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Jog my shape memory—dynamics as a
challenge in mathematical materials
science

BY JOHANNES ZIMMER
Department of Mathematical Sciences, University of Bath, UK

Many complex phenomena in nature exhibit multiple scales. The challenge is to
understand how the effects on one scale influence those on another. This review dis-
cusses some aspects of a multiscale analysis of martensitic materials as a prominent
example of materials which exhibit nuanced structures and surprising implications
on various scales. The emphasis is on dynamic issues. Some speculations are offered
on future research directions.

Keywords: Phase transitions, martensite, multiscale analysis

1. What are martensites?

Everyone has seen phase transitions, i.e., a transformation of a (thermodynamic)
system from one phase to another. Melting ice, freezing water or condensing vapour
are some classic examples. Less well known, but equally important, are phase tran-
sitions occurring between different solid states. Around 1890, the German metallur-
gist Martens discovered something fairly unexpected, taking advantage of strident
progress in optical technology in the 19th century. He inspected steel under a mi-
croscope, discovering complex, needle-like structures consisting of different solid
phases, which form distinctive patterns, invisible to the naked eye. Two examples
are shown in figure 1. Today, such patterns (ranging from a few nanometres to
a few microns) are commonly called microstructures. The microstructure strongly
influences the mechanical properties of the material. For example, the pattern in
hard steels is usually more coherent than that in inferior steels.

In honour of Martens’ discovery, solid-to-solid phase transitions, where the lat-
tice structure changes abruptly at some critical temperature, are called marten-
sitic phase transitions. Obvious questions arising in the context of martensites
are: how does the microstructure form? How does it evolve? What is its influ-
ence on macroscopic properties? Our understanding of dynamic issues is still in its
infancy. In this review article, some recent contributions are outlined, and some
future challenges are sketched. To convey the main ideas, we ignore many com-
plicated aspects of real microstructure, preferring to discuss idealised situations.
Space limitations oblige us to omit a discussion of many valuable contributions.
Fortunately, several excellent surveys offer a rather different emphasis, for example
Roubi¢ek (2000) and the monograph by Bhattacharya (2003). Sethna’s web-site
http://www.lassp.cornell.edu/sethna/Tweed/ makes for a fascinating read.
The state of the art in the passage from quantum chemistry to crystalline (mi-
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2 J. Zimmer

Figure 1. Examples of microstructure in martensitic materials. (a) Reconstructive transfor-
mation. The photograph shows martensite in 0.8% carbon steel. (b) Weak transformation.
The photograph shows the formation of needles and wedges in NiTi.
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Figure 2. Cubic-to-tetragonal transition. For this transition, the austenitic phase, stable
above the critical temperature, is cubic, while the martensitic phase, stable below the
critical temperature, is tetragonal. There are three variants of martensite.

croscopic) structures and their macroscopic limits is described by Le Bris & Lions

(2005).
The mathematical treatment of microstructured materials dates from the pio-
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Figure 3. Schematic plot of the energy landscape for the cubic-to-tetragonal transition
at different temperatures. The vertical axes represents the density of the potential en-
ergy, while the horizontal plane symbolises the different crystalline states (in symmetric
coordinates). (a) Above the critical temperature, the cubic lattice is stable, i.e., has the
smallest potential energy. (b) At the critical temperature 6., the austenitic (cubic) and
the martensitic (tetragonal) phases are stable.

neering work by Ball & James (1987, 1992), Ericksen (1980) and Chipot & Kinder-
lehrer (1988). There is an intricate theory based on the concept of global energy
minimisation. This has proved highly successful in explaining many phenomena of
elastic and plastic behaviour of materials with microstructures. A recent trend is
to investigate dynamic aspects, developing a dynamic theory for situations where
the material does not attain the ground state (the configuration with the lowest
energy). Ball et al. (1991) and Friesecke & McLeod (1996) have made early con-
tributions which highlight the importance of dynamical aspects, e.g., by acting as
a selection criterion, preventing martensitic materials from forming arbitrarily fine
microstructures. For a model proposed by Ball et al. (1991), Friesecke & McLeod
(1996) study rigorously the dynamics of microstructure formation in a context
where energy minimisation predicts the formation of infinitely fine patterns. In ex-
periments, one typically observes pattern formation on a small but finite length
scale. This effect can also be seen in the dynamic model (Friesecke & McLeod,
1996). Friesecke & McLeod (1996) prove that for suitable initial data (with strain
fields having a transition layer; see §2 for the definition of strain), the limiting pat-
terns for time going to infinity are not global minimisers, but relative ones. Relative
minimiser are minimisers in the class of patterns with the same positions for the
strain interfaces. One can therefore say that the dynamics selects a relative min-
imiser, rather than a global minimiser. This highlights a stark contract between the
dynamic and the static picture.

We discuss some recent developments, with the following layout: two differ-
ent categories of martensitic materials, characterised by weak and reconstructive
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4 J. Zimmer

transformations, are sketched in §1 (a) respectively §1 (b). Typically, a symmetry
breaking occurs for a weak martensitic transformations at the transition point.
Phase transformations which are not weak are called reconstructive. In §1, we men-
tion the importance of this classification and some surprising consequences: weak
martensitic may exhibit the so-called shape-memory effect (see figure 4); reconstruc-
tive phase transformations occur for example in steels and are irreversible. The rest
of the paper is dedicated to dynamic aspects of martensitic materials and potential
implications beyond martensites. We start the tour in §2 on the continuum scale,
which leads to an investigation on the atomistic scale in §3. A discussion of the
implication on the continuum scale in §3 (c) completes the cycle. An excursion to
dislocation models in §3(d) shows that similar ideas are applicable in a different
context.

(a) Weak martensitic transformations and the shape memory effect

What are weak martensitic transformations, such as in NiTi? Let us start by in-
specting the microstructure and the underlying phase transition, before discussing
a surprising implication on the macroscopic scale. An example of microstructure
arising in NiT1i is shown in figure 1 (b). Weak martensitic transformations are char-
acterised by rapid loss of symmetry of the crystal structure in one direction of
the transformation (a slightly more general definition is given by Bhattacharya
et al. (2004)); they are diffusionless rearrangements of the lattice structure. This is
depicted in figure 2 for the cubic-to-tetragonal transition. If no loads are applied,
above a critical temperature 6., the lattice forming the structure is stable in a cubic
configuration. Should a temperature drop below . occur, three different symmetry-
related tetragonal lattices become stable, and the cubic lattice becomes metastable.
The high-temperature, high-symmetry phase is commonly referred to as austenite,
and the low-temperature, low-symmetry phase is called martensite. Figure 2 shows
that there are three tetragonal variants of martensite for the cubic-to-tetragonal
transformation.

Suppose a shape memory material is initially in the austenitic state, and we
apply an external biaxial load. The material will first deform elastically, as an
“ordinary” elastic material. Once a critical load is reached, it will start to trans-
form under stress to martensite. This is called a stress-induced transformation.
For suitable alignment of the load and the crystallographic axes, one will observe
the formation of martensitic twins (due to the coexistence of different variants of
martensite at temperatures below the critical temperature). This procedure, called
twinning, means that atoms on one side of the twin plane undergo a shear displace-
ment relative to the atoms on the other side, in a direction which is parallel to
the twin plane. It is often favourable (e.g., to accommodate boundary conditions)
to form many interfaces between different martensitic variants. Thus, in this case,
twinning occurs on a fine scale, and a microstructure is generated. The formation of
twin boundaries obviously increases the interfacial energy, but typically facilitates
a very significant reduction of the elastic strain energy of the bulk.

It is not hard to see that the coexistence of several martensitic phases is at the
basis of the intriguing shape memory effect, which occurs for example in Nitinol
(see figure 4): a deformation can be reversed upon heating. The transformation is
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Figure 4. The shape memory effect. Macroscopically, small deformations (depending on
the material, typically up to 8%) disappear upon heating the material beyond the critical
temperature 6.. When cooling down to temperatures below the critical temperature, the
specimen remains macroscopically unchanged.

reversible, and the cycle can be repeated many times. Bhattacharya (2003) offers
an excellent discussion of how microstructures give rise to the shape memory effect.

The shape memory effect has numerous applications in medical and engineer-
ing devices (Otsuka & Wayman, 1998). These materials are candidates for artificial
muscles (de Gennes & Okumura, 2003). Since, always with the shape memory effect
in mind, Nitinol enjoys an adaptivity and flexibility ordinary materials are miss-
ing, it is regarded as an adaptive material. Lessons learnt from the shape memory
effect can often be transfered to similar effects occurring in other adaptive mate-
rials, such as ferromagnetic shape memory alloys and ferroelectrics. Salje (1993)
discusses martensitic phase changes in metals. Olson & Hartman (1982) observe
martensitic phase transformations in biological systems, namely the tail sheath of
the T4 bacteriophage virus. A relatively sound modelling on the crystalline level
makes martensitic materials an ideal sand box for a mathematical analysis of mul-
tiscale phenomena. Before discussing mathematical models for the shape memory
effect, we first contrast the martensitic transformations in shape memory alloys
with those occurring in steels.

(b) Martensites in steel

Steel is another example of a material forming martensitic structures, and the
microstructure plays a decisive role in the mechanical properties. Notably, marten-
sitic transformations are induced in steel by quenching (rapid cooling), to enhance
the alloy’s strength (Olson & Owen, 1992). An ongoing endeavour in casting and
rolling of steel products is to influence the microstructure and optimise it in the
production process. This industrially relevant problem is not quite fully understood.
The challenges are close at hand: steel is usually rolled in mills in order to produce
strips of a desired thickness and width. Typically, in a so-called hot rolling mill, the
strip enters at a speed of 1 m/s at a temperature of 1100°C, and exits at 900°C
with a speed of 3-15 m/s. In the subsequent cooling section the strip is cooled
down with water to about 500-600°C (M. Kurz and M. Metzger 2006, personal
communication). The temperature gradient influences the microstructure, and the
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6 J. Zimmer

aim is to control a structure, at most, of a few microns at such high speeds and
temperatures!

A stark contrast is exhibited between microstructures in steel and shape memory
alloys. In the latter, the microstructure formed at low temperature disappears upon
reheating, and the transformation is reversible (Otsuka & Wayman, 1998). In the
former, a microstructure generated by quenching remains essentially unchanged
upon loading or heating, and the transformation is not reversible (Olson & Owen,
1992).

Bhattacharya et al. (2004) recently accounted for this difference on the basis of
the symmetry of phases involved in the transition. Specifically, they showed that
two different classes of martensitic transformations are plausible. One class, which
includes steels, sports “cheap” plastic deformations (via lattice-invariant shears) in
the sense that such a deformation is energetically not more expensive than a phase
transition. The occurrence of plastic deformations then introduces an irreversibility.
For the other class, the energetic price for lattice-invariant shears can be much
higher than that for phase changes. Consequently, these transformations can be
reversible. The common shape memory alloys belong to this class.

2. Macroscopic models for shape memory alloys

The question is how to model martensitic materials, and in particular account for
dynamic effects in shape memory materials. We begin the journey through math-
ematical models for shape memory alloys on the macroscopic level, before travel-
ling to the microscopic level, and returning to the continuum (macroscopic world).
Though we should pause at the mesoscopic scale to discuss grain boundaries and
the polycrystalline nature of materials and their influence on macroscopic prop-
erties, we rather refer the reader to the literature (Bhattacharya & Kohn, 1997;
Chenchiah & Bhattacharya, 2005; Kruzik & Otto, 2004).

Mathematical models for shape memory alloys are often expressed in terms of
continuum mechanics. Let us assume that, at a fixed time, the material occupies
a region 2 C R3. Then the key variables describing the alloy are the displacement
field u: @ x R — R3 (x,t) — u(x,t), the velocity u(x,t), and the strain Du =

(auj) . Let ® = ®(F) with F € R®>*3 denote the elastic energy density,
k=123

Oxy
which is a function of the deformation gradient. The (Piola-Kirchhoff) stress tensor
fo _ 02(F)
1S O'(F) = “oF -
In classical elastodynamics, the equations of motion are considered as the gov-
erning partial differential equations,

puy = Div(o(Du)) (2.1)

(here and in the following, the dynamics are assumed to take place isothermally,
since many challenges can already be cast in this setting. The temperature will be
below 6., so that several variants are stable).

(a) The elastic energy density

A key ingredient to equation (2.1) is the elastic energy density ®, since it de-
termines the stress tensor o. What is the shape of ® for a shape memory alloy?
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This question proves to be surprisingly tricky. In general, ® = ®(F'), with F de-
noting the deformation, can be written as a function ®(FT F), to account for the
invariance of the energy under a change of coordinates of an observer. Thus, the
energy is a function of the six components of the (right) Cauchy-Green tensor
FTF. For a martensitic material, the energy has to meet a symmetry condition
imposed by the austenitic phase. Symmetric functions in six components with min-
imisers at prescribed positions, correct elastic moduli (second derivatives) and a
phenomenologically correct dependence on the temperature are not easy to write
down explicitly.

Consequently, only a handful of specific examples of energy densities can be
found in the literature. A prominent one is given by James (unpublished notes, 1988)
and Ericksen (1986) for the cubic-to-tetragonal transformation in InT1. Vedantam
(2000) uses irreducible polynomials of the strain tensor to derive an elastic energy
density for CuAINi. A different line of thought introduces symmetry-adapted non-
linear coordinates in conjunction with suitable splines (Zimmer, 2004; Hormann
& Zimmer, 2006); the additional degrees of freedom make it possible to fit elastic
moduli which cannot be fitted with invariant polynomials of lowest order.

There seems to be no general framework to derive macroscopic energy densities
from ab initio calculations. However, Vedantam (2000) specialises his macroscopic
energy density to a shear deformation on a twin plane along the twinning direction
and obtains a remarkable agreement with an energy calculated from molecular
statistics. The approach to combine symmetry-adapted coordinates and splines may
provide a general method to accomodate the wealth of data obtained by ab initio
calculations.

(b) Ill-posed equations of motion

Unfortunately, the problems only start once we have chosen an energy density
and try to solve an initial-boundary value problem for (2.1). To see this, let us
consider the simplest situation, a one-dimensional bar under a tensile force. We
also ignore effects of inertia and consider the equilibrium situation. It is not hard to
see that the equilibrium configuration is generically not uniquely determined; any
of the infinitely many solutions involving a mixture of stable variants may be the
material’s response to the applied force.

It is useful to reformulate this insight in mathematical terms. Since ® is noncon-
vex for low temperatures, the stress tensor will be non-monotone. It is immediate
that the hyperbolicity condition o’(u,) > 0 is thus violated. This implies that
equation (2.1) changes type.

Young measures have been introduced as generalised solutions (Ball & James,
1987). For details we refer the reader to lecture notes by Miiller (1999).

(¢) Rankine-Hugoniot conditions

The ill-posedness of (2.1) arises as a consequence of the coexistence of two
phases. Thus, let us investigate the situation more closely at an interface between
two coexistent phases. For simplicity, we think of the interface as straight. It is con-
venient to take unstressed austenite as the reference configuration; then two marten-
sitic variants meeting at the interface are generated by different deformations, since
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8 J. Zimmer

they are characterised by a distinct crystallographic lattice and orientation. Thus,
at the interface, the strain will be discontinuous.

This simple observation is already the key, as becomes apparent once we apply a
force in this Gedankenexperiment to “jog the shape memory”, i.e., make the phase
boundary move. Assume the force favours one of the two variants at the interface.
Then the interface propagates towards the phase with higher energy, since this is
transformed into the low-energy phase. It is not hard to see that a discontinuity
such as the interface cannot move arbitrarily; the Rankine-Hugoniot conditions
state that, if the interface moves with the velocity s and either the strain u, or the
velocity u are discontinuous at the interface, the following relations must hold:

[o(ue)] = —pli]s,
[[uzﬂs = 7[[1-1‘]]7

where, for a function f(z,t), [f] stands for f(s(¢)+,t) — f(s(t)—,1), i.e., the differ-
ence of the limiting values from the right and from the left.

A moving interface can be seen to dissipate energy, and the amount of dissipa-
tion is measured by the configurational force (or driving force). To define it, we let
{o} := % (o(s(t)+,t) + o(s(t)—, t)) denote the average stress across the discontinu-
ity. Then, the configurational force is

f=1®] = {o} [ua].

The rate of the energy dissipation is then given by fs$. The entropy inequality
requires that fs > 0.

There are two kinds of moving interfaces, subsonic or supersonic with respect to
the sound speed of the surrounding elastic medium, which is here the same for both
phases. Supersonic phase boundaries satisfy the Lax condition for hyperbolic PDEs,
while subsonic phase boundaries violate this condition, and it can be seen that this
leads to an ill-posed initial problem for (2.1). Thus, unless otherwise indicated, we
focus on the subsonic case, since it poses particular challenges.

For subsonic waves, how can physically relevant solutions be singled out to make
the problem well-posed? Abeyaratne & Knowles (1991) introduce a kinetic relation
as additional constitutive information to determine the macroscopic response of the
body. The kinetic relation determines a functional dependence of the configurational
force on a phase boundary and a velocity:

f=17103).

The motivation behind this line of thought is that, according to the principles of
irreversible thermodynamics, the propagation speed of the interface is determined
by the configurational force, even though the laws of thermodynamics only im-
pose restrictions on this relationship without specifying the relationship explicitly
(Abeyaratne & Vedantam, 2003).

(d) Which kinetic relation?

It is not obvious how to derive kinetic relations, and different approaches have
been taken.
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Figure 5. The model of discrete elasticity considered in §3. The atoms are coupled to
their neighbours by nonlinear springs.

One approach is to augment equation (2.1) by regularising terms and derive
kinetic relations from the augmented model. This is a successful strategy, but the
physical meaning of the regularisation is not immediate in the case of shape memory
alloys. The complex nature of martensitic phase transitions, exhibiting a very rich
phenomenology on various scales, casts some doubts on the possibility of choosing a
regularisation on physical grounds, be it by a penalisation of interfaces (capillarity)
or by artificial viscosity.

Alternatively, it is not unreasonable to model kinetic relations phenomenolog-
ically. Abeyaratne & Knowles (1997) calculated kinetic relations for an austenite-
martensite interface in CuAINi and found dry-friction type of behaviour.

Here, a different line of thinking is presented. The key idea is to resort to the
atomistic level. Namely, underlying the macroscopic kinetic relation is the dynamics
of the lattice as a result of the crystallographic transformation of one variant into
another. Thus, let us replace equation (2.1) with a discretized counterpart. We ob-
tain a model of discrete elasticity, where a one-dimensional body is simply regarded
as a chain of atoms, linked by springs which represent chemical bonds. Lattice mod-
els automatically generate a kinetic relation as a consequence of radiative damping
(Kevrekidis & Weinstein, 2000).

3. Lattice models

We consider a two-sided infinite chain of atoms, and assume nearest neighbour
interactions, see figure 5. The atoms are identical and, in normalised variables con-
sidered below, they have unit mass. The springs are identical, but will be nonlinear.
For each spring, the elastic energy is a function ®: R — R, which takes the discrete
strain as the argument.

The scaling is such that the reference interparticle distance is one. For atom
k € Z, the displacement is u,: R — R. The discrete strain is given by the difference
of the displacements, ugr1(t) — ug(t), say. Newton’s law then gives the equations
of motion,

ik (t) = @ (ups1(t) — u(t)) — ' (un(t) — ur—1(t)) (3.1)

for every k € Z.

(a) A fifty-year old challenge: anharmonic interaction potential

The study of equation (3.1) has a lively history, which can be traced back at
least to a famous computer experiment by Fermi et al. (1955) in Los Alamos. They
considered a chain of 64 identical atoms, interacting with their nearest neighbours
as described by (3.1), with an anharmonic potential ®, with a sinusoidal initial con-
dition. The anticipation was that equipartition of the energy would occur, meaning
that the lattice would reach a thermal equilibrium, and that averaged over time,
the initial energy would be equipartitioned among all Fourier modes. Astonishingly,
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10 J. Zimmer

the discovery was that the system did not approach thermal equilibrium, but be-
haved essentially quasi-periodically; thermalisation was only found for an initial
energy exceeding a certain threshold. Significant progress has been made in the
mathematical analysis of the Fermi-Pasta-Ulam (FPU) lattice. Friesecke & Wattis
(1994) use a variational approach to obtain localised solutions, and Friesecke &
Pego (1999) give in a series of impressive papers a very detailed description of soli-
tary waves in the FPU lattice. Tooss (2000) uses a centre manifold approach to find
all small bounded travelling waves for generic elastic energies near the first critical
wave velocity. These results either assume the convexity of the elastic energy, or
prove results for small amplitude solutions, where it is an open question whether
the confinement to a convex region within the potential can be overcome.

(b) Travelling phase transitions on the atomistic scale

For phase transitions, ® is nonconvex and thus the springs are bistable. This
nonconvexity makes the mathematical analysis even harder, and our current un-
derstanding of this situation is very fragmentary.

To identify the kinetic relation, it is natural to seek travelling waves as solutions
to equation (3.1). A travelling wave is a special solution of the form

ug(§) :=u(k — ct). (3.2)
We insert this ansatz in equation (3.1) and obtain
*(€) = @' (u(€ +1) — u(€)) — ' (u(€) — u(§ —1)). (3.3)

Does equation (3.3) have a solution? Truskinovsky & Vainchtein (2005) consider
the case where the elastic energy is piecewise quadratic (and each particle may
interact with [ neighbours, with a quadratic energy for every interaction except
for the nearest neighbours). An explicit solution can be computed which has a
vanishing strain at 0 and two different strains as £ — o0; the atoms at the left of
the interface are in one phase, while those on the right are in the other phase.

For a general elastic energy, the picture is largely open. Schwetlick & Zimmer
(2006) prove the existence of supersonic solitary waves, where the strain is asymp-
totically for & — 400 in one state (the left well of the elastic energy, say), and in
between makes an excursion towards the right well. The proof relies on a moun-
tain pass argument and assumes a sufficiently high wave speed c¢. A qualitative
description of the solution is not known. In particular, it remains open whether the
homoclinic excursion in the strains reaches the second well. Another challenging
open problem concerns the stability of these solitary waves.

(¢) Return journey to the macroscopic world

For a piecewise linear stress-strain relation, specifically for a nearest-neighbour
interaction potential which is the pointwise minimum of two quadratic wells, one
can compute more, and use the microscopic information on the journey back to
the macroscopic world. We recall that the microscopic model (3.1) is Hamiltonian,
but the kinetic relation is to specify a macroscopic dissipation. Truskinovsky &
Vainchtein (2005) construct explicit (microscopic) travelling wave solutions (with
piecewise quadratic interaction potential) and show that the radiation of lattice
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waves carrying energy away from the propagating front results in a macroscopic
dissipation. There seems to be no rigorous proof of stability for the travelling
waves, but numerical simulations (Truskinovsky & Vainchtein, 2005) indicate that
at least some of the travelling waves are stable. For the same setting, Truskinovsky
& Vainchtein (2006) give various dispersive quasicontinuum approximations, based
either on Taylor or rational (Padé) approximations, and show that the associated
kinetic relation agrees well with its microscopic prediction.

Abeyaratne & Vedantam (2003) derive a kinetic relation for twin boundary
motion from a lattice model. They consider a ledge propagating transversely along
the twin boundary. Abeyaratne & Vedantam (2003) determine the forward motion
of the twin, and pass to the continuum using a higher order expansion. The lattice
model resembles the Frenkel-Kontorova model discussed in (d) below. Remarkably,
in the continuum limit, the solution exhibits an oscillatory behaviour behind the
travelling wave, rather than converging asymptotically to a fixed displacement.

(d) An excursion to dislocations

The analysis of travelling waves and kinetic relations for phase transitions bears
many similarities with the analogous study of dislocation dynamics. A simple model
of the latter has been given by Frenkel and Kontorova in 1938. The governing
equation is

ik (t) = 7 (41 () = 2ur(t) + up—1(t)) — V' (ur(t)), (3.4)

which differs from equation (3.1) in the sense that the elastic energy is here as-
sumed to be harmonic, and there is an additional on-site potential V. For the
Frenkel-Kontorova model, V is periodic, V(u) = — cos(u). Again, uj denotes the
displacement of particle k; the coupling constant -y is strictly positive.

In the mathematics literature, (3.4) is often refereed to as the discrete Klein-
Gordon equation. Then, V' is taken to be anharmonic and analytic with V/(0) =0
and V" (0) > 0. Here, the centre-manifold approach yields “nanopterons” (solitary
waves superposed on exponentially small oscillatory tails), as shown by Iooss &
Kirchgéissner (2000). Of particular interest here are travelling breathers, i.e., spa-
tially localised solutions which are time-periodic in a system of reference moving at
constant velocity. Numerical calculations here as for the Fermi-Pasta-Ulam chain
are a delicate task. Duncan et al. (1993) report that they could only find travelling
waves superposed to a tail which appears periodic with a small amplitude, but no
travelling waves with the property u(z) — 0 mod 27 as z — +oo. It may be that
this background radiation is necessary to enable a lossless propagation of the wave.
Likewise, it is possible that the exponentially small tails are essential for the prop-
agation of a wave which is otherwise solitary. This phenomenon seems not to be
understood.

Currently, there is no rigorous framework for the passage from the atomistic
scale to the continuum for dislocation dynamics. Carpio et al. (2001) discuss some
continuum models for dislocation densities and highlight open problems. Again,
some models are ill-posed, and thus some challenges resemble those we discussed
earlier for martensites. The forthcoming book by Cai and Bulatov (W. Cai and
V. Bulatov, Computer Simulations of Dislocations) offers a detailed discussion of
dislocation dynamics on different scales.
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12 J. Zimmer

(e) Modulation and macroscopic models

Modulation theory gives a formal way of deriving a thermodynamic description
for lattice models. Here, the goal is to obtain macroscopic equations describing tem-
perature effects due to microscopic oscillations, rather than to find kinetic relations.
We thus leave the world of phase transitions and dislocations and consider lattice
models with convex interaction potentials. Let us assume that the microscopic dy-
namics is described by equation (3.1) (thus, ¢ is is the microscopic time and k is
the microscopic particle index). From this information, we would like to infer the
evolution of macroscopic thermodynamic fields, such as momentum, energy and
entropy.

A powerful, yet formal procedure for this micro-macro transition is as follows.
On the microscopic level, temperature corresponds to oscillatory behaviour of the
atoms. Thus, it is reasonable to consider periodic travelling waves which may mimic
these oscillations. Let the travelling wave be given as ug (t) = rk+vt+u(jk+wt) for
k € Z (compare (3.2)). The parameters are: mean distance r, mean velocity v, wave
number j and frequency w. We define a macroscopic time T := et and a macroscopic
particle index y := ek (this the hyperbolic scaling; other scalings yield the Korteweg-
deVries equation (Friesecke & Pego, 1999) and the nonlinear Schrodinger equation
(Giannoulis & Mielke, 2006) as governing macroscopic evolution equations). The
main idea of modulation theory is to consider approximate travelling wave solutions
by allowing the travelling wave parameter to vary on the macroscopic scale. The
travelling wave parameters become fields in the macroscopic variables 7 and y.
Dreyer et al. (2006) describe this procedure and obtain four conservation laws for
the four parameters r, v, 7 and w, known at Whitham’s equations. We refer the
reader to the literature (Dreyer et al., 2006) for the precise procedure and further
references.

Giannoulis & Mielke (2006) proved the validity of the nonlinear Schrédinger
equation as an approximation of a nonlinear version of the Klein-Gordon equation
(where the interaction potential is allowed to be nonlinear) with a nonlinear on-site
potential for large, but finite time intervals. For the Fermi-Pasta-Ulam lattice, the
validation of a modulation equation seems to be open.

4. Looking ahead

Several open problems for martensitic materials have been highlighted in the previ-
ous discussion, and they are challenging mathematical questions in their own right.
On the atomistic scale, key challenges are to remove a smallness assumption, for
example on the amplitude of a wave, and thus gain a qualitative knowledge of lat-
tice waves in phase-transforming materials. Furthermore, the rigorous passage from
atomistic to continuum is widely open.

Implications of a deeper mathematical appreciation are likely to go beyond shape
memory alloys. In general, our understanding of the micro-macro transition is very
poor. For example, does the motion of defects give rise to friction, a phenomenon
we encounter every day but do not understand well at all? If so, can we develop
mathematical ways of deriving macroscopic descriptions for, say, defect densities
and their motion, rather than postulating such laws phenomenologically?
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There are other examples of defect dynamics which we would like to understand
better, among them crack tips, and interstitials and vacancies. Defect phenomena
on the atomistic scale are of direct relevance to materials science, solid state physics,
and physical chemistry. For many applications, such as fuel cells, these transport
phenomena need to be understood. The movement of a martensitic phase boundary
may be seen as a relatively simple problem with a moving singularity, and further
advancement in this field is likely to spark insights in the aforementioned disciplines.

The author is particularly grateful for the assistance received from Frank Hammett of the
Department of Mechanical Engineering at the University of Bath in the preparation of
micrographs shown in figure 1. I am very grateful to him for the time they invested, as well
as for teaching me how to prepare samples. Sincere thanks are expressed to Hans-Georg
Zimmer for drawing figures 2, 3 and 4. The author gratefully acknowledges the financial
support of the EPSRC through an Advanced Research Fellowship (GR /S99037 /1).
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