
        

Citation for published version:
Brain, MJ, Crick, T, Fitch, JP & de Vos, M 2006, An application of answer set programming: Superoptimisation
(A preliminary report). Computer Science Technical Reports, no. CSBU-2006-05, University of Bath, Department
of Computer Science.

Publication date:
2006

Link to publication

©The Author April 2006

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

https://researchportal.bath.ac.uk/en/publications/an-application-of-answer-set-programming-superoptimisation-a-preliminary-report(c307aee0-328a-4e9d-8820-92e2e086b3d2).html


Department of

Computer Science

Technical Report

An Application of Answer Set Programming:
Superoptimisation (A Preliminary Report)

Martin Brain, Tom Crick, Marina De Vos and John Fitch

Technical Report 2006-05 April 2006

ISSN 1740-9497



Copyright c©April 2006 by the authors.

Contact Address:

Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497



An Application of Answer Set Programming: Superoptimisation

A Preliminary Report∗

Martin Brain, Tom Crick, Marina De Vos and John Fitch

April 2006

Abstract

Answer set programming (ASP) is a declarative problem-solving technique that uses the compu-
tation of answer set semantics to provide solutions. Despite comprehensive implementations and
a strong theoretical basis, ASP has yet to be used for more than a handful of large-scale applica-
tions. This paper describes such a large-scale application and presents some preliminary results.
The TOAST (Total Optimisation using Answer Set Technology) project seeks to generate optimal
machine code for simple, acyclic functions using a technique known as superoptimisation. ASP
is used as a scalable computational engine for conducting searches over complex, non-regular do-
mains. The experimental results suggest this is a viable approach to the optimisation problem and
demonstrates the value of using parallel answer set solvers.

∗This paper was presented at and accepted for publication in the informal proceedings of the 11th International
Workshop on Non-Monotonic Reasoning (NMR’06), Lake District, UK.
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1 Introduction

Answer set programming (ASP) is a relatively new technology, with the first computation tools
(referred to as answer set solvers) only appearing in the late 1990s [1, 2]. Initial studies have
demonstrated [3] that it has great potential in many application areas, including automatic di-
agnostics [4, 5], agent behaviour and communication [6], security engineering [7] and information
integration [8]. However, larger production scale applications are comparatively scarce. One of the
few examples of such a system is the USA-Advisor decision support system for the NASA Space
Shuttle [5]. It modelled a complex domain in a concise way; although of great significance to the
field it is, in computational terms, relatively small. The only large and difficult programs most
answer set solvers have been tested on are synthetic benchmarks. How well do the algorithms and
implementations scale? How much memory and how much time is required? This paper makes an
initial attempt to answer some of these questions.

This paper investigates the possibility of using ASP technology to generate optimal machine
code for simple functions. Modern compilers apply a fixed set of code improvement techniques
using a range of approximations rather than aiming to generate optimal code. None of the existing
techniques, or approaches to creating new techniques, are likely to change the current state of play.

An approach to obtaining optimal code sequences is called superoptimisation [9]. One of the
main bottlenecks in this process is the size of the space of possible instruction sequences, with most
superoptimising implementations relying on brute force searches to locate candidate sequences and
approximate equivalence verification. The TOAST project presents a new approach to the search
and verification problems using ASP.

From an ASP perspective, the TOAST project provides a large-scale, real-world application
with some programs containing more than a million ground rules. From a compiler optimisation
perspective, it might be a step towards tools that can generate truly optimal code, benefiting many
areas, especially embedded systems and high performance computing.

This paper presents the results of the first phase of the TOAST project, with the overall
infrastructure complete and three machine architectures implemented. We have used off-the-shelf
solvers without any domain-specific optimisations, so the results we present also provide useful
benchmarks for these answer set solvers.

The rest of this paper is structured as follows: in the next section, we provide a short intro-
duction to modern compiler technology. In two subsections we explain the mechanisms of code
optimisation, superoptimisation and verifiable code generation. In a third subsection we investi-
gate the challenges of producing verifiable superoptimised sequences in terms of the length of input
code sequences and word length of the target machine. We then give an overview of ASP from a
programming language viewpoint. After these two background sections, we introduce the TOAST
system and present the preliminary results. The analysis of these results leads to a section detailing
the future work of the project.

2 The Problem Domain

Before describing the TOAST system and how it uses answer set technology, it is important to
consider the problem that it seeks to solve and how this fits into the larger field of compiler design.

2.1 Compilers and Optimisation

Optimisation, as commonly used in the field of compiler research and implementation, is something
of a misnomer. A typical compiler targeting assembly language or machine code will include an
array of code improvement techniques, from the relatively cheap and simple (identification of
common sub-expressions and constant folding) [10] to the costly and esoteric (auto-vectorisation
and inter-function register allocation) [11]. However, none of these generate optimal code; the code
that they output is only improved (though often to a significant degree). As all of these techniques
identify and remove certain inefficiencies, it is impossible to guarantee that the code could not be
further improved.

Further confusion is created by complications in defining optimality. In the linear case, a shorter
instruction sequence is clearly better1. If the code branches but is not cyclic, a number of definitions
are possible: shortest average path, shortest over all sequence, etc. However, for code including
cycles, it is not possible to define optimality in the general case. To do so would require calculating
how many time the body of loop would be executed – a problem equivalent to the halting problem.
To avoid this, and problems with other areas such as equivalence of floating point operations, this
paper only considers optimality in terms of the number of instructions used in acyclic, integer-based
code.

1Although the TOAST approach could be generalised to handle them, this paper ignores complications such as
pipelining, caching, pre-fetching, variable-instruction latency and super-scalar execution.
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Finally, it is important to consider the scale of the likely savings. The effect of improvements in
code generation for an average program have been estimated as a 4% speed increase2 per year [12].
In this context, saving just one or two instructions is significant, particularly if the technique is
widely applicable, or can be used to target ‘hot spots’, CPU-intensive sections of code.

2.2 Superoptimisation

Superoptimisation is a radically different approach to code generation, first described in [9]. Rather
than starting with crudely generated code and improving it, a superoptimiser starts with the
specification of a function and performs an exhaustive search for a sequence of instructions that
meets this specification. Clearly, as the length of the sequence increases, the search space potentially
rises at an exponential rate. This makes the technique unsuitable for use in normal compilers, but
for improving the code generators of compilers and for targeting key sections of performance-critical
functions, the results can be quite impressive.

A good example of superoptimisation is the sign function [9], which returns the sign of a binary
integer, or zero if the input is zero:

int signum (int x) {

if (x > 0) return 1;
else if (x < 0) return -1;
else return 0;

}

A näıve compilation of this function would produce approximately ten instructions, including
at least two conditional branch instructions. A skilled assembly language programmer may manage
to implement it in four instructions with one conditional branch. At the time of writing, this is
the best that state of the art compilation can produce. However, superoptimisation (in this case
for the SPARC-V7 architecture) gives the following:

! input in %i0

addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1

! output in %o1

Not only is this sequence only three instructions long, it does not require any conditional
branches, a significant saving on modern pipelined processors. This example also demonstrates
another interesting property of code produced by superoptimisation: it is not obvious that this
computes the sign of a number or how it does so. The pattern of addition and subtraction essentially
‘cancels out’, with the actual computation done by how the carry flag is set and used by each
instruction (instructions whose name includes cc set the carry flag, whereas instructions with x

use the carry flag). Such inventive use of a processor’s features are common in superoptimised
sequences; when the GNU Superoptimizer (GSO) [13] was first used to superoptimise sequences
for the GCC port to the POWER architecture, it produced a number of sequences that were
shorter than the processor’s designers thought possible!

Despite significant potential, superoptimisation has received relatively little attention within the
field of compiler research. Following Massalin’s work, the next published superoptimiser was GSO,
a portable superoptimiser developed to aid the development of GCC. It improved on Massalin’s
search strategy by attempting to apply constraints while generating elements of the search space,
rather than generating all possible sequences and then skipping those that were marked as clearly
redundant. The most recent work on superoptimisation have been from the Denali project [14, 15].
Their approach was much closer to that of the TOAST system, using automatic theorem-proving
technology to handle the large search spaces.

2.3 Analysis of Problem Domain

Superoptimisation naturally breaks into two sub-problems: searching for sequences that meet some
limited criteria and verifying which of these candidates are fully equivalent to the input function.

The search space of possible sequences of a given length is very large, at least the number of in-
structions available to the power of the length of the sequences (thus growing at least exponentially
as the length rises). However, a number of complex constraints exist that reduce the space that
has to be searched. For example, if a sub-sequence is known to be non-optimal then anything that
includes it will also be non-optimal and thus can be discarded. Managing the size and complexity
of this space is the current limit on superoptimiser performance.

Verifying that two code sequences are equivalent also involves a large space of possibilities (for
single input sequences it is 2w where w is the word length (number of bits per register) of the

2This may seem very low in comparison with the increase in processing power created by advances in microprocessor
manufacturing. However, it is wise to consider the vast disparity in research spending in the two areas, as well as the
link between them: most modern processors would not achieve such drastic improvements without advanced compilers
to generate efficient code for them.
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processor). However, it is a space that has a number of unusual properties. Firstly, verification of
two sequences is a reasonably simple task for human experts, suggesting there may be a strong set
of heuristics. Secondly, sequences of instructions that are equivalent on a reasonably small subset
of the space of possible inputs tend to be equivalent on all of it. Both GSO and Massalin’s original
superoptimiser handled verification by testing the new sequence for correctness of a small number
of inputs and declaring it equivalent if it passed. Although non-rigorous, this approach seemed to
work in practise [13].

3 Answer Set Programming

Answer set programming is a declarative problem solving technique based on research on the
semantics of logic programming languages and non-monotonic reasoning [16, 17]. For reasons of
compactness, this paper only includes a brief summary of answer set semantics; a more in-depth
discussion can be found in [18].

Answer set semantics are defined with respect to programs, sets of Horn clause-style rules
composed of literals. Two forms of negation are described, negation as failure and explicit (or
classical) negation. The first (denoted as not) is interpreted as not knowing that the literal is true,
while the second (denoted as ¬) is knowing that the literal is not true. For example:

a ← b, not c.

¬b ← not a.

is interpreted as “a is known to be true if b is known to be true and c is not known to be true. b
is known to be not true if a is not known to be true” (the precise declarative meaning is an area
of ongoing work, see [19]). Constraints are also supported, which allow conjunctions of literals to
be ruled as inconsistent. Answer sets are sets of literals that are consistent (do not contain both a
and ¬a or the bodies of any constraints) and supported (every literal has at least one, acyclic way
of concluding its truth). A given program may have zero or more answer sets.

Answer set programming is describing a problem as a program under answer set semantics
in such a way that the answer sets of the program correspond to the solutions of the problem.
In many cases, this is simply a case of encoding the description of the problem domain and the
description of what constitutes a solution. Thus solving the problem is reduced to computing the
answer sets of the program.

Computing an answer set of a program is an NP-complete task, but there are a number of
sophisticated tools, known as answer set solvers, that can perform this computation. The first
generation of efficient solvers (such as smodels [1] and DLV [20]) use a DPLL-style algorithm [21].
Before computation, the answer set program is grounded (an instantiation process that creates
copies of the rules for each usable value of each variable) by using tools such as lparse [22], to
remove variables. The answer sets are then computed using a backtracking algorithm; at each stage
the sets of literals that are known to be true and known to be false are expanded according to a set
of simple rules (similar to unit propagation in DPLL), then a branching literal is chosen according
to heuristics and both possible branches (asserting the literal to be true or false) are explored.
An alternative approach is to use a SAT solver to generate candidate answer sets and then check
whether these meet all criteria. This is the approach used by cmodels [23]. More recent work has
investigated using ‘Beowulf’-style parallel systems to explore possible models in parallel [24]. One
such system, platypus [25], is used in the TOAST system.

4 TOAST

The existence of a clear NP algorithm, as well as the causal nature of the problem and the need
for high expressive and computational power, suggest ASP as a suitable approach to the superop-
timisation problem. The TOAST system consists of a number of components that generate answer
set programs and parse answer sets, with a ‘front end’ that uses these components to produce a
superoptimised version of an input function. Data is passed between components either as frag-
ments of answer set programs or in an architecture-independent, assembly language-like format.
An answer set solver is used as a ‘black box’ tool, currently either smodels or platypus, although
experiments with other solvers are ongoing. Although the grounding tool of DLV is stronger in
some notable examples, it has not been tested yet due to syntax incompatibilities with many of
the features required.

4.1 System Components

Four key components provide most of the functionality of the TOAST system:
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haveJumped(C,T) :- jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C).

pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), jumpSize(C,J),

time(C,T), colour(C), position(C,PCV).

pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T),

time(C,T), colour(C), position(C,PCV).

pc(C,1,1).

Figure 1: Flow Control Rules in ASP

pickVectors Given the specification of the input to an instruction sequence, pickVectors creates
a representative set of inputs, known as input vectors, and outputs it as an ASP program
fragment.

execute This component takes an ASP program fragment describing an input vector (as generated
by pickVector or verify) and emulates running an instruction sequence with that input.
The output is the given as another ASP program fragment containing constraints on the
instruction sequence’s outputs.

search Taking ASP fragments giving ‘input’ and ‘output’ values (from pickVectors / verify and
execute respectively), this component searches for all instruction sequences of a given length
that produce the required ‘output’ for the given ‘input’ values.

verify Takes two instruction sequences with the same input specification and tests if they are
equivalent. If they are not, an input vector on which they differ can be generated, in the
format used by execute and search.

The TOAST system is fully architecture-independent. Architecture-specific information is stored
in a description file which provides meta-information about the architecture, as well as which op-
erations from the library of instructions are available. At the time of writing, TOAST supports
the MIPS R2000 and SPARC V7/V8 processors. Porting to a new architecture is simple and takes
between a few hours and a week, depending on how many of the instructions have already been
modelled.

4.2 System Architecture

The key observation underlying the design of the TOAST system is that any correct superoptimised
sequence will be returned by running search for the appropriate instruction length; however, not
everything that search returns is necessarily a correct answer. Thus to generate superoptimised
sequences, the front end uses pickVector and execute on the input instruction sequence to create
criteria for search. Instruction sequence lengths from one up to one less than the length of the
original input sequence are then sequentially searched. If answers are generated, another set of
criteria are created and the same length searched again. The two sets are then intersected, as any
correct answer must appear in both sets. This process is repeated until either the intersection
becomes empty, in which case the search moves on to the next sequence length, or until the
intersection does not decrease in size. verify can then be used to check members of this set for
equivalence to the original input program.

4.3 The Answer Set Programs

In the following section we give a brief overview of the basic categories of answer set programs gen-
erated within the system: flow control, flag control, instruction sequences, instruction definitions,
input vectors and output constraints.

The flow control rules set which instruction will be ‘executed’ at a given time step by controlling
the pc (program counter) literal. An example set of flow control rules are given in Figure 1. The rules
are simple, such as an instruction that asserts jump(C,T,J) would move the program’s execution
on J instructions, otherwise it will just move on by one. As the ASP programs may need to
simultaneously model multiple independent code streams (for example, when trying to verify their
equivalence), all literals are tagged with a abstract property called ‘colour’. The inclusion of the
colour(C) literal in each rule allows copies to be created for each separate code stream during
instantiation. In most cases, when only one code stream is used, only one value of colour is defined
and only one copy of each set of rules is produced; the overhead involved is negligible.

Flag control rules control the setting and maintenance of processor flags such as carry, overflow,
zero and negative. Although generally only used for controlling conditional branches and multi-
word arithmetic, the flags are a source of many superoptimised sequences and are thus of prime
importance when modelling.
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value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
value(C,R1,B), -value(C,R2,B),

register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
-value(C,R1,B), value(C,R2,B),

register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),

colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(lxor).

Figure 2: Modelling of a Logical XOR Instruction in ASP

Length of Sequence No. rules Grounding time No. ground rules No. of atoms
1 530 20.100 95938 1018
2 534 65.740 298312 1993
3 538 142.22 643070 3428
4 542 - 1197182 6873

Figure 3: Search Program Sizes

The instruction sequence itself is represented as a series of facts, or in the case of search, a set
of choice rules (choice rules are a syntactic extension to ASP, see [1]). The literals are then used
by the instruction definitions to control the value literals that give the value of various registers
within the processor. If the literal is in the answer set, the given bit is taken to be a 1, if the
classically-negated version of the literal is in the answer set then it is a 0. An example instruction
definition, for a logical XOR (exclusive or) between registers, is given in Figure 2. Note the use
of negation as failure to reduce the number of rules required and the declaration that lxor is
symmetric, which is used to reduce the search space.

The input vectors and output constraints are the program fragments created by pickVectors
and execute respectively.

The ASP programs generated do not contain disjunction, aggregates or any other non-syntactic
extensions to answer set semantics.

5 Results

Tests were run on a Beowulf-style cluster of 20 x 800MHz Intel Celeron, 512MB RAM machines
connected by 100Mb Ethernet, running SuSE Linux 9.2. Results are given for smodels v2.28
(denoted s) and the initial MPI version of platypus running on n nodes (denoted p/n). lparse

v1.0.17 was used in all cases to ground the programs. The timings displayed are from the smodels

internal timing mechanism and the platypus MPI wall time respectively. Values for lparse are
the user times given via the system time command. Results for platypus on a single node are not
presented, due to limitations in the current MPI implementation.

5.1 Search Time

search was used to generate programs that searched the space of SPARC-V7 instructions for
candidate superoptimisations for the following instruction sequence:

! input in %i0, %i1
and %i0 %i1 %l1
add %i0 %l1 %l2

add %i0 %l2 %l3
sub 0 %l3 %o1

! output in %o1

This sequence was selected as a ‘worst case’, an example of a sequence that cannot be super-
optimised, giving an approximate ceiling on the performance of the system.

Statistics on the programs used can be found in Figure 3, with the timing results are given in
Figure 4.

5.2 Verification Time

verify was used to create a verification program for the following two code sequences:

5
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Length of Sequence s p/2 p/4 p/6 p/8 p/10 p/12 p/14 p/16 p/18 p/20
1 3.057 10.4647 10.4813 10.4761 10.5232 10.5023 10.4674 10.4782 10.4833 10.4915 10.5040
2 99.908 104.710 123.312 120.984 135.733 136.057 139.944 139.000 135.539 139.271 138.288
3 81763.9 63644.4 19433.4 12641.0 6008.20 7972.73 9097.83 6608.64 6063.08 4629.90 5419.08
4 > 237337.35 - - - - - - - - - -

Figure 4: Search Space Size v Compute Time (secs)

! input in %i0

add %i0 %i0 %o1
! output in %o1

! input in %i0

umult %i0 2 %o1
! output in %o1

using the SPARC-V83 architecture but varying the processor word length (the number of bits
per register). This pair of programs were chosen as, although they are clearly equivalent, the
modelling and reasoning required to show this is non-trivial. Timing results for a variety of solver
configurations and different word lengths can be found in Figure 7, program statistics can be found
in Figure 5.

Word Length No. rules Grounding time No. ground rules No. of atoms
8 779 1.220 1755 975
9 780 1.320 2063 1099
10 781 1.430 2402 1235
11 782 1.480 2772 1383
12 783 1.330 3173 1543
13 784 1.350 3605 1715
14 785 1.450 4068 1899
15 786 1.480 4562 2095
16 787 1.480 5087 2303
17 788 1.640 5645 2527
18 789 1.680 6234 2763
19 790 1.690 6854 3011
20 791 1.550 7505 3271
21 792 1.590 8187 3543
22 793 1.670 8900 3827
23 794 1.900 9644 4123
24 795 1.830 10419 4431

Figure 5: Verification Program Sizes

5.3 Analysis

The experimental results presented suggest a number of interesting points. Firstly, superoptimisa-
tion using ASP is feasible, but work is needed to make it more practical. Given that only a few
constraints were used in the programs generated by search, increasing the length of the maximum
practical search space seems eminently possible. The result from verify are less encouraging; al-
though it shows it is possible using ASP, it also suggests that attempting to verify instruction
sequences of more than 32 bits of input is likely to require significant resources.

The graph in Figure 6 also shows some interesting properties of the parallel solver. The overhead
of the solver appears to be near constant, regardless of the number of processors used. For the
simpler problems, the overhead of the parallel solver is greater than any advantages, but for the
larger problems it makes a significant difference and the speed-up is approximately proportional
to the number of processors used.

Finally, the figures suggest that the smodels algorithm does not scale linearly on some pro-
grams. The programs output by verify double in search space size for each increase in word length,
but the time required by smodels rises by significantly more than a factor of two. Strangely, this
additional overhead appears to be less significant as the number of processors used by platypus

rises.

The simplified graph in Figure 6 shows these effects, with time graphs for smodels against
platypus with 4, 8 and 16 processors.

3SPARC-V8 is a later, minimal extension of SPARC-V7 with the addition of the umult instruction.
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Word Length s p/2 p/4 p/6 p/8 p/10 p/12 p/14 p/16 p/18 p/20
8 bit 0.153 0.495074 1.21623 0.581861 0.632791 0.662914 0.706752 1.21751 0.698032 0.723088 0.740474
9 bit 0.306 0.863785 0.705636 0.777568 0.740043 1.02031 0.918548 0.864449 1.02644 1.03752 1.09627
10 bit 0.675 1.61512 1.2337 1.23213 1.16333 1.23683 1.28347 1.28118 1.39326 1.29568 1.31185
11 bit 1.537 3.42153 1.97181 1.84315 1.93191 2.01146 1.9929 2.34911 2.2948 2.28081 2.18609
12 bit 3.597 7.46042 4.28284 3.43396 3.53243 3.33475 3.27878 3.16487 3.38788 3.21397 3.94176
13 bit 8.505 15.8174 8.86814 6.51479 6.25371 5.55683 5.1507 5.3369 6.22179 5.61428 5.06376
14 bit 17.795 34.2229 18.7478 15.9874 10.8228 9.57001 9.3808 8.6161 9.97594 9.41512 8.16737
15 bit 39.651 76.018 39.9688 25.9992 21.8607 19.382 17.6372 18.0614 16.3806 15.6143 15.6043
16 bit 93.141 167.222 71.3785 52.7732 46.6144 36.5995 31.9568 33.2825 35.3159 27.2188 29.5464
17 bit 217.162 373.258 141.108 110.65 96.6821 85.1217 77.4811 78.7892 83.9177 56.1338 58.4057
18 bit 463.025 815.373 384.237 222.826 189.690 162.318 144.840 136.126 122.038 118.658 133.579
19 bit 1002.696 1738.02 681.673 456.607 421.681 430.879 299.870 290.456 262.611 229.802 217.998
20 bit 2146.941 3790.84 1514.80 994.849 896.705 726.629 625.820 610.117 566.040 523.700 426.004
21 bit 4826.837 8206.4 3438.71 2279.3 1874.36 1544.74 1461.4 1199.96 1244.95 932.877 1128.53
22 bit 11168.818 17974.8 6683.06 4375.12 3850.71 3017.14 3206.33 2492.00 2296.87 2245.3 1869.17
23 bit 23547.807 38870.5 15047 9217.82 7947.95 7123.56 6111.6 6089.38 4833.66 4610.92 4020.37
24 bit 52681.498 83405.1 32561.2 20789.1 16165.4 14453.8 12800.7 11213.2 10580.4 9199.8 8685.47

Figure 7: Word Length v Compute Time (secs)

6 Future Development

One of the key targets in the development of TOAST is to reduce the amount of time required in
searching. Doing so will also increase the length of instruction sequence that can be found. This
requires improvements to both the programs that are generated and the tools used to solve them.

A key improvement to the generated programs will be to remove all short sequences that are
known to be non-optimal. search can be used to generate all possible instruction sequences of a
given length. By superoptimising each one of these for the smaller lengths, it is then possible to
build a set of equivalence categories of instructions. Only the shortest member of each category
needs to be in the search space and thus a set of constraints can be added to the programs that
search generates. This process only ever needs to be done once for each processor architecture and
will give significant improvements in terms of search times. The equivalence classes generated may
also be useful to improve verification.

The other developments needed to reduce the search time are in the tools used. Addressing the
amount of memory consumed by lparse and attempting to improve the scaling of the smodels

algorithm are both high priorities.

The performance of verify also raises some interesting questions. At present, is possible to verify
programs for some of the smaller, embedded processors. However, in its current form it is unlikely
to scale to high-end, 64 bit processors. A number of alternative approaches are being considered,

7



Brain, Crick, De Vos and Fitch / An Application of Answer Set Programming: Superoptimisation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 8  10  12  14  16  18  20  22  24

"No ground rules"
"No of atoms"

Figure 8: Number of Rules/Atoms v Word Length

such as attempting to prove equivalence results about the generated ASP programs, reducing the
instructions to a minimal/pseudo-normal form (an approach first used by Massalin), using some
form of algebraic theorem-proving (as in the Denali project) or attempting to formalise and prove
the observation that sequences equivalent on a small set of points tend to be equivalent on all of
them.

Using the TOAST system to improve the code generated by tools such as GCC is also a
key target for the project. By implementing tools that translate between the TOAST internal
assembly-like format and processor-specific assembly, it will be possible to check the output of
GCC for sequences that can be superoptimised. Patterns that occur regularly can then be added
to the instruction generation phases of GCC. Performance-critical system libraries, such as the
GNU Multiple Precision Arithmetic Library (GMP) [26] and code generators used by Just In
Time (JIT) compilers could also be interesting application areas.

It is hoped that it will not only prove useful as a tool for optimising sections of performance
critical code, but that the ASP programs could be used as benchmarks for solver performance and
the basis of other applications which reason about machine code.

7 Conclusion

This paper suggests that ASP can be used to solve large-scale, real-world problems. Future work
will hopefully show this is also a powerful approach to the superoptimisation problem and perhaps
even a ‘killer application’ for ASP.

However, it is not without challenges. Although savings to both size of the ASP programs used
and their search spaces are possible, this will remain a high-end application for answer set solvers.
Some of the features required, such as the handling of large, sparse search spaces and efficiency
in producing all possible answer sets (or traversing the search space of programs without answer
sets) are unfortunately not key targets of current solver development.

The TOAST project has demonstrated that answer set technology is ready to be used in large-
scale applications, although more work is required to make it competitive.
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