

Citation for published version:
Drugowitsch, J & Barry, AM 2006, Towards convergence of learning classifier systems value iteration. Computer
Science Technical Reports, no. CSBU-2006-03, University of Bath, Department of Computer Science.

Publication date:
2006

Link to publication

©The Author April 2006

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/towards-convergence-of-learning-classifier-systems-value-iteration(82cea0df-60a5-4742-af0f-1ffb0013e8b4).html

Department of
Computer Science

Technical Report

Towards Convergence of
Learning Classifier Systems Value Iteration

Jan Drugowitsch and Alwyn Barry

Technical Report 2006-03 April 2006

ISSN 1740-9497

Copyright c©April 2006 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Towards Convergence of

Learning Classifier Systems Value Iteration

Jan Drugowitsch and Alwyn M Barry

April 2006

Abstract

In this paper we are extending our previous work on analysing Learning Classifier Systems
(LCS) in the reinforcement learning framework [4] to deepen the theoretical analysis of Value
Iteration with LCS function approximation. After introducing our formal framework and some
mathematical preliminaries we demonstrate convergence of the algorithm for fixed classifier mixing
weights, and show that if the weights are not fixed, the choice of the mixing function is significant.
Furthermore, we discuss accuracy-based mixing and outline a proof that shows convergence of LCS
Value Iteration with an accuracy-based classifier mixing. This work is a significant step towards
convergence of accuracy-based LCS that use Q-Learning as the reinforcement learning component.

1 Introduction

In [4] we described how to model Learning Classifier Systems (LCS) in the reinforcement learning frame-
work. Even though that work is restricted to constant classifier populations, it is a crucial milestone
towards a unified theory of function approximation, reinforcement learning and classifier replacement
in the context of LCS. In this paper we investigate some properties of the effects of using LCS function
approximation in combination with Value Iteration, particularly w.r.t. convergence of the algorithm.

The question of convergence of Value Iteration is an important one, as Value Iteration is a deter-
ministic iteration that Q-Learning stochastically approximates. XCS, the currently most used classifier
system, uses Q-Learning as its reinforcement learning component and is therefore directly affected by
our investigations. Even though we could attempt to model Q-Learning in LCS directly, it is more
appropriate to first handle the deterministic case and then show that the stochastic approximation is
appropriate in the sense of it converging to the deterministic iteration at infinity.

We start our investigations by firstly describing the reinforcement learning framework, the LCS
function approximation, and the LCS Value Iteration algorithm. As most of our work is based on
contraction and non-expansion, we continue by discussing vector fields, how they can form contraction
maps, and some of their other properties that we will require. After showing properties of the Value
Iteration update operator, we will study how single classifiers behave and how they can be mixed to
form an overall value function approximation. For constant classifier mixing, we will prove convergence
of the algorithm. An example that follows shows that we cannot arbitrarily mix the classifiers and still
get converging behaviour. The rest of the paper is devoted to accuracy-based mixing and its analysis.
We conclude with a proof that shows convergence of LCS Value Iteration with accuracy-based mixing,
but relies on a conjecture that describes a certain property of the LCS function approximation.

2 LCS Value Iteration

This section gives the formal basis of reinforcement learning and Value Iteration and how Value Iter-
ation can be applied in Learning Classifier Systems.

2.1 The Reinforcement Learning Framework

Let S be the finite set of states of size N = |S|, which we will map without loss of generality to the set
of natural numbers N. In every state i ∈ S we can perform an action a from a set of actions A, leading
to a transition to the next state j ∈ S and a scalar reward. The probability of a transition from i to j
by performing action a is given by pij(a), which is the transition function p : S×S×A→ [0, 1]. Every
such transition is mediated by the reward rij(a), given by the reward function r : S × S × A→ R. A

1

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

policy µ : S → A gives the behaviour of an agent in the problem domain, as it determines the action
choice for every action. The aim is to find the policy that maximises the discounted reward in the long
run; that is for state i

V ∗(i) = lim
n→∞

E

(
n∑

t=0

γtritit+1(at)|i0 = i, at = µ∗(it)

)
,

where γ ∈ (0, 1] is the discount factor, and we assume the sequence of states {i0, i1, . . . } and actions
{a0, a1, . . . } to be generated according to the optimal policy µ∗. V ∗ : S → R denotes the optimal value
function that returns the expected return for every state i. Knowing this value function allows us to
derive the optimal policy by choosing the action that is expected to maximise the next value.

2.2 Value Iteration and Approximate Value Iteration

One way to find the optimal value function V ∗ is to solve Bellman’s Equation

V ∗(i) = max
a∈A

∑

j∈S

pij(a) (rij(a) + γV ∗(j)) , i = 1, . . . , N, (1)

which relates the optimal value of a state to the maximum possible reward and discounted value of
the next state.

Value Iteration is a method for finding the optimal value function by repeatedly applying the
Dynamic Programming (DP) update T to a value vector V ∈ RN , holding the current value for every
state in S. The update T applied to V is defined by (e.g. [2, Ch. 2.2.1])

(TV)(i) = max
a∈A

∑

j∈S

pij(a) (rij(a) + γV (j)) , i = 1, . . . , N.

That gives the iteration
Vt+1 = TVt,

starting with some arbitrary initial V−1 ∈ RN . Due to the properties of T , this iteration is guaranteed
to converge to the optimal value function V ∗ when it is applied an infinite number of times.

Given that the set of states is large, calculating the value for every state at every iteration is
spatially and computationally prohibitive. Applying function approximation to the value function V
is an approach to circumvent this problem. Let Ṽ : S → R be a parametric function approximation of
V . Even though we will for now ignore its parameters, consider that its properties are determined by a
finite set of scalar values that is usually smaller than S. The aim at every iteration becomes to minimise
the difference between the update according to Value Iteration and its current approximation, that is

Ṽt+1 = min
Ṽ
‖T Ṽt − Ṽ ‖,

where the minimum is restricted to the approximation space given by the approximation architecture.
As discussed in [4, Sec. 3.2.1], this iteration might converge only for certain function approximation
architectures. In other cases, such as for linear regression or neural networks, the update might not
converge or even diverge. Therefore it is important to investigate whether it is compatible with the
function approximation in use.

2.3 LCS Function Approximation

Learning Classifier Systems use a special case of function approximation by mixing the independent
approximation of a finite set of classifiers to form the overall approximation. Let us consider a set of K
classifiers, each identified by its index k ∈ {1, . . . ,K}. Each classifier k matches a certain subset Sk of
the state space S, which we will call the matched states set Sk ⊆ S. The objective of each classifier is
to minimise the approximation error over its matched states. To account for a non-uniform sampling
distribution, we will consider the function π : S → [0, 1] to represent the probability of sampling a
particular state. Let Ṽk be the approximation of classifier k. For a given value function V we want to
minimise the mean squared error ∑

i∈Sk

π(i)
(
V (i)− Ṽk(i)

)2

2

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

To ease notation, let ISk
: S → {0, 1} be the indicator function for Sk that returns ISk

(i) = 1
if i ∈ Sk and ISk

(i) = 0 otherwise. We can then define the N × N non-negative diagonal matrix
ISk

(that can be distinguished for the symbol’s use as a function from the context it is used in) by
having ISk

(1), . . . ISk
(N) along its diagonal. The sampling distribution can be given by the N × N

non-negative diagonal matrix D with the sampling distribution π(1), . . . , π(N) along its diagonal. The
sampling w.r.t. classifier k is given by the N ×N diagonal matrix Dk = ISk

D. Using this notation, we
want to minimise

‖V − Ṽk‖Dk

where ‖ · ‖Dk
is the weighted norm, given for any vector z ∈ RN by

‖z‖Dk
=

√∑

i∈S

ISk
(i)π(i)z(i)2,

that is, weighted by the diagonal of the matrix Dk.
The approximation architecture of each classifier is linear, characterised by the independence of

the approximation parameters and the state-dependent values. Such an architecture requires for each
state a particular set of scalar features that characterise that state. Let {φl : S → R}l ∈ {1, . . . , L} be
a set of L basis functions, each of which gives one feature for a given state. We can then define the
feature vector φ : S → RL for state i ∈ S by φ(i) = (φ1(i), . . . , φL(i))′. The classifier approximation
is parameterised by a weight vector wk ∈ RL of the same size as the feature vector. That gives the
classifier’s approximation Ṽk of state i ∈ S by

Ṽk(i) = w′kφ(i),

which is the inner product of the weight vector and the feature vector for that state. If we combine
the features of all states into a feature matrix Φ, that is

Φ =



− φ(1)′ −

. . .
− φ(N)′ −


 ,

then we can define a classifier’s approximation by Ṽk = Φwk.
With the knowledge of the classifier approximation architecture we can be more specific about our

objective, which is to minimise the distance between the function we want to approximate and its
approximation, that is

‖V − Φwk‖Dk
.

From linear algebra we know that the approximation that minimises this distance can be found by
orthogonally projecting the function into the approximation space, given by {√DkΦwk : wk ∈ RL}1
for classifier k. This orthogonal projection is described by the N ×N projection matrix ΠDk

, given by

ΠDk
= Φ(Φ′DkΦ)−1Φ′Dk,

which when applied to a vector z ∈ RN gives the closest point ΠDk
z in the approximation space.

Having described the approximation of one classifier, we will now discuss how these classifiers are
mixed to give the overall approximation Ṽ . Let ψk : S → [0, 1] be the mixing weights for classifier k,
satisfying ψk(i) = ISk

(i)ψk(i) and
∑K

k=1 ψk(i) = 1 for all i ∈ S. Let Ψk be the N × N non-negative
diagonal mixing matrix with ψk(1), . . . ψk(N) along its diagonal. Due to the properties of ψk, we have

K∑

k=1

Ψk = I, and Ψk = ISk
Ψk.

The overall approximation Ṽ given the classifier’s approximations {Ṽ1, . . . ṼK} is then defined by

Ṽ =
K∑

k=1

ΨkṼk.

Hence, for each state it is given by the weighted average of all classifiers that match that state.

1Here we use the fact that for some weighted norm ‖ · ‖Dk
and some vector z ∈ RN , ‖z‖Dk

= ‖√Dkz‖.

3

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

As derived in [3], mixing weights that conform to the Maximum Likelihood Estimate under some
assumptions are

ψk(i) =
ISk

(i)ε−ν
k∑K

p=1 ISp(i)ε−ν
k

,

where εk is an estimate of the approximation error of classifier k, and ν ∈ R+
6=0 is a mixing parameter

that is usually set to ν = 1. Hence, the classifiers are weighted inversely proportional to the quality
of their approximation. As the approximation error estimate depends on the function to approximate
and might change over time, the mixing weights will also change over time, which we will account for
by denoting them by Ψk,t.

2.4 LCS Value Iteration

As described before, approximate Value Iteration is based on approximating each step of a Value
Iteration. Each classifier maintains approximation Ṽk,t at time t, which gives the overall approximation

Ṽt =
K∑

k=1

Ψk,tṼk,t.

On this approximation we perform one DP update, giving the non-approximated new value vector Vt+1

by

Vt+1 = T Ṽt.

At that point we want each classifier to approximate that value vector by minimising ‖Vt+1 − Ṽk‖Dk
.

This minimum is given by

Ṽk,t+1 = ΠDk
Vt+1 = ΠDk

T Ṽt, k = 1, . . . ,K.

At the same time, each classifier keeps track of the approximation error, which at time t + 1 is given
by

εk,t+1 =
1

Tr(Dk)
‖Vt+1 − Ṽk,t+1‖Dk

=
1

Tr(Dk)
‖T Ṽt −ΠDk

T Ṽt‖Dk
.

That shows that given a certain problem that determines Dk and T , and a set of matched state
sets Sk giving ΠDk

, the only time-dependent value of the classifier error εk,t+1 is the previous overall
approximation2 Ṽt. As classifier mixing is usually calculated from the classifier errors, the mixing
weights Ψk,t+1 are subsequently also a function of Ṽt.

To completely describe the iteration, let us combine above step-wise instruction into a single update
equation, given by

Ṽt+1 =
K∑

k=1

Ψk,t+1ΠDk
T Ṽt. (2)

Hence, the next overall approximation Ṽt+1 is completely determined by the current overall approxi-
mation Ṽt.

3 Convergence Considerations

We will describe some of the investigations that we can make regarding convergence of LCS Value
Iteration when using averaging classifiers. For a more detailed discussion on the function approximation
of averaging classifiers see [3]. The reasons why we restrict ourselves to averaging classifiers is given
in [4, Sec. 4.2.1], but can be summarised by the possibility of divergence for other kinds of classifier
approximation architectures.

2Note that Ṽt is usually not explicitly represents but is recovered from the classifier approximations Ṽk,t. That requires

knowledge of the mixing weights Ψk,t that are computed from the classifier errors εk,t. As we use Ṽt to calculate the

next errors εk,t+1, we need to create a temporary copy of the current errors εk,t to be able to calculate Ṽt.

4

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

3.1 Contraction Maps

The algorithm is based on a mapping from RN into RN that describes an N -dimensional vector field.
We will firstly define some properties of such vector fields, and then describe how to combine these
properties to get a contraction mapping.

Given two vectors V, V̄ ∈ RN we will write V ≤ V̄ if

V (i) ≤ V̄ (i), i = 1, . . . , N

holds. Contraction maps are defined by the change of their image w.r.t. the change of the relevant
pre-image. Let us first define a general continuity property of functions (see, for example, [5, Ch. 9.3]):

Definition 3.1 (Lipschitz Continuity). Let f be a function on a metric space (M,d) from M to
itself. Then f is Lipschitz continuous if for some non-negative constant C ∈ R,

d(f(x), f(y)) ≤ Cd(x, y),

for all x and y in M . The constant C is called the Lipschitz constant of that function.

We can use the value of the Lipschitz constant to identify three cases:

Definition 3.2. Let f be a Lipschitz continuous function on the metric space (M,d) with Lipschitz
constant C. The function is said to be

1. a contraction with contraction modulus C, if C < 1,

2. a non-expansion if C = 1, and

3. an expansion if C > 1.

Contraction mappings are a particularly interesting case because they exhibit useful properties
when used in iterative algorithms, as expressed by the following theorem (see, for example, [5, Ch.
9.3]):

Theorem 3.1 (Contraction Mapping Theorem). Let P be a closed real interval, that is P has
one of the following forms: [a, b], [a,∞), (−∞, b] or (−∞,∞). Let f : P → P be a contraction mapping
with contraction modulus C ∈ (0, 1). Then

1. f has a unique fixed point s in P ;

2. for any x0 ∈ P , the simple iteration xt+1 = f(xt) gives a sequence converging to s.

In our case the metric space (M,d) is given by M = RN . We will define the distance metric d as
being the maximum norm for reasons that will become apparent once we investigate the properties of
the DP update T . This maximum norm is for any two vectors x, y ∈ RN defined by

d(x, y) = ‖x− y‖∞ = max
i=1,...,N

|x(i)− y(i)|.

To be more specific about the operators that define our algorithmic iteration, let us name some
properties of the vector fields that they describe:

Definition 3.3 (Increasing Vector Field). Let f be a vector field from f : RN → RN . Then f is
increasing, if x ≤ y implies that f(x) ≤ f(y) for all x and y in RN .

Definition 3.4 (Scalar Shift Vector Field). Let f be a vector field from f : RN → RN , let γ ∈ R
be a scalar such that γ ∈ [0, 1], let m ∈ R be a scalar, and let e ∈ RN be a vector that is given by
e = (1, . . . , 1)′. Then we call f a scalar shift vector field with scaling γ, if f(x+me) = f(x) + γme for
all x in RN .

Let us assume that we have an operator that describes a vector field that is both increasing and a
scalar shift vector field. Then we can state the following:

Lemma 3.2. Let f : RN → RN describe a vector field that is both increasing and a scalar shift vector
field with scaling γ. Then f describes a non-expansion w.r.t. the maximum norm if γ = 1, and a
contraction w.r.t. the maximum norm with contraction modulus γ otherwise.

5

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

Proof. The proof is similar to the one showing the contraction of the DP update operator T in [2,
Lemma 2.5]. Let x, y ∈ RN be two vectors, and c be the maximum norm of x− y, that is

c = max
i=1,...,N

|x(i)− y(i)|.

Then we have
x(i)− c ≤ y(i) ≤ x(i) + c, i = 1, . . . , N.

Applying f , we can write, based on f ’s properties,

(f(x))(i)− γc ≤ (f(y))(i) ≤ (f(x))(i) + γc, i = 1, . . . , N.

Therefore,
|(f(x))(i)− (f(y))(i)| ≤ γc, i = 1, . . . , N.

Hence we have
‖f(x)− f(y)‖∞ ≤ γ‖x− y‖∞,

which for γ = 1 is a non-expansion, and for γ < 1 is a contraction with modulus γ.

Therefore, given that we have an update function that describes an increasing and scalar shift vector
space with scaling smaller than one, we have a contraction, and repeatedly applying this function will
cause convergence to the fixed point of this function. We will proceed by showing that these properties
hold for the DP update T , and then investigate if we can state the same for the DP update in
combination with LCS function approximation using averaging classifiers.

3.2 The DP Update T

As the operator T is at the core of Value Iteration, we will discuss some of its properties. The DP
update operator T maps from RN to RN and hence describes a vector field. A simple analysis (as given
in [2, Sec. 2.3]) of this field reveals the following properties:

Lemma 3.3. The vector field given by T is increasing and a scalar shift vector field with scaling γ.
Hence, it is a contraction to the maximum norm with contraction modulus γ.

Proof. The proof for the increasing property and scalar shift property of T is given in [2, Lemma 2.1]
and [2, Lemma 2.1]. Its contraction follows from Lemma 3.2.

Given an estimate V of the optimal value function, repeatedly applying the DP update T to this
estimate will let the estimate converge to the optimal value function V ∗, which is the unique fixed
point of the update V ∗ = TV ∗. As that fixed point expression is Bellman’s Equation (1), we have
found the solution to that equation.

3.3 Averaging Classifiers

Averaging Classifiers are classifiers that use the single feature φ(1) = 1 for their approximation. This
results in a 1×N feature matrix Φ = (1, . . . , 1)′. For the projection ΠDk

of classifier k this gives

ΠDk
= Φ(ΦDkΦ′)−1Φ′Dk

= Tr(Dk)−1ΦΦ′Dk.

For any vector V ∈ RN this gives the approximation

(ΠDk
V)(i) =

∑
j∈Sk

π(j)V (j)∑
m∈Sk

π(m)
, (3)

which is the distribution-weighted average of V over the matched states Sk. Like T , ΠDk
also describes

a vector field ΠDk
: RN → RN . Some helpful properties of this vector field are:

Lemma 3.4. The vector field described by ΠDk
is increasing.

Proof. Let V, V̄ ∈ RN be two vectors such that V ≤ V̄ , and let us denote their non-negative difference
by c = V̄ − V . Using V = V̄ − c, we can derive for ΠDk

V and a fixed state i ∈ {1, . . . , N},

(ΠDk
V)(i) =

∑
j∈Sk

π(j)V̄ (j)∑
m∈Sk

π(m)
−

∑
j∈Sk

π(j)c(j)∑
m∈Sk

π(m)
≤ (ΠDk

)(i),

which completes the proof.

6

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

Lemma 3.5. The operator ΠDk
describes a scalar shift vector field with scaling 1.

Proof. The proof follows from expanding for (ΠDk
(V +me))(i) for an arbitrary vector V ∈ RN , state

i ∈ {1, . . . , N}, scalar m ∈ R, and vector e ∈ RN given by e = (1, . . . , 1)′.

We can therefore say by Lemma 3.2 that the approximation ΠDk
performed by averaging classifiers

gives a non-expansion w.r.t. the maximum norm. Hence, ΠDk
and T in combination would give a

contraction on the same norm. However, we are not particularly interested in the approximation of
a single classifier but want to consider all classifier in combination. To get more information about
the behaviour of the overall approximation, we must, in addition to a single classifier’s approximation,
investigate how their mixed combination behaves. We will consider three cases: i) constant mixing, ii)
arbitrary mixing, and iii) accuracy-based mixing.

3.4 Constant Mixing

Let us consider the case of constant mixing weights, that is Ψk,t = Ψk for all t = 0, 1, . . . and all
k ∈ {1, . . . ,K}. This allows us to show:

Lemma 3.6. Let {Ψ1, . . .ΨK} be a set of time-invariant diagonal non-negative N×N mixing matrices,
satisfying

∑K
k=1 Ψk = I, and Ψk = ISk

Ψk, and let ΠDk
be the projection operator for averaging

classifier k. Then
∑K

k=1 ΨkΠDk
is a non-expansion w.r.t. the maximum norm.

Proof. We will show the validity of this lemma by demonstrating that the vector field described by
our weighted classifier mix is increasing and a scalar shift vector field with scaling 1. From Lemma 3.2
it will follow that it is therefore a non-expansion w.r.t. the maximum norm.

Let us first show its increasing property by considering any two vectors V, V̄ ∈ RN such that
V ≤ V̄ and their non-negative difference c = V̄ − V . Using V = V̄ − c, we can derive for any state
i ∈ {1, . . . , N},

(
K∑

k=1

ΨkΠDk
V

)
(i) =

(
K∑

k=1

ΨkΠDk
V̄

)
(i)−

K∑

k=1

Ψk(i, i)(ΠDk
c)(i).

As the second sum on the right-hand side is non-negative, the vector field is increasing.
That the vector field is also a scalar shift vector field with scaling 1 can be shown by expanding

(
K∑

k=1

ΨkΠDk
(V +me)

)
(i),

where V ∈ RN is any vector, i ∈ {1, . . . N, } is any state, m is a scalar, and e ∈ RN is the vector
e = (1, . . . , 1)′.

This non-expansion leads to the result:

Theorem 3.7. Learning Classifier System Value Iteration with averaging classifiers and fixed mixing
weights converges to the unique fixed point of the iteration.

Proof. The LCS Value Iteration update for fixed mixing weights is

Ṽt+1 =
K∑

k=1

ΨkΠDk
T Ṽt.

By Lemma 3.3, T is a contraction w.r.t. ‖ · ‖∞. By Lemma 3.6,
∑K

k=1 ΨkΠDk
is a non-expansion w.r.t.

the same norm. Therefore,
∑K

k=1 ΨkΠDk
T is a contraction and by Theorem 3.1 the above update

converges to its unique fixed point.

3.5 Time-variant Arbitrary Mixing

Let us now consider what happens if we change the mixing weights at every iteration. Given that
the mixing weights are a function of the previous overall value approximation, would it be possible to
set them to arbitrary values and still have a contraction? If that is the case, then we can guarantee
convergence independent of the nature of the function that determines the mixing weights.

7

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

Let V, V̄ ∈ RN be two vectors, and {Ψ1, . . . ,ΨK} and {Ψ̄1, . . . , Ψ̄K} be the mixing weights. For
the update according to Eq. (2) to be a contraction, we would require

∥∥∥∥∥
K∑

k=1

ΨkΠDk
TV −

K∑

k=1

Ψ̄kΠDk
T V̄

∥∥∥∥∥
∞
≤ γ‖V − V̄ ‖∞

to hold. As before, we will separate the function approximation from the DP update and observe
its properties. If it features non-expansion w.r.t. the maximum norm, then we will get an overall
contraction. Non-expansion is satisfied if

∥∥∥∥∥
K∑

k=1

ΨkΠDk
V −

K∑

k=1

Ψ̄kΠDk
V̄

∥∥∥∥∥
∞
≤ ‖V − V̄ ‖∞

holds. However, due to the different mixing weights for the different vectors we cannot reduce the
above to a linear system as we have previously done to prove Lemma 3.6.

Let us consider a simple example with 2 classifiers, a state space S = {1, 2} and uniform sampling,
that is π(1) = π(2) = 1

2 . The first classifier matches all states, and the second classifier only matches
the second state, that is S1 = {1, 2} and S2 = {2}. Let the two vectors to approximate be V = (0, 1)′

and V̄ = (2, 4). Due to their averaging nature, the first classifier will give a value of 1
2 for V , and a value

of 3 for V̄ . The second classifier matches the values of its states and will therefore give 1 for V , and
4 for V̄ . As for state 2 we are mixing the approximations of both classifiers, and therefore its overall
approximation will be in the range [0, 1] for V , and in the range [2, 4] for V̄ , depending on the mixing
weights. Note that ‖V − V̄ ‖∞ = |V (2)− V̄ (2)| = 3. As we can chose arbitrary mixing weights, let us fix
the approximation of V̄ (2) at 4. We can now observe that the difference between the approximations
for V (2) and V̄ (2) is in the range [3, 4] depending on the mixing weights for the approximation of V .
Hence, it might be larger than ‖V − V̄ ‖∞ and therefore might violate our non-expansion property.
This demonstrates that we cannot guarantee non-expansion of the LCS function approximation for
arbitrary mixing weights.

Consequently, the choice of function that determines the classifier mixing weights is significant
w.r.t. the convergence properties of LCS Value Iteration. That leads to the question of how it has
to be formed to guarantee non-expansion of the function approximation? In the previous example we
have used different weighting rules applied to different vectors to demonstrate the violation of non-
expansion. The approximation of V̄ (2) puts full weight on the second classifier. If we do the same
for the approximation of V (2), we conform to the non-expansion property. Equally, we could set the
approximation of V (2) to be some average of both classifiers. If a similar average is applied to the
approximation of V̄ (2) we can still preserve the non-expansion property. How can we generalise this
observation?

3.6 Accuracy-based Mixing

To ease discussion over classifier mixing based on accuracy, we will introduce an operator C that
describes the overall approximation given such a classifier mixing. As described before, the mixing
weights are based on the matching classifiers’ approximation errors εk : RN → R+, which are given for
classifier k as a function of the current overall value function estimate V by the mean squared error
between the new estimate TV and its approximation ΠDk

TV by classifier k, that is

εk(V) =
1

Tr(Dk)
‖TV −ΠDk

TV ‖2Dk
=

1
Tr(Dk)

‖(I −ΠDk
)TV ‖2Dk

.

The mixing weights for a classifier k are some inverse of the error of that classifier, weighted by the
inverse error of all matching classifiers. Hence, we can define a set of functions ψk : S × RN → [0, 1]
that give the mixing weight for classifier k for a given state i and value function estimate V , by

ψk(i, V) =
ISk

(i)εk(V)−ν

∑K
p=1 ISp(i)εp(V)−ν

,

where ν is a time-invariant positive scalar that determines the emphasis of accuracy in the mixing.
We will write CV for applying this mixing strategy to a set of averaging classifiers that approximate

the vector V . Hence, C is defined by

(CV)(i) =
K∑

k=1

ψk(i, V)(ΠDk
V)(i) i = 1, . . . , N.

8

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

If this averaging schema describes a non-expansion w.r.t. the maximum norm, then we can guarantee
convergence for its use in combination with Value Iteration. Hence, our aim is to show that C is a
non-expansion. As before, we will proceed by treating C as describing a vector field C : RN → RN .

To show that C is increasing, let us first investigate the following:

Lemma 3.8. For any vector V ∈ RN , scalar m ∈ R, and vector e ∈ RN given by e = (1, . . . , 1)′ we
have

T (V +me)−ΠDk
T (V +me) = TV −ΠDk

TV, k = 1, . . . ,K.

Proof. From Lemma 3.3 we know that T describes a scalar shift vector field with scaling γ. Hence we
can write

T (V +me)−ΠDk
T (V +me) = TV −ΠDk

TV + γ(I −ΠDk
)me.

Additionally, by Lemma 3.5, ΠDk
is a scalar shift vector field with scaling 1, and ΠDk

(0e) = 0e. Hence,

(I −ΠDk
)me = me−ΠDk

(0e+me) = me−me = 0.

By our definition of the classifier error εk, Lemma 3.8 implies that the approximation error is
independent of any scalar shift of the value estimate V , that is εk(V + me) = εk(V). That seems
intuitive, as the error refers to the difference between the new value estimate and its approximation,
which by the scalar shift property of DP update T and the approximation ΠDk

is independent of the
scalar shift. Hence, given that the relative differences between the values of the states that the classifier
matches are correct, the error approximation is also correct. We hypothesis that therefore we can get
good approximate error estimates even before the final value function is known.

The only elements in the mixing weight function that depend on the value function V are the errors
of the classifiers. As these don’t change with a scalar shift of the value function, the weight also remains
the same, that is ψk(i, V +me) = ψk(i, V). We will use this property to show that C is a scalar shift
vector field.

Lemma 3.9. The vector field given by C is a scalar shift vector field with scaling 1.

Proof. By Lemma 3.8, εk(V + me) = εk(V), where V ∈ RN is any vector, m ∈ R is a scalar, and
e ∈ RN is the vector e = (1, . . . , 1)′. Hence, the same can be said for the mixing weight function ψk,
that is for any state i ∈ {1, . . . , N}, ψk(i, V +me) = ψk(i, V). Therefore,

K∑

k=1

ψk(i, V +me)(ΠDk
(V +me))(i) =

K∑

k=1

ψk(i, V)(ΠDk
(V +me))(i).

Lemma 3.5 shows that ΠDk
(V +me) = ΠDk

V +me. Hence,

K∑

k=1

ψk(i, V)(ΠDk
(V +me))(i) =

K∑

k=1

ψk(i, V)(ΠDk
V)(i) +

K∑

k=1

ψk(i, V)me.

As
∑K

k=1 ψk(i, V) = 1, the second sum on the right-hand side is simply a scalar shift vector me,
resulting in an overall scalar shift with scaling 1.

Having established the scalar shift property of C, we will now investigate if it is increasing. From
the definition of the mixing weights ψk we can see that for ν = 0, ψk is independent of the current
value function estimate and therefore time-invariant. Hence, we can apply Lemma 3.6 to show that C
is increasing. However, as we have already discussed in [3], ν = 0 is possibly the worst setting for this
parameter. Thus, we are more interested in the properties of C for ν > 0.

It is well known that a differentiable continuous function of a single variable is increasing if and only
if its first gradient is non-negative (e.g. [1, Ch. 11.2]). As the vector field described by C is continuous
and differentiable, we are interested in applying this principle to vector fields. As derived in Appendix
A, a vector field is increasing if its Jacobian is non-negative in all its components. Hence, we will derive
the Jacobian of C to determine if it is increasing.

As given in Appendix B, the components of the Jacobian of C are given by

∂CiV

∂V (l)
=

K∑

k=1

ψk(i, V)
ISk

(l)π(l)
Tr(Dk)

(
1 + 2νεk(V)−1(V (l)− Vk)(CiV − Vk)

)
,

9

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

where CiV = (CV)(i) is the ith component of the result of CV , and V (l) is the lth component of V .
Given that the above gives a non-negative result for all i = 1, . . . , N and l = 1, . . . , N , the vector field
described by C is increasing.

At present, our analysis has not identified whether the components of the Jacobian are non-negative
and this part of the investigation is future work. If the components were found to be negative this
does not necessarily mean that LCS Value Iteration diverges. The proof given in Appendix A is only a
sufficient, but not a necessary condition for a vector field to be increasing. Thus, even if not all of the
components of the Jacobian are non-negative, the vector field can still be increasing. Furthermore, our
search for an increasing vector field is based on Lemma 3.2, which gives a sufficient but not necessary
condition for non-expansion mappings. So, even if the vector field described by C is found to violate
the increasing property, we cannot conclude that LCS Value Iteration is not guaranteed to converge.

As we have not yet been able to produce a proof that the vector field given by C is increasing, but
neither were we able to find examples where it violates that property, we will state it as a conjecture,
pending further investigation.

Conjecture 3.10. The vector field given by C is increasing.

This leads to the following result:

Theorem 3.11. If Conjecture 3.10 holds, then LCS Value Iteration with accuracy-based mixing con-
verges to its fixed point

Ṽ ∗ = CT Ṽ ∗.
Proof. By Lemma 3.9, the vector field described by C is a scalar shift vector field with scaling 1.
Combining this with its increasing property given by Conjecture 3.10, Lemma 3.2 shows that C is a
non-expansion w.r.t. the maximum norm. As LCS Value Iteration is based on the iteration

Ṽt+1 = CT Ṽt,

and the DP update T is by Lemma 3.3 a contraction with contraction modulus γ, the operator conjunc-
tion CT describes a contraction to the maximum norm. Hence, by Theorem 3.1 the iteration converges
to its unique fixed point.

3.7 Handling Two-Step Iterations

In [4] the Value Iteration was described as a two-step iteration, even though we now see that it can be
expressed as an iteration that only involves a single step. For completeness, we will explain how our
analysis can be expanded to capture iterations of more than one step.

Such a modification will make the new value function estimate Ṽt+1 a function of both Ṽt and Ṽt−1.
To transform this method conceptually into a one-step iteration, we will introduce the variable U that
at time t keeps the value of Ṽt−1, that is Ut = Ṽt−1. By concatenating vectors Ṽt and Ut to vector
(Ṽt(1), . . . , Ṽt(N), Ut(1), . . . , Ut(N))′ we can describe the 2-step iteration by




Ṽt+1

−
Ṽt


 =



CT Ṽt

−
Ṽt−1


 .

Note that C now depends on Ṽt as well as Ṽt−1.
One step of this iteration is unlikely to lead to a contraction, as the new Ut+1 is simply a copy of

our current value function estimate Ṽt. As the upper half of the vector we are operating on is based
on the original LCS Value Iteration, the iteration will not cause an expansion either. Applying the
iteration twice gives the following update




Ṽt+2

−
Ṽt+1


 =



CTCT Ṽt

−
CT Ṽt


 ,

which is a contraction for both the upper and the lower half of the vector. Hence, we can still guarantee
convergence of the iteration. Even though our argument is only informal, the same can be shown
formally by defining a new update operator that performs an update on the concatenated vector
and investigating the properties of the vector field that it defines. Additionally, the argument can be
extended to any n-step iteration for a finite n, by concatenating the last n value function estimates
into a single vector, and observing contraction after n iterations.

10

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

4 Conclusion

We have described the LCS Value Iteration algorithm and have given a proof of its convergence, based
on the contraction of the DP update and the non-expansion of the LCS function approximation, and
depending on a conjecture about the nature of accuracy-based mixing. Additionally we have shown
convergence for fixed classifier mixing and have demonstrated that we cannot guarantee convergence
for all kinds of classifier mixing function. To deal with accuracy-based mixing, we have introduced the
operator C that described LCS function approximation with classifier mixing based on some inverse of
the approximation error. Treating this operator as a vector field allowed us to show that it is a scalar
shift vector field, and stated the conjecture that it is also increasing. Proving this conjecture is still an
open question, but we have described a possible approach that is based on the non-negativity of the
operator’s Jacobian.

Convergence of LCS Value Iteration is an important property, as it is the first step in answering
the question of whether we can safely use Q-Learning in LCS. In addition, it demonstrates approaches
to investigating the stability of LCS function approximation in the reinforcement learning framework.
Even though we are currently only dealing with constant populations of classifiers, showing convergence
to a population-dependent fixed point allows us to use this work even when we are changing the
population while we are performing the iteration. In that case, the fixed point would change, but
every iteration after that change would bring us closer to the new fixed point. Naturally, we cannot
ignore that the new population depends on the previous value function estimate, and analysing this
interaction is a topic of future research.

Having guaranteed convergence to a unique solution is a strong property that makes classifier
systems better candidates for real-world application, such as, for example, optimal control. Hence,
following this track of research for LCS will be fruitful for a wide range of applications that have not
previously been considered before due to the lack of theoretical guarantees.

Acknowledgements Thanks to Jonty Needham for being patient enough to listen to a large number
of näıve math questions, and to answer some of them in an understandable, and sometimes not-so-
understandable way. Additional thanks go to Prof Dmitri Vassiliev for hints on how to handle multi-step
iterations.

References

[1] Howard Anton. Calculus. John Wiley & Sons, New York, 5th edition, 1995.

[2] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[3] Jan Drugowitsch and Alwyn M. Barry. A Formal Framework and Extensions for Function Approx-
imation in Learning Classifier Systems. Technical Report CSBU2006-01, Dept. Computer Science,
University of Bath, January 2006. ISSN 1740-9497.

[4] Jan Drugowitsch and Alwyn M. Barry. A Formal Framework for Reinforcement Learning with
Function Approximation in Learning Classifier Systems. Technical Report CSBU2006-02, Dept.
Computer Science, University of Bath, January 2006. ISSN 1740-9497.

[5] W. A. Sutherland. Introduction to metric and topological spaces. Clarendon Press, Oxford, UK,
1975.

11

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

A Increasing Vector Fields

As there is no default definition of what it means for a vector field to be increasing, there is neither
a default monotonicity criterion for vector fields. Hence, in this section we will derive a monotonicity
criterion for vector fields based on the ordering

x ≤ y ⇔ x(i) ≤ y(i), i ∈ 1, . . . , N,

where x and y are real vectors with N components.
Let us first derive the mean-value theorem for functions of several variables:

Theorem A.1 (Mean-Value Theorem for Functions of Several Variables). Let f : RN → R
be a function that is continuous on [a, b] and is differentiable on (a, b). Then there exists a vector
c ∈ RN : a < c < b such that

(b− a)′∇f(c) = f(b)− f(a).

Proof. Define d = b− a and a continuous function F : R→ R, given by

F (t) = f(a+ td).

Hence, F (0) = f(a), and F (1) = f(b). By the nature of f , F is continuous on [0, 1] and differentiable
on (0, 1). By the mean-value theorem (e.g. [1, Ch. 4.9]) there exists a t ∈ R : 0 < t < 1, such that

∂F (t)
∂t

=
F (1)− F (0)

1− 0
= f(b)− f(a).

The derivative of F w.r.t. t is by given by

∂F (t)
∂t

= d′∇f(a+ td).

Denoting c = a+ td, we can substitute for ∂F (t)
∂t in above equation to get

(b− a)′∇f(c) = f(b)− f(a).

As a vector field f : RN → RN can be seen as a set of N functions fi : RN → R such that fi defines
the ith component of f , we can use the above theorem to get the following:

Theorem A.2 (Increasing Vector Fields). Let f : RN → RN be a vector field with components fi,
i = 1, . . . , N , where fi defines the ith component of f . Let fi be continuous on [a, b] and differentiable
on (a, b), for all i = 1, . . . , N . Then, given that the Jacobian of f on the interval (a, b) is non-negative,
the vector field is increasing.

Proof. f is increasing if and only if all of its components fi are increasing. Hence, we will demonstrate
for an arbitrary i that fi is increasing, given that all components of its gradient ∇fi are non-negative,
which is satisfied by the non-negative Jacobian of f .

Let x1 ∈ RN and x2 ∈ RN be two vectors in the interval [a, b], such that x2 > x1, and let x ∈ RN

be a vector such that x1 < x < x2, that is x ∈ (x1, x2). Hence, by Theorem A.1 we have

(x2 − x1)′∇fi(x) = fi(x2)− fi(x1).

By x1 < x2 we know that all components of x2 − x1 are non-negative. Having a non-negative gradient
implies by above equation that fi(x1) ≤ fi(x2). As this applies to all fi, i = 1, . . . , N , the vector field
given by f is increasing.

B Jacobian of C
In this section we will derive the Jacobian of our LCS approximation operator C. As C is a function
from RN to RN , we will denote the ith component of CV by CiV (which is the same as (CV)(i)). To
get the Jacobian of C, we need to derive

∂CiV

∂V (l)
, i = 1, . . . , N, l = 1, . . . , N.

12

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

As C is a function of the approximation errors εk : RN → R+, let us first derive the error’s gradient.
The error is given by

εk(V) =
1

Tr(Dk)

∑

i∈S

ISk
(i)π(i) (V (i)− Vk)2 ,

where we write Vk ∈ R for the approximation of V by classifier k, given by ΠDk
V . Even though ΠDk

V
returns a vector, this vector’s components are all the same, which is why we can represent them by
the scalar Vk, independent of the state. Deriving the gradient of the error εk gives

∂εk(V)
∂V (l)

= 2
ISk

(l)π(l)
Tr(Dk)

(V (l)− Vk) ,

which is the difference between the value of state l and classifier k’s approximation, weighted by the
state distribution and classifier k’s matching of that state. As we usually operate on the inverse εk(V)−ν

of the error, we require the gradient of this inverse, which is given by

∂εk(V)−ν

∂V (l)
= −2νεk(V)−(ν+1) ISk

(l)π(l)
Tr(Dk)

(V (l)− Vk).

The next step is to derive the gradient of the mixing weights ψk : S×RN → [0, 1]. They are defined
by

ψk(i, V) =
ISk

(i)εk(V)−ν

∑K
p=1 ISp(i)εp(V)−ν

,

with a gradient of

∂ψk(i, V)
∂V (l)

=
ISk

(i)∂εk(V)−ν

∂V (l)∑K
p=1 ISp(i)εp(V)−ν

−
ISk

(i)εk(V)−ν ∂
∂V (l)

(∑K
p=1 ISp(i)εp(V)−ν

)

(∑K
p=1 ISp(i)εp(V)−ν

)2 .

Substituting for the error gradient and using εk(V)−(ν+1) = εk(V)−νεk(V)−1 results in

∂ψk(V)−ν

∂V (l)
= 2νψk(i, V)

K∑
p=1

ψp(i, V)εp(V)−1 ISp(l)π(l)
Tr(Dp)

(V (l)− Vp)

−2νψk(i, V)εk(V)−1 ISk
(l)π(l)

Tr(Dk)
(V (l)− Vk)

To get the gradient of C, which is defined by

Ci(V) =
K∑

k=1

ψk(i, V)Vk,

we will combine
K∑

k=1

ψk(i, V)
∂Vk

∂V (l)
=
ISk

(l)π(l)
Tr(Dk)

,

and

K∑

k=1

∂ψk(i, V)
∂V (l)

Vk = 2ν
K∑

k=1

ψk(i, V)
K∑

p=1

ψp(i, V)εp(V)−1 ISp(l)π(l)
Tr(Dp)

(V (l)− Vp)Vk

−2ν
K∑

k=1

ψk(i, V)εk(V)−1 ISk
(l)π(l)

Tr(Dk)
(V (l)− Vk)Vk

= 2ν
K∑

k=1

ψk(i, V)εk(V)−1 ISk
(l)π(l)

Tr(Dk)
(V (l)− Vk)

K∑
p=1

ψp(i, V)Vp

−2ν
K∑

k=1

ψk(i, V)εk(V)−1 ISk
(l)π(l)

Tr(Dk)
(V (l)− Vk)Vk

= 2ν
K∑

k=1

ψk(i, V)εk(V)−1 ISk
(l)π(l)

Tr(Dk)
(V (l)− Vk)(CiV − Vk),

13

Jan Drugowitsch and Alwyn Barry / Towards Convergence of LCS Value Iteration

to get
∂CiV

∂V (l)
=

K∑

k=1

ψk(i, V)
ISk

(l)π(l)
Tr(Dk)

(
1 + 2νεk(V)−1(V (l)− Vk)(CiV − Vk)

)
.

That defines all values of the Jacobian of C.

14

