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Inexact Inverse Iteration for Symmetric Matrices

Jörg Berns-Müller∗ Ivan G. Graham† Alastair Spence†

Abstract

In this paper we analyse inexact inverse iteration for the real symmet-
ric eigenvalue problem Av = λv. Our analysis is designed to apply to the
case when A is large and sparse and where iterative methods are used to
solve the shifted linear systems (A − σI)y = x which arise. We present
a convergence theory that is independent of the nature of the inexact
solver used, and, though the use of the Rayleigh quotient is emphasised,
our analysis also extends to quite general choices for shift and inexact
solver strategies. Additionally, the convergence framework allows us to
treat both standard preconditioning and to present a new analysis of the
variation introduced by Simoncini and Eldén (BIT, Vol 42, pp.159-182,
2002). Also, we provide an analysis of the performance of inner iteration
solves when preconditioned MINRES is used as the inexact solver. This
analysis provides descriptive bounds which are shown to predict well the
actual behaviour observed in practice. Also, it explains the improvement
in performance of the modification introduced by Simoncini and Eldén
over the standard preconditioned form. Importantly, our analysis shows
that letting the shift tend to the eigenvalue, as is the case if the Rayleigh
quotient is used, does not harm significantly the performance of the iter-
ative method for the shifted systems. Throughout the paper numerical
results are given to illustrate the theory.

AMS subject classification: Primary 65F15, Secondary 65F10
Keywords: Inverse iteration, iterative methods, preconditioned MINRES,

Rayleigh quotient iteration

1 Introduction

In this paper we discuss the effect of inexact (iterative) solves on inverse iteration
for the eigenvalue problem

Av = λv, (1)
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where A is a large, sparse, symmetric real matrix. Inverse iteration requires the
solution of shifted linear systems of the form

(A− σI)y = x, (2)

where σ is the shift. If A is large and sparse, say arising from a discretised partial
differential equation in 3D, direct methods become impractical and iterative
methods with preconditioning become necessary to solve (2). In this setting we
arrive at an inner-outer iterative method for (1): the outer iteration is the basic
inverse iteration algorithm requiring the solve of (2) at each step, with the inner
iteration being the inexact solution of (2).

Here we are thinking of inverse iteration as a technique in its own right for
finding an eigenvalue and eigenvector (and which can be interpreted as a variant
of Newton’s method, see, for example, [4]) rather than the standard technique
of finding an eigenvector given a very accurate estimate for the eigenvalue.
Of course nowadays one would almost certainly use a Lanczos-type algorithm,
perhaps in the shift-invert mode, to solve (1), but we believe that an in-depth
understanding of the basic inexact inverse iteration algorithm for a simple eigen-
value is required before we can hope to understand properly the performance of
more sophisticated algorithms if inexact solves are used for shifted systems.

A very early paper on the use of iterative methods to solve (2) is [19]. Inexact
inverse iteration for symmetric matrices was discussed in [22] where a general
theory, independent of the details of the solver was presented, along with some
new eigenvalue bounds. An important recent paper on inexact inverse iteration
is [20] where a version of inexact Rayleigh quotient iteration is discussed. Sev-
eral new ideas are introduced especially with regard to the appropriate linear
system to be solved when Cholesky preconditioning is applied to (2), and with
regard to the stopping condition in the inner iteration. We shall discuss some of
these ideas in detail in this paper. Also [20] contains a theoretical discussion on
the equivalence of inexact inverse iteration and Jacobi-Davidson (or projected
Newton’s Method). For nonsymmetric matrices an inexact inverse iteration al-
gorithm with fixed shift is discussed in [6]. A convergence theory is given along
with an analysis of the choice of tolerance used in the inner solves. Convergence
results for non-symmetric matrices are also given in [13]. Other related work
on the use of inexact Rayleigh quotient iteration to compute the smallest eigen-
value of generalised Hermitian eigenvalue problems is discussed in [10], [12] and
[14]. Particularly successful for extreme eigenvalues is the LOBPCG method
discussed in [11]

There are several new features in the present paper. In Section 2 we present
a convergence theory, independent of the details of the inexact iterative solver.
This allows us to recover and extend existing results of [22] on inexact Rayleigh
quotient iteration, and also to obtain a quite general convergence result. Next
we extend the theory to include the alteration in the right hand side of (2) in-
troduced in [20], but note that our analysis is valid for any preconditioner and is
not restricted to Cholesky preconditioners as in [20]. In Section 3 we use some
standard results for MINRES (see, for example, [16, 8]) to provide new bounds
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on the number of inner iterations at each step of the outer iteration. These
bounds are seen in our numerical examples to provide qualitatively correct in-
formation about the performance of both unpreconditioned and preconditioned
inner solves. We also present an analysis that confirms the superiority of the
system introduced by [20] for preconditioned Rayleigh quotient iteration over
the standard preconditioned system. Our analysis also shows that we need not
be concerned that the Krylov solver is applied to a matrix which is becoming
more and more singular. The explanation lies in the interplay between the shift
tending towards the eigenvalue and the right hand side of the shifted system
tending to the corresponding eigenvector, together with the fact that Krylov
solvers handle very well nearly singular systems with only a small number of
critical eigenvalues. Similar ideas were explored in [19].

A key feature of this paper is that we use a residual stopping condition in
the convergence theory of §2, in our numerical experiments using MINRES, and
in the analysis of the performance of the inner solve in §3. This allows a unified
account of both the theory and practice.

We mention that a more detailed account of the material in this paper,
including more extensive numerical tests, is contained in Chapters 2 and 3 of [1].

2 Inexact Inverse Iteration

2.1 Preliminaries

Consider the solution of the eigenvalue problem

Av = λv, ‖ v ‖= 1, (3)

where A is a real symmetric n×n matrix, with eigenvalues λj , j = 1, . . . , n and
corresponding orthonormalised eigenvectors vj , j = 1, . . . , n. Inverse iteration
for (3) requires the solution of shifted systems of the form (A − σI)y = x for
some chosen real shift σ. Let (λ1,v1) denote a simple eigenpair of (3) which we
wish to compute. Throughout this paper we will be interested in shifts σ which
are close enough to λ1 in the sense that

0 <|λ1 − σ|<
1

2
min

j=2,...,n
|λ1 − λj| . (4)

Then we have an induced ordering on the eigenvalues

0 < |λ1 − σ|< |λ2 − σ| ≤ . . . ≤ |λn − σ| . (5)

Note that this ordering depends on σ, and as σ varies it is possible this this
ordering might change. However, nothing essential in the theory is lost by
assuming this ordering.

We are interested in the case when A is large and sparse and so the shifted
systems will be solved (inexactly) by some iterative algorithm. In Section 3 we
will consider in detail the case when the iterative solver is MINRES (see, for
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example, [8]), which is appropriate since A−σI is symmetric but is likely to be
indefinite. However, in this section we will present a convergence theory that is
independent of the solver.

The inexact inverse iteration algorithm is given in Algorithm 1.

Algorithm 1: Inexact Inverse Iteration alg1

Given x(0) with ‖ x(0) ‖= 1. For i = 0, 1, 2, . . .

(1) Choose σ(i) and τ (i)

(2) Solve (A − σ(i)I)y(i) = x(i) inexactly, that is,
‖ (A − σ(i)I)y(i) − x(i) ‖≤ τ (i)

(3) Update x(i+1) = y(i)/ ‖ y(i) ‖

(4) Test for convergence

We refer to the iteration in Algorithm 1 as the outer iteration and the
iteration implicit in the inexact solve as the inner iteration, and so inexact
inverse iteration is an example of an inner-outer iterative algorithm (see, for
example, [2, 3, 21, 5]).

Before we analyse the convergence of Algorithm 1 we recall some definitions
and notation. A key concept is the orthogonal splitting used in [17, p. 63]. If
x(i) is any unit vector approximating v1, we introduce the splitting

x(i) = cos θ(i) v1 + sin θ(i) u(i), u(i) ⊥ v1, (6)

with ‖ v1 ‖=‖ u(i) ‖= 1 and θ(i) = ∠(x(i),v1), the error angle. For convenience
we usually write

c(i) = cos θ(i), s(i) = sin θ(i), and t(i) = |s(i)|/|c(i)| = | tan θ(i)|. (7)

From (6), ‖x(i)−c(i)v1‖= |s(i)| ≤ t(i) and normally we use |s(i)| or t(i) as a mea-
sure of the convergence of x(i) to span {v1}. However, we note that convergence
occurs if we can prove one of |θ(i)| → 0, |s(i)| → 0, t(i) → 0, or |c(i)| → 1. Also,

recall that, for x(i) given by (6), the Rayleigh quotient, ̺(x(i)) = x(i)T

Ax(i),
satisfies

λ1 − ̺(x(i)) = (s(i))2[λ1 − ̺(u(i))], (8)

and the eigenvalue residual, r(i), defined by

r(i) := (A − ̺(x(i))I)x(i) (9)

satisfies ([17], Theorem 11.7.1)

|s(i)| |λ2 − ̺(x(i))| ≤ ‖ r(i) ‖≤ |s(i)| |λn − λ1|. (10)
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2.2 Convergence Theory

We now present a convergence theory for inexact inverse iteration. Various
choices for σ(i) and τ (i) in Algorithm 1 are possible and our analysis allows us
to obtain a full understanding of the effects of the different options. However, the
most important choice for σ(i) is the Rayleigh quotient, and we shall emphasise
this case throughout. For example, it is a classical result, proved in [15], that
inverse iteration with Rayleigh quotient shifts and exact linear solves converges
cubically when applied to symmetric matrices (see [17] for an elegant treatment).
It is natural to ask how the tolerance τ (i) should be chosen so that inexact inverse
iteration with Rayleigh quotient shifts can recover cubic convergence. We shall
see in Theorem 2.1 how to do this.

We start with a bound for the error after one step of Algorithm 1. Similar
results are to be found in [22] and, for nonsymmetric matrices with fixed shift,
[6]. First we provide some notation. Because of step (2) of Algorithm 1 we have
a residual

res(i) := x(i) − (A − σ(i)I)y(i) (11)

which satisfies
‖ res(i) ‖2 ≤ τ (i). (12)

Note that the “inner linear solve” residual res(i) should not be confused with
the outer eigenvalue residual r(i) which was defined in (9). Now we can state
the following Lemma.

Lemma 2.1 If x(i) is such that

|c(i)| > τ (i), (13)

then one step of Algorithm 1 yields x(i+1) with

|λ1 − σ(i)|

|λn − σ(i)|

∣∣ |s(i)|− ‖⊤⊤ res(i)‖
∣∣

|c(i)| + τ (i)
≤ t(i+1) ≤

|λ1 − σ(i)|

|λ2 − σ(i)|

|s(i)| + τ (i)

|c(i)| − τ (i)
. (14)

where res(i) satisfies (11) and (12), and ⊤⊤ := I − v1v
T
1 .

Proof: First use step (3) in Algorithm 1 and (6) to rewrite (11) as

‖y(i)‖ (A − σ(i)I)x(i+1) = cos θ(i) v1 + sin θ(i) u(i) − res(i),

and using (6) again gives

‖y(i)‖ {c(i+1)(λ1 − σ(i))v1 + s(i+1)(A− σ(i)I)u(i+1)}

= c(i)v1 + s(i)u(i) − res(i). (15)

Because v1 is orthogonal to both u(i) and u(i+1) we can resolve (15) into two
equations in span{v1} and {v1}

⊥, respectively. Along v1 we have

‖y(i)‖ c(i+1)(λ1 − σ(i)) = c(i) − vT
1 res(i), (16)
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and in {v1}⊥ we have

‖y(i)‖ s(i+1)(A − σ(i)I)u(i+1) = s(i)u(i) − ⊤⊤ res(i). (17)

Now let (A − σ(i)I)⊥ denote the restriction of (A − σ(i)I) to {v1}⊥. This
linear operator is invertible on {v1}⊥ and satisfies ‖(A−σ(i)I)−1

⊥ ‖=|λ2−σ(i)|−1,
and ‖(A − σ(i)I)⊥‖=|λn − σ(i)|. Thus from (17) we obtain

‖y(i)‖ |s(i+1)| ≤ |λ2 − σ(i)|−1 {|s(i)|+ ‖⊤⊤ res(i)‖}. (18)

Combining this with a trivial lower bound on ‖y(i)‖ c(i+1) from (16) we obtain

t(i+1) =
‖y(i)‖ |s(i+1)|

‖y(i)‖ |c(i+1)|
≤

∣∣∣∣
λ1 − σ(i)

λ2 − σ(i)

∣∣∣∣
|s(i)|+ ‖⊤⊤ res(i)‖

|c(i)| − |vT
1 res(i)|

, (19)

from which the right hand side of (14) follows on applying (12).
A similar approach is used to obtain the left hand side of (14). First observe

‖y(i)‖ |s(i+1)| = ‖(A− σ(i)I)−1
⊥ (s(i)u(i) + ⊤⊤ res(i))‖ (20)

≥
1

|λn − σ(i)|
‖s(i)u(i) + ⊤⊤ res(i))‖ (21)

≥
1

|λn − σ(i)|

∣∣∣|s(i)|− ‖⊤⊤ res(i)‖
∣∣∣ . (22)

Then combine this with a trivial upper bound on ‖y(i) ‖ c(i+1) from (16), to
obtain

∣∣∣∣
λ1 − σ(i)

λn − σ(i)

∣∣∣∣

∣∣|s(i)|− ‖⊤⊤ res(i)‖
∣∣

|c(i)| + |vT
1 res(i)|

≤ t(i+1), (23)

from which the left-hand side of (14) follows. 2

Note that if τ (i) = 0, as is the case for exact solves, then we recover the
standard results for exact solves (see, for example, [17]).

Since we restrict attention to symmetric matrices there are two main choices
for σ(i), namely the natural Rayleigh quotient shift (popular because of its ease
of computation and its quadratic approximation property when the approximate
eigenvector is accurate enough), and a fixed shift (employed in cases where the
approximate eigenvector may be poor). We restrict to the Rayleigh quotient
case here but return to the fixed shift case in §2.3. Then with σ(i) = ̺(x(i)) we
have from (8)

|λ1 − σ(i)| = |λ1 − ̺(u(i))||s(i)|2. (24)

There are also two practical options for the choice of tolerance τ (i). Either we
can choose to decrease τ (i) as the outer iteration proceeds, or τ (i) can be held
fixed. Let us first consider the case of a decreasing tolerance, so assume in
addition to (13) that there is a constant C2, independent of i, such that

τ (i) ≤ C2|s
(i)| < |c(i)| (25)
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as would be the case if τ (i) were chosen bounded by a multiple of the eigenvalue
residual ‖r(i)‖, see (9) and (10). Then the right hand inequality in (14) combined
with (24) and (25) gives

t(i+1)

(t(i))3
≤

|λ1 − ̺(u(i))|(c(i))2

|λ2 − ̺(x(i))|

1 + C2

1 − C2t(i)
, (26)

(cf. [17] eqn(4.22) ). Equation (26) shows that in the asymptotic regime we
achieve cubic convergence, just as would be attained if exact solves were used.
This result is implicit in [22].

The more interesting and practical case is when the tolerances τ (i) are not
required to decrease as the outer iteration proceeds so that the inner solves are
implemented with a fixed tolerance and hence are potentially cheaper. So, in
contrast to (25), let us assume that

τ (i) = τ (0), ∀i; τ (0) ≤ C3|c
(i)|, C3 < 1. (27)

With this choice for τ (i), (14) with (24) gives

t(i+1)

(t(i))2
≤

|̺(u(i)) − λ1|(c(i))2

|λ2 − ̺(x(i))|

t(i) + C3

1 − C3
. (28)

Thus with a fixed tolerance cubic convergence is lost but quadratic convergence
is maintained because of the quadratic convergence of the Rayleigh quotient.
We gather together these results in the following Theorem.

Theorem 2.1 Let A be a real n × n symmetric matrix and consider the ap-
plication of Algorithm 1 with σ(i) chosen to be the Rayleigh quotient ̺(x(i)).
Assume c(i) and s(i) are given by x(i) = c(i)v1 + s(i)u(i) and (12) is satisfied.

(a) (Decreasing tolerance) If τ (i) in (12) satisfies (25) then Algorithm 1 con-
verges cubically.

(b) (Fixed tolerance) If τ (i) in (12) is chosen to satisfy (27) then Algorithm 1
converges quadratically.

This theorem follows from bounds (26) and (28) above. It is also a corollary
of Theorem 2.2 that allows more general choices for σ(i) and τ (i), and which is
proved in the next subsection.

Now we look at some numerical results from a simple model problem to
illustrate Theorem 2.1.

Example 2.1 Consider the eigenvalue problem for the 2-D Laplacian, −∇2u =
λu, with homogenous Dirichlet boundary conditions on the rectangle 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.3, which is discretised using finite differences with the 5-point Lapla-
cian approximation on a 12 × 12 regular grid. In Table 1 we present numerical
results obtained when calculating λ1 (≃ 15.6) the smallest (simple) eigenvalue of
the discretised matrix. Using unpreconditioned MINRES as the inexact solver
we apply the two versions of inexact inverse iteration discussed in Theorem 2.1,
namely

7



RQId RQIf
τ (0) = 0.1, C2 = 0.1 τ (0) = 0.1

i log10 s(i) k(i−1) log10 s(i) k(i−1)

0 -0.14 -0.12
1 -1.62 15 -1.41 19
2 -4.33 24 -3.85 19
3 -12.90 45 -9.03 33
4 -36.19 78 -19.46 50
5 -82.66 113 -40.72 76
6 -82.96 108∑
k(i) 275 305

Table 1: Numerical results for unpreconditioned MINRES applied to Example
2.1 using the methods in Theorem 2.1. Here s(i) denotes sin θ(i) defined by
(6), k(i) denotes the number of inner iterations at the ith step, and C2 is the
constant in (25).

RQId: Rayleigh quotient shift, decreasing tolerance,

RQIf: Rayleigh quotient shift, fixed tolerance,

(cases a) and b) in Theorem 2.1 respectively). Each row in Table 1 provides the
outer iteration number, log10 s(i) (calculated using the exact v1) and k(i−1) the
number of inner iterations needed to satisfy the residual condition in step (2) of
the Algorithm. To illustrate accurately the convergence rates attained, the exper-
iment was carried out using MATLAB with variable precision arithmetic using
128 decimal digit arithmetic. In both experiments we used ‖(A−̺(x(i))I)x(i)‖≤
10−80|̺(x(i))| as the test for convergence in step (4) of Algorithm 1.

As predicted in Theorem 2.1, we observe in Table 1 quadratic convergence for
RQIf and cubic convergence for RQId. At a practical level (that is, to double
precision on most of the current computers) our experiments have shown that
there is little difference between the two methods with both needing roughly
speaking about the same number of inner iterations in total.

2.3 Theory for a General Method

In this subsection we provide the details of the convergence theory for Algo-
rithm 1 for general choices for σ(i)and τ (i). We shall use the right hand bound
in (14)

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|

|s(i)| +τ (i)

|c(i)| −τ (i)
, (29)
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though a more refined analysis would be possible using the right-hand side of
(19), namely,

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|

|s(i)| + ‖⊤⊤ res(i)‖

|c(i)| − |vT
1 res(i)|

, (30)

if more were known about the size of certain components of res(i) (see [1]).
Similar expressions are found in [22] and [20], where a bound is derived directly
using the properties of a Krylov solver. In the latter paper the observation is
made that for a Krylov solver the term vT

1 res(i) is likely to reduce significantly
in the first few iterations since x(i) is rich in the direction v1. Hence, since
|c(i)| tends to 1, the factor |c(i)| − |vT

1 res(i)| is unlikely to cause any problems
in practice.

Equation (29) is used in the proof of the following general convergence result.

Theorem 2.2 Let A be a real n× n symmetric matrix and consider the appli-
cation of Algorithm 1 to find a simple eigenpair (λ1,v1). Assume x(i) is given
by (6) and that σ(i) satisfy (4). Additionally, assume σ(i) and τ (i) are chosen
to satisfy

|λ1 − σ(i)| ≤ C1|s
(i)|α (31)

τ (i) ≤ min{C2|s
(i)|β, C3|c

(i)|} (32)

for some constants α, β, C1, C2, C3 independent of i with 0 ≤ β ≤ 1, 0 ≤ C3 < 1
and α + β ≥ 1. If c(0) 6= 0, and the initial approximation x(0) is such that

C4 := |s(0)|α+β−1 2C1(1 + C2)

|λ2 − λ1|(1 − C3)
< 1

then

t(i+1) ≤ C4t
(i),

with C4 independent of i, and the method converges. In this case,

t(i+1) ≤ C(t(i))α+β

with C = C4/ |s(0)|α+β−1, and so convergence is of order (α + β).
Proof: Inserting the bounds (31) and (32) into (29) produces

t(i+1) ≤
2C1|s

(i)|α

|λ2 − λ1|

|s(i)| + C2|s
(i)|β

|c(i)| − C3|c
(i)|

,

where we have used (4) and (5) to bound the term |λ2−σ(i)| in the denominator
of (29). Now, rearranginging we have

t(i+1) ≤ C4t
(i) (1 + C2|s

(i)|β−1)|s(i)|α

(1 + C2)|s
0|α+β−1

≤ C4t
(i) |s

(i)|α+β−1

|s0|α+β−1
.

9



Convergence follows by induction on i. Finally

t(i+1) ≤
C4

|s(0)|α+β−1
(t(i))α+β . (33)

2

As a consequence of Theorem 2.2 we obtain the convergence of x(i) to ±v1

and ̺(x(i)) to λ1 as i → ∞. Note that the condition c(0) 6= 0 ensures that the
starting vector is not orthogonal to the required direction v1.

Theorem 2.1 is a special case of Theorem 2.2. For Rayleigh quotient shifts
we have α = 2, and cases (a) and (b) in Theorem 2.1 correspond to β = 1 and
β = 0 respectively.

In addition to the two strategies examined in Theorem 2.1 a third strategy
could be based on keeping σ(i) fixed and choosing τ (i) ≤ C2|s(i)| as would be
the case if τ (i) = O(‖r(i)‖) (see (10)). Theorem 2.2 shows that this approach
would attain at least linear convergence for accurate enough σ(0) and x(0). Also
the theory indicates that there is likely to be little gain in ever choosing τ (i) =
o(|s(i)|).

Finally we see that a strategy based on a fixed shift σ(0) and a fixed toler-
ance τ (0) 6= 0 is unlikely to converge as can be verified by the following simple
example.

Example 2.2 Suppose that x(i) = c(i)v1 + s(i)v2. If we construct a particular

y(i) via the formula, y(i) = c(i)

λ1−σ(0) v1 + s(i)+τ (0)

λ2−σ(0) v2 then x(i) and y(i) satisfy

‖x(i) − (A − σ(0)I)y(i)‖= τ (0). Then computing x(i+1) and representing it in

the form (6) we obtain tan θ(i+1) = λ1−σ(0)

λ2−σ(0)
sin θ(i)+τ (0)

cos θ(i) . Repeating this formula

for each i we obtain a fixed point iteration for θ(i). If θ(i) → θ as i → ∞ then

θ satisfies sin θ = λ1−σ(0)

λ2−λ1
τ (0), which is nonzero unless σ(0) = λ1 or τ (0) = 0.

Such non-convergence is often refered to as stagnation, see, for example, [18].

2.4 Convergence Theory for Preconditioned Solves

In this subsection we first discuss briefly the convergence theory for standard
inverse iteration with preconditioned inner solves. Then we shall use this to de-
rive a new convergence analysis of the variant of preconditioned inverse iteration
introduced by [20].

Whatever iterative algorithm is used to solve

(A − σ(i)I)y(i) = x(i) (34)

in Algorithm 1 it will almost certainly be applied to a preconditioned system,
and since A is symmetric it is common to use a symmetric positive definite
preconditioner. If P is a positive definite symmetric matrix that approximates
(A − σ(i)I) in some way, then, at least for the theory, we may introduce a
factorisation P = P1P

T
1 , and to preserve the symmetry in the system we may

consider the symmetrically preconditioned system

P−1
1 (A− σ(i)I)P−T

1 ỹ(i) = P−1
1 x(i); y(i) = P−T

1 ỹ(i). (35)
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Of course the preconditioner P or the factorisation P = P1P
T
1 is often not

needed in practice and implementation of iterative methods for (35) may only
require the action of P−1.

We shall assume that the stopping condition for (35) is based on the residual
of the original system, that is, although (A−σ(i)I)y(i) = x(i) is solved using (35)
the iteration stops when ‖res(i)‖≤ τ (i) where res(i) is defined by (11). Hence
the convergence theory for the outer iteration given in the previous subsections
applies, and is not repeated here.

An alternative to (35) is discussed in [20]. As we shall see in Section 3,
this alternative is beneficial for the performance of the preconditioned iterative
solver. The idea is to replace (35) by

P−1
1 (A − σ(i)I)P−T

1 ỹ(i) = PT
1 x(i); y(i) = P−T

1 ỹ(i). (36)

Here the right hand side in the shifted linear system differs from that of (35).
Multiplying by P1 shows that (36) is equivalent to

(A− σ(i)I)y(i) = Px(i), (37)

so that the basic step in inverse iteration is changed by replacing x(i) by Px(i)

on the right hand side. (Note, for this formulation, if P = (A − σ(i)I), then
y(i) = x(i) and no progress is made by the outer iteration.) Not surprisingly,
our analysis will show that this alteration removes the possibility of attaining
cubic convergence (except in a very special case, see Example 2.4). If we assume
that the iterative solution of (36) is stopped by a relative residual test on (37),
namely,

‖(A − σ(i)I)y(i) − Px(i)‖≤ τ (i) ‖Px(i)‖, (38)

then we obtain Algorithm 2. Note that putting P = I in Algorithm 2 recovers
Algorithm 1.

To analyse Algorithm 2 let us introduce

res(i) := Px(i) − (A − σ(i)I)y(i), (39)

where, as indicated by step (3) of Algorithm 2,

‖res(i)‖≤ τ (i) ‖Px(i)‖ . (40)

If we assume (cf. (13) )

|vT
1 Px(i)|>|vT

1 res(i)|, (41)

then by carrying out an analysis similar to the proof of Lemma 2.1 we obtain
the one step bound

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|

‖⊤⊤Px(i)‖ + ‖⊤⊤ res(i)‖

|vT
1 Px(i)| −|vT

1 res(i)|
, (42)
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Algorithm 2: Preconditioned Inexact Rayleigh Quotient

Iteration alg2

Choose P. Given x(0) with ‖ x(0) ‖= 1.
For i = 0, 1, 2, . . .

(1) Choose σ(i) as the Rayleigh quotient

(2) Choose τ (i)

(3) Solve (A − σ(i)I)y(i) = Px(i) inexactly using the precondi-
tioner P, such that
‖ (A − σ(i)I)y(i) − Px(i) ‖≤ τ (i) ‖Px(i)‖

(4) Update x(i+1) = y(i)/ ‖y(i)‖

(5) Test for convergence

which reduces to (19) if P = I.
Now it is likely that little will be known about the quantity ‖⊤⊤Px(i)‖ on

the numerator of the right hand side of (42) except that (for general choices of
P) it is unlikely to tend to zero, and so there will be little point in choosing
decreasing tolerances τ (i). Hence Algorithm 2 will typically be used with a fixed
tolerance. Now, if we assume that there exists a C3, independent of i, such that

τ (i) = τ (0), ∀i; τ (0) ‖Px(i)‖≤ C3 |vT
1 Px(i)|, C3 < 1, (43)

(which if P = I reduces to (27)) then recalling σ(i) is the Rayleigh quotient

t(i+1)

(t(i))2
≤

|λ1 − ̺(u(i))||c(i)|2

|λ2 − σ(i)|

‖Px(i)‖ (1 + τ (0))

|vT
1 Px(i)| (1 − C3)

. (44)

Hence we have the following Theorem:

Theorem 2.3 Let A be a real n × n symmetric matrix and consider the ap-
plication of Algorithm 2 to find a simple eigenpair (λ1,v1). Assume c(0) 6= 0,
τ (i) = τ (0) for all i, and that (41) and (43) hold. Then the method is quadrati-
cally convergent for a sufficiently close starting guess.

For a general preconditioner we will be required to have available a subrou-
tine for computing the action of P−1, but little may be known about the action
of P. Thus in general one may not be able to say much about the second quo-
tient on the right hand side of (44). However, we can interprete condition (43)

12



as describing the quality of P as a preconditioner for the eigenvalue problem.
In particular, if x(i) → v1,

‖Px(i)‖

|vT
1 Px(i)|

→
‖Pv1‖

|vT
1 Pv1|

, (45)

then (43) requires that Pv1 should be rich in the direction v1. In Example 2.3
for the calculation of the 20th eigenvalue of a certain matrix, direct evaluation
found that ‖Px(i)‖< 1.5 |vT

1 Px(i)| for all i, which is consistent with assumption
(43). In these same experiments |vT

1 res(i)| ≤ 2 × 10−3 for all i, and (41) is
satisfied. The fact that vT

1 res(i) is likely to be small when a Krylov method is
used as inexact solver was noted by [20].

Comparing (44) with (28), the corresponding bound for unpreconditioned
solves with fixed tolerance, we see that quadratic convergence of the outer iter-
ation is again attained, but the asymptotic constant may be larger than in the
standard preconditioned case with consequently more outer iterations required
for convergence.

Bound (42) also shows that choosing res(i) to decrease like |s(i)| will normally
not produce cubic convergence because of the presence of the ‖⊤⊤Px(i)‖ term
in the numerator of the right hand side.

Numerical results illustrating this theory are given in the following Example.

Example 2.3 To show the advantage of (36) over (35) Consider the gen-
eralised eigenvalue problem Kx′ = λMx′ obtained from the matrix market ma-
trices ‘bcsstk09’ and ‘bcsstm09’. Here n = 1093, K and M are sparse, and M is
a diagonal matrix with positive diagonal elements. This problem is reduced to a
standard symmetric eigenvalue problem Ax = λx, where A = M−1/2KM−1/2

and so A retains the sparsity structure of K. In Table 2 we present compu-
tations of λ20 = 2.9 × 109 the 20th smallest eigenvalue. The inner solve was
carried out by preconditioned MINRES, with preconditioner taken to be an in-
complete Cholesky decomposition of A using the matlab routine ‘cholinc’ with
droptol=2e-3. We compare two methods both using a Rayleigh quotient shift and
a fixed tolerance, so that both have quadratic convergence.

(a) RQIf: Solve (35) using MINRES with stopping condition ‖res(i)‖≤ τ (0) =
0.9 where res(i) = x(i) − (A − σ(i)I)y(i), so Theorem 2.1 applies.

(b) SEf: Solve (36) using MINRES with stopping condition ‖res(i)‖≤ τ (0) ‖
Px(i)‖ with τ (0) = 0.1, so Theorem 2.3 applies.

In all runs we stopped the outer iteration when the relative eigenvalue residual
satisfied ‖(A − ̺(x(i))I)x(i)‖ / |̺(x(i))|≤ 10−9. Table 2 presents the numerical
results. Here we take a starting vector of the form x(0) = c(0)v1 +s(0)u(0) where
t(0) = s(0)/c(0) = 0.001. Other starting guesses were taken but no qualitative
differences in the results were observed.

In Table 2 we observe that both methods exhibit quadratic convergence as
predicted by the theory. Both took the same number of outer iterations, but
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RQIf SEf

τ (0) = 0.9 τ (0) = 0.1

‖r(i)‖ / |ρ(i)| tanθ(i) k(i−1) ‖r(i)‖ / |ρ(i)| tanθ(i) k(i−1)

0 2.3e+00 1.0e-02 2.3e+00 1.0e-02
1 1.1e+00 1.8e-03 56 1.0e-01 7.3e-04 77
2 6.5e-06 3.7e-09 102 1.3e-04 1.3e-08 84
3 8.5e-08 3.1e-10 124 9.5e-08 4.1e-10 65∑
ki−1 282 226

Table 2: Numerical results for Algorithm 2 using preconditioned MINRES ap-
plied to Example 2.3 using the methods in Theorem 2.1 and Theorem 2.3. The
second and fifth columns give the respective relative eigenvalue residual.

SEf was more efficient in terms of the total number of inner iterations required.
In fact, this is the key motivation for the modification of (35), namely that (36)
is better suited for the application of the Krylov solver since it leads to reduced
inner iteration counts. We explain this in detail in §3.

For theoretical interest only, we note that if P = A in Algorithm 2 then (40)
and (42) imply

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|

|s(i)||λn| +τ (i)

|c(i)||λ1| −τ (i)
. (46)

Hence it is possible to recover a cubically convergent method if τ (i) is choosen
proportional to |s(i)| and this is obtained by preconditioning the shifted system
(34) by A.

The results in Table 2 show a significant reduction in the number of inner
iterations taken by SEf compared to RQIf. The reason for this improvement
is analysed in §3. However before doing this analysis we also note that the
domain of convergence of the outer iteration may be reduced significantly when
we decide to solve (A− σ(i)I)y(i) = Px(i) rather than (A− σ(i)I)y(i) = x(i) as
the following simple example shows.

Example 2.4 (Reduced domain of convergence using (36)) Assume A is

symmetric positive definite and let P = A. Take the factorisation P1 = A
1
2 .

Then P−1
1 (A−σ(i)I)P−1

1 ỹ(i) = PT
1 x(i), which is the preconditioned system (36),

reduces to (I− σ(i)A−1)y(i) = x(i). Assume now x(i) = c(i)v1 + s(i)v2 and that
exact solves are used to obtain y(i). We readily obtain the one step bound

t(i+1)

t(i)
≤

|λ1 − σ(i)|

|λ2 − σ(i)|

|λ2|

|λ1|
.

Now the factor |λ2/λ1| may be large enough to significantly reduce the domain
of convergence of the outer iteration. The domain of convergence would be
reduced further if one added the effects of an inexact solver and a less good
preconditioner.
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With such a possible drawback there must be some gain in considering this
option. As we prove in Section 3.3 the benefit comes when one considers the
number of inner iterations needed to solve the linear system when using a Krylov
method.

3 The Iterative Solver

Our aim in this section is to understand the performance of the inner iteration
part of the inexact inverse iteration algorithm, and since (A−σ(i)I) is symmetric
but probably indefinite the natural Krylov method to solve (A−σ(i)I)y(i) = x(i)

is MINRES (see, for example, [7]).
First, we summarise some known results on MINRES in a form convenient

for our use. In §3.1 we provide bounds on ratios of eigenvalues for two common
preconditioners that are needed for §3.3. Then in §3.2 and §3.3 we provide an
analysis of the number of iterations needed for unpreconditioned and precondi-
tioned inner solves. Section 3.4 contains a discussion on ‘a posteriori’ bounds.

As discussed in the previous section the linear system will normally be solved
iteratively using a preconditioner, P say, where P is positive definite and approx-
imates (A−σ(i)I) in some way. If A arises from a discretised partial differential
equation P−1 may be constructed for example using a domain decomposition
or multigrid technique. Alternatively P may be obtained using a Cholesky fac-
torisation of A (or of a shifted A). In this section we describe the theory for
MINRES that is used to understand the inner iteration behaviour for both un-
preconditioned and preconditioned solves in Algorithms 1 and 2. Specifically we
derive a particular bound on the residual which will be used to provide bounds
on the number of iterations needed for the inner solves.

Let us first review some standard results on MINRES applied to a linear
system

Bz = b, (47)

where B is a real symmetric n × n matrix. Define the Krylov space Kk(B,b)
by

Kk(B,b) = span {b,Bb, . . . ,Bk−1b}.

Throughout this paper we take an initial guess z0 = 0, though other choices are
possible. MINRES seeks a solution zk ∈ Kk(B,b) characterised by the property
‖b− Bzk‖2= minz∈Kk

‖b − Bz‖2.
Assume B has an eigenvalue decomposition of the form B = WΛWT , where

W is orthogonal and Λ = diag(µ1, . . . , µn). Then

‖b− Bzk‖2 = min
q∈Pk

‖q(B)b‖2

where Pk denotes the space of polynomials of degree k with q(0) = 1, and

‖b− Bzk‖2 = min
q∈Pk

‖q(Λ)WTb‖2, (48)
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from which a straightforward analysis (see, for example, p.54 of [7]) shows that

‖b− Bzk‖2 ≤ 2

(√
κ − 1

κ + 1

)k−1

‖b‖2 (49)

where κ = maxi |µi|
mini |µi|

. However, this bound may not reflect the performance of

MINRES in our application, where because of the particular distribution of the
spectrum, MINRES performs significantly better than indicated by (49).

Assume that the spectrum of B contains a small number of successive eigen-
values which are in some way distinguished from the remaining eigenvalues of B.
If J ⊂ Nn := {1, 2, . . . n} then {µj}j∈J is the distinguished set and |J | denotes
the number of elements in it. Set Jc := Nn − J and QJ := diag{δ1, . . . , δn}
where δj = 0 if j ∈ J and δj = 1 otherwise. Further, as in [7, §3.1] or [9, §7.3.6],
introduce the polynomial

pJ(t) :=
∏

j∈J

µj − t

µj
(50)

which vanishes for t ∈ {µj}j∈J . Clearly q pJ ∈ Pk for any q ∈ Pk−|J| and using
the fact that pJ(Λ) = pJ(Λ)QJ , (48) implies

‖b− Bzk‖2 ≤ min
q∈Pk−|J|

‖q(Λ)pJ(Λ)WT b‖2

= min
q∈Pk−|J|

‖q(Λ)pJ(Λ)QJWT b‖2

≤ min
q∈Pk−|J|

‖q(Λ)pJ(Λ)‖ ‖QJWTb‖2

= min
q∈Pk−|J|

max
j∈Jc

|q(µj)pJ (µj)|‖QJWT b‖2

≤

{
min

q∈Pk−|J|

max
j∈Jc

|q(µj)|

}
max
j∈Jc

|pJ(µj)| ‖QJWT b‖2 . (51)

Using (51) and standard results on Chebyshev polynomials (see, for example,
[8, §3.1] or [9, §7.3.4]) we have the following theorem.

Theorem 3.1 Suppose that the symmetric matrix B has eigenvalues µ1, . . . , µn

with corresponding orthonormal eigenvectors w1, . . . ,wn. Let {µj}j∈J be |J |
successive eigenvalues of B and introduce the reduced condition number
κJ(B) := maxj∈Jc |µj |/ minj∈Jc |µj |. With pJ(t) and QJ defined as above then

‖b− Bzk‖2 ≤ 2(max
j∈Jc

|pJ (µj)|)

{√
κJ (B) − 1√
κJ (B) + 1

}k−|J|

‖QJWT b‖2

when {µj}j∈JC contains only elements of the same sign, and

‖b− Bzk‖2 ≤ 2(max
j∈Jc

|pJ(µj)|)

{√
κJ(B) − 1

κJ(B) + 1

}k−|J|−1

‖QJWTb‖2
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otherwise.
Note that the use of the matrix QJ is nonstandard. It will play an important

role in the analysis of the inner solves in Algorithm 2 later.
From now on we shall assume that the distinguished set of eigenvalues of B

consists of a simple eigenvalue µ1 so that J = {1}. This is the simplest case but
is all that we need in the remainder of this paper. In this case we write QJ =
Q1 = diag{0, 1, . . . , 1}, κJ(B) = κ1(B) = maxj=2,...,n |µj | / minj=2,...,n |µj |,
and p1(t) = (µ1 − t)/µ1. Also we define the two quantities

qe :=

√
κ1(B) − 1√
κ1(B) + 1

, (52)

and qi :=

√
κ1(B) − 1

κ1(B) + 1
, (53)

where qe refers to the case where µ1 is an extreme eigenvalue and thus µ2, . . . , µn

are of the same sign, and qi covers all other situations. For this choice of J we
have the following key result.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold with J = {1}. Then

‖b− Bzk‖2 ≤ 2

(
max

j=2,...,n

|µ1 − µj |

|µ1|

)
(q)k−δ ‖Q1W

Tb‖2, (54)

where q = qe, δ = 1 if µ1 is an extreme eigenvalue and µ2, . . . , µn have all the
same sign, and q = qi, δ = 2 otherwise. In addition, if

k ≥ δ +

(
log 2( max

j=2,...,n
|µ1 − µj |) + log

‖Q1W
Tb‖

|µ1|τ

)
/ log q−1 (55)

then ‖b− Bzk‖≤ τ .
Proof: Equation (54) follows by setting J = {1} in Theorem 3.1 and using

maxj∈Jc |pJ(µj)| = maxj=2,...,n
|µ1 − µj |

|µ1|
. From (54) ‖b − Bzk ‖≤ τ will be

satisfied provided k is such that

2

(
max

j=2,...,n
|µ1 − µj |

)
‖Q1W

Tb‖

|µ1| τ
(q)k−δ ≤ 1,

and the last result follows by taking logs. 2

Note that if q = qe then the residual reduction indicated by (54) is the
same as that achieved by the Conjugate Gradient method applied to a positive
definite symmetric matrix.

We shall use bound (55) in the following subsections to help understand the
behaviour of MINRES inner iterations in inexact inverse iteration. To do this
we require bounds on ‖Q1W

Tb‖ for the three main choices for B and b. This
is done in the following Lemma.
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Lemma 3.1 Let W be the orthogonal matrix whose columns are orthonormal
eigenvectors of B and let x(i) be as in (6).

(a) (No Preconditioning) With B = (A − σ(i)I), b = x(i) then

‖Q1W
Tb‖=‖Q1W

Tx(i)‖= |s(i)|. (56)

(b) (Standard Preconditioning) With B = P−1
1 (A − σ(i)I)P−T

1 , b = P−1
1 x(i)

then

‖Q1W
Tb‖=‖Q1W

TP−1
1 x(i)‖≤‖P−1

1 ‖ . (57)

(c) (Simoncini-Elden Preconditioning) With B = P−1
1 (A − σ(i)I)P−T

1 , b =
PT

1 x(i) and σ(i) chosen to be the Rayleigh quotient then

‖Q1W
Tb‖ = ‖Q1W

T PT
1 x(i)‖ ≤ C′|s(i)| (58)

where C′ is a positive constant independent of i.

Proof: For (a), note that W is merely the matrix of eigenvectors of A and
so

Q1W
T x(i) = s(i)(0,vT

2 u(i), . . . ,vT
n u(i))

which gives that ‖Q1W
Tx(i)‖= |s(i)|, since ‖u(i)‖= 1. The proof of part (b) is

straightforward. To prove (c) write B in the form

B = P−1
1 (A − λ1I)P

−T
1 + (λ1 − σ(i))P−1

1 P−T
1

where we note that P−1
1 (A − λ1I)P

−T
1 (PT

1 v1) = 0. Standard perturbation
theory for simple eigenvalues of symmetric matrices shows that B has a simple
eigenvalue µ1 say near 0 with corresponding eigenvector w1 near PT

1 v1. In fact

‖PT
1 v1 − w1‖≤ C|λ1 − σ(i)|, (59)

for some C independent of i. Thus,

Q1W
T b = Q1W

T PT
1 x(i) = c(i)Q1W

T PT
1 v1 + s(i)Q1W

TP1u
(i)

= c(i)Q1W
T (w1 + (PT

1 v1 − w1)) + s(i)Q1W
TP1u

(i).

Now we see the importance of the Q1 matrix, which in this case is diag{0, 1, . . . , 1}.
Since WTw1 = e1 we have that Q1W

Tw1 = 0, and so we immediately obtain

‖Q1W
Tb‖ ≤ |λ1 − σ(i)|C + s(i) ‖P1‖≤ C′s(i), (60)

for some positive constants C and C′ independent of i, since σ(i) is the Rayleigh
quotient. 2

18



3.1 Eigenvalue bounds

In the analysis of §3.3 we shall assume bounds for |λ1 − σ(i) | / |µ1 |, where µ1

is the smallest eigenvalue (in modulus) of B = P−1
1 (A − σ(i)I)P−T

1 . In many
practical applications it may be hard to obtain rigorous bounds, but here we
examine two cases where bounds are possible.

Example 3.1 (Domain Decomposition Preconditioners) If A is a sym-
metric positive definite matrix arising from discretization of an elliptic PDE and
a symmetric positive definite preconditioner P−1 is constructed using domain
decomposition methods then one typically has a bound on the condition number
of P−1A. Thus if we denote the eigenvalues of any matrix M by λj(M) we
assume

γL ≤ λj(P
−1A) ≤ γU

for some positive constants γL, γU . Now with B = P−1
1 (A−σ(i)I)P−T

1 we have

λj(B) = λj(P
−1
1 A

1
2 (I− σ(i)A−1)A

1
2 P−T

1 )

and Sylvester’s Inertia Theorem can be used to provide bounds on λj(B). For
example, if λ1 < σ(i) < λ2 then with µ1 = λ1(B) we have µ1 < 0 and

(1 −
σ(i)

λ1
)λn(P−1A) ≤ µ1 ≤ (1 −

σ(i)

λ1
)λ1(P

−1A),

using Sylvester’s Inertia Theorem, so that

λ1

γU
≤

λ1

λn(P−1A)
≤

|λ1 − σ(i)|

|µ1|
≤

λ1

λ1(P−1A)
≤

λ1

γL
. (61)

Example 3.2 (Cholesky Preconditioners) If A is symmetric positive def-
inite, and an incomplete Cholesky factorisation of A is used to find P, i.e.
A = P1P

T
1 +E with E ‘small’, say ‖E‖< λ1. Then using ideas in [20] we write

P−1
1 (A − σ(i)I)P−T

1 w1 = µ1w1,

as (A − σ(i)I)w̃ = µ1P1P
T
1 w̃ = µ1(A − E)w̃,

where w̃ = P−T
1 w1. So

(A +
µ1

1 − µ1
E)w̃ =

σ(i)

1 − µ1
w̃.

Now comparing with Av1 = λ1v1 the Bauer-Fike Theorem gives

∣∣∣∣
σ(i)

1 − µ1
− λ1

∣∣∣∣ ≤

∣∣∣∣
µ1

1 − µ1

∣∣∣∣ ‖E‖
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and hence, since λ1 > 0 and ‖E‖< λ1 by the assumptions above,

λ1− ‖E‖ ≤
|λ1 − σ(i)|

|µ1|
≤ λ1+ ‖E‖ . (62)

Thus in both examples considered here we can say that, under suitable assump-
tions,

|λ1| C′ ≤
|λ1 − σ(i)|

|µ1|
≤ |λ1| C (63)

for some positive constants C′ and C independent of i.

3.2 Inner Iterations for Unpreconditioned MINRES

Consider now the use of (55) to help understand the behaviour of MINRES
in inexact inverse iteration. Let us consider in detail the case where λ1 is an
extremal, well-separated eigenvalue of A, so that λ1 satisfies λ1 < λ2 ≤ . . . ≤ λn,
or λn ≤ λn−1 ≤ . . . ≤ λ2 < λ1. Assume that any shift σ(i) satisfies (4) so that
we can regard λ1 − σ(i) as well-separated from λj − σ(i), j = 2, . . . , n.

For unpreconditioned MINRES we take B = (A − σ(i)I), b = x(i), and

res
(i)

k(i) := x(i) − (A − σ(i)I)y
(i)

k(i) , (64)

where y
(i)

k(i) denotes the k(i)th iterate of MINRES. Using case (a) in Lemma 3.1,

and δ = 1 in (55) we find that to achieve (12) it is sufficient for k(i) to satisfy

k(i) ≥ 1 +

{
log 2|λ1 − λn| + log

|s(i)|

|λ1 − σ(i)|τ (i)

}
/ log q−1

e . (65)

The theory in Section 2.3 assumed the upper bounds τ (i) ≤ C2|s(i)|β and
|λ1 − σ(i)| ≤ C1|s(i)|α. Now, in addition, assume the two sided bounds

C′
1|s

(i)|α ≤ |λ1 − σ(i)| ≤ C1|s
(i)|α, (66)

and

C′
2|s

(i)|β ≤ τ (i) ≤ C2|s
(i)|β , (67)

where the constants C′
1, C1, C

′
2 and C2 are positive and independent of i. Note

that assumptions (66) and (67) are reasonable. First, the bounds on τ (i) are
seen to be satisfied for a constant tolerance (β = 0) or a decreasing tolerance
(β = 1) with τ (i) proportional to the norm of the eigenvalue residual (9) and
assuming (4) (see also, Lemma 2.6 in [22]). Second, the lower bound in (66) is
satisfied for a Rayleigh quotient shift σ(i) = ̺(x(i)), since (8) then shows that
|λ1 − σ(i)| = (s(i))2|λ2 − ̺(u(i))|, and the lower bound is given by Lemma 2.7
of [22].
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Using the lower bounds for τ (i) and |λ1 − σ(i)| in (66) and (67) we see that
(12) is satisfied if

k(i) ≥ 1 +

{
log

2|λ1 − λn|

C′
1C

′
2

+ (α + β − 1) log(|s(i)|−1)

}
/ log q−1

e . (68)

We have thus proved the following Lemma.

Lemma 3.2 (a) Assume Algorithm 1 is used to compute an extreme eigen-
value of A using unpreconditioned MINRES for the inexact solves. As-
sume in addition that the lower bounds given by (66) and (67) hold. If

k(i) ≥ 1 +

{
log

2|λ1 − λn|

C′
1C

′
2

+ (α + β − 1) log(|s(i)|−1)

}
/ log(q−1

e ),

then res(i) defined by (64) satisfies ‖res(i)‖≤ τ (i) and Algorithm 1 con-
verges with a rate predicted by Theorem 2.2.

(b) In particular, for convergence to occur in the inexact Rayleigh quotient
methods of Theorem 2.1 we see that for a decreasing tolerance (case (a))
it is sufficient that

k(i) ≥ 1 +
{

log C + 2 log(|s(i)|−1)
}

/ log(q−1
e ) (69)

for some C independent of i. (Here α = 2, β = 1). Moreover for a fixed
tolerance (case (b)) it is sufficient that

k(i) ≥ 1 +
{
log C + log(|s(i)|−1)

}
/ log(q−1

e ) (70)

for some C independent of i. (Here α = 2, β = 0).
We note that if α + β = 1 (i.e. linear convergence in Theorem 2.2) then the

bound on k(i) does not grow. This is confirmed by numerical results in Example
3.3. However, for RQId and RQIf, Lemma 3.2, case (b), predicts an increase
in the number of inner iterations required for each outer iteration, with RQId
being more expensive than RQIf. This behaviour is indeed observed in Table 1.
Significantly, we see that the effect of letting σ(i) converge quadratically to λ1

produces only logarithmic growth in the number of inner iterations needed to
achieve convergence, so that we need not be concerned that the Krylov solver is
applied to a matrix which is becoming more and more singular. The explanation
lies in the interplay between the choices of shift, tolerance and right hand side.

For unpreconditioned solves the term log
‖Q1W

Tb‖
|µ1|τ

in the bound for k given

by (55) produces the log
|s(i)|

|λ1 − σ(i)|τ (i) term in (65), which provides nothing

worse than logarithmic growth in |s(i)|−1.
It is well known that the bound given by (54) is, at best, descriptive and

is unlikely to be sharp. As a consequence (68) is unlikely to provide a realis-
tic estimate for k(i) and should only be used in a descriptive sense as above.
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Nevertheless, descriptive bounds such as this play a key role in the appraisal
of the practical value of various iterative methods, especially when applied to
discretizations of PDEs.

For any well-separated interior eigenvalue λ1 the bound (65) still holds pro-
vided σ(i) 6= λ1. The bounds on τ (i) given by (67) also hold. However for
Rayleigh quotient shifts approximating an interior eigenvalue, the discussion
above Lemma 2.7 in [22] shows that for a special choice of u(i) it is possible
to make ̺(u(i)) = λ1, and in this instance C′

1 = 0 in (66). Nonetheless, the
likelihood of this happening is extremely small and this was never observed in
any of our experiments. Under the assumption that the left hand bound of (66)
holds in practice, then for a well-separated interior eigenvalue a bound similar
to (68) is obtained with the main difference that the factor qe is replaced by qi

given by (53), and comments about the likely increase in the number of inner
iterations remain the same as for the extreme eigenvalue case.

3.3 Inner Iterations for Preconditioned MINRES

In this subsection we give an analysis of the number of inner iterations for
the two preconditioned methods using preconditioned MINRES with Rayleigh
quotient shifts and a fixed tolerance. (The two methods are covered by Theorems
2.1 and 2.3). The main result is given in the following Lemma.

Lemma 3.3 (a) (Standard Preconditioning) Assume Algorithm 1 with Rayleigh
quotient shifts and a fixed tolerance τ (i) = τ (0) is used to compute an
extreme eigenvalue of A using preconditioned MINRES for the inexact
solves. Additionally, assume |(λ1 − σ(i))/µ1 | satisfies (63) and that the
bounds (66) and (67) hold. If

k(i) ≥ 1 + {logC + 2 log(|s(i)|−1})/ log q−1
e (71)

where C is a known constant independent of i, then the outer iteration
converges quadratically.

(b) (Simoncini-Eldén Preconditioning) Assume Algorithm 2 with Rayleigh quo-
tient shifts and a fixed tolerance τ (i) = τ (0) is used to compute an extreme
eigenvalue of A using preconditioned MINRES for the inexact solves. Ad-
ditionally, assume |(λ1 − σ(i))/µ1| satisfies (63) and that the bounds (66)
and (67) hold. If

k(i) ≥ 1 + {logC′ + log(|s(i)|−1})/ log q−1
e (72)

where C′ is a known constant independent of i then the outer iteration
converges quadratically.

Proof: The standard preconditioned case is given by (in the notation of
(54) and (55))

zk = PT
1 y(i), B = P−1

1 (A − σ(i)I)P−T
1 , b = P−1

1 x(i), (73)
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with, from (57), ‖Q1W
Tb‖≤‖P−1

1 ‖, and in the Simoncini-Eldén preconditioned
form given in Algorithm 2 we have

zk = PT
1 y(i), B = P−1

1 (A − σ(i)I)P−T
1 , b = PT

1 x(i),

with, from (58), ‖Q1W
T b‖≤ C|s(i)|, for some constant C independent of i.

Here we see that the Simoncini-Elden preconditioning retains the |s(i) | factor
in the bound on ‖Q1W

T b‖. This turns out to be the main difference between
the methods and will explain the improved inner iteration performance of the
Simoncini-Elden preconditioning over standard preconditioning.

Proof of (a). For the standard preconditioned case we stop Algorithm 1 using
the residual of the unpreconditioned system not the residual of Bzk(i) = b. Now

‖(A− σ(i)I)y(i) − x(i)‖=‖P1(Bzk(i) − b)‖≤‖P1‖‖Bzk(i) − b‖, (74)

and so, if k(i) is such that

‖Bzk(i) − b‖≤ τ (i) ‖P1‖
−1, (75)

then we satisfy

‖(A− σ(i)I)y(i) − x(i)‖≤ τ (i). (76)

Using (54), (55) and (57), condition (75) holds if k(i) satisfies,

k(i) ≥ 1 +

{
log

(
2 max

j=2,...,n
|µ1 − µj |κ(P1)

)
+ log

1

|µ1| τ (i)

}
/ log q−1

e . (77)

or, equivalently,

k(i) ≥ 1 +

{
log

(
2 max

j=2,...,n
|µ1 − µj |κ(P1)

|λ1 − σ(i)|

|µ1|

)
+ log

1

|λ1 − σ(i)| τ (i)

}
/ log q−1

e . (78)

Here qe is given by (52). The quantity |λ1 − σ(i)|/|µ1| relates the eigenvalue
nearest zero of (A − σ(i)I) to the value of the corresponding eigenvalue of
P−1

1 (A − σ(i)I)P−T
1 . We shall assume the bound (63) for this ratio as is dis-

cussed in detail in §3.1. Note that τ (i) = τ (0), a constant, and we no longer
have a factor of |s(i)| in the numerator of the second log term in (78) compared
to (65). Using (66) this log term produces the 2 log |s(i)|−1 term in (71).

Proof of (b). For the Simoncini-Eldén preconditioned approach in Algo-
rithm 2 the analysis proceeds similarly. To achieve

‖(A− σ(i)I)y(i) − Px(i)‖≤ τ (i) ‖Px(i)‖ (79)

it is sufficient that ‖P1(P
−1
1 (A− σ(i)I)PT

1 ỹ(i) −PT
1 x(i))‖≤ τ (i) ‖Px(i)‖, where

ỹ(i) = P−T
1 y(i). In the notation of Lemma 3.1, (c), condition (79) will hold if

‖P1‖‖Bzk − b‖≤ τ (i) ‖Px(i)‖ and this is achieved provided

k(i) ≥ 1 +

{
log

(
2 max

j=2,...,n
|µ1 − µj |

|λ1 − σ(i)| ‖P1‖

|µ1| ‖Px(i)‖

)
+ log

|s(i)|

|λ1 − σ(i)| τ (i)

}
/ log q−1

e . (80)
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where the second log term now has |s(i)| in the numerator and has the same
form as the second term in the unpreconditioned inequality (65). Using (66)
this term produces the log |s(i)|−1 term in (72). 2

Because of the different factors multiplying the log |s(i)|−1 terms in (71) and
(72) we expect that Algorithm 2, which uses the modified right hand side, may
be less expensive in terms of the total number of inner iterations compared
with preconditioned Algorithm 1. This is indeed observed in Table 2, where
we compare the number of inner iterations needed by methods RQIf (Lemma
3.3, case (a)) and SEf (Lemma 3.3, case (b)) applied to the matrix in Example
2.3 to compute the interior eigenvalue. We see that both methods exhibit an
increase in the number of inner iterations as the outer iteration proceeds as
predicted by (71) and (72), but RQIf is more expensive than SEf with regard
to the total number of inner iterations to achieve comparable accuracy which
can be explained by the multiplier 2 in front of the second log term in (71),
compared with the multiplier 1 in (72).

We have presented the theory of preconditioned solves for extremal values,
but remarks similar to those in the last paragraph of the previous section also
hold. For example, (78), with qe replaced by qi, describes the behaviour of
MINRES as experienced in practice for any well separated eigenvalue.

3.4 ‘A posteriori’ bounds for preconditioned MINRES

The discussion in the previous subsection is a natural consequence of the in-
equality (55) on the number of inner iterations in MINRES. In this subsection
we look at an alternative approach that extracts additional information avail-
able from (78) and (80) by combining the MINRES theory with the inexact
inverse iteration convergence theory of §2. Note that the theory in this section
does not rely on σ(i) being the Rayleigh quotient.

In the previous sections we considered ‘a priori’ information about the cost
of an inner solve. Here we will use ‘a posteriori’ information to obtain an upper
bound on the overall cost of the inner solves of a convergent method. To this

end we define k
(i)
M to be the actual number of inner iterations used by MINRES

at step i, that is,

‖res
(i)

k
(i)
M

‖≤ τ (i), ‖res
(i)
k ‖> τ (i), ∀k < k

(i)
M . (81)

Now the inequalities in §3.2 and §3.3 produce sufficient conditions on the num-
ber of inner steps needed to ensure a residual tolerance is satisfied. Equally
well, however, these sufficient conditions provide upper bounds on the actual
number of inner iterations needed. This is seen in the following consequence of
Corollary 3.1.

Corollary 3.2 Let the assumptions of Corollary 3.1 hold and assume µ1 is an

extreme eigenvalue. Define k
(i)
∗ by

k
(i)
∗ := 1 +

(
log(2 max

j=2,...,n
|µ1 − µj |) + log

‖Q1W
Tb(i)‖

|µ1|τ

)
/ log q−1

e , (82)
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and let k
(i)
M denote the actual number of inner iterations used by MINRES to

solve Bz = b(i) to a tolerance τ . Then

k
(i)
M ≤ k

(i)
∗ + 1. (83)

Proof: The quantity k
(i)
∗ may not be an integer and so one needs to add

1 to ensure an upper bound on the integer k
(i)
M . 2

The idea in this subsection is to use the right hand side of (14) to link k
(i)
M

with t(i+1) as follows. Assume the inexact inverse iteration algorithm under
consideration converges with the second equation in (66) with β = 1 satisfied
or with τ (i) fixed. Clearly τ (i) 6= 0 from (66) so we can say

|s(i)| + τ (i)

|c(i)| − τ (i)
≤ C5τ

(i) (84)

for some C5 independent of i. Thus (14) gives

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|
C5τ

(i), (85)

and hence

1

|λ1 − σ(i)|τ (i)
≤

C5

|λ2 − σ(i)| t(i+1)
. (86)

Hence, taking logs we have

log
1

|λ1 − σ(i)|τ (i)
≤ log

C5

|λ2 − σ(i)|
+ log

1

t(i+1)
. (87)

Now for standard preconditioned solves ‖Q1W
T b‖≤‖P−1

1 ‖ and Bz = b(i) is
solved to a tolerance τ = τ (i) ‖P1‖−1 (cf. the proof of Lemma 3.3(a)). Thus
we can bound the second log term in (82) as follows.

log
‖Q1W

Tb(i)‖

|µ1|τ
= log

‖Q1W
Tb(i)‖

|µ1|τ
(i) ‖P1‖

−1

≤ log ‖P−1
1 ‖‖P1‖ + log

1

|µ1|τ (i)
.

Thus using (82) and (83) we have

k
(i)
M ≤ 2 +

(
log(2 max

j=2,...,n
|µ1 − µj | κ(P1)

|λ1 − σ(i)|

|µ1|
) + log

1

|λ1 − σ(i)|τ (i)

)
/ log q−1

e (88)

and hence, using (86),

k
(i)
M ≤ 2 + (log C + log

1

t(i+1)
)/ log q−1

e (89)
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where

C = 2 max
j=2,...,n

|µ1 − µj | κ(P1)
|λ1 − σ(i)|

µ1

C5

|λ2 − σ(i)|
. (90)

Under assumptions (4) and (63), C is bounded independent of i.
Now consider Algorithm 2 with a fixed tolerance so that (42) holds with

‖res(i)‖≤ τ (0) ‖Px(i)‖. Assuming (41) and (43) also hold and that the method
is convergent, then we may write

t(i+1) ≤
|λ1 − σ(i)|

|λ2 − σ(i)|
C

for some C independent of i using (42). Reasoning as in the standard precondi-

tioned case we obtain a similar bound for k
(i)
M but with the key difference that

the ‖Q1W
Tb(i)‖ term leads to a log t(i)

t(i+1) term rather than the log 1
t(i+1) term

in (89), and this provides a simplification as is shown in the following theorem.

Theorem 3.2 (a) (Standard Preconditioning) Assume Algorithm 1 converges,
where the system (A − σ(i)I)y(i) = x(i) is solved by preconditioned MIN-

RES. Let k
(i)
M denote the actual number of inner iterations used by MIN-

RES at step i. Then

k
(i)
M ≤ 2 + (log C + log

1

t(i+1)
)/ log(q−1

e ) (91)

for some known positive constant C independent of i. If N outer iterations
are needed to reduce the error angle by 10−γ, for some γ then

N−1∑

i=0

k
(i)
M ≤ 2N +

[
N log C +

N−1∑

i=0

log
1

t(i+1)

]
/ log(q−1

e ). (92)

.

(b) (Simoncini-Elden Preconditioning) Assume Algorithm 2 with a fixed tol-
erance satisfying (43) converges, where the system (A−σ(i)I)y(i) = Px(i)

is solved by preconditioned MINRES with Rayleigh quotient shifts. Let k
(i)
M

denote the actual number of inner iterations used by MINRES at step i so
that ‖(A− σ(i)I)y(i) − Px(i)‖≤ τ (i) ‖Px(i)‖ holds. Then

k
(i)
M ≤ 1 + (log C + log

t(i)

t(i+1)
)/ log(q−1

e ) (93)

for some known positive constant C independent of i. If N outer iterations
are needed to reduce the error angle by 10−γ, for some γ, then

N−1∑

i=0

k
(i)
M ≤ 2N +

[
N log C + γ log 10

]
/ log(q−1

e ). (94)
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unpreconditioned FSd preconditioned FSd
τ1 = 0.05 τ1 = 0.05

‖r(i)‖ / |ρ(i)| tan θ(i) k(i−1) k
(i−1)
∗ ‖r(i)‖ / |ρ(i)| tan θ(i) k(i−1) k

(i−1)
∗

0 3.0e-01 1.0e-02 3.0e-01 1.0e-02
1 1.9e-04 5.6e-04 47 786 1.4e-04 1.3e-04 25 49
2 7.8e-06 4.4e-05 123 799 2.4e-06 2.4e-05 30 54
3 6.0e-07 5.3e-06 143 808 4.0e-07 5.8e-06 37 63
4 8.1e-08 1.1e-06 139 815 9.7e-08 1.5e-06 40 67
5 1.8e-08 2.7e-07 138 821 2.4e-08 3.6e-07 43 70
6 4.4e-09 6.6e-08 109 823 6.1e-09 9.1e-08 43 73
7 1.1e-09 1.6e-08 117 823 1.5e-09 2.3e-08 44 76
8 2.7e-10 4.1e-09 118 823 3.8e-10 5.7e-09 45 79
9 6.8e-11 1.0e-09 116 823 9.5e-11 1.4e-09 47 82
10 1.7e-11 2.6e-10 118 823 2.4e-11 3.6e-10 48 85
11 4.3e-12 6.3e-11 112 823 5.9e-12 8.9e-11 50 88
12 1.1e-12 1.6e-11 114 823 1.5e-12 2.2e-11 49 91
13 9.4e-13 1.3e-11 4 824 8.1e-13 5.6e-12 48 94∑
ki−1 1398 549

Table 3: Numerical results showing the behaviour of k(i) and k
(i)
∗ (as defined in

(82)) for unpreconditioned and preconditioned FSd.

Comparing (94) with (92) we anticipate that the total number of inner iter-
ations in case (b) would be significantly lower than in case (a) since γ log 10 in

(94) will be significantly smaller than
∑N−1

i=0 log 1
t(i+1) , the corresponding term

in (92). Note also that if we take P = I in case (b) above then the behaviour
for an unpreconditioned solver is described.

The following example helps to illustrate the results of Theorem 3.2.

Example 3.3 Consider again Example 2.1 but discretised using a 31× 31 reg-
ular grid. We consider the approximation of the 10th smallest eigenvalue. The
methods RQIf and SEf are described in Example 2.3. Let us also consider the
following linearly convergent method.

FSd: Algorithm 1 with fixed shift σ(i) = σ(0) and decreasing tolerance τ (i) =
min{τ0, τ1‖r(i)‖}.

In Table 3 we present results obtained using FSd and preconditioned FSd in
the calculation of the 10th smallest eigenvalue to a residual accuracy of 10−12.
Further, in Table 4 we present corresponding results obtained by using RQIf
and SEf.

First consider the results obtained by unpreconditioned FSd on the left
hand side of Table 3. The outer rate of convergence is linear, and so Lemma 3.2
(part (a) with α = 0, β = 1) predicts no growth in inner iterations as the outer
iteration proceeds. This is indeed observed.

Using preconditioned linear solves we expect that the number of inner iter-
ations at each outer iteration will be significantly decreased compared with the
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preconditioned RQIf preconditioned SEf
τ0 = 0.5 τ0 = 0.5

‖r(i)‖ / |ρ(i)| tan θ(i) k(i−1) k
(i−1)
∗ ‖r(i)‖ / |ρ(i)| tan θ(i) k(i−1) k

(i−1)
∗

0 3.0e-01 1.0e-02 3.0e-01 1.0e-02
1 5.6e-03 1.7e-02 6 41 5.6e-03 1.7e-02 6 39
2 9.4e-06 1.1e-05 28 51 3.4e-06 8.2e-06 26 50
3 3.4e-12 2.1e-12 45 73 3.9e-12 3.2e-12 36 62
4 9.4e-13 2.7e-12 49 93 6.1e-13 2.0e-12 5 52∑
ki−1 128 73

Table 4: Numerical results showing the behaviour of k(i) and k
(i)
∗ (as defined in

(82)), and the total number of inner iterations for RQIf and SEf.

unpreconditioned case. This is indeed observed in the right hand columns of
Table 3. However we note that in the preconditioned case the number of inner
iterations increases slowly with the progress of the outer iteration as predicted

by (91). Note that in Table 3 we have provided values for the bound k
(i)
∗ as

defined by (82). As was mentioned previously, it is readily seen that these val-
ues are considerably larger than the k(i) values. However they show the same
trend as k(i) as i increases by increasing or remaining constant according to the
method used, and as such provide the same qualitative information.

Next, (91) indicates that, whatever the outer rate of convergence of the
standard preconditioned method the bound for the number of inner iterations
k(i) to produce an error angle t(i+1) depends on log(1/t(i+1)) and is independent
of the previous error angle. This is confirmed in Table 3 where for i = 2
preconditioned FSd needed 30 iterations to produce an error angle of 2.4 ×
10−05, whereas in Table 4 at i = 2 preconditioned RQIf achieved an error
angle of 1.1 × 10−05 after 28 iterations, essentially the same cost, even though
the previous error angles were considerably different. This shows the effect of
log 1

t(i+1) in (91). Also, from Table 4 we observe an important difference between
RQIf and SEf. After i = 3 both methods have almost achieved the desired
accuracy of 10−12. To reach the desired accuracy RQIf needed a further 49

inner iterations as predicted by the log 1
t(i+1) term in (91), whereas SEf needed

only 5 more inner iterations as suggested by the log t(i)

t(i+1) term in (93).

Finally, comparing preconditioned RQIf with preconditioned SEf in Table 4
we see the superiority of SEf in terms of overall costs to achieve a given accuracy.
This is predicted in Theorem 3.2 where for SEf the total cost depends on a
γ log 10 term in (94), whereas the corresponding term in (92) contains a sum of
log 1

t(i+1) terms.
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