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We consider the existence of stationary or pinned waves of reaction–diffusion
equations in heterogeneous media. By combining averaging, homogenization and
dynamical-systems techniques we prove under mild non-degeneracy conditions that if
the heterogeneity is periodic with period ε, pinned solutions persist at most for
intervals in parameter space whose length is O(e−c/

√
ε).

1. Introduction

Travelling waves in nonlinear partial differential equations (PDEs) have been used
in a variety of different circumstances to model, among other things, combustion,
population dynamics and the properties of electrical signals in nerve tissue. Most
early work in this area assumed that the material properties of the system were
constant in space and time, i.e. that the coefficients in the PDE did not depend
on the independent variables in the problem. More recently, there has been a great
deal of study of the more realistic situation in which the coefficients are space or
time dependent. For a recent review of the literature in this area we refer to the
reader to [9].

In this paper we wish to focus on a particular phenomenon, known as ‘pinning’,
which may occur in such heterogeneous media. It has been observed that there are
PDEs that exhibit travelling-wave solutions when the coefficients are homogeneous,
but if the coefficients are made heterogeneous there can be a failure of propagation
and the wave becomes ‘pinned’ to the heterogeneity, that is, one obtains a stationary
solution with non-trivial spatial structure. Typically, this structure looks much like
the travelling-wave profile before it was pinned.

Such pinned solutions may be important because their presence can inhibit the
transfer of information or material from one part of the system to another. A more
positive role for such solutions is that such localized regions of activity could then
possibly be used to store information in some location. For a discussion of pinned
solutions in biological models, see [3].
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In order to get an idea of how important such solutions are for realistic appli-
cations, we investigate their sensitivity to changes in the system parameters and
we find that they can exist in only very small regions of parameter space. Prior
work [1,3] has shown that homogenization theory and averaging theory can be used
in the construction of pinned solutions. Here we combine these two approaches to
prove under mild non-degeneracy conditions that if the heterogeneity is periodic
with period ε, pinned solutions persist at most for intervals in parameter space
whose length is O(e−c/

√
ε).

Our approach is based on a formulation of related elliptic equations as (ill-posed)
spatial dynamical systems, where an unbounded space direction is considered as
a time direction. This is based on an idea of Kirchgässner [4]. Another important
ingredient is homogenization theory, which gives effective descriptions for hetero-
geneous elliptic problems. Here the heterogeneities, in the form of rapidly varying
coefficients, are removed, so that the resulting approximate equation is homoge-
neous, i.e. the equation is homogenized (for a general reference see, for example, [2]).
We note in passing that our approach is not limited to small heterogeneities. The
homogenization step can also deal with large, periodic, inhomogeneous coefficients
(at least those of the form described below).

To show the exponential smallness of certain effects, we then apply an averag-
ing transformation to the homogenized equation which further reduces the size of
the inhomogeneity up to exponentially small errors. Averaging up to exponentially
small remainder terms was developed by Neishtadt [7] for analytic ordinary differ-
ential equations. Extensions to PDEs were first developed for the time-averaging of
parabolic equations [5]. Here we use and extend a version for the homogenization
of certain elliptic problems on strips [6].

We are looking for travelling waves for parabolic equations on strips (y, x) ∈
R × Ω, where Ω = [0, 2π]d. As a main example, consider a scalar equation, where
the diffusion coefficients and the nonlinearity both depend periodically on the
unbounded space direction y:

∂τu = d0

(
y

ε

)
∂2

yu + d1

(
y

ε

)
∆xu + f

(
u, x,

y

ε
; λ, ε

)
. (1.1)

We impose periodic boundary conditions on ∂Ω. The diffusion coefficients are
assumed to be periodic in y/ε, and be positive and continuously differentiable
functions. The nonlinearity is assumed to be an entire function of u and x and
continuous in y/ε and ε. Assume furthermore that f and all its derivatives with
respect to u and x are differentiable with respect to the parameter λ ∈ Λ, where
Λ is a bounded, open interval of the real line.

2. Spatial dynamics and the main result

We are interested in pinned or standing waves, i.e. in solutions to the static problem

d0

(
y

ε

)
∂2

yu + d1

(
y

ε

)
∆xu + f

(
u, x,

y

ε
; λ, ε

)
= 0, (2.1)

where u(y, ·) converges to the y-independent equilibria u1 and u2 for y → ±∞. As
we will consider only this static problem, we can assume without restriction that
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d0 ≡ 1 after dividing by d0(y/ε), and, thus, for the remainder of the paper we
consider only the equation

∂2
yu + d

(
y

ε

)
∆xu + f

(
u, x,

y

ε
; λ, ε

)
= 0, (2.2)

where d(ξ) = d1(ξ)/d0(ξ). Note that we do not assume that the variations in d(ξ)
are small: this is not a perturbation around the constant coefficient case.

Associated with the heterogeneous problem (2.2), we consider a homogenized
problem

∂2
yu + d̄∆xu + f̄(u, x; λ, ε) = 0, (2.3)

with d̄ given by the homogenization formula

d̄ =
∫ 1

0

d1(ξ)
d0(ξ)

dξ, (2.4)

and the nonlinearity is averaged over the ‘fast’ variable:

f̄(u, x; λ, ε) =
∫ 1

0
f(u, x, s; λ, ε) ds. (2.5)

We assume the existence of a standing wave ū in the homogenized problem (2.3)
connecting two y-independent equilibria, u1 and u2. More precisely, we assume that
the following hypotheses hold.

(H1) ū, u1, and u2 solve (2.3) for λ = λ0 ∈ Λ, ε = 0. Furthermore, ∂yu1,2 ≡ 0.

(H2) limy→∞ ū(·, y) = u1(·) and limy→−∞ ū(·, y) = u2(·).

(H3) −d̄Ω∆xui − Df̄(ui, x; λ0, 0), i = 1, 2, are both strictly positive operators.

Remark 2.1. In the case of a zero-dimensional cross-section (i.e. Ω is a point),
these hypotheses are satisfied for bistable nonlinearities. For examples of travelling
pulses in this case, see [9].

We will use additional transversality assumptions. These conditions will allow us
to follow the evolution of the pinned solutions as we vary ε and λ. This transversality
condition is given in terms of the linearization of (2.3) along ū. To formulate this, we
rewrite (2.3) as a ‘dynamic’ equation in the unbounded spatial direction y, which
from now on we will call t. By letting

U =
(

u

ut

)
, (2.6)

we have
Ut = ĀU + F̄ (U ; λ, ε) (2.7)

with

ĀU =
(

0 1
−d̄∆x 0

) (
u

ut

)
,

F̄ (U ; λ, ε)(x) =
(

0
−f̄(u, x; λ, ε)

)
.
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In this notation, the standing-wave equation of the heterogeneous problem (2.2)
has the form

Ut = A

(
t

ε

)
U + F

(
U,

t

ε
; λ, ε

)
(2.8)

with

A

(
t

ε

)
U =

⎛
⎜⎝

0 1

−d

(
t

ε

)
∆x 0

⎞
⎟⎠

(
u

ut

)
,

F

(
U,

t

ε
; λ, ε

)
(x) =

⎛
⎜⎝

0

−f

(
u, x,

t

ε
; λ, ε

)
⎞
⎟⎠ .

Remark 2.2. The hypotheses (H1)–(H3) on the stationary solution of the averaged
problem translate immediately into analogous statements about the solution of (2.7)
(which we will also refer to as (H1)–(H3)).

We consider (2.7) and (2.8) to be infinite-dimensional dynamical systems on a
phase space X. The space X is given as a function space on the cross-section Ω of the
cylindrical domain. In particular we choose Hs(Ω) × Hs−1(Ω) with s > max(1, 1

2d)
intersected with the periodic boundary conditions on ∂Ω on the cross-section Ω =
[0, 2π]d of the cylindrical domain. If we equip the domain X1 = D(A) ⊂ Hs+1 × Hs

of the unbounded operator A with the norm |U |X1 = |U |X + |AU |X , then X1 is a
Banach space. A solution of (2.7) (respectively, (2.8)) is defined to be:

(i) U(·) ∈ BC0(R, X1) ∩ BC1(R, X);

(ii) U(·) satisfies equations (2.7) (respectively, (2.8)) on R with values in X.

The linearization of (2.7) along the solution Ū is then given by

L : BC0(R, X1) ∩ BC1(R, X) → BC0(R, X),
LV (t) = Vt(t) − AV (t) − DU F̄ (Ū(t); λ0, 0)V (t).

}
(2.9)

We assume the following generic property:

Ker(L) = span( ˙̄U(·)). (2.10)

Physically, this condition just means that the only zero eigenvalue of the linearized
problem is the one that comes from the translation invariance of the averaged
equation. The transversality assumption is

Rg L ⊕ DλF̄ (Ū(·); λ, 0)|λ=λ0 = BC0(R, X), (2.11)

i.e. the rank defect can be removed when varying the parameter. More intuitively,
this condition will guarantee (in a later section) that, when we reduce the question
of existence of fronts to a question about zeros of a certain function, the derivative of
this function (with respect to λ) will be non-zero and the implicit function theorem
can be applied to construct the fronts.



Wave pinning in strips 975

Solutions of elliptic equations like (2.7) with f an entire function are analytic in x.
Here we express such classes of highly regular functions as Gevrey spaces. We define
these spaces as follows. For each k ∈ Z

d \ {0}, the operator Ā has eigenfunctions (in
X) given by

vk(x) =
(

exp(ik · x)√
d̄|k| exp(ik · x)

)

with positive eigenvalue
√

d̄|k| and

wk(x) =
(

exp(ik · x)
−

√
d̄|k| exp(ik · x)

)

with negative eigenvalue −
√

d̄|k|. The zero eigenspace is one dimensional and span-
ned by v0 = (1, 0). We add to these eigenvectors the vector w0 = (0, 1) in order
to form a basis with respect to which we can expand any vector U ∈ X as U =∑

k(akvk + bkwk). The X-norm is equivalent to

|U |2X =
∑

k

{(1 + |k|)2s(|ak|2 + |bk|2)}.

We define the Gevrey space Gσ to be those elements of X for which the norm

|U |2Gσ
=

∑
k

{(1 + |k|)2s(|ak|2 + |bk|2)e2σ|k|}

is finite.

Remark 2.3. Note that G0 = X.

Remark 2.4. If the nonlinear term, f , is entire (as we assume) and we fix σ0 > 0,
then every bounded solution, u(t), of (2.2) lies in all Gσ, 0 � σ � σ0, for each t ∈ R

(see [6]).

Theorem 2.5. In (2.2) let d0 and d be 1-periodic and differentiable in y/ε and
assume that f is an entire function in x and u and continuous in y/ε and ε. Let f
and all its derivatives with respect to u and x be differentiable in λ ∈ Λ. Assume
the existence of a standing wave Ū =

(
ū
ūt

)
of (2.3) satisfying (H1)–(H3), (2.10)

and (2.11). Standing waves Uε of (2.8) can then only exist in an exponentially
small parameter interval, i.e. there exist positive constants c1, c2, ε0, B and b and
a function λ1(ε) such that if (Uε, λ̃ε) is a standing wave of (2.8), for 0 < ε � ε0,
that satisfies

‖Vε − Ū‖BC0(R,X1)∩BC1(R,X) � c1,

|λ̃ε − λ1(ε)| � c2,

then

|λ̃ε − λ1(ε)| � B exp
(

− b

ε1/2

)
. (2.12)
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Remark 2.6. The analysis applies directly to systems with the same diffusion coef-
ficients for each component: with u ∈ Hs(Ω, Rn) it is possible to analyse pinned
waves of

ut = d0

(
x

ε

)
∂2

yu + d

(
y

ε

)
∆u + f

(
u, x,

y

ε
; λ, ε

)
.

It also applies to systems with diffusion coefficients that are independent of y/ε,
but possibly different for each component:

ut = diag(d1
0, . . . , d

n
0 )∂2

yu + diag(d1, . . . , dn)∆u + f

(
u, x,

y

ε
; λ, ε

)
.

3. Proof of theorem 2.5

We will use an implicit function argument starting with ū to show the persistence
of pinned solutions under bounded perturbations. In particular, we will set up a
Lyapunov–Schmidt reduction to deal with the rank defect of L. For this we use
methods by Peterhof et al . [8] on exponential dichotomies for equations of the form

Ut = ĀU + B(t)U. (3.1)

To show the exponentially small pinning properties, we employ a homogenization
method similar to a result in [6]. To apply both of these results, we will first trans-
form (2.8) in order to remove the dependence on t/ε in the main part. This trans-
formation will create a rapidly varying, unbounded perturbation, which is formally
small and will be estimated later.

3.1. Time changes and linear transformations

The goal of this subsection is to make a change of variables that eliminates the
‘fast’ time dependence in the linear part of (2.8). By a linear transformation and
time-rescaling we will move the fast variable in the main part of the equation,

Ut = A

(
t

ε

)
U, (3.2)

to a higher order in ε.
First we rescale the time as

t = τ + εΘ

(
τ

ε

)

with Θ(·) = Θ(· + 1). We then transform the dependent variable according to

U = Φ

(
τ

ε

)
V =

⎛
⎜⎝ 1 εφ

(
τ

ε

)

0 1

⎞
⎟⎠

(
v1

v2

)
(3.3)
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with φ(·) = φ(· + 1). If we re-express equation (2.8) in the new variables we find
that

Vτ =

⎛
⎜⎜⎜⎝

v2 +
(

Θ′
(

τ

ε

)
− φ′

(
τ

ε

))
v2 + εΛ1v1 + ε2Λ2v2

−
(

1 + Θ′
(

τ

ε

))
d

(
τ

ε
+ Θ

(
τ

ε

))
∆xv1 − εΛ1v2

⎞
⎟⎟⎟⎠

+
(

1 + Θ′
(

τ

ε

))
Φ−1

(
τ

ε

)
F

(
Φ

(
τ

ε

)
V,

τ

ε
+ Θ

(
τ

ε

)
; λ, ε

)
, (3.4)

where

Λ1v =
(

1 + Θ′
(

τ

ε

))
d

(
τ

ε
+ Θ

(
τ

ε

))
φ

(
τ

ε

)
∆xv

and

Λ2v =
(

1 + Θ′
(

τ

ε

))
d

(
τ

ε
+ Θ

(
τ

ε

))(
φ

(
τ

ε

))2

∆xv.

The leading-order term in (3.4) depending on the ‘fast time’ τ/ε is then in the
second component:

−d

(
τ

ε
+ Θ

(
τ

ε

))(
1 + Θ′

(
τ

ε

))
∆xv1.

In order to eliminate the fast time dependence of this term we choose Θ to satisfy

−d(s + Θ(s))(1 + Θ′(s)) = −d̄. (3.5)

The properties of Θ are given in the following lemma.

Lemma 3.1. There exist d̄ > 0 and a differentiable, periodic function Θ such that
(3.5) is satisfied. Furthermore, one can choose Θ such that one also has

∫ 1

0
Θ(θ) dθ = 0.

Proof. Let Θ be the solution of the ordinary differential equation

Θ̇(s) =
d̄

d(s + Θ(s))
− 1,

Θ(s0) = 0.

⎫⎪⎬
⎪⎭ (3.6)

The periodicity of Θ, i.e. Θ(·) = Θ(· + 1), can be ensured by an appropriate choice
of d̄ > 0. Indeed, the solution Θ(s0 + 1) depends continuously on the parameter d̄,
and Θ(s0 + 1) < Θ(s0) for d̄ = 0 and Θ(s0 + 1) > Θ(s0) for d̄ large. Hence, there
exists a d̄ > 0, such that Θ(s0 + 1) = Θ(s0), which implies that Θ(·) = Θ(· + 1) by
periodicity of the differential equation.

We conclude the proof by showing that, if we choose s0 appropriately, we can
also obtain ∫ 1

0
Θ(θ) dθ = 0.
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We begin by integrating by parts:

I(s0) =
∫ s0+1

s0

Θ(s) ds = −
∫ s0+1

s0

sΘ̇(s) ds =
∫ s0+1

s0

s

(
d̄

d(s + Θ(s))
− 1

)
ds,

where the first equality uses the fact that Θ(s0) = 0 to eliminate the boundary
terms. We now use the identity

d̄−1 =
∫ s0+1

s0

1
d(s + Θ(s))

ds =
∫ 1

0

1
d(s + Θ(s))

ds

to rewrite the last integral as

d̄

∫ s0+1

s0

s

(
1

d(s + Θ(s))
−

∫ s0+1

s0

1
d(θ + Θ(θ))

dθ

)
ds

= d̄

∫ s0+1

s0

s

(
1

d(s + Θ(s))
−

∫ 1

0

1
d(θ + Θ(θ))

dθ

)
ds

= d̄

∫ 1

0
(s + s0)

(
1

d(s + s0 + Θ(s + s0))
−

∫ 1

0

1
d(θ + Θ(θ))

dθ

)
ds

= d̄

∫ 1

0
s

(
1

d(s + s0 + Θ(s + s0))
−

∫ 1

0

1
d(θ + Θ(θ))

dθ

)
ds.

Now integrate I(s0) with respect to s0:
∫ 1

0
I(s0) ds0 = d̄

∫ 1

0
s

∫ 1

0

(
1

d(s + s0 + Θ(s + s0))
−

∫ 1

0

1
d(θ + Θ(θ))

dθ

)
ds0 ds

= 0.

The last equality follows from the periodicity of d and Θ. Hence, there is a choice
of s0 such that I(s0) = 0 and, consequently, the corresponding solution of (3.6) has

∫ 1

0
Θ(s) ds = 0.

Remark 3.2. Once we know of the existence of a function Θ satisfying the prop-
erties described in the lemma, it is easy to compute its value. If we integrate both
sides of (3.5) from 0 to 1 and make the change of variables σ = s + Θ(s), we have

d̄ =
∫ 1

0
d(s + Θ(s))(1 + Θ′(s)) ds =

∫ 1

0
d(σ) dσ. (3.7)

Thus, d̄ is the average of d(σ) over one period of the inhomogeneity. Recalling the
definition of d in terms of the coefficients of the original equation (1.1), we see that

d̄ =
∫ 1

0

d1(σ)
d0(σ)

dσ. (3.8)
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Having fixed Θ in this way, we next eliminate the term(
Θ′

(
τ

ε

)
− φ′

(
τ

ε

))
v2

in the first component by choosing φ(s) = Θ(s).
If V is called U again, we see that, in the new variables, (2.8) takes the form

Uτ = ĀU + B

(
τ

ε

)
U + F̄ (U ; λ, ε) + F̃

(
U,

τ

ε
; λ, ε

)
(3.9)

with Ā as in (2.7) and by using (3.6),

B

(
τ

ε
; ε

)
U = ε

⎛
⎜⎜⎜⎝

Θ

(
τ

ε

)
d̄∆xu1 + εΘ2

(
τ

ε

)
d̄∆xu2

−Θ

(
τ

ε

)
d̄∆xu2

⎞
⎟⎟⎟⎠

and

F̃

(
U,

τ

ε
; λ, ε

)
(x)

=
(

1 + Θ′
(

τ

ε

))
F

(
Φ

(
τ

ε

)
U,

τ

ε
+ Θ

(
τ

ε

)
; λ, ε

)

−

⎛
⎜⎝εΘ

(
τ

ε

)
f

(
u1 + εφ

(
τ

ε

)
u2,

τ

ε
+ Θ(τ + ε); λ, ε

)

0

⎞
⎟⎠ − F̄ (U ; λ, ε).

The averages over a period are denoted by

〈g(·)〉 =
∫ 1

0
g(θ) dθ

and can be computed for B using our choice of Θ:

〈B(·)U〉 = ε2

⎛
⎝

∫ 1

0
Θ2(θ) dθ d̄∆xu2

0

⎞
⎠ . (3.10)

3.2. Persistence

The transformations of the previous section result in a homogenized equation,
(2.7), perturbed by rapidly varying terms B(τ/ε) and F̃ (U, τ/ε; λ, ε). In § 4 we
will apply an averaging method to show that the effects of F̃ can be made expo-
nentially small. With this in mind, the present section is devoted to studying the
persistence of standing waves in the averaged equation when it is subjected to
small perturbations. Using a Lyapunov–Schmidt argument based on the theory
of exponential dichotomies (see [8]), we show that, under the non-degeneracy and
transversality hypotheses we stated in § 1, standing waves in the averaged model
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persist under small, bounded, homogeneous and heterogeneous perturbations. Fur-
thermore, we derive some necessary conditions for the persistence of standing waves
under unbounded, but formally small, perturbations like the term B(τ/ε)U in (3.9).

Consider an equation of the form

Uτ = ĀU + F̄ (U ; λ, ε) + P
(

U,
τ

ε
; λ, ε

)
(3.11)

(we suppress the dependence of F̄ and P on x, since it plays little role in this
section).

Our principal interest is in the case considered in the previous subsection where
P = BU + F̃ , but it will be of use in the following sections to consider this slightly
more general case.

The persistence proof is based the functional analytic framework of exponential
dichotomies as in [8], which we follow very closely wherever possible. To prove the
existence of a pinned wave Uε, we again introduce a new variable V by letting
U(τ) = Ū(τ) + V (τ). Using the fact that Ū satisfies (2.7) with λ = λ0 and ε = 0
we find that

Vτ = ĀV + DF̄ (Ū(τ); λ0, 0)V + G

(
V,

τ

ε
; λ, ε

)
(3.12)

with

G

(
V,

τ

ε
; λ, ε

)
= F̄ (Ū +V ; λ, ε)− F̄ (Ū ; λ0, 0)−DF̄ (Ū ; λ0, 0)V +P

(
Ū +V,

τ

ε
; λ, ε

)
.

Again, with reference to the material of the previous section note that, for an
equation of the form (3.9), G will have the more explicit form:

G

(
V,

τ

ε
; λ, ε

)
= F̄ (Ū + V ; λ, ε) + F̃

(
Ū + V,

τ

ε
; λ, ε

)

+ εB

(
τ

ε

)
(Ū + V ) − F̄ (Ū ; λ0, 0) − DF̄ (Ū ; λ0, 0)V. (3.13)

Next we will show that the linear part of (3.12) has an exponential dichotomy on R
+

and R
−. First, we consider the linearized equations around equilibria

U i =
(

ui

0

)
, i = 1, 2,

at λ = λ0 and ε = 0:
Ut = ĀU + DF̄ (U i; λ0, 0)U.

The respective projections on stable and unstable subspaces are given by

Pi,± =
1
2

(
I ±(Li)−1/2

±(Li)1/2 I

)
, (3.14)

where Li = −d̄∆x − Df̄(ui, x; λ0, 0) is positive and self-adjoint. For the existence
of these projections, the assumption (H3) that −d̄∆x −Df̄(ui, x; λ0, 0) is a positive
operator in (2.3) is crucial, as it implies that the equilibria U1 and U2 are hyperbolic
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equilibria of the spatial dynamics equation. Using [8, theorem 1 and corollary 1],
we see that the linearization along the standing wave,

Uτ (τ) = ĀU(τ) + DF̄ (Ū(τ); λ0, 0)U(τ), (3.15)

has exponential dichotomies on R
+ and R

− denoted by P (τ) and Q(τ), respectively.
The intersection Rg(P (0)) ∩ Rg(Q(0)) of solutions bounded in forward and back-
ward time is then one dimensional by assumption (2.10).

The solution operators of the exponential dichotomies are denoted as

φs
1,2(τ, θ)z, τ � θ for the stable part,

φu
1,2(τ, θ)z, τ � θ for the unstable part.

As in [8, theorem 4], we decompose

Rg(φs
1(0, 0)) = Y1 ⊕ span(U̇(0)),

Rg(φu
2 (0, 0)) = Y2 ⊕ span(U̇(0)).

We are looking for solutions of the full perturbed equation (3.12) that are bounded
on R

+ and R
−, respectively. This is equivalent to the existence of ξ1 ∈ Y1 and

ξ2 ∈ Y2, such that

V1(τ) = φs
1(τ, 0)ξ1 +

∫ τ

0
φs

1(τ, θ)G
(

V1(θ),
θ

ε
; λ, ε

)
dθ

−
∫ ∞

τ

φu
1 (τ, θ)G

(
V1(θ),

θ

ε
; λ, ε

)
dθ for τ > 0,

V2(τ) = φu
2 (τ, 0)ξ2 +

∫ τ

0
φu

2 (τ, θ)G
(

V2(θ),
θ

ε
; λ, ε

)
dθ

+
∫ τ

−∞
φs

2(τ, θ)G
(

V2(θ),
θ

ε
; λ, ε

)
dθ for τ < 0.

Hence, for all ξ1 ∈ Y1 and ξ2 ∈ Y2 small, we get bounded solutions V1(τ ; ξ1, λ, ε)
and V2(τ ; ξ2, λ, ε) by the implicit function theorem. For small ε > 0, we now try to
find ξ = ξ1 +ξ2 ∈ Y1 ⊕Y2 and λ such that V1(0; ξ, λ, ε) = V2(0; ξ, λ, ε). For bounded
perturbations G, this holds if and only if there is a solution to

(φs
1(0, 0) − φu

2 (0, 0))ξ =
∫ 0

−∞
φs

2(0, θ)G
(

V2(θ), θ,
θ

ε
; λ, ε

)
dθ

+
∫ ∞

0
φu

1 (0, θ)G
(

V1(θ), θ,
θ

ε
; λ, ε

)
dθ. (3.16)

On the other hand, if G is unbounded and we have a bounded solution V (τ) ∈ X,
such that G(V (τ), τ, τ/ε; λ, ε) is bounded in X, then we can also write

V1(τ) = φs
1(τ, 0)ξ1 +

∫ τ

0
φs

1(τ, θ)G
(

V1(θ), θ,
θ

ε
; λ, ε

)
dθ

−
∫ ∞

τ

φu
1 (τ, θ)G

(
V1(θ), θ,

θ

ε
; λ, ε

)
dθ for τ > 0,
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V2(τ) = φu
2 (τ, 0)ξ1 +

∫ τ

0
φu

2 (τ, θ)G
(

V2(θ), θ,
θ

ε
; λ, ε

)
dθ

+
∫ τ

−∞
φs

2(τ, θ)G
(

V2(θ), θ,
θ

ε
; λ, ε

)
dθ for τ < 0,

with V1(0) = V2(0). Thus, we can proceed as for bounded G to obtain (3.16), noting
that the results are necessary conditions only.

Next we show that the left-hand side, L = φs
1(0, 0) − φu

2 (0, 0), of (3.16) is a Fred-
holm operator of index 0. By [8, theorem 1],

φs
1(0, 0) = P1,+ + P1,−(S1 + K1)

and

φu
2 (0, 0) = P2,− + P2,+(S2 + K2),

with S1 and S2 arbitrarily small and K1 and K2 compact in L(X). Thus,

P (0) − Q(0) = φs
1(0, 0) − φu

2 (0, 0)
= P1,+ − P1,− + (P1,− − P2,−) + P1,−(S1 + K1) − P2,+(S2 + K2)

is a Fredholm operator of index 0, since P1,+ − P1,− is invertible in L(X) and thus
Fredholm of index 0. This persists under the small perturbations P1,−S1 − P2,+S2
and the compact perturbations P1,−K1 − P2,+K2, as well as under the compact per-
turbation P1,− − P2,−. Its compactness follows from a direct calculation using (3.14)
and the Sobolev embedding theorem.

The null space is Ker(L) = span( ˙̄U(0)) by (2.10). Furthermore Rg(L) = {η ∈
X, 〈ψ(0), η〉 = 0}, where ψ is the unique bounded solution of the adjoint of (3.15),
up to a multiple. Thus, the Lyapunov–Schmidt reduction method implies that if G
is bounded, and (3.16) has a solution (ξ(ε), λ(ε)) for ε > 0, then

Γ (V ; λ, ε) =
(

ψ(0),
{∫ 0

−∞
φs

2(0, θ)G
(

V2(θ; ξ(ε)),
θ

ε
; λ, ε

)
dθ

+
∫ ∞

0
φu

1 (0, θ)G
(

V1(θ; ξ(ε)),
θ

ε
; λ, ε

)
dθ

})
= 0. (3.17)

Here, the notation V1,2(θ; ξ(ε)) is used simply to remind the reader of the depend-
ence of V1,2 on the initial condition ξ, and we define V : R → X to be the function
that is equal to V2(t) for t negative and V1(t) for t positive.

Remark 3.3. Note that by applying the inner product inside the integrals in (3.17)
and taking the adjoint of φu,s

1,2 , this expression can be rewritten as

Γ (V ; λ, ε) =
∫ ∞

−∞

(
ψ(θ), G

(
V (θ; ξ(ε)),

θ

ε
; λ, ε

))
dθ = 0. (3.18)

We assume that Γ is a continuous function of ε for ε > 0. Suppose now that

lim
ε→0

Γ (0; λ0, ε) ≡ Γ (0; λ0, 0) = 0. (3.19)
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Suppose furthermore that

DλΓ (0; λ, 0)|λ=λ0 ≡ lim
ε→0+

DλΓ (0; λ, ε)|λ=λ0 �= 0. (3.20)

The Lyapunov–Schmidt method then guarantees that, for ε sufficiently small and
positive, there exists (Vε(τ), λε) such that (3.16) holds.

Thus, we can make the following proposition.

Proposition 3.4. Assume that Ū is a standing wave of (2.7) satisfying (H1)–(H3),
(2.10) and (2.11). Let Γ be defined by (3.17). If (3.19) and (3.20) are satisfied, there
exists ε0 > 0 such that for every 0 < ε < ε0 there exists λε ∈ Λ and Vε ∈ X such
that Ū +Vε is a standing wave solution of (3.11) with λ = λε. Furthermore, we can
make |Vε|X and |λ0 − λε| arbitrarily small by choosing ε0 small enough.

Proof. The proof of existence was discussed just prior to the statement of the above
proposition. The fact that |Vε|X and |λ0 −λε| can be made arbitrarily small follows
from the fact that Γ is smooth with respect to V and λ and continuous with respect
to ε.

Remark 3.5. The solution Ū(τ) + Vε(τ) constructed in proposition 3.4 will actu-
ally lie not just in X but in Gσ for each τ by the results of [6].

Remark 3.6. The same analysis holds for Uε,β near the shifted Ū(· + β). Then,
typically, ∫ ∞

−∞

(
ψ(τ), DβG

(
Uε,β(θ), θ,

θ

ε
; λε, ε

))
dθ �= 0,

and the standing wave persists under changing λ. However, as we demonstrate in
the next section, it can persist over only a very small range of λ.

3.3. Exponentially small pinning

To estimate the parameter interval in which pinning can occur, we again consider
equation (3.9). If B + F̃ + F̄ were bounded on bounded sets and analytic on both X
and Gevrey spaces Gσ, we could apply the results of [6, theorem 2] to equation (3.9)
in order to construct a time-periodic transformation of the phase space X, such that
the transformed equation would have the form

Vτ = AV + F̄exp(V ; λ, ε) + R

(
V,

τ

ε
; λ, ε

)
(3.21)

with an estimate on the remainder∣∣∣∣R
(

V (τ),
τ

ε
; λ, ε

)∣∣∣∣
X

� C exp
(

− c

ε1/2

)
.

Unfortunately, the unboundedness of the term B prevents us from applying these
results directly. However, if we take advantage of the a priori information we have
about the smoothness of solutions of (3.9), we can obtain results very similar to
those of [6], which will be sufficient for our needs.
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Proposition 3.7. Fix r > 0. Under the assumptions of theorem 2.5, there exist
ε0, σ0 > 0 such that for 0 < ε < ε0 there is a change of coordinates U = Φ(V ) =
V + εW (V, τ/ε; λ, ε) which is analytic and invertible on the ball of radius r in
both X and the Gevrey space Gσ, 0 � σ < σ0. If U evolves according to (2.8), then
V = Φ−1(U) satisfies

Vτ = ĀV + F̄exp(V ; λ, ε) + R

(
V,

τ

ε
; λ, ε

)
. (3.22)

Furthermore, there exist Cr, c > 0 (depending on σ) such that, for every V with
|V |Gσ

< r and λ ∈ Λ, ∣∣∣∣R
(

V,
τ

ε
; λ, ε

)∣∣∣∣
X

� Cr exp
(

− c

ε1/2

)
. (3.23)

The homogenized term, F̄exp is close to F̄ in the sense that there exists CF (σ) > 0
such that, for every V with |V |Gσ < r,

|F̄ (U ; λ, ε) − F̄exp(U ; λ, ε)|X � CF (σ)ε1/2, (3.24)

|DλF̄ (U ; λ, ε) − DλF̄exp(U ; λ, ε)|X � CF (σ)ε1/2. (3.25)

Finally, the transformation, Φ, is near to the identity in the sense that W is uni-
formly bounded on the ball of radius r in either X or Gσ.

Remark 3.8. Note that the estimates (3.23) and (3.24) are somewhat unusual in
that they require the argument of the function to lie in the Gevrey space Gσ, while
giving an estimate of the functions only in the much weaker X-norm. Thus, they
cannot be used effectively to bound the evolution of (3.22), for example. However,
if one has some additional, a priori estimates of the solution (as one does in the
present instance), such estimates can nonetheless be quite useful.

The proposition is proved in the next section. We complete the proof of the main
theorem first.

Proof of theorem 2.5. Begin by noting that, if we set P = Fexp − F̄ in (3.11), then,
since we know that Ū ∈ Gσ, (3.24) implies that (3.19) holds, while (2.11) ensures
that (3.20) is satisfied. Thus, proposition 3.4 implies that there exists ε0 > 0 such
that, for every 0 < ε < ε0, there exists a standing wave (Ūε, λ1(ε)) for

Ut = ĀU + F̄exp(U ; λ, ε) (3.26)

close to (Ū , λ0). Let Ũε ∈ Gσ, λ̃ε be another standing wave solution of (2.8) close
to Ū , i.e. |Ũε − Ū |X < c1, where c1 will be specified below. If Ṽε ≡ Ũε − Ū , and G is
given by (3.13), then (3.17) implies that

∫
R

(
Ψ(τ), G

(
Ṽε(τ),

τ

ε
; λ̃ε, ε

))
dτ = 0.

Applying the transformation Φ to Ũε (and still denoting the transformed variable
by Ũε), we see that

Ũε,τ = ĀŨε + F̄ (Ũε; λ̃ε, ε) + {F̄exp(Ũε; λ̃ε, ε) − F̄ (Ũε; λ̃ε, ε) + R(Ũε; λ̃ε, ε)}.
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Then (3.19) implies that

I1(Ṽε, λ̃ε, ε) + I2(Ṽε, λ̃ε, ε) = 0

with

I1(Ṽε, λ, ε) =
∫

R

(
Ψ(θ), F̄exp

(
Ũε(θ),

θ

ε
; λ, ε

)

− F̄ (Ū(θ); λ0, 0) − DF̄ (Ū(θ); λ0, 0)Ṽε

)
dθ,

I2(Ṽε, λ, ε) =
∫

R

(
Ψ(θ), R

(
Ũε(θ),

θ

ε
; λ, ε

))
dθ.

Recalling that all bounded solutions of (2.2) lie in Gσ for all t, we see that there
exist positive constants C2 and c2 such that, for any bounded solution Ũε of (2.2),
any 0 < ε < ε0 and any λ ∈ Λ, we have

I2(Ṽε, λ, ε) � C2 exp
(

− c2

ε1/2

)
.

On the other hand, since Ūε is a solution of (3.26), I1(V̄ε; λ1(ε), ε) = 0, where
V̄ε = Ūε − Ū . But, by (2.11) and (3.25),∣∣∣∣

∫
R

(
Ψ(θ), DλF̄exp

(
U(θ),

θ

ε
; λ, 0

)∣∣∣∣
λ=λ0

)
dθ

∣∣∣∣ > C (3.27)

for all U close to Ū . We now choose the constant c1 which bounds |Ũε − Ū |X small
enough that Ũε lies in the neighbourhood where (3.27) holds. Then, there exists Cexp
such that for |λ−λ1(ε)| � Cexp exp(−c2/ε1/2) we obtain |I1(V, λ, ε)| > |I2(V, λ, ε)|.
Hence, in order to have I1 + I2 = 0 we must have

|λ − λ1(ε)| < Cexp exp
(

− c2

ε1/2

)
,

which completes the proof of theorem 2.5.

4. Exponential homogenization

The proof of proposition 3.7 is based on a combination of Galerkin approximation,
an iterative averaging procedure and the use of Gevrey class regularity. A similar
problem was treated in [5, 6], but the presence of the unbounded term εB(τ/ε)V
in our problem causes additional difficulties in the construction of the averaging
transformation.

More precisely, we proceed as follows.
We begin in step 1 by considering (2.7) restricted to a finite-dimensional subspace

of X. (The dimension of this subspace will be chosen in an ε-dependent fashion.) For
this finite-dimensional system we show that we can make a change of variables (an
‘averaging’ transformation) such that, in terms of the new variables, the dependence
on the ‘fast’ time τ/ε occurs only in terms that are exponentially small in ε.

In step 2 we then relate the solutions of the finite-dimensional model to the
evolution of the full system (3.9). We prove that if the standing wave solution of
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the averaged system is very smooth, then the effects of the ‘fast’ time dependence
are also exponentially small in the full system.

Remark 4.1. Throughout the proof we suppress the dependence on the param-
eter λ, because the transformations are smooth in λ and the estimates on the
averaging transformations are all uniform in λ. The closeness of the λ-derivatives
of F̄exp and F̄ is a direct consequence of this. For similar reasons we also suppress
the dependence of the various functions on x.

Step 1 (finite-dimensional transformation). As in [6] we use an ε-dependent Galer-
kin approximation with approximation space

HN = span
{(

exp(ik · x)
0

)
,

(
0

exp(ik · x)

)
with k ∈ Z

d, |k|2 =
d∑

j=1

k2
i � N2

}

with orthogonal projection PN in X, note that ‖PN Ā‖ = N on X and the Gevrey
spaces Gσ. Then, noting that ĀPN = PN Ā and BPN = PNB, we define the evo-
lution of UN = PNU by

U̇N = ĀUN + εB

(
τ

ε

)
UN + PN F̄ (UN ; ε) + PN F̃

(
UN ,

τ

ε
; ε

)
, (4.1)

where we choose N depending on ε through the formula

N(ε) = [ε−1/2]. (4.2)

We now transform (4.1) by adapting the proof of Neishtadt’s theorem [7] about the
averaging of exponential order for finite-dimensional ODEs. We make successive
coordinate changes, such that the non-autonomous terms are formally of higher
order in ε in the transformed equation:

V̇N = ĀVN + PN F̄ (VN ; ε) + F̄j(VN ; ε) + Rj

(
VN ,

τ

ε
; ε

)
. (4.3)

We will then give estimates on the transformed equation that are uniform in ε
and N(ε). In the transformed equation, the non-autonomous terms are exponen-
tially small in ε.

We describe the formal coordinate changes needed to remove non-autonomous
terms. For a moment we suppress the dependence of V on N to simplify the nota-
tion. We work on the complex extension of the projected ball in Gσ. More precisely,
if BGσ is the ball of radius R in Gσ, we define DN,σ = PN (BGσ ), and

N σ
δ (DN,σ) :=

{
U ∈ HN

∣∣∣ inf
V ∈DN,σ

|U − V |Gσ
< δ

}
. (4.4)

Remark 4.2. We could choose the radius, R, of the ball on which we define our
changes of variables to be as large as we want, though obviously the constants that
appear in the proof would depend on R. For convenience, we fix R once and for all
to be twice the max of Ū(t) for Ū , the standing wave solution of (2.7).
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We define the supremum norm on these neighbourhoods by

‖f‖N σ
δ (D) = sup

U∈N σ
δ (D)

|f(U)|Gσ

Since σ will be fixed throughout this section we will typically denote this norm in
the much simpler fashion:

‖f‖N σ
δ (D) = ‖f‖δ,

if there is no possibility of confusion.
We construct the averaging transformation inductively and at each step of the

induction we shrink the size of the complex neighbourhood slightly. There will be
r steps in our induction (r will be fixed below) and we define a sequence of constants
δ = δ0 > δ1 > δ2 > · · · > δr > 1

2δ.
After j inductive steps, the equations will have the form

U̇ = AU + PN F̄ (U ; ε) + F̄j(U ; ε) + Rj

(
U,

t

ε
; ε

)
. (4.5)

We will estimate the size of the various terms on the complex domain N σ
δj

(DN,σ).
The ‘remainder’ term Rj will be chosen to have zero average,

〈Rj〉(U, ε) =
∫ 1

0
Rj(U, θ, ε) dθ = 0,

and to start the induction we will take

F̄0 = 〈PN F̃ + PNB〉 and R0 = (PN F̃ + PNB) − 〈PN F̃ + PNB〉.

Starting with (4.5), we consider a coordinate change of the form

U = V + εWj

(
V,

t

ε
; ε

)
(4.6)

with W (·, t/ε; ε) : PNX → PNX, periodic in t/ε with period 1. Substitution into
(4.5) yields

V̇ + ε
∂

∂V
Wj(V, τ ; ε)V̇ +

∂

∂τ
Wj(V, τ ; ε)

= Ā(V + εWj(V, τ ; ε)) + PN F̄ (V + εWj(V, τ ; ε); ε)
+ F̄j(V + εWj(V, τ ; ε); ε) + Rj(V + εWj(V, τ ; ε), τ ; ε).

We will choose Wj to ‘kill’ the (formally) largest term that depends on the ‘fast’
time. In the present case, this is Rj , and to remove it we pick

Wj(V, τ ; ε) =
∫ τ

0
Rj(V, θ; ε) dθ (4.7)

and obtain

V̇ = ĀV + PN F̄ (V ; ε) + F̄j(V ; ε) + a

(
V,

τ

ε
, ε

)
, (4.8)
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where

a(V, θ; ε) =
(

1 + ε
∂

∂V
Wj

)−1

× {εPN ĀWj + PN (F̄ (V + εWj ; ε) − F̄ (V ; ε))

+ PN (F̄j(V + εWj ; ε) − F̄j(V ; ε))

+ PN (Rj(V + εWj , θ; ε) − Rj(V, θ; ε))}
+ {(1 + εDV Wj)−1 − 1}(ĀV + PN F̄ (V ; ε) + F̄j(V ; ε)). (4.9)

(In this expression we have suppressed the dependence of many of the functions
on variables like ε and λ to prevent the formula from becoming too unwieldy.) We
then choose

F̄j+1(V, ε) = F̄j(V ) + 〈a(V, ·, ε)〉, Rj+1(V, τ, ε) = a(V, τ, ε) − 〈a(V, ·, ε)〉 (4.10)

and we see that (4.8) has the form needed for our inductive argument.
We now begin the task of rigorously estimating the various terms that result from

the above procedure. We begin by bounding the terms F̄0 and R̄0 that appear in
our original equation (4.1).

By construction we have ‖F̄0(·; ε)‖δ � ‖〈PN F̃ (·, ε)〉‖δ +‖〈PNB·〉‖δ With the aid
of (3.10) the second term on the right-hand side can be bounded by Cε2N2. To
bound the first term we note that 〈PN F̃ (·, ε)〉 = PN 〈F̃ (·, ε)〉 and write

〈F̃ 〉 =

〈
(1 + Θ′(θ))

(
0

−f(v1 + εφ(·)v2, · + Θ(·); ε)

)〉

−
〈(

0
−f(v1, ·; ε)

)〉
−

〈(
εΘ(·)f(v1 + εφ(·)v2, · + Θ(·); ε)

0

)〉
.

The smoothness of f allows us to bound the ‖ · ‖δ norm of the last term by Cε. In
order to bound the difference of the first two terms, note that, by the change-of-
variables formula,

〈f(v1, ·, ε)〉 = 〈(1 + Θ′(·))f(v1, · + Θ(·); ε)〉.

With this identity and the smoothness of f we can bound the difference of the first
two terms in the expression for 〈F̃ 〉 by CεN .

By applying analogous estimates to R0, we obtain the following lemma.

Lemma 4.3. There exist ε0 > 0 and C > 0 such that if 0 < ε < ε0,

‖F̄0(·, ε)‖δ � C(εN + ε2N2) � Cε1/2,

sup
ψ∈[0,1]

‖R0(·, ψ, ε)‖δ � C.

Remark 4.4. The fact that the norm of R0 is only bounded by a constant rather
than Cε1/2 is due to the presence of the term

εΘ(ψ)d̄∆xu1,
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in BU . This term has an average of zero and hence does not contribute to F0, but
it is present in R0 and can only be bounded by CεN2 � C.

We now construct inductively a sequence of changes of variables which succes-
sively transforms (4.1) into (4.5). Begin by defining the change of variables

U = Φ0(V ) ≡ V + εW0

(
V,

t

ε
, ε

)
, (4.11)

with

W0(V, ξ, ε) =
∫ ξ

0
R0(V, s, ε) ds.

From the bound on R0 in lemma 4.3, we have

sup
ξ∈[0,1]

‖W0(·, ξ, ε)‖δ � M0

for some M0 > 0. Furthermore, recalling that f is an entire function we see that
R0, and hence W0 is analytic on N σ

δ (DN,σ) and thus we can use Cauchy estimates
to bound its derivatives (see [5, lemma 7]):

∥∥∥∥ε
∂W0

∂V

∥∥∥∥
δj−K0

� ε‖W0‖δ

K0
� M0ε

K0
. (4.12)

These estimates, plus the inverse function theorem, imply that if we choose K0 = 1
4δ

and set δ1 = 3
4δ we have the following lemma.

Lemma 4.5. There exist ε0 > 0 such that for every 0 < ε < ε0, (4.11) defines an
analytic and invertible change of variables from N σ

δ1
(DN,σ) into N σ

δ0
(DN,σ).

Writing out the differential equation satisfied by V we have

V̇ = ĀV + F̄ (V ; ε) + F̄1(V ; ε) + R1

(
V,

t

ε
, x, ε

)
,

where F̄1 and R1 are given in terms of F̄0 and R0 by (4.10). Applying the Cauchy
estimates as above, we see that we can bound terms like

‖R0(· + εW0(·), θ; ε) − R0(·, θ, ε)‖δ1 � ε
‖R0(·, θ, ε)‖δ0

(δ0 − δ1)
‖W0‖δ1 � Cε

δ
.

All other terms in F̄1 and R1 can be bounded in a similar fashion, the most difficult
being the term ‖εPN ĀW0‖δ1 , which is bounded by CεN � Cε1/2. The details are
left to the reader as an exercise, and we find that we can apply the following lemma.

Lemma 4.6. There exist ε0 > 0 and positive constants B̃1 and B̃2, such that

‖F̄1(·, ε)‖δ1 � B̃1ε
1/2,

sup
ψ∈[0,1]

‖R1(·, ψ, ε)‖δ1 � B̃2ε
1/2.
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We now proceed inductively. Define K(ε) = K̃ε1/2 for K̃ fixed and set δj+1 =
δj − K(ε) for j = 1, 2, . . . , r. We require δr � 1

2δ and so we choose

r =
[

δ

2K(ε)

]
=

[
δ

2K̃ε1/2

]

We then state the following proposition.

Proposition 4.7. There exist ε0 > 0 and positive constants B1 and B2, such that,
for j = 1, 2, . . . , r, there exists an analytic and invertible change of variables

U = Φj(V ) = V + εWj

(
V,

τ

ε
, ε

)

from N σ
δj+1

(DN,σ) into N σ
δj

(DN,σ) and such that V satisfies the differential equation

V̇N = ĀVN + PN F̄ (VN ; ε) + F̄j+1(VN ; ε) + Rj+1

(
VN ,

τ

ε
; ε

)
, (4.13)

with

‖F̄j+1(·, ε)‖δj+1 � B1ε
1/2 (4.14)

and

sup
ψ∈[0,1]

‖Rj+1(·, ψ, ε)‖δj+1 � Mj+1 ≡ 2−(j+1)B2ε
1/2. (4.15)

Proof. Assume that

‖F̄j‖δjj � B1ε
1/2, (4.16)

‖Rj‖δj � Mj with Mj = 2−jB2ε
1/2, (4.17)

for the constants B1, B2 chosen below. Lemma 4.6 implies that these estimates hold
for j = 1 and we will prove that (4.14) and (4.15) follow from them, completing
the induction.

Remark 4.8. To simplify notation, we suppress the arguments of W and the
dependence on time and parameters N and ε in the functions.

Define the (j + 1)st change of variables by

U = Φj(V ) = V + εWj

(
V,

t

ε
, ε

)
,

where Wj is defined by (4.7). The inductive estimates on Rj , plus the Cauchy
estimates imply that

‖εWj‖δj
� Mjε (4.18)

and ∥∥∥∥ε
∂Wj

∂V

∥∥∥∥
δj−K(ε)

� Mjε

K(ε)
, (4.19)
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from which we see (via the analytic inverse function theorem) that Φj defines an
analytic and invertible change of variables from N σ

δj+1
(DN,σ) into N σ

δj
(DN,σ).

We can estimate the correction term a in (4.6):

‖a‖δj−K(ε)

� ‖(DV Φj)−1{εĀWj + PN F̄ (V + εWj) − PNF (V )
+ F̄j(V + εWj) − F̄j(V ) + Rj(V + εWj) − Rj(V )

+ {(1 + εDV Wj)−1 − 1}Wj [ĀV + PN F̄ (V ) + F̄j(V )]}‖δj−K(ε).

(Again, we have suppressed the dependence of the various functions on all vari-
ables except those important for the inductive estimates.)

For V ∈ N σ
δj+1

(DN,σ), ‖AV ‖δj+1 is bounded by N‖V ‖δj+1 . Using the inverse func-
tion theorem and the mean value theorem to estimate (DV Φj)−1 and (DV Φj)−1 − 1
we have

‖a‖δj−K(ε)

�
∞∑

k=0

∥∥∥∥ε
∂

∂V
Wj

∥∥∥∥
k

δj−K(ε)

×
{

‖εWj‖δj

[
N +

∥∥∥∥ ∂

∂V
PNF

∥∥∥∥
δj−K(ε)

+
∥∥∥∥ ∂

∂V
F̄j

∥∥∥∥
δj−K(ε)

+
∥∥∥∥ ∂

∂V
Rj

∥∥∥∥
δj−K(ε)

]

+ C

∥∥∥∥ε
∂

∂V
Wj

∥∥∥∥
δj−K(ε)

[N‖V ‖δj + ‖PN F̄‖δj
+ ‖F̄j‖δj

]
}

.

Applying the Cauchy estimate again gives

‖a‖δj−K(ε) � 2
{

εMj

[
N +

Mj

K(ε)
+

3B1

K(ε)

]
+

Mjε

K(ε)
[NM + B1 + 2B1]

}
,

where M is the radius of DN (see (4.4)). Recalling the definition of K(ε), we obtain

‖a‖δj−K(ε) � Mj

[
2ε1/2 + 6

B1

K̃
ε1/2 + 2

M

K̃
+ 6

B1

K̃
ε1/2

]
� 1

4Mj

for sufficiently large K̃ uniformly in 0 < ε < ε0 and N(ε). Therefore,

‖Rj+1‖δj+1 < 1
2Mj = Mj+1 and ‖F̄j+1 − F̄j‖δj+1 < 1

4Mj .

Hence,

‖F̄j+1‖δj+1 � ‖F̄0‖δj+1 +
j∑

k=0

‖F̄k+1 − F̄k‖δj+1

� B2ε
1/2 + 1

4

j∑
k=0

Mk � B2ε
1/2 + 1

2B2ε
1/2 � B1ε

1/2. (4.20)

Thus, the inductive statements (4.16) and (4.17) are satisfied for j+1 for 0 < ε < ε0.
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We now define Φ∗ = Φ0 ◦ Φ1 ◦ · · · ◦Φr. The inductive estimates, plus the defi-
nitions of δj and r, then imply that Φ∗ is an analytic and invertible change of
variables from N σ

δ/2(DN,σ) into N σ
δ (DN,σ). Furthermore, this change of variables

transforms (4.1) into

V̇ = ĀV + F̄ (V ; ε) + F̄∗(V ; ε) + R∗

(
V,

τ

ε
; ε

)
. (4.21)

From the inductive estimates we obtain estimates on the norms of F∗ and R∗,
uniform in ε → 0 and N(ε) → ∞, on N σ

δ/2(DN,σ) ⊂ N σ
δr

(DN,σ). More precisely, we
obtain the following corollary.

Corollary 4.9. There exist ε0 > 0 and C, c1, c2 > 0 such that if 0 < ε < ε0, there
exists an analytic and invertible change of variable

U = Φ∗(V ) = V + εW∗(V )

from N σ
δ/2(DN,σ) into N σ

δ (DN,σ), which transforms (4.1) into (4.21). The terms F∗,
R∗ and W∗ can be estimated by

sup
ξ∈[0,1]

‖R∗(·, ξ; ε)‖δ/2 < 2−rB2ε
1/2 < c2 exp(−c1ε

−1/2), (4.22)

‖F∗(·; ε)‖δ/2 < Cε1/2, (4.23)
‖W∗(·; ε)‖δ/2 < C. (4.24)

Step 2 (transformation of the full system). Next we extend our bounds on the
finite-dimensional subsystem to the full, infinite-dimensional system. We extend
the change of variables Φ∗ to a (complex) neighbourhood of the ball in Gσ by defin-
ing

U = V + εW∗

(
PNV,

τ

ε
; ε

)
.

W∗ is bounded on bounded sets of X and Gσ, as the estimates above were uniform
in σ � 0 and X = G0. We write the equation for V as in (3.22):

V̇ = ĀV + F̄exp(V ; ε) + R

(
V,

τ

ε
; ε

)
(4.25)

with

F̄exp(V ; ε) + R

(
V,

τ

ε
; ε

)
= F̄ (V ; ε) + F̄∗(PNV ; ε) + R∗

(
PNV,

τ

ε
; ε

)
+ b

(
V,

τ

ε
; ε

)
.

The additional correction term b = b1 + b2 + b3 arises from the infinitely many
degrees of freedom that were ignored in (4.1), as well as their interactions with
the modes in PNX, and the terms that appear there fall naturally into one of three
classes.

The infinite-dimensional corrections b1 and b2 come from the modes that were
neglected in the transformation Φ∗. From the bounded part of the nonlinearity we
have

b1

(
V,

τ

ε
; ε

)
= (I −PN )

{
F̄ (V +εW∗(PNV ))− F̄ (V )+ F̃

(
V +εW∗(PNV ),

τ

ε
; ε

)}
,

(4.26)
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while the unbounded part contributes

b2

(
V,

τ

ε

)
= (I − PN )B

(
τ

ε

)
(V + εW∗(PNV )) = (I − PN )B

(
τ

ε

)
V.

We get also a correction b3 in the finite-dimensional Galerkin space, as there is
an error in the lower modes due to the neglected influence of the higher Galerkin
modes on the lower ones. It is given by

b3

(
V,

t

ε
, ε, N(ε)

)

= (DV N Φ∗)−1

× PN

{
F̄ (V + εW∗(PNV )) − F̄ (PNV + εW∗(PNV ))

+ F̃

(
V + εW∗(PNV ),

τ

ε
; ε

)
− F̃

(
PNV + εW∗(PNV ),

τ

ε
; ε

)}
.

(4.27)

Recall that V N = PNV .
We define

F̄exp(V ; ε) = F̄ (V ; ε) + F̄∗(PNV ; ε) + 〈b1(V, ·; ε)〉, (4.28)

R

(
V,

τ

ε
; ε

)
= R∗

(
PNV,

τ

ε
; ε

)
+ b

(
V,

τ

ε
; ε

)
− 〈b1(V, ·; ε)〉. (4.29)

We start by estimating the size of F̄exp(·; ε) = F̄ (·; ε) + F̄∗(·; ε) + 〈b1(·, ·; ε)〉. For
the finite-dimensional part we have |F̄∗(PNV, ε, N)|X � c3ε

1/2 by (4.23). Estimat-
ing 〈b1〉, noting 〈F̃ (V, ·; ε)〉 = 0 and 〈B(·)V 〉 = 0, for V ∈ X = G0 we obtain

|〈b1(V, ·, ε, N)〉|X

�
∣∣∣∣(I − PN )

{
F̄ (V + εW∗(PNV )) − F (V ) + F̃

(
V + εPNW∗(V ),

τ

ε
; ε

)}∣∣∣∣
X

� sup
U=V +rW∗(P N V ),

r∈[0,ε]

|F̄ ′(U ; ε)|L(X,X)|εW∗(PNV )|X

+ sup
U=V +rW∗(P N V ),

r∈[0,ε]

|F̃ ′(U ; ε)|L(X,X)|εW∗(PNV )|X

� Cε, (4.30)

because |εW∗(PNV )|X � Cε. Thus, we obtain the desired estimate on F̄exp:

|F (U ; λ, ε) − F̄exp(U ; λ, ε)|X � C1ε
1/2.

The additional terms can then be estimated very easily using the following obser-
vation. If V (t) ∈ Gσ, then the difference between V and its projection into HN is
bounded in the X norm by

|V (t) − PNV (t)|X � |V (t)|Gσ exp(−σN). (4.31)
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Since we consider Gevrey regular solutions of (4.25), these allow us to estimate
the remaining terms:

|R|X = |R∗ + b1 + b2 + b3 − 〈b1〉|X .

For the first part we have, by (4.22),∣∣∣∣R∗

(
V,

τ

ε
; ε

)∣∣∣∣
X

� c2 exp(−c1ε
−1/2).

For b1 − 〈b1〉 we use the same analysis as for 〈b1〉 above, except that we also note
that F̄ and F̃ are bounded in the Gevrey norm Gσ. Hence, b1(V ) ∈ Gσ and, thus,∣∣∣∣b1

(
V,

τ

ε
; ε

)
− 〈b1(V, ·; ε)〉

∣∣∣∣
X

� 2
∣∣∣∣(I − PN )

{
F̄ (V + εW∗(PNV )) − F̄ (V ) + F̃

(
V + εW∗(PNV ),

τ

ε
; ε

)}∣∣∣∣
X

� C(|V |Gσ
) exp(−σN). (4.32)

Next we estimate |b2(V, τ/ε)|X = |(I − PN )B(τ/ε)V |X . Although B is unbounded
as an operator on X, it is bounded as a linear operator Gσ → Gσ/2. Thus,∣∣∣∣b2

(
V,

τ

ε

)∣∣∣∣
X

� C exp(−( 1
2σ)N). (4.33)

Finally, we deal with the term b3, created by the Galerkin approximation in the
finite-dimensional part. For V ∈ Gσ we define the line segment

KV = {rV + (1 − r)PNV + εW (PNV )|r ∈ [0, 1]}.

We then obtain

|b3(V, ·, ε, N)|X � |(DV N Φ∗)−1|L(X,X)

× (|DF̃ (V )|L(X,X) + |DF̄ (V )|L(X,X))|V − PNV |X
� C exp(−σN), (4.34)

where we have used (4.31).

We now combine the exponential estimates of steps 1 and 2, using N(ε) = [ε−1/2].
The estimates (4.32) and (4.34) can be expressed in terms of ε. We then obtain

exp(−c1ε
−1/2) from (4.22),

exp(−σε−1/2) from (4.32)–(4.34).

The estimates are then of order exp(−cε−1/2) and the proof is complete.
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