-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by University of Bath Research Portal

Citation for published version:
Drugowitsch, J & Barry, AM 2006, Mixing independent classifiers. Computer Science Technical Reports, no.
CSBU-2006-13, University of Bath, Department of Computer Science.

Publication date:
2006

Link to publication

©The Author November 2006

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

https://core.ac.uk/display/161910202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/mixing-independent-classifiers(4821a42e-0022-4eba-a2be-2358b23fa74a).html

Department of
Computer Science

AV
”@

Technical Report

Mixing Independent Classifiers

Jan Drugowitsch and Alwyn Barry

Technical Report 2006-13
ISSN 1740-9497

UNIVERSITY OF

BATH

November 2006

Copyright ©November 2006 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Mixing Independent Classifiers

Jan Drugowitsch Alwyn M Barry
Department of Computer Science Department of Computer Science
University of Bath, UK University of Bath, UK

J.Drugowitsch@bath.ac.uk A .M.Barry@bath.ac.uk

November 2006

Abstract

In this study we deal with the mixing problem, which concerns combining the prediction of
independently trained local models to a global prediction. We deal with it from the perspective of
Learning Classifier Systems where a set of classifiers provide the local models. Firstly, we formalise
the mixing problem and provide both analytical and heuristic approaches to solving it. The analyt-
ical approaches are shown to not scale well with the number of local models, but are nevertheless
compared to heuristic models in a set of function approximation tasks. These experiments show
that we can design heuristics that exceed the performance of the current state-of-the-art Learning
Classifier System XCS, and are competitive when compared to analytical solutions. Additionally,
we provide an upper bound on the prediction errors for the heuristic mixing approaches.

1 Introduction

In modern Michigan style Learning Classifier Systems (LCS), predictions of classifiers have been mixed
to give a “system prediction”, which is in contrast to using the prediction of single classifiers, like SCS
[7]. In fact, the distinction is the one of mixed model prediction vs. local model predictions. Mixed
model prediction requires the prediction of the local model to be combined in some way. We will call
the problem of how to combine these local models the “mixing problem”.

In this paper we will formalise the mixing problem and will introduce a set of analytical and heuristic
solutions. We will concentrate on model architectures where the local models are trained independently
of each other and how they are later combined. To our knowledge there exists no systematic study of
how to form a global model from local models with such a model architecture!.

The motivation behind this study is to improve the prediction quality of any system using such a
model architecture, such as XCS and its derivatives. XCS was introduced by Wilson in [12] for use in
data-mining and reinforcement learning and was later also extended to function approximation tasks
[13], a task set that both data-mining and reinforcement learning can be reduced to. Just as he did, we
will interpret all local models as function approximators, and will define the global model prediction
as a combination of the predictions of all relevant local models. Wilson defined his mixing model in
[12] as follows:

“There are several reasonable ways to determine [the global prediction] P(a;). We have
experimented primarily with a fitness-weighted average of the prediction of classifier advo-
cating a;. Presumably, one wants a method that yields the system’s “best guess” as to the
payoff [......] to be received if a; is chosen”,

and he maintains this model for all XCS derivatives without further discussion. The fitness he is
referring to is a complex measure of the quality of a classifier. In this study we do not aim at redefining
the fitness of a classifier but rather we question whether this fitness is really the best measure to use
to combine the prediction of different classifiers.

INaively, one could think that the model we are describing is the mixture-of-experts (MoE) architecture [9]. Even
though it is closely related, it differs in some significant points. Foremost, there is a strong interaction between training
the experts in MoE and combining them. If trained by the EM-algorithm [4], the experts are trained based on how they
are mixed in the expectation step, and the mixing model is reevaluated based on the prediction of the experts in the
maximisation step. In the model that we are considering, the classifiers, representing the experts, are not trained based
on how they are later combined, but their mixing depends on their predictions. Hence, we do have a bilateral relation
between experts and the mixing model in MoE, but only a unilateral relation in the our model. The redistribution of
classifiers is performed by a genetic algorithm rather than by the maximisation step of the EM-algorithm.

1

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

One might argue that the genetic algorithm in XCS only relies on the fitness of classifiers, which
subsequently depends on the local but not the global prediction, and hence mixing is only important
for the global prediction once the GA has found a suitable set of classifiers. This might be true in
tasks such as function approximation and data-mining. However, when using XCS for reinforcement
learning tasks, the reinforcement learning algorithm strongly interacts with the global prediction model,
and thus relies on an accurate mixing model. Hence, the mixing model not only determines the final
prediction quality for function approximation and data-mining tasks, but is particularly influential in
reinforcement learning tasks.

Paper Structure To study mixing we will first introduce a formal model that allows us to define
the mixing models, our aim, and how we can evaluate the performance of a mixing model. We continue
by describing linear mixing models, followed by the difficulties of implementing them. Next, mixing
models based on heuristics are introduced, and are then compared to each other and to mixing based
on linear models in the following experimental section. Finally, our results are discussed and brought
into the wider perspective of different applications of LCS.

2 Formalising Mixing

Let f be a target function that maps some input space X" into the reals R. From this target function we
have a finite number of N samples {(z1, f(z1)),..., (zn, f(xn))}. We want to find a model f : ¥ - R
of f that minimises the mean squared error over these samples, that is we want to minimise

N

> (Flon) fan) ()

n=1

We will describe how LCS with independent classifiers constructs f by combining a set of local
models, given by the classifiers.

2.1 Independent Local Models

We have a set of K classifiers, each of which describes a local model of the target function. For each
classifier k € {1, ..., K} its locality is described by the set of inputs X C X that it matches. The local
model of a classifier k is only built for the inputs that are in Xj. Hence, a classifier provides the local
model fk : Xrx — R. This model is usually parametric, but we do not need to specify the parameters
here as they are of no relevance to this paper. Note that this study applies to any form of local models,
like simple averagers, linear regression or neural networks.

The aim of each classifier is to minimise the mean squared error over its matched inputs; that is,
it wants to minimise

N 2
> Lo () (Fln) = flaa))
n=1

where 1y, is the indicator function for set &) that returns 1x,(z) = 1if 2 € Xy and 1y, (z) = 0
otherwise. Even though we are restricting ourselves to 0/1 matching here, all the concepts introduced
here are still valid when 1y, returns real values of the range [0, 1]. The local models of the classifiers are
independent in the sense that they are trained independently of the models built by other classifiers,
even if those classifiers match the same inputs.

2.2 Mixing Local Models

In order to get a model over the whole input space we need to combine the local models. We will do

.....

parameters, denoted 6, that determine for each input the influence of each of the local models to the
global model f.
Hence, the global model is given by

K
f@) = La(@)vn(z, 0m) fr(w), VoeX. (2)
k=1

Thus, for each input x the global model is the sum of the matching local models weighted by the
mixing functions. All K mixing functions in combination describe the mixing model.

2

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

2.3 Identifying Good Mixing Models

As we now have all the definitions that we require, we can state what constitutes a good mixing model.
As previously described, we want to minimise the mean squared error (1) of the global model f . Hence,
given a set of local models { fk}kzl k and our definition of how we mix these local models (2), our
aim becomes to find a mixing model {¢y}x=1, . x that minimises the global mean squared error (1)
which, when substituting (2) for f , is given by

N K 2
min (f(xn) - Zle (xn)1/)k($m9M)fk(In)> ‘ (3)
n=1 k=1

We will continue by describing which mixing model structures allow us to find a closed-form solution

to the above problem.

2.4 Analytical Solutions

We can see from (2) that the global prediction for a certain input is a linear combination of the indicator
functions 1y, , the local models fk, and the mixing functions . Additionally, both 1y, and fk are
independent of the mixing model parameters 0,;. Hence, given that each iy are linear with respect to
the mixing model parameters 6/, the global model (2) is also linear with respect to these parameters.
Therefore, solving (3) is a linear least-squares problem that has an analytical solution.

However, if the mixing functions v are non-linear with respect to 6,; we have a non-linear least-
squares problem for which there exists no general analytical solution. Therefore, if we want to find an
analytical solution we need to assume the mixing functions to be linear. In the next section we will
discuss what such a model may look like, and how we can find the solution to (3).

3 Linear Mixing Models

The most general form of linear mixing model is to have a set of P parameters {ay 1,...,ax p} per
mixing function, and an equal number of basis functions {¢, : X — R}p=1,. p that map the inputs
into the reals. The linear mixing function vy, is defined as

P
1/)k (Ia HM) = Z’ﬂp(x)ak-,pa (4)
p=1
where 0y = {akptk=1,. Kp=1,.p is the set of all parameters for the mixing model. Hence, the

problem (3) becomes

N K P) 2
min (f(xn) - Z Z 1x, (zn) fk (xn)ﬁp(xn)o‘km) . (5)

0
Mop=1 k=1p=1

As this expression is a linear least squares problem, we can find its solution by some least squares
method or an approximation to it. However, as we will discuss, such solutions do not scale well with
the number of classifiers.

3.1 Mixing by Least Squares

Given that we have all our input/output pairs available at the same time, and have access to all local
models, we can minimise (5) directly by matrix inversion. However, such an approach is at least of
computational and spatial complexity O(K?2P?) (check that -; Haykin). Hence, it does not scale well
with the number of local models. In addition, it only is applicable if all input/output pairs are available
at once.

Given that we have an incremental learner we need to resort to recursive least squares which updates
the model with every additional input/output pair. This method maintains and updates the covariance
matrix for input/output pair. Hence, it is still of computational and spatial complexity O(K2P?) and
therefore does not scale well either. Additionally, as it is an incremental learner, it does not consider
that the local models fk are also updated incrementally with every additional input/output pair and
therefore influence the past. Consequently, we are not able to find the exact solution to (5) by recusrice
least squares.

In summary, finding the minimum of (5) does not scale well with the number of local models.
Additionally, if the learner has to operate incrementally, the solution will be inaccurate.

3

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

3.2 Gain Adaptation Approximations

Methods of gain adaptation approximate the least squares solution by only maintaining the diagonal
of the covariance matrix rather than keeping the whole matrix, and hence scale linearly with the
number of local models. Probably the best known variants of gain adaptation are K1, K2 and IDBD,
developed by Sutton [11]. As they do not keep information on how the different components of the
inputs interact, they cannot be expected to perform well when this interaction is crucial. In [11], Sutton
has only demonstrated their good performance in problems when there is no interaction between the
different components of the input. However, if such interaction is important, as is for example the case
in multivariate linear regression, gain adaptation cannot be expected to perform much better than
gradient descent. This observation was, for example, confirmed by Lanzi et al. [10], when they used
gain adaptation methods to update the local models of classifiers.

When searching good parameters for the mixing model we are particularly interested in how the
different local models interact. Hence, the correlation between the different components of the input?
are certainly important. Therefore, we do not expect gain adaptation methods to perform well when
applied to our problem.

Overall, the least squares method does not scale well, and its approximations are expected to
feature bad performance. Hence, the use of analytical solutions to the mixing problem might not be
applicable to real world problems. Therefore, we will continue by discussing a set of heuristics that we
will demonstrate to come close to the quality of analytical solutions and are significantly better than
currently used heuristics.

4 Heuristic Mixing Models

The current (implicit) approach in LCS with independently trained classifiers is based on heuristic
mixing. In this section we will introduce some new heuristics and will compare them to the approach
used in XCS and its derivatives. They are all based on a weighted average of the predictions of the
local models and on some intuition of the prediction quality of the local models.

Throughout the section we will assume the local model of a classifier to be linear. Let {¢; : X —
R}i=1,...r be a set of basis functions that map the input space into the reals and in combination form
the feature column vector ¢(z) = (¢1(x),...,¢r(x)). We will denote the transpose of a vector v by
v'. Let wp € R be the weight vector that defines the parameters of the local model of classifier k.
The prediction of classifier k is given by

fe(@) = p(2)wp, VeeX, k=1,... K,

which is the inner product of the features of state x and the parameters of classifier k. The parameters
are implicit in f. Each classifier minimises the mean squared error over the inputs that it matches;
that is, it aims to find wy, such that

K

min Y L, (@) ((2) = $(x) wp)”
k=1

This problem is a linear weighted least squares problem and we have given an extended LCS-related
discussion on how to solve it in [6].

The heuristics introduced below do not directly depend on the assumption of linearity of the
classifier model. However, if other local model types are to be used, the model quality measures
introduced below need to be reformulated adequately.

4.1 Mixing by Weighted Average

For each state 2 € X each matching classifier provides a prediction for the value of f(x), according to
its best knowledge. Hence, it is sensible to assume that the true value of f(z) is somewhere in between
the lowest and the highest of those predictions. Therefore, all the heuristics that we will use ensure
that the mixed global prediction is bounded from above and below by the highest and lowest local
prediction respectively.

2In case of the mixing model, the components of the input to the gain adaptation methods are the combination of
indicator functions, values of the local models, and the basis functions 9.

4

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

Let {v: X xRF — R(J)r tr=1,....k be a set of functions, one for each classifier, that map the input
space into the non-negative reals, based on a set of P shared scalar parameters. We define the mixing
functions to be

Yk (xv GM)
K
>kt Lag (2) 7k (2, Oar)
Combining the above with (2), we get the global prediction

Fa) = S L @), 001) (o)
i Lo (@)1, 0ar)

which is the weighted average of the predictions of all matching classifiers. The magnitude of i (x, 0ps)
determines the influence of classifier & to the prediction of f(z). Thus, vx(z,0a) needs to reflect our
estimate of the quality of the prediction fk(:v)

Note that the mixing functions), are non-linear with respect to the mixing parameters 6,;.
Consequently, there is no analytical solution to the least squares problem (3). There might not even
be a unique minimum. Hence, we do not attempt to solve (3) but give some heuristics for possible v;’s
below.

Yr(x, 00) =

VeeX, k=1,... K. (6)

. VYzeAa, (7)

4.2 Bounding the Global Model Error

Before we will discuss several possible measures for the prediction quality of a local model, let us make
the following useful observation about the local squared errors:

Theorem 4.1. When using weighted averaging mizing, for oll x € X, the squared prediction error
s bounded from above by the weighted sum of squared prediction errors of the local models, where the
weights are the same as the ones used to mix these models. That is

(f@) - @)’ lek Yo a0) (£2) = o))

Proof. Let us fix some x € X. From the non-negativity of v, and from (6) we see that

Yr(x,00) >0, and lek YWr(z,0p) =1, k=1,..., K.

Therefore, {tx}r=1,... x forms a K-dimensional simplex which is a convex set. Using (2) we can derive

< 3 Lo a0 (£0) - o))’

=1

(f(fc)—fk(iﬂ))Q = | fl= lek Yok (, 00 fi (@))

ilxk)k, Onr) (f(gc) - fk(iU)))

k=

—

o

The second equality follows from the property of weighted averaging, and the inequality is Jensen’s
inequality, which is applicable due to the convexity of -2 and {¢k }r=1.... K- O

.....

The above theorem is independent of the form of the local models, that is, it also applies to non-
linear local models. Additionally, it naturally extends to all data pairs:

Corollary 4.2. When using weighted averaging mizing, we can bound the sum of squared errors for a
set of inputs from above by

N R 2 K N R 2
> (Fn) - flan) < ZZ (), 001) (F(@n) = filn))
k=1 n=1

n=1

Hence, the global model error is never worse than the weighted sum of errors of all local models.
Consequently, the global model error is reduced by assigning a low weight to classifiers whose local
model can be expected to have a high prediction error. This again emphasises the importance of having
a good prediction quality measure for the local models.

5

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

4.3 Inverse Variance Mixing

The unbiased variance estimate of the prediction of the local linear model of classifier k is given by

N -1 N X)
= (—L+lek<xn>> > L () (£&) fule)
n=1 n=1

and is therefore proportional to the sum of squared prediction errors, where L refers to the size of the
feature vector. As we can expect classifiers with a lower variance estimate to given better predictions
on average, we can use the inverse of the variance as a measure for the quality of the prediction of a
classifier’s model.

We define the inverse variance mixing model to be a weighted averaging mixing model with the
classifier quality measures being defined input-independently by

Q>
o

Fyk(xveM) =

Hence, the parameter vector of this mixing model is formed by the unbiased variance estimates 6, =
{6%,...,6%}. In [6] we show how the variance can be estimated in a batch and incrementally, and how
this form of mixing relates to the principle of maximum likelihood.

4.4 Confidence Mixing

Under the assumption of a normally distributed constant-variance zero-mean model error of the linear
classifier model its prediction is also normally distributed [6]. As the confidence interval of a distribution
is the distance from the mean at which the probability density accumulates a certain mass, this interval
is in the case of the normal distribution proportional to the standard deviation®. In our case the
standard deviation of the prediction is given by

1/2

N -1
var (ful@)) = | op(a) (Zlmwnw(wnw(wn)’) $@) | .

where 67 is the unbiased variance estimate of classifier k, as introduced in the last section. The inverted
sum inside the brackets on the right-hand side is the covariance matrix of the feature vectors. In [6]
we show how this term can be updated incrementally.

The confidence of the prediction gives input-dependent information of how certain the local model
is about its prediction. As it is dependent on the input, we can expect it to give a more fine-grained
information than the variance of the classifier. A low confidence interval indicates a high confidence
in the given prediction. Therefore, we define the confidence mixing model to be an averaging mixing
model with the quality measure of a classifier being given by

Ve (w,00r) = (Var (fk(x)))_l/2,

The parameters of this mixing model are on one hand the variance estimates of the classifier and on
the other hand the covariance matrices of the feature vectors. As the latter can also be used in the
recursive least squares algorithm to update the local model of the classifier, the parameters are shared
between the mixing model and the local models.

Note that the confidence measure relies on the assumption of the local model error being normally
distributed and of constant variance. The inverse variance mixing model does not make any assumptions
about the form of the distribution of the model error. Therefore, even though confidence mixing does
provide state-dependent information, it might not always perform better or even as good as inverse
variance mixing when the model error is not normally distributed. Still, we expect it to outperform
mixing by inverse variance if the assumption holds.

3We can use the knowledge of the confidence interval of a local model to give the confidence of the prediction of the
global model. This, however, is not as straightforward as it initially seems. Therefore, we postpone its presentation to a
later paper that is currently under preparation

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

4.5 Maximum Confidence Mixing

Given that the predictions of the local models are normally distributed, mixing them by non-negative
weights that sum up to 1 results in a Gaussian mixture. Our aim in maximum confidence mixing is
to minimise the confidence interval of this mixture and subsequently maximise the confidence of the
global model prediction.

Let k be the classifier with the highest confidence for predicting f(z). In other words, this classifier
has the least spread probability density function (pdf). Mixing the pdf of fi(z) with the pdf of any other
classifier will certainly increase the spread of the mixed pdf and with it result in a reduced confidence.
Therefore, we can maximise the confidence of our global prediction f () by assigning classifier k a
weight of 1, and all other classifiers a weight of 0.

As noted in the previous section, the confidence interval is proportional to the standard deviation
of the classifier’s normal prediction. Hence, the maximum confidence mixing model is defined as

(s Onr) = 1 if k= a'ulrgltnim,C var (fk(x))
0 otherwise

Note that selecting the classifier with the lowest prediction variance is equivalent to maximising the
prediction confidence. The parameters of maximum confidence mixing are the same as for confidence
mixing.

As discussed before, the confidence measure relies on the normal distribution of the local model
error. While confidence mixing provides some smoothing due to a weighted average of all local pre-
dictions according to their prediction confidence, maximum confidence mixing only considers the most
confidence predictions and therefore relies more heavily on the confidence measure. Consequently, if the
local model error is not normally distributed we can expect maximum confidence mixing to perform
worse than confidence mixing.

4.6 XCS Mixing

XCS and its derivatives also use a weighted averaging mixing model. Their v4’s are given by the fitness
of a classifier, which makes the mixing model closely linked to the definition of the fitness of a classifier
in XCS. As such, it is more complex than any of the mixing models presented so far.

In XCS most classifier performance and fitness measures are approximated by gradient descent,
which implies an incremental update. Rather than using this incremental update, we will present the
convergence points of the gradient descent update equations. That allows us to calculate them directly
rather than by gradient descent for the purpose of experimental comparison.

The error of classifier k£ in XCS is the mean absolute prediction error of its local model, and is
given by

N
€L = (Z 1x, (xn)> Z 1, (xn)

The classifier’s accuracy is some inverse function x(eg) of the classifier error. This function was initially
given by an exponential, but was later redefined to

f(xn) - fk(xn) .

1 if € < e
k(e) = —v
(€) @ (i) otherwise
€0
where the constant scalar €y is the minimum error, the constant « is a scaling factor, and the constant
v is a mixing power factor [2]. The accuracy is constantly 1 up to the error ¢y and then drops off steeply,
with the shape of the drop determined by a and v. The relative accuracy is a classifier’s accuracy for a
single input normalised by the sum of the accuracies of all classifiers matching that input. The fitness
is the relative accuracy of a classifier averaged over all inputs that it matches, that is

al A 1x, (zn)K(€e
e (Zl i (%)) <Zl Zkal(X ()Ij)':)(ek)> '

This fitness measure is used as the quality measure of a classifier’s prediction, and hence ~; is input-
independently given by

’yk(:Z?, HM) = Fk.
7

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

The parameters of this mixing model are all performance measures that need to be evaluated to get
the classifier’s fitness.

Note that the magnitude of a relative accuracy depends on both the error of a classifier, and on
the error of the classifiers that match the same inputs. This makes the fitness of classifier k dependent
on inputs that are matched by classifiers that share inputs with classifier k, but are not necessarily
matched by this classifier. This might be a good measure for the fitness of a classifier (where prediction
quality is not all that counts), but we do not expect it to perform well as a measure of the prediction
quality of a classifier. This expectation is confirmed in the following experiments.

5 Experiments

With the following experiments we show that i) XCS mixing performs worse than least square mixing
and all of the other weighted averaging mixing models in nearly all of the experiments, ii) gain adap-
tation is not a viable alternative to least squares mixing, and iii) least squares mixing only performs
better than weighted averaging mixing if the number of classifiers is small.

5.1 Experiment Design

To show performance of the different heuristic mixing models, we measure their performance in approx-
imating a set of four commonly used test functions f : R — R as given in [1, 5] and in Appendix A. As
a baseline, we compare these approximations to the performance of least squares and gain adaptation
in combination with linear mixing models.

Generating the Set of Classifiers FEach classifier £ matches a certain interval [l ug] of the target
function, that is, 1x, () = 1 if [z < 2 < ug, and 1y, () = 0 otherwise. They are distributed over the

function’s domain X such that the number of classifiers that match each input Zszl 1y, (x) is about
constant for each x € X. To place the classifiers on the range [0, 1], this range is discretised into 1000
bins. Given a desired number of classifiers K, a desired number of classifiers per input ¢, and the size
of the feature vector L, the width of a classifier is samples from a binomial distribution such that it
is on average ¢/K, at least 0.001L, and at most 1. The minimum width is limited by the size of the
feature vector to ensure that the classifier is trained on at least as many samples as it has degrees of
freedom to ensure full rank of the covariance matrix of the linear local models. To produce a set of
K classifiers, they are generated one by one by first determining their width and then placing them
Tetris-style at the location that has the lowest number of classifiers matching overall. If several such
locations are available then one of them is chosen uniformly at random. For all experiments we have
set the desired number of classifiers per input to ¢ = 3.

Training the Classifiers FEach of the classifier’s local linear models is trained by recursive least
squares (RLS). To prevent strong initial bias of the algorithm, we have used a numerically stable QR-
decomposition inverse RLS implementation [8] and initialised the covariance matrix to 1072°T where
I is the identity matrix of size L x L. The features are defined, depending on the experiment, as
either ¢(z) = (1), resulting in averaging classifiers, or ¢(x) = (1, z)’, resulting in classifiers that model
straight lines. The whole set of classifiers is trained at once by 1000 samples from the target function
in increments of 0.001, starting at © = 0.0005. The order of how the samples are presented to the
classifiers does not influence the result, as we are using least square methods to train their models.

Mixing Models For the mixing models based on variance and confidence, the classifiers estimate
the variance of their models incrementally, as we have introduced in [6]. The parameters of the XCS
and linear mixing models are learned using the fully trained classifier models, using the same sample
set. The XCS mixture model constants are set to ¢g = 0.01, @ = 0.1 and v = 5, as recommended in [2].
We have also performed experiments with different settings, but the results are qualitatively the same.
The gain adaptation approach is tested using the K1 algorithm, as it showed the best performance
n [11]. K1 is initialised with g = 0.004, R = 1 and P(0) = I. See [11] for the meaning of these
initialisation parameters. Both least squares and K1 are tested on a linear mixing model (4) with
P =1and ¥(z) =1 for all z € X. In addition, the least squares approach is also tested on a linear
mixing model with the same basis functions as the classifiers, that is P = L and 9,(z) = ¢p(z) for all
x € X. The least squares approach was implemented by a QR-decomposition inverse RLS algorithm*

4Both the direct least squares approach and the standard RLS approach proved numerically too unstable to be used
to train the linear mixing model.

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

Function Mean Squared Error of Mixing Model
Inv Var ~ Conf Max Conf XCS | LS LS_f K1

Blocks 1.0765 1.0956 1.1232 1.4393 0.8980 5.0773
Bumps 0.8305 0.8365 0.9482 1.2135 0.5796 1.9729
Doppler 0.0183 0.0188 0.0213 0.0253 0.0123 0.0358
HeaviSine 0.1690 0.1677 0.3494 0.2664 0.2224 4.3772
Blocks + N(0,1) 1.1286 1.1819 1.1563 1.4531 0.9387 5.2202
Bumps + N(0,0.5) 0.8347 0.8590 0.9697 1.2015 0.5928 2.0256
Doppler + N(0,0.1) 0.0184 0.0190 0.0212 0.0247 0.0129 0.0376
HheviSine 4+ N(0,1) 0.2035 0.2135 0.3920 0.2719 0.2752 4.5886
Blocks lin 0.5935 0.6341 0.6397 0.8745 | 0.6756 0.4186 5.7835
Bumps lin 0.4408 0.4653 0.5110 0.5913 | 0.3759 0.2382 1.3873
Doppler lin 0.0089 0.0093 0.0104 0.0112 | 0.0080 0.0048 0.0263
HeaviSine lin 0.0231 0.0236 0.0264 0.0349 | 0.1485 0.0736 3.9757
Blocks + N(0,1) lin 0.6558 0.7116 0.8088 0.8747 | 0.7302 0.5379 6.6167
Bumps + N(0,0.5) lin 0.0093 0.0097 0.0111 0.0110 | 0.0087 0.0060 0.0282
Doppler + N(0,0.1) lin ~ 0.01853 0.0189 0.0205 0.0202 | 0.0172 0.0137 0.0363
HeaviSine + N(0,1) lin 0.0562 0.0561 0.0658 0.0579 | 0.2130 0.1916 4.6260

Table 1: Average MSE for the different mixing models over 20 experiments with different classifier
distribution of 50 classifiers and on average 3 classifiers per input. The vertical bar separates the
heuristic models from the linear models. N(0,z) refers to added Gaussian noise with standard deviation
x. The features are ¢(x) = (1), except for lin functions where the features are ¢(z) = (1, z)". The group
of lowest MSE mixing models without any significant difference (0.1% level) to the lowest MSE mixing
model within that group are written in bold. The group of second-lowest MSE mixing models is written
in italics.

[8] with an initial (K x P) x (K x P) covariance matrix of 1074°I. For the rest of this paper we will
refer to inverse variance mixing by InvVar, to confidence mixing by Conf, to maximum confidence
mixing by MazConf, to XCS mixing by XCS, to gain adaptation mixing by K1, to least squares mixing
with a single basis function by LS, and to least squares mixing with the same basis functions as the
classifiers by LS_f.

Evaluation The mixing models are evaluated by the mean squared error of the global prediction
with respect to the target function. The mean squared error is calculated by using the same function
samples as for training the classifiers and the mixing models. If noise was added to the training samples,
the error was computed with respect to the noise-free samples. We have not performed n-fold cross
validation as we do actually want to minimise the MSE for the given samples rather than for the
function that was sampled.

Implementation The experiments were implemented in Java and Jython, using the matrix libraries
of the Colt Project [3]. The source code is available on the primary author’s webpage.

5.2 Prediction Quality

We have evaluated all mixing models on all four target functions i) with features ¢(z) = (1), ii) with
the same features and Gaussian noise added to the target function, iii) with features ¢(x) = (1,2)’,
and iv) with the same features and Gaussian noise added to the target function. Noise was added at
different strength, depending on the range of the target function. The mean squared errors are averaged
over 20 experiments with a randomly generated set of 50 classifiers and on average 3 classifiers per
input. The number of classifiers is deliberately kept low to emphasise the effect of mixing on the global
predictions.

Table 1 summarises the results of these experiments and highlights the group of mixing models
with the lowest and the second-lowest MSE’s for each target function. An example prediction for each
function and each mixing model is shown in Figures 1-8. All significant differences reported are at the
0.1% level, evaluated by the two sample t-test.

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

Let us first concentrate on linear mixing models. Given averaging classifiers, both LS and LS_f
produce the same results because they use the same basis functions P = 1 and 9;(z) = 1 for their
linear model. Except when tested with the HeaviSine function, their MSE is significantly lower than
that of any other mixing model. If we use the classifier features ¢(x) = (1, z)’, LS_f maintains that lead
significantly (again with exception of the HeaviSine function), but LS is now only as good or worse
than the heuristic mixing models. Using K1 to approximate the LS solution results in significantly
worse MSE’s than all other mixing models in all cases.

With respect to heuristic mixing models, InvVar is always among the group of best or at least
second-best models if compared to all other mixing models. If only compared to heuristic mixing
models, it is always in the best group, with the lowest MSE. Conf is generally worse than InvVar, but
the difference is very often not significant. MaxConf, however, performs frequently significantly worse
than both InvVar and Conf. Mixing as performed by XCS is usually significantly worse than both
InvVar and Conf, with one exception where it only performs worse than InvVar, and not significantly.

5.3 Linear Models vs. Heuristics

In our previous analysis we have used 50 classifiers. We will now investigate how linear mixing models
compare with heuristic mixing models when the number of classifiers is modified. We vary the number
of classifiers from 20 to 420 in 100 steps. For each of these steps we compare the MSE’s of InvVar, XCS,
LS and LS_f, averaged over 20 experiments with different classifier arrangements. Conf and MaxConf
are not considered, as MaxConf frequently gave significantly worse results than InvVar, and Conf was
mostly worse (but not significantly) than InvVar.

The results are shown in Figures 9-12. The common pattern that can be observed in all of these
graphs is that the linear mixing models perform better when the number of classifiers are low. For a
higher number of classifiers, InvVar is as good as or better than LS and LS_f. XCS is always worse than
InvVar but the difference decreases with a higher number of classifiers. When using the more complex
features ¢(x) = (1,2)’, the performance of LS in comparison to InvVar is worse even for smaller
numbers of classifiers, but LS_f keeps up the lead of linear models to a higher number of classifiers.

5.4 Discussion

Let us first consider the difference in performance of the different heuristic mixing models. As we have
already mentioned when introducing mixing models that rely on prediction confidence, this confidence
measure is based on the assumption of having a normally distributed model error. While Conf still
averages over all matching local models, MaxConf only picks the model with the highest prediction
confidence. Hence, if the assumption of a normally distributed noise is violated, we can expect MaxConf
to perform worse than Conf. This is confirmed by almost all experiments. In cases where MaxConf
outperforms Conf their difference in MSE is not significant. However, InvVar is better than Conf and
MaxConf in all cases, and it is computationally simpler. Therefore, it seems to be a better choice than
the heuristics based on prediction confidence.

We have already described when introducing XCS mixing, that its classifier prediction quality
metric also depends on inputs that the classifier does not match. Therefore, we did not expect it to
perform as well as other heuristics that do not rely on the prediction of other classifiers or inputs outside
of the set that it matches. This was confirmed in our experiment where XCS performed significantly
worse than any other weighted averaging mixing model in all cases except for one.

The linear mixing model we have introduced is not restricted to weighted averaging mixing. Hence
the values returned by the mixing functions 1 are not necessarily between 0 and 1, but can be larger
than that or even negative. We have also observed such behaviour in our experiments, with mixing
values up to 40. Hence, the prediction of a single local model was in some cases multiplied many-fold
to produce the prediction of the global model. This makes us question the meaning of the prediction
of such local models, that are supposed to represent the best fit of the matched data to the form of
the model.

The aggressive mixing with linear models is also apparent when observing the shape of the predic-
tions of the LS mixing model, for example, in Figure 1. The steps in the prediction appear at classifier
matching boundaries where from a set of classifiers that match the input on one side of the step not
all classifiers match the input on the other side of that step. This results in the global prediction on
one side of the step to be offset by the weighted prediction of the classifier that does not match on
the other side. Even though the overall prediction appears to be worse than the one produced by the
heuristic mixing models, these spikes are narrow enough not to influence the MSE significantly, as our
experiments have shown.

10

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

As the number of classifiers rises, so do the number of classifier matching boundaries. Consequently,
we can expect to have more spikes influencing the MSE. This explains why the performance of linear
mixing models decreases with a higher number of classifiers. While this is more pronounced for LS,
LS_f seems to cope better with a higher number of classifiers. This can be explained by the higher
number of parameters that LS_f can adjust. Therefore, its model can react better to local changes in
the target function and to classifier matching boundaries. Increasing the number of basis functions
of the linear model even further will consequently also reduce the error even further. However, this
increase reduces the generality of the model until we have one parameter per training sample and a
prefect replication of these samples, which is certainly not useful.

The inverse variance mixing model comes close to mixing by least squares solutions of a linear model,
and even exceeds its performance for higher number of classifiers. Additionally, it has a more appealing
shape of the global prediction due to its weighted averaging architecture. An additional benefit is
that it is easy to implement and that it scales linearly with the number of classifiers. The difference
between inverse variance mixing and XCS mixing is significant but not substantial. Nonetheless, any
improvement for small computational cost is desirable, and the concept of inverse variance mixing is
more transparent and simpler to implement than XCS mixing. For all these reasons, it should be the
preferred choice for a mixing model.

6 Summary and Conclusions

We have investigated how to best mix predictions by a set of local independently trained models that
model the target function over a subset of its domain. This issue has to our knowledge never been
investigated in any detail before.

We have formalised the task of mixing by specifying a parametric mixing model that forms the
global prediction for a certain input by a weighted sum of the predictions of the matching local models.
The aim of the mixing model is to minimise the MSE of the global predictions with respect to the
target function.

Due to the nature of the problem, the only form of mixing model that allows for an analytic solution
to find the model parameters is the linear model, which we have described in more detail. However,
finding its solution does not scale well with the number of local models. Using gain adaptation to
approximate the solution is not an option as it ignores the interrelation between the predictions of the
different local models.

To provide scalable solutions we have introduced a set of heuristics that are all based on a weighted
average of the local predictions, but differ in how they weight the different models. We have shown
that using such heuristics allows us to bound the local and global prediction error by the weighted
sum of prediction errors of the local models. We have introduced four heuristics: i) mixing by inverse
variance of the local model, ii) mixing by prediction confidence, iii) mixing by maximum confidence,
and iv) mixing as it is currently performed in XCS.

We have shown in experiments that of the heuristic mixing models, mixing by inverse variance
gives the lowest prediction error, and the current XCS approach is not able to compete with any of
the other heuristics. Even though linear models are able to outperform any of the heuristics when only
few classifiers are used, their global prediction features many spikes, and their relative advantage to
heuristic models drops when the number of classifiers increases. As they do not scale well either and
cannot be applied to incremental learning, we recommend using mixing by inverse variance.

Its performance was so far only demonstrated in function approximation tasks. How well it will fare
once it is applied to data-mining is subject of further research. Furthermore, we expect the change of
mixing model to have a significant impact on the performance of XCS in reinforcement learning tasks,
a hypothesis that certainly requires further experimentation.

References

[1] Lashon B. Booker. Approximating value function in classifier systems. In Larry Bull and Tim
Kovacs, editors, Foundations of Learning Classifier Systems, volume 183 of Studies in Fuzziness
and Soft Computing. Springer Verlag, Berlin, 2005.

[2] Martin V. Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors, Advances in Learning Classifier Systems,
volume 1996 of LNAI pages 253-272. Springer-Verlag, Berlin, 2001.

11

3]

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

Colt project: Open source libraries for high performance scientific and technical computing in
java, 2004.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
alrogithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38, 1977.

David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81:425-455, 1994.

Jan Drugowitsch and Alwyn M. Barry. A Formal Framework and Extensions for Function Ap-
proximation in Learning Classifier Systems. Technical Report 200601, University of Bath, U.K.,
January 2006.

David E. Goldberg. Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-
Wesley, MA, 1989.

Simon Haykin. Adaptive Filter Theory. Information and System Sciences Series. Prentice Hall,
Upper Saddle River, NJ, 4th edition, 2002.

R.A. Jacobs, M.I. Jordan, R.A. Jacobs, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local
experts. Neural Computation, 3:79-87, 1991.

Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Prediction update
algorithms for XCSF: RLS, kalman filter, and gain adaptation. In GECCO ’06: Proceedings of
the 8th annual conference on Genetic and evolutionary computation, pages 1505-1512, New York,
NY, USA, 2006. ACM Press.

Richard S. Sutton. Gain adaptation beats least squares? In Proceedings of the Seventh Yale
Workshop on Adaptive and Learning Systems, pages 161-166, 1992.

Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149-
175, 1995. http://prediction-dynamics.com/.

Stewart W. Wilson. Function Approximation with a Classifier System. In Lee Spector, Erik D.
Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H Garzon, and Edmund Burke, editors, GECCO-2001: Proceed-
ings of the Genetic and FEvolutionary Computation Conference, pages 974-981, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

12

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

A Test Functions

A.1 Blocks

(z5)
(hy)

A.2 Bumps

z TBlocks
(h;) = (

—~

QS S .

~— ~—
|

A.3 Doppler

A.4 HeaviSine

4,
(" 0.005,

f(@) =3 hiK(z —),
0.25,

0.13,
-5,

0.15,
3,

0.23,
_47

f(@) =3 hiK((x — z;)/wj),

4,
0.01,

5,
0.005,

3,
0.006,

5,

9,
0.01,

0.40,
4.2,

K(z) = (1 +sgn(x))/2.
0.44, 0.65,
2.1, 4.3,

K(z) = (14 [z]*)

4.2,
0.03,

4.3,
0.01,

2.1,
0.01,

f(@) = (z(1 — 2))Y/? sin(27(1 4+ 0.05) /(x + 0.05))

f(z) = 4sindmrx — sgn(x — 0.3) — sgn(0.72 — x)

13

0.76,
-3.1,

-1

3.1,
0.005,

0.78,

5.1,

5.1,
0.008,

4.2
0.005

)
)

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

0.8

0.6

0.4

0.2

LS

LS features

x

& S—

.

[c S e
B =

O,

-2 -

0.8

0.6

0.4

0.2

(1,z), and

an average coverage of 3 classifiers per input. The upper graph shows the prediction using weighted

averaging mixing models. The lower graph shows predictions using linear mixing models.

Figure 1: Prediction of the BLOCKS function with 50 classifiers using the features ¢(x)

14

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

6 T
XCs +
InvVar x
Conf ©®
5 L MaxConf o
f(x)
4+ J
3 | -
Jii
2L Bl i
l | -
or ¥]
|
_1 | | | | | |
0 0.2 0.4 0.6 0.8 1
X
6 T T T
o L Ls -
it LS features
; H K1 o
5 i f(x)
4 | -
3 . .
Z
2 | ‘g : J
}
1 | -
O | -
-1 1 1 | 1

Figure 2: Prediction of the BUMPS function with 50 classifiers using the features ¢(z) = (1,z)’, and
an average coverage of 3 classifiers per input. The upper graph shows the prediction using weighted
averaging mixing models. The lower graph shows predictions using linear mixing models.

15

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

T
XCS +
InvV x
al nvVar - |
2 |- 4
O | -
=3
2+ 4
4+ i
6 4
| | | | | |
0 0.2 0.4 0.6 0.8 1
X
T
LS -
LS features x
4r KL s 7
f(x)
2 | -
O |- 4
z
2k i
4 4
6 4

Figure 3: Prediction of the HEAVISINE function with 50 classifiers using the features ¢(x) = (1,z)’,
and an average coverage of 3 classifiers per input. The upper graph shows the prediction using weighted
averaging mixing models. The lower graph shows predictions using linear mixing models.

16

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

+ x O o

XCS
InvVar

0.6

04 -
0.2 -

-0.2 +

(0

0.4 b

-0.6

0.6

04 -

()

0.4 -

-0.6

(1,z), and

Figure 4: Prediction of the DOPPLER function with 50 classifiers using the features ¢(x)

an average coverage of 3 classifiers per input. The upper graph shows the prediction using weighted

averaging mixing models. The lower graph shows predictions using linear mixing models.

17

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

f(x)

f(x)

Figure 5: Prediction of the BLOCKS function disturbed by Gaussian noise N(0,1), with 50 classifiers
using the features ¢(z) = (1,z)’, and an average coverage of 3 classifiers per input. The upper graph
shows the prediction using weighted averaging mixing models. The lower graph shows predictions using
linear mixing models.

18

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

L 4
+ x oo -
NBEER
O>Soo¥
X>00
c x
- ®©
=
@
[1o
ARG .
B N
I I I I I I
© o < ™ N — o —

LS features

(0

Figure 6: Prediction of the BUMPS function disturbed by Gaussian noise N(0,0.5), with 50 classifiers

using the features ¢(z) = (1,z)’, and an average coverage of 3 classifiers per input. The upper graph
shows the prediction using weighted averaging mixing models. The lower graph shows predictions using

linear mixing models.

19

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

- ‘%&'

0.6

04 -

0.2 -

(0

-0.2 +

0.4 b

-0.6

0.2

RS e

0.2

0.6

04 -

0.2 -

-0.2 +
-0.4 -
-0.6

(0

Figure 7: Prediction of the DOPPLER function disturbed by Gaussian noise N(0,0.1), with 50 classifiers

using the features ¢(z) = (1,z)’, and an average coverage of 3 classifiers per input. The upper graph
shows the prediction using weighted averaging mixing models. The lower graph shows predictions using

linear mixing models.

20

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

XCS

+
x
o
[°]

f(x)

LS features x

K1
f(x)

f(x)

4

Figure 8: Prediction of the HEAVISINE function disturbed by Gaussian noise N(0,1), with 50 classifiers
using the features ¢(z) = (1,z)’, and an average coverage of 3 classifiers per input. The upper graph
shows the prediction using weighted averaging mixing models. The lower graph shows predictions using
linear mixing models.

21

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

06

MSE
MSE

02 B 02

X | mag,
R
N

0 L L L L L L L L 0
50 100 150 200 250 300 350 400

Classifiers Classifiers

Figure 9: Change of the MSE for approximating the BLOCKS function with a changing number of
classifiers. The left graph shows the MSE’s when using feature vectors ¢(z) = (1). LS_f is omitted
from that graph as it gives the same results as LS. The right graph shows the same results when using
feature vectors ¢(z) = (1,z)". The error bars show the standard error over 20 experiments (mostly too
small to be seen).

06 5

04

03

MSE

02

0.1

HRRRg.angg

0 L L L L i
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Classifiers Classifiers

Figure 10: Change of the MSE for approximating the BUMPS function with a changing number of
classifiers. The left graph shows the MSE’s when using feature vectors ¢(z) = (1). LS_f is omitted
from that graph as it gives the same results as LS. The right graph shows the same results when using
feature vectors ¢(z) = (1,z)". The error bars show the standard error over 20 experiments (mostly too
small to be seen).

0.014 - 0.014

0.012

0.012

0.008 0.008

MSE
MSE

0.006 0.006

0.004

0.004 +

0.002 + 0.002

B R T
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Classifiers Classifiers

Figure 11: Change of the MSE for approximating the DOPPLER function with a changing number
of classifiers. The left graph shows the MSE’s when using feature vectors ¢(z) = (1). LS_f is omitted
from that graph as it gives the same results as LS. The right graph shows the same results when using
feature vectors ¢(z) = (1,z)". The error bars show the standard error over 20 experiments (mostly too
small to be seen).

22

Jan Drugowitsch and Alwyn Barry / Mizing Independent Classifiers

"X
KXo R Xy
R Kt xe g

0 L L L L L R S
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Classifiers Classifiers

Ko KX Kt KK

Figure 12: Change of the MSE for approximating the HEAVISINE function with a changing number
of classifiers. The left graph shows the MSE’s when using feature vectors ¢(z) = (1). LS_f is omitted
from that graph as it gives the same results as LS. The right graph shows the same results when using
feature vectors ¢(z) = (1,z)". The error bars show the standard error over 20 experiments (mostly too
small to be seen).

23

