.2 which requires the metadata to be stored within the same physical file as the

music file. As part of the project research, two potential candidates were found to

satisfy this, namely ID3 Tags and MPEG-7. MPEG-7 is widely regarded as the

future for music metadata (Crysandt & Wellhausen, 2003) but since this

technology is very much in its infancy whereas ID3 technology has become

virtually a standard for mp3 files it would be prudent to use this rather than

MPEG-7. As this system is modular in design, it would be easy to modify the

metadata access methods to use MPEG-7 or other music metadata standards at a

later date.

The requirements analysis determined what was needed to be stored, and using

the ID3 tag specification (Nilsson, 1999) the most suitable tags were mapped to

the data storage requirements.

• The artist stored in frame TPE1 (Lead Performers/Soloists, ID3 Version 2)

• The title stored in frame TIT2 (Title/Songname/Content description, ID3

Version 2)

• The album stored in frame TALB (Album, ID3 Version 2)

• The category stored in frame COMM (Comments, ID3 Version 2)

• The year of release stored in frame TYER (Year, ID3 Version 2)

• The length stored in Runtime attribute (ID3 Version 1)

This data is stored within the MP3 file as a tag which is usable by popular music

players such as Windows Media Player, Winamp and XMMS to name but a few.

The choice of frames was by and large trivial to make apart from the decision to

store category in COMM frames instead of the genre frame. The reason behind

this was that category is not the same as genre; genre is only one type of category.

Also, other applications may make use of the genre frame for their own purposes

and considering category may not necessarily mean genre, it would not have been

appropriate.

As mentioned in section 5.1.2, one of the many tools that can be used to edit and

extract MP3 ID3 metadata is mp3info which is an API written in Java by Florian

- 50 -

Heer. This was chosen due to the ease that the package could be imported into the

system and it being implemented in Java meant that it had an intuitive object-

orientated structure for ID3 manipulation. In order to use the tool, it was decided

that the best way to implement was to create a class called ID3Snapshot, which

would act as a platform to extract the relevant ID3 tag frames. This method of

implementation fitted in well with the modular ethos of the system, as by adding a

platform with a defined output specification, it does not matter whether the

underlying metadata format is ID3 or anything else.

ID3Snapshot data = new ID3Snapshot(f);

‘f’ is of type java.io.File and is a pointer to the target directory which contains all

the mp3s that need processing. The constructor method will parse all the files

within the directory and store the music metadata as an array of strings. The way

the metadata is extracted is by created ExtendedID3Tag and ID3V2Tag objects

and calling methods to extract the required frames. These objects represent a

runtime version of the stored data and writing new frames is just as simple as

modifying the runtime model and re-writing the tags to the mp3 file.

According to the design, the song selection decisions should be based on the

metadata stored within the mp3 file. In theory the idea is good; since metadata

stored in a location external to the actual data has a risk that they could become

unsynchronised. The problem with the idea is entirely practical in nature as the

mp3info software is extremely slow at reading ID3 tags, in fact preliminary

testing clocked the process taking an average of eight seconds. Quite clearly this

situation would be unacceptable if there were anymore than ten songs, and as the

system should be able to cope with upwards of a thousand songs (as per

requirement 7.3) then this method could not be implemented. Looking back at the

requirements, it was case that real-time efficiency was a more important caveat

than ensuring metadata was stored in the same location of data (see section 3.5).

Even so, the ID3 tag had to be the primary source of the data and there had to be

some mechanism by which data was mirrored in a format that was much more

efficient when accessing it. This solved the efficiency concerns but the issue of

ensuring a synchronous relationship between the metadata and its mirror was of

high importance.

6.2.2. Mirroring for efficiency

As decision-making by the metadata’s original source, the ID3 tags, was not an

option, there was a free choice in terms of format of the metadata mirror. The

decision regarding this had to be taken with the algorithms of the song

recommending process in mind (see section 4.3). In the said algorithms the two

fundamental processes are ‘sort’ as in sort the song set descending by the last

played attribute, and ‘filter’ as in filter the song set by category. This mirror must

also cope with concurrency as the play-out, recommender and request engines will

be sharing this data. It was concluded that a relational database system such as

mysql would be ideal for this as it had support for concurrency and is persistent

coupled with the ease of sorting and filtering the tables. The process of querying

tables to produce data draws many parallels with the theoretical algorithms of

- 51 -

song set filtering and ordering. The requirement that all metadata must be stored

in the same location is being preserved, but this data is not being directly

addressed when making a recommendation. Even so, the mirror is initially

extracted from the metadata, and there are mechanisms in place to ensure that the

data is synchronised.

6.2.3. Synchronising the original metadata and the mirror

The problem highlighted before that each mp3 tag read takes approximately 8

seconds means that comprehensive synchronisation can not take place on a very

regular basis. Indeed from calculations, a complete synchronisation of one

thousand songs could take as much two and a half hours. The system coped much

better when it was designed to synchronise the data by parts. That is before a song

is confirmed to be recommended, the file is first confirmed to exist and secondly

the metadata of the song is extracted and updated to the song list table in the

database. In this way the recommender engine ensures that the song is has

recommended does exist and that its data is accurate. A similar mechanism was

designed to allow the user to add new files to the database, this involved

dedicating a special directory where files could be placed and the system would

pick up the file, parse it and append it to the database table.

6.3. Database Platform Layer

6.3.1. Choice of language and tools

It made sense that as mysql was the chosen platform for the database of songs the

rest of the shared data structures shared the same database. This meant that a

single platform class could be defined to control all the shared data. This platform

class used a package called mysql-connector which is library that allows a

program written in java to connect to and query a database.

In the constructor of the platform class called JBDbase, a connection is created a

stored as an object using the following:

Class.forName("com.mysql.jdbc.Driver").newInstance();
conn =
DriverManager.getConnection("jdbc:mysql://localhost/jukebox?user=r
oot&password=XXX");
Statement stmt = conn.createStatement();
stmt.execute(“SELECT * FROM SONGLIST”);

conn is an object variable of an instance of the JBDbase class and will store the

details of the connection allowing all platform methods of the instance access the

database through the same connection eliminating the connection overhead for

each time the database is accessed. In each method of JBDbase that requires

mysql access, a statement is created for SQL queries to be run from, and also

ResultSet objects and created where it is necessary to extract the data from the

query.

- 52 -

rs = stmt.getResultSet();
rs.first();
songrec = rs.getInt(1);

In this code fragment, the result set is being extracted from the newly executed

statement. After this the results of the query can be manipulated at will. In the

fragment, it sets the cursor to the first row in the result set and then extracts

column one as an integer and stores it into variable songrec. Methods next() and

isAfterLast() can be employed in a loop situation if it is the intention to extract all

the data from a column from all rows.

6.4. Recommender Engine

6.4.1. Selecting a song from a filtered set

In the design section it was revealed that there were three theoretical algorithms to

follow when selecting a song, two of which being the song selector algorithm and

the song set filtering algorithm. The song selector algorithm takes a set of songs

and simply picks the song with the ‘last played’ attribute being the least recent,

and the song set filtering algorithm just filters out according to category and last

played (if it is too recent. Although from a design perspective they are two

separate algorithms, from an implementation perspective it is much more effective

to combine them. One line of SQL code was enough to satisfy both algorithms.

String wherestatement = new String();
if (catchildren!=null) {
 wherestatement = "WHERE (category IN ('" + catchosen + "'";
 for (int i = 0; i < catchildren.length; i++) {
 wherestatement = wherestatement + ", '" + catchildren[i] +
"'";
 }
 wherestatement = wherestatement + ") AND last_played < " +
(System.currentTimeMillis()-3600000) + ")";
}
else wherestatement = "WHERE (category=catchosen)";

...

stmt.execute("SELECT song_id,last_played,rand_seed,category FROM SONGLIST
" + wherestatement + " ORDER BY last_played ASC,rand_seed ASC;");

These are two fragments of code from the function recommendSong() from the

class JBDbase with the top one being the part that generates the where segment of

the SQL statement. This fragment uses two variables catchosen and

catchildren.String catchosen is evaluated by the output of the weighted random

category selector, and catchildren is the array strings containing all the children of

catchosen. Catchosen is calculated using the getChildren method of class

CatReader which is the class that acts as a platform to access the OWL ontology

which describes all the categories and their relationships. As demonstrated, the

where statement filters the query and the ‘order by’ statement sorts the list. It is

then just a case of taking the first song_id in the list and then returning that value

from the function.

- 53 -

6.4.2. Use of exceptions to guard against failure

In the previous section there was an outline for how songs are selected using

mysql based on the original designs in function recommendsong() from class

JBDbase. There are two modes of failure, one occurs when there are no valid

songs for the randomly selected category and another one occurs when there are

no valid categories to select.

If a randomly selected category actually had no valid songs to choose, then what

would be produced is an empty ResultSet when the statement is executed in

mysql. This is where exceptions need to be used to successfully, as by calling the

method rs.first() on the ResultSet object rs where rs is an empty set, it would

throw a mysql exception. Therefore it was decided to handle this exception and

add the category name to the ‘banned’ table. Additionally, the song_id that is

returned is not a valid song_id, it is -1 which is an error code. The reason behind

an error code is so that the higher-level class (RecommenderEngine) can then see

that an error has occurred in the song recommending process, so it will call the

function again.

int nextsong == -1;
while (nextsong==-1) {
 nextsong = dbase.recommendNextSong();
}

A fragment from RecommenderEngine class, demonstrating the use of iterations

to make sure a valid song is selected.

The previous paragraph details what happens when a given valid category is

selected but yields no songs, this then adds the category name to the banned list

and returns –1 which prompts the higher level caller function to call

recommendSong() again. This iterative process may produce the second error

condition, namely what happens when the random category selector is unable to

produce a valid category because either all quotas at zero or all categories are

banned.

String catchosen = getWeightedRandomCat();
if (catchosen!=null) {
… // Code which filters the song list and orders it by last
… // played to attempt to find a song
}
else {
 stmt = conn.createStatement();
 stmt.execute("SELECT song_id,last_played,rand_seed,category
FROM SONGLIST ORDER BY last_played ASC,rand_seed ASC;");
 rs = stmt.getResultSet();
 rs.first();
 songrec = rs.getInt(1);
}

- 54 -

This code fragment shows that a category is found by calling the function

getWeightedRandomCat() which if there are no valid categories will return

NULL. In which case, the system executes its backup plan and recommends a

song based on there being no category restrictions. At the same time, all category

quotas are refreshed to defaults and the ‘banned’ table is flushed, this is to

maximise the possibility of correct scheduling the next time.

These two methods of error handling mean that the system should never fail even

if the user rules mean that there are no valid songs to be played or if there are no

categories available to play. This covers both angles of potential major failure, of

course in doing this error recovery the choices made by the scheduler may not fit

with the user’s intended preferences, however this is an acceptable recovery

considering it was the user defined rules in the first place that caused the error.

6.5. Category inference

6.5.1. Choice of language

The relationship between the categories was really the crux of this system as the

way the categories were configured; affect greatly the interpretation of the songs.

Category relationships are effectively a metadata hierarchy, in that metadata

describe the song attributes and reveal the category ownership, but there must be a

further layer that describes the metadata and add further meaning. What is needed

is an ontology that defines each category so that the category relationships can be

used as a description logic and triple-based assertions made upon it. As previously

researched, OWL (Ontology Web Language) has emerged as the standard for

ontologies and is now recommended by the W3 Consortium (see section 2.5).

OWL is part of the future of the semantic web and it made sense to use it, the only

downside is that support of the technology is still being developed. OWL could

only be used to describe the data; it required an inference engine to be able to

make assertions on the triples. Jena was found to be suited to this role and had a

major advantage in that it is written Java meaning the integration was seamless.

Jena also provides an OWL reasoner and many classes to produce runtime models

of the ontology, which made it the prime candidate for inclusion.

When creating an ontology in OWL there are two separate files, the OWL Schema

and the OWL data. Using much the same terminology as the Object Orientated

community, the schema file represents the class definitions and the data file stores

the instances. It is the instances that are tested against by the inference engine,

however the schema will define the classes the instances belong to this will affect

the triples that are outputted. It is the design of the schema that will be addressed

first.

6.5.2. Design of the Schema

Ontologies appear at first to be much related conceptually to object orientated

programming, however when it comes to realising an ontology in OWL there are

a number of important differences. There are two important entities that had to be

- 55 -

considered when designing a schema for an ontology, these are classes and object

properties. Object properties are the OWL equivalent of ‘instance variables’ in

java with one crucial difference, they are not defined within the OWL class.

<owl:Class rdf:about="cs2ccd:bath-ac-uk:eg/GenreEra" />
<owl:Class rdf:about="cs2ccd:bath-ac-uk:eg/Genre" />
<owl:Class rdf:about="cs2ccd:bath-ac-uk:eg/Era" />

<owl:ObjectProperty rdf:about="cs2ccd:bath-ac-uk:eg/hasGenre">

<rdfs:range rdf:resource="cs2ccd:bath-ac-uk:eg/Genre" />
<rdfs:domain rdf:resource="cs2ccd:bath-ac-uk:eg/GenreEra"

/>
<rdfs:subPropertyOf rdf:resource="cs2ccd:bath-ac-

uk:eg/hasParent" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="cs2ccd:bath-ac-uk:eg/hasEra">

<rdfs:range rdf:resource="cs2ccd:bath-ac-uk:eg/Era" />
<rdfs:domain rdf:resource="cs2ccd:bath-ac-uk:eg/GenreEra"

/>
<rdfs:subPropertyOf rdf:resource="cs2ccd:bath-ac-

uk:eg/hasParent" />
</owl:ObjectProperty>

This fragment defines three classes, “Era”, “Genre” and “GenreEra”, and also two

object properties called “hasGenre” and “hasEra”. Note that neither class have any

properties associated with them and that the object property is outside all class

definitions, they are separate entities. Taking the ‘instance variable’ analogy, the

rdfs:range tag means the type of the variable so ‘what is being stored in this

property; the rsfs:domain tag means the class this object property belongs; and the

rdfs:subPropertyOf tag which is an optional tag that allows you to define an object

property as the sub property of another property. The last tag is very important, as

it allows properties to be inherited from other property in much the same way as

classes can be inherited from other classes; this is explored next.

Referring back to the specific code fragment shown earlier, what this fragment

was doing is to define the structure that governs how categories can relate to each

other. The property ‘hasGenre’ and ‘hasEra’ are both properties of class

‘GenreEra’ and is the way the physical inheritance link is created between an

instance of ‘GenreEra’ and an instance of ‘Genre’ and ‘Era’. The problem is the

requirement of the system was the ability to identify the parents, and these

properties are distinct. This is where the rdfs:subPropertyOf tag fits in, as using

this extra piece of information it is saying that all ‘hasGenre’ and ‘hasEra’

properties are actually all ‘hasParent’ as well meaning that inferring the property

‘hasParent’ would succeed in finding all the parents. The classes ‘Genre’, ‘Era’

and ‘GenreEra’ are not categories, they are category types as defined by the

requirements elicitation (see section 2.6). ‘Genre’ and ‘Era’ are described as

primary category types because they have no parents and ‘GenreEra’ is a

secondary category type as it has direct parents but no indirect parents. The final

point that needs to be made is to do with transitive inheritance. The ‘hasParent’

must display transitive properties in order to create links between tertiary

- 56 -

categories (such as ‘RockPopRecent’) and their indirect parents (‘Rock’, ‘Pop’

and ‘Recent’). This effect was achieved by adding the following line of code:

<owl:ObjectProperty rdf:about="cs2ccd:bath-ac-uk:eg/hasParent">

 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Transitive
Property" />

 </owl:ObjectProperty>

This makes the property ‘hasParent’ directly inherit the traits of

‘#TransistiveProperty’ meaning the desired behaviour is achieved.

6.5.3. Creating the data

The data OWL document contains all the instances that the system will require

and it was just the case of constructing the document so that all the categories are

defined. Firstly start with creating instances of the primary categories

 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/Rock" />
 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/Dance" />
 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/HipHop" />
 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/ChillOut" />
 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/DnB" />
 <Genre rdf:about="cs2ccd:bath-ac-uk:eg/SoulnRnB" />
 <Category rdf:about="cs2ccd:bath-ac-uk:eg/Pop" />
 <Category rdf:about="cs2ccd:bath-ac-uk:eg/Alternative" />
 <Era rdf:about="cs2ccd:bath-ac-uk:eg/Recent" />
 <Era rdf:about="cs2ccd:bath-ac-uk:eg/Classics" />

These are fairly trivial as being primary categories and having no parents

themselves, there are no object properties associated with them. Next it was time

to create the secondary categories, which are categories that have two parents that

are primary categories.

<GenreCategory rdf:about="cs2ccd:bath-ac-uk:eg/RockPop">
 <hascGenre rdf:resource="cs2ccd:bath-ac-uk:eg/Rock" />
 <hasgCategory rdf:resource="cs2ccd:bath-ac-uk:eg/Pop" />

 </GenreCategory>

As is seen here, ‘RockPop’ is defined as having ‘Rock’ as a genre and ‘Pop’ as a

category. Both of these object properties are sub-properties of property

‘hasParent’ which means that for property ‘hasParent’ for ‘RockPop’ would return

‘Rock’ and ‘Pop’ which is the desired effect. Finally it is time to define all of the

tertiary categories that directly inherit from three secondary categories (which in

turn in inherit from three unique primary categories by transitive inheritance).

<GenreCategoryEra rdf:about="cs2ccd:bath-ac-
uk:eg/RockPopRecent">

 <hasGenreCategory rdf:resource="cs2ccd:bath-ac-
uk:eg/RockPop" />

 <hasGenreEra rdf:resource="cs2ccd:bath-ac-
uk:eg/RockRecent" />

 <hasCategoryEra rdf:resource="cs2ccd:bath-ac-
uk:eg/PopRecent" />

 </GenreCategoryEra>

- 57 -

Once again ‘hasGenreEra’ and the other properties all inherit from ‘hasParent’ so

that in this case ‘RockPopRecent’ inherits directly from ‘RockPop’, ‘RockRecent’

and ‘PopRecent’, and this in turn means that ‘Rock’, ‘Pop’ and ‘Recent’ are

inherited transitively, which was the desired behaviour.

6.5.4. Inferring

The schema and data have now defined the framework and the ontology itself, but

this is only useful if the recommender engine is able to query the structure. In

order to do this the Jena OWL inference engine was required. Jena is written in

java, and the general methodology is to load the schema and data OWL files and

Jena converts this ontology into an internal representation of the model.

Model schema = ModelLoader.loadModel("OWLSchema.owl");
Model data = ModelLoader.loadModel("OWLData.owl");
Reasoner reasoner = ReasonerRegistry.getOWLReasoner();
reasoner = reasoner.bindSchema(schema);
InfModel infmodel = ModelFactory.createInfModel(reasoner, data);

This has now created the model, now the way this model is queried is by using a

triples structure. A triple statement will always have a subject, object and

predicate. For example, take the statement “RockPop hasParent Rock”. In this

instance, ‘RockPop’ is the subject of the statement, ‘hasParent’ is the predicate as

it is the property being tested and ‘Rock’is the object. This is a definite statement

that would return either true (yes, ‘RockPop’ does ‘hasParent’ ‘Rock’) or false

(no, ‘RockPop’ does not ‘hasParent’ ‘Rock’), but when the goal is to find all

parents of ‘RockPop’ then testing for true or false in this way is rather a

cumbersome way of doing things as all instances would have to be tested against

‘RockPop’. A much cleverer way of doing would be to utilise Jena’s ability to use

wildcards when inferring triples. In Jena, subject, predicates or objects can be set

to NULL denoting that it is a wildcard so that it will return all statements that

match the partial statement supplied. To refer back to the previous example, in

order to elicit the parents of ‘RockPop’ would be to infer the following statement:

‘RockPop’ ‘hasParent’ NULL. The object is NULL so that what is returned is not

true or false, what is returned is a list of all statements that match this partial

statement. The list would consist of:

‘RockPop ‘hasParent’ ‘Rock’

‘RockPop ‘hasParent’ ‘Pop’

Note now that eliciting the parents is just as simple as parsing through the list and

extracting all the objects to find all the parents of the category. That is how the

parents could be found and finding the children of a category is a similar process.

This problem was solved when considering how a child is defined. A child of

category x is defined as the child being the subject, the predicate being

‘hasParent’ and the object being category x. The statement that generates the

children is very similar to the one that elicits the parents, except the wildcard is in

the subject not the object. Again, using ‘RockPop’ has an example but this time

- 58 -

finding the children, the statement would be: NULL ‘hasParent’ ‘RockPop’.

Evaluating this generates the following statements:

‘RockPopRecent’ ‘hasParent’ ‘RockPop’

‘RockPopClassics’ ‘hasParent’ ‘RockPop’

So once again parsing the list of statements but this time extracting the subjects

will reveal the children of a category.

6.6. Summary

Unfortunately due to the limitations of Jena’s support for OWL at present, the

project was unable to make full use of what the OWL language has to offer. Given

a bit more support, Jena will be able to support a model of OWL as a mysql

implementation. This would be a major change made to the project, as instead of

relying on mysql tables, OWL (using mysql as the storage) would be able to store

instances of the categories and so store the actual songs in the OWL framework.

This would increase the link between the metadata and the ontology. This is not

possible now as there is little support for OWL persistent data storage, only

runtime storage. Given the separation of the different modules in the system,

anything short of persistent data would not work.

- 59 -

7. Evaluation

7.1. Overview

Testing of the system was carried out at every stage of the implementation owing

to the way the system evolved from a basic prototype to the comprehensive song

recommender system by the end. This section will reveal a selection of the various

tests that were carried out to verify that every single module of the system works

to their expected specifications.

7.2. Enqueue and dequeue test

Scope: The songs-to-play queue structure

This test is to ensure that mechanism by which songs are placed on the songs-to-

play queue works so that the recommender engine can en-queue songs and the

play-out simulator can de-queue thus ensuring a safe passage through the shared

data structure. The test program is very simple in design and just verifies that

songs that are en-queued are de-queued in the correct order, which is the expected

output.

 JBDbase dbase = new JBDbase();
 System.out.println("Enqueued song 360");
 dbase.enQueue(360);
 System.out.println("Dequeued song " + dbase.deQueue());
 System.out.println("Enqueued song 361");
 dbase.enQueue(361);
 System.out.println("Enqueued song 362");
 dbase.enQueue(362);
 System.out.println("Enqueued song 363");
 dbase.enQueue(363);
 System.out.println("Dequeued song " + dbase.deQueue());
 System.out.println("Dequeued song " + dbase.deQueue());
 System.out.println("Dequeued song " + dbase.deQueue());
 System.out.println("There should be no songs so the next
dequeue command should be in error (-1)");
 System.out.println("Dequeued song " + dbase.deQueue());

Figure 7.0: Code and screenshot of enQueue and deQueue test results

- 60 -

This is the test program code with result below it. Note that the songs are de-

queued in the order that they are en-queued and finally the test program attempts

to de-queue when there are no songs to play. This fails, however it fails in a safe

way, the program does not execute and returns a song_id –1 that represents the

error code. This means that the higher-level program will be able to handle the

errors.

7.3. Weighted random category test: ‘How random is

random’

Scope: Testing the weighted random category selector implementation

There is much debate over the issue of ‘random’ numbers in computer programs

because pure ‘random’ numbers cannot be generated. Instead, it is a pseudo

random which takes a seed (often the system clock) to algorithmically generate a

number. The purpose of this test is to evaluate ‘how random is random’. This a

matter of importance as a biased random could mean that some categories are

unfairly favoured more than others, and this is an undesired effect. The algorithm

will not produce completely random results as all categories are weighted by the

quota they have remaining. For the purposes of testing there are seven categories

with the following quotas:

• Recent: 30

• ChillOut: 5

• Dance: 2

• DnB: 1

• Rock: 5

• HipHop: 5

• Pop: 12

The sum of the quotas is sixty and given a large enough sample (this was set at

one thousand) the proportion of categories chosen should mirror the proportions

of the quotas. This test program will select one thousand random categories which

are written to a text file, this is then imported into excel for analysis. It was to

produce the following result:

NAME Quota Sel from 1000 Quota % Sel %

Recent 30 508 50.00% 50.80%

ChillOut 5 87 8.33% 8.70%

Dance 2 33 3.33% 3.30%

DnB 1 14 1.67% 1.40%

Rock 5 73 8.33% 7.30%

HipHop 5 85 8.33% 8.50%

Pop 12 200 20.00% 20.00%

TOTAL 60 1000

- 61 -

The differences between the quota and actual selection percentages are nominal

meaning that over time no significant bias is given to any category. This analyses

the long-term, but category selection needs to be evenly spread in the short-term

too, and the test results did yield some concern over this.

HipHop, Pop, Recent, Recent, Recent, Recent, HipHop, Recent,
ChillOut, Recent, Recent, Recent, Recent, Recent, Recent, Recent,
ChillOut

This is a fragment of the selected categories and represents probably about an

hours worth of music. The point of concern is over the clumping of ‘Recent’

categories together, which if the system was capable of completely random and

even selection should not happen too often. This fragment is one of many where

recent is played five times in a row or more. It is most likely due to the fact that

random is really only a pseudo-random making it much more prone to localised

anomalies as demonstrated here, however further statistical analysis would need

to be carried out to confirm this hypothesis.

7.4. Enqueue, dequeue, queue monitoring and

concurrency test

Scope: The performance of the songs-to-play queue when accessed by two

concurrent programs and the performance of a simple proto-type

The two programs are simple prototypes of the recommender engine and play-out

engine and how they are related. The play-out prototype simply de-queues a song

every ten seconds whether or not the queue is empty or not. If the queue is empty

then –1 will be outputted. The aim is that once both programs are operating, -1

will no longer be outputted and that en-queue and de-queue order is preserved

even though the programs are completely separate. The monitor prototype will

constantly check the queue every five seconds and if the queue is fewer than three

items or less than three-hundred and fifty seconds then songs will be en-queued

until the both conditions are untrue. The test was carried out numerous times and

not only did the en-queue and de-queue functions perform to specifications, so did

the monitor module.

7.5. Finding the parents and the children of a category

Scope: The category parent and child inference engine.

Ensuring that the right parents and children are elicited for a given category is

vital to the successful operations of many algorithms in the system therefore it is

important to iron out any errors with the category inference. The test program was

very simple in design; it just takes an input from the command-line and will

output to the screen either all the parents or all the children. This test had to

systematically test all sixty-two categories to ensure that there were no errors in

the implementation of the OWL schema and data-files. The full test results

- 62 -

revealed a perfect success rate, and although all the results will not be listed here,

displayed here is a screenshot of one of them:

Figure 7.1: Showing the children and parents

Analysing the OWL schema and data file, this is the expected result for both the

parents and children and this successful result was reciprocated for all other

instances of category.

7.6. Full-system test of stability

Scope: Full test of the robustness of the system. A category with only one song in

it is given a quota of five and the play-out engine is playing at twenty-times real

time therefore there is a danger of categories running out of songs. The test here is

whether the systems fail in a safe state.

It was found in the requirements that the most important aspect of this system is

that should a failure occur the system should continue to operate even if the songs

chosen are not what the user intended. As the system relies so much on the user’s

rules making sense, it is imperative that a song will always get recommended

when needed. This requires a full system test where all the core components are

working together as a whole, as errors will often occur as a result of

miscommunication between modules rather than errors within modules. When

setting up the test, it was prudent to refer back to the requirements analysis where

the potential pitfalls of the system were originally analysed. In this analysis it was

revealed that there were two main dangers, firstly that a selected valid category

would yield no valid songs to select from and secondly that there were no longer

any valid categories to select. Safeguards were put in place, but it was important

to establish whether these safeguards were effective or not. In order to test this, a

scenario was created whereby the scheduler was inevitably going to face both

problems. First off, the ‘DnB’ category has only one song as part of it, so the

quota for ‘DnB’ was set to five. This would inevitably cause problems, as the

- 63 -

recommender engine will keep suggesting ‘DnB’ as a viable category, yet there

are not enough valid songs to satisfy this. Secondly, the play-out engine was

modified so that songs were played every twenty seconds regardless of song

length. This was primarily because it made testing much faster but also had the

convenient side-effect of making time appear to run much faster for the system.

The rationale behind this statement is the timestamp for the ‘last_played’ attribute

of each song is assigned every time the song is played, however as songs are

being played every twenty seconds, the recommender engine is getting through

more and more songs. If the average song length is two-hundred seconds, then it

appears to the recommender engine’s perception that time is moving ten-times

faster than it should. This has the beneficial side-effect of seeing how the system

copes when it is rapidly running out of songs to play and therefore running out of

valid categories.

The quotas for this test were set at:

• Recent: 20

• ChillOut: 5

• Dance: 4

• DnB: 5

• Rock: 5

• HipHop: 5

• Pop: 12

The test results took the form of the system logs, which is a mysql table that logs

every action taken by the system as well as logging all warning it encounters. The

expected results were that ‘DnB’ would sooner rather than later play its one song

thus reducing its quota down to four but with no other songs to play. Therefore

later down the line, the ‘DnB’ category would be selected again but there would

be more valid songs to play, so what should happen is another category would be

selected and from that new category a song will be selected. As the experiment

progresses it was expected that one by one the categories would run out of songs

to play until it reaches a point where there were no more categories to select. At

this point the system should revert to its default plan and just play the song least

recently played, regardless of the category it belongs to.

The experiment was a success, although the entire set of test results will not be

placed here, here is a fragment of the system logs that demonstrates the expected

behaviour of the system.

- 64 -

At line six, the only DnB song is played meaning that subsequent attempts to

select a song from DnB fail at line fourteen. At line fifteen, a different category is

selected and so the system has recovered from error.

6 RECOMMEND ACTION Recommended a song from quota: DnB

7

RECOMMEND ACTION

Recommended song "Total Science – Nosher

 [Baron VIP Mix].mp3"

8 RECOMMEND ACTION Recommended a song from quota: HipHop

9

RECOMMEND ACTION

Recommended song "The Black Eyed Peas –

Shut Up.mp3"

10

PLAY ACTION

Now Playing: "David Wrench - Superhorny.mp3",

length: 210 seconds,

category: PopRecent

11 RECOMMEND ACTION Recommended a song from quota: Recent

12 RECOMMEND ACTION Recommended song "El Presidente - Without You.mp3"

13

PLAY ACTION

Now Playing: "Total Science - Nosher

[Baron VIP Mix].mp3",

length: 342 seconds, category: DnB

14 RECOMMEND WARNING No valid song found for category: DnB

15 RECOMMEND ACTION Recommended a song from quota: Recent

16

RECOMMEND ACTION

Recommended song "Dogs Die In Hot Cars –

Godhopping.mp3"

137 RECOMMEND WARNING No valid song found for category: Recent

138 RECOMMEND WARNING No valid song found for category: DnB

139 RECOMMEND ACTION Recommended a song from quota: Pop

140 RECOMMEND ACTION Recommended song "Robbie Williams - Millenium.mp3"

141 PLAY ACTION

Now Playing: "Gouryella - Gouryella.mp3",

length: 210 seconds, category: DanceClassics

142 RECOMMEND WARNING No valid song found for category: DnB

143 RECOMMEND WARNING No valid song found for category: Recent

144 RECOMMEND WARNING No valid song found for category: HipHop

145 RECOMMEND WARNING

All valid categories are producing songs too recently played,

recommended song based on <null> category.

146 QUOTA ACTION Refreshing quotas back to defaults

147 RECOMMEND ACTION Recommended song "Beenie Man - Dude.mp3"

148 PLAY ACTION

Now Playing: "Crazy Town - Butterfly.mp3", length:

 212 seconds,category: RockPopClassics

149 RECOMMEND WARNING No valid song found for category: Recent

150 RECOMMEND WARNING No valid song found for category: HipHop

151 RECOMMEND ACTION Recommended a song from quota: ChillOut

152 RECOMMEND ACTION Recommended song "01 Such Great Heights.mp3"

- 65 -

This is approaching the end of the test and valid songs are becoming more and

more scarce. It reaches crisis point at line one hundred and forty five when there

are no valid categories to select songs from, so song is selected based on <NULL>

category meaning that the song was selected from the full list of songs. The

quotas are then refreshed to defaults to maximise chances of a recovered, and

indeed on line one hundred and fifty-one the system is able to recommend a song

based on category again. This was a successful recovery from a potentially fatal

situation.

- 66 -

8. Conclusion

8.1. Appraisal

The overall aim of this system was to come one step closer to achieving a well-

structured autonomous play-out system for radio stations without the resources to

provide live presenter coverage twenty-four hours a day. The innovation in this

project lies in the category framework which allows customisation of the station

output. It is not just the structure of the output but also the reliability, the ability of

the system to cope when the rules it is supplied just do not make sense. At no

point should this system fail to recommend a song. The one downside to the

project has been the inability to get the news ‘hard features’ scheduler to work.

Theoretically the algorithm that schedules songs before the news should work, but

unfortunately due to time constraints, the implementation could not be completed.

The system overall design leaves much room for extension as it is important to get

this project into context. The play-out software represents an important part of the

radio station but there is much potential for greater integration with other system

to create the complete radio broadcasting package. These extensions as well as the

potential for future work are explored next.

8.2. Extension and future work

This system has provided an extendible framework by which music is categorised

by the user and then recommended to play for a radio station play-out engine. The

key aspect has been autonomy, as the user sets the rules and the recommender

engine will do the rest thus the user is no longer required to explicitly state which

category should be selected and when. There is much scope for further work as

the greatest goal of all would be to create a completely computerised radio station.

The following sections will outline how this project could be extended to come

one step closer to achieving this goal.

8.2.1. Voice-tracking

This system can deal with songs and features such as the news but the greatest

scheduling achievement would be to allow dynamic “voice-tracking” to take

place. Voice tracking is radio jargon term that means a pre-recorded message by

the presenter, which is then automatically interspersed with the music by the

scheduler. This technique is used by many commercial radio stations that instead

of making sure a presenter is live in the studio all the time, there will be periods

where the play-out computer will take over and schedule in the pre-recorded voice

links at appropriate times. The scheduling challenge is to ensure that the content

of the voice message actually makes sense and that the scheduler fulfils the

promises made in it. For instance, say the voice message promises that “Moby and

Girls Aloud will be playing in the next half-an-hour”, then the scheduler will have

to store a couple of rules that ensures that indeed these artists are played in the

next half-an-hour. Voice-tracking scheduling must take into account the potential

- 67 -

time-specific nature of some pre-recorded messages, since some of them may

refer to the time of day, what day of the week or time-dependant facts such as “the

news will coming up in ten minutes time”. All of these facts mean that often

voice-tracking must be implemented in a static and manual fashion, but the

ultimate goal would be achieve voice tracking in a completely dynamic fashion

whereby the user is taken out of the equation.

To achieve this ultimate goal would require an extension to the current rule

hierarchy and to introduce the concept of sequential rules. Sequential rules are not

rules that affect any particular instance of a song recommendation, but have a

lasting effect on a series of recommendations. To refer back to a previous

example, if a voice message is scheduled with the promise that “Moby” and “Girls

Aloud” will be played within thirty minutes then these two statements will be

added to a list of additional rules or ‘promises’ as it is more intuitive to think them

as. What happens then is the next time a song needs to be recommended then it

will first look to the list of ‘promises’ and see whether any of them can be

satisfied and actively look to play either. If the deadline is approaching and still

there are rules unsatisfied then this means the other rules are in conflict with the

list of promises and so this must be mitigated. The best way to ensure that

mitigation is not necessary is to ensure that as a pre-condition to the scheduling of

the voice message that the promises can actually be satisfied and to perhaps

strategically schedule a different but still valid voice message that does not have

promises that are as restrictive. By introducing this facility, the system would be

able to claim that it is an autonomous agent-based system capable dynamically

running a radio station schedule.

8.2.2. Song classification

Previously with the extension of the scheduler to incorporate actual human voices

into the radio station content in a meaningful way, it is close to being a complete

and autonomous radio station. This one area that has thus far been neglected is the

issue of automatic song classification. This project provides a useful framework in

the way categories interact with each other but the ultimate extension would be

given an arbitrary set of songs, a method by which songs are automatically

classified by their aural characteristics. It is a growing area of research into

methods of identifying a song’s genre by analysing its waveform. It is very much

possible to extend this project’s ontology of static song categories and create

instead an ontology of characteristics instead. Each characteristic would have a

waveform metric and a range that this metric must be within for a song to be said

to have this characteristic. Characteristics can then be combined using an ontology

to create pseudo-genres of mathematically similar music. These would not be

genres in the classical intuitive sense, but they would be mathematically specified

genres which given sufficient experimentation and manipulation of the

characteristics could make an automatic classification system that is just as good,

if not better, than a human musical expert.

8.2.3. Listener request engine

- 68 -

At present the listener request is merely a command line interface, but the fact that

it has been written in Java and also the fact that the only interactions this module

has with other modules in the system is in the way it manipulates the mysql

database means that this code can revamped as a Java Applet or even as a PHP or

CGI-perl script allowing the request engine to be hosted on the internet meaning

that listeners all around the world can request to hear music on the radio station.

8.2.4. Fulfilling legal requirements

It is a legal requirement for all radio stations to keep copies of all the audio output

of the station for 42 days for all holders of a standard UK broadcasting licence

obtained from the national licensing body OffCom. There is a system developed

that has the ability to carry this task of recording all output (Ffitch & Natt, 2005)

but it is unable to communicate with the play-out system at all meaning there is no

ability to log when songs have been played and when. Using the song logs created

by the play-out system, this data can be shared with system developed by Ffitch &

Natt (2005) with the potential to able to extract audio between songs. This has a

particular important with application to investigating complaints or extracting

presenter vocal links for evaluation purposes because often you do not know an

exact time when something is broadcasted but often you will remember when a

song is. This is all part of the package that could make up the complete automated

radio station, a radio station for the 21
st
 century.

- 69 -

9. Bibliography

[Bechofer et al., 2004] Bechofer S., van Harmelen F., Hendler J., Horrocks I.,

McGuinness D.L., Patel-Schneider P.F., Stein L.A., (2004) OWL: Web Ontology

Language, a W3C recommendation found at www.W3.org.

[Berners-Lee et al., 1992] Berners-Lee T., Cailliau R., Groff J-F., Pollermann B.,

(1992) World-Wide Web: The information universe, published in Electronic

Networking: Research, Applications and Policy.

[Berners-Lee et al., 2001] Berners-Lee T., Hendler J., Lassila O., (2001) The

Semantic Web, published in Scientific American, 279.

[Brickley & Guha, 2000] Brickley D., Guha R.V., (2000) Resource Definition

Framework (RDF) Schema Specification 1.0, a W3C candidate recommendation

found at www.W3.org.

[Carroll & Stickler, 2004] Carroll J.J., Stickler P., (2004) TRiX: RDF Triples in

XML, Technical Report HPL-2003-268, HP Labs.

[Carroll et al., 2003] Carroll J.J., Dickinson I., Dollin C., Reynolds D., Seabourne

A., Wilkinson K., (2003) JENA: implementing the semantic web

recommendations, Technical Report HPL-2003-146, Hewlett Packard

Laboratories.

[Chandrasekhan et al., 1999] Chandrasekhan B., Josephson J.R., Benjamins V.R.,

(1999) What are Ontologies and why do we need them?, published in IEEE

Intelligent Systems 14(1):pp. 20–26.

[Chen et al., 2003] Chen H., Ding L., Finin T., Zou Y., (2003) TAGA: Using

Semantic Web Technologies in Multi-Agent Systems, proceedings of the 5th

international conference on Electronic commerce.

[Costello et al., 1999] Costello R., Rosenthal A., Seligman L., (1999) XML,

Databases, and Interoperability, The MITRE Corporation. Federal Database

Colloquium, AFCEA, San Diego.

[Crysandt & Wellhausen, 2003] Crysandt H., Wellhausen J., (2003) Music

Classification with MPEG-7, proceedings: SPIE Storage and Retrieval for Media

Databases.

[Decker et al., 2000] Decker S., Melink S., van Harmelen F., Fensel D., Klien M.,

Broekstra J., Erdmann M., Horrocks I., (2000) The Semantic Web: the roles of

XML and RDF, published in IEEE Internet Computing, Volume 4, Issue 5.

[Franklin & Graesser, 1996] Franklin S., Graesser A., (1996) Is it an Agent, or

just a Program? A taxonomy for Autonomous Agents, Proceedings: The Third

International Workshop on Agent Theories, Architectures, and Languages.

- 70 -

[Grau, 2004] Grau B.C., (2004) A possible simplification of the semantic web

architecture, proceedings of the 13th conference on World Wide Web.

[Guessoum & Briot, 1999] Guessoum Z., Briot J-P., (1999) From active objects to

autonomous agents, published in IEEE Concurrency v. 7, n. 3, p. 68-76.

[Ffitch & Natt, 2005] Ffitch J.P., Natt T.W. (2005) Recording all Output from a

Student Radio Station, Proceedings: 3rd International Linux Audio Conference.

[Haarslev & Moeller, 2003] Haarslev V., Moeller R., (2003) RACER: An OWL

reasoning agent for the semantic web, publish location unknown, paper available

at http://www.cs.concordia.ca/~haarslev/publications/wi-03.pdf.

[Haustein & Pleumann, 2003] Haustein S., Pleumann J., (2002) Is Participation in

the Semantic Web Too Difficult?, proceedings: The Semantic Web - ISWC 2002:

First International Semantic Web Conference.

[Hendler, 2001] Hendler J., (2001) Agents and the Semantic Web, published in

IEEE Intelligent Systems, vol. 16, no. 2, Mar./Apr. 2001, pp. 30–37.

[Horrocks et al., 2003] Horrocks I., Patel-Scheider P.F., van Harmelen F., (2003)

From SHIQ and RDF to OWL: The making of a web ontology language, published

in the Journal of Web Semantics, 2003.

[Klyne & Carroll, 2004] Klyne G., Carroll J.J., (2004) Resource Description

Framework (RDF): Concepts and Abstract Syntax, a W3C Recommendation 10

February 2004, found at www.W3.org.

[Luke et al., 1996] Luke S., Spector L., Rager D. (1996) Ontology-Based

Knowledge Discovery on the World Wide Web, proceedings: The Workshop on

Internet-Based Information Systems, AAAI-96 (Portland, Oregon).

[Nilsson, 1999] Nilsson M. (1999) ID3 tag version 2.3.0: An informal standard,

published at http://www.id3.org/id3v2.3.0.html

[Nwana, 1996] Nwana H.S., (1996) Software Agents: An Overview, published in

Knowledge Engineering Review, Vol 11, No 3, pp. 205-244, October/November

1996

[Papadakis & Douligeris, 2002] Papadakis J., Douligeris C. (2002), Design and

architecture of a digital music library on the web, published in The New Review

of Hypermedia and Multimedia, 2002.

[PPL, 2005] Phonographic Performance Limited (2005), The Webcasting

Reciprocal Agreement, published at

http://www.ppluk.com/ppl/ppl_lc.nsf/PDL/LicBroadcasting-

Internet?Opendocument

- 71 -

[Spyns et al., 2002] Spyns P., Meersman R., Jarra M., (2002) Data Modelling

versus Ontology Engineering, SIGMOD Record 31(4),2002,12-17.

[Steels, 1995] Steels L., (1995) When are robots intelligent autonomous agents?,

published in Robotics and Autonomous Systems, 15:3-9.

[Stone, 1998] Stone P., (1998) Layered Learning in Multiagent Systems,

published by The MIT Press, ISBN 0-262-19438-4.

[Usdin & Graham, 1998] Usdin T., Graham T., (1998) XML: Not a Silver Bullet,

but great pipe wrench, ACM Standard View, vol. 6, 1998, pp. 125-132.

[Wooldridge et al., 1999] Wooldridge M., Jennings N., Kinny, D., (1999) A

Methodology for Agent-Oriented Analysis and Design, presented at Agents ’99,

Seattle WA.

- 72 -

A. Requirements Appendix

1. Music Metadata

1.1. The music meta data must contain:

1.1.1. The artist

1.1.2. The title

1.1.3. The album

1.1.4. The category

1.1.5. The year of release

1.1.6. The length

1.2. The music metadata used for song decision making must be stored

within the music data file to preserve referential integrity

2. System Structure

2.1. Must have a distinct abstraction between the recommender engine,

the request engine and the playout simulator

2.2. The song data must be shared available to all modules

2.3. The song data must be persistent

2.4. The song data must allow concurrency

3. Song recommendation and requests

3.1. The song selection process must not be entirely deterministic, there

must be a random element to it

3.2. The song recommender engine must operate in realtime and be

able to recommend songs faster than it takes to play them

3.3. The system shall be able to take listener requests as long as the

number of requests has not exceeded the request limit and also if

this request obeys the user-defined rules.

3.4. The system shall recommend songs on a by-need basis only

4. Song repetition

4.1. Songs must not be repeated before the minimum period set by user

has elapsed

4.2. Songs by the same artist must not be repeated before the same

minimum period has elapsed

4.3. The minimum repetition value must be set based on time rather

than number of songs played.

4.4. When recommending songs, priority should be given to songs less

recently played

5. Category inference

5.1. Each song must belong to one category

5.2. Categories should be able to be defined as sub-categories or one or

more other categories

5.3. Songs which belong to a category x must also belong to a category

y where y is a parent of x; the songs would also belong to category

z where z is the parent of y.

- 73 -

5.4. Categories with no parents shall be defined as primary categories

5.5. Categories that transitively inherit from three primary categories

should directly inherit from categories with two primary categories

as parents

5.6. Given a category the system must be able to determine the children

and parents

6. Category scheduling and limitation

6.1. The system must allow the user to specify which categories are

allowed to be used to recommend a song from

6.2. The system must allow the user to restrict the number of songs

from each category that can be played

6.3. The categories the songs belong to should be as evenly spread as

possible

6.4. The system must be able to limit to one category

7. Guarding against failure

7.1. Must be robust and must continue to operate even if given bad or

conflicting rules by the admin user even if the choices go against

some of the user’s preferences

7.2. The play-out engine should not assume that every song it is

scheduled to play will actually be able to be played so should be

able to deal with them should they arise.

7.3. The system should be able to deal with over one thousands songs

7.4. Where the rules are such that no song will be recommended, the

rules shall be undone in accordance with the rules precedence

hierarchy.

8. Scheduling features

8.1. Must ensure features are played at approximately on time (if a soft

feature) or exactly on time (if a fixed feature)

9. Songs-to-play queue

9.1. Whenever a song is requested, it shall be added to a songs-to-play

queue.

9.2. The songs-to-play queue should never be less than six minutes in

combined song length and no less then three items long.

9.3. Where the songs-to-play queue fails to meet the minimum

song/item length criteria, additional songs will be requested until

both criteria are met.

- 74 -

B. Code Appendix

This appendix contains the key functions of the project.

B1 recommendNextSong() of class JBDbase.

public int recommendNextSong() {
 Statement stmt = null;
 ResultSet rs = null;
 int songrec = -2; //-2 is the error code for 'error while
attempting to recover'
 String catchosen = getWeightedRandomCat();
 if (catchosen!=null) {
 songrec = -1; //-1 is the error code for 'no valid song for
valid cat'
 String[] catchildren = CatReader.getChildren(catchosen);
 String wherestatement = new String();
 if (catchildren!=null) {
 wherestatement = "WHERE (category IN ('" + catchosen
+ "'";
 for (int i = 0; i < catchildren.length; i++) {
 wherestatement = wherestatement + ", '" + catchildren[i] +
"'";
 }
 wherestatement = wherestatement + ") AND last_played < " +
(System.currentTimeMillis()-getRepetitionThreshold()*60*1000) + ")";
 }
 else wherestatement = "WHERE (category=catchosen)";
 try {
 stmt = conn.createStatement();
 stmt.execute("SELECT song_id,last_played,rand_seed,category
FROM SONGLIST " + wherestatement + " ORDER BY last_played ASC,rand_seed
ASC;");
 rs = stmt.getResultSet();
 rs.first(); //If there are no songs, this will throw an
exception which is handled
 songrec = rs.getInt(1);
 stmt.execute("UPDATE cat_quota,categories SET
cat_quota.num=cat_quota.num-1 WHERE cat_name='" + catchosen + "' AND
cat_quota.cat_id=categories.cat_id;");
 stmt.execute("SELECT SUM(num) FROM cat_quota;");
 rs = stmt.getResultSet();
 rs.first();
 if (rs.getInt(1) == 0) {
 appendSysLog("QUOTA","WARNING","All categories now
have quota zero");
 refreshQuotas();
 }
 }
 catch (Exception e) {
 System.out.println("No valid song found for category:
" + catchosen);
 appendSysLog("RECOMMEND", "WARNING","No valid song
found for category: " + catchosen);
 try {
 stmt.execute("INSERT INTO banned (cat_name)
VALUES ('" + catchosen + "');");
 }
 catch (Exception f) {
 System.out.println(f);
 }

- 75 -

 }
 finally {
 try {
 if (songrec>-1) refreshBannedCats(); //If a
valid song has been selected, delete all banned
 rs.close();
 stmt.close();
 }
 catch (Exception g) {
 System.out.println("In method
recommendNextSong (while closing resources): " + g);
 }
 }
 if (songrec>-1) {
 System.out.println("Just recommended a song from
quota: " + catchosen);
 appendSysLog("RECOMMEND", "ACTION","Recommended a song from
quota: " + catchosen);
 }
 }
 else {
 try {
 stmt = conn.createStatement();
 stmt.execute("SELECT
song_id,last_played,rand_seed,category FROM SONGLIST ORDER BY last_played
ASC,rand_seed ASC;");
 rs = stmt.getResultSet();
 rs.first();
 songrec = rs.getInt(1);
 }
 catch (Exception e) {
 System.out.println("In method recommendNextSong
(recovery from 'no cat' section): " + e);
 }
 System.out.println("All valid categories are producing songs too
recently played, recommended song based on <null> category.");
 appendSysLog("RECOMMEND", "WARNING","All valid categories are
producing songs too recently played, recommended song based on <null>
category.");
 refreshQuotas();
 refreshBannedCats();
 }
 return songrec;
}

B2 costToCat() of class JBDbase

public int costToCat(String thecat) {
//Given a category name, this function attempts to decrement
//it's quota OR where it's quota is implicit, attempts to
//decrement one of its *parents* quotas.
 Statement stmt = null;
 ResultSet rs = null;
 int returnval = -1;
 try {
 stmt = conn.createStatement();
 String sqlstatement = "SELECT
cat_quota.num,categories.cat_name FROM cat_quota,categories WHERE
categories.cat_name = '" + thecat + "' AND categories.cat_id =
cat_quota.cat_id;";
 stmt.execute(sqlstatement);
 rs = stmt.getResultSet();
 rs.first();

- 76 -

 int quotaleft = rs.getInt(1);
 if (quotaleft != 0) {
 returnval = 0; //return value of '0' means
successfully costed
 sqlstatement = "UPDATE cat_quota,categories SET
cat_quota.num = cat_quota.num - 1 WHERE categories.cat_name = '" + thecat
+ "' AND categories.cat_id = cat_quota.cat_id;";
 System.out.println(sqlstatement);
 stmt.execute(sqlstatement);
 }
 }
 catch (Exception e) {
 String[] catparents = CatReader.getParents(thecat);
 String wherestatement = new String();
 wherestatement = "WHERE (categories.cat_name IN ('" +
catparents[0] + "'";
 for (int i = 1; i < catparents.length; i++) {
 wherestatement = wherestatement + ", '" +
catparents[i] + "'";
 }
 wherestatement = wherestatement + ") AND categories.cat_id =
cat_quota.cat_id)";
 try {
 stmt = conn.createStatement();
 String sqlstatement = "SELECT
cat_quota.cat_id,cat_quota.num FROM cat_quota,categories " +
wherestatement + " ORDER BY cat_quota.num DESC;";
 stmt.execute(sqlstatement);
 rs = stmt.getResultSet();
 rs.first();
 int quotaleft = rs.getInt(2);
 if (quotaleft != 0) {
 int catid = rs.getInt(1);
 //Decrements the quota
 stmt.execute("UPDATE cat_quota SET num=num-1
WHERE cat_id = " + catid + ";");
 returnval = 0;
 }
 }
 catch (Exception f) { //Ignore
 }
 }
 finally {
 try {
 rs.close();
 stmt.close();
 }
 catch (Exception g) { //Ignore
 }
 }
 return returnval; //If it returns '0' then it has been costed
successfully
 //If it returns '-1' then it was
unable to cost (quota=0)
}

B3 enQueue() of class JBDbase

public void enQueue(int index) {
/** Inserts a new song in the queue and marks the 'last_played' field of
said song as current system time*/
 int lastindexinqueue = getQueueItemLength();
 Statement stmt = null;

- 77 -

 ResultSet rs = null;
 try {
 stmt = conn.createStatement();
 stmt.execute("INSERT INTO QUEUE (song_id,num_in_queue)
VALUES ("+index+","+ (lastindexinqueue+1) + ");");
 long currtime = System.currentTimeMillis();
 //Ensures that the same song is not repeated by setting the
last played to current time-stamp
 stmt.execute("UPDATE SONGLIST SET last_played=" + currtime +
" WHERE song_id=" + index + ";");
 //Ensures that the same artist is not repeated as well
 stmt.execute("SELECT artist FROM songlist WHERE song_id=" +
index + ";");
 rs = stmt.getResultSet();
 rs.first();
 String theartist = rs.getString(1);
 stmt.execute("UPDATE songlist SET last_played=" + (currtime-
(getRepetitionThreshold()*30*1000)) + " WHERE artist='" + theartist +
"';");
 if (rs!=null) rs.close();
 if (stmt!=null) stmt.close();
 }
 catch (Exception e) {
 System.out.println("In function enQueue: " + e);
 }
}

B4 recommenderEngine (whole class)

package uk.ac.bath.cs2ccd.phase3;

import uk.ac.bath.cs2ccd.JukeBoxDatabase.*;

import java.util.Date;

public class RecommenderEngine {

public static void main(String[] args) {

JBDbase dbase = new JBDbase(); //Tag database and queue are updated

int nextsong = -1;

nextsong = doRecommendAndEnqueueSong(dbase);
System.out.println("I've just recommended song '" +
dbase.getFilename(nextsong) + "'");
dbase.appendSysLog("RECOMMEND","ACTION","Recommended song \"" +
dbase.getFilename(nextsong) + "\"");
nextsong = doRecommendAndEnqueueSong(dbase);
System.out.println("I've just recommended song '" +
dbase.getFilename(nextsong) + "'");
dbase.appendSysLog("RECOMMEND","ACTION","Recommended song \"" +
dbase.getFilename(nextsong) + "\"");
nextsong = doRecommendAndEnqueueSong(dbase);
System.out.println("I've just recommended song '" +
dbase.getFilename(nextsong) + "'");
dbase.appendSysLog("RECOMMEND","ACTION","Recommended song \"" +
dbase.getFilename(nextsong) + "\"");
Date daterightnow = new Date(System.currentTimeMillis());
System.out.println("--- [" + daterightnow.toString()+ "]");

while(true) {

- 78 -

 if (dbase.getQueueItemLength() < 3 || dbase.getQueueTimeLength() <
350) { //Monitors the queue
 nextsong = doRecommendAndEnqueueSong(dbase);
 System.out.println("I've just recommended song '" +
dbase.getFilename(nextsong) + "'");
 dbase.appendSysLog("RECOMMEND","ACTION","Recommended song \"" +
dbase.getFilename(nextsong) + "\"");
 Date rightnow = new Date(System.currentTimeMillis());
 System.out.println("--- ["+rightnow.toString()+"]");
 }
 try {
 Thread.sleep(10000); //Prevents a busy loop
// Thread.sleep(60000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
}

}

public static int doRecommendAndEnqueueSong(JBDbase dbase) {

int nextsong = -1;

while (nextsong==-1) { //Iterates the song recommend method until valid
one recommended
 nextsong = dbase.recommendNextSong();
}
dbase.enQueue(nextsong);

return nextsong;
}

}

B5 catReader (whole class)

package uk.ac.bath.cs2ccd.JukeBoxDatabase;

import com.hp.hpl.jena.reasoner.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.util.*;

public class CatReader {

public static String[] getParents(String catname) {

Model schema = ModelLoader.loadModel("OWLSchema.owl"); //Loads the schema
file
Model data = ModelLoader.loadModel("OWLData.owl"); //Loads the data file
Reasoner reasoner = ReasonerRegistry.getOWLReasoner();
reasoner = reasoner.bindSchema(schema);
InfModel infmodel = ModelFactory.createInfModel(reasoner, data);

//By setting p,o,s this is setting up the inference statement
//o is NULL because object is what is being extracted
//p is hasParent
//s is the category in question, so all combine to ask the question
//"What are the parents of catname?"

Property p = infmodel.getProperty("cs2ccd:bath-ac-uk:eg/hasParent");
Resource o = null;

- 79 -

Model m = infmodel;
Resource s = infmodel.getResource("cs2ccd:bath-ac-uk:eg/" + catname);
int numparents = 0;
String[] parents = new String[255];

for (StmtIterator i = m.listStatements(s,p,o); i.hasNext();) {
//Parses all statements and extracts the parents
 Statement stmt = i.nextStatement();
 String obj = stmt.getObject().toString().substring(21);
 parents[numparents] = obj;
 numparents++;
}
String[] retval = null;
if (numparents != 0) {
 retval = new String[numparents];
 for (int i = 0; i < numparents; i++) {
 retval[i]=parents[i];
 }
}
return retval; //returns the parents in a string array
}

public static String[] getChildren(String catname) {

Model schema = ModelLoader.loadModel("OWLSchema.owl");
Model data = ModelLoader.loadModel("OWLData.owl");
Reasoner reasoner = ReasonerRegistry.getOWLReasoner();
reasoner = reasoner.bindSchema(schema);
InfModel infmodel = ModelFactory.createInfModel(reasoner, data);

//Similar to getparents except it is the subject that is NULL
//and o is set to catname
//The question that is being asked is "Who has catname as their parent"

Property p = infmodel.getProperty("cs2ccd:bath-ac-uk:eg/hasParent");
Resource s = null;
Model m = infmodel;
Resource o = infmodel.getResource("cs2ccd:bath-ac-uk:eg/" + catname);
int numchildren = 0;
String[] children = new String[255];

for (StmtIterator i = m.listStatements(s,p,o); i.hasNext();) {
 Statement stmt = i.nextStatement();
 String subj = stmt.getSubject().getLocalName();
 children[numchildren] = subj;
 numchildren++;
}
String[] retval = null;
if (numchildren != 0) {
 retval = new String[numchildren];
 for (int i = 0; i < numchildren; i++) {
 retval[i]=children[i];
 }
}
return retval;
}

}

- 80 -

C. Category permutations Appendix

Primary
Colours Secondary Colours Tertiary Colours

Genres

Rock RockPop RockPopRecent

Dance RockAlternative RockPopClassics

HipHop RockRecent RockAlternativeRecent

ChillOut RockClassics RockAlternativeClassics

DnB DancePop DancePopRecent

SoulnRnB DanceAlternative DancePopClassics

 DanceRecent DanceAlternativeRecent

Categories DanceClassics DanceAlternativeClassics

Pop HipHopPop HipHopPopRecent

Alternative HipHopAlternative HipHopPopClassics

 HipHopRecent HipHopAlternativeRecent

Era HipHopClassics HipHopAlternativeClassics

Recent ChillOutPop ChillOutPopRecent

Classics ChillOutAlternative ChillOutPopClassics

 ChillOutRecent ChillOutAlternativeRecent

 ChillOutClassics ChillOutAlternativeClassics

 DnBPop DnBPopRecent

 DnBAlternative DnBPopClassics

 DnBRecent DnBAlternativeRecent

 DnBClassics DnBAlternativeClassics

 SoulnRnBPop SoulnRnBPopRecent

 SoulnRnBAlternative SoulnRnBPopClassics

 SoulnRnBRecent SoulnRnBAlternativeRecent

 SoulnRnBClassics SoulnRnBAlternativeClassics

 PopRecent

 PopClassics

 AlternativeRecent

 AlternativeClassics

- 81 -

D. Test Dump Appendix

1 PLAY WARNING
Checked queue and found 0 items. Player is paused and channel is silent.
Next check 20 seconds.

2 PLAY WARNING
Checked queue and found 0 items. Player is paused and channel is silent.
Next check 20 seconds.

3 PLAY WARNING
Checked queue and found 0 items. Player is paused and channel is silent.
 Next check 20 seconds.

4 RECOMMEND ACTION Recommended a song from quota: Recent

5 RECOMMEND ACTION Recommended song "David Wrench - Superhorny.mp3"

6 RECOMMEND ACTION Recommended a song from quota: DnB

7 RECOMMEND ACTION Recommended song "Total Science - Nosher [Baron VIP Mix].mp3"

8 RECOMMEND ACTION Recommended a song from quota: HipHop

9 RECOMMEND ACTION Recommended song "The Black Eyed Peas - Shut Up.mp3"

10 PLAY ACTION
Now Playing: "David Wrench - Superhorny.mp3", length: 210 seconds,
category: PopRecent

11 RECOMMEND ACTION Recommended a song from quota: Recent

12 RECOMMEND ACTION Recommended song "El Presidente - Without You.mp3"

13 PLAY ACTION
Now Playing: "Total Science - Nosher [Baron VIP Mix].mp3", length: 342
 seconds, category: DnB

14 RECOMMEND WARNING No valid song found for category: DnB

15 RECOMMEND ACTION Recommended a song from quota: Recent

16 RECOMMEND ACTION Recommended song "Dogs Die In Hot Cars - Godhopping.mp3"

17 PLAY ACTION
Now Playing: "The Black Eyed Peas - Shut Up.mp3", length: 222 seconds,
 category: HipHopPop

18 RECOMMEND ACTION Recommended a song from quota: Pop

19 RECOMMEND ACTION Recommended song "The Coral - Bill McCai.mp3"

20 PLAY ACTION
Now Playing: "El Presidente - Without You.mp3", length: 203 seconds,
 category: RockRecent

21 RECOMMEND ACTION Recommended a song from quota: Rock

22 RECOMMEND ACTION Recommended song "Rammstein - Asche Zu Asche.mp3"

23 PLAY ACTION
Now Playing: "Dogs Die In Hot Cars - Godhopping.mp3", length: 156 seconds
, category: RockRecent

24 RECOMMEND ACTION Recommended a song from quota: Recent

25 RECOMMEND ACTION Recommended song "Moby - Lift Me Up.mp3"

26 PLAY ACTION
Now Playing: "The Coral - Bill McCai.mp3", length: 156 seconds, category
: RockPop

27 RECOMMEND ACTION Recommended a song from quota: Rock

28 RECOMMEND ACTION Recommended song "Hundred Reasons - Silver.mp3"

29 PLAY ACTION
Now Playing: "Rammstein - Asche Zu Asche.mp3", length: 233 seconds, category:
RockAlternative

30 RECOMMEND ACTION Recommended a song from quota: ChillOut

31 RECOMMEND ACTION Recommended song "Phil Collins - In the air tonight.mp3"

32 PLAY ACTION
Now Playing: "Moby - Lift Me Up.mp3", length: 193 seconds, category
: DancePopRecent

33 RECOMMEND ACTION Recommended a song from quota: Pop

34 RECOMMEND ACTION Recommended song "Eiffel 65 - Blue (Da ba dee).mp3"

35 PLAY ACTION
Now Playing: "Hundred Reasons - Silver.mp3", length: 197 seconds,
category: Rock

36 RECOMMEND ACTION Recommended a song from quota: ChillOut

37 RECOMMEND ACTION Recommended song "Black Box Recorder - The Facts Of Life.mp3"

38 PLAY ACTION
Now Playing: "Phil Collins - In the air tonight.mp3", length: 329 seconds,
category: ChillOutClassics

39 RECOMMEND ACTION Recommended a song from quota: ChillOut

40 RECOMMEND ACTION Recommended song "Plumb - Damaged [Broke Down Palace Soundtrack].mp3"

41 PLAY ACTION
Now Playing: "Eiffel 65 - Blue (Da ba dee).mp3", length: 218 seconds,
category: DancePop

42 RECOMMEND ACTION Recommended a song from quota: HipHop

43 RECOMMEND ACTION Recommended song "Kid Rock - Cowboy.mp3"

- 82 -

44 PLAY ACTION
Now Playing: "Black Box Recorder - The Facts Of Life.mp3", length: 273
 seconds, category: ChillOutClassics

45 RECOMMEND ACTION Recommended a song from quota: Recent

46 RECOMMEND ACTION
Recommended song "03 - chemicalbrothersremixed.com - Believe (Belief
, Elektric Cowboy).mp3"

47 PLAY ACTION
Now Playing: "Plumb - Damaged [Broke Down Palace Soundtrack].mp3",
 length: 230 seconds, category: ChillOut

48 RECOMMEND ACTION Recommended a song from quota: Dance

49 RECOMMEND ACTION Recommended song "Binary Finary - 1999.mp3"

50 PLAY ACTION
Now Playing: "Kid Rock - Cowboy.mp3", length: 256 seconds, category
: HipHopClassics

51 RECOMMEND WARNING No valid song found for category: DnB

52 RECOMMEND ACTION Recommended a song from quota: Recent

53 RECOMMEND ACTION Recommended song "Portobella - Covered In Punk.mp3"

54 PLAY ACTION
Now Playing: "03 - chemicalbrothersremixed.com - Believe (Belief, Elektric
 Cowboy).mp3", length: 335 seconds, category: DanceAlternativeRecent

55 RECOMMEND ACTION Recommended a song from quota: ChillOut

56 RECOMMEND ACTION Recommended song "Lemon Jelly - Come.mp3"

57 PLAY ACTION
Now Playing: "Binary Finary - 1999.mp3", length: 184 seconds, category:
 DanceClassics

58 RECOMMEND WARNING No valid song found for category: DnB

59 RECOMMEND ACTION Recommended a song from quota: Pop

60 RECOMMEND ACTION Recommended song "Pink - Missundaztood - 07- Just Like A Pill.mp3"

61 PLAY ACTION
Now Playing: "Portobella - Covered In Punk.mp3", length: 207 seconds,
category: RockAlternativeRecent

62 RECOMMEND ACTION Recommended a song from quota: Recent

63 RECOMMEND ACTION Recommended song "06-the_crystal_method-realizer-ph.mp3"

64 PLAY ACTION
Now Playing: "Lemon Jelly - Come.mp3", length: 236 seconds, category:
 ChillOut

65 RECOMMEND ACTION Recommended a song from quota: Recent

66 RECOMMEND ACTION Recommended song "Fatboy Slim - The Journey.mp3"

67 PLAY ACTION
Now Playing: "Pink - Missundaztood - 07- Just Like A Pill.mp3", length:
 235 seconds, category: Pop

68 RECOMMEND ACTION Recommended a song from quota: Recent

69 RECOMMEND ACTION Recommended song "Eminem - Like Toy Soldiers.mp3"

70 PLAY ACTION
Now Playing: "06-the_crystal_method-realizer-ph.mp3", length: 227
seconds, category: DanceAlternativeRecent

71 RECOMMEND ACTION Recommended a song from quota: HipHop

72 RECOMMEND ACTION Recommended song "Kelis - Milkshake.mp3"

73 PLAY ACTION
Now Playing: "Fatboy Slim - The Journey.mp3", length: 275 seconds,
 category: DanceRecent

74 RECOMMEND ACTION Recommended a song from quota: Dance

75 RECOMMEND ACTION Recommended song "Simple Kid - Drugs.mp3"

76 PLAY ACTION
Now Playing: "Eminem - Like Toy Soldiers.mp3", length: 295 seconds,
 category: HipHopRecent

77 RECOMMEND ACTION Recommended a song from quota: Pop

78 RECOMMEND ACTION Recommended song "Garbage - I Think im Paranoid.mp3"

79 PLAY ACTION
Now Playing: "Kelis - Milkshake.mp3", length: 179 seconds, category:
HipHopPop

80 RECOMMEND ACTION Recommended a song from quota: Recent

81 RECOMMEND ACTION Recommended song "Kaiser Chiefs - Oh My God.mp3"

82 PLAY ACTION
Now Playing: "Simple Kid - Drugs.mp3", length: 212 seconds, category:
DanceAlternative

83 RECOMMEND ACTION Recommended a song from quota: Dance

84 RECOMMEND ACTION Recommended song "York - The Awakening.mp3"

85 PLAY ACTION
Now Playing: "Garbage - I Think im Paranoid.mp3", length: 215 seconds
, category: RockPopClassics

86 RECOMMEND ACTION Recommended a song from quota: Pop

87 RECOMMEND ACTION Recommended song "Wheatus - Teenage Dirtbag.mp3"

88 PLAY ACTION
Now Playing: "Kaiser Chiefs - Oh My God.mp3", length: 214 seconds,
 category: RockRecent

- 83 -

89 RECOMMEND ACTION Recommended a song from quota: Recent

90 RECOMMEND ACTION Recommended song "Paul Van Dyk - Crush.mp3"

91 PLAY ACTION
Now Playing: "York - The Awakening.mp3", length: 195 seconds, category:
 Dance

92 RECOMMEND ACTION Recommended a song from quota: Pop

93 RECOMMEND ACTION Recommended song "Made In London - Dirty Water.mp3"

94 PLAY ACTION
Now Playing: "Wheatus - Teenage Dirtbag.mp3", length: 230 seconds,
category: Pop

95 RECOMMEND ACTION Recommended a song from quota: Rock

96 RECOMMEND ACTION Recommended song "U2 - The Sweetest Thing.mp3"

97 PLAY ACTION
Now Playing: "Paul Van Dyk - Crush.mp3", length: 227 seconds, category
: DanceRecent

98 RECOMMEND WARNING No valid song found for category: DnB

99 RECOMMEND ACTION Recommended a song from quota: Pop

100 RECOMMEND ACTION Recommended song "04_daft_punk-harder_better_faster_stronger-wAx.mp3"

101 PLAY ACTION
Now Playing: "Made In London - Dirty Water.mp3", length: 274 seconds,
category: Pop

102 RECOMMEND WARNING No valid song found for category: DnB

103 RECOMMEND ACTION Recommended a song from quota: Rock

104 RECOMMEND ACTION Recommended song "Kid Symphony - Hands On The Money.mp3"

105 PLAY ACTION
Now Playing: "U2 - The Sweetest Thing.mp3", length: 176 seconds, category
: RockClassics

106 RECOMMEND ACTION Recommended a song from quota: HipHop

107 RECOMMEND ACTION Recommended song "Bubba Sparxxx - Deliverance.mp3"

108 PLAY ACTION
Now Playing: "04_daft_punk-harder_better_faster_stronger-wAx.mp3", length:
223 seconds, category: DancePopClassics

109 RECOMMEND ACTION Recommended a song from quota: Recent

110 RECOMMEND ACTION Recommended song "osymyso-Its All About Fun, Right.mp3"

111 PLAY ACTION
Now Playing: "Kid Symphony - Hands On The Money.mp3", length: 149 seconds,
 category: RockAlternative

112 RECOMMEND ACTION Recommended a song from quota: Pop

113 RECOMMEND ACTION Recommended song "Bonnie Tyler - I need a Hero (Footloose Soundtrack).mp3"

114 PLAY ACTION
Now Playing: "Bubba Sparxxx - Deliverance.mp3", length: 247 seconds,
category: HipHop

115 RECOMMEND ACTION Recommended a song from quota: Pop

116 RECOMMEND ACTION Recommended song "Levellers - Just The One.mp3"

117 PLAY ACTION
Now Playing: "osymyso-Its All About Fun, Right.mp3", length: 132 seconds,
 category: DanceAlternativeRecent

118 RECOMMEND ACTION Recommended a song from quota: ChillOut

119 RECOMMEND ACTION Recommended song "Sugababes - Shape.mp3"

120 PLAY ACTION
Now Playing: "Bonnie Tyler - I need a Hero (Footloose Soundtrack).mp3"
, length: 348 seconds, category: PopClassics

121 RECOMMEND ACTION Recommended a song from quota: Pop

122 RECOMMEND ACTION Recommended song "Chuck Berry - Johnny B. Goode.mp3"

123 PLAY ACTION
Now Playing: "Levellers - Just The One.mp3", length: 165 seconds,
category: PopClassics

124 RECOMMEND WARNING No valid song found for category: DnB

125 RECOMMEND ACTION Recommended a song from quota: Rock

126 RECOMMEND ACTION Recommended song "Adam Green - Jessica.mp3"

127 PLAY ACTION
Now Playing: "Sugababes - Shape.mp3", length: 249 seconds, category
: ChillOutPop

128 RECOMMEND WARNING No valid song found for category: Recent

129 RECOMMEND ACTION Recommended a song from quota: Dance

130 RECOMMEND ACTION Recommended song "Gouryella - Gouryella.mp3"

131 PLAY ACTION
Now Playing: "Chuck Berry - Johnny B. Goode.mp3", length: 157 seconds,
category: PopClassics

132 RECOMMEND WARNING No valid song found for category: HipHop

133 RECOMMEND WARNING No valid song found for category: Recent

134 RECOMMEND ACTION Recommended a song from quota: Pop

- 84 -

135 RECOMMEND ACTION Recommended song "Crazy Town - Butterfly.mp3"

136 PLAY ACTION Now Playing: "Adam Green - Jessica.mp3", length: 151 seconds, category: Rock

137 RECOMMEND WARNING No valid song found for category: Recent

138 RECOMMEND WARNING No valid song found for category: DnB

139 RECOMMEND ACTION Recommended a song from quota: Pop

140 RECOMMEND ACTION Recommended song "Robbie Williams - Millenium.mp3"

141 PLAY ACTION
Now Playing: "Gouryella - Gouryella.mp3", length: 210 seconds, category:
 DanceClassics

142 RECOMMEND WARNING No valid song found for category: DnB

143 RECOMMEND WARNING No valid song found for category: Recent

144 RECOMMEND WARNING No valid song found for category: HipHop

145 RECOMMEND WARNI3NG
All valid categories are producing songs too recently played, recommended
 song based on <null> category.

146 QUOTA ACTION Refreshing quotas back to defaults

147 RECOMMEND ACTION Recommended song "Beenie Man - Dude.mp3"

148 PLAY ACTION
Now Playing: "Crazy Town - Butterfly.mp3", length: 212 seconds, category:
 RockPopClassics

149 RECOMMEND WARNING No valid song found for category: Recent

150 RECOMMEND WARNING No valid song found for category: HipHop

151 RECOMMEND ACTION Recommended a song from quota: ChillOut

152 RECOMMEND ACTION Recommended song "01 Such Great Heights.mp3"

153 PLAY ACTION
Now Playing: "Robbie Williams - Millenium.mp3", length: 232 seconds,
category: Pop

154 RECOMMEND WARNING No valid song found for category: Recent

155 RECOMMEND ACTION Recommended a song from quota: Rock

156 RECOMMEND ACTION Recommended song "Ian Drury - Sex and Drugs and Rock and Roll.MP3"

