

Citation for published version:
Larkin, J 2006, Implementation of chaffing and winnowing: Providing confidentiality without encryption. Computer
Science Technical Reports, no. CSBU-2006-10, Department of Computer Science, University of Bath.

Publication date:
2006

Link to publication

©The Author June 2006

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/implementation-of-chaffing-and-winnowing-providing-confidentiality-without-encryption(288f8141-01e2-43ce-a902-27bb5ccbb761).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: Implementation of Chaffing and
Winnowing: providing confidentiality without encryption

John Larkin

Technical Report 2006-10 June 2006
ISSN 1740-9497

Copyright c
June 2006 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Implementation of Chaffing and Winnowing:

providing confidentiality without encryption

John Larkin

BSc Computer Science

2006

Implementation of Chaffing and Winnowing: providing confiden-

tiality without encryption

Submitted by John Larkin

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with
its author. The Intellectual Property Rights of the products produced as
part of the project belong to the University of Bath (see http://www.bath.
ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its author
and that no quotation from the dissertation and no information derived from
it may be published without the prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with
the requirements of the degree of Batchelor of Science in the Department of
Computer Science. No portion of the work in this dissertation has been sub-
mitted in support of an application for any other degree or qualification of
this or any other university or institution of learning. Except where specifi-
cally acknowledged, it is the work of the author.

Signed ..

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed ..

i

Abstract

Chaffing and winnowing is a new concept for providing data privacy, with-
out encryption. Several chaffing and winnowing schemes are implemented
using ideas previously proposed and a new hybrid method proposed here,
which incorporates public-key cryptography. Experiments are performed to
compare the schemes implemented to traditional encryption algorithms. It
is found that chaffing and winnowing is a viable alternative to using these
techniques.

Acknowledgements

I would like to thank Dr Russell Bradford for his help and advice, while
supervising this project. I would also like to thank Kelly and my family for
support throughout the project and proof reading.

iii

Contents

1 Introduction 1

1.1 Cryptography . 1

1.2 Chaffing and Winnowing . 1

1.3 Aims . 2

2 Literature Review 3

2.1 What is Chaffing and Winnowing? 3

2.2 Chaffing and Winnowing Techniques 5

2.2.1 Bit-by-bit method . 5

2.2.2 All-Or-Nothing Transform 6

2.3 AONT Candidates . 7

2.3.1 Package Transform . 7

2.3.2 Optimal Asymmetric Encryption Padding 7

2.3.3 BEAR Pre-processing 8

2.4 “A New Chaffing and Winnowing Scheme” 8

iv

2.5 Message Authentication Codes 9

2.6 Why Is Chaffing and Winnowing Needed? 10

2.7 Compared To Traditional Encryption Techniques 12

2.8 Symmetric Versus Asymmetric Schemes 13

2.9 Technology Considerations . 14

2.9.1 Implementation Language 14

2.9.2 “Endianness” of Target Machines 15

2.10 Conclusion . 15

3 Requirements 16

3.1 Message Authentication Codes 16

3.2 Initial Prototype . 17

3.3 All-Or-Nothing Transform Implementations 17

3.4 Hybrid Implementation . 17

3.5 Production Implementations 18

3.6 Performance Requirements 18

3.7 Data Expansion Requirements 18

3.8 Platform Requirements . 19

3.9 Security Requirements . 19

3.10 Program Requirements . 19

3.11 Implementation Language Requirements 20

v

4 Design 21

4.1 Language Choice . 21

4.2 High-level Design . 22

4.2.1 Prototype . 22

4.2.2 All-Or-Nothing Transform Scheme 22

4.2.3 Hybrid Scheme . 23

4.3 Module Design . 24

4.3.1 HMAC . 25

4.3.2 All-Or-Nothing Transforms 25

4.3.3 Public Key Algorithms 26

4.4 Specification Of Implementations 28

4.4.1 Libraries . 28

4.4.2 Chaffing and Winnowing Schemes 28

4.5 Experimental Design . 29

4.5.1 What Will The Implementations Be Compared To? . 29

4.5.2 Metrics To Compare 29

4.5.3 Expected Outcome . 30

5 Implementation 31

5.1 Development Tools . 31

5.2 Prototype . 32

vi

5.2.1 Implementing The Prototype 32

5.2.2 What Was Learnt From The Prototype 32

5.3 Libraries . 33

5.3.1 Chaffing and Winnowing Library 33

5.3.2 HMAC . 33

5.3.3 Package Transform . 34

5.3.4 Optimal Asymmetric Encryption Padding 35

5.3.5 RSA . 35

5.4 Chaffing and Winnowing Schemes 36

5.4.1 Symmetric Package Transform Scheme 36

5.4.2 Symmetric OAEP Scheme 37

5.4.3 Hybrid Package Transform Scheme 37

5.4.4 Hybrid OAEP Scheme 38

5.5 Implementation Notes . 38

5.5.1 All-Or-Nothing Transforms 38

6 Testing 40

6.1 Platforms and Compilers . 40

6.2 Library Testing . 41

6.2.1 HMAC . 41

6.2.2 Chaffing and Winnowing Library Testing 41

vii

6.2.3 Package Transform Library Testing 42

6.2.4 OAEP Library Testing 43

6.2.5 RSA Library Testing 43

6.3 Chaffing and Winnowing Scheme Testing 43

6.3.1 Correctness Testing 44

6.3.2 Platform Testing . 45

7 Experimental Results and Analysis 46

7.1 Experiments Performed . 46

7.1.1 Execution Time Experiments 47

7.1.2 Ciphertext Expansion Experiments 48

7.2 Experimental Results . 48

7.2.1 Execution Time Results 48

7.2.2 Ciphertext Expansion Results 49

7.3 Analysis Of Results . 50

7.3.1 Execution Times . 50

7.4 Experimental Conclusions . 57

8 Conclusion 58

8.1 Project Conclusion . 58

8.2 Critical Evaluation . 60

8.3 Future Work . 61

viii

8.4 Personal Remarks . 62

A Statistical Results 66

A.1 Analysis Of Variance . 66

A.1.1 ANOVA Symmetric Execution Time Results 66

A.1.2 ANOVA Hybrid Execution Time Results 66

A.2 Data Expansion . 68

A.2.1 Symmetric Schemes 68

A.2.2 Hybrid Schemes . 69

B Test Scripts 70

B.1 Correctness Testing . 70

B.2 Speed Testing . 74

C Source Code 79

C.1 hmac.c . 79

C.2 cw lib.c . 82

C.3 aont.c . 85

C.4 oaep.c . 90

C.5 rsa.c . 96

C.6 cw aont pt.c . 102

C.7 cw aont oaep.c . 105

ix

C.8 cw pk pt.c . 108

C.9 cw pk oaep.c . 112

x

Chapter 1

Introduction

1.1 Cryptography

Cryptography is the art and science of keeping information secret. Cryptog-
raphy techniques have been around for centuries and have been constantly
evolving. Julius Caesar used cryptographic techniques to communicate with
his generals and cryptography played a big part during World War II. In the
age we live in confidentiality is an increasingly large problem, especially in
communication over electronic systems. Companies and individuals need to
ensure that important information sent over public networks is kept confi-
dential and is not modified. This is generally achieved through encryption
and digital signatures.

1.2 Chaffing and Winnowing

Ronald Rivest has proposed a way to achieve confidentiality without encryp-
tion, called “Chaffing and Winnowing”. Rivest is one of the creators of the
RSA cryptosystem [Rivest et al., 1978], which one of the most widely used
public-key encryption algorithms, he is also the creator of the MD5 one-way
hash function and is a respected cryptographer. The RSA cryptosystem

1

is considered “a de facto standard in much of the world” [Schneier, 1993].
He poses the question of whether Governments and Authorities should be
able to gain access to encrypted messages and by introducing a scheme that
does not encrypt any data, shows that there is a method available that may
not be liable to these restrictions. Whether Chaffing and Winnowing would
stand up to these claims against legal systems in different parts of the world
is debatable.

1.3 Aims

The aims of this project are to investigate and implement Chaffing and
Winnowing and to see if it could be a real alternative to using traditional
encryption techniques. To do this, several different implementations of the
scheme will be produced and will be compared to current standard tech-
niques, based on certain metrics such as data expansion after encryption and
execution time. The project will also look to see if any new Chaffing and
Winnowing schemes can be produced, that improve on the original ideas.

2

Chapter 2

Literature Review

2.1 What is Chaffing and Winnowing?

Chaffing and Winnowing is a new type of cryptographic technique introduced
by Ronald Rivest in [Rivest, 1998a]. Chaff is a farming term, which de-
scribes useless parts of grain and winnowing is “to separate chaff from grain”
[Webster’s]. Chaffing and winnowing is different to common approaches of
achieving confidentiality. The main techniques for achieving confidentiality
are Stenography and Encryption. Stenography is a method of hiding a se-
cret message within another message, such that it is not obvious the secret
message is present. Encryption involves transforming a plaintext message
into a ciphertext and reversing the process, transforming the ciphertext back
into plaintext, known as decryption.

This technique provides confidentiality through authentication. It
splits the original message into blocks, appends a ‘Message Authentication
Code’ or ‘MAC’ to the block to create a packet and then inter-spaces ran-
dom packets within the valid packets, which have invalid MAC’s appended
to them. A MAC is computed as a function of the contents of the block.
The receiver of the message discards the packets with invalid MAC’s and
re-assembles the original message. This process is not the same as common
encryption techniques because the original message is still present, in the

3

“clear”. It is also common to append a serial number to the packet so it has
the form: (serial, message block, MAC). We will refer to a packet containing
real data with a valid MAC as “wheat” and a packet containing random
data with an invalid MAC as “chaff”. During this dissertation we may re-
fer to Chaffing and Winnowing as “encrypting” and “decrypting” messages,
this is because these are common terms to refer to the transformation of
plaintext messages into ciphertext and the reverse. This does not mean that
Chaffing and Winnowing is a traditional encryption scheme, although it is
comparable in this way.

“There is a secret key shared by the sender and the receiver to au-
thenticate the origin and contents of each packet—the legitimate
receiver, knowing the secret authentication key, can determine
that a packet is authentic by re-computing the MAC and com-
paring it to the received MAC. If the comparison fails, the packet
and its MAC are automatically discarded.” [Rivest, 1998a]

This method does not provide good confidentiality if the packets con-
tain sentences, for example if a packet contained “Bank Account No: 12345678”,
an adversary would still be able to see this. The chaff packet would need to
contain very similar but false information, in this case the chaffing process
would have to be intelligent to be able to construct a similar sentence but
even then the adversary would still have access to the correct information.
For these reasons, this method is not a feasible option. Instead [Rivest,
1998a] suggests splitting the message into bits, this is discussed in the next
section. The MAC algorithm needs to act as a pseudo random function, mak-
ing it difficult for an adversary to distinguish chaff packets from valid ones.
Otherwise the MAC could “leak” information about the message [Rivest,
1998a]. Rivest also notes that adding chaff is a keyless procedure and there-
fore does not necessarily have to be done by the person creating valid pack-
ets from the original message. This is an important point in the argument
about whether this method should be considered encryption or not, as some-
one could merely authenticate blocks of their message and without knowing,
another person could add chaff to the message.

4

2.2 Chaffing and Winnowing Techniques

2.2.1 Bit-by-bit method

The bit-by-bit method of chaffing and winnowing described in [Rivest, 1998a],
creates a packet for each bit in the original message, a serial number is ap-
pended to the message, a MAC is computed for the packet and appended
to the packet. A chaff packet is produced for every valid packet containing
the complementary bit, the same serial number as the corresponding packet
and an invalid MAC. Packets have the form:

Valid packet: (serial, bit, MAC)
Invalid packet: (serial, complementary bit, invalid MAC)

In this method there must be a chaff packet for every valid packet,
otherwise it is easy for the adversary to assume that when there is only one
packet for a given serial number, it is valid. When there is a chaff packet for
every grain packet this method is very secure, the adversary would essentially
have to break the MAC algorithm to distinguish wheat from chaff. The
obvious drawback to this method is the size of the message produced after
validating the packets and adding chaff.

“For a message of m bits 2m(1+p+l) bits are transmitted, where
p is the length of a counter and l is the length of output of F .”
[Bellare and Boldyreva, 2000] (Where F is the MAC function)

So for example, a message 30Kb in size (245,760 bits) with a 32 bit
serial number and a 128 bit MAC, after being validated and chaff added
to it, grows from 30Kb to approximately 75Mb! This is a considerable size
increase and makes transmitting large documents over networks completely
impractical. Bleichenbacher suggested that the expansion can be reduced
by creating either a chaff or grain packet for each bit, then when winnowing
the message if the packet is valid use the bit value and if it is invalid use
the complementary bit value, this halves the data expansion [Bellare and

5

Boldyreva, 2000]. Even so the data expansion would still be impractical
when transmitting large messages.

2.2.2 All-Or-Nothing Transform

To make chaffing and winnowing more efficient, it is suggested in [Rivest,
1998a] that an “All-Or-Nothing” transform or “AONT” is used to pre-
process the message. This is a keyless, invertible transform, which effectively
makes the original message look like random noise. It has the property that
inversion of the message is very hard if any block is missing but someone
that has all of the blocks can reconstruct the message easily. If the trans-
formed message is then “encrypted” block by block, an adversary cannot
find out anything about the message without decrypting all the blocks of
ciphertext. There are several candidates for the AONT transforms. As a
result of pre-processing the message with an AONT, a chaff packet no longer
needs to be added for every wheat packet and the packet can contain more
data, [Rivest, 1998a] suggests 1024-bit blocks. This method is much more
efficient and seems to provide a very good level of confidentiality, depending
on the AONT used. The number of bytes transmitted in this scheme is given
by:

(max(dm/be,M) + s′) · (b + d)

where m is the number of bytes in the message, s′ is the number of
chaff blocks, b is the block size, M is the minimum number of blocks output
by the AONT and d is the number of bytes in the MAC digest. We can see
from this that when encrypting a small message the expansion is very large,
as there is a fixed overhead of chaff blocks. However the data expansion
becomes better as the messages to be encrypted become larger. If a fixed
number of chaff blocks is chosen, for example 128, the AONT produces a
minimum of 128 blocks (both suggested in [Bellare and Boldyreva, 2000]) and
the block size is 128 bytes (1024 bits, as Rivest suggests) then the number
of bytes transmitted for a message 30Kb in size is ∼ 53Kb and the number
of bytes transmitted for a message 500Kb is ∼ 581Kb. This is considerably

6

better than the example we considered in Section 2.2.1.

2.3 AONT Candidates

2.3.1 Package Transform

The candidate Rivest proposes for the AONT is called the “package trans-
form” [Rivest, 1997], where the message is split into blocks and a key K
randomly chosen. Each block is transformed and an extra block added con-
sisting of the Exclusive-OR of K and a hash of all previous blocks. Then
anyone with all of the blocks can reconstruct the message.

“The legitimate communicants thus pay a penalty of approxi-
mately a factor of three in the time it takes them to encrypt or
decrypt in all-or-nothing mode, compared to an ordinary sep-
arable encryption mode. However, an adversary attempting a
brute-force attack pays a penalty of a factor of t, where t is the
number of blocks in the ciphertext.” [Rivest, 1997]

However [Boyko, 1999] shows that Rivest’s definition of AONTs is
not provably secure and provides an AONT construction that is provably
secure, we would prefer a system that is provably secure and minimises data
expansion.

2.3.2 Optimal Asymmetric Encryption Padding

“Optimal Asymmetric Encryption Padding” or “OAEP” is a method de-
scribed in [Bellare and Rogaway, 1994]. It is a way to provide provable
security and efficiency. [Boyko, 1999] presents OAEP as an AONT and
shows Rivest’s definition of an AONT is not secure. It also shows that
no AONT can provide substantially better security than OAEP. OAEP
uses a “generator function” G : {0, 1}k0 → {0, 1}n and a “hash function”

7

H : {0, 1}n → {0, 1}k0 , n is the length of the message and k0 is the security
parameter. The OAEP transform is defined as

OAEPG,H(x, r) = x⊕G(r) || r ⊕H(x⊕G(r))

where || denotes concatenation, x is the message and r is a random
string chosen from {0, 1}k0 . As with Rivest’s AONT, this method provides
much greater efficiency than the bit-by-bit method but is provably secure by
[Bellare and Boldyreva, 2000]. OAEP is widely used with encryption, RSA
crypto-systems [Rivest et al., 1978] are often used with OAEP and it is part
of the PKCS (Public Key Cryptography Standards) #1.

2.3.3 BEAR Pre-processing

Using the BEAR [Anderson and Biham, 1996] block cipher as an AONT
is the method used in Chaffinch [Clayton and Danezis, 2003], a variant of
Chaffing and Winnowing. BEAR is constructed from keyed hash function,
although in Chaffinch no key is used, so that the scheme cannot be considered
encryption. The message is preceded by some random data each time it is
sent, so that transforming a message twice will not lead to the same output.

2.4 “A New Chaffing and Winnowing Scheme”

A new chaffing and winnowing scheme was suggested in [Bellare and Boldyreva,
2000]. It involves applying OAEP as an AONT to the message and then “en-
crypting” the first block of the message using the original bit-by-bit method.
The remaining part of the message is authenticated to make sure the scheme
is still considered a chaffing and winnowing scheme. This scheme provides
savings in message expansion because only the first block is expanded, so
there will only be a fixed overhead, no matter how large the original message
is.

8

2.5 Message Authentication Codes

A “Message Authentication Code” or “MAC” is the method proposed in
chaffing and winnowing to authenticate wheat packets. MAC algorithms
generally use a secret key to authenticate a message and are used to preserve
the integrity of the message. [Rivest, 1998a] notes that the MAC algorithm
must be a Pseudo Random Function and suggests using the HMAC (hashed
based MAC) construction described in [Krawczyk et al., 1996], which uses a
cryptographic hash function.

“A MAC is a function which takes the secret key k (shared be-
tween the parties) and the message m to return a tag MACk(m).
The adversary sees a sequence (m1, a1), (m2, a2), . . . , (mq, aq)
of pairs of messages and their corresponding tags (that is, ai =
MACk(mi)) transmitted between the parties.” [Krawczyk et al.,
1996]

The HMAC algorithm uses cryptographic hash functions as ‘black-
box’, this means that for a MAC implementation the hash function used can
be changed very easily, this is useful if it is found that the hash function
being used is no longer secure. Popular hash functions to use in HMAC
include MD5 [Rivest, 1992] and SHA-1 [SHA]. The MAC algorithm uses an
inner pad consisting of the byte 0x5C repeated so that it is as big as the
input block b and an outer pad consisting of the byte 0x36 repeated so it is
also the size of b. It computes the Exclusive-OR of the key and the inner
pad, the hash function is applied to the result of this. The exclusive-or of
the key and the outer pad is computed and the hash function is applied to
this and the result of the previous step.

HMACk(x) = F (k ⊕ opad, F (k ⊕ ipad, x))

Where F is the hash function, x is the message and k is the secret
key. The main attacks on hash functions are “birthday attacks”. This is
the method of finding a “collision” in the hash function, having m and m′

9

such that f(m) = f(m′). This is based on the birthday paradox that if
there are 23 people in a room there is greater than a 50% chance that 2
people have the same birthday and the probability increases as the number
of people increases. Birthday attacks are generally used to forge messages.
To find a collision in a hash function you would need to compare around
2l/2 outputs of the hash function where l is the output length of the hash
function. In the case of a MAC you would need to compare around 2l/2

outputs using the same key. This would require the key owner to generate
this amount of messages, as an adversary does not have access to the key.
“For values of l ≥ 128 the attack becomes totally infeasible” [Bellare and
Boldyreva, 2000], so in the case of using MD5 in a MAC this sort of attack is
infeasible. [Krawczyk et al., 1997] notes that it is good practice to truncate
the output of the MAC and output only part of the bits.

“We recommend the output length t not be less than half the
length of the hash output (to match the birthday bound) and
not less than 80 bits (a suitably lower bound on the number of
bits that need to be predicted by an attacker).” [Krawczyk et al.,
1997]

The way to denote a MAC that truncates bits is HMAC-SHA1-80,
where SHA1 is the hash function being used and 80 is the number of bits we
are truncating to. MACs are widely used in cryptography and [Krawczyk
et al., 1996] explains the HMAC in a practical way. There are also other
types of MAC such as UMAC (Universal MAC) which is faster than HMAC
but more complex [Black et al., 1999] and MACs constructed from block
ciphers such as DES-CBC MAC, which is a Federal Standard [FIPS, 1985].

2.6 Why Is Chaffing and Winnowing Needed?

Rivest introduced Chaffing and Winnowing as not being “encryption” in [Rivest,
1998a]. This is the most important feature of Chaffing and Winnowing,
Rivest argues that because of the existence of techniques such as Chaffing
and Winnowing, efforts to regulate encryption by law must fail, as confiden-

10

tiality can be efficiently achieved in this way, without encryption. However,
McHugh shows that in the refinement of chaffing and winnowing he presents
in [McHugh, 2000] is equivalent to encryption and notes that “although
the equivalence only appears in the limiting case, its implications for policy
makers are unclear”. Law enforcement agencies in the U.S. are pushing to
regulate encryption as criminals or terrorists could send messages that the
law enforcement agencies would be unable to decipher. There have been
proposals that users would be required to register their encryption keys with
law enforcement agencies and key-recovery proposals that give government
agencies “back-door” access to the keys.

“In a typical key recovery scheme, an encrypted version of the
message encryption key is sent along with each message. An
FBI-authorized key-recovery centre can use a master backdoor
key to decrypt the message key, which is then used to decrypt
the message. In my opinion these, systems would satisfy no one.
They are easy to circumvent: spies and criminals could modify
the encryption software to disable the key-recovery features or
they could simply download alternative software from the Inter-
net” [Rivest, 1998b]

Rivest makes a good point by saying that spies and criminals could
remove the “back-door” access to their messages. Rivest also notes that
confidence would be lost in the government, as people would not be able to
have truly private conversations. This point is highly debatable, on the one
hand, as people should have the right to free speech without the authorities
being able to read your messages but on the other, is it better that we allow
terrorists and criminals to exchange secret information easily, we are not
going to try and decide which view is right here.

Another interesting property of Chaffing and Winnowing is that it can
easily achieve the concept of “deniable encryption” [Canetti et al., 1997].
This is when it is possible to produce a ciphertext c, where c = E(m1, r),
m1 is the message and r is random data such that r′ can be found so using a
fake message m2, c = E(m2, r

′). This means that if an adversary could force
the sender to reveal the random bits and the key, they could supply the fake

11

ones and therefore reveal the fake message. In Chaffing and Winnowing this
idea can be achieved by using more than one wheat source, authenticated
with different keys. In this case wheat packets for one message become the
chaff packets for another message as well as some real chaff packets being
present.

“I note that it is possible for a stream of packets to contain more
than one subsequence of ‘wheat’ packets, in addition to the chaff
packets. Each wheat subsequence would be recognized separately
using a different authentication key.” [Rivest, 1998a]

If law enforcement then required to see the deciphered message, the
key disclosing a fake or cover message could be used, so that the real message
would still be undisclosed. Chaffinch [Clayton and Danezis, 2003] extends
this idea and presents a system based on Chaffing and Winnowing that may
stand up to the UK’s Regulation of Investigatory Powers Act 2000. Chaffinch
always sends a “cover message” and the real message(s) is sent with it. If law
enforcement required the message to be deciphered, the “cover message” is
always revealed first. Chaffinch also makes some design changes to Rivest’s
proposed method. However it could be viewed that not revealing the correct
message when asked, is against the law.

2.7 How Does Chaffing and Winnowing Compare

To Using Traditional Encryption Techniques?

The Chaffing and Winnowing schemes we have discussed are symmetric
schemes, the same key that is used to “encrypt” the message is used to
“decrypt” the message, so they should be compared to symmetric encryp-
tion schemes. “Data Encryption Standard” or “DES” [FIPS, 2001b] is a
symmetric block cipher that has been around for about 30 years and is still
widely used. It became a Federal Standard, which has since been withdrawn
(but replaced with an updated version). DES encrypts data in 64 bit blocks,
64 bits of plaintext are transformed into 64 bits of ciphertext. 16 rounds of
the same operations are performed on each block to encrypt it. DES uses

12

56 bit keys and has been found to be insecure, it is now generally used as
Triple-DES - known as “TDES” or “3DES”, where the message is encrypted
with DES 3 times, each time with a different key, TDES replaced the original
DES standard.

“Advanced Encryption Standard” or “AES” [FIPS, 2001a] was de-
signed to replace DES. AES has twice the block size - 128 bit, larger keys
which can vary in length. It provides better security than DES and is also
faster. There were many candidates proposed for AES, Rijndael was the
candidate that was chosen. Chaffing and winnowing should be compara-
ble in speed to DES and AES because it is build upon cryptographic hash
functions, which are generally very fast. However we would expect the data
expansion to be much greater in chaffing and winnowing, because DES and
AES do not expand the original message at all and the chaffing and winnow-
ing scheme adds a MAC to each block and a fixed number of chaff packets.

2.8 Symmetric Versus Asymmetric Schemes

The chaffing and winnowing schemes we have described so far are symmetric
ones - the same key is used to encrypt the message as to decrypt the message.
DES and AES are symmetric encryption schemes, these schemes have ben-
efits in that they are generally very fast and the ciphertext is the same size
as the plaintext (not in the case of chaffing and winnowing). In 1976, Diffie
and Hellman [Diffie and Hellman, 1976] introduced asymmetric encryption,
known as public-key cryptography. In this scheme two keys are used, a pub-
lic encryption key and a private decryption key, each person has a key pair.
Their encryption key is made publicly available and they keep their decryp-
tion key private. If a message has been encrypted with your public key, only
you will be able to decrypt it. In this scheme it is computationally very
difficult to find one key from the other. Public key algorithms are generally
very slow because they work modulo very large primes, in the region of a
few hundred digits long. They also expand the data they encrypt. However
they provide far greater security benefits in exchanging keys. It is not fair
to directly compare symmetric and asymmetric schemes to each other, as
they are very different. RSA is an example of a public key crypto-system

13

and is widely used. As a result of the benefits and drawbacks of each type
of scheme, they are often used in conjunction with one another, in what are
called hybrid schemes. In these schemes the message will be symmetrically
encrypted with a random session key, using DES for instance, then the ses-
sion key will be asymmetrically encrypted, perhaps using RSA, which is sent
with the encrypted message. To recover the message, the session key is re-
covered using the correct private key and the message is decrypted using the
session key, this is called “digital enveloping”. As the bulk of the message is
encrypted using a symmetric scheme it is very fast and does not expand the
data. An asymmetric scheme is used to recover the session key so it has the
desirable key-management properties of a public-key system and because it
is only the session key that is pubic-key encrypted (typically ∼ 192 bits) the
data expansion is minimal.

It would be an advantage if chaffing and winnowing could incorporate
these hybrid concepts to utilise these benefits. Rivest does note that the
MACs can be replaced by a special type of digital signatures called “desig-
nated verifier signatures” [Jakobsson et al., 1996]. These type of signature
allow only the designated verifier to check if a signature is valid, so for use
within chaffing and winnowing, only the designated verifier would be able
to check which blocks are wheat and which are chaff. This method would
slow down the scheme considerably because public key operations would
need to be applied to every block of the message. This would not really
be a hybrid method because it extensively uses public key cryptography, a
better method would allow chaffing and winnowing to use symmetric and
asymmetric methods together in an efficient way.

2.9 Technology Considerations

2.9.1 Implementation Language

The programming language considerations for implementation of this project
are C, Perl and Java. All of these languages support bit-wise operations, bit-
shifts, and file reading and writing. The benefit of C and Java is that the
author knows them well, which would better suit the time scale of the project.

14

As a low-level language, C may run faster than Java. Although Java is gen-
erally more portable across platforms. C can be portable if implementation
dependant features are not used.

2.9.2 “Endianness” of Target Machines

The implementations of this project should be able to run across UNIX,
Mac and Windows platforms, so they will need to take into account the
“Endianness” of the machines they are running on. “Endianness” refers to
the order in which bytes are stored within a word, on a particular machine.
Big-endian refers to when the byte with the highest precedence is stored first
and little-endian is when the byte with the lowest precedence is stored first.
Solaris UNIX on SPARC machines is big-endian, Windows on Intel machines
is little-endian and Mac on Power PC machines is big-endian. Java makes
“Endianness” transparent as it stores everything in big-endian order, no
matter which machine it is running on.

2.10 Conclusion

In this chapter we have introduced the concept of chaffing and winnowing,
described the chaffing and winnowing schemes that have been previously
put forward and investigated the underlying concepts needed to implement
them. In the next chapter we will discuss what our requirements for the
project are, based on the knowledge gained here. Then we will go on to
choose which schemes to implement in this project. We will also try to
improve these existing methods or devise new ones to create a hybrid chaffing
and winnowing scheme. From our initial analysis it seems that chaffing
and winnowing should be comparable in speed to traditional encryption
methods, although the chaffing and winnowing schemes will carry a greater
data expansion overhead. We will see if these remarks are true when the
implementations are tested against other methods.

15

Chapter 3

Requirements

Here we specify the requirements for this project, which have been derived
from the initial aims of the project combined with what has been learnt from
the literature review. The requirements describe the essential properties of
each component and also some general requirements of the project.

3.1 Message Authentication Codes

An implementation of a Message Authentication Code algorithm will be
produced, this is one of the underlying pieces of technology that the project
requires. The implementation will use a pseudo-random cryptographic hash
function, so that no information about the message is leaked by the hash
function. The hash function being used must be easily inter-changeable so
if at any stage a different hash function needs to be used, it can be changed
without changing the function prototypes in the MAC implementation. This
makes the hash function transparent to the programs using the MAC imple-
mentation. The MAC implementation should have the property that com-
puting the MAC of a particular input with different keys, should produce
completely different digests.

16

3.2 Initial Prototype

An initial prototype will be produced as a “proof-of-concept” to help the
author learn about the chaffing and winnowing method and some of the
problems associated with implementing it. The scheme that will be imple-
mented as the initial prototype will be the “bit-by-bit” method. We have
learnt from the literature review that this is the simplest chaffing and win-
nowing scheme and it is also the least efficient in terms of data expansion
by a long way and because of this it would not be comparable to traditional
encryption methods.

3.3 All-Or-Nothing Transform Implementations

Two AONT implementations will be produced. They will be designed so
that in a chaffing and winnowing scheme the AONT being used can easily
be inter-changed, to enable re-use of code. The AONT implementations will
transform a message using some randomly chosen data, so the output of a
transformation on the same message will be different each time. The AONT
will be able to accept a parameter specifying the minimum amount of blocks
to output. The AONT will have the property that if all of the blocks are
present, it will be easy to reconstruct the original message and any of the
blocks are missing then it will be very difficult to reconstruct the original
message.

3.4 Hybrid Implementation

A method will be designed and implemented, that combines the characteris-
tics of using a symmetric key for speed and message expansion benefits and
asymmetric keys for key management benefits. From research done in the
literature review this is how many techniques are currently implemented, to
benefit from these advantages. The only current suggestion to incorporate
asymmetric keys into chaffing and winnowing is to use “Designated Verifier
Signatures”, however from initial analysis it seems that this would slow down

17

the scheme considerably. A new method will need to be devised from the
technologies investigated.

3.5 Production Implementations

At least three “production” chaffing and winnowing implementations will be
implemented using the AONT and hybrid tools created. They will consist
of two AONT implementations and one or more hybrid implementations.
These are the implementations that will be fully tested for speed and data
expansion and compared with traditional techniques.

3.6 Performance Requirements

The programs produced should be written to run as efficiently as possible.
Aside from the fact that it is good practice to write programs to be efficient,
one of the aims of this project is to compare chaffing and winnowing to
traditional encryption methods and so the implementations need to be able
to compete on speed. From initial analysis of the methods chaffing and
winnowing should be similar to traditional encryption methods and this
may be an area where it can improve on them.

3.7 Data Expansion Requirements

The programs written should minimise data expansion of encrypted mes-
sages. From the literature review we have seen that this is an area, which
may be less efficient than traditional encryption methods. Due to the nature
of chaffing and winnowing, chaff is always going to be added to a message
and as a result there will always be some overhead. Also because the scheme
is based on authenticating valid packets, authentication data will also always
need to be added. So minimise the data expansion, data should always be
represented in the smallest form possible.

18

3.8 Platform Requirements

The implementations produced in this project should be able to run on dif-
ferent platforms, as traditional encryption technologies can. The platforms
available for testing in this project are Mac OS X (PowerPC), Windows XP
and Solaris 8. The code produced should be portable across these platforms
and should allow for “encryption” and “decryption” across platforms. For
example if a file was “encrypted” on Mac OS X it should be able to be
decrypted on “Windows XP”.

3.9 Security Requirements

For chaffing and winnowing to be considered an alternative to traditional
techniques it must provide a similar level of security. Security analysis of
chaffing and winnowing has been carried out and this was researched in the
literature review, so the recommendations must be taken into account.

3.10 Program Requirements

The programs written should adhere to these coding standards:

• The code should be well structured, properly indented and easy to
read.

• The code should provide informative comments in appropriate places.

• The code should be easy to debug.

• Implementation dependant features of the language should not be used
to provide better portability.

• The programs produced should be very modular to enable re-use of
code.

19

3.11 Implementation Language Requirements

As discussed in the literature review, the language chosen for implementation
must be able to perform certain operations and have certain characteristics:

• Must be able to perform bit-wise operations.

• Must have file input/output features.

• Must be portable to the platforms specified.

• Should be a commonly used language to be able to re-use publicly
available code.

• Should be a language the author is familiar with to maximise time
available.

20

Chapter 4

Design

In this chapter we discuss the design of the schemes and components that we
will implement. Design decisions are discussed and underlying technologies
and tools are selected. How the schemes will be compared to traditional
techniques is considered and the expected outcomes are stated.

4.1 Language Choice

All of the language candidates selected for this project meet the Implemen-
tation Language requirements. However perl is generally considered a slow
language these days and as the author is not very familiar with it, it will
not be used. Java is a widely used language and is generally fast on most
platforms, however Java provides an Object Orientated abstraction, which is
not needed in this project that is implementing relatively small algorithms.
C is generally a very fast and compact language, which many free encryp-
tion tools are implemented in and may be tested against. The test would
be more accurate if the programs are written in the same language and for
these reasons will be the language used in this project.

21

4.2 High-level Design

Here we present the high-level design of the chaffing and winnowing schemes
that will be implemented in the project.

4.2.1 Prototype

The prototype that will be implemented is the bit-by-bit chaffing and win-
nowing method. It will implement the well described “bit-by-bit CW” algo-
rithm in [Bellare and Boldyreva, 2000]. To encrypt a message, the message
will be read bit-by-bit, a serial number will be concatenated to the bit and
the MAC value of this concatenation computed. The serial number, bit value
and MAC digest will then be written to a file. A random digest is then com-
puted for the complementary bit, with the same serial number. This is also
then written to a file. The key that the MAC will use is a pass-phrase sup-
plied at run-time by the user. As discussed in the literature review, if only
one packet is produced for each bit rather than two, the encrypted message
size is reduced by a factor of two, this is a significant reduction and so will be
done in this prototype. This is done by randomly selecting whether to write
a wheat packet or chaff packet for each bit in the original message. When
decrypting the message if a wheat block is present for a serial number, the
present bit value is used, otherwise the complementary bit is used.

4.2.2 All-Or-Nothing Transform Scheme

This scheme will be implemented as the “scattering scheme” algorithm de-
scribed in [Bellare and Boldyreva, 2000]. First an AONT is applied to the
original message and then this is split into blocks. [Bellare and Boldyreva,
2000] says the next step is to pick at random the positions of the wheat
packets, it would however be more efficient to pick the positions of the chaff
packets, as this will be a fixed number. The number of wheat packets varies
with the size of the original message and when this becomes very large it
will take longer to decide the wheat positions and will require more memory
to store the indices. Next, for each block in the “chaffed” message, if the

22

index is a chaff position, a chaff block and random MAC digest are com-
puted and written to the output file, otherwise the MAC is computed for
the next block of the transformed message and the block contents and MAC
digest are written to the output file. To “winnow” the “chaffed” message
each packet is read and the MAC computed for it, if the supplied MAC is
valid then the packet is kept, otherwise it is thrown away. Once all of the
chaff packets have been thrown away the AONT is inverted and the original
message recovered. We will specify the security parameters: M the min-
imum number of blocks output by the AONT and s′ the number of chaff
blocks. The minimum number of blocks output by the AONT, M will be
128 and s′ = 128, as suggested in [Bellare and Boldyreva, 2000]. This makes
the complexity of guessing a random subset of packets and inverting the
transform quite high, specifically it is proportional to

(
s+s′

s

)
.

4.2.3 Hybrid Scheme

Here we present a new chaffing and winnowing scheme, which combines sym-
metric techniques with public-key cryptography to benefit from the speed
and key management properties. The scheme works in a similar way to the
AONT method from [Bellare and Boldyreva, 2000]. An AONT is applied
to the original message, then the chaff positions are chosen as a random
subset of the output block indices. An AONT is applied to the chaff posi-
tions, which is then encrypted with a public-key algorithm and written to
the output file. For each output block, if the index is a chaff position then
a chaff block is randomly computed and written to the output file, other-
wise the next block of the transformed message is written to the output file.
The algorithm is shown in Algorithm 1, which is based on the “scattering
scheme” in [Bellare and Boldyreva, 2000]. s is the number of blocks in the
message, n is the size of the message block, s′ is the number of chaff blocks
and pk encrypt is a public key encryption scheme.

An AONT is applied to the chaff positions to make the ciphertext
different each time, otherwise an adversary could try and guess the chaff
positions, encrypt them with the same public key and see if the ciphertext
matches, however using the AONT prevents this happening. This method

23

Algorithm 1 ε(M)
M ′ ← AONT (M)
Parse M ′ as m1||m2|| . . . ||ms where |mi| = n
Pick S ⊆ 1, . . . , s + s′ at random, where |S| = s′

S′ ← AONT (S)
S′′ ← pk encryptpk(S′)
j ← 0
for i = 1, . . . , s + s′ do

if i ∈ S then
Pkt[i]←R {0, 1}n

else
j ← j + 1
Pkt[i]← mj

end if
end for
return S′′, Pkt[1], Pkt[2], . . . , Pkt[s + s′]

provides much more efficiency in terms of data expansion, because there
is only a small fixed overhead of the chaff position indices and the chaff
packets that is added. A MAC is not added to each block, the blocks are
authenticated by these chaff position indices. It is not clear if this scheme
can be classified as chaffing and winnowing because there is an encryption
step involved, however the original message is still in the clear and it is only
the chaff position indices that are encrypted. The chaff position indices are
authentication data, like the MACs are and if we were to use the “designated
verifier signatures” of [Jakobsson et al., 1996] (as suggested by Rivest), where
the digital signature is pubic key encrypted, then authentication data would
be encrypted too.

4.3 Module Design

The components specified here will be implemented as modules as they will
be used by more than one implementation, they will created as C libraries
to enable easy re-use.

24

4.3.1 HMAC

We will implement the HMAC Message Authentication Code algorithm, be-
cause it is the method suggested in [Rivest, 1998a] and is very simple to
implement. The HMAC algorithm will be implemented based on the sample
code provided in [Krawczyk et al., 1997]. The hash algorithm that will be
used in the HMAC is MD5 [Rivest, 1992]. SHA-1 is an alternative and is
generally considered to be more secure than MD5 because it produces a 160-
bit hash and MD5 only produces a 128-bit hash. However MD5 is secure
for use within HMAC [Krawczyk et al., 1997] and is recommended where
superior performance is required. In the implementations of this project the
HMAC will be called many times and because MD5 has better performance,
it will be used in this HMAC implementation. As mentioned in [Krawczyk
et al., 1997] we will truncate the MAC to 80 bits, so in effect we will be
using HMAC-MD5-80. This may improve security, but more importantly
will minimise ciphertext expansion. We will use the “RSA Data Security,
Inc. MD5 Message Digest Algorithm”1 implementation of MD5.

4.3.2 All-Or-Nothing Transforms

The AONTs that have been chosen for implementation in this project are
the Package Transform and Optimal Asymmetric Encryption Padding. The
reasons for these choices are that they are both explained well and the se-
curity of them is analysed in [Bellare and Boldyreva, 2000]. The Package
Transform is shown to not be as secure as OAEP, however it does provide
reasonable security and will provide a good speed comparison. OAEP is
proven to be secure when used as an AONT in chaffing and winnowing.

Package Transform

The Package Transform will be implemented as described in [Rivest, 1997].
It will use the RC5 block cipher as mentioned by Rivest, although any block
cipher such as DES or BLOWFISH, could be used. The RC5 code will be

1Available from http://theory.lcs.mit.edu/∼rivest/md5.c

25

based on the reference implementation provided in [Rivest, 1996]. The block
size of RC5 is 64-bits (8 bytes) and the recommended key size is 128-bits. As
the key needs to be XORed with the hash of each block, each “half” of the
key with by XORed with each block. The key will be randomly generated
each time the program is run. An argument will be supplied when calling the
Package Transform specifying the minimum amount of blocks to be output.

Optimal Asymmetric Encryption Padding

Optimal Asymmetric Encryption Padding will be implemented based on [Bel-
lare and Rogaway, 1994]. The MD5 hash function will be used, as it is the
hash function being used throughout this project. The generator function
will be constructed as shown in [Bellare and Rogaway, 1994], although using
MD5 rather than SHA. The generator function is defined as Hl

σ(x), where l

is the l bit prefix of:

MD5128
σ (〈0〉.x) || MD5128

σ (〈1〉.x) || MD5128
σ (〈2〉.x) || · · ·

MD5128
σ denotes that the initialisation constants of the MD5 algorithm

have been set to σ (ABCD = σ) and we are using the 128-bit prefix of the
hash generated. In [Bellare and Rogaway, 1994] the generator function is
defined using the 80-bit prefix of the hash generated, however this would
increase the execution time of our schemes by around 60%, as this is how
much more often the hash function would get called. The generator will
produce a hash the length of the message, using a random 128-bit string r,
that is produced. The generator value is then XORed with the message, we
denote this as y. The random value is XORed with the hash of the y, we
denote this as w and y||w is returned.

4.3.3 Public Key Algorithms

The Hybrid scheme requires a public-key encryption algorithm, there are a
number of public-key algorithms to consider for use in this project. We need

26

to find one that is easy to implement and is widely used. The most common
public-key algorithms are:

RSA

RSA [Rivest et al., 1978] was created by Rivest, Shamir and Adleman and is
considered to be the easiest to understand and implement [Schneier, 1993].
It works with numbers modulo very large primes and gets its security from
the difficulty of factoring large numbers. RSA Laboratories recommends
using a 1024-bit modulus for corporate use [RSA Labs].

ElGamal

ElGamal [Gamal, 1985] is a public-key cryptosystem which gets its security
from the difficulty of calculating discrete logarithms in a finite field. The
ciphertext produced by ElGamal is twice the length of the plaintext.

Due to the simplicity of RSA and lower data expansion, it will be used
in this project.

Tools Needed To Implement Public-Key Algorithms

Generally programming languages can only work with relatively small num-
bers, being able to work with 1024-bit numbers is not built into most pro-
gramming languages. There are however many tools that enable you to do
this, as we are working with C, we will need to use a C library that can
support this kind of functionality. There are many libraries available for
this, including GNU Multi-Precision2, PARI3 and MIRACL4 which are all
C libraries supporting arbitrary precision numbers. They also include func-
tions to find primes, perform GCD computations and compute exponents
modulo other large numbers. The GNU Multi-Precision library seems to be

2Available from http://swox.com/gmp/
3Available from http://pari.math.u-bordeaux.fr/
4Available from http://indigo.ie/∼mscott/

27

the most widely used package and is by far the most well documented for
both installing and using. For these reasons it will be the library used in
this project.

4.4 Specification Of Implementations

Now that we have made decisions for each component, we specify exactly
what will be implemented:

4.4.1 Libraries

• HMAC keyed hash function, using the MD5 hash function.

• Package Transform as an AONT, using the RC5 block cipher.

• Optimal Asymmetric Encryption Padding as an AONT, using the MD5
hash function.

• RSA public-key algorithm, using the GNU Multi-Precision library.

4.4.2 Chaffing and Winnowing Schemes

• Initial Prototype, implementing bit-by-bit chaffing and winnowing.

• AONT scheme, using the Package Transform library and the HMAC
library.

• AONT scheme, using the OAEP library and the HMAC library.

• Hybrid scheme, using the Package Transform library and the RSA
library.

• Hybrid scheme, using the OAEP library and the RSA library.

28

4.5 Experimental Design

4.5.1 What Will The Implementations Be Compared To?

There are many different cryptographic applications available. OpenPGP [J. Callas
and Thayer, 1998] is a standard based on PGP (Pretty Good Privacy), de-
veloped by Phil Zimmerman. It provides standard formats for encrypted
messages, signatures and certificates for exchanging public keys. There are
many organisations that implement the standard, some of which sell their
software (PGP Corporation) and some that offer it free of charge (GNU
Privacy Guard, Authora - for individuals). PKCS (Public Key Cryptogra-
phy Standards) is a set of standards developed by RSA Security, although
PCKS is more commercially motivated than OpenPGP, so the implementa-
tions based on the standard, are generally only commercially available.

GNU Privacy-Guard is an open source application that implements
the OpenPGP standard. It implements encryption algorithms such as 3DES,
AES, BLOWFISH and ElGamal. It allows you to specify which algorithm to
use and for public-key encryption it uses the hybrid methods discussed in the
literature review. GNU Privacy-Guard is widely used for e-mail encryption.
OpenSSL is an open source package that implements the Secure Sockets
Layer Internet Protocol and it uses many of the same encryption algorithms
as GNU Privacy-Guard. It provides a command line tool that allows you to
run these algorithms individually.

The GNU Privacy-Guard package implements the algorithms we are
interested in comparing against, it is easy to install and is freely available.
OpenSSL is very similar and is freely available, however its design is more
directed to the SSL protocol and so we will use GNU Privacy-Guard in this
project.

4.5.2 Metrics To Compare

As already discussed, the main things we are looking to compare our schemes
against are execution time and data expansion. Security is also something

29

that needs to be compared, this has already been done by cryptographic
experts and will be discussed in the conclusion. In order to get an accurate
execution time for each algorithm, they will be tested many times and the
mean time will be taken. Each algorithm will also be tested on a variety of
different file sizes.

To measure the data expansion of each algorithm, we will encrypt the
same file and check the size of the file after encryption to see how much the
file has been expanded. This will be done with files of different sizes for each
algorithm because with the symmetric chaffing and winnowing schemes, we
know that the expansion is not constant for different file sizes, with some
of the schemes the efficiency should better as the file size grows. This will
only need to be done once for each file size and each algorithm as the data
expansion for a particular file size and algorithm will not change.

4.5.3 Expected Outcome

As we have discussed already, the execution times of the schemes we produce
should be similar to traditional techniques. We expect the data expansion
of the symmetric chaffing and winnowing schemes to be much higher than
traditional methods, because the amount of data added grows as the file size
grows. The data expansion of the hybrid chaffing and winnowing schemes
we expect to be a fixed amount, although it will still be greater than that of
the encryption techniques.

30

Chapter 5

Implementation

In this chapter we discuss how the schemes were implemented and some of
the decisions made during implementation. The listings of the source code
produced can be found in sections C1-C9 and the full source can be found
on the CD provided with this document.

5.1 Development Tools

The code for this project will be developed in Xcode, which is Apple’s IDE.
Although it will not be used as an IDE, it will simply be used as a tool to
edit the code, providing the useful features of syntax colouring and line num-
bering. So that the code can be easily compiled across platforms, a UNIX
shell script will be produced that builds the libraries and applications. The
GCC compiler will be used across platforms because it is available on each
platform and is very widely used. On the Windows machine the MinGW1

(Minimalist GNU for Windows) compiler will be used, which is a pre-built
GCC compiler for Windows. Also on the Windows machine MSYS2 (Mini-
mal SYStem) will be used, which provides a Bourne shell, allowing the same
build script to be used as the one on Mac and Solaris. The ar and ranlib

tools will be used to create libraries. GDB (GNU Project Debugger) will be
1Available from http://www.mingw.org/
2Available from http://www.mingw.org/

31

used to help debug the code if necessary. As the size of the algorithms that
will be produced is quite small, no source code control system will be used
in the project.

5.2 Prototype

5.2.1 Implementing The Prototype

Implementing the prototype involved firstly building the HMAC. This was
implemented based on the sample code in [Krawczyk et al., 1997] except
that the functions bzero() and bcopy() are now depreciated, so memset()

and memcopy() respectively, were used instead. Problems involved in imple-
menting the bit-by-bit scheme included:

• Functions to get and set bits of a char had to be created.

• Generating a fake MAC digest, that was different each time. Using
rand(), each time the program is run the same sequence of numbers
is produced, this would allow an adversary to learn about the validity
of packets because the chaff packets would always be the same. To
prevent this srand(time()) was used to initialise the random state
with the current time.

• Output was written to a file in the smallest possible format, which is
a character.

• Outputting either the real bit and real MAC or the complementary bit
and fake MAC, to half the size of the “encrypted” message.

5.2.2 What Was Learnt From The Prototype

Implementing the prototype allowed the author to gain a greater under-
standing of the chaffing and winnowing concept. It provided experience of
using bit-wise operators, file input/output features and brought awareness

32

of the problems generating random numbers. It was found after doing more
research, that there is a C standard library function arc4random(), which
uses the ARC4 cipher key stream generator and is specifically designed for
cryptographic applications. This is the random number generator that will
be used throughout the rest of the project. It was also found through a sim-
ple test that the fread() and fwrite() C standard library functions were
much faster than using a loop with getc() or putc() in it.

5.3 Libraries

5.3.1 Chaffing and Winnowing Library

After implementing the prototype it seemed that there would be some func-
tions that would need to be used by more than one implementation, so the
best thing to do would be to create a library that carried out common tasks
related to chaffing and winnowing. The library includes functions to check
which byte-order the machine is using, creating a chaff packet and randomly
generating the chaff packet positions. The Solaris and Windows C imple-
mentations we were using did not support the arc4random() function but
did define the symbolic constants sun and WIN32, so a check was done in this
library and if these constants were defined by the C implementation then
the function arc4random() was defined as random() and rand() on Solaris
and Windows respectively. The library includes a macro, which swaps the
byte order of a 32-bit integer for any byte swapping that needs to be done.

5.3.2 HMAC

Implementing the HMAC library was trivial as the code produced in the
prototype was used. One change was made however, because the HMAC is
called many times with the same pass-phrase throughout execution there is
no need to initialise the inner and outer pad each time the hmac() function
is called. So a hmac init() function was created, which initialised the inner
and outer pads and the functionality was taken out of the hmac() function.

33

This should improve the speed slightly.

5.3.3 Package Transform

The Package Transform was implemented with a block size of 8 bytes because
this is the block size of RC5 on a 32 bit machine and the RC5 block needs
to be XORed with the input block. The RC5 implementation was the RSA
Data Security Inc. “Reference implementation of RC5-32/12/16”, meaning
that the word size is 32 bit, the number of rounds is 12 and the key size is 16
bytes. These are parameters that can change but 12 rounds is recommended
as the minimum and the key can become “weak” if they are any shorter
than this [Rivest, 1996]. The RC5 implementation was modified because a
time consuming part of RC5 is the initialisation, in the Package Transform
two RC5 keys need to be used - a publicly known one and a secret one.
The reference implementation used a global array for the key table, mean-
ing each time you use a different key, the key table needed to be initialised
again. To improve this, the global array for the key table was removed and
the RC5 SETUP() function was given an extra argument, a pointer to the key
table and the encrypt/decrypt functions were also given this argument. As a
result you can initialise two key tables and pass a pointer to the encrypt/de-
crypt functions, depending on which key you want to encrypt with. This
change vastly improved the speed of the package transform.

As the key size is twice the size of the blocks the hash of each block
was XORed with each “half” of the key. The RC5 key is randomly generated
each time the Package Transform is run. The final block consisting of the
key XORed with the hash of every block, needed to be put at the end of the
“outer” block (the chaffing and winnowing block), because the transformed
message will be padded and we needed to make sure that the final block will
always be at the very end of the message.

The main functions of the Package Transform are transform() and
inverse transform(). The transform and inverse transform processes are
very similar, the only difference is that when inverting the transform the
RC5 key needs to be recovered from the message and not generated. So
to take advantage of this the transform() function was modified to accept

34

a key and the inverse transform() function simply recovers the key and
passes it to the transform() function.

5.3.4 Optimal Asymmetric Encryption Padding

Implementation of OAEP was fairly simple. The MD5 hash function was
used to implement it as described in [Bellare and Rogaway, 1994]. Even
though OAEP does not have “blocks” as such, the message was read in as
128-byte blocks. This is the same size blocks that the chaffing and winnowing
will use. The only difference to [Bellare and Rogaway, 1994] was that the
XOR of the random string and the hash of the transformed message was
put at the beginning of the output rather than the end, this was to ensure
that it could always be found. The output needed to be padded so that
no padding has to be added by the chaffing and winnowing process, this
is because a hash of the message is used to recover the random string. If
the chaffing and winnowing process hands back a message with padding,
a different hash would be produced and the random string would not be
recovered and therefore the message would not be recovered. An alternative
to this would be to put the original message length in the output, so that
you know how much of the transformed message to look at.

The OAEP library was designed to be very similar to the Package
Transform, in the sense that they could be substituted for each other very
easily. The OAEP has the same functions as the Package Transform -
transform() and inverse transform(), with the only difference being that
the transform() function accepts one less argument than the Package Trans-
form function.

5.3.5 RSA

The implementation of RSA was straightforward using the GNU Multi-
Precision library. The most difficult part was transforming the message into
an integer and reversing the process. This was achieved by printing each in-
put character into a string in hexadecimal notation. Once the message had

35

been encrypted/decrypted the result was written to a string in hexadecimal
format and each two hexadecimal numbers were converted to a character for
output. The message was split into blocks, each block had to be represented
as an integer less than the modulus n. If the encrypted or decrypted block
was less than the block size, it was padded with zeros at the most significant
end of the integer, this ensured that the integer would be correctly recovered
when it was read in.

The modulus size used in the implementation was 1024-bits, this is
a recommended size for RSA to provide good security currently, although
often a 2048-bit key is used. 1024-bit is the modulus size we will be using
with GNU Privacy Guard and this is the main concern, to be able to provide
a fair comparison. The public exponent we are using is 65537 (216 + 1), it is
a commonly used public exponent, because it is a Fermat prime - it provides
enough security against a low-exponent attack and has the property that the
modular exponent can be calculated very quickly.

The RSA implementation was not produced according to a standard
such as PCKS or OpenPGP but simply so that public-key encryption could
be provided in our scheme. The implementation provides the generation of
keys, which it writes to key files in the same directory that it is run in. In
practice we would need to make sure the private key is more secure but that
is not something that is in the scope of our project.

5.4 Chaffing and Winnowing Schemes

Once the libraries were built, the implementation of the schemes was made
easier, because they rely on the underlying functionality of the libraries.

5.4.1 Symmetric Package Transform Scheme

This scheme was simple to implement, the original file is transformed us-
ing the package transform and put into a temporary file, which is then
split into blocks. The indices of the chaff packets are chosen using the

36

set chaff positions() function from the chaffing and winnowing library.
Then for each output packet if the index belongs to a chaff packet, a chaff
packet is produced using the generate chaff packet function from the
chaffing and winnowing library, otherwise the MAC of the next valid packet
is computed and both are written to the output file. The winnowing process
simply reads in each block and computes its MAC, if it matches the sup-
plied MAC it is written to a temporary file otherwise it is discarded. Once
the whole input file has been processed, the inverse AONT is applied to the
temporary file, recovering the original message.

5.4.2 Symmetric OAEP Scheme

This scheme was implemented very much the same as the Symmetric Package
Transform scheme, except the OAEP header file was included and the library
linked to, instead of the PackageTransform header and library. Also one of
the transform() arguments was removed as the OAEP library accepts one
less.

5.4.3 Hybrid Package Transform Scheme

This scheme was more difficult to implement than the symmetric ones. The
original file is transformed using the package transform and written to a
temporary file, the indices of the chaff packets are then produced using the
chaffing and winnowing library. A check is then performed to see if the ma-
chine running the program is big-endian or little-endian. If the machine is
little-endian the chaff position indices were copied and byte-swapped. This
ensures that everything is stored in big-endian byte order and if a little-
endian machine runs the program it will need to swap the bytes of certain
data. The reason everything is stored in big-endian order is that two big-
endian machines were being used and only one little-endian machine. An
alternative to this would have been to put a bit in front of the indices spec-
ifying which endian-order they are stored in, this would require the same
amount of swapping to be done across machines but less on the little-endian
machine however would add extra data to the output. The next step is to

37

write the chaff indices to a temporary file (in big-endian order) and transform
the file using the package transform. The result of this is then encrypted
using RSA and written to the output file. The rest of the process is the
same as the symmetric one, except no MAC’s are calculated or written to
the output file.

The winnowing process calculates the size of the encrypted chaff packet
indices by looking at the size of the modulus being used and the size of the
message that would be produced after transformation. Once it has this
information, it can read in the encrypted chaff packet indices, decrypt them
and invert the transform. The indices are read in as 32-bit integers and if
the machine is little-endian the bytes are swapped. The packets with valid
indices are then written to a temporary file and the packets with invalid
indices are discarded. The inverse AONT is then applied to the temporary
file, recovering the original file.

5.4.4 Hybrid OAEP Scheme

This was implemented in the same way as the Hybrid Package Transform
scheme, except that the OAEP library was used rather than the Package
Transform library.

5.5 Implementation Notes

5.5.1 All-Or-Nothing Transforms

At first it was thought that after the AONT implementations had been
created, there would need to be some byte swapping done, so that they
could run cross-platform. However, after initial tests it was seen that this
was not the case. The reason for this is that even though bytes are stored
in a different order on different machines, C still treats them the same when
using the left and right bit-shift operators (<< and >>). So for example, the
number 0x12345678 would be stored in the byte order 12 34 56 78 on a big-

38

endian machine and stored as the byte order 78 56 34 12 on a little-endian
machine, but performing a “>> 24” (right shift by 24 bits) on the number
on both machines gives the result 0x12. Also for the package transform,
as the RC5 block cipher produces the same results on big and little endian
machines, no byte swapping needed to be done there either.

39

Chapter 6

Testing

In this chapter we describe how the implementations we produced were
tested. The tests performed were to make sure that the libraries and schemes
were working correctly. Testing was done in parallel with implementation.
This is due to the design, the underlying functionality needed to be tested
before it could be used in the Chaffing and Winnowing schemes.

6.1 Platforms and Compilers

The platforms being used to test the programs and compilers used to build
the programs on each platform are:

• Platform: Mac OS X 10.4.5 running on Mac Powerbook, PowerPC G4,
1.5Ghz Processor, 512Mb RAM. Compiler: GCC 4.0.0 (Apple build).

• Platform: Windows XP Home Service Pack 2 running on Dell Insp-
iron 5100, Intel Pentium 4, 2.4Ghz Processor, 256Mb RAM. Compiler:
GCC 3.2.3 (MinGW build).

• Platform: Solaris 8 running on SUN Ultra E450, UltraSPARC-II 4 x
296MHz Processors, 2176 Mb RAM. Compiler: GCC 2.95.3.

40

6.2 Library Testing

These tests were produced using a main function in each library, which could
be easily defined and undefined using symbolic constants. The main func-
tion was defined for these tests and undefined for use in the chaffing and
winnowing schemes.

6.2.1 HMAC

The HMAC library was tested with the test vectors given in [Krawczyk et al.,
1997], the output digests were checked against the digests given and the tests
were repeated on each platform. All of the tests passed, the digests were the
same for each test vector on each platform and matched the given digests.

6.2.2 Chaffing and Winnowing Library Testing

The CW library was tested to make sure that each function within it worked
correctly. It is important that this library works correctly because a lot of
the security of the chaffing and winnowing schemes rely on how well these
functions work. The tests were run 10 times on each machine. There is
a check to make sure that the WIN32 symbolic constant is defined on the
Windows platform and the sun symbolic constant is defined on the Solaris
platform. This test succeeded. The is big endian() function should always
return 0 if the machine is big-endian and return 1 otherwise, so the byte-
order of the machine the code is run on should be correctly printed out. This
test succeeded with “Big-endian” being printed out on the Mac and Solaris
platforms and “Little-endian” being printed out on the Windows platform.

A test was performed to check that a “random” chaff packet is pro-
duced each time the generate chaff packet() function is called. This test
passed, with the chaff packet being completely different each time it was
called. It is important to note that on the Solaris and Windows platforms,
because they are not using the arc4random() function, when they are not
initialised with srand() or srandom() they produce exactly the same chaff

41

packet each time, which would make it very easy for an adversary to distin-
guish chaff from grain. It is also important to note that the seed should only
be initialised with the current time once at the start of the program, because
the programs execute very quickly, initialising the seed again with the same
time will produce the same sequence of numbers. Ideally arc4random()

would be used on every platform if it was available to us, because it ran-
domly initialises itself each time it is called and is specifically designed for
cryptographic applications.

A test was performed on the set chaff positions() function, which
picks a random subset of the output packet indices for chaff packets to be
placed in. This test should ensure that the chaff packet positions are different
each time the program is run, the indices should be in ascending order and
there must be no duplicates. This test originally failed, sometimes there was
a duplicate because the first position in the array was not being checked
for duplicates, this was easily rectified. After this change, the library was
re-tested and passed. The final test checked that the SWAP macro worked
correctly, it should swap the bytes of a 32-bit integer and when applied again
recover the original number. This test was passed.

6.2.3 Package Transform Library Testing

The Package Transform library was tested by transforming a file and in-
verting the transform. The transform and inverse transform were done on
the same platform, as the library will get tested cross-platform when the
chaffing and winnowing schemes are tested. A file was transformed and in-
verse transformed 10 times on each platform, it was checked to see that once
the file had been transformed back it was the same as the original and that
the transformed file was different every time, as a random key is chosen each
time it is run. The test was performed specifying that there must be a min-
imum of 128 blocks output. To see if the transformed file was different each
time the UNIX command diff was used. These tests passed and the library
will be tested further when the chaffing and winnowing schemes are tested.

42

6.2.4 OAEP Library Testing

The OAEP library was tested in the same way as the Package Transform
library, as they essentially do the same things. A file was transformed and
inverse transformed 10 times on each platform, each time making sure that
the file was transformed back correctly and that the transformed file was
different each time. These tests were passed.

6.2.5 RSA Library Testing

The RSA library was tested by encrypting and decrypting a file, using a
different key pair each time. With a particular key, a file only needs to be
encrypted and decrypted once because, this implementation of RSA produces
the same ciphertext each time for a given plaintext and so will decrypt
exactly the same each time, whereas the AONTs transform the plaintext into
a different ciphertext each time. The RSA library was tested 20 times on
each platform, using a new key pair each time, checking that the decrypted
file was exactly the same as the original file using the diff UNIX command.

This test initially failed for some keys, a bug was found where an in-
correct calculation was being done. The GNU Multi-Precision library trans-
forms a number into hexadecimal but without leading zeros, this was being
taken into account, however the calculation was not being performed prop-
erly, this was changed and re-tested. After the change, the library passed on
all platforms.

6.3 Chaffing and Winnowing Scheme Testing

Here we test the chaffing and winnowing schemes produced in this project.

43

6.3.1 Correctness Testing

There is no way to tell if a chaffing and winnowing scheme is “correct”,
because there are no official implementations of it. Here we test that the
schemes work in the way they should - add chaff to a message and winnow
it to recover the original message. Each chaffing and winnowing scheme was
tested by “chaffing” a file and “winnowing” it to reveal the original file. As
the chaffing and winnowing implementations produced will always generate a
different ciphertext for the same plaintext, it is not enough chaff and winnow
a file once, there could be a situation in which a particular ciphertext will
not “winnow” back to the original file. So the tests were performed 200
times for each implementation, on each platform. This is a lot of tests to
perform manually, so a UNIX shell script was written to perform the tests
automatically, the script is listed in Appendix B.1. The test script used the
diff UNIX command to compare the “winnowed” file to the original file,
although because padding is added to the message the diff command will
say that the files are different, even if the “winnowed” file has been recovered
correctly. So instead we chaffed and winnowed a file, confirmed it had been
recovered correctly and used this to compare against the other “winnowed”
files. The test script was run on each platform, to make sure there were no
platform specific issues. The file that was “chaffed” and “winnowed” was
a simple text file. The hybrid methods generated a new key pair every 50
tests, to ensure the schemes worked correctly with different keys. Table B.1
shows the results of these tests.

Table 6.1: Correctness Test Results

Platform
Implementation Mac Windows Solaris
AONT Package Transform Pass Pass Pass
AONT OAEP Pass Pass Pass
Hybrid Package Transform Pass Pass Pass
Hybrid OAEP Pass Pass Pass

After we had made sure the schemes worked correctly after being run
multiple times, the chaffing and winnowing schemes were also tested using
different types of files on each platform, to make sure they recovered the orig-
inal file correctly after winnowing. Different types of file were used because
many different types of file are encrypted and decrypted using traditional

44

techniques and we need to make sure that our chaffing and winnowing can
provide this. The chaffing and winnowing implementations also add some
padding if the input file is not an exact multiple of the block size. So we
“chaffed” and “winnowed” a Microsoft Powerpoint Presentation, a bit-map
image and a PDF document, then checked that the winnowed file opened in
their respective applications correctly. All the implementations passed these
tests.

6.3.2 Platform Testing

The chaffing and winnowing implementations were tested to make sure that
when a file has been “chaffed” on one platform, it can be “winnowed” on
either of the other platforms, as this is what the implementations were re-
quired to do. This test used a text file, which was “chaffed” by a scheme
on one platform and was then “winnowed” by the same scheme on the re-
maining platforms. This was done for every scheme, on every platform. The
results are shown in table 6.2, each scheme had the same result.

Table 6.2: Platform Test Results

Winnowed
Chaffed Mac Windows Solaris
Mac Pass Pass Pass
Windows Pass Pass Pass
Solaris Pass Pass Pass

We have tested the schemes to make sure they work correctly and as
we specified they should in Chapter 4. In the next Chapter we will go onto
see how the schemes compare to traditional encryption methods.

45

Chapter 7

Experimental Results and

Analysis

In this chapter, we show how the experiments were carried out on the
schemes implemented in the project and on traditional encryption tech-
niques. We then use various methods to analyse our findings and comment
on the results. The full statistical results can be found in Appendix A and
on the provided CD.

7.1 Experiments Performed

Two types of experiment were performed on each scheme, execution time
analysis and ciphertext expansion analysis. The purpose of the experiments
was not only to compare the different schemes against each other but to com-
pare them against traditional encryption techniques. As discussed earlier,
GNU Privacy Guard (GPG) is the implementation of traditional schemes
that we will use to compare our schemes with and the schemes implemented
in GPG underwent the same tests as our schemes. The execution time
analysis was to see how the speed of the schemes compared to traditional
techniques and the ciphertext expansion was to see how much the message
expanded after “encryption”.

46

7.1.1 Execution Time Experiments

In this project, 4 chaffing and winnowing schemes were implemented and
they will be compared to 4 schemes implemented by GPG. The schemes
being tested using GPG are symmetric Triple-DES, symmetric AES, hybrid
Triple-DES and hybrid AES. This is because we have produced 2 symmetric
schemes and 2 hybrid schemes, we will compare the symmetric chaffing and
winnowing schemes to the symmetric GPG schemes and the hybrid chaffing
and winnowing schemes to the hybrid GPG schemes.

The schemes were timed using the UNIX command time which records
execution times to one thousandth of a second. We recorded 75 execution
times of each scheme, on 8 different file sizes. The times were recorded using
a shell script, which redirected the “user” process execution time into a file.
The script is listed in Appendix B.2. The user process time given by the
time command is how long it has taken to execute the user process. The
file sizes that the schemes were tested on were approximately 20Kb, 50Kb,
100Kb, 250Kb, 500Kb, 1Mb, 5Mb and 20Mb, the exact sizes can be seen
in the results. The experiments were all carried out on the Mac machine
described in the last chapter, which had been rebooted and had minimal
applications running.

The Hybrid schemes we implemented were using a 1024-bit RSA key
and the GNU Privacy Guard was set up to use a 1024-bit ElGamal key.
GPG defaults to using a high level of compression, this may seem like a
disadvantage in speed testing but once a file has been compressed, there
could be a lot less data to encrypt, making the whole process faster. This
would also distort the results of the ciphertext expansion experiments, as
the original file was compressed before encryption. We also wanted GPG
to behave the same as our schemes - to just “encrypt” the file - so the
compression was turned off in GPG.

We omitted the first 2 results of each execution time experiment when
calculating the means, to remove outliers. The first and second times were
generally much higher than the remaining times and it is assumed that this is
because the application is being read from disk into RAM and after the sec-
ond execution, the file is stored and read from RAM, which is a lot faster than

47

reading from disk. Leaving these results in would distort the results of the
experiments. The chaffing and winnowing implementations were compiled
using the “-O3” flag for maximum optimisation and the “mcpu=powerpc”
flag to produce optimal code for the architecture being tested on.

7.1.2 Ciphertext Expansion Experiments

The ciphertext expansion experiments were carried out in a similar way to
the execution time experiments, however each experiment only needed to
be run once because the expansion does not vary each time the program is
run on a certain file. Each implementation was run once on each of the files
used in the execution time experiments and the size of the resulting file was
recorded.

7.2 Experimental Results

7.2.1 Execution Time Results

Table 7.1 shows the mean execution times of the symmetric schemes in sec-
onds for encryption, on each file size.

Table 7.1: Symmetric Execution Times

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 0.0041 0.0050 0.0110 0.0080
51808 0.0080 0.0099 0.0140 0.0100

102677 0.0130 0.0170 0.0189 0.0130
274106 0.0300 0.0390 0.0350 0.0235
475136 0.0502 0.0658 0.0536 0.0350

1080054 0.1117 0.1469 0.1100 0.0700
5030281 0.5132 0.6743 0.4812 0.3016

20948069 2.1208 2.7995 1.9765 1.2319

Table 7.2 shows the mean execution times of the hybrid schemes in
seconds for encryption, on each file size.

48

Table 7.2: Hybrid Execution Times

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 0.0060 0.0070 0.0228 0.0218
51808 0.0090 0.0100 0.0260 0.0237

102677 0.0120 0.0160 0.0311 0.0267
274106 0.0240 0.0320 0.0490 0.0369
475136 0.0370 0.0520 0.0699 0.0485

1080054 0.0781 0.1120 0.1323 0.0840
5030281 0.3461 0.5058 0.5408 0.3158

20948069 1.4271 2.1747 2.1877 1.2451

7.2.2 Ciphertext Expansion Results

Table 7.3 shows the ciphertext expansion results for the symmetric schemes,
the table shows how much extra data (in bytes) has been added to each file.

Table 7.3: Symmetric Ciphertext Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 19360 19360 49 83
51808 21746 21746 49 83

102677 25801 25801 54 86
274106 39154 39154 49 81
475136 54922 54922 56 88

1080054 102192 102192 64 96
5030281 410783 410783 62 94

20948069 1654261 1654261 48 80

The amount of data added for the chaffing and winnowing schemes
increases with the file size, this is as expected and was discussed in the
literature review. The GPG schemes add a fixed amount of data, probably
information such as how the file was encrypted and the size of the original
file. The GPG results vary very slightly for each file size, probably because
the files are different multiples of the block sizes being used and so different
amounts of padding are added.

Table 7.4 shows the ciphertext expansion results for the hybrid schemes,
the table shows how much extra data (in bytes) has been added to each file.
The expansion for all of the schemes in Table 7.4 is a fixed amount. In the

49

Table 7.4: Hybrid Ciphertext Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 17252 17252 341 333
51808 17188 17188 341 333

102677 17263 17263 344 336
274106 17226 17226 331 339
475136 17284 17284 338 346

1080054 17294 17294 346 354
5030281 17275 17275 344 352

20948069 17183 17183 330 338

table it is clear that for each file size the amount varies very slightly, this is
due to the amount of padding added. The padding changes depending on
how close the file size is to a multiple of the block size.

7.3 Analysis Of Results

7.3.1 Execution Times

Here we use statistical methods to analyse the results. To analyse the exe-
cution times of the schemes we performed Analysis Of Variance (ANOVA)
on the means of the symmetric schemes and of the hybrid schemes. This
tells us if the results are significantly different or not. The ANOVA was not
performed on the ciphertext expansion because it is clear to see the results
in these tests and they are fixed values, they are not mean results.

Hypothesis

Here we define the hypothesis for the experiments, it is assumed that the
data follows a normal distribution. We define a null hypothesis H0 and an
alternative hypothesis H1 as follows:

H0 : There exists µi 6= µj (i 6= j)

50

H1 : µ1 = µ2 = . . . = µn

Where µi is the mean execution time of scheme i. Here the null hypothesis
says that the means of at least two schemes are different and the alternative
hypothesis says that the means are the same.

Analysis Of Variance

The analysis of variance was performed on the means of the execution times,
using tools provided in Microsoft Excel. The analysis performed is called a
two-factor full factorial design without replications. This means that there
are two factors we are varying - the scheme and the size of file being en-
crypted, with each factor having multiple levels - 4 different schemes and 8
different file sizes. The ANOVAs were calculated to a 5% significance level.
The ANOVA for the symmetric schemes is shown in Table 7.5.

Table 7.5: ANOVA For Symmetric Schemes

Component Sum Of
Squares

Degrees Of
Freedom

Mean Square F-Computed F-Table

File Size 13.7712 7 1.9673 39.5047 2.4876
Scheme 0.2681 3 0.0894 1.7947 3.0725
Errors 1.0458 21 0.0498

The F-Computed value is the value computed for our data and the F-
Table is the value from the F-Table of F[0.95,7,21] for the file size and F[0.95,3,21]

for the scheme. If the computed F value is less than the value from the table
then there is not enough evidence to suggest the results are different. Table
7.5 shows that the computed F value for the scheme (1.7947) is less than the
table value (3.0725), so there is enough evidence at this level to reject the
null hypothesis and accept the alternative hypothesis.

Table 7.6: ANOVA For Hybrid Schemes

Component Sum Of
Squares

Degrees Of
Freedom

Mean Square F-Computed F-Table

File Size 10.2150 7 1.4593 49.8461 2.4876
Scheme 0.1576 3 0.0525 1.7944 3.0725
Errors 0.6148 21 0.0293

51

For the Hybrid schemes we get the same result, shown in Table 7.6.
The computed F value (1.7944) is less than the F value from the table
(3.0725), so we have enough evidence to reject the null hypothesis.

Graphical Analysis

We have determined that there is not enough evidence to show that the
execution times are significantly different but now we will analyse the results
in graphical form to spot any possible trends in the results. The execution
time graphs are specifically scaled to make the results more distinguishable
from each other, when shown on an equally scaled graph the differences
would not be noticeable. The file sizes on the execution time graphs are
shown in mega-bytes.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

File Size (Mb)

CW PT
CW OAEP

GPG 3DES
GPG AES

Figure 7.1: Symmetric Execution Times (Small Files)

Figures 7.1 and 7.2 show the execution times of the symmetric schemes.
Figure 7.1 shows the smaller files in greater detail and Figure 7.2 shows the
larger files as well. The lines between the points are an estimation of how the
schemes would perform on the intermediate file sizes. Figure 7.1 indicates
that the symmetric chaffing and winnowing schemes are marginally quicker

52

for small files, than the GPG schemes. As the file size gets larger, the times
cross over and the GPG schemes seem to become faster. Figure 7.2 indicates
that as the file sizes get even larger, AES will be the fastest and the OAEP
chaffing and winnowing scheme will be the slowest. The Package Transform
chaffing and winnowing scheme and the Triple-DES seem to be very similar
and the graph indicates that they will continue to perform at similar speeds
as the file size increases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

File Size (Mb)

CW PT
CW OAEP

GPG 3DES
GPG AES

Figure 7.2: Symmetric Execution Times (Large Files)

Figures 7.3 and 7.4 show the execution times of the hybrid schemes.
Figure 7.3 shows the smaller files in greater detail and Figure 7.4 shows the
larger files as well. Again, the lines between the points are an estimation of
how the schemes would perform on intermediate file sizes. Figure 7.3 shows
that for files up to around 400Kb, the hybrid chaffing and winnowing schemes
are faster than the hybrid GPG schemes. After this point the results become
very similar. Figure 7.4 shows that the Triple-DES and OAEP chaffing and
winnowing schemes are almost identical for the file sizes we tested. It also
shows that the chaffing and winnowing Package Transform scheme is very
similar to AES and that all of these schemes generally have very similar
execution speeds.

53

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

File Size (Mb)

CW PT
CW OAEP

GPG 3DES
GPG AES

Figure 7.3: Hybrid Execution Times (Small Files)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

File Size (Mb)

CW PT
CW OAEP

GPG 3DES
GPG AES

Figure 7.4: Hybrid Execution Times (Large Files)

54

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

E
nc

ry
pt

ed
 F

ile
 S

iz
e

(K
b)

Original File Size (Kb)

Symmetric CW
Symmetric 3DES

Symmetric AES

Figure 7.5: Symmetric Data Expansion

Figure 7.5 shows the encrypted file size against the original file size
for the symmetric schemes, the CW schemes are shown as one because their
results were exactly the same. Only one of the GPG schemes is visible even
though they are both plotted, this is because they are very similar. The
lines between points are an estimate of how much data would be added for
intermediate file sizes. We can see from this graph that as the size of the file
being encrypted increases, more data is added by the chaffing and winnowing
schemes than the GPG schemes and this will continue to happen as the file
size grows.

Figures 7.6 and 7.7 show the encrypted file size against the original
file size for the hybrid schemes, again the CW schemes are shown as one
because their results were exactly the same. Figure 7.6 shows the graph at
a higher scale, to be able to see the difference between the schemes, which
even at high scale appears to be very small. Both the hybrid GPG schemes
are plotted but only one can be seen because the results were very similar.
Figure 7.7 shows the results at normal scale, here a difference cannot be seen
in the results.

55

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

E
nc

ry
pt

ed
 F

ile
 S

iz
e

(K
b)

Original File Size (Kb)

Hybrid CW
Hybrid 3DES

Hybrid AES

Figure 7.6: Hybrid Data Expansion (Large Scale)

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

E
nc

ry
pt

ed
 F

ile
 S

iz
e

(K
b)

Original File Size (Kb)

Hybrid CW
Hybrid 3DES

Hybrid AES

Figure 7.7: Hybird Data Expansion (Normal Scale)

56

7.4 Experimental Conclusions

We have analysed the data collected from the experiments performed. As we
thought in Section 4.5.3, the execution times of the symmetric and hybrid
chaffing and winnowing schemes are comparable to traditional encryption
methods, from the Analysis Of Variance. The graphical analysis indicates
that some further work needs to be done on our schemes to be as fast as AES
for large files. Although for small files, the chaffing and winnowing schemes
seem to be faster. Files of around this size (> 400Kb) are a typical size of
files that would be “encrypted” during normal use of an encryption applica-
tion. The graphical analysis also indicates that the CW OAEP schemes are
slightly slower than the CW Package Transform schemes, this must be down
to the speed of the All-Or-Nothing Transformations because the chaffing and
winnowing algorithms using OAEP and the Package Transform are almost
identical. This could be down to the speed of the MD5 implementation,
which is used extensively by OAEP and is something which could be im-
proved upon.

The data expansion results show that the symmetric chaffing and win-
nowing schemes increase the expansion as the input file gets larger, whereas
the symmetric GPG schemes add a negligible amount of data. This was ex-
pected and was discussed earlier. The amount of data added by the hybrid
chaffing and winnowing schemes is higher than the hybrid GPG schemes but
it is still only a fixed amount (around 17Kb compared to around 0.3Kb) and
we can see from the graphs that this difference is very small. Having a fixed
amount is a substantial increase on having a variable amount and as the
input file gets larger, the scheme becomes much more efficient.

57

Chapter 8

Conclusion

8.1 Project Conclusion

During this project we implemented two different types of chaffing and win-
nowing scheme. One type of scheme had been proposed previously and one
was created during the project. We have shown that these schemes are a
real alternative to using traditional encryption techniques, although some are
more suitable than others. We used the Package Transform all-or-nothing
transformation, even though there were some security concerns, which were
discussed in the literature review, and Optimal Asymmetric Encryption
Padding as an AONT, which is provably secure. The Package Transform
appeared to be the faster of the two AONTs in the experiments. However,
the results were shown not to be significantly different and for the fractional
time penalty it would be more suitable to use the OAEP schemes for the
security benefits.

We compared the implementations that were produced in the project
to traditional encryption methods, with good results. From the statistical
analysis done in Chapter 7, we showed that our schemes had similar execu-
tion speeds to the widely used encryption algorithms Triple-DES and AES,
implemented in GNU-Privacy Guard. From the analysis of cipher-text ex-
pansion, we showed that our hybrid schemes produce a fixed overhead but

58

that the symmetric schemes create more overhead as the file size increases.
However although the symmetric schemes do become more efficient as the
input file size grows, the hybrid schemes become much more efficient. The
hybrid method therefore would be very practical for real use, as it runs at a
very similar speed to traditional techniques and has a fixed data-expansion
overhead. The symmetric schemes would not be so practical in situations
where large files are being used and any significant increase in file size is not
acceptable.

The new hybrid chaffing and winnowing scheme we have introduced is
important for the concept of chaffing and winnowing because most encryp-
tion techniques used today are hybrid methods, providing the speed benefits
of symmetric encryption with the key management properties of public-key
cryptography. In creating the new scheme, not only did we incorporate hy-
brid methods but we reduced the amount of work that needed to be done
by the algorithm and removed the variable cipher-text expansion overhead.
However, whether it will be considered by all to be a true “chaffing and win-
nowing” method remains to be seen. Although the Message Authentication
Codes were removed and some encryption is done in the new scheme, the
packets are still authenticated by their serial number. Chaff is still inter-
spaced between the valid packets and it is authentication information that
is encrypted, which would have been done if we had used the “Designated
Verifier Signatures” [Jakobsson et al., 1996], which Rivest suggested could
replace the MACs. An alternative hybrid scheme could take a hash of each
of the chaff packets, combine these and then public-key encrypt them. This
would be very similar to how digital signatures work and may be viewed as
a scheme that only uses authentication techniques.

The schemes we produced worked as we required them to do in Chapter
3. This is a good achievement, especially because there were cross-platform
complexities involved. We benefited from the modular design when imple-
menting the chaffing and winnowing schemes because the AONTs were very
easy to change. We tested the implementations rigorously and as a result
found some small bugs, which could have been overlooked with minimal
testing.

The question has to be asked, why would someone decide to use

59

chaffing and winnowing when there are already provably secure encryption
techniques that are widely used. Unless the methods could stand up to laws
regarding encryption, then there would not be much incentive to use them.
However we have shown that if there was a need to use them, they would
be a good alternative. We have at least shown that chaffing and winnow-
ing is technically a real alternative to traditional encryption techniques. If
chaffing and winnowing was not regarded by authorities as “encryption” and
if a new law was proposed that vastly restricted traditional techniques, then
an alternative would be available.

8.2 Critical Evaluation

This project was successful in what it set out to achieve, it investigated the
new concept of chaffing and winnowing, implemented it and created a new
scheme improving on the initial proposals. The knowledge gained from the
research done into the initial proposals and into current encryption tech-
nologies allowed us to produce a new scheme. However, the new scheme was
created by someone that is not an expert cryptographer and therefore cannot
be proven to be secure here. The choice of using C as an implementation
language was a good one, it proved to be fast, the code written was portable
and the tools needed for the project GPG and GNU Multi-Precision library,
were implemented in C. The way in which the schemes were designed was
good too, the modularity made implementation easier and would make it
easy to make changes in the future, for instance using a different AONT.

We could have compared the data expansion of the schemes when the
original file had been compressed before “encryption”, this is what GPG
does by default but was turned off for the experiments. However, the results
for how much extra data was added to the file would have been the same, at
least for the GPG schemes and the hybrid chaffing and winnowing scheme,
because they add a fixed overhead regardless of the original file size. The
symmetric chaffing and winnowing schemes would have performed better,
they would still add the same proportion of extra data but because the
original file is smaller, there would be less data added.

60

Experiments were not carried out that measured the decryption speed
of the schemes. We would expect the execution times to be very similar to
the times we found, as the “decryption” process for all the schemes is very
similar to the “encryption” process. However we would need to test this to be
sure. It also may have been an advantage to test different implementations of
hash functions for speed, before implementing OAEP, because in it the hash
function is called once for every 16 bytes of data in the file. This may also
have slightly speeded up the symmetric chaffing and winnowing schemes.

8.3 Future Work

Future work that could be performed in chaffing and winnowing:

Further Optimisation - The code we produced could be optimised
further, to make it perform even better. Lower level code could be written
for some components of the schemes and a better performing hash function
could be used in OAEP to improve its speed.

Compression - The original file could be compressed before it is “en-
crypted”. This is what GNU-Privacy Guard does and it has many benefits.
The file is compressed so it is much smaller than the original file, because
the file is smaller, it can be encrypted much faster and also compressed files
generally contain less redundant data which makes breaking a scheme more
difficult [Schneier, 1993].

Complete Application - The implementations produced here are
far from a completely usable and practical application. Cryptographic ap-
plications usually provide features such as: a user interface - making it easy
for anyone to use, key-management - a key database listing recipients public
keys or connection to a key server to retrieve public keys and the ability
to sign messages. Cryptographic applications are also generally built on a
standard such as OpenPGP or PCKS, so that keys are stored in a speci-
fied format and the application can tell which algorithm a file was encrypted
with. This means that a file encrypted with one application can be decrypted
with another application that uses the same standard.

61

New Schemes - There is scope in this area to devise new and more
efficient chaffing and winnowing schemes, incorporating more ideas from
commonly used confidentiality techniques. Also different All-Or-Nothing
Transforms could be used and new ones developed.

8.4 Personal Remarks

This project was very interesting and a great deal was learnt throughout it. A
lot was learnt about chaffing and winnowing, why it was proposed and about
cryptography in general. The author also learnt about how cryptography is
used in practice. The author’s programming skills were improved, including
knowledge about cross-platform development and using external libraries for
extra functionality.

62

Bibliography

Ross Anderson and Eli Biham. Two practical and provably secure block
ciphers: BEAR and LION. In IWFSE: International Workshop on Fast
Software Encryption, LNCS, 1996.

M. Bellare and A. Boldyreva. The Security of Chaffing and Winnowing.
In T. Okamodo, editor, Lecture Notes In Computer Science, Advances In
Cryptography - ASIACRYPT ’00, volume 1976. Springer-Verlag, 2000.

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption - How to
Encrypt with RSA. In A. De Santis, editor, Lecture Notes In Com-
puter Science, Advances In Cryptography - EUROCRYPT ’94, volume
950. Springer-Verlag, 1994.

J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication. In Lecture Notes in Computer
Science, volume 1666, pages 216–233, 1999.

Victor Boyko. On the Security Properties of OAEP as an All-or-Nothing
Transform. In Michael Wiener, editor, Lecture Notes In Computer Science,
Advances In Cryptography - CRYPTO ’99, volume 1666. Springer-Verlag,
1999.

Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
Encryption. In Burton S. Kaliski Jr., editor, Lecture Notes In Com-
puter Science, Advances In Cryptography - CRYPTO ’97, volume 1294.
Springer-Verlag, 1997.

Richard Clayton and George Danezis. Chaffinch: Confidentiality in the Face
of Legal Threats. In IH ’02: Revised Papers from the 5th International
Workshop on Information Hiding, pages 70–86. Springer-Verlag, 2003.

63

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

FIPS. Advanced Encryption Standard (AES). National Institute for
Standards and Technology, 2001a. URL http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

FIPS. Data Encryption Standard. National Institute for Standards and
Technology, 2001b. URL http://csrc.nist.gov/publications/fips/

fips46-3/fips46-3.pdf.

FIPS. Computer Data Authentication. National Institute for Standards and
Technology, 1985.

Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proceedings of CRYPTO 84 on Advances in
cryptology, pages 10–18, New York, NY, USA, 1985. Springer-Verlag New
York, Inc. ISBN 0-387-15658-5.

H. Finney J. Callas, L Donnerhacke and R. Thayer. OpenPGP Message For-
mat, 1998. URL http://www.ietf.org/rfc/rfc2440.txt. RFC: 2440.

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. Lecture Notes in Computer Science, 1070:
143–154, 1996.

H. Krawczyk, M. Bellare, and R. Canetti. Keying Hash Functions for Mes-
sage Authentication. In N. Koblitz, editor, Lecture Notes In Computer Sci-
ence, Advances In Cryptography - CRYPTO ’96, volume 1109. Springer-
Verlag, 1996.

H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication, 1997. RFC: 2104.

John McHugh. Chaffing at the bit: Thoughts on a note by ronald rivest. In
IH ’99: Proceedings of the Third International Workshop on Information
Hiding, pages 395–404, London, UK, 2000. Springer-Verlag. ISBN 3-540-
67182-X.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

64

Ronald L. Rivest. The MD5 message digest algorithm, 1992. URL http:

//theory.lcs.mit.edu/∼rivest/Rivest-MD5.txt. RFC: 1321.

Ronald L. Rivest. The RC5 encryption algorithm, from dr. dobb’s jour-
nal, january, 1995. In William Stallings, Practical Cryptography for
Data Internetworks, IEEE Computer Society Press, 1996, 1996. URL
http://theory.lcs.mit.edu/∼rivest/Rivest-rc5.pdf.

Ronald L. Rivest. All-or-Nothing Encryption and The Package Trans-
form. In Proceedings of the 1997 Fast Software Encryption Conference,
Springer Lecture Notes in Computer Science, volume 1267, pages 210–218.
Springer-Verlag, 1997.

Ronald L. Rivest. Chaffing and Winnowing: Confidentiality without En-
cryption. CryptoBytes (RSA Laboratories), 4(1):12–17, 1998a. URL
http://theory.lcs.mit.edu/∼rivest/chaffing.txt.

Ronald L. Rivest. The Case Against Regulating Encryption Technology.
Scientific American, 279(4):116, 1998b. URL http://theory.lcs.mit.

edu/∼rivest/sciam98.txt.

RSA Labs. Crypto FAQ. Web Reference, 2004. URL http://www.

rsasecurity.com/rsalabs/node.asp?id=2218. 3.1.5 How large a key
should be used in the RSA cryptosystem?

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1993. ISBN
0471597562.

SHA. Secure Hash Standard, 1999. FIPS 180-1, National Institute of Stan-
dards of Technology, US Department of Commerce.

65

Appendix A

Statistical Results

Here we detail the full statistical results, a spreadsheet will the full execution
time results in, can be found on the provided CD, named Analysis.xls.

A.1 Analysis Of Variance

In this section we give the full analysis of variance results.

A.1.1 ANOVA Symmetric Execution Time Results

Here is the Analysis of Variance the execution times of the symmetric schemes.
Table A.1 shows the results and Table A.2 shows the ANOVA table com-
puted from the results.

A.1.2 ANOVA Hybrid Execution Time Results

Here is the Analysis of Variance the execution times of the symmetric schemes.
Table A.3 shows the results and Table A.4 shows the ANOVA table com-
puted from the results.

66

Table A.1: Symmetric Execution Time Analysis

File Size
(bytes)

CW PT CW
OAEP

GPG
Triple-DES

GPG
AES

Row
Sum

Row
Mean

20384 0.0041 0.0050 0.0110 0.0080 0.0281 0.0070
51808 0.0080 0.0099 0.0140 0.0100 0.0419 0.0105

102677 0.0130 0.0170 0.0189 0.0130 0.0619 0.0155
274106 0.0300 0.0390 0.0350 0.0235 0.1275 0.0319
475136 0.0502 0.0658 0.0536 0.0350 0.2047 0.0512

1080054 0.1117 0.1469 0.1100 0.0700 0.4387 0.1097
5030281 0.5132 0.6743 0.4812 0.3016 1.9703 0.4926

20948069 2.1208 2.7995 1.9765 1.2319 8.1287 2.0322
Column Sum 2.8510 3.7575 2.7003 1.6930

Column Mean 0.3564 0.4697 0.3375 0.2116

Table A.2: ANOVA For Symmetric Schemes

Component Sum Of
Squares

Degrees Of
Freedom

Mean Square F-Computed F-Table

File Size 13.7712 7 1.9673 39.5047 2.4876
Scheme 0.2681 3 0.0894 1.7947 3.0725
Errors 1.0458 21 0.0498

Table A.3: Hybrid Execution Time Analysis

File Size
(bytes)

CW PT CW
OAEP

GPG
Triple-DES

GPG
AES

Row
Sum

Row
Mean

20384 0.0060 0.0070 0.0228 0.0218 0.0576 0.0144
51808 0.0090 0.0100 0.0260 0.0237 0.0687 0.0172

102677 0.0120 0.0160 0.0311 0.0267 0.0858 0.0214
274106 0.0240 0.0320 0.0490 0.0369 0.1419 0.0355
475136 0.0370 0.0520 0.0699 0.0485 0.2074 0.0518

1080054 0.0781 0.1120 0.1323 0.0840 0.4063 0.1016
5030281 0.3461 0.5058 0.5408 0.3158 1.7085 0.4271

20948069 1.4271 2.1747 2.1877 1.2451 7.0345 1.7586
Column Sum 1.9392 2.9095 3.0595 1.8025

Column Mean 0.2424 0.3637 0.3824 0.2253

Table A.4: ANOVA For Hybrid Schemes

Component Sum Of
Squares

Degrees Of
Freedom

Mean Square F-Computed F-Table

File Size 10.2150 7 1.4593 49.8461 2.4876
Scheme 0.1576 3 0.0525 1.7944 3.0725
Errors 0.6148 21 0.0293

67

A.2 Data Expansion

Here we give the full data expansion results for the schemes.

A.2.1 Symmetric Schemes

Table A.5 shows how much extra data was added to each file after “en-
cryption” by the symmetric schemes. Table A.6 shows the file size after
“encryption”.

Table A.5: Symmetric Cipher-text Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 19360 19360 49 83
51808 21746 21746 49 83

102677 25801 25801 54 86
274106 39154 39154 49 81
475136 54922 54922 56 88

1080054 102192 102192 64 96
5030281 410783 410783 62 94

20948069 1654261 1654261 48 80

Table A.6: Symmetric Cipher-text Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 39744 39744 20433 20467
51808 73554 73554 51857 51891

102677 128478 128478 102731 102763
274106 313260 313260 274155 274187
475136 530058 530058 475192 475224

1080054 1182246 1182246 1080118 1080150
5030281 5441064 5441064 5030343 5030375

20948069 22602330 22602330 20948117 20948149

68

A.2.2 Hybrid Schemes

Table A.7 shows how much extra data was added to each file after “encryp-
tion” by the hybrid schemes. Table A.8 shows the file size after “encryption”.

Table A.7: Hybrid Cipher-text Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 17252 17252 341 333
51808 17188 17188 341 333

102677 17263 17263 344 336
274106 17226 17226 331 339
475136 17284 17284 338 346

1080054 17294 17294 346 354
5030281 17275 17275 344 352

20948069 17183 17183 330 338

Table A.8: Hybrid Cipher-text Expansion Results

File Size
(bytes)

CW Package
Transform

CW OAEP GPG Triple-DES GPG AES

20384 37636 37636 20717 20725
51808 68996 68996 52141 52149

102677 119940 119940 103013 103021
274106 291332 291332 274437 274445
475136 492420 492420 475474 475482

1080054 1097348 1097348 1080400 1080408
5030281 5047556 5047556 5030625 5030633

20948069 20965252 20965252 20948399 20948407

69

Appendix B

Test Scripts

Here are listings of the shell scripts that were used to test the implementa-
tions.

B.1 Correctness Testing

1 #!/ bin / sh

2

3 # co r r t e s t . sh

4 #

5 #

6 # Created by John Larkin on 21/04/2006.

7 #se t −x

8

9 EXE=

10 TYPE=‘uname −m‘

11 i f [”$TYPE” == ”Power Macintosh”]

12 then

13 ROOT=$HOME/ Pro j e c t / Bui lds /Production

14 e l i f [”$TYPE” == ” i686 ”]

15 then

16 ROOT=/c/ Pro j e c t /Production

17 EXE=. exe

18 e l i f [”$TYPE” == ”sun4u”]

19 then

20 ROOT=$HOME/ Pro j e c t /Production

70

21 else

22 echo ”System not supported ”

23 exit 1

24 f i

25

26 FILE=f i l e . txt

27 OUTFILE=output . txt

28 REC FILE=f i l e 2 . txt

29 TEST FILE1=f i l e t e s t 1 . txt

30 TEST FILE2=f i l e t e s t 1 . txt

31 TEST FILE3=f i l e t e s t 1 . txt

32 TEST FILE4=f i l e t e s t 1 . txt

33

34 TESTING=$ROOT/Test ing

35 TESTS=200

36 KEY CHANGE=20

37

38 COUNTER=0

39 while [$COUNTER − l t $TESTS]

40 do

41 command $ROOT/AONT PT/cw aont pt$EXE −c $FILE \
42 $OUTFILE t e s t k e y

43 i f [$? −ne 0] ; then echo ”CW AONT PT Chaf f ing f a i l e d ” ; exit 1 ; f i

44 command $ROOT/AONT PT/cw aont pt$EXE −w $OUTFILE \
45 $REC FILE t e s t k ey

46 i f [$? −ne 0] ; then echo ”CW AONT PT Winnowing f a i l e d ” ; exit 1 ; f i

47

48 d i f f $REC FILE $TEST FILE1

49 i f [$? −ne 0]

50 then

51 echo ”CW AONT PT F i l e s don ’ t match , i t e r a t i o n $COUNTER”

52 exit 1

53 f i

54

55 COUNTER=‘expr $COUNTER + 1 ‘

56 done

57

58 echo ”CW AONT PT $COUNTER te s t s , 0 f a i l u r e s ”

59

60 COUNTER=0

61 while [$COUNTER − l t $TESTS]

62 do

63 command $ROOT/AONT OAEP/cw aont oaep$EXE −c $FILE \
64 $OUTFILE t e s t k e y

65 i f [$? −ne 0] ; then echo ”CW AONT OAEP Chaf f ing f a i l e d ” ; exit 1 ; f i

66 command $ROOT/AONT OAEP/cw aont oaep$EXE −w $OUTFILE \

71

67 $REC FILE t e s t k ey

68 i f [$? −ne 0] ; then echo ”CW AONT OAEP Winnowing f a i l e d ” ; exit 1 ; f i

69

70 d i f f $REC FILE $TEST FILE2

71 i f [$? −ne 0]

72 then

73 echo ”CW AONT OAEP F i l e s don ’ t match , i t e r a t i o n $COUNTER”

74 exit 1

75 f i

76

77 COUNTER=‘expr $COUNTER + 1 ‘

78 done

79

80 echo ”CW AONT OAEP $COUNTER te s t s , 0 f a i l u r e s ”

81

82 COUNTER=0

83 while [$COUNTER − l t $TESTS]

84 do

85 i f [‘expr $COUNTER % $KEY CHANGE‘ −eq 0]

86 then

87 command $ROOT/PubKey PT/cw pk pt$EXE −g

88 i f [$? −ne 0] ; then echo ”CW PK PT key gene ra t i on f a i l e d ” ; exit 1 ; f i

89 f i

90

91 command $ROOT/PubKey PT/cw pk pt$EXE −c $FILE $OUTFILE pub . key

92 i f [$? −ne 0] ; then echo ”CW PK PT Chaf f ing f a i l e d ” ; exit 1 ; f i

93 command $ROOT/PubKey PT/cw pk pt$EXE −w $OUTFILE $REC FILE prv . key

94 i f [$? −ne 0] ; then echo ”CW PK PT Winnowing f a i l e d ” ; exit 1 ; f i

95

96 d i f f $REC FILE $TEST FILE3

97 i f [$? −ne 0]

98 then

99 echo ”CW PK PT F i l e s don ’ t match , i t e r a t i o n $COUNTER”

100 exit 1

101 f i

102

103 COUNTER=‘expr $COUNTER + 1 ‘

104 done

105

106 echo ”CW PK PT $COUNTER te s t s , 0 f a i l u r e s ”

107

108 COUNTER=0

109 while [$COUNTER − l t $TESTS]

110 do

111 i f [‘expr $COUNTER % $KEY CHANGE‘ −eq 0]

112 then

72

113 command $ROOT/PubKey OAEP/cw pk oaep$EXE −g

114 i f [$? −ne 0] ; then echo ”CW PK OAEP key gene ra t i on f a i l e d ” ; exit 1 ; f i

115 f i

116

117 command $ROOT/PubKey OAEP/cw pk oaep$EXE −c $FILE $OUTFILE pub . key

118 i f [$? −ne 0] ; then echo ”CW PK OAEP Chaf f ing f a i l e d ” ; exit 1 ; f i

119 command $ROOT/PubKey OAEP/cw pk oaep$EXE −w $OUTFILE $REC FILE prv . key

120 i f [$? −ne 0] ; then echo ”CW PK OAEP Winnowing f a i l e d ” ; exit 1 ; f i

121

122 d i f f $REC FILE $TEST FILE4

123 i f [$? −ne 0]

124 then

125 echo ”CW PK OAEP F i l e s don ’ t match , i t e r a t i o n $COUNTER”

126 exit 1

127 f i

128

129 COUNTER=‘expr $COUNTER + 1 ‘

130 done

131

132 echo ”CW PK OAEP $COUNTER te s t s , 0 f a i l u r e s ”

73

B.2 Speed Testing

1 #!/ bin / sh

2

3 # sp e e d t e s t . sh

4 #

5 #

6 # Created by John Larkin on 21/04/2006.

7 #

8 #se t −x

9

10 TYPE=‘uname −m‘

11 i f [”$TYPE” == ”Power Macintosh”]

12 then

13 ROOT=$HOME/ Pro j e c t / Bui lds /Production

14 e l i f [”$TYPE” == ” i686 ”]

15 then

16 ROOT=/c/ Pro j e c t /Production

17 e l i f [”$TYPE” == ”sun4u”]

18 then

19 ROOT=$HOME/ Pro j e c t /Production

20 else

21 echo ”System not supported ”

22 exit 1

23 f i

24

25 i f [$# −ne 3]

26 then

27 echo ”Usage SCHEME [−e |−d] f i l e ”

28 exit 1

29 f i

30

31 RECIP=cs2jmal@bath . ac . uk

32 TMP=/tmp/ ‘ basename $0 ‘ $$. tmp

33 PATH=$PATH:/ usr / local /bin

34 FILE=$3

35 TESTING=$ROOT/Test ing

36 KEYS=$TESTING/Keys

37 TESTS=75

38

39 i f [”$1” == ”CW AONT PT”]

40 then

41 i f [”$2” == ”−e”]

42 then

43 OUTFILE=$3 . cw

44 SCHEME=”$ROOT/AONT PT/ cw aont pt −c $FILE $OUTFILE t e s t k ey ”

74

45 e l i f [”$2” == ”−d”]

46 then

47 OUTFILE NAME=‘basename −s . cw $3 | \
48 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

49 OUTFILE DIR=‘dirname $3 ‘

50 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

51 SCHEME=”$ROOT/AONT PT/ cw aont pt −w $FILE $OUTFILE t e s t k ey ”

52 else

53 echo ” Inva l i d opt ion $2”

54 exit 1

55 f i

56 e l i f [”$1” == ”CW AONT OAEP”]

57 then

58 i f [”$2” == ”−e”]

59 then

60 OUTFILE=$3 . cw

61 SCHEME=”$ROOT/AONT OAEP/cw aont oaep −c $FILE $OUTFILE t e s t k ey ”

62 e l i f [”$2” == ”−d”]

63 then

64 OUTFILE NAME=‘basename −s . cw $3 | \
65 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

66 OUTFILE DIR=‘dirname $3 ‘

67 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

68 SCHEME=”$ROOT/AONT OAEP/cw aont oaep −w $FILE $OUTFILE t e s t k ey ”

69 else

70 echo ” Inva l i d opt ion $2”

71 exit 1

72 f i

73 e l i f [”$1” == ”CW PK PT”]

74 then

75 i f [”$2” == ”−e”]

76 then

77 OUTFILE=$3 . cw

78 SCHEME=”$ROOT/Pubkey PT/cw pk pt −c $FILE $OUTFILE $KEYS/pub . key”

79 e l i f [”$2” == ”−d”]

80 then

81 OUTFILE NAME=‘basename −s . cw $3 |
82 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

83 OUTFILE DIR=‘dirname $3 ‘

84 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

85 SCHEME=”$ROOT/Pubkey PT/cw pk pt −w $FILE $OUTFILE $KEYS/prv . key”

86 else

87 echo ” Inva l i d opt ion $2”

88 exit 1

89 f i

90 e l i f [”$1” == ”CW PK OAEP”]

75

91 then

92 i f [”$2” == ”−e”]

93 then

94 OUTFILE=$3 . cw

95 SCHEME=”$ROOT/Pubkey OAEP/cw pk oaep −c $FILE $OUTFILE $KEYS/pub . key”

96 e l i f [”$2” == ”−d”]

97 then

98 OUTFILE NAME=‘basename −s . cw $3 | \
99 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

100 OUTFILE DIR=‘dirname $3 ‘

101 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

102 SCHEME=”$ROOT/Pubkey OAEP/cw pk oaep −w $FILE $OUTFILE $KEYS/prv . key”

103 else

104 echo ” Inva l i d opt ion $2”

105 exit 1

106 f i

107 e l i f [”$1” == ”GPG 3DES SYM”]

108 then

109 CAT=” cat $KEYS/pp . txt ”

110 i f [”$2” == ”−e”]

111 then

112 OUTFILE=$3 . gpg

113 SCHEME=”gpg −c −z 0 −−passphrase−fd 0 −−c ipher−a lgo 3DES −o $OUTFILE $FILE”

114 e l i f [”$2” == ”−d”]

115 then

116 OUTFILE NAME=‘basename −s . gpg $3 | \
117 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

118 OUTFILE DIR=‘dirname $3 ‘

119 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

120 SCHEME=”gpg −d −−passphrase−fd 0 −o $OUTFILE $FILE”

121 else

122 echo ” Inva l i d opt ion $2”

123 exit 1

124 f i

125 e l i f [”$1” == ”GPG AES SYM”]

126 then

127 CAT=” cat $KEYS/pp . txt ”

128 i f [”$2” == ”−e”]

129 then

130 OUTFILE=$3 . gpg

131 SCHEME=”gpg −c −z 0 −−passphrase−fd 0 −−c ipher−a lgo AES −o $OUTFILE $FILE”

132 e l i f [”$2” == ”−d”]

133 then

134 OUTFILE NAME=‘basename −s . gpg $3 | \
135 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

136 OUTFILE DIR=‘dirname $3 ‘

76

137 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

138 SCHEME=”gpg −d −−passphrase−fd 0 −o $OUTFILE $FILE”

139 else

140 echo ” Inva l i d opt ion $2”

141 exit 1

142 f i

143 e l i f [”$1” == ”GPG 3DES PK”]

144 then

145 CAT=” cat $KEYS/pp . txt ”

146 i f [”$2” == ”−e”]

147 then

148 OUTFILE=$3 . gpg

149 SCHEME=”gpg −e −z 0 −−passphrase−fd 0 −−c ipher−a lgo 3DES \
150 −−r e c i p i e n t $RECIP −o $OUTFILE $FILE ”

151 e l i f [”$2” == ”−d”]

152 then

153 OUTFILE NAME=‘basename −s . gpg $3 | \
154 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

155 OUTFILE DIR=‘dirname $3 ‘

156 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

157 SCHEME=”gpg −d −−passphrase−fd 0 −o $OUTFILE $FILE”

158 else

159 echo ” Inva l i d opt ion $2”

160 exit 1

161 f i

162 e l i f [”$1” == ”GPG AES PK”]

163 then

164 CAT=” cat $KEYS/pp . txt ”

165 i f [”$2” == ”−e”]

166 then

167 OUTFILE=$3 . gpg

168 SCHEME=”gpg −e −z 0 −−passphrase−fd 0 −−c ipher−a lgo AES \
169 −−r e c i p i e n t $RECIP −o $OUTFILE $FILE”

170 e l i f [”$2” == ”−d”]

171 then

172 OUTFILE NAME=‘basename −s . gpg $3 | \
173 awk ’ { s p l i t ($1 , a , ” . ”) ; p r i n t a [1] ” 2 . ”a [2] ; } ’ ‘

174 OUTFILE DIR=‘dirname $3 ‘

175 OUTFILE=$OUTFILE DIR/$OUTFILE NAME

176 SCHEME=”gpg −d −−passphrase−fd 0 −o $OUTFILE $FILE”

177 else

178 echo ” Inva l i d opt ion $2”

179 exit 1

180 f i

181 f i

182

77

183

184 COUNTER=0

185 while [$COUNTER − l t $TESTS]

186 do

187 i f [‘echo $1 | grep GPG | wc − l | awk ’{ pr in t $1 } ’ ‘ −gt 0]

188 then

189 rm −f $OUTFILE

190 (time $CAT | $SCHEME) 2>> $TMP

191 else

192 (time $SCHEME) 2>> $TMP

193 f i

194

195 COUNTER=‘expr $COUNTER + 1 ‘

196 done

197 #echo $SCHEME

198 #cat $TMP

199

200 echo ”$1 $2 Results , $TESTS execut i on s on $3”

201 cat $TMP | grep −v r e a l | grep −v sys | grep −v ˆ$ | awk ’{ pr in t $2 } ’ | cut −c3−7

202 rm −f $TMP

78

Appendix C

Source Code

Here we list the C source code that was produced in the project. We do not
list the implementations of MD5 and RC5 that we used but these can be
found on the supplied CD.

C.1 hmac.c

This is the source code for the HMAC that was produced, which was based
on a reference implementation.

1 /∗
2 ∗ hmac . c

3 ∗ Created by John Larkin .

4 ∗ Based on sample code presen ted in RFC 2104

5 ∗
6 ∗/
7

8 #include <s t d i o . h>

9 #include <s t d l i b . h>

10 #include <s t r i n g . h>

11 #include ”md5 . h”

12 #include ”hmac . h”

13

14 unsigned char k ipad [6 5] ;

15 unsigned char k opad [6 5] ;

79

16

17 /∗ i n i t i a l i s e hmac ∗/
18 void hmac in i t (unsigned char ∗key , int key l en) {
19

20 int i ;

21

22 i f (key l en > 64) {
23

24 MD5 CTX tctx ;

25

26 MD5Init(&tc tx) ;

27 MD5Update(&tctx , key , key l en) ;

28 MD5Final(&tc tx) ;

29

30 key = tctx . d i g e s t ;

31 key l en = 16 ;

32 }
33

34 memset (k ipad , 0 , s izeof (k ipad)) ;

35 memset (k opad , 0 , s izeof (k opad)) ;

36 memcpy(k ipad , key , key l en) ;

37 memcpy(k opad , key , key l en) ;

38

39 for (i =0; i <64; i++) {
40 k ipad [i] ˆ= 0x36 ;

41 k opad [i] ˆ= 0x5c ;

42 }
43

44 }
45

46 /∗ compute hmac ∗/
47 void hmac(unsigned char∗ text , int t ex t l en , unsigned char d i g e s t [DIGEST LENGTH])

48 {
49 MD5 CTX context ;

50 int i ;

51

52 MD5Init(&context) ;

53

54 MD5Update(&context , k ipad , 6 4) ;

55 MD5Update(&context , text , t e x t l e n) ;

56 MD5Final(&context) ;

57

58 MD5Init(&context) ;

59

60 MD5Update(&context , k opad , 6 4) ;

61 MD5Update(&context , context . d ige s t ,ORIG DIGEST LENGTH) ;

80

62 MD5Final(&context) ;

63

64 for (i =0; i<DIGEST LENGTH; i++)

65 d i g e s t [i] = context . d i g e s t [i] ;

66 }
67

68 /∗#de f i n e TEST∗/
69 #ifde f TEST

70 /∗ main method checks the t e s t v e c t o r s from RFC 2104 ∗/
71 int main (int argc , char ∗∗ argv)

72 {
73

74 unsigned char checksum [DIGEST LENGTH] , key1 [1 6] , ∗key2 , ∗data , data2 [5 0] ;

75 int i ;

76

77 memset (key1 , 0 x0b , 1 6) ;

78 memset (k ipad , 0 , s izeof (k ipad)) ;

79 memset (k opad , 0 , s izeof (k opad)) ;

80 memcpy(k ipad , key1 , 1 6) ;

81 memcpy(k opad , key1 , 1 6) ;

82

83 for (i =0; i <64; i++) {
84 k ipad [i] ˆ= 0x36 ;

85 k opad [i] ˆ= 0x5c ;

86 }
87

88 data = ”Hi There” ;

89 hmac(data , 8 , checksum) ;

90

91 p r i n t f (”Data : %s ” , data) ;

92 p r i n t f (”\ t \ t \ t \tKey : ”) ;

93 for (i = 0 ; i < 16 ; i++) {
94 p r i n t f (”%02x” , key1 [i]) ;

95 }
96 p r i n t f (”\ tD ige s t : ”) ;

97

98 for (i = 0 ; i < DIGEST LENGTH; i++) {
99 p r i n t f (”%02x” , (unsigned int) checksum [i]) ;

100 }
101 p r i n t f (”\n”) ;

102

103 key2 = ” Je f e ” ;

104 hmac in i t (key2 , s t r l e n (key2)) ;

105 data = ”what do ya want f o r nothing ?” ;

106 hmac(data , s t r l e n (data) , checksum) ;

107 p r i n t f (”Data : %s \tKey : %s \ t \ t \ t \ tD ige s t : ” , data , key2) ;

81

108

109 for (i = 0 ; i < DIGEST LENGTH; i++) {
110 p r i n t f (”%02x” , (unsigned int) checksum [i]) ;

111 }
112 p r i n t f (”\n”) ;

113

114 memset (key1 , 0 xaa , 1 6) ;

115 memset (data2 , 0 xdd , 5 0) ;

116

117 memset (k ipad , 0 , s izeof (k ipad)) ;

118 memset (k opad , 0 , s izeof (k opad)) ;

119 memcpy(k ipad , key1 , 1 6) ;

120 memcpy(k opad , key1 , 1 6) ;

121

122 for (i =0; i <64; i++) {
123 k ipad [i] ˆ= 0x36 ;

124 k opad [i] ˆ= 0x5c ;

125 }
126

127 hmac(data2 , 50 , checksum) ;

128

129 p r i n t f (”Data : ”) ;

130 for (i = 0 ; i < 5 ; i++) {
131 p r i n t f (”%02x” , data2 [i]) ;

132 }
133 p r i n t f (” . . . (5 0 bytes)\ t \tKey : ”) ;

134 for (i = 0 ; i < 16 ; i++) {
135 p r i n t f (”%02x” , key1 [i]) ;

136 }
137 p r i n t f (”\ tD ige s t : ”) ;

138 for (i = 0 ; i < DIGEST LENGTH; i++) {
139 p r i n t f (”%02x” , (unsigned int) checksum [i]) ;

140 }
141 p r i n t f (”\n”) ;

142

143 return 0 ;

144 }
145

146 #endif

82

C.2 cw lib.c

This is the source code for the Chaffing and Winnowing library that was
produced.

1 /∗
2 ∗ cw l i b . c

3 ∗
4 ∗ Created by John Larkin .

5 ∗ Provides common func t i on s

6 ∗ r e qu i r ed by c h a f f i n g and winnowing .

7 ∗
8 ∗/
9

10 #include <s t d l i b . h>

11 #include ” cw l i b . h”

12

13 /∗ i f Windows or Mac, don ’ t use arc4random () ∗/
14 #ifde f WIN32

15 #de f i n e arc4random () rand ()

16 #endif

17 #ifde f sun

18 #de f i n e arc4random () random ()

19 #endif

20

21 /∗ check i f machine i s b ig−endian ∗/
22 int i s b i g e nd i a n (void) {
23

24 long int i=0x12345678 ;

25 unsigned char∗ c p t r= (unsigned char∗) &i ;

26

27 i f (∗ c p t r == 0x12) {
28 return 0 ;

29 } else {
30 return 1 ;

31 }
32

33 }
34

35 /∗ genera te a random ” cha f f ” packe t ∗/
36 void g en e r a t e cha f f p a ck e t (unsigned char ∗ cha f f packe t , int s i z e) {
37

38 int i ;

39 for (i =0; i<s i z e ; i++) {
40 cha f f p a ck e t [i] = arc4random () % 256 ;

83

41 }
42

43 }
44

45 /∗ comparison func t i on used by q s o r t ∗/
46 int int comp (const void ∗a , const void ∗b) {
47

48 return ∗(int ∗) a − ∗(int ∗)b ;

49 }
50

51 /∗ c a l c u l a t e random sub s e t o f ind i ce s , f o r c h a f f packe t s to be p laced in

52 re turn l i s t o f i n d i c e s in ascending order , w i thout r e p l i c a t i o n s ∗/
53 void s e t c h a f f p o s i t i o n s (unsigned long int ∗ po s i t i on s ,

54 int cha f f b l o c k s , int b locks){
55

56 int i , j , t o t a l b l o c k s ;

57 unsigned long int n ;

58

59 t o t a l b l o c k s = blocks + cha f f b l o c k s ;

60

61 for (i =0; i<c h a f f b l o c k s ; i++) {
62 n = rand () % t o t a l b l o c k s ;

63 for (j =0; j<i ; j++) {
64 i f (p o s i t i o n s [j] == n) {
65 n = arc4random () % t o t a l b l o c k s ;

66 j=−1;

67 }
68 }
69 po s i t i o n s [i]=n ;

70 }
71 qso r t ((void ∗) po s i t i on s , c ha f f b l o c k s , s izeof (long int) , int comp) ;

72 }
73

74 /∗#de f i n e TEST∗/
75 #ifde f TEST

76 #include <s t d i o . h>

77 #include <time . h>

78 int main (void) {
79

80 unsigned char cha f f p a ck e t [1 2 8] ;

81 unsigned long int po s i t i o n s [1 2 8] ;

82 int i , l a s t , dup l i c a t e =0;

83

84 /∗ t e s t i f symbo l i c cons tan t s are de f ined ∗/
85 #i f d e f WIN32

86 p r i n t f (”WIN32 symbol ic constant de f ined \n”) ;

84

87 srand (time (NULL)) ;

88 #end i f

89 #i f d e f sun

90 p r i n t f (”sun symbol ic constant de f ined \n”) ;

91 srandom (time (NULL)) ;

92 #end i f

93

94 p r i n t f (”Machine i s %s \n” , i s b i g e nd i a n () ? ” L i t t l e Endian” : ”Big Endian”) ;

95

96 /∗ genera te some t e s t c h a f f packe t s ∗/
97 g en e r a t e cha f f p a ck e t (cha f f packe t , 1 2 8) ;

98 p r i n t f (”Chaff packet : ”) ;

99 for (i =0; i <128; i++)

100 p r i n t f (”%02x” , cha f f p a ck e t [i]) ;

101 p r i n t f (”\n”) ;

102

103 g en e r a t e cha f f p a ck e t (cha f f packe t , 1 2 8) ;

104 p r i n t f (”Chaff packet : ”) ;

105 for (i =0; i <128; i++)

106 p r i n t f (”%02x” , cha f f p a ck e t [i]) ;

107 p r i n t f (”\n”) ;

108

109 /∗ genera te some t e s t c h a f f p o s i t i o n s ∗/
110 s e t c h a f f p o s i t i o n s (po s i t i on s , 1 2 8 , 1 2 8) ;

111 p r i n t f (”Chaff packet p o s i t i o n s : ”) ;

112 for (i =0; i <128; i++)

113 p r i n t f (”%i ” , p o s i t i o n s [i]) ;

114 p r i n t f (”\n”) ;

115

116 /∗ check t he r e are no du p l i c a t e s in the c h a f f p o s i t i o n s ∗/
117 l a s t =−1;

118 for (i =0; i <128; i++){
119 i f (p o s i t i o n s [i] == l a s t) {
120 p r i n t f (” Index : %i , %i dup l i c a t e !\n”) ;

121 dup l i c a t e = 1 ;

122 }
123 l a s t = po s i t i o n s [i] ;

124 }
125 i f (dup l i c a t e == 0)

126 p r i n t f (”No dup l i c a t e s found in cha f f packet p o s i t i o n s \n”) ;

127

128 /∗ check SWAP macro works c o r r e c t l y ∗/
129 i=0x12345678 ;

130 p r i n t f (” i = %08lx \n” , i) ;

131 SWAP(i) ;

132 p r i n t f (” i = %08lx \n” , i) ;

85

133 SWAP(i) ;

134 p r i n t f (” i = %08lx \n” , i) ;

135

136 return 0 ;

137 }
138 #endif

86

C.3 aont.c

This is the source code for the Package Transform that was produced.

1

2 /∗
3 ∗ aont . c

4 ∗
5 ∗
6 ∗ Created by John Larkin .

7 ∗ Implementation o f Ronald Rives t ’ s Package Transform

8 ∗
9 ∗/

10

11 #include <s t d l i b . h>

12 #include <s t d i o . h>

13 #include <s t r i n g . h>

14 #include <time . h>

15 #include <math . h>

16 #include ”aont . h”

17 #include ”RC5REF. h”

18

19 #define KEY SIZE 16

20 #define BLOCK SIZE 8

21 #define TRANSFORM 1

22 #define INVERSE TRANSFORM 2

23 #define OUTPUT BLOCKS 128

24 #define OUTPUT BLOCK SIZE 128

25

26 #define t 26 /∗ s i z e o f key t a b l e S = 2∗(r+1) words ∗/
27

28 #ifde f WIN32

29 #de f i n e arc4random () rand ()

30 #endif

31 #ifde f sun

32 #de f i n e arc4random () random ()

33 #endif

34

35 /∗ randomly chosen pu b l i c key ∗/
36 unsigned char pub l i c key [KEY SIZE] = { ’ \x52 ’ , ’ \x69 ’ , ’ \xF1 ’ , ’ \x49 ’ ,

37 ’ \xD4 ’ , ’ \x1B ’ , ’ \xA0 ’ , ’ \x15 ’ ,

38 ’ \x24 ’ , ’ \x97 ’ , ’ \x57 ’ , ’ \x4D ’ ,

39 ’ \x7F ’ , ’ \x15 ’ , ’ \x31 ’ , ’ \x25 ’ } ;

40

41 WORD S pub [t] ; /∗ expanded key t a b l e f o r p u b l i c key ∗/

87

42 WORD S prv [t] ; /∗ expanded key t a b l e f o r p r i v a t e key ∗/
43 s i z e t l ength = BLOCK SIZE, s i z e = s izeof (char) ;

44

45 /∗ genera te a random key ∗/
46 void generate key (unsigned char key [KEY SIZE]) {
47

48 unsigned char c ;

49 int i ;

50 for (i =0; i<KEY SIZE ; i++) {
51 c = arc4random () % 256 ;

52 key [i] = c ;

53 }
54

55 }
56

57 void trans form (FILE ∗ in , FILE ∗out , unsigned char k [KEY SIZE] , int b locks) {
58

59 int i , j , counter = 0 , mode , BLOCK COUNT;

60 long int f i l e s i z e ;

61 unsigned char key [KEY SIZE] ;

62 unsigned char f i n a l b l o c k [KEY SIZE] ;

63 unsigned char i nput b lock [BLOCK SIZE] ;

64 unsigned char output b lock [BLOCK SIZE] ;

65 WORD pt [2] ={0 ,0} ;

66 WORD ct [2] ={0 ,0} ;

67

68 BLOCK COUNT = ((b locks ∗ OUTPUT BLOCK SIZE) / BLOCK SIZE) − 1 ;

69

70 /∗ ge t input f i l e s i z e ∗/
71 f s e e k (in , 0 ,SEEK END) ;

72 f i l e s i z e = f t e l l (in) ;

73 f s e e k (in , 0 ,SEEK SET) ;

74

75 /∗ i f a key has been passed , we are i n v e r t i n g a transform

76 o the rw i s e genera te one ∗/
77 i f (k == NULL) {
78 generate key (key) ;

79 mode = TRANSFORM;

80 } else {
81 memcpy(key , k ,KEY SIZE) ;

82 mode = INVERSE TRANSFORM;

83 }
84

85 /∗ se tup RC5 key t a b l e s ∗/
86 RC5 SETUP(key , S prv) ;

87 RC5 SETUP(publ i c key , S pub) ;

88

88

89 memcpy(f i n a l b l o c k , key ,KEY SIZE) ;

90

91 while (! f e o f (in) | | counter <= (BLOCK COUNT−2) | |
92 (counter > BLOCK COUNT && (counter % 16 != 14))) {
93

94 i f (mode == INVERSE TRANSFORM && (counter ∗BLOCK SIZE) >= (f i l e s i z e −KEY SIZE))

95 break ;

96

97 /∗ read next input b l o c k ∗/
98 memset (input b lock , 0 ,BLOCK SIZE) ;

99 f r ead (input b lock , s i z e , length , in) ;

100

101 pt [0] = 0 , pt [1] = 0 ;

102 pt [0] = counter ;

103

104 /∗ encrypt counter wi th p r i v a t e key ∗/
105 RC5 ENCRYPT(pt , ct , S prv) ;

106

107 pt [0] = 0 , pt [1] = 0 ;

108

109 /∗ XOR cipher t e x t wi th input b l o c k ∗/
110 for (i =0, j =24; i <4; i++) {
111 output b lock [i] = input b lock [i] ˆ ((c t [0] >> j) & 0xFF) ;

112

113 i f (mode == TRANSFORM) {
114 pt [0] |= ((output b lock [i] ˆ ((counter >> j) & 0xFF)) << j) ;

115 }
116 j = j −8;

117 }
118

119 for (i =4, j =24; i <8; i++) {
120 output b lock [i] = input b lock [i] ˆ ((c t [1] >> j) & 0xFF) ;

121

122 i f (mode == TRANSFORM) {
123 pt [1] |= (output b lock [i] << j) ;

124 }
125 j = j −8;

126 }
127

128 /∗ wr i t e output to f i l e ∗/
129 fw r i t e (output block , s i z e , length , out) ;

130

131 ct [0] = 0 , ct [1] = 0 ;

132

133 /∗ c r ea t e hash o f curren t b l o c k ∗/

89

134 i f (mode == TRANSFORM) {
135 RC5 ENCRYPT(pt , ct , S pub) ;

136

137 for (i =0, j =24; i <4; i++) {
138 f i n a l b l o c k [i] ˆ= (ct [0] >> j) ;

139 f i n a l b l o c k [i +8] ˆ= (ct [0] >> j) ;

140 j=j −8;

141 }
142

143 for (i =4, j =24; i <8; i++) {
144 f i n a l b l o c k [i] ˆ= (ct [1] >> j) ;

145 f i n a l b l o c k [i +8] ˆ= (ct [1] >> j) ;

146 j=j −8;

147 }
148 }
149

150 counter++;

151 }
152

153 /∗ i f we are transforming , wr i t e f i n a l b l o c k to output f i l e ∗/
154 i f (mode == TRANSFORM) {
155 fw r i t e (f i n a l b l o c k , s i z e ,KEY SIZE , out) ;

156 }
157

158 }
159

160 void i nv e r s e t r an s f o rm (FILE ∗ in , FILE ∗out) {
161

162 long int f i l e s i z e ;

163 long int counter =0;

164 int i , j , b l ocks ;

165 int key b locks = KEY SIZE / BLOCK SIZE ;

166 WORD pt [2] ={0 ,0} ;

167 WORD ct [2] ={0 ,0} ;

168 unsigned char key [KEY SIZE] ;

169 unsigned char f i n a l b l o c k [KEY SIZE] ;

170 unsigned char i nput b lock [BLOCK SIZE] ;

171 unsigned char hash block [BLOCK SIZE] ;

172

173 /∗ ge t input f i l e s i z e ∗/
174 f s e e k (in , 0 ,SEEK END) ;

175 f i l e s i z e = f t e l l (in) ;

176 f s e e k (in , 0 ,SEEK SET) ;

177

178 b locks = (int) f l o o r ((double) f i l e s i z e / BLOCK SIZE) ;

179

90

180 /∗ se tup RC5 key t a b l e ∗/
181 RC5 SETUP(publ i c key , S pub) ;

182

183 memset (key , 0 ,KEY SIZE) ;

184

185 while (! f e o f (in) && counter < (blocks−key b locks)) {
186

187 /∗ read next input b l o c k ∗/
188 memset (input b lock , 0 ,BLOCK SIZE) ;

189 f r ead (input b lock , s i z e , length , in) ;

190

191 pt [0] = 0 , pt [1] = 0 ;

192

193 /∗ c r ea t e hash o f each input b lock , to recover key ∗/
194 for (i =0, j =24; i <4; i++) {
195 hash block [i] = input b lock [i] ˆ ((counter >> j) & 0xFF) ;

196 pt [0] = pt [0] | (hash block [i] << j) ;

197 j = j −8;

198 }
199

200 for (i =4, j =24; i <8; i++) {
201 hash block [i] = input b lock [i] ;

202 pt [1] = pt [1] | (hash block [i] << j) ;

203 j = j −8;

204 }
205

206 RC5 ENCRYPT(pt , ct , S pub) ;

207

208 for (i =0, j =24; i <4; i++) {
209 key [i] = key [i] ˆ (c t [0] >> j) ;

210 key [i +8] = key [i +8] ˆ (ct [0] >> j) ;

211 j=j −8;

212 }
213

214 for (i =4, j =24; i <8; i++) {
215 key [i] = key [i] ˆ (c t [1] >> j) ;

216 key [i +8] = key [i +8] ˆ (ct [1] >> j) ;

217 j=j −8;

218 }
219

220 counter++;

221

222 }
223

224 f r ead (f i n a l b l o c k , s i z e ,KEY SIZE , in) ;

225

91

226 /∗ recover key by XORing wi th XOR of the hash o f a l l b l o c k s ∗/
227 for (i =0; i<KEY SIZE ; i++) {
228 key [i] = key [i] ˆ f i n a l b l o c k [i] ;

229 }
230

231 /∗ transform back ∗/
232 f s e e k (in , 0 ,SEEK SET) ;

233 trans form (in , out , key , 0) ;

234

235 }
236

237 /∗#de f i n e TEST∗/
238 #ifde f TEST

239

240 int main (int argc , char ∗∗ argv)

241 {
242 FILE ∗ in = NULL, ∗out = NULL;

243

244 #i f d e f WIN32

245 srand (time (NULL)) ;

246 #end i f

247 #i f d e f sun

248 srandom (time (NULL)) ;

249 #end i f

250

251 i f (argc == 4) {
252 in = fopen (argv [2] , ” rb”) ;

253 i f (in == NULL) {
254 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

255 return 1 ;

256 }
257

258 out = fopen (argv [3] , ”wb”) ;

259 i f (out == NULL) {
260 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

261 return 1 ;

262 }
263

264 i f ((strcmp (argv [1] , ”−t ”)) == 0) {
265 p r i n t f (”Transforming f i l e \n”) ;

266 trans form (in , out , NULL, 128) ;

267 } else i f ((strcmp (argv [1] , ”− i ”)) == 0) {
268 p r i n t f (” Inve r t i ng transformed f i l e \n”) ;

269 i nv e r s e t r an s f o rm (in , out) ;

270 } else {
271 p r i n t f (” Inva l i d opt ion : %s \n” , argv [1]) ;

92

272 return 1 ;

273 }
274

275 } else {
276 p r i n t f (”Usage : [− t |− i] < i n f i l e > <o u t f i l e >”) ;

277 return 1 ;

278 }
279

280 return 0 ;

281 }
282

283 #endif

93

C.4 oaep.c

This is the source code for Optimal Asymmetric Encryption Padding that
was produced.

1 /∗
2 ∗ oaep . c

3 ∗
4 ∗
5 ∗ Created by John Larkin .

6 ∗ Implementation o f Optimal Asymmetric

7 ∗ Encryption Padding .

8 ∗
9 ∗/

10

11 #include <s t d l i b . h>

12 #include <s t d i o . h>

13 #include <time . h>

14 #include <s t r i n g . h>

15 #include <math . h>

16 #include < l im i t s . h>

17 #include ”md5 . h”

18 #include ”oaep . h”

19

20 #define BLOCK SIZE 128

21 #define DIGEST LENGTH 16

22 #define TRUNCATED DIGEST LENGTH 16

23

24 #ifde f WIN32

25 #de f i n e arc4random () rand ()

26 #endif

27 #ifde f sun

28 #de f i n e arc4random () random ()

29 #endif

30

31 char ∗desc = ”OAEP us ing MD5” ;

32

33 void generato r (unsigned char ∗gen , int hashes , unsigned char r [DIGEST LENGTH] ,

34 unsigned char d2 [DIGEST LENGTH]) {
35

36 long int i , j ;

37 unsigned char bu f f e r [DIGEST LENGTH+s izeof (long int)] ;

38 MD5 CTX ctx ;

39

40 /∗ i n i t i a l i s e MD5 v a r i a b l e s wi th g iven d i g e s t ∗/

94

41 MD5Init(&ctx) ;

42 for (i =0, j =0; i <4; i++) {
43 ctx . buf [i] |= (d2 [j] << 24) ;

44 ctx . buf [i] |= (d2 [j +1] << 16) ;

45 ctx . buf [i] |= (d2 [j +2] << 8) ;

46 ctx . buf [i] |= d2 [j +3] ;

47 j+=4;

48 }
49

50 /∗ copy random d i g e s t i n t o b u f f e r ∗/
51 for (i=s izeof (long int) , j =0; i <(DIGEST LENGTH+s izeof (long int)) ; i++, j++)

52 bu f f e r [i] = r [j] ;

53

54 /∗ c r ea t e genera tor s t r i n g ∗/
55 for (i =0; i<hashes ; i++) {
56 bu f f e r [0] = (i >> 24) & 0xFF ;

57 bu f f e r [1] = (i >> 16) & 0xFF ;

58 bu f f e r [2] = (i >> 8) & 0xFF ;

59 bu f f e r [3] = i & 0xFF ;

60 MD5Update(&ctx , bu f f e r , 2 0) ;

61 MD5Final(&ctx) ;

62 for (j =0; j<TRUNCATED DIGEST LENGTH; j++) {
63 ∗gen = ctx . d i g e s t [j] ;

64 gen++;

65 }
66 }
67 }
68

69 /∗ c r ea t e random s t r i n g ∗/
70 void random str ing (unsigned char r s [DIGEST LENGTH]) {
71

72 int i ;

73

74 for (i =0; i<DIGEST LENGTH; i++) {
75 r s [i] = arc4random () % CHARMAX;

76 }
77

78 }
79

80 void trans form (FILE ∗ in , FILE ∗out , int min blocks) {
81

82 int f i l e s i z e ;

83 int o r i g f i l e s i z e ;

84 int gene r a t o r l eng th ;

85 int blocks , i , j , counter =0;

86 char ∗num2 = ”00000002” ;

95

87 char ∗num3 = ”00000003” ;

88 unsigned char r and d i g e s t [DIGEST LENGTH] ;

89 unsigned char ∗gen ;

90 unsigned char ∗ x bar p ;

91 unsigned char i nput b lock [BLOCK SIZE] ;

92 MD5 CTX context ;

93 MD5 CTX context2 ;

94 MD5 CTX context3 ;

95

96 /∗ ge t s i z e o f input f i l e ∗/
97 f s e e k (in , 0 ,SEEK END) ;

98 f i l e s i z e = f t e l l (in) ;

99 f s e e k (in , 0 ,SEEK SET) ;

100

101 o r i g f i l e s i z e = f i l e s i z e ;

102

103 /∗ f i n d number o f b l o c k s in input f i l e ∗/
104 b locks = (int) c e i l ((double) f i l e s i z e / BLOCK SIZE) ;

105

106 /∗ i f minimum number o f b l o c k s se t , ud ju s t s i z e s ac co rd ing l y ∗/
107 i f (min blocks >= 0 && blocks < min blocks) {
108 b locks = min blocks ;

109 gene r a t o r l eng th = (int) c e i l ((double) (b locks ∗ BLOCK SIZE)

110 / TRUNCATED DIGEST LENGTH) ;

111 f i l e s i z e = b locks ∗ BLOCK SIZE ;

112 } else {
113 gene r a t o r l eng th = (int) c e i l ((double) (b locks ∗ BLOCK SIZE)

114 / TRUNCATED DIGEST LENGTH) ;

115 }
116

117 /∗ a l l o c a t e memory f o r genera tor s t r i n g ∗/
118 gen = malloc (s izeof (char) ∗ ((g en e r a t o r l eng th ∗ TRUNCATED DIGEST LENGTH)

119 +(BLOCK SIZE−DIGEST LENGTH))) ;

120

121 /∗ compute random s t r i n g ∗/
122 random str ing (r and d i g e s t) ;

123

124 /∗ i n i t i a l i s e 1 s t con t e x t and compute d i g e s t ∗/
125 MD5Init(&context) ;

126 MD5Update(&context , desc , s t r l e n (desc)) ;

127 MD5Final(&context) ;

128

129 /∗ i n i t i a l i s e 2nd con t e x t and compute d i g e s t ∗/
130 MD5Init(&context2) ;

131 for (i =0, j =0; i <4; i++) {
132 context2 . buf [i] |= (context . d i g e s t [j] << 24) ;

96

133 context2 . buf [i] |= (context . d i g e s t [j +1] << 16) ;

134 context2 . buf [i] |= (context . d i g e s t [j +2] << 8) ;

135 context2 . buf [i] |= context . d i g e s t [j +3] ;

136 j+=4;

137 }
138 MD5Update(&context2 , num2 , s t r l e n (num2)) ;

139 MD5Final(&context2) ;

140

141 /∗ c r ea t e genera tor s t r i n g ∗/
142 generator (gen , gene ra to r l eng th , rand d ige s t , context2 . d i g e s t) ;

143 x bar p = gen ;

144

145 while (counter < (b locks −1)) {
146 /∗ zero input b l o c k and read next b l o c k ∗/
147 memset (input b lock , 0 ,BLOCK SIZE) ;

148 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

149

150 /∗ XOR input b l o c k wi th genera tor s t r i n g ∗/
151 for (i =0; i<BLOCK SIZE ; i++) {
152 ∗gen = ∗gen ˆ input b lock [i] ;

153 gen++;

154 }
155 counter += 1 ;

156 }
157

158 counter ∗= BLOCK SIZE ;

159

160 /∗ check how much o f input f i l e l e f t to read and dec ide how much

161 more padding needs to be added ∗/
162 i f ((o r i g f i l e s i z e − f t e l l (in)) > (BLOCK SIZE−DIGEST LENGTH)) {
163

164 memset (input b lock , 0 ,BLOCK SIZE) ;

165 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

166 for (i =0; i<BLOCK SIZE ; i++) {
167 ∗gen = ∗gen ˆ input b lock [i] ;

168 gen++;

169 }
170 counter += BLOCK SIZE ;

171

172 for (i =0; i <(BLOCK SIZE−DIGEST LENGTH) ; i++) {
173 ∗gen = ∗gen ˆ 0 ;

174 gen++;

175 }
176 counter += (BLOCK SIZE−DIGEST LENGTH) ;

177

178 } else {

97

179 memset (input b lock , 0 ,BLOCK SIZE) ;

180 f r ead (input b lock , s izeof (char) , (BLOCK SIZE−DIGEST LENGTH) , in) ;

181 for (i =0; i <(BLOCK SIZE−DIGEST LENGTH) ; i++) {
182 ∗gen = ∗gen ˆ input b lock [i] ;

183 gen++;

184 }
185 counter += BLOCK SIZE−DIGEST LENGTH;

186 }
187

188 /∗ i n i t i a l i s e con tex t3 and compute d i g e s t ∗/
189 MD5Init(&context3) ;

190 for (i =0, j =0; i <4; i++) {
191 context3 . buf [i] |= (context . d i g e s t [j] << 24) ;

192 context3 . buf [i] |= (context . d i g e s t [j +1] << 16) ;

193 context3 . buf [i] |= (context . d i g e s t [j +2] << 8) ;

194 context3 . buf [i] |= context . d i g e s t [j +3] ;

195 j+=4;

196 }
197 MD5Update(&context3 , num3 , s t r l e n (num3)) ;

198 MD5Update(&context3 , x bar p , counter) ;

199 MD5Final(&context3) ;

200

201 /∗ XOR con t ex t 3 wi th rand s t r i n g b l o c k ∗/
202 for (i =0; i<DIGEST LENGTH; i++)

203 r and d i g e s t [i] ˆ= context3 . d i g e s t [i] ;

204

205 /∗ wr i t e e v e r y t h in g to output f i l e ∗/
206 gen = x bar p ;

207 fw r i t e (rand d ige s t , s izeof (char) ,DIGEST LENGTH, out) ;

208 fw r i t e (x bar p , s izeof (char) , counter , out) ;

209

210 /∗ f r e e memory we a l l o c a t e d ∗/
211 f r e e (gen) ;

212

213 }
214

215 void i nv e r s e t r an s f o rm (FILE ∗ in , FILE ∗out) {
216

217 int f i l e s i z e , g en e r a t o r l eng th ;

218 int blocks , i , j , message length ;

219 char ∗num2 = ”00000002” ;

220 char ∗num3 = ”00000003” ;

221 unsigned char r and d i g e s t [DIGEST LENGTH] ;

222 unsigned char ∗gen , ∗gen p ;

223 unsigned char ∗ s , ∗ s p t r ;

224 MD5 CTX context ;

98

225 MD5 CTX context2 ;

226 MD5 CTX context3 ;

227

228 /∗ ge t input f i l e s i z e ∗/
229 f s e e k (in , 0 ,SEEK END) ;

230 f i l e s i z e = f t e l l (in) ;

231 f s e e k (in , 0 ,SEEK SET) ;

232

233 /∗ read random s t r i n g ∗/
234 f r ead (rand d ige s t , s izeof (char) ,DIGEST LENGTH, in) ;

235

236 /∗ s e t s i z e v a r i a b l e s ∗/
237 message length = f i l e s i z e − DIGEST LENGTH;

238 b locks = f i l e s i z e / BLOCK SIZE ;

239 gene r a t o r l eng th = (int) c e i l ((double) (b locks ∗ BLOCK SIZE)

240 / TRUNCATED DIGEST LENGTH) ;

241

242 /∗ i n i t i a l i s e 1 s t con t e x t and compute d i g e s t ∗/
243 MD5Init(&context) ;

244 MD5Update(&context , desc , s t r l e n (desc)) ;

245 MD5Final(&context) ;

246

247 /∗ a l l o c a t e memory ∗/
248 gen = malloc (s izeof (char) ∗ ((g en e r a t o r l eng th ∗ TRUNCATED DIGEST LENGTH)

249 +(BLOCK SIZE−DIGEST LENGTH))) ;

250 s = mal loc (s izeof (char) ∗ message length) ;

251

252 /∗ s t o r e s t a r t i n g p o s i t i o n s o f a l l o c a t e d memory ∗/
253 s p t r = s ;

254 gen p = gen ;

255

256 /∗ read in r e s t o f message ∗/
257 f r ead (s , s izeof (char) , message length , in) ;

258

259 /∗ i n i t i a l i s e 3 rd con t e x t and compute d i g e s t ∗/
260 MD5Init(&context3) ;

261 for (i =0, j =0; i <4; i++) {
262 context3 . buf [i] |= (context . d i g e s t [j] << 24) ;

263 context3 . buf [i] |= (context . d i g e s t [j +1] << 16) ;

264 context3 . buf [i] |= (context . d i g e s t [j +2] << 8) ;

265 context3 . buf [i] |= context . d i g e s t [j +3] ;

266 j+=4;

267 }
268 MD5Update(&context3 , num3 , s t r l e n (num3)) ;

269 MD5Update(&context3 , s p t r , message length) ;

270 MD5Final(&context3) ;

99

271

272 /∗ XOR rand d i g e s t wi th con t ex t 3 d i g e s t ∗/
273 for (i =0; i<DIGEST LENGTH; i++)

274 r and d i g e s t [i] ˆ= context3 . d i g e s t [i] ;

275

276 /∗ i n i t i a l i s e 3 rd con t e x t and compute d i g e s t ∗/
277 MD5Init(&context2) ;

278 for (i =0, j =0; i <4; i++) {
279 context2 . buf [i] |= (context . d i g e s t [j] << 24) ;

280 context2 . buf [i] |= (context . d i g e s t [j +1] << 16) ;

281 context2 . buf [i] |= (context . d i g e s t [j +2] << 8) ;

282 context2 . buf [i] |= context . d i g e s t [j +3] ;

283 j+=4;

284 }
285 MD5Update(&context2 , num2 , s t r l e n (num2)) ;

286 MD5Final(&context2) ;

287

288 /∗ c r ea t e genera tor s t r i n g ∗/
289 generator (gen , gene ra to r l eng th , rand d ige s t , context2 . d i g e s t) ;

290

291 /∗ recover o r i g i n a l message , by XORing input wi th genera tor s t r i n g ∗/
292 s = s p t r ;

293 for (i =0; i<message length ; i++) {
294 ∗ s = ∗ s ˆ ∗gen ;

295 gen++;

296 s++;

297 }
298

299 /∗ wr i t e o r i g i n a l message to output ∗/
300 s = s p t r ;

301 fw r i t e (s p t r , s izeof (char) , message length , out) ;

302

303 /∗ f r e e memory we a l l o c a t e d ∗/
304 f r e e (gen p) ;

305 f r e e (s) ;

306

307 }
308

309 /∗#de f i n e TEST∗/
310 #ifde f TEST

311 int main (int argc , char ∗∗ argv) {
312

313 FILE ∗ in , ∗out ;

314

315 #i f d e f WIN32

316 srand (time (NULL)) ;

100

317 #end i f

318 #i f d e f sun

319 srandom (time (NULL)) ;

320 #end i f

321

322 i f (argc == 4) {
323 in = fopen (argv [2] , ” rb”) ;

324 i f (in == NULL) {
325 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

326 return 1 ;

327 }
328

329 out = fopen (argv [3] , ”wb”) ;

330 i f (out == NULL) {
331 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

332 return 1 ;

333 }
334

335 i f ((strcmp (argv [1] , ”−t ”)) == 0) {
336 p r i n t f (”Transforming f i l e \n”) ;

337 trans form (in , out , 128) ;

338 } else i f ((strcmp (argv [1] , ”− i ”)) == 0) {
339 p r i n t f (” Inve r t i ng transformed f i l e \n”) ;

340 i nv e r s e t r an s f o rm (in , out) ;

341 } else {
342 p r i n t f (” Inva l i d opt ion : %s \n” , argv [1]) ;

343 return 1 ;

344 }
345

346 } else {
347 p r i n t f (”Usage : [− t |− i] i n f i l e o u t f i l e ”) ;

348 return 1 ;

349 }
350

351 return 0 ;

352 }
353 #endif

101

C.5 rsa.c

This is the source code for RSA that was produced.

1 /∗
2 ∗ rsa . c

3 ∗
4 ∗ Implementation o f RSA us ing the

5 ∗ GNU Mult i Prec i s i on Library .

6 ∗ Created by John Larkin on 22/03/2006.

7 ∗
8 ∗
9 ∗/

10

11 #include <s t d l i b . h>

12 #include <s t d i o . h>

13 #include <s t r i n g . h>

14 #include <time . h>

15 #include <math . h>

16 #include <gmp . h>

17 #include ” r sa . h”

18 #include ” cw l i b . h”

19

20 void g en e r a t e k ey pa i r (mpz t ∗ep , mpz t ∗dp , mpz t ∗np) {
21

22 mpz t e , d , n , p , ps , q , qs , u bound , l bound , mod , gcd ;

23 gmp randstate t s t a t e ;

24 FILE ∗pub , ∗prv ;

25

26 pub = fopen (”pub . key” , ”wb+”) ;

27 prv = fopen (”prv . key” , ”wb+”) ;

28

29 /∗ i n i t i a l i s e random s t a t e ∗/
30 gmp rand in i t de f au l t (s t a t e) ;

31 gmp randseed ui (s ta te , time (NULL)) ;

32

33 /∗ I n i t i a l i s e i n t e g e r s ∗/
34 mpz in i t (q) ;

35 mpz in i t (qs) ;

36 mpz in i t (p) ;

37 mpz in i t (ps) ;

38 mpz in i t (e) ;

39 mpz in i t (d) ;

40 mpz in i t (n) ;

41 mpz in i t (u bound) ;

102

42 mpz in i t (l bound) ;

43 mpz in i t (gcd) ;

44 mpz in i t (mod) ;

45

46 /∗ s e t bound on s i z e o f primes ∗/
47 mpz ui pow ui (u bound , 2 , 5 1 2) ;

48 mpz ui pow ui (l bound , 2 , 5 0 4) ;

49

50 /∗ s e t p u b l i c exponent to (2ˆ16)+1 ∗/
51 mpz i n i t s e t u i (e , 6 5 5 3 7) ;

52

53 /∗ choose primes at random ˜512 b i t s long ∗/
54 mpz urandomm(p , s tate , u bound) ;

55 while (mpz cmp(p , l bound) < 0) {
56 mpz urandomm(p , s tate , u bound) ;

57 }
58

59 /∗ genera te prime p , make sure (p−1) i s r e l a t i v e l y prime to e∗/
60 mpz nextprime (p , p) ;

61 mpz sub ui (ps , p , 1) ;

62 mpz gcd (gcd , e , ps) ;

63 while (mpz cmp ui (gcd , 1) != 0) {
64 mpz nextprime (p , p) ;

65 mpz sub ui (ps , p , 1) ;

66 mpz gcd (gcd , e , ps) ;

67 }
68

69 mpz urandomm(q , s tate , u bound) ;

70 while (mpz cmp(q , l bound) < 0) {
71 mpz urandomm(q , s tate , u bound) ;

72 }
73

74 /∗ genera te prime q , make sure (q−1) i s r e l a t i v e l y prime to e∗/
75 mpz nextprime (q , q) ;

76 mpz sub ui (qs , q , 1) ;

77 mpz gcd (gcd , e , qs) ;

78 while (mpz cmp ui (gcd , 1) != 0) {
79 mpz nextprime (q , q) ;

80 mpz sub ui (qs , q , 1) ;

81 mpz gcd (gcd , e , qs) ;

82 }
83

84 /∗ compute (p−1)(q−1) ∗/
85 mpz mul (mod, ps , qs) ;

86

87 mpz mul (n , p , q) ;

103

88

89 /∗ f i n d p r i v a t e key from pu b l i c key ∗/
90 mpz invert (d , e ,mod) ;

91

92 /∗ wr i t e key to f i l e ∗/
93 mpz out str (pub , 16 , e) ;

94 putc (’ \n ’ , pub) ;

95 mpz out str (pub , 16 , n) ;

96

97 mpz out str (prv , 16 , d) ;

98 putc (’ \n ’ , prv) ;

99 mpz out str (prv , 16 , n) ;

100

101 mpz in i t s e t (∗ ep , e) ;

102 mpz in i t s e t (∗dp , d) ;

103 mpz in i t s e t (∗np , n) ;

104

105 /∗ f r e e l a r g e i n t e g e r s ∗/
106 mpz clear (q) ;

107 mpz clear (qs) ;

108 mpz clear (p) ;

109 mpz clear (ps) ;

110 mpz clear (e) ;

111 mpz clear (d) ;

112 mpz clear (n) ;

113 mpz clear (u bound) ;

114 mpz clear (l bound) ;

115 mpz clear (gcd) ;

116 mpz clear (mod) ;

117

118 }
119

120 void r s a enc ryp t (FILE ∗ in , FILE ∗out , mpz t ∗e , mpz t ∗n) {
121

122 int i , j , d i f f ;

123 int s i z e n = mpz s i ze inbase (∗n , 1 6) ;

124 int o u t s i z e = (int) c e i l ((double) s i z e n / 2) ;

125 long int f i l e s i z e ;

126 unsigned char i nput b lock [RSA BLOCK SIZE] , output b lock [o u t s i z e] ;

127 char ∗ bu f f e r ,∗ bu f f e r p , ∗hex , ∗ s t r ,∗ s t r p , out buf [3] ;

128 mpz t block , c iphe r ;

129

130 /∗ make s i z e o f n even ∗/
131 i f (s i z e n % 2 == 1)

132 s i z e n += 1 ;

133

104

134 /∗ ge t input f i l e s i z e ∗/
135 f s e e k (in , 0 ,SEEK END) ;

136 f i l e s i z e = f t e l l (in) ;

137 f s e e k (in , 0 ,SEEK SET) ;

138

139 /∗ make f i l e s i z e b i g endian and wr i t e to f i l e ∗/
140 i f (i s b i g e nd i a n () != 0)

141 SWAP(f i l e s i z e) ;

142

143 fw r i t e (& f i l e s i z e , s izeof (long int) , 1 , out) ;

144

145 /∗ a l l o c a t e memory f o r v a r i a b l e s ∗/
146 bu f f e r = mal loc (s izeof (char) ∗ s i z e n) ;

147 s t r = mal loc (s izeof (char) ∗ s i z e n) ;

148 hex = mal loc (s izeof (char) ∗ 4) ;

149

150 bu f f e r p = bu f f e r ;

151 s t r p = s t r ;

152

153 /∗ i n i t i a l i s e i n t e g e r s ∗/
154 mpz in i t (b lock) ;

155 mpz in i t (c iphe r) ;

156

157 while (! f e o f (in)) {
158

159 bu f f e r = bu f f e r p ;

160 s t r = s t r p ;

161 ∗ bu f f e r = ’ \0 ’ ;

162 ∗ s t r=’ \0 ’ ;

163

164 /∗ read next b l o c k ∗/
165 memset (input b lock , 0 ,RSA BLOCK SIZE) ;

166 f r ead (input b lock , s izeof (char) ,RSA BLOCK SIZE , in) ;

167

168 /∗ conver t b l o c k to hexadecimal ∗/
169 for (i =0; i<RSA BLOCK SIZE ; i++) {
170 s p r i n t f (hex , ”%02x” , input b lock [i]) ;

171 bu f f e r = s t r c a t (bu f f e r , hex) ;

172 }
173

174 /∗ conver t s t r i n g to i n t e g e r and encrypt ∗/
175 mpz se t s t r (block , bu f f e r , 1 6) ;

176 mpz powm(cipher , block ,∗ e ,∗n) ;

177

178 bu f f e r = mpz get s t r (NULL,16 , c iphe r) ;

179

105

180 out buf [2] = ’ \0 ’ ;

181 d i f f = s i z e n − mpz s i ze inbase (c ipher , 1 6) ;

182

183 /∗ pad output s t r i n g i f necessary ∗/
184 i f (d i f f > 0) {
185 for (i =0; i<d i f f ; i++)

186 s t r = s t r c a t (s t r , ”0”) ;

187 bu f f e r = s t r c a t (s t r , bu f f e r) ;

188 }
189

190 /∗ conver t hexadecimal number to chars ∗/
191 for (j =0; j<o u t s i z e ; j++) {
192 out buf [0] = ∗ bu f f e r ;

193 bu f f e r++;

194 out buf [1] = ∗ bu f f e r ;

195 bu f f e r++;

196

197 output b lock [j] = (char) s t r t o l (out buf ,NULL, 1 6) ;

198 }
199

200 /∗ wr i t e encrypted b l o c k to f i l e ∗/
201 fw r i t e (output block , s izeof (char) , ou t s i z e , out) ;

202 }
203

204 /∗ f r e e l a r g e i n t e g e r s ∗/
205 mpz clear (b lock) ;

206 mpz clear (c iphe r) ;

207

208 }
209

210 void r s a dec ryp t (FILE ∗ in , FILE ∗out , mpz t ∗d , mpz t ∗n) {
211

212 int i , j , d i f f , o r i g f i l e s i z e ;

213 int f i l e s i z e , w r i t e count e r =0, counter =0;

214 int s i z e n = mpz s i ze inbase (∗n , 1 6) ;

215 int i n s i z e = (int) c e i l ((double) s i z e n / 2) ;

216 unsigned char i nput b lock [i n s i z e] , output b lock [RSA BLOCK SIZE] ;

217 char ∗ bu f f e r , ∗ bu f f e r p , ∗hex , ∗ s t r , ∗ s t r p , out buf [3] ;

218 mpz t block , c iphe r ;

219

220 /∗ make s i z e o f n even ∗/
221 i f (s i z e n % 2 == 1)

222 s i z e n += 1 ;

223

224 /∗ a l l o c a t e memory f o r v a r i a b l e s ∗/
225 bu f f e r = mal loc (s izeof (char) ∗ s i z e n) ;

106

226 s t r = mal loc (s izeof (char) ∗ s i z e n) ;

227 hex = mal loc (s izeof (char) ∗ 4) ;

228

229 bu f f e r p = bu f f e r ;

230 s t r p = s t r ;

231

232 /∗ read o r i g i n a l f i l e s i z e ∗/
233 f r ead (& o r i g f i l e s i z e , s izeof (int) , 1 , in) ;

234

235 i f (i s b i g e nd i a n () != 0)

236 SWAP(o r i g f i l e s i z e) ;

237

238 /∗ ge t s i z e o f input f i l e ∗/
239 f s e e k (in , 0 ,SEEK END) ;

240 f i l e s i z e = f t e l l (in) ;

241 f s e e k (in , s izeof (int) ,SEEK SET) ;

242 f i l e s i z e −= s izeof (long int) ;

243

244 /∗ i n i t i a l i s e b i g i n t s ∗/
245 mpz in i t (b lock) ;

246 mpz in i t (c iphe r) ;

247

248 while (counter < f i l e s i z e) {
249

250 /∗ read next input b l o c k ∗/
251 memset (input b lock , 0 , i n s i z e) ;

252 f r ead (input b lock , s izeof (char) , i n s i z e , in) ;

253

254 bu f f e r = bu f f e r p ;

255 s t r = s t r p ;

256 ∗ bu f f e r=’ \0 ’ ;

257 ∗ s t r=’ \0 ’ ;

258

259 /∗ conver t b l o c k to hexadecimal ∗/
260 for (i =0; i< i n s i z e ; i++) {
261 s p r i n t f (hex , ”%02x” , input b lock [i]) ;

262 bu f f e r = s t r c a t (bu f f e r , hex) ;

263 }
264

265 /∗ conver t s t r i n g to i n t e g e r and decryp t ∗/
266 mpz se t s t r (c ipher , bu f f e r , 1 6) ;

267 mpz powm(block , c ipher ,∗d ,∗n) ;

268 bu f f e r = mpz get s t r (NULL,16 , b lock) ;

269

270 out buf [2] = ’ \0 ’ ;

271 d i f f = (RSA BLOCK SIZE∗2) − mpz s i ze inbase (block , 1 6) ;

107

272

273 /∗ pad decryp ted s t r i n g i f necessary ∗/
274 i f (d i f f > 0) {
275 for (i =0; i<d i f f ; i++)

276 s t r = s t r c a t (s t r , ”0”) ;

277 bu f f e r = s t r c a t (s t r , bu f f e r) ;

278 }
279

280 memset (output block , 0 ,RSA BLOCK SIZE) ;

281

282 /∗ conver t hexadecimal number to chars ∗/
283 for (j =0; j<RSA BLOCK SIZE ; j++) {
284 out buf [0] = ∗ bu f f e r ;

285 bu f f e r++;

286 out buf [1] = ∗ bu f f e r ;

287 bu f f e r++;

288 output b lock [j] = (char) s t r t o l (out buf ,NULL, 1 6) ;

289 }
290

291 /∗ wr i t e decryp ted b l o c k to output f i l e ∗/
292 i f (wr i t e count e r < (o r i g f i l e s i z e −RSA BLOCK SIZE))

293 fw r i t e (output block , s izeof (char) ,RSA BLOCK SIZE , out) ;

294 else

295 fw r i t e (output block , s izeof (char) , (o r i g f i l e s i z e −wr i t e count e r) , out) ;

296

297 wr i t e count e r += RSA BLOCK SIZE ;

298 counter += i n s i z e ;

299 }
300

301 /∗ f r e e b i g i n t s ∗/
302 mpz clear (b lock) ;

303 mpz clear (c iphe r) ;

304

305 }
306

307 void read key (FILE ∗key , mpz t ∗k , mpz t ∗n) {
308

309 int ch , i =0;

310 char input num [2 5 7] ;

311

312 /∗ read in encryp t ion / decryp t i on exponent ∗/
313 ch = getc (key) ;

314 while (ch != ’ \n ’) {
315 input num [i] = ch ;

316 i++;

317 ch = getc (key) ;

108

318 }
319 input num [i] = ’ \0 ’ ;

320

321 mpz in i t (∗k) ;

322 mpz se t s t r (∗k , input num , 1 6) ;

323

324 /∗ read in modulus ∗/
325 i =0;

326 memset (input num , 0 , 2 5 7) ;

327 while ((ch = getc (key)) != EOF) {
328 input num [i] = ch ;

329 i++;

330 }
331 input num [i] = ’ \0 ’ ;

332 mpz in i t (∗n) ;

333 mpz se t s t r (∗n , input num , 1 6) ;

334

335 }
336

337 /∗#de f i n e TEST∗/
338 #ifde f TEST

339 int main (int argc , char ∗∗ argv) {
340

341 mpz t e , d , n , c ipher , b lock ;

342 FILE ∗ in = NULL, ∗out = NULL, ∗key = NULL;

343

344 /∗ check input arguments ∗/
345 i f (argc == 5) {
346 in = fopen (argv [2] , ” rb”) ;

347 i f (in == NULL) {
348 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

349 return 1 ;

350 }
351

352 out = fopen (argv [3] , ”wb”) ;

353 i f (out == NULL) {
354 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

355 return 1 ;

356 }
357

358 key = fopen (argv [4] , ” rb”) ;

359 i f (key == NULL) {
360 p r i n t f (”Error opening key f i l e %s \n” , argv [4]) ;

361 return 1 ;

362 }
363

109

364 i f ((strcmp (argv [1] , ”−e”)) == 0) {
365 p r i n t f (”Encrypting f i l e \n”) ;

366 read key (key ,&e ,&n) ;

367 r s a enc ryp t (in , out , &e , &n) ;

368 } else i f ((strcmp (argv [1] , ”−d”)) == 0) {
369 p r i n t f (”Decrypting f i l e \n”) ;

370 read key (key ,&d,&n) ;

371 r s a dec ryp t (in , out , &d , &n) ;

372 }
373

374 } else i f (argc == 2 && (strcmp (argv [1] , ”−g”) == 0)) {
375 g en e r a t e k ey pa i r (&e ,&d,&n) ;

376 p r i n t f (”e : l imbs=%i ” , mpz s ize (e)) ;

377 mpz out str (NULL,16 , e) ;

378 p r i n t f (”\n”) ;

379 p r i n t f (”d : l imbs=%i ” , mpz s ize (d)) ;

380 mpz out str (NULL,16 , d) ;

381 p r i n t f (”\n”) ;

382 p r i n t f (”n : l imbs=%i l ength=%i ” , mpz s ize (n) , mpz s i z e inbase (n , 1 6)) ;

383 mpz out str (NULL,16 , n) ;

384 p r i n t f (”\n”) ;

385

386 } else {
387 p r i n t f (”Usage : [−e |−d] < i n f i l e > <o u t f i l e > <k e y f i l e >\n”) ;

388 return 1 ;

389 }
390

391 return 0 ;

392

393 }
394 #endif

110

C.6 cw aont pt.c

This is the source code for the symmetric Chaffing and Winnowing Package
Transform scheme that was produced.

1 /∗
2 ∗ cw aont p t . c

3 ∗
4 ∗ Created by John Larkin .

5 ∗ Chaf f ing and Winnowing implementat ion

6 ∗ us ing the ”package transform”

7 ∗ pre−proce s s ing method .

8 ∗
9 ∗/

10

11 #include <s t d l i b . h>

12 #include <s t d i o . h>

13 #include <s t r i n g . h>

14 #include <math . h>

15 #include <time . h>

16 #include ”hmac . h”

17 #include ”aont . h”

18 #include ” cw l i b . h”

19

20 #define BLOCK SIZE 128

21 #define CHAFF BLOCKS 128

22 #define MIN BLOCKS 128

23

24 s i z e t c h a f f l e n g t h = DIGEST LENGTH + BLOCK SIZE ;

25

26 void usage (void) {
27 p r i n t f (”Usage : cw [−c |−w] <input f i l e > \
28 <output f i l e > <passkey >\n”) ;

29 }
30

31 void addchaf f (FILE ∗ in , FILE ∗out , char ∗ passphrase) {
32

33 unsigned char checksum [DIGEST LENGTH] ;

34 unsigned char i nput b lock [BLOCK SIZE] ;

35 unsigned char cha f f p a ck e t [BLOCK SIZE+DIGEST LENGTH] ;

36 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

37 int j ;

38 int counter =0;

39 int c h a f f p o i n t e r =0;

40 int t o t a l b l o c k s ;

111

41 long int f i l e s i z e ;

42 FILE ∗tmp ;

43

44 /∗ c r ea t e temporary f i l e ∗/
45 tmp = tmp f i l e () ;

46

47 /∗ app ly AONT to input f i l e ∗/
48 trans form (in , tmp , NULL, MIN BLOCKS) ;

49

50 /∗ c a l c u l a t e s i z e o f transformed f i l e ∗/
51 f s e e k (tmp , 0 ,SEEK END) ;

52 f i l e s i z e = f t e l l (tmp) ;

53 f s e e k (tmp , 0 ,SEEK SET) ;

54

55 /∗ c r ea t e random sub s e t o f c h a f f p o s i t i o n s ∗/
56 s e t c h a f f p o s i t i o n s (c h a f f p o s i t i o n s ,CHAFF BLOCKS, (f i l e s i z e /BLOCK SIZE)) ;

57 t o t a l b l o c k s = CHAFF BLOCKS + (f i l e s i z e /BLOCK SIZE) ;

58

59 /∗ se tup hmac wi th the supp l i e d passphrase ∗/
60 hmac in i t ((unsigned char∗) passphrase , s t r l e n (passphrase)) ;

61

62 for (j =0; j<t o t a l b l o c k s ; j++) {
63

64 i f (j == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {
65

66 /∗ c r ea t e c h a f f b l o c k and wr i t e to output f i l e ∗/
67 g en e r a t e cha f f p a ck e t (cha f f packe t ,BLOCK SIZE+DIGEST LENGTH) ;

68 c h a f f p o i n t e r += 1 ;

69

70 fw r i t e (cha f f packe t , s izeof (char) , c ha f f l e ng th , out) ;

71

72 } else {
73

74 /∗ zero input array and read next b l o c k ∗/
75 memset (input b lock , 0 ,BLOCK SIZE) ;

76 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

77

78 /∗ compute the hmac o f the input b l o c k ∗/
79 hmac(input b lock ,BLOCK SIZE, checksum) ;

80

81 /∗ wr i t e next b l o c k o f transformed f i l e to output ∗/
82 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, out) ;

83

84 /∗ wr i t e MAC of curren t b l o c k to output ∗/
85 fw r i t e (checksum , s izeof (char) ,DIGEST LENGTH, out) ;

86 }

112

87

88 counter++;

89 } /∗ end o f loop ∗/
90

91 } /∗ end o f addcha f f f unc t i on ∗/
92

93 void winnow(FILE ∗ in , FILE ∗out , char ∗ passphrase) {
94

95 int counter =0;

96 unsigned char checksum [DIGEST LENGTH] ;

97 unsigned char input checksum [DIGEST LENGTH] ;

98 unsigned char i nput b lock [BLOCK SIZE] ;

99 long int f i l e s i z e ;

100 FILE ∗tmp ;

101

102 /∗ ge t s i z e o f input f i l e ∗/
103 f s e e k (in , 0 ,SEEK END) ;

104 f i l e s i z e = f t e l l (in) ;

105 f s e e k (in , 0 ,SEEK SET) ;

106

107 /∗ c r ea t e temp f i l e ∗/
108 tmp = tmp f i l e () ;

109

110 /∗ i n i t i a l i s e hmac ∗/
111 hmac in i t ((unsigned char∗) passphrase , s t r l e n (passphrase)) ;

112

113 while (((counter ∗(BLOCK SIZE+DIGEST LENGTH))+1) <= f i l e s i z e) {
114

115 /∗ zero input array and read next b l o c k ∗/
116 memset (input b lock , 0 ,BLOCK SIZE) ;

117 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

118

119 /∗ zero MAC array and read next MAC ∗/
120 memset (input checksum , 0 ,DIGEST LENGTH) ;

121 f r ead (input checksum , s izeof (char) ,DIGEST LENGTH, in) ;

122

123 /∗ compute the hmac o f the input b l o c k ∗/
124 hmac(input b lock ,BLOCK SIZE, checksum) ;

125

126 /∗ check i f b l o c k i s v a l i d ∗/
127 i f ((memcmp(checksum , input checksum ,DIGEST LENGTH) == 0)) {
128 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

129 }
130

131 counter++;

132 } /∗ end o f loop ∗/

113

133

134 /∗ f i n d s t a r t o f temp f i l e and i n v e r t t rans format ion ∗/
135 f s e e k (tmp , 0 ,SEEK SET) ;

136 i nv e r s e t r an s f o rm (tmp , out) ;

137

138 } /∗ end o f winnow func t i on ∗/
139

140 int main (int argc , char ∗∗ argv)

141 {
142 char ∗ passphrase ;

143 FILE ∗ in = NULL, ∗out = NULL;

144

145 /∗ i f Windows or Mac, i n i t i a l i s e random func t i on s ∗/
146 #i f d e f WIN32

147 srand (time (NULL)) ;

148 #end i f

149 #i f d e f sun

150 srandom (time (NULL)) ;

151 #end i f

152

153 /∗ check input arguments ∗/
154 i f (argc == 5) {
155 in = fopen (argv [2] , ” rb”) ;

156 i f (in == NULL) {
157 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

158 e x i t (1) ;

159 }
160

161 out = fopen (argv [3] , ”wb”) ;

162 i f (out == NULL) {
163 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

164 return 1 ;

165 }
166

167 passphrase = argv [4] ;

168

169 i f ((strcmp (argv [1] , ”−c”)) == 0) {
170 addchaf f (in , out , passphrase) ;

171 } else i f ((strcmp (argv [1] , ”−w”)) == 0) {
172 winnow(in , out , passphrase) ;

173 } else {
174 usage () ;

175 return 1 ;

176 }
177 } else {
178 usage () ;

114

179 e x i t (1) ;

180 }
181

182 return 0 ;

183 }

115

C.7 cw aont oaep.c

This is the source code for the symmetric Chaffing and Winnowing OAEP
scheme that was produced.

1 /∗
2 ∗ cw aont oaep . c

3 ∗
4 ∗ Created by John Larkin .

5 ∗ Chaf f ing and Winnowing implementat ion

6 ∗ us ing the ” opt imal asymmetric encryp t ion

7 ∗ padding ” pre−proce s s ing method .

8 ∗
9 ∗/

10

11 #include <s t d l i b . h>

12 #include <s t d i o . h>

13 #include <s t r i n g . h>

14 #include <math . h>

15 #include <time . h>

16 #include ”hmac . h”

17 #include ”oaep . h”

18 #include ” cw l i b . h”

19

20 #define BLOCK SIZE 128

21 #define CHAFF BLOCKS 128

22 #define MIN BLOCKS 128

23

24 s i z e t c h a f f l e n g t h = DIGEST LENGTH + BLOCK SIZE ;

25

26 void usage (void) {
27 p r i n t f (”Usage : cw [−c |−w] <input f i l e > \
28 <output f i l e > <passkey >\n”) ;

29 }
30

31 void addchaf f (FILE ∗ in , FILE ∗out , char ∗ passphrase) {
32

33 unsigned char checksum [DIGEST LENGTH] ;

34 unsigned char i nput b lock [BLOCK SIZE] ;

35 unsigned char cha f f p a ck e t [BLOCK SIZE+DIGEST LENGTH] ;

36 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

37 int j ;

38 int counter =0;

39 int c h a f f p o i n t e r =0;

40 int t o t a l b l o c k s ;

116

41 long int f i l e s i z e ;

42 FILE ∗tmp ;

43

44 /∗ c r ea t e temporary f i l e ∗/
45 tmp = tmp f i l e () ;

46

47 /∗ app ly AONT to input f i l e ∗/
48 trans form (in , tmp , MIN BLOCKS) ;

49

50 /∗ c a l c u l a t e s i z e o f transformed f i l e ∗/
51 f s e e k (tmp , 0 ,SEEK END) ;

52 f i l e s i z e = f t e l l (tmp) ;

53 f s e e k (tmp , 0 ,SEEK SET) ;

54

55 /∗ c r ea t e random sub s e t o f c h a f f p o s i t i o n s ∗/
56 s e t c h a f f p o s i t i o n s (c h a f f p o s i t i o n s ,CHAFF BLOCKS, (f i l e s i z e /BLOCK SIZE)) ;

57 t o t a l b l o c k s = CHAFF BLOCKS + (int) c e i l ((double) f i l e s i z e /BLOCK SIZE) ;

58

59 /∗ se tup hmac wi th the supp l i e d passphrase ∗/
60 hmac in i t ((unsigned char∗) passphrase , s t r l e n (passphrase)) ;

61

62 for (j =0; j<t o t a l b l o c k s ; j++) {
63

64 i f (j == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {
65

66 /∗ c r ea t e c h a f f b l o c k and wr i t e to output f i l e ∗/
67 g en e r a t e cha f f p a ck e t (cha f f packe t ,BLOCK SIZE+DIGEST LENGTH) ;

68 c h a f f p o i n t e r += 1 ;

69

70 fw r i t e (cha f f packe t , s izeof (char) , c ha f f l e ng th , out) ;

71

72 } else {
73

74 /∗ zero input array and read next b l o c k ∗/
75 memset (input b lock , 0 ,BLOCK SIZE) ;

76 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

77

78 /∗ compute the hmac o f the input b l o c k ∗/
79 hmac(input b lock ,BLOCK SIZE, checksum) ;

80

81 /∗ wr i t e next b l o c k o f transformed f i l e to output ∗/
82 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, out) ;

83

84 /∗ wr i t e MAC of curren t b l o c k to output ∗/
85 fw r i t e (checksum , s izeof (char) ,DIGEST LENGTH, out) ;

86 }

117

87

88 counter++;

89 } /∗ end o f loop ∗/
90

91 } /∗ end o f addcha f f f unc t i on ∗/
92

93 void winnow(FILE ∗ in , FILE ∗out , char ∗ passphrase) {
94

95 int counter =0;

96 unsigned char checksum [DIGEST LENGTH] ;

97 unsigned char input checksum [DIGEST LENGTH] ;

98 unsigned char i nput b lock [BLOCK SIZE] ;

99 long int f i l e s i z e ;

100 FILE ∗tmp ;

101

102 /∗ c r ea t e temporary f i l e ∗/
103 tmp = tmp f i l e () ;

104

105 /∗ c a l c u l a t e s i z e o f input f i l e ∗/
106 f s e e k (in , 0 ,SEEK END) ;

107 f i l e s i z e = f t e l l (in) ;

108 f s e e k (in , 0 ,SEEK SET) ;

109

110 /∗ se tup hmac ∗/
111 hmac in i t ((unsigned char∗) passphrase , s t r l e n (passphrase)) ;

112

113 while (((counter ∗(BLOCK SIZE+DIGEST LENGTH))+1) <= f i l e s i z e) {
114

115 /∗ zero input array and read next b l o c k ∗/
116 memset (input b lock , 0 ,BLOCK SIZE) ;

117 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

118

119 /∗ zero MAC array and read next MAC ∗/
120 memset (input checksum , 0 ,DIGEST LENGTH) ;

121 f r ead (input checksum , s izeof (char) ,DIGEST LENGTH, in) ;

122

123 /∗ compute the hmac o f the input b l o c k ∗/
124 hmac(input b lock ,BLOCK SIZE, checksum) ;

125

126 /∗ check i f b l o c k i s v a l i d ∗/
127 i f ((memcmp(checksum , input checksum ,DIGEST LENGTH) == 0)) {
128 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

129 }
130

131 counter++;

132

118

133 } /∗ end o f loop ∗/
134

135 /∗ f i n d s t a r t o f temp f i l e and i n v e r t t rans format ion ∗/
136 f s e e k (tmp , 0 ,SEEK SET) ;

137 i nv e r s e t r an s f o rm (tmp , out) ;

138

139 } /∗ end o f winnow func t i on ∗/
140

141 int main (int argc , char ∗∗ argv) {
142

143 char ∗ passphrase ;

144 FILE ∗ in = NULL, ∗out = NULL;

145

146 /∗ i f Windows or Mac, i n i t i a l i s e random func t i on s ∗/
147 #i f d e f WIN32

148 srand (time (NULL)) ;

149 #end i f

150 #i f d e f sun

151 srandom (time (NULL)) ;

152 #end i f

153

154 /∗ check input arguments ∗/
155 i f (argc == 5) {
156 in = fopen (argv [2] , ” rb”) ;

157 i f (in == NULL) {
158 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

159 return 1 ;

160 }
161

162 out = fopen (argv [3] , ”wb”) ;

163 i f (out == NULL) {
164 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

165 return 1 ;

166 }
167

168 passphrase = argv [4] ;

169

170 i f ((strcmp (argv [1] , ”−c”)) == 0) {
171 addchaf f (in , out , passphrase) ;

172 } else i f ((strcmp (argv [1] , ”−w”)) == 0) {
173 winnow(in , out , passphrase) ;

174 } else {
175 usage () ;

176 return 1 ;

177 }
178 } else {

119

179 usage () ;

180 return 1 ;

181 }
182

183 return 0 ;

184 }

120

C.8 cw pk pt.c

This is the source code for the hybrid Chaffing and Winnowing Package
Transform scheme that was produced.

1 /∗
2 ∗ cw pk p t . c

3 ∗
4 ∗
5 ∗ Created by John Larkin .

6 ∗ Chaf f ing and Winnowing implementat ion

7 ∗ us ing the ”package transform” pre−proce s s ing method

8 ∗ and RSA to h ide the c h a f f packe t p o s i t i o n s

9 ∗
10 ∗/
11

12 #include <s t d l i b . h>

13 #include <s t d i o . h>

14 #include <s t r i n g . h>

15 #include <math . h>

16 #include <time . h>

17 #include <gmp . h>

18 #include ” r sa . h”

19 #include ”aont . h”

20 #include ” cw l i b . h”

21

22 #define BLOCK SIZE 128

23 #define CHAFF BLOCKS 128

24 #define MIN BLOCKS 128

25

26 void usage (void) {
27 p r i n t f (”Usage : cw [−c |−w] <input f i l e > <output f i l e > <k e y f i l e >\n”) ;

28 }
29

30 void addchaf f (FILE ∗ in , FILE ∗out , mpz t ∗e , mpz t ∗n) {
31

32 unsigned char i nput b lock [BLOCK SIZE] ;

33 unsigned char cha f f p a ck e t [BLOCK SIZE] ;

34 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

35 unsigned long int swapped cha f f po s i t i on s [CHAFF BLOCKS] ;

36 int i , j , counter=0, c h a f f p o i n t e r =0;

37 long int f i l e s i z e , t o t a l b l o c k s ;

38 FILE ∗tmp , ∗ tmp aont ,∗ tmp rsa ;

39

40 /∗ c r ea t e temp f i l e s ∗/

121

41 tmp = tmp f i l e () ;

42 tmp aont = tmp f i l e () ;

43 tmp rsa = tmp f i l e () ;

44

45 /∗ app ly AONT to input f i l e ∗/
46 trans form (in , tmp , NULL, MIN BLOCKS) ;

47

48 /∗ ge t s i z e o f transformed f i l e ∗/
49 f s e e k (tmp , 0 ,SEEK END) ;

50 f i l e s i z e = f t e l l (tmp) ;

51 f s e e k (tmp , 0 ,SEEK SET) ;

52

53 /∗ c r ea t e c h a f f packe t i n d i c e s ∗/
54 s e t c h a f f p o s i t i o n s (c h a f f p o s i t i o n s ,CHAFF BLOCKS, (f i l e s i z e /BLOCK SIZE)) ;

55

56 /∗ by t e swapping r equ i r ed here on po s i t i o n i n d i c e s i f not b ig−endian machine

57 then wr i t e them to a temporary f i l e ∗/
58 i f (i s b i g e nd i a n () != 0) {
59 for (i =0; i<CHAFF BLOCKS; i++) {
60 swapped cha f f po s i t i on s [i] = c h a f f p o s i t i o n s [i] ;

61 SWAP(swapped cha f f po s i t i on s [i]) ;

62 }
63 fw r i t e (swapped cha f f po s i t i on s , s izeof (long int) ,CHAFF BLOCKS, tmp aont) ;

64 } else {
65 fw r i t e (c h a f f p o s i t i o n s , s izeof (long int) ,CHAFF BLOCKS, tmp aont) ;

66 }
67

68 f s e e k (tmp aont , 0 ,SEEK SET) ;

69

70 /∗ app ly AONT to c ha f f p o s i t i o n i n d i c e s ∗/
71 trans form (tmp aont , tmp rsa ,NULL, 0) ;

72 f c l o s e (tmp aont) ;

73

74 /∗ encrypt c h a f f p o s i t i o n i n d i c e s wi th RSA ∗/
75 f s e e k (tmp rsa , 0 ,SEEK SET) ;

76 r s a enc ryp t (tmp rsa , out , e , n) ;

77

78 t o t a l b l o c k s = CHAFF BLOCKS + (f i l e s i z e /BLOCK SIZE) ;

79

80 for (j =0; j<t o t a l b l o c k s ; j++) {
81

82 /∗ i f curren t packe t i s a c h a f f packet , genera te one

83 and wr i t e i t to f i l e . Otherwise wr i t e v a l i d packe t ∗/
84 i f (j == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {
85

86 g en e r a t e cha f f p a ck e t (cha f f packe t ,BLOCK SIZE) ;

122

87 c h a f f p o i n t e r += 1 ;

88

89 fw r i t e (cha f f packe t , s izeof (char) ,BLOCK SIZE, out) ;

90

91 } else {
92 /∗ read next input b l o c k ∗/
93 memset (input b lock , 0 ,BLOCK SIZE) ;

94 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

95

96 /∗ wr i t e v a l i d b l o c k to output f i l e ∗/
97 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, out) ;

98

99 }
100

101 counter++;

102

103 }
104 }
105

106 void winnow(FILE ∗ in , FILE ∗out , mpz t ∗d , mpz t ∗n) {
107

108 int i , counter=0, c h a f f p o i n t e r =0;

109 int c h a f f p o s i t i o n s i z e = ((BLOCK SIZE∗ s izeof (long int))

110 +BLOCK SIZE) ;

111 int c h a f f p o s i t i o n s l e n g t h =

112 (((int) c e i l ((double) c h a f f p o s i t i o n s i z e / RSA BLOCK SIZE) ∗
113 ((int) c e i l ((double) mpz s i ze inbase (∗n ,16)/2)))+ s izeof (int)) ;

114 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

115 unsigned long int c h a f f p o s i t i o n s b l o c k [c h a f f p o s i t i o n s l e n g t h] ;

116 unsigned char i nput b lock [BLOCK SIZE] , a o n t f i l e [c h a f f p o s i t i o n s i z e] ;

117 long int f i l e s i z e ;

118 FILE ∗tmp , ∗ tmp rsa in , ∗ tmp rsa out , ∗ tmp aont in , ∗ tmp aont out ;

119

120 /∗ c r ea t e up temporary f i l e s ∗/
121 tmp = tmp f i l e () ;

122 tmp rsa in = tmp f i l e () ;

123 tmp rsa out = tmp f i l e () ;

124 tmp aont in = tmp f i l e () ;

125 tmp aont out = tmp f i l e () ;

126

127 /∗ copy encrypted c h a f f p o s i t i o n s and to a temp f i l e ∗/
128 f r ead (c h a f f p o s i t i o n s b l o c k , s izeof (char) , c h a f f p o s i t i o n s l e n g t h , in) ;

129 fw r i t e (c h a f f p o s i t i o n s b l o c k , s izeof (char) , c h a f f p o s i t i o n s l e n g t h , tmp rsa in) ;

130

131 /∗ decryp t c h a f f p o s i t i o n s ∗/
132 f s e e k (tmp rsa in , 0 ,SEEK SET) ;

123

133 r s a dec ryp t (tmp rsa in , tmp rsa out , d , n) ;

134

135 /∗ app ly i n v e r s e AONT to c h a f f p o s i t i o n s ∗/
136 f s e e k (tmp rsa out , 0 ,SEEK SET) ;

137 f r ead (a o n t f i l e , s izeof (char) , c h a f f p o s i t i o n s i z e , tmp rsa out) ;

138 fw r i t e (a o n t f i l e , s izeof (char) , c h a f f p o s i t i o n s i z e , tmp aont in) ;

139 f s e e k (tmp aont in , 0 ,SEEK SET) ;

140

141 i nv e r s e t r an s f o rm (tmp aont in , tmp aont out) ;

142 f s e e k (tmp aont out , 0 ,SEEK SET) ;

143

144 /∗ c h a f f p o s i t i o n s by t e swapping needed here , i f not b i g endian ∗/
145 f r ead (c h a f f p o s i t i o n s , s izeof (unsigned long int) ,CHAFF BLOCKS, tmp aont out) ;

146 i f (i s b i g e nd i a n () != 0) {
147 for (i =0; i<CHAFF BLOCKS; i++)

148 SWAP(c h a f f p o s i t i o n s [i]) ;

149 }
150

151 /∗ ge t s i z e o f inpu t f i l e ∗/
152 f s e e k (in , 0 ,SEEK END) ;

153 f i l e s i z e = f t e l l (in) ;

154 f s e e k (in , c h a f f p o s i t i o n s l e n g t h ,SEEK SET) ;

155

156 /∗ read f i l e in b l ock s , i f b l o c k has a v a l i d index , wr i t e to temp f i l e

157 o the rw i s e d i s ca rd the b l o c k ∗/
158 while (((counter ∗(BLOCK SIZE))+1) <= (f i l e s i z e −c h a f f p o s i t i o n s l e n g t h)) {
159

160 memset (input b lock , 0 ,BLOCK SIZE) ;

161 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

162

163 i f (counter == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {
164 c h a f f p o i n t e r += 1 ;

165 } else {
166 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

167 }
168

169 counter++;

170 }
171

172 /∗ app ly i n v e r s e AONT to temp f i l e ∗/
173 f s e e k (tmp , 0 ,SEEK SET) ;

174 i nv e r s e t r an s f o rm (tmp , out) ;

175

176 }
177

178 int main (int argc , char ∗∗ argv)

124

179 {
180 FILE ∗ in = NULL, ∗out = NULL, ∗key=NULL;

181 mpz t e , d , n ;

182

183 /∗ i f Windows or Mac i n i t i a l i s e random func t i on s ∗/
184 #i f d e f WIN32

185 srand (time (NULL)) ;

186 #end i f

187 #i f d e f sun

188 srandom (time (NULL)) ;

189 #end i f

190

191 /∗ check input arguments ∗/
192 i f (argc == 5) {
193 in = fopen (argv [2] , ” rb”) ;

194 i f (in == NULL) {
195 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

196 return 1 ;

197 }
198

199 out = fopen (argv [3] , ”wb”) ;

200 i f (out == NULL) {
201 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

202 return 1 ;

203 }
204

205 key = fopen (argv [4] , ” rb”) ;

206 i f (key == NULL) {
207 p r i n t f (”Error opening key f i l e %s \n” , argv [4]) ;

208 return 1 ;

209 }
210

211 i f ((strcmp (argv [1] , ”−c”)) == 0) {
212 read key (key ,&e ,&n) ;

213 addchaf f (in , out , &e , &n) ;

214 mpz clear (e) ;

215 mpz clear (n) ;

216 } else i f ((strcmp (argv [1] , ”−w”)) == 0) {
217 read key (key ,&d,&n) ;

218 winnow(in , out , &d , &n) ;

219 mpz clear (d) ;

220 mpz clear (n) ;

221 } else {
222 usage () ;

223 return 1 ;

224 }

125

225 } else i f (argc == 2 && (strcmp (argv [1] , ”−g”) == 0)) {
226 g en e r a t e k ey pa i r (&e ,&d,&n) ;

227 } else {
228 usage () ;

229 return 1 ;

230 }
231

232 return 0 ;

233 }

126

C.9 cw pk oaep.c

This is the source code for the hybrid Chaffing and Winnowing OAEP scheme
that was produced.

1 /∗
2 ∗ cw pk oaep . c

3 ∗
4 ∗
5 ∗ Created by John Larkin .

6 ∗ Chaf f ing and Winnowing implementat ion

7 ∗ us ing the ”oaep” pre−proce s s ing method

8 ∗ and RSA to encrypt the c h a f f packe t p o s i t i o n s

9 ∗
10 ∗/
11

12 #include <s t d l i b . h>

13 #include <s t d i o . h>

14 #include <s t r i n g . h>

15 #include <math . h>

16 #include <time . h>

17 #include <gmp . h>

18 #include ” r sa . h”

19 #include ”oaep . h”

20 #include ” cw l i b . h”

21

22 #define BLOCK SIZE 128

23 #define CHAFF BLOCKS 128

24 #define MIN BLOCKS 128

25

26 void usage (void) {
27 p r i n t f (”Usage : cw [−c |−w] <input f i l e > <output f i l e > <k e y f i l e >\n”) ;

28 }
29

30

31 void addchaf f (FILE ∗ in , FILE ∗out , mpz t ∗e , mpz t ∗n) {
32

33 unsigned char i nput b lock [BLOCK SIZE] ;

34 unsigned char cha f f p a ck e t [BLOCK SIZE] ;

35 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

36 unsigned long int swapped cha f f po s i t i on s [CHAFF BLOCKS] ;

37 int i , j , counter=0, c h a f f p o i n t e r =0;

38 long int f i l e s i z e , t o t a l b l o c k s ;

39 FILE ∗tmp , ∗ tmp aont ,∗ tmp rsa ;

40

127

41 /∗ c r ea t e temp f i l e s ∗/
42 tmp = tmp f i l e () ;

43 tmp aont = tmp f i l e () ;

44 tmp rsa = tmp f i l e () ;

45

46 /∗ app ly AONT to input f i l e ∗/
47 trans form (in , tmp , MIN BLOCKS) ;

48

49 /∗ ge t s i z e o f transformed f i l e ∗/
50 f s e e k (tmp , 0 ,SEEK END) ;

51 f i l e s i z e = f t e l l (tmp) ;

52 f s e e k (tmp , 0 ,SEEK SET) ;

53

54 /∗ c r ea t e c h a f f packe t i n d i c e s ∗/
55 s e t c h a f f p o s i t i o n s (c h a f f p o s i t i o n s ,CHAFF BLOCKS, (f i l e s i z e /BLOCK SIZE)) ;

56

57 /∗ by t e swapping r equ i r ed here on po s i t i o n i n d i c e s i f not b ig−endian machine

58 then wr i t e them to a temporary f i l e ∗/
59 i f (i s b i g e nd i a n () != 0) {
60 for (i =0; i<CHAFF BLOCKS; i++) {
61 swapped cha f f po s i t i on s [i] = c h a f f p o s i t i o n s [i] ;

62 SWAP(swapped cha f f po s i t i on s [i]) ;

63 }
64 fw r i t e (swapped cha f f po s i t i on s , s izeof (long int) ,CHAFF BLOCKS, tmp aont) ;

65 } else {
66 fw r i t e (c h a f f p o s i t i o n s , s izeof (long int) ,CHAFF BLOCKS, tmp aont) ;

67 }
68

69

70 f s e e k (tmp aont , 0 ,SEEK SET) ;

71

72 /∗ app ly AONT to c ha f f p o s i t i o n i n d i c e s ∗/
73 trans form (tmp aont , tmp rsa , 0) ;

74 f c l o s e (tmp aont) ;

75

76 /∗ encrypt c h a f f p o s i t i o n i n d i c e s wi th RSA ∗/
77 f s e e k (tmp rsa , 0 ,SEEK SET) ;

78 r s a enc ryp t (tmp rsa , out , e , n) ;

79

80 t o t a l b l o c k s = CHAFF BLOCKS + (f i l e s i z e /BLOCK SIZE) ;

81

82 for (j =0; j<t o t a l b l o c k s ; j++) {
83

84 /∗ i f curren t packe t i s a c h a f f packet , genera te one

85 and wr i t e i t to f i l e . Otherwise wr i t e v a l i d packe t ∗/
86 i f (j == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {

128

87

88 g en e r a t e cha f f p a ck e t (cha f f packe t ,BLOCK SIZE) ;

89 c h a f f p o i n t e r += 1 ;

90

91 fw r i t e (cha f f packe t , s izeof (char) ,BLOCK SIZE, out) ;

92

93 } else {
94 /∗ read next input b l o c k ∗/
95 memset (input b lock , 0 ,BLOCK SIZE) ;

96 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

97

98 /∗ wr i t e v a l i d b l o c k to output f i l e ∗/
99 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, out) ;

100

101 }
102

103 counter++;

104

105 }
106

107 }
108

109 void winnow(FILE ∗ in , FILE ∗out , mpz t ∗d , mpz t ∗n) {
110

111 int i , counter=0, c h a f f p o i n t e r =0;

112 int c h a f f p o s i t i o n s i z e = ((BLOCK SIZE∗ s izeof (long int))

113 +BLOCK SIZE) ;

114 int c h a f f p o s i t i o n s l e n g t h =

115 (((int) c e i l ((double) c h a f f p o s i t i o n s i z e / RSA BLOCK SIZE) ∗
116 ((int) c e i l ((double) mpz s i ze inbase (∗n ,16)/2)))+ s izeof (int)) ;

117 unsigned long int c h a f f p o s i t i o n s [CHAFF BLOCKS] ;

118 unsigned long int c h a f f p o s i t i o n s b l o c k [c h a f f p o s i t i o n s l e n g t h] ;

119 unsigned char i nput b lock [BLOCK SIZE] , a o n t f i l e [c h a f f p o s i t i o n s i z e] ;

120 long int f i l e s i z e ;

121 FILE ∗tmp , ∗ tmp rsa in , ∗ tmp rsa out , ∗ tmp aont in , ∗ tmp aont out ;

122

123 /∗ c r ea t e up temporary f i l e s ∗/
124 tmp = tmp f i l e () ;

125 tmp rsa in = tmp f i l e () ;

126 tmp rsa out = tmp f i l e () ;

127 tmp aont in = tmp f i l e () ;

128 tmp aont out = tmp f i l e () ;

129

130 /∗ copy encrypted c h a f f p o s i t i o n s and to a temp f i l e ∗/
131 f r ead (c h a f f p o s i t i o n s b l o c k , s izeof (char) , c h a f f p o s i t i o n s l e n g t h , in) ;

132 fw r i t e (c h a f f p o s i t i o n s b l o c k , s izeof (char) , c h a f f p o s i t i o n s l e n g t h , tmp rsa in) ;

129

133

134 /∗ decryp t c h a f f p o s i t i o n s ∗/
135 f s e e k (tmp rsa in , 0 ,SEEK SET) ;

136 r s a dec ryp t (tmp rsa in , tmp rsa out , d , n) ;

137

138 /∗ app ly i n v e r s e AONT to c h a f f p o s i t i o n s ∗/
139 f s e e k (tmp rsa out , 0 ,SEEK SET) ;

140 f r ead (a o n t f i l e , s izeof (char) , c h a f f p o s i t i o n s i z e , tmp rsa out) ;

141 fw r i t e (a o n t f i l e , s izeof (char) , c h a f f p o s i t i o n s i z e , tmp aont in) ;

142 f s e e k (tmp aont in , 0 ,SEEK SET) ;

143

144 i nv e r s e t r an s f o rm (tmp aont in , tmp aont out) ;

145 f s e e k (tmp aont out , 0 ,SEEK SET) ;

146

147 /∗ c h a f f p o s i t i o n s by t e swapping needed here , i f not b i g endian ∗/
148 f r ead (c h a f f p o s i t i o n s , s izeof (unsigned long int) ,CHAFF BLOCKS, tmp aont out) ;

149 i f (i s b i g e nd i a n () != 0) {
150 for (i =0; i<CHAFF BLOCKS; i++)

151 SWAP(c h a f f p o s i t i o n s [i]) ;

152 }
153

154 /∗ ge t s i z e o f inpu t f i l e ∗/
155 f s e e k (in , 0 ,SEEK END) ;

156 f i l e s i z e = f t e l l (in) ;

157 f s e e k (in , c h a f f p o s i t i o n s l e n g t h ,SEEK SET) ;

158

159 /∗ read f i l e in b l ock s , i f b l o c k has a v a l i d index , wr i t e to temp f i l e

160 o the rw i s e d i s ca rd the b l o c k ∗/
161 while (((counter ∗(BLOCK SIZE))+1) <= (f i l e s i z e −c h a f f p o s i t i o n s l e n g t h)) {
162

163 memset (input b lock , 0 ,BLOCK SIZE) ;

164 f r ead (input b lock , s izeof (char) ,BLOCK SIZE, in) ;

165

166 i f (counter == c h a f f p o s i t i o n s [c h a f f p o i n t e r]) {
167 c h a f f p o i n t e r += 1 ;

168 } else {
169 fw r i t e (input b lock , s izeof (char) ,BLOCK SIZE, tmp) ;

170 }
171

172 counter++;

173 }
174

175 /∗ app ly i n v e r s e AONT to temp f i l e ∗/
176 f s e e k (tmp , 0 ,SEEK SET) ;

177 i nv e r s e t r an s f o rm (tmp , out) ;

178

130

179 }
180

181 int main (int argc , char ∗∗ argv)

182 {
183 FILE ∗ in = NULL, ∗out = NULL, ∗key=NULL;

184 mpz t e , d , n ;

185

186 /∗ i f Windows or Mac i n i t i a l i s e random func t i on s ∗/
187 #i f d e f WIN32

188 srand (time (NULL)) ;

189 #end i f

190 #i f d e f sun

191 srandom (time (NULL)) ;

192 #end i f

193

194 /∗ check input arguments ∗/
195 i f (argc == 5) {
196 in = fopen (argv [2] , ” rb”) ;

197 i f (in == NULL) {
198 p r i n t f (”Error opening f i l e %s \n” , argv [2]) ;

199 return 1 ;

200 }
201

202 out = fopen (argv [3] , ”wb”) ;

203 i f (out == NULL) {
204 p r i n t f (”Error opening f i l e %s \n” , argv [3]) ;

205 return 1 ;

206 }
207

208 key = fopen (argv [4] , ” rb”) ;

209 i f (key == NULL) {
210 p r i n t f (”Error opening key f i l e %s \n” , argv [4]) ;

211 return 1 ;

212 }
213

214 i f ((strcmp (argv [1] , ”−c”)) == 0) {
215 read key (key ,&e ,&n) ;

216 addchaf f (in , out , &e , &n) ;

217 mpz clear (e) ;

218 mpz clear (n) ;

219 } else i f ((strcmp (argv [1] , ”−w”)) == 0) {
220 read key (key ,&d,&n) ;

221 winnow(in , out , &d , &n) ;

222 mpz clear (d) ;

223 mpz clear (n) ;

224 } else {

131

225 usage () ;

226 return 1 ;

227 }
228 } else i f (argc == 2 && (strcmp (argv [1] , ”−g”) == 0)) {
229 g en e r a t e k ey pa i r (&e ,&d,&n) ;

230 } else {
231 usage () ;

232 return 1 ;

233 }
234

235 return 0 ;

236 }

132

