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Cloud Motion Analysis Using Multichannel
Correlation-Relaxation Labeling

Adrian N. Evans

Abstract—Cloud motion vectors derived from sequences of
remotely sensed data are widely used by numerical weather pre-
diction models and other meteorological and climatic applica-
tions. One approach to computing cloud motion vectors is the
correlation-relaxation labeling technique, in which a set of candi-
date vectors for each template is refined using relaxation labeling
to provide a local smoothness constraint. In this letter, an exten-
sion of the correlation-relaxation labeling framework to tracking
clouds in multichannel imagery is presented. As this multichannel
approach takes advantage of the diversity between channels, it has
the potential for producing motion vectors with a superior quality
and coverage than can be achieved by any individual channel.
Results for visible and infrared images from Meteostat Second
Generation confirm the benefits of the multichannel approach.

Index Terms—Cloud tracking, Meteostat Second Generation,
motion analysis, multichannel images.

I. INTRODUCTION

THE ANALYSIS of cloud motion in remotely sensed
imagery is a challenging problem due to the nonrigid

nature of the motion. Traditional approaches include template
matching, in which templates from the first image are matched
against all positions in the second image that are within a
defined search area. The motion vector is then determined by
the best match position. When the match measure employed is
the cross-correlation coefficient (CCC), the result is the well-
known maximum cross-correlation (MCC) method that has
been a widely used operational method for deriving cloud-
motion winds [1]. Other approaches to solving the correspon-
dence problem in remotely sensed cloud sequences include the
use of artificial neural networks to match contour shape de-
scriptors [2] and image warping. More recently, Mukherjee and
Acton have demonstrated a scale-space classification scheme
for cloud tracking [3]. In this approach, pixels are clustered
by applying a fuzzy c-means algorithm to scale-space vectors
produced by area morphological operators. Correspondences
for points on the boundary of the cloud mass with the minimum
temperature are then established by minimizing a disparity-
based cost function.

Despite these recent developments, the operational use of
template-matching methods persists, although direct applica-
tion of the MCC technique suffers from several disadvantages.
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In particular, the underlying assumption that the correlation
surface is unimodal does not hold for many remotely sensed
images, which are characterized by low contrast and nonrigid
motion. This drawback was overcome by correlation-relaxation
labeling, in which relaxation labeling is applied to a set of
candidate vectors for each template to produce a locally smooth
motion field [4]. In [5], the CCC was shown to produce better
candidate vectors that require fewer iterations of the relax-
ation procedure to improve the motion estimates than other
computationally cheaper matching functions. The benefits of
incorporating robust ordinal measures, based on the relative
rank of intensities, within the correlation-relaxation framework
for cloud tracking have also been investigated [6].

Zhou et al. present an analysis of the three-dimensional (3-D)
nonrigid motion and structure of cloud sequences using the
visible channel of the Geostationary Operational Environ-
mental Satellite (GOES) Imager [7]. They propose an iterative
approach that employs error of fit functions containing both
local and global information. Here, the local information is cap-
tured by affine models, and the global analysis is based on the
assumption of smooth motion and the dynamics of fluid flows.
Although this approach is impressive, producing dense motion
estimates from a single-channel sequence, the results given in
[7] are derived from an input sequence with a sampling rate of
1 frame/min (GOES-9 operating in Super Rapid Scan Mode),
and its performance with sequences with lower temporal reso-
lutions remains to be established. This means, for example, that
it cannot readily be applied to the analysis of sequences such
as those produced by Meteostat Second Generation (MSG) that
have a sampling rate of 1 frame/15 min.

Whereas the work of Zhou et al. [7] was applied to the
visible GOES channel, Velden et al. use multichannel GOES
sequences to derive 3-D cloud motion vectors [8]. In this
approach, selected targets within the infrared and water vapor
channels are assigned initial heights using their equivalent
blackbody temperatures. Displacements, and hence velocity
vectors, are generated by finding the minimum sum of squares
between the target and the search positions. The vectors then
undergo the postprocessing steps of height reassessment and
quality control.

The application area for the technique presented in [8] is
the tracking of Atlantic tropical cyclones. When a more global
analysis of wind vectors is required, such as an input for
numerical weather prediction (NWP) models, the resolving
ability of this approach, and that of [7], may be computationally
prohibitive. The technique presented in this letter is relatively
efficient and makes use of multichannel data. However, rather
than assign heights to the vectors from different channels,
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the approach adopted is to exploit the diversity between the
visible and infrared channels, which essentially image the same
physical cloud structure, to produce dense two-dimensional
motion vector fields with a reasonable computational cost. As
such, it is suitable for large-scale analysis of cloud motion
patterns. In particular, the correlation-relaxation labeling
technique for motion estimation, which has been shown to
be appropriate for analyzing nonrigid motion in remotely
sensed images, is extended to accommodate candidate motion
vectors from multiple channels. This new multichannel cloud
motion estimation technique is described in Section II, and its
application to the analysis of MSG images of the North Atlantic
is investigated in Section III. Finally, conclusions are drawn
in Section IV.

II. MULTICHANNEL CORRELATION-RELAXATION

LABELING

The multichannel correlation-relaxation labeling framework
used in this work is based on that described in [9]. The
technique has three main stages: 1) template matching is used
to determine a number of candidate matches for templates
from each channel; 2) relaxation labeling is used to select the
most appropriate of the candidate matches by applying a local
smoothness constraint; and 3) a postfilter is used to replace vec-
tors that are still inconsistent with the local flow. These stages
are discussed in more detail below.

The image to be analyzed is first split into nonoverlap-
ping blocks of equal size, termed templates. In single-channel
correlation-relaxation labeling algorithms, up to n candidate
motion vectors are found for each template, typically by se-
lecting the n match positions with the highest CCC. The actual
number of candidate vectors for a given template may be less
than n as the CCC must exceed a predetermined threshold value
to qualify as a potential match.

To combine candidate vectors from multiple channels, var-
ious approaches have been investigated, including taking the
top n/c matches from each channel, where c is the number
of channels, and selecting candidate matches that perform well
in all channels. However, the scheme adopted here is to allow
the candidate vectors from different channels to compete at
the initial candidate selection stage by simply selecting the top
n matches regardless of which channel they come from. In
practice, this is achieved by finding the maximum of the CCCs
from all channels at each match position and then selecting the
n highest, provided they meet the qualifying criterion.

Normalizing the set of correlation coefficients for each tem-
plate gives rise to the initial match probabilities required for the
relaxation labeling stage. This is achieved by

P (0)(J → j) =
ρ(J → j)∑

λ∈CJ
ρ(J → λ)

(1)

where P (0)(J → j) is the initial probability of template J
being assigned candidate vector j, CJ is the set of candidate
vectors for template J , and ρ(J → j) is the CCC for the
proposed match J → j.

Probability updating is achieved by the iterative nonlinear
relaxation formula

P (n+1)(J → j) =
P (n)(J → j)Q(J → j)∑

λ∈CJ
P (n)(J → λ)Q(J → λ)

(2)

in which Q(J → j) is the support function that assesses the
compatibility of the proposed labeling J → j with those within
the local neighborhood of template J . Here, the local neigh-
borhood is simply defined as those templates that are four- or
eight-connected neighbors of J , denoted by NJ . Q(J → j) is
then given by

Q(J → j) =
∏

I∈NJ

∑
i∈CI

P (n)(I → i)R(J → j, I → i) (3)

where the mutual information R(J → j, I → i) measures the
similarity between the two velocity vectors associated with the
labelings J → j and I → i. To calculate R, a simplified form
of the expression from [9] is used, i.e.,

R(J → j, I → i) = exp
(
−|xJ→j − xI→i|

σ

)

· exp
(
−|yJ→j − yI→i|

σ

)
(4)

where xJ→j and yJ→j are the x and y components of the candi-
date vector J → j, and σ is a constant that controls the rate of
convergence. Unlike [4] and [9], this simplified formulation for
R does not include a term that relates to the distance between
feature points or templates. This is because the only templates
to be considered in (3) are connected neighbors of template J .
Therefore, the distance term can be considered to be constant.

The relaxation procedure is applied for a fixed number of
iterations, or until a convergence criterion is met, and the
candidate vector with the highest probability is assigned to each
template, producing a motion field in which the vectors are
locally consistent. However, as the relaxation algorithm does
not include a null class, exceptions can occur for templates
that do not have any candidate vectors that are consistent with
the local flow. In these cases, the best result the relaxation
algorithm can achieve is to select the least inconsistent vector.
To remove these inconsistencies, a conditional vector median
filter is applied. The filter first assesses the compatibility of the
vector for each template with the vector median of its connected
neighbors using (4), where the vector median is the vector with
the minimum sum of distances to all other vectors in the set
[10]. If the compatibility is below a predetermined threshold,
the original vector is replaced by the vector median. The vector
median post filter is an improvement upon that of [9] as it
considers both channels jointly and is uniquely defined for an
even number of samples.

III. EXPERIMENTAL RESULTS

The effectiveness of the new cloud motion analysis technique
was investigated by application to two high-resolution channels
of the MSG radiometer. Fig. 1 shows the visible channel of
a high-resolution MSG image covering Europe and the North
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Fig. 1. Visible channel of MSG high-resolution image, taken at 12:00 UT on
August 19, 2005. Region of interest marked in white.

Fig. 2. Visible and infrared MSG channels for region of interest from Fig. 1.
(a) Visible at 12:00 UT. (b) Infrared at 12:00 UT. (c) Visible at 12:15 UT.
(d) Infrared at 12:15 UT.

Atlantic, with a 480 × 496 region of interest marked. The
visible and infrared channels for the region of interest at time
separation of 15 min shown in Fig. 2 form the inputs for
the experimental investigation. Evaluating the performance of
cloud motion estimation techniques is problematic as the exact
motion between frames is not known. Visual examination of the
image pairs shown in Fig. 2 can be used to manually validate the
motion vectors but is time consuming. Alternatively, the output
of an NWP model can be used to provide an approximation
of the ground-truth motion field. Fig. 3 shows the output from
the PSU/NCAR MM5 model for the same time and date as
Fig. 1. The system was run on a polar stereographic grid with
a grid scale of 35 km and a 12-h spin-up period. Although the
projection of Fig. 3 differs from that of the MSG images, it
provides a good indication of the true wind flow and can be

Fig. 3. PSU/NCAR MM5 model result for 12:00 UT on August 19, 2005.
The background color is proportional to the integrated cloud water, and the
wind vectors are for the pressure level with the greatest cloud water content.

used for visual comparison with the results of the multichannel
correlation-relaxation algorithms.

For all experiments, the region of interest from each channel
of the 12:00 Universal Time (UT) image shown in Fig. 2
was split into 62 × 60 nonoverlapping templates of size
8 × 8 pixels. Each template was then matched over a ±8 search
area in the corresponding channel of the 12:15 UT image. As
the resolution of the MSG images is in the order of 3 km2/pixel
for the range of latitudes considered, this search range allows
the tracking of clouds with velocities of up 100 km/h. The mo-
tion vectors corresponding to the MCC positions for the visible,
infrared, and maximum of both channels are shown in Fig. 4(a),
(c), and (e), respectively. Although the visible and infrared
channels show general agreement with the model vectors, with
some structure evident in both, there are regions where the
vectors for one channel are clearly more consistent than for
the other. Selecting the best vector regardless of the channel
in which it occurred [Fig. 4(e)] produces a smoother flow, al-
though there are still many local inconsistencies. In this image,
1620 vectors were from the visible channel and 2100 from the
infrared channel, with a distribution as shown in Fig. 5(a).

Fig. 4(b), (d), and (f) shows the motion fields after applying
16 iterations of the relaxation algorithm to sets of up to
15 candidate vectors for each template. The threshold to qualify
as a candidate vector was ρ = 0.2, and the parameter σ = 250
in (4). The single-channel relaxation results [Fig. 4(b) and (d)]
are clearly an improvement on those of the MCC method and
demonstrate the benefits conferred by the relaxation process.
As the quality of the relaxed motion field depends on the quality
of the candidate vectors, the single-channel results cannot find
a locally consistent field in the absence of suitable candidates.
Here, the difference between channels is mainly manifested
as locally inconsistent vectors. Using sets of candidate vectors
derived from both channels as the input to the relaxation
algorithm produces the result in Fig. 4(f), with the channel that
each relaxed vector is associated with shown in Fig. 5(b). Com-
paring Fig. 4 with the model wind vectors of Fig. 3 shows that
the smoother, more locally consistent motion fields show better
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Fig. 4. MCC and correlation-relaxation results. Vectors at twice actual size for display purposes. (a) MCC for visible channel. (b) Relaxation result for visible
channel. (c) MCC for infrared channel. (d) Relaxation result for infrared channel. (e) MCC for both channels. (f) Relaxation result for both channels.

agreement. The smoothness of a motion field can be quantified
by its vector entropy, which can be estimated by the number of
bits needed for lossless encoding. Table I presents the vector
entropy of the motion fields from Fig. 4, calculated using the
encoding scheme of the H.263 video-encoding standard [11],
and confirms the advantage of the multichannel approach over

the use of individual channels. However, Fig. 4(f) still contains
a small number of local outliers where neither channel can
provide appropriate vectors for the candidate set. Applying the
post filter to Fig. 4(f) with a threshold of 0.97 produces the final
result in Fig. 6, which has a dense, locally consistent motion
field that shows good agreement with the model wind vectors
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Fig. 5. Channels giving rise to the best vector for each of the 3720 templates.
Visible and infrared channels shown as gray and white, respectively. (a) MCC
result of Fig. 4(e): 1620 visible and 2100 infrared. (b) Relaxed result of
Fig. 4(f): 1718 visible and 2002 infrared.

TABLE I
ENTROPY OF MOTION FIELDS OF FIG. 4 (BITS/VECTOR)

Fig. 6. Postfiltered result for Fig. 4(f): 80 of the 3720 vectors replaced with
σ = 250 in (4) and a threshold = 0.97. Vectors at twice actual size for display
purposes.

of Fig. 3. Here, 80 vectors were replaced, and the resulting
motion field had an entropy of 3.1892 bits/vector.

Selecting candidate motion vectors that are good matches in
both channels was also investigated by summing the CCCs from
both channels before selecting the n best candidates. Compared
with the results for both channels in Fig. 4(e) and (f), this
approach produced a smoother MCC field, but its motion field
after correlation-relaxation labeling was less smooth, resulting
in 100 vectors being replaced by the post filter to produce a
comparable result.

As a final assessment, the temporal consistency of the post-
filtered motion fields was evaluated by comparing the result of
Fig. 6 with the equivalent motion field produced using images
from 12:15 UT and 12:30 UT on the same day. The root-mean-

square error between the two fields was 0.6476 pixels, with 82%
of vectors having an error of < 1 pixel.

IV. CONCLUSION

A new multichannel approach to motion estimation has been
presented. The technique was developed within the framework
of correlation-relaxation labeling motion estimation, which
has been shown to perform well for many remote sensing
applications. Correlation-relaxation labeling is extended to
accommodate vectors from more than one channel by allowing
the vectors to compete at the initial selection of candidate
vector sets. Other developments include an efficient support
function, which only considers templates within a connected
neighborhood, and a vector median postfilter.

The new technique was applied to MSG imagery, where
the multichannel approach was shown to improve upon the
results of any single channel for both the MCC and correlation-
relaxation labeling techniques. Although the proposed ap-
proach does not assign heights to its vectors, it provides a
dense, locally consistent motion field that appears to have much
potential for techniques such as NWP. The extension of the
technique to three dimensions and its incorporation into an
NWP model is an area of ongoing research.
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