

Citation for published version:
Gonzalez-George, V 2006, Information retrieval and gathering: An experimental prototype for Mac OS X.
Computer Science Technical Reports, no. CSBU-2006-16, Department of Computer Science, University of Bath.

Publication date:
2006

Link to publication

©The Author December 2006

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/information-retrieval-and-gathering-an-experimental-prototype-for-mac-os-x(95510ba3-1fc6-4599-a0d3-4b352e7213a0).html

Department of

Computer Science

Technical Report

Undergraduate Dissertation: Information Retrieval and Gathering:
An Experimental Prototype for Mac OS X

Victor Gonzalez - George

Technical Report 2006-16 December 2006

ISSN 1740-9497

Copyright c©December 2006 by the authors.

Contact Address:

Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Information Retrieval and Gathering: An Experimental

Prototype for Mac OS X

Victor Gonzalez - George
BSc (Hons) Computer Information Systems

2006

Information Retrieval and Gathering: An Experimental Prototype for
Mac OS X

submitted by Victor Gonzalez - George

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to
the University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the require-
ments of the degree of Batchelor of Science in the Department of Computer Science. No
portion of the work in this dissertation has been submitted in support of an application
for any other degree or qualification of this or any other university or institution of
learning. Except where specifically acknowledged, it is the work of the author.

Signed .

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Signed .

2

Abstract

Gathertron is a user centred Information Retrieval and Gathering prototype for Mac
OS X. Theoretical analysis of exploratory search techniques combined with users studies
identified a set of eight design principles and system requirements which characterise a
user oriented information retrieval and gathering system. These design principles guided
the design and implementation of Gathertron, from a simple GUI prototype to a fully
functioning application. Users were involved throughout the design, implementation and
evaluation processes to refine Gathertron and produce a final set of requirements and
principles which characterise a generic information retrieval and gathering system. It
is concluded that Gathertron actively supports the information retrieval and gathering
process of the user and provides a basis for future work in the domain of user oriented
information gathering.

Acknowledgements

First and foremost I would like to thank Dr Leon Watts for his advice and guidance
throughout the project and for keeping me entertained with endless discussion about
the benefits of being an Apple Mac user! I would also like to thank Dewi for her help
proof reading my dissertation, without her I would never have finished. Finally I would
like to acknowledge Galvatron for giving me the inspiration for the name of my final
system.

1

Contents

1 Introduction 5
1.1 Aims . 6

1.1.1 Project Aims . 6
1.1.2 Personal Aims . 6

1.2 Methodology . 7
1.3 Structure . 7

2 Literature Review: Information Retrieval, Browsing, Foraging and
Gathering 10
2.1 Introduction . 10
2.2 Exploratory Search . 11
2.3 Information Retrieval Systems . 11

2.3.1 User Oriented IRS design . 12
2.3.2 Query Formulation . 14
2.3.3 Query Language Analysis . 15
2.3.4 Multi-Stage Query Formulation 16
2.3.5 Information Clustering and Categorisation 17

2.4 Information Foraging . 18
2.4.1 Collaborative Foraging . 19

2.5 Information Browsing . 20
2.5.1 Information maps . 20
2.5.2 Document Browsers . 20

2.6 Information Visualisation and Re-access 23
2.7 Information Gathering . 23
2.8 Conclusion . 24

2.8.1 IR and IG Design Principles . 24

3 Studying Usage of IR and IG 26
3.1 Introduction . 26
3.2 Searching and Finding Information on The Macintosh Platform 26

3.2.1 Spotlight Technology . 27
3.3 Requirements Sources . 28
3.4 Study 1: A Think-aloud Study of Spotlight Usage 29

3.4.1 Results . 30
3.5 Study 2: Co-operative Evaluations . 30

2

3.5.1 D E C I D E Framework . 31
3.5.2 Problem-Task Analysis . 36

3.6 Evaluation Results . 39
3.7 Preliminary Requirements Validation and Revision 44

3.7.1 IR and IG . 44
3.7.2 Query formulation . 46
3.7.3 Query Result Representation . 46
3.7.4 Query Results Categorisation . 46
3.7.5 Results Manipulation . 46
3.7.6 Query Re-access . 47

3.8 Conclusion: From Forgetful Foraging to Persistent Gathering 47

4 Design of ‘Searchlight’, a Prototype IR and IG System 48
4.1 Introduction . 48
4.2 Design Decisions . 48
4.3 Design Methodology . 49

4.3.1 Model-View-Controller Paradigm 49
4.4 Architectural Design . 50

4.4.1 Overview . 50
4.4.2 Query Formulation . 52
4.4.3 Result Representation . 53
4.4.4 Result Categorisation . 54
4.4.5 Result Manipulation . 54
4.4.6 Query Re-access . 55
4.4.7 Information Gathering . 55

4.5 Prototype 1: GUI Prototype . 55
4.5.1 Detailed Design . 56

4.6 Prototype Evaluations . 59
4.6.1 Evaluation Results . 61
4.6.2 Redesign . 62

4.7 Conclusion . 64

5 Detailed Design and Implementation of ‘Searchlight’ 65
5.1 Introduction . 65
5.2 Hardware Analysis . 65
5.3 Implementation Language . 66

5.3.1 Cocoa Frameworks with Objective C 67
5.4 Prototype 2: MVC Revisited . 68

5.4.1 Overview . 68
5.4.2 Model Layer . 68
5.4.3 View Objects . 72
5.4.4 Controller . 75

5.5 Conclusion . 78

6 Evaluation of Searchlight and Generic IR and IG Requirements 80
6.1 Introduction . 80

3

6.2 Methodology . 80
6.3 Prototype Evaluations . 81
6.4 Evaluation Results . 82
6.5 Redesign . 86

6.5.1 Gather View . 86
6.5.2 Saved Query View . 87
6.5.3 Results View . 88
6.5.4 Query Feedback . 88
6.5.5 Aesthetic changes . 89

6.6 Redesign Evaluation . 90
6.7 Conclusion . 92

6.7.1 Implementation Evaluation . 92
6.7.2 Requirement and Design Principle Evaluation 94

7 Conclusions 97
7.1 Overview . 97
7.2 Critical Analysis . 98
7.3 Information Gathering and Retrieval Defined 99
7.4 Future work . 100
7.5 Personal Reflection . 101

A 105
A.1 Spotlight Analysis Results . 105
A.2 Requirements Specification . 110

A.2.1 Functional Requirements . 110
A.2.2 Non-functional Requirements . 116

B 119
B.1 Problem Task Analysis . 119

C 122
C.1 Gathertron Icon Creation . 122

4

Chapter 1

Introduction

The central problem for this dissertation relates to how people find information to satisfy
their information needs. Information Retrieval is a field of computer science research
which is broadly concerned with the access of information. There is much confusion
and debate regarding the true nature of information retrieval, ranging from mathe-
matical modelling and algorithms for retrieval quality to the ‘representation, storage,
organisation of, and access to information items’ [Yates and Ribeiro-Neto, 1999].

These two contrasting definitions of information retrieval introduce problems when de-
signing information retrieval systems. Mulhem and Nigay [1996] identified a common
problem with information retrieval systems is that they do not adopt a user centred
approach and the design emphasis is placed on the technical efficiency of the system,
instead of usability. This indicates that there is a gulf between human computer inter-
action and information retrieval systems.

Anna Aula, a Finnish researcher, is trying to trying to bridge the gap between informa-
tion retrieval and human computer interaction. Aula has carried out numerous studies
investigating human information retrieval processes and how a system can support these
processes. In one study aimed at discovering web based patterns for advanced users,
Aula identified a key characteristic of IR is the need to re-access information.

In addition to finding information for their current needs, people require methods for
re-accessing information they have found earlier’ [Aula et al., 2005].

This demonstrates the importance of developing an information retrieval system by
studying users and then involving them during the design process, as this feature of IR
may not have been identified without undertaking user studies.

When people search for information, there is a purpose associated with that search and
this is where the role or purpose of the information retrieval system is crucial. An
information retrieval system,

‘does not inform the user on the subject of their inquiry, it merely informs on the exis-
tence and whereabouts of documents relating to their request’ [Lancaster, 1968].

5

This definition of an information retrieval system suggests that information retrieval is
the process of determining relevance of and locating documents which relate to the per-
son’s information need. An information retrieval system is not concerned with obtaining
specific answers to well formed questions, rather, the collection of links to information
pertaining to the person’s information need. This is where the concept of information
gathering enters the equation.

In its purest, most simplistic form, information gathering is the ‘act of collecting in-
formation’ [Miller]. Information gathering is an ongoing, recursive process of collecting
relevant information for immediate or future use, thus supports Lancaster’s definition
of information retrieval. In the current home computer environment, there are no in-
formation retrieval systems which actively support the information gathering process.
Therefore, this project aims to investigate the occurrence and characteristics of infor-
mation gathering during the information retrieval process and develop an information
retrieval and gathering prototype which supports the needs of the user.

1.1 Aims

The aims of the work reported in this dissertation have been divided into two categories,
the project aims and personal aims. The project aims detail the high level aims of the
project process, whereas, the personal aims describe the technical and professional skills
that the author set out to acquire.

1.1.1 Project Aims

• To investigate the role of information gathering during the information retrieval
process

• To define the characteristics of a person’s information gathering process based on
empirical research

• To define a set of principles for a user centred information retrieval and gathering
system

• To follow a user centred design methodology to create a native Mac OS X 10.4
information retrieval and gathering prototype

• To provide a basis for future work into information gathering.

1.1.2 Personal Aims

• To investigate technology available on the Mac OS X platform

• To learn new development techniques and programming languages on the Mac OS
X platform

6

1.2 Methodology

To achieve the project’s objectives, it is necessary to combine research and engineering
methods. A variation of the evolutionary development model, ‘exploratory develop-
ment’ [Sommerville, 2001] has been adopted for this project. Exploratory development,
as described by Sommerville, is the process of working with the users of the system to
explore requirements and deliver the final system. This differs from the standard water-
fall life-cycle as the requirements, design and development stages happen concurrently
rather than sequentially. The methodology adopted in this project deviates slightly from
the standard evolutionary development model suggested by Sommerville as the initial
requirements specification was developed before the concurrent development and vali-
dation of the prototypes. It was vital to carry out end-user studies to investigate IR and
IG techniques to guide the requirements specification before developing the first proto-
type. To validate the design principles suggested in the literature review, the first part
of the project requires research into the basic nature of information gathering.

The design and developments stages are guided by a three stage evolutionary prototyp-
ing technique also suggested by Sommerville. This approach involves the development
of three prototypes, with users evaluating each iteration to guide the design of the
next prototype. Figure 1.1 illustrates an adapted version of the Evolutionary Devel-
opment Model presented by Sommervile. The main difference is that the requirements
specification is no longer performed alongside the development and validation. The re-
quirements specification, which is based on theoretical analysis in the literature review
and empirical studies, provides the basis for the initial system prototype in the design
phase. The development produces intermediate working prototypes which are validated
and redesigned until the final prototype, an evolution of the intermediate prototypes,
is created. Throughout this entire process, the requirements will evolve to produce a
final set of requirements or principles which characterise an IG and IR system. An
exploratory method was chosen as traditional waterfall models are extremely linear and
do not provide much scope for redefinition of requirements and design.

1.3 Structure

• Chapter 2 - Literature Review: Information Retrieval, Browsing, Foraging and
Gathering. The literature review introduces the field of exploratory search and
discusses exploratory search techniques, such as, Information Retrieval, Foraging
and browsing. The review discusses the benefits of adopting user centred design
approaches and examines the current interpretation of information gathering. The
chapter concludes with a set of principles used to guide the design of an IR and
IG system.

• Chapter 3 - Studying Usage of IR and IG. This chapter introduces the Macintosh
platform and moves on to the first user study which analyses an existing search
tool, Spotlight. The second user study is then introduced, which analyses users
search patterns with the aim of identifying the characteristics of information re-

7

Figure 1.1: Adapted Evolutionary Development Process Model

trieval and gathering. The results of the evaluations are analysed and used in
conjunction with the design principles derived from the literature review to create
the requirements specification.

• Chapter 4 - Design of ‘Searchlight’, a Prototype IR and IG System. This chapter
details the high level systems architecture derived from the requirements specifica-
tion and uses the MVC design paradigm to design the model, view and controller
objects in the system. The first prototype, ‘Searchlight’ is developed, which is a
sophisticated GUI prototype used for end user evaluation. The evaluation results
are detailed and ‘Searchlight’ is redesigned to implement the suggested changes.

• Chapter 5 - Detailed Design and Implementation of ‘Searchlight’. This chapter
uses the prototype developed in design chapter and implements the system func-
tionality to create the first working prototype. The MVC paradigm is revisited
to guide the implementation of the system and the view layer is redesigned to
comply with Apple Interface Design Guidelines.

• Chapter 6 - Evaluation of Searchlight and Generic IR and IG Requirements. This
chapter discusses the evaluations for the first fully functioning iteration of Search-
light. The initial evaluation results are presented and the prototype is redesigned
to create the final prototype, ‘Gathertron’. Gathertron is then evaluated and dis-
tributed to twelve Mac OS X 10.4 users and as a method of further evaluation.
The final system is then evaluated against the design principles identified in the
literature review.

• Chapter 7 - Conclusions - The conclusion offers an overview of the entire project

8

and moves on to a critical analysis of the main stages. Information Gathering is
redefined with reference to the design principles and the future work is discussed.

9

Chapter 2

Literature Review: Information
Retrieval, Browsing, Foraging
and Gathering

2.1 Introduction

There are several ways of conceptualising the problem of how people find information to
meet their needs. Each conceptualisation suggests a conceptual model for the interaction
a person may have with a system which has been designed to furnish them with relevant
information. This literature review aims to investigate Information Retrieval (IR),
Information Foraging (IF), Information Browsing and Information Gathering (IG) to
produce a set of principles which characterise a person’s interaction with an IR and IG
system. These principles are used to create a requirements specification which is used
throughout the project to guide and evaluate the final system.

The review commences with a discussion of exploratory search techniques and focusses
on an in depth analysis of IR. User centred Information Retrieval System (IRS) design
methodologies and principles are introduced and an example a system, TAIPRI, which
has been designed to support user information needs at the query formulation stage
of the information retrieval process is discussed. The main stages of the IR process,
from query formulation to information clustering and categorisation are analysed, with
reference to systems such as ‘Findex’, ‘Session Highlights’ and ‘FIRE’.

By exploring IF and browsing, this review attempts to discover the alternatives to
query based IRSs. Information Gathering is then introduced with particular reference
to studies carried out by [Schwartz and Pu, 1994]. The review concludes by examining
the principles which characterise an IR and IG system.

10

2.2 Exploratory Search

Data retrieval systems such as search engines, digital libraries and databases are ideal for
supporting the retrieval of data if the person has a well defined query. Data retrieval
systems support well formed, question and answer style queries, where the person is
aiming to retrieve a particular item of data, such as cinema times or sports results.
However, data retrieval systems do not support poorly formed information problems
which require exploration of the conceptual information space. If a person has limited
knowledge in a particular domain, for example, aquatic animals, how would they formu-
late a query to retrieve information to improve their knowledge on the subject? When
we attempt to address a poorly defined information problem, we submit a tentative
query and explore the retrieved information ‘selectively seeking and passively obtaining
cues about where the next step lies’ [White et al., 2006]. Exploratory search aims to
blend the individual conceptualisations of information search, such as IR, IF, IG and
information browsing to create highly interactive systems which allow people to search
the information domain to solve poorly defined information problems.

Figure 2.1 illustrates three search activities, look-up, learn and investigate [Marchionini,
2006]. Look-up is the most basic and direct form of search and typically involves
direct question and answer style searches, or well structured information problems,
for example, ‘what are the train times for the next train to London?’. Learning and
investigative searches are activities which require more cognitive processing over longer
periods of time to extract knowledge from information. For example, where a look-up
search may involve retrieving data which answers a single instance of a problem, learning
and investigative searches involve the retrieval of information and the assessment of its
relevance and validity for use at that moment of for future reference.

2.3 Information Retrieval Systems

As stated in the introduction an IRS ‘does not inform the user on the subject of their
inquiry, it merely informs on the existence and whereabouts of documents relating to
their request’, therefore, this definition excludes data retrieval systems. Data retrieval
systems have very different characteristics to IRSs, for example, when people use IRSs
they are aiming to retrieve relevant information which represents a partial or best match
to their queries. With data retrieval systems, people aim to retrieve exact data which
exactly matches their query. For example, a person may use an IRS, such as Google,
to search for information pertaining to the domain of ‘wild boars’, but they may use
a data retrieval system to retrieve the television schedule for ‘BBC1 on Tuesday 14th
June’. This distinction is important because data retrieval systems support people with
well defined information goals, whereas, IRSs are more exploratory and aim to address
poorly formed information problems.

11

Figure 2.1: Search Activities

2.3.1 User Oriented IRS design

A common problem with IRSs is that they do not adopt a user centred approach [Mul-
hem and Nigay, 1996]. It is suggested that all experiments conducted to discover the
efficacy of an IRS use metrics to assess retrieval speeds and the number of correctly
matched query terms. These may be valuable metrics to analyse the technical efficiency
of the system, but they do not assess the usability or account for user interaction. Par-
allel investigations into HCI for IR and interactive system design have suggested the
following design principles: [Mulhem and Nigay, 1996]

• Conceptual Design: the system is built around the conceptual information needs
of people

• Experimental Design: software design implemented and then tested on people.
This is an iterative process

A combination of the two design methods would be the most effective technique of
creating user-oriented systems. An IRS should support human information needs; com-
bining conceptual and experimental design allows the designer to identify these needs
and work with people to develop a system which matches their requirements. This
human approach to creating an IRS is reinforced by the definition of IR as ‘human
problem management’ [Mulhem and Nigay, 1996].

12

Feedback and Support

There are three main entities to take into account for any instance of IR: [Brajnik et al.,
1996]

• The user of the information

• The IRS itself

• An intermediary - in the form of a person or the mechanism between the user and
the information system; for example, an interface).

Feedback and support in any system is vital to ensure people of all abilities are able to
use it effectively. Even the most intuitive systems need to offer some degree of guidance
for both novices and people with more experience. Support can be classified in the
following ways: [Brajnik et al., 1996]

• Technical Support - to enable correct use of interface or system. For example,
a system such as Google simply requires the person to enter a search term and
then select the ‘Search’ button. Technical support would inform the person of this
process

• Conceptual Support - to support the model implemented by an IRS. Conceptual
help can be classified as ‘terminological and strategic support’ [Brajnik et al.,
1996].

Terminological support improves the person’s query formulation vocabulary. Most IRS’s
support more advanced query formulation. For example, the use of speech marks to
force exact string matches, or the use of boolean operators such as AND, OR. Strategic
support suggests advice on how to improve the number of results returned. For example,
removing superfluous terms such as ‘the’ and ‘of’ to increase the number of relevant
results [Brajnik et al., 1996].

The difficulty of system support is finding a method of providing support effectively,
but, support should not be completely excluded from a system. If a person understands
how to formulate queries and grasps the concept of IR but cannot use the system,
the system has failed. The same can be said for providing technical support and no
conceptual support. The person may understand how to use the system or interact with
the interface, but may not understand how to formulate effective queries, thus never
returning correct results.

Most systems will offer support in the form of help documents or online support, but
people often do not have the time or the inclination to read support documents. [Brajnik
et al., 1996] identify six methods of providing support:

• Contextual - support for the person at the current stage in the IR process.

• Generic - general system support, such as an FAQ.

• Unprompted - support is automatically displayed on the screen when a perceived
problem arises.

13

• Prompted - the person must explicitly ask for support.

• User Controlled - the person is able to browse through related support entries as
desired.

• System Controlled - system provides a list of support entries and the user must
select an option and move on.

They carried out an experiment using FIRE, an intelligent search interface, which at-
tempted to emulate a human intermediary by essentially interacting directly with a
person and supporting query formulation. FIRE was a prototype which investigated
preferential support techniques for query formulation and information navigation. FIRE
also allowed the person to assess and classify retrieved documents and categorise them
based on relevance.

The results from the experiment demonstrated that:

• Explicit terminological support is important in contextual form.

• The automatic reformulation of queries using FIRE does not improve performance

• User-focussed, strategic conceptual support should be provided and unprompted
as it improves user query formulation

• Technical support improves system usability - should be both prompted and un-
prompted

• Systems should enable user-controlled interaction

The experiment demonstrates key areas which must be considered when designing an
IR system. Nevertheless, there are constraints with the experiment. The people used
in the experiment had to be trained to use the system. This is not representative
of a real system because people are not normally trained before they use a search
system. Although, in live environments, mediators may be used to give people a quick
demonstration of how to use a system. For example, a friend or colleague could introduce
a new IR system and explain how to use it. Novices were not included in the experiment,
third and fourth year computer scientists were used. This does not reflect the computer
skill of the average person. Advanced computer science students already have a solid
foundation in query formulation and this is likely to limit the generality of Brajnik et
al’s findings.

2.3.2 Query Formulation

It could be argued that many IRSs are built to produce fast and verified results and
rarely take peoples needs into account. A system called TAIPRI [Mulhem and Nigay,
1996] was developed to support the information needs of a person when attempting to
translate their information need into computer query form. The input to the system
consisted of a query field where the person entered search terms and their approximate
weightings. For example, if they wanted to search for cats and dogs, but wished to
find more about cats, they would place a heavier weighting on the term ‘cat’. Mulhem

14

and Nigay suggested that it is beneficial to present the person with a list of search
terms to use when formulating their queries. TAIPRI employed a browsable list of
search terms which the person could use to formulate their query. If the appropriate
keyword was not in the list, then the person was advised to use a synonymous term;
the example given was, substituting ‘vehicle’ for ‘car’, ‘lorry’ etc. This could be viewed
as a contradiction to user-oriented system design because the person is being forced to
change their information needs based on the system design. The idea of weighting a
query also conforms to this because the person may not have a clear conceptual idea
of exactly what they are trying to achieve. The system did provide limited conceptual
feedback in the form of a circle which divided the search terms in to proportions. The
concept of reformulation of queries based on the output of a query was suggested, but,
the impact of this was not assessed.

The main constraint of the TAIPRI project was that at the time of publishing, Mulhem
and Nigay had not performed usability tests, therefore, the concepts they propose have
yet to be empirically validated. The most important notion to take from this work is
the idea of user oriented design approaches and to treat IR as a human process. An
IRS should support peoples’ needs and help produce meaningful results as opposed to
providing the fastest query response.

2.3.3 Query Language Analysis

Most web-based IRS’s are query language based. Anne Aula, Natalie Jhaveri, and
Mika Kaki conducted investigations to discover web-based information search patterns
for advanced users. Even though the investigation was web-based, the concepts are
applicable to the desktop searching environment. The results demonstrate how the
system a person uses can support or inhibit the IR process. Re-access to information,
discussed in section 2.6, also features heavily because,

‘In addition to finding information for their current needs, people require methods for
re-accessing information they have found earlier’ [Aula et al., 2005].

Aula, Jhaveri and Kaki sent questionnaires to a group of 226 people with advanced web
skills. Each person was asked a series of questions and their responses and comments
were recorded. Each person was instructed to use their preferred search system and
answer the questions accordingly. Over 99% of the applicants used Google as their
preferred search system. The main finding were as follows: Over 50% of the people
questioned did not understand the system’s representation of a simple, operator-free
query, for example assuming the default boolean operator was ‘OR’. This demonstrates
that a lack of feedback in a system can lead to incorrect usage, even for people with
greater web experience and skills.

The most common operator respondents reported using was speech marks. Boolean
operators such as ‘OR’ were rarely used. An operator which was used frequently was
the site operator which limits the sites included in the search. This could indicate that
people assume limiting a search field will return fewer unwanted results. The other most

15

prevalent operator was ‘NEAR’ which indicates that people do not always have a clear
understanding of exactly what they are looking for.

An interesting comment was that people with greater web experience often formed
similar queries to those with less experience. The queries may have taken the same
form, for example using the same operators, but the major difference was the phrases
or terms included. People with greater web experience chose search terms more carefully
to produce more accurate results. This indicates that people are content to use simple
queries and trust the system to produce results that are consistent with the content of
the search strings.

It was also discovered that people seem to trust the algorithmic efficiency of Google,
as many stated that they rarely use results past the second page as they, ‘don’t care
for thousands of queries, because they usually look at first few anyway’ [Aula et al.,
2005].

One concern with the experiment is that the results are based on questionnaires as
opposed to observation of behaviour. It is not possible to verify the answers from a self-
selecting and self-reporting group of respondents. A larger sample may help to reinforce
the results.

Another drawback with the experiment is that it was targeted at advanced web users
and there is no proof or no evidence, to suggest that desktop searching is the same as web
searching. The basic searching principles are transferrable, but the information needs
of the person may change when trying to retrieve a file from their hard drive.

Summary

The investigation demonstrated that people submit tentative, non-exact queries which
aim to retrieve matches close to the query string. People also prefer to limit the scope
of the search to retrieve a higher concentration of relevant information.

2.3.4 Multi-Stage Query Formulation

Query formulation can be a difficult process for those with poorly formed information
goals [Smeaton and Kelledy, 1998]. Careful query formulation can yield high quality
results if the information goal or need of the person is well defined [Smeaton and Kelledy,
1998]. If the information goal of the person is unclear, then they may benefit from a
more interactive or exploratory method of IR.

The idea of making IRSs more interactive can lead to ‘multi stage query formulation’
[Smeaton and Kelledy, 1998]. This is where the person can create an initial query and
expand this query using search results and relevant terms. If the system uses a more
exploratory method, the person will be able to browse through a list of relevant topics
which they could then use to expand the initial query. This may be more effective
for those with unclear information needs, however, as systems such as Google have

16

demonstrated, people may not be prepared to spend time formulating queries when they
can enter simple search terms and browse a larger list of relevant information.

An experiment to discover the benefits of interactive query formulation was carried out
on two people, one computer scientist with advanced search skills and a novice who
had not even used a web based IRS [Smeaton and Kelledy, 1998]. They were both
asked to construct queries using single words and phrases. The phrases were predefined
and they had to select them from a list and drag them into their queries. The results
showed that the computer scientist benefited from a combination of predefined phrases
and their own words to produce accurate results. Conversely, the novice was drastically
hampered when using multi stage, phrased queries. This indicates that people with more
IRS experience have a better understanding of which search phrases must be used to
yield accurate results. Intriguingly, the results showed that the single word queries used
by the novice were just as effective as the phrase based queries used by the computer
scientist. This suggests that novices benefit from IRS’s such as Google which encourage
the use of single word queries to find information. Research suggests that people favour
‘the path of the least cognitive resistance’ [Smeaton and Kelledy, 1998], which indicates
that people prefer to use simple search terms and browse through results to retrieve
information. This could be due to the perceived complexity of query formulation or the
difficulty people have changing an information need into a succinct query.

Summary

The investigation above suggests that people spend little time formulating complex
queries and prefer to use simple search terms to explore a list of results.

2.3.5 Information Clustering and Categorisation

[Hearst, 2006] suggests two main methods of categorising search results, clustering and
faceted categorisation. Clustering is the grouping of search results based on similarity
between results, for example, if the term ‘Puma’ was entered, the results could be
categorised as ‘Ford Puma’ and ‘Apple Puma’. Clustering is fully automated and can
use implicit information to cluster information based on relevance matching. One of the
main benefits of clustering is that it supports poorly formed information problems, as
the clustering of results allows the user to view the dominant or most relevant themes
relating to a query, rather than a list of grouped results. A major drawback with
clustering is that it is dependent on the efficiency of the algorithm to ensure that
results are effectively clustered. As a system cannot determine the semantic meaning
of a query, it is difficult to group results in a way that is meaningful to the user. This
is a common problem with information clustering as,

‘usability results show that users do not like disorderly groupings, preferring under-
standable hierarchies in which categories are presented at uniform levels of granularity’
[Pratt et al., 1999].

17

Faceted categories are usually manually defined categories which order information into
meaningful groups. This differs from clustering as categorisation uses fixed categories
to group information which is consistent with each search. For example, a faceted
category would be a music category containing only music files and a cluster could group
information relevant to an artist, genre, etc. The benefit of using faceted categories is
that they are consistent and predictable with each use of the system.

Summary

Categorisation or clustering represents the principle of subdivision of an information
patch into more meaningful segments. Clustering supports more exploratory search if
implemented effectively. Categorisation provides a predictable structure for subdivision
of the information space.

2.4 Information Foraging

Information foraging uses the metaphor of wild animals rooting for food to analyse how
humans collect information online. This theoretical framework can be used to critique
web design and improve user interaction [Card and Pirolli]. There are three major
components of IF:

• Information scent - this can be information clues which lead to the final infor-
mation destination. The information scent will strongly influence the information
path a person takes

• Diet selection - what information is relevant and how the system provides this
relevant information.

• Patch selection - where to search for information. The person decides which system
or patch to use and must also decide when to change patches.

The above metaphors illustrate that IF has strong biological foundations and models the
person’s interaction with a biological entity within a constrained environment. This ap-
plication of biological characteristics can help to produce a system which closely matches
the needs of a person. The idea of information in the ‘wild’ is structured in patches and
people must search these patches to harvest information. Information Foraging suggests
that people must minimise the time spent searching between patches and maximise the
time spent searching within each patch. This is the process of enrichment [Pirolli and
Card, 1998]. The ‘Optimal Foraging Theory’ assesses the amount of time expended
searching between patches. For instance, if a person is foraging for information in one
patch, as the information diminishes, they will face a decision of whether to remain in
that patch or move to a new patch to continue foraging.

The strong metaphor in IF provides lots of contributions of the IRS designer, but relies
heavily on the assumption that people have a relatively structured idea about what
they are looking for (food) within sets of information (patches).

18

Summary

IF introduces the principle of subdivision of information space into patches and the
resulting successive exploration of these patches. Foraging is a forgetful process, as users
will exhaust a patch and move onto another, using and discarding information from each
patch, but never collecting or gathering information from patch to patch.

2.4.1 Collaborative Foraging

IF does not account for user collaboration within information tasks and assumes that
people have well defined information problems. It is suggested that, for people who
do not know exactly what they are looking for, keyword oriented search systems are
less effective, therefore, collaborative foraging supports people with unclear information
goals. Collaborative Foraging is an amalgamation of IF and collaborative filtering which
models the human information foraging process on the co-operative processes of other
creatures, such as bees [Schultze, 2002].

Collaborative filtering identifies information which may be relevant to one person based
on the information needs of a group of people. Collaborative filtering uses networks
to obtain explicit and implicit information to build an information network [Schultze,
2002]. Collaborative Foraging uses information gleaned from numerous foraging agents
to shorten the ‘between patch yield’ and increase the information scent.

Web Waggle is a system which was developed to investigate the impact of IF and collab-
orative foraging [Schultze, 2002]. Web Waggle worked by people identifying information
which may be relevant to other people and creating a collaborative network of shared
information. Web Waggle was tested on a group of computer scientists, however, the
aims and objectives of the experiment seem unclear, thus producing inconclusive results.
Web Waggle seemed to rely heavily on the use of user derived explicit data. This could
be a disadvantage because people have to put in more effort to retrieve information
and this effort will not yield immediate goals; it will simply go towards an end goal of
fortifying a collaborative network of information. The use of implicit data is a more
favourable method and is used by many retail systems to offer recommendations based
on buying patterns of others. The concept of collaborative information foraging is inter-
esting because it provides a structure for information based on the visibility of retrieval
patterns of other people. However, any system which relies on voluntary contributions
from people, may not be effective due to inaccuracies and lack of participation. This is
reinforced by [Marchionini, 2006] who states that people are often unwilling to ‘provide
feedback when the search is the classic turn-taking model’.

Summary

Collaborative foraging identifies the principle of using explicit or implicit shared infor-
mation in a collaborative environment to increase the information scent and provide
traces between information patches.

19

2.5 Information Browsing

2.5.1 Information maps

As stated in Section 2.4.1, search term queries are not as effective when the person has
a vague understanding of the information problem they are trying to address. Browsing
allows people to explore the information domain and capitalises upon the fact that
recognition is more powerful than free recall to find an item. One major disadvantage
of browsing large systems is that people can become conceptually lost. This ‘lost in
concept space’ problem can be linked to the Internet and file system browsing when
someone loses sense of where they are in an information space. This could be due
to navigating through hypertext links or navigating through nested folders with little
semantic meaning [Korn, 1996].

A method of improving the development of a person’s cognitive map is to add visual
clues, which help the user to map the information space [Korn, 1996]. The idea of maps
in non computer related tasks is to help people plan routes or navigate large spaces to
reach an end goal. This approach can be transferred into the IR process. Visual clues
could take the form of colour co-ordination of items to portray the idea of landmarks
[Korn, 1996]. Browsing is suitable for certain search tasks, for example, hierarchical
subject browsing. If someone has an interest in cars, they may commence by searching
for ‘engines’ and traverse through to related areas, such as, radiator, engine block then
to cylinders and on to pistons. A method of improving conceptual, spatial awareness
could be to indicate the number of nodes a parent node contains. This gives the sense
of depth to the person [Korn, 1996].

2.5.2 Document Browsers

The underlying data structure of a file system is extremely important when designing
document browsers. When a person traverses a conventional file system, each stage of
the process requires a decision, i.e. which path should the person take. The person must
base this decision either on recall or recognition. If the decision is based on recognition,
then they need some way of identifying that route as the correct route [Korn, 1996].
There are problems with graphically visualising a large file system. Complex file systems
mean that a multi-dimensional conceptual space must be mapped onto a two or three
dimensional space [Korn, 1996]. Browsers such as Treemaps use full screen space and
show structure of the file system as well as text based information and visual clues
[Korn, 1996]. This improves information scent as details of each node are displayed.
The disadvantage with using such interactive browsers is that they can be disorientating
and there is a possibility of information overload.

Hyperbolic Tree Browsers

Pirolli discusses the use of hyperbolic tree (Figure 2.2) browsers to improve IR and
foraging techniques. Hyperbolic tree browsers display information using a ‘focus and

20

context visualisation’ [Pirolli et al., 2001]. The root of the tree is presented in the
centre of the visualisation and then child nodes are arranged thematically from this.
Experiments were carried out which identified that hyperbolic browsers allow users to
find information more quickly than traditional browsers [Pirolli et al., 2001]. However,
for hyperbolic browsers to be effective, the information scent must be high. When
information scent is low, hyperbolic browsers are slightly more effective at finding in-
formation, but in both cases, more nodes are selected to retrieve information than in
generic browsers [Pirolli et al., 2001]. This demonstrates the importance of information
scent with respect to IR. IRS’s such as Google, improve information scent by adding
textual descriptions below each link. Hyperbolic browsers also help to counteract the
‘lost in conceptual space’ theory as users are presented with an overview of the file
system or information field.

Figure 2.2: Hyperbolic Tree Browser

Goldleaf Browser

‘One of the greatest challenges of UID is to simultaneously provide the user with context
as well as detail’ [Faichney and Gonzalez, 2001].

Goldleaf (Figure 2.3) is a document browser developed by Faichney and Gonzalez.
Goldleaf differs from traditional browsers by visualising six sub folders of a tree hi-
erarchy in a radial fashion around the screen [Faichney and Gonzalez, 2001]. Each main
sub folder also displays six child folders. One of the major features of Goldleaf is the
ability to use large thumbnails to visualise the file content. People can quickly identify
the content of each file on the screen and if they cannot locate a file they require, they
navigate through to a sub folder using a single mouse click. Faichney and Gonzalez car-
ried out experiments on five computer scientists to discover the usability of the Goldleaf
browser. They performed a number of search tasks and asked each user to locate a spe-
cific document using Goldleaf and then Microsoft Windows Explorer. They found that

21

the number of clicks required to find the document was far smaller using the Goldleaf
browser. This reduced number of clicks could be attributed to the way Goldleaf uses
the entire screen space to display three tiers of the file system [Faichney and Gonzalez,
2001]. Windows Explorer only shows one level of folders and therefore when a path
branches off a person must take more time making a decision on which path to take,
or use more clicks by traversing up and down the file system [Faichney and Gonzalez,
2001].

There are constraints with Goldleaf, it cannot display large numbers of sub-folders
efficiently. The size of each folder and document thumbnail decreases the further down
the tree it is. The modern emphasis on multimedia technology and the exponential
growth in the digital music market now means that users will have many sub-folders for
music and video. Goldleaf would not be able to display all the sub-folders of a user’s
music directory if they had, for example, one hundred artists.

The test also indicates the importance of document details and preview for IR, in the
case of Goldleaf, document thumbnails proved to be vital in the user’s recognition
process during file selection. As with all browsing and search tasks in the experimental
environment, people are always told what they need to locate. In practise, this is not
the case as many people have an information goal and no clear document in mind.

Figure 2.3: Goldleaf Browser

Summary

Information browsing identifies the principle of information exploration and recognisable
information structure. The use of visual clues and appropriate file information can

22

improve the recognition of location within an information structure and improve the
information scent.

2.6 Information Visualisation and Re-access

The study by Aula, Jhaveri and Kaki, introduced in section 2.3.3 identified that re-
access of information was an important feature of the search practises of web users. For
example, a person may formulate and execute a query to find information and then need
to find the same information at a later date. The results showed that people find it very
difficult to remember the exact query entered to return the same results. The use of
browser history was identified as ineffectual because history items often have page titles
with little semantic meaning. The use of bookmarks is difficult because users tended to
have such a large number, that it was difficult to locate a particular item.

‘Findex and Session Highlights’ [Aula et al., 2005] are two systems, which aimed to solve
the problems raised above. Session Highlights took a visual approach to the problem by
allowing people to save their queries to a large clipboard. Bookmarks were saved as large
thumbnails because ‘people remember visual information well and can easily use visual
clues such as thumbnails’ [Aula et al., 2005]. Another interesting point raised is that
‘recognising is typically much easier than recalling’ [Aula et al., 2005]. This suggests
that people are more likely to locate a particular item by acknowledging the thumbnail
as opposed to remembering the location of the item itself. Findex used Google search
results and represented these results in a different format. It used a clustering technique
to organise the information into groups as stated above.

Summary

Aula et al identified the importance of query re-access and recognition over recall. The
user needs a method of storing previously created queries or links to information, whilst
ensuring that these saved objects provide enough semantic meaning to be re-used at
a later date. Visual clues such as file previews and labels must be used to aid the
recognition process.

2.7 Information Gathering

Information gathering is a term which is loosely used in computer science to refer to the
act of gathering or collecting information. IG has no definitive meaning, in contrast,
IF and information browsing are defined domains of exploratory search with relatively
stable definitions. IG is most commonly discussed as a function of a system which
retrieves and gathers information in an automated fashion.

[Schwartz and Pu, 1994] developed a tool, Netfind, which locates email addresses and
additional information about internet users. They applied an IG architecture to Netfind

23

to gather this information from a widely distributed network. Below is a framework
they developed to detail the stages of IG.

1. Examine previously gathered information. This stage involves examining previ-
ously gathered data and applying rules to decide which sources should be used for
the next IG activity.

2. Collect information from a selected information source. This is the actual act of
gathering information, which is usually an automated process determined by a set
of rules

3. Apply source specific data to eliminate unusable information. This involves filter-
ing invalid information based on given criteria

4. Combine records from multiple sources. This stage combines information gathered
from multiple sources to solve heterogeneity problems, for example, differences in
file formats for gathered data.

The framework adopts an algorithmic approach to gathering data based on rules and
criteria, which demonstrates the automated, system oriented nature of IG. As there is
no framework which details the user’s IG process, user studies must be undertaken to
investigate the human IG process.

2.8 Conclusion

This chapter examined the research literature on exploratory search to determine a set
of good design principles for a user centred IR and IG system. These principles are
detailed below.

2.8.1 IR and IG Design Principles

1. Query Formulation. Users submit non-exact, tentative queries to return informa-
tion relevant to the query rather than exact matches. Users also submit simple
queries to produce quick results and browse through the results, often redefining
queries. Users also limit the search to locations of possible relevance, so that the
results returned contain fewer irrelevant results. The system must support the
formulation and re-formulation of non-exact queries to return relevant informa-
tion which the user can browse through. The scope of the query must also be
limited to reduce the amount of unnecessarily irrelevant information returned.

2. Query Information Visualisation. Users utilise file previews and specific file at-
tributes, such as name and location, to make a judgement on the relevance of
information. The visualisation of information must concentrate on supporting the
user’s recognition process and not rely on recollection.

3. Query Information Clustering and Categorisation. Users need a method of divid-
ing patches into more manageable sizes. Clustering or faceted categorisation must

24

be used to divide information patches into more meaningful segments.

4. Information Browsing. Information browsing involves navigating through an in-
formation space, looking for relevant information whilst creating a mental model
of that space. Visual clues, such as document thumbnails and file attributes must
be used to provide the user with sufficient feedback on their location within the
information space.

5. Information Foraging. Users move from patch to patch exhausting information in
each patch before moving on to the next. The system must support this patch
exploration process.

6. Collaborative Foraging. In a networked environment, users explicitly and implic-
itly share information to build a collaborative network of relevant information, to
increase information scent and reduce time expended between patches.

7. Information Re-access. Users frequently need to re-access previously executed
queries to find relevant information. Users must be able to save and attach mean-
ing to these queries to aid the recognition process when attempting to re-access
saved queries.

8. Information Gathering. Users need to be able to collect information during patch
searches to counteract the effect of ‘forgetful foraging’. Users must also be able
to gather information during IR and information browsing and attach meaning
to this information to aid the recognition process when attempting to retrieve
previously gathered information.

In the next chapter, these principles will be re-examined and refined through user stud-
ies.

25

Chapter 3

Studying Usage of IR and IG

3.1 Introduction

The research into exploratory search conceptualisation in Chapter 2 provided a set of
principles which define the interaction with an IR and IG system. To produce a full
requirements specification, analysis of Spotlight and empirical studies to determine how
people search on the Macintosh platform, were undertaken. This chapter introduces
the Macintosh platform and describes the two user studies which were carried out to
validate the principles identified in Chapter 2.

3.2 Searching and Finding Information on The Macintosh
Platform

One of the project aims is ‘to create a native Mac OS 10.4 information retrieval and
gathering prototype’, however, there is no justification or explanation regarding this de-
cision. The Macintosh platform was chosen to develop on for three main reasons.

• From a developmental perspective the development tools available as standard on
the Macintosh platform are ideal for supporting rapid application development.
These tools are discussed in section 5.3.1.

• From a learning and personal development perspective, the final year project pro-
vides a massive learning opportunity for students and for this reason, it provides
a great platform to investigate different operating systems and development tech-
niques. The Macintosh platform has always been of personal interest and this
project provides the basis for such investigation.

• Arguably the most important factor is the search technology, Spotlight, which has
been integrated into the latest version of Mac OS X. Spotlight, as described below,
allows the user to search file content and metadata of all file stored on the file

26

system. No other mainstream operating system provides this functionality which
is integrated system wide.

The importance of Spotlight technology is not only that it is a new and interesting
platform for user research, but as it is integrated into the file system, developers are able
to work with the technology to incorporate it into their applications. Before Spotlight
is discussed, it is worth mentioning the role of the Finder application in the OS. From
the perspective of the user, Finder is a file system browser which is similar in function
to more common file system browsers such as ‘Windows Explorer’. Finder is the default
application which manages all files in the file system, for example, Finder manages
common file tasks such as creation and deletion of files.

3.2.1 Spotlight Technology

Spotlight appears in four forms:

• Standard menu bar implementation. In the standard Spotlight implementation,
the user selects the magnifying glass icon in the top right hand corner of the screen
and a search field is displayed. The user types in a search string and a results list
appears, populating as the user continues to type. The results are represented in
a list format with different categories to represent the file type returned. Figure
3.1 displays the standard Spotlight search bar.

Figure 3.1: Standard Menu Bar Implementation

• Advanced floating view. This is an extension of the standard menu bar imple-
mentation which is displayed when the user selects the ‘see all’ results button in
the standard menu view. This view is not owned by any application and is simply
an extension to the standard implementation which allows the user to sort the
results according to date, kind etc.

• Smart Folder View. Smart folders are an extension of Spotlight as they are virtual
folders which use a user defined query to create dynamic folders. Smart folders
are created using the Finder-Spotlight search field, where the user enters their
query and the Finder window is then populated with search results.

• Command Line. As Spotlight is integrated system wide, searches can be executed
from a UNIX terminal by using the mdfind (metadata find) command followed
by a string.

High Level Overview

Figure 3.2 illustrates the relationship between the main components of the Spotlight
implementation.

27

When a file is modified, created or deleted, the kernel notifies the Spotlight engine that
a change has taken place to a file. It is the then job of the Spotlight engine to update
the system store with the new metadata attributes of a file, these include, filename,
size, date created. It does this by using Launch Services to determine the file type and
use an appropriate metadata importer to import the metadata attributes of the file
and construct a dictionary. This dictionary is then passed back to the Spotlight engine
which updates the system store.

Figure 3.2: Spotlight Overview

This demonstrates the basic method of indexing metadata of a file, but it does not take
into account the user’s interaction when searching. When a user enters a query into
the spotlight window, the application owner creates the query expression and executes
the query. This query is passed to the spotlight engine which searches the system store
to match the metadata attributes and return the results to the application. This is
only a high level overview of how Spotlight works to provide a basic understanding of
the technology. Section 5.4 contains a more detailed analysis of exactly how Spotlight
works in relation to system design.

3.3 Requirements Sources

Figure 3.3 illustrates the sources which were used to create the preliminary requirements
specification in appendix A.2. The literature review provided a list of principles which
define the users interaction with the system. These principles characterise the main
features of an IRS and IG system, however, they do not provide enough information to
create a user centred requirements specification.

As the final prototype will be a native Mac OS X 10.4 application, the audience for
the prototype is effectively all Mac OS X 10.4 users. Empirical studies with a sam-
ple of Mac OS X 10.4 users provided the main source of data for the requirements
specification.

The empirical studies were divided into two sections, Spotlight analysis and co-operative
evaluations analysing how people address specific information problems. The studies
are discussed below.

28

Figure 3.3: Requirements Sources

3.4 Study 1: A Think-aloud Study of Spotlight Usage

As Spotlight is still a relatively new technology, there are obvious constraints with the
system. The high level overview of Spotlight in section 3.2.1 described how the system
functions, but did not discuss any constraints with the technology. To identify the
constraints and benefits of Spotlight, a series of structured interviews were carried out
with 10 Mac OS X 10.4 users. The term interview should be used loosely as it was a
think-aloud evaluation style interview, where the participant discussed their opinions
of Spotlight whilst running through typical activities on their computers. Participants
were briefed on the aims of the study and the kinds of activity they would be performing.
They were informed that they could leave at any time and asked to consent to participate
if they were happy to do so on these terms.

The aims of the informal interviews were as follows:

• To identify the major constraints with Spotlight

• To identify the main strengths with Spotlight

• To identify areas of improvement with Spotlight technology

• To identify the common tasks users perform with search results

The interviews were kept as informal as possible. This decision was made to help
the participant feel more relaxed and more comfortable offering their opinions. The
interviews were conducted in informal environments, such as, a group study area, a
lecture room or the participant’s house. The interviewer adopted an informal approach,
working through typical Spotlight scenarios with the user to encourage the participant

29

to offer their opinions. Where possible, the participant was asked to bring their own
machine to use as a collaboration and memory jogging device. It was not as easy for
a user to think hypothetically about constraints with Spotlight without actually using
the Spotlight, therefore using their own machine acted as a memory prompt and an
‘icebreaker’ between the interviewer and interviewee. The interviews were not recorded,
however, the interviewer took notes throughout the interviews. Where 1:1 interviews
were not possible, remote interviews were used by holding Audio conferences over iChat
AV.

The key results were taken from the interview notes and placed into the table found in
Appendix A.1. The table contains the participants quote, the meaning of the quote, the
domain the quote relates to and a suggested requirement of the system. This structure
was adopted so that the quote and the activity associated with that comment can be
linked directly to the domain of interest and a possible requirement. This aids the
requirements validation process as the requirements can be directly linked back to the
participants comments and activities.

3.4.1 Results

The results show that most of the constraints with Spotlight are focused around the
visualisation and categorisation of results. The results grouping does not match the
users expectation of what type of file they expect to see in each category and the
inconsistency between categorisation across applications has a confusing effect on users.
During the interviews, the participants were asked what file types they expected to find
in each category, the results can be found in table A.1

The main benefit of Spotlight, as identified by the participants, was the speed of result
retrieval without much effort on the part of the user. For example, the user does not
have to remember the name of the document, just something about that document
and Spotlight will return relevant results. This reinforces the query formulation design
principle from Section 2.8.1. During the interviews, users were also asked what actions
they typically performed on the search results. The most common actions were:

• Open the file. This was the most common action performed on search results.
Opening the file was performed for two main reasons, to retrieve information from
the file itself and to verify its relevance.

• Go to the location of the file, also know as ‘reveal in Finder’. This was performed
when users needed to access the file itself, for tasks such as, file transfer, or
accessing a particular file location to view similar items

3.5 Study 2: Co-operative Evaluations

The main content of the requirements specification was derived from end user evalu-
ations to determine how people address specific information problems. To gain a full

30

and accurate requirements specification, it is not acceptable to leave the all of the re-
quirements and design decisions to the developer. Users need to be involved throughout
the process to ensure that the requirements and the final system meet user expecta-
tions.

3.5.1 D E C I D E Framework

To plan the user evaluations, the D E C I D E Framework [Basili and Rombach, 1994]
was adopted. This framework was chosen because it provides a clear structure to the
evaluation and as Basili states ‘well planned evaluations are driven by clear goals and
appropriate questions’. The main disadvantage with this approach is the uneven weight-
ing for different sections of the framework. There is no stage to specifically design the
evaluation itself, therefore, all of the evaluation planning and technique evaluation took
place in the third step, ‘Choice of evaluation paradigm and techniques’. The D E C I
D E framework is an acronym for the following six stages.

Determine Goals

High level goals of the evaluation:

• To investigate how people address a variety of information problems

• To identify and analyse how the purpose of the information problem affects the
method adopted

• To investigate if people display information gathering tendencies

If people do gather information, how do they do this?

• To identify additional practical constraints with Spotlight

• To produce a full and accurate requirements specification to support information
gathering.

• To validate the design principles in Section 2.8.1.

Explore Questions

In order to achieve the goals of the evaluation, specific questions were asked which
intended to guide the design of the evaluation and the analysis of the results.

• What is the participant’s individual interpretation of the problem?

• What technique does the participant adopt to solve their problem?

• What system does the participant use?

• Is the process recursive?

If so, how many stages does the participant adopt?

31

What leads the participant to feel they are not satisfied with the results and
to continue the search?

What leads them to feel satisfied with the results?

• Does the participant exhibit gathering tendencies?

How does the user gather relevant information?

What does the participant do with the relevant information?

How does the user discard the irrelevant information?

• What does the person do with the information once it has been retrieved?

• What does the participant identify as constraints with Spotlight?

• What does the participant identify as the benefits with Spotlight?

• Does the lack of familiarity with a system influence the methods of information
gathering?

Choice of Evaluation Paradigm and Techniques

Questionnaires were not used at any point during the requirements gathering process
as they offered little benefit to the overall investigation. Questionnaires are ideal for
collecting a large amount of data from a large source of people. However, to design
a successful questionnaire, the majority of the questions must have a finite set of an-
swers, which in some cases will lead the participants answers. It is important when
conducting user studies, not to lead the participant into answers that suit the devel-
oper. Questionnaires are most useful when people have a conscious opinion or definite
answer to a question, the nature of this investigation is such that users are often not
aware of processes and steps they take when retrieving and gathering information. The
questionnaire would return very little useful data and would results in unnecessary time
consumption.

Interviews were appropriate for the investigation in section 3.4 it was purposely ex-
ploratory. However, they were not appropriate to identify activity patterns during IR
and IG processes. Specific user activities needed to be identified and this information
is only obtained through observation and not question and answers sessions. Even the
most self-reflecting people would not be able to identify the particular stages they follow
when gathering information.

Experimental design was not chosen for requirements gathering as it does not support
the aims of the evaluations. Experimental design is ideal for comparative user interface
testing, where data collected compares the usability of different systems under different
conditions. The evaluation style in this investigation places emphasis on observing
and analysing humans performing their natural processes. There are no independent
variables which can be manipulated to provide meaningful data. It is important to
analyse how and why people perform particular actions and how these can be supported,
not what affect manipulating a particular variable has on the person.

32

The analysis of experimental design methods indicated that a more observational ap-
proach was appropriate to support the aims of the investigation. In an ideal scenario,
ethnographic studies would have been adopted to analyse users in their natural en-
vironment. This would enable the evaluator to spend time in the field with the end
users, analysing exactly how they address their information problems in their natu-
ral environment. These studies would have to take place over a long period of time
with many different users, therefore they are clearly not applicable for an eight month
project.

Therefore, the decision was made to conduct a formal evaluation in an open-ended
interactive style. A variant of the Think-aloud technique, Co-operative Evaluation,
allows the evaluator to collect large amounts of data about what the participant is
thinking, whilst working with the participant to produce a more informal, comfortable
atmosphere.

The Think-aloud technique is intended to ascertain what the user is thinking whilst
they are using a system. Most common uses of Think-aloud involve the user running
through a series of tasks whilst verbalising their thoughts. Think-aloud is extremely
effective if evaluations are recorded as there will be large amounts of data to analyse.
One of the constraints with Think-aloud in the investigations was that it was hard to
keep the participant talking and occasionally, the self reflection would cause the par-
ticipant to perform actions they may not have performed otherwise. This constraint
with Think-aloud was counteracted by allowing the evaluator to adopt an interactive,
co-operative style, so that the participant always felt at ease.
Co-operative evaluation is a variant of Think-aloud where the evaluator works with the
participant to solve particular tasks. The evaluator is able to ask the participant ques-
tions about the system they are using and discover the user’s opinions.

Participants

10 students from the University of Bath between ages 20-23 were used in the eval-
uations. The evaluations took place in a specially equipped HCI laboratory at the
University of Bath. Each participant was a Mac OS X 10.4 user.

Procedure

The co-operative evaluations involved a set of problem-tasks which the participant and
the evaluator worked through until the task was completed. Each participant worked
through 7 tasks specifically designed to answers the questions raised above. Each session
lasted approximately 30 minutes and screen outputs and audio were recorded for post
evaluation analysis. All problems were lead by the participant and they were encour-
aged to address the tasks in their own way. It was the participant’s decision to identify
when they felt they had completed the task and attempt to explain why they thought
that was an appropriate end point.

The evaluator acted as a prompt for the participant to articulate their thoughts and
offer help on how to use particular systems. It was important that the interactor did

33

not clarify problems set because it was the participants decision on how to address the
information problem that was being analysed. The interactor was able to ask questions
such as ‘what do you think about this interface?’ or, ‘what do you think about this
results view?’. It was important to ensure that any questions did not lead the user.
During the evaluation, the evaluator concentrated more on collaborating with the user
than note taking.

The evaluations were initially tested with a test participant to practise the tasks and
suggest any improvements. The trial run identified a few key areas of improvement in
the evaluation, such as, techniques to encourage participants to keep articulating their
thoughts, appropriate questions to ask and restructuring of data content on the test
machine.

Materials

The test machine in use was a 15 inch 1.25ghz Powerbook, running Mac OS X 10.4,
connected to an external display, keyboard and mouse. The machine was configured
with a new user account and the hard drive was populated with information relating to
the problems set. Participants had access to the internet and any DTP packages they
required. The test machine was configured with a large amount of source data taken
from various online sources and additional miscellaneous data from the interactors ma-
chine.

Identify practical issues

A major design issue with the evaluations was attempting to re-create the participant’s
natural information environment. As stated before, it was not possible to go to the
participant’s environment to spend time with them and record their activities. The
evaluation method, coupled with the scenario based problem-tasks tried to emulate a
typical information problem in an informal setting and the results demonstrate that it
was a successful technique.

Participant availability and time constraints were major practical issues to overcome.
There was difficulty finding a large enough Mac user base for evaluations and then
finding users who were willing to participate. A total of 10 Mac users were recruited
for the evaluations, this was a large enough user base to extract meaningful data, but
a larger group would have yielded a wider range of results

Equipment and storage devices were major practical issues. The HCI laboratory is
shared between numerous students, so there were major time constraints on using the
equipment. Audio-visual equipment in the laboratories was excellent, however, data
transfer from DV tapes to storage devices proved to be a problem as the cables used to
transfer the data were shared between numerous students.

Storage space was an unconsidered practical issue. Each 30 minute session equated to
approximately 5GB storage space and each miniDV tape only stored 60mins of film.

34

This turned out to be a fortunate constraint as it meant that analysis of each session had
to be carried out soon after the evaluation so that the data could be overwritten.

Decide how to deal with ethical issues

It was stressed at the beginning of each task that it was a very informal session and par-
ticipants were free to ask questions and most importantly, every answer was the right
answer. Participants were given an extremely high level objective of the evaluation,
‘investigation into searching’. The detailed objectives of the experiment were not com-
municated to the participants to ensure that actions remained impartial. Participants
were free to stop the experiment at any time and were offered anonymity in the video
and audio recordings. All participants signed a consent form before each evaluation to
inform them that no personal information would be used. Below the text content of the
consent form

By signing this consent form, I agree to take part in a controlled research experiment
to investigate user-centered search systems. I agree that any private information has
been legally obtained and used for appropriate purposes in a controlled environment. I
acknowledge that my actions will be recorded and analysed for research purposes.

Evaluate, interpret and present data

It was important during the analysis of the data to separate the participants’ verbal
reasoning between solving the problem and the use of the tool. Usability problems with
the system had to be separated from problems participants experienced when trying to
address their information problem. This division was important because it allows the
developer to identify the difference between usability problems to address with a system
and the conceptual problems of IR and IG. Usability problems with Spotlight can be
addressed as additional features of the system, which do not necessarily relate to the
concept of IR and IG.

The analysis of how participants interpret the task was important because the way
people express their information need or problem relates directly to the task. For
example, typing specific keywords into a search engine effectively defines the problem
they are trying to address.

Statistical data was used to evaluate the rate of occurrence of a particular activity,
however this was used to reinforce key concepts and not to be interpreted in a statistical
manner.

Before the analysis of each session could begin, the video data needed to be re-watched to
transcribe all of the key activities and quotes. When all of the data had been transcribed,
the key activities and quotes were analysed in conjunction with any evaluator notes to
ascertain activity patterns exhibited by the participants. These activity patterns were
summarised and the full requirement specification in Appendix A.1 was produced. Video
data are a very rich resource for an investigation, admitting many possible analyses.

35

They are typically used for extensive evaluation of the content and process of an activity,
not for assessing its outcome.

A common problem with design decisions made in projects is that requirements often
seem to ‘appear’ without any relation to the context of the problem they are trying
to solve. This often leads to questions such as ‘why did you design this feature?’ or
‘why is this feature necessary?’. Therefore, to attempt to counteract this problem, each
requirement is accompanied with a description and the principle or source from which
that requirement was derived . The data from the evaluations was originally placed
into a table to analyse the key activity patterns and identify possible requirements.
However, as the amount of data obtained was so large, this was not practical, therefore,
the results were summarised in Section 3.6

3.5.2 Problem-Task Analysis

The table below lists the problem tasks participants completed during the evaluations.
Each task is accompanied with its respective domain and additional notes. Tasks 1-
4 adopt a scenario based approach to try give the participant an objective for the
information problem. By accompanying each problem with a background scenario, the
participants were able to understand the relevance of the task and interpret it in their
own way. Tasks 5-7 adopt a more structured task based approach and do not include
problem scenarios.

36

Problem 1

Scenario You have a cockroach infestation in your home. There are
holes in the walls, cockroaches scuttling across the kitchen
floor, and bugs in your bath tub. You do not know what to
do to solve your cockroach problem.

Task Find information which will help you solve your cockroach
problem

Domain IF, IR, IG, Browsing

Notes Poorly defined information problem. Most open task, note
how user approaches first open task. Recursive task, no clear
stopping point, monitor how users identify relevant informa-
tion

Problem 2

Scenario You are writing a document about mice and remember that
you have a few documents saved somewhere on your com-
puter, which contain information about house mice, but you
arent sure how relevant they are.

Task Find information about mice to compile your document

Domain Suggested IR, IG, IF, Browsing

Notes Poorly defined information goal, suggesting there is some-
thing useful on computer, ‘mice probably keyword, hinting
towards document retrieval. Will the participant store the
results as they search? Do they bookmark / save searches?
Still recursive, with less clear stopping point, as how much
information do they need?

Problem 3

Scenario You have just bought a new car and the bumper has fallen off.
You are not allowed to drive with your bumper hanging off
so you need to find a way to fix it. You do not have Internet
access for this task.

37

Task Without using the Internet, find any information which may
help you solve your bumper problem.

Domain IR, IG and browsing for bumper related material. Data re-
trieval for repair services etc

Notes More focussed task. Forces participant to use desktop. Less
likely to gather information, as could be a quick answer. Pos-
sible data retrieval for number for mechanic

Problem 4

Scenario A friend has recently become interested in ‘badger watching
and asks you for any information or tips about badgers in
general. You are sure that you have a document on your
computer specifically about badgers, but cannot remember
any details about it. You are sure that it was created in 2006
because you became interested in badgers on your holiday to
Bognor Regis.

Task Find any badger related information to give to your friend.

Domain Query Formulation, IG, IR, IF and Browsing

Notes More structure, encourages participants to search for Bog-
nor or 2006. General search for a known document should
encourage gathering of information. Search within different
patches, how do they move from one patch to another?

Problem 5

Scenario N/A

Task What is a major cause of deforestation in the Amazon Rain-
forest?

Domain IG and data retrieval

Notes Ideal task for IG and data retrieval, encourages question and
answer based searching, gathering of information during task

38

Problem 6

Scenario N/A

Task Who was the second president of the United States?

Domain Data retrieval

Notes Less recursive than all previous task, likely no IG, simple data
retrieval

Problem 7

Scenario N/A

Task Find ONLY IMAGES AND PDF files on your computer re-
lating to cheese

Domain QF

Notes Find out if people know how to create advanced queries and
their relevance. Searching for file container, not file itself

Tasks 1 and 2 are very non linear and were aimed at assessing the key areas of IR
and IG. The problems had no clear stopping point and were designed to encourage the
participants to gather information, reformulate queries and save searches. Tasks 3 and
4 became more focussed and moved towards data retrieval and gathering. This was be-
cause, as the tasks became more focussed, the problem structure became more question
and answer based. It was important to assess whether information gathering exists in
the domain of data retrieval in addition to IR. Task 4 focussed on advanced query for-
mulation and how participants addressed information problems with multiple criterion.
Task 5 was aimed at discovering how participants gather information when they have a
direct question with many possible answers. Task 6 was a direct data retrieval exercise
and assessed whether participants gather information when they address a less recur-
sive problem. Task 7 was a unique question as it was an extremely complex task which
focussed on assessing how participants create advanced queries using Spotlight. The
aim was to analyse how participants use advanced features of the system and whether
they offer any benefits to the IR and IG process.

3.6 Evaluation Results

The key results for evaluations are summarised and detailed below, to provide the basis
for the requirements specification.

39

Problem-Task 1

Most participants chose to use Google to search for information about cockroaches.
Queries varied from a generalised ‘cockroaches’ where the participant wanted ‘informa-
tion on cockroaches’ to specific query strings such as ”cockroach” + ”extermination” +
”bath”. The participants who did not use Google, went for a more direct problem solv-
ing route by searching ‘Yell.com’ for ‘pest control’ and then specifying a postal address.
Participants who adopted a data retrieval approach, i.e. looking for a specific number
to call, stated that they would ‘write the number down’, or ‘bookmark’ the page. This
demonstrates that some participants would either gather the specific information or,
gather a link to that information. In both cases, the participants required to re-access
the information at a later date. This verifies the information re-access and gathering
principles from Section 2.8.1.

All of the Google searches were recursive, none of the participants stopped after one
search, but as they searched, they identified possible relevant sources of information.
Participants with experience in using the Safari browser, opened multiple tabs to keep
relevant information open. Rather than gathering small amounts of information as the
participant moved through the task, they identified pages which contained information
to return to. Participants placed more importance on remembering the location or
source of information, than exact information from within that source.

Most participants were satisfied with the conclusion of the task when they felt they
had found one or more sources which identified ‘how to get rid of cockroaches’. One
participant halted the task prematurely when they realised that they already knew
how to get rid of cockroaches. Participants identified that knowledge of the location
of relevant information was a suitable ending point to the task as they had effectively
created a mental model of where they would find the information at a later date to
continue the task. This can be linked to information browsing, gathering and re-access
principles as the participants attempt to remember the locations of the relevant files to
build up their knowledge of the information space and to re-use this information in the
future.

Problem-Task 2

Nearly all of the participants interpreted the problem to be ‘looking for information
about mice’. Most participants chose to use Spotlight to search the test computer for
information about mice, as the problem hinted at the existence of relevant documents
on the machine. All of the participants who used Spotlight, entered ‘mice’ as the search
term. Several users identified that they just want to ‘pull up all information about
mice’. This can be linked to the query formulation principle in Section 2.8.1 as users
submit a simple query and browse through the results.

When the search list populated, most participants chose the top hit in the list ‘task doc-
ument’, regardless of the file type of filename. When the top hit was not a relevant file,
as it was invariably the actual task document, participants returned to the populated

40

results list and moved straight to the pictures or PDF category. This demonstrates
one of the constraints with the clustering principle in Section 2.8.1, as results clustered
depending on their ‘relevance’ are not necessarily the most relevant results. Not one
participant used the ‘Document’ category, simply because it contained header files and
non relevant information.

The PDF files listed did not have relevant file names, however, participants still se-
lected these. Several participants displayed gathering tendencies whilst searching for
information about ‘mice’. They would open one PDF in the list, read the document
and minimise the document if it was deemed ‘relevant’. They would then return to the
results list and try the next file in the list. This activity was repeated until they had
opened all of the files in the results view, or they had ‘found enough relevant informa-
tion’ to be satisfied with the end of the task. This demonstrates the principle of IF
from Section 2.8.1 as participants exhaustively searched an information patch for food
before ending the task or moving onto another patch.

One participant hovered over a PDF document in the results list and found the location
of a PDF containing information about mice and ended their search. They explained
that as they had found the location for one relevant piece of information, they assumed
the location would yield more relevant results.

Problem-Task 3

This task proved to be more troublesome for most participants. The problem prevented
participants from using the Internet as a resource and possibly did not encourage par-
ticipants to search their computer for information, as several mentioned that they would
not use a computer for this task.

The participants who did conduct a search, all typed ‘bumper’ into Spotlight. As a point
of interest, three participants, even those who use Spotlight regularly pressed ‘return’
to activate the search, even though Spotlight searches on each key stroke.

For this task, participants navigated straight to the PDF category in the results view.
Two participants interpreted the filename ‘bmpworkshop’ to mean ‘bumper workshop’
and opened that file. Several participants identified the auto-search feature of PDFs to
be a distraction. If Spotlight returns a PDF file, the auto-search feature automatically
searches through the open PDF for that query and identifies the matches in the PDF
drawer view. Several participants identified this feature as a constraint when trying
to browse through a file for information as the navigation view is obscured with query
results as opposed to page thumbnails. The auto-search feature is ideal for data retrieval
as it locates the relevant item instantly. Conversely, when used in conjunction with IR
and IG, it is an obstruction for users as they wish to browse information which is
relevant to the query, not necessarily the query term itself. This can be linked to
query formulation and information browsing principles in Section 2.8.1, as participants
constructed tentative queries and wished to browse relevant information, not the exact
match.

41

Many of the participants in this task, stopped if the first search did not yield relevant
results. They felt that they had satisfied their information need (almost proved to
themselves that they did not have any information on their computer) and resigned to
calling a mechanic out.

The participants who did continue, searched thoroughly for repair tips, reformulating
the query with terms such as ‘car’ or ‘car repair’. Participants collected bumper repair
information as they continued to search by leaving open relevant documents and closing
non-relevant documents. One participant decided to look up the location of a relevant
file in the Spotlight results list and navigate to that directory to see if there was any-
thing else of interest there. When they did not find anything in that directory, they
browsed through the ‘Documents’ folder, looking for something related to cars. This
reinforces the information browsing principle and the use of location attributes in results
visualisation to provide users with a direct path to the location of the result.

One user finished browsing for information and wanted to return to a document they
identified as relevant, however they had previously quit the application and could not
remember what the filename was. Therefore, they recompiled the search and checked
each file until they recognised the relevant one. This reinforces the principle of query
information visualisation and in Section 2.8.1 as participants could not remember the
name of the file and were not given enough information to be able to recognise it. It also
demonstrates the principle of IF as the participant exhaustively searched the results list
until they located the correct result.

Problem-Task 4

All participants began this problem by using Spotlight with the aim of locating ‘a file’
or ‘any information on badgers’. All participants used either ‘badger’ or ‘badgers’ as
their initial queries. This mainly returned pictures, which participants opened, but did
not use. Again, participants moved straight to the PDF category in Spotlight view
because they had become accustomed to irrelevant information being in the documents
category. Most users did not find any relevant information after opening the first or
second item in the list and resorted to other methods.

Some participants noticed the ‘Bognor 2006’ information in the task and tried to con-
struct a more complex query and assumed that the advanced Spotlight view would be
ideal for this. With the exception of one participant who tried to use advanced view to
order results by date, participants returned to the Spotlight menu bar view when they
decided that they could not construct a complex query in the advanced view. Only one
participant entered ‘bognor 2006’ which returned one file containing information about
badgers. Participants who could not find any information using Spotlight, used Google
and searched for ‘badgers’ or ‘badger’.

Participants stopped their search when they decided that there was no information
about badgers on the computer because Spotlight did not return it. Participants who
used Google, stopped when they found ‘reputable’ sites such as ‘badgers.org’.

42

Problem-Task 5

All participants used Google to search for information on ‘deforestation’. Queries varied
from the open terms such as, ’deforestation’ to the more specific, ‘deforestation Amazon’.
Participants typically used the first three results in Google to continue their searches.
Participants who had entered general queries such as ‘deforestation’, reformulated their
queries to make it more specific, for example ‘Amazonian deforestation’. This reinforces
the query formulation principle in Section 2.8.1 as participants initially submitted a
tentative query, browsed through the results and reformulated the original query.

Participants exhibited gathering tendencies by searching multiple sources and identi-
fying relevant items of information to use to solve the problem. Most participants
identified a major cause of deforestation and used another web-site as verification of
what they had originally discovered. Several participants searched within the web-page
to narrow down the search even more. For example, one participant searched for ‘causes’
within a web-site about Amazonian deforestation. The demonstrates the importance of
subdividing information patches into more meaningful segments.

There was a clear stopping point to this task, however, participants still were unsure
when the task was complete. Even though the task was oriented towards data retrieval
with an element of IR, participants were unsure how much information they needed.
When gathering information from various sources, participants did not seem to be
able to identify an end to the task, rather the gathering of information sources was a
prerequisite for future work.

Problem-Task 6

This was the shortest task for all participants. Each participant used Google and
searched for variations on ‘US presidents’. All participants did not use more than one
source for this task and there was a clear, right or wrong answer to the task. One user
was satisfied with the text description of the Google results view and ended the task
at that point. This reinforces the information visualisation principle in Section 2.8.1 as
the participant used the information preview to recognise relevant information.

This was the first task in which participants did not gather information or sources of
information as they progressed through the task. This suggests that for tasks which are
solely data retrieval oriented, IG is not as prevalent.

Problem-Task 7

This task proved to be problematic for all participants. Some participants attempted
to create a complex query in the Spotlight field, for example, entering ‘cheese kind:pdf
or kind:picture’. When this did not work, they tried to reformulate the query but after
three different variations, decided that they did not know how to create a complex
query.

43

Most participants could not complete this task as they were not familiar with complex
queries. Two users attempted to compile two advanced searches, one for ‘cheese’ and
only leave the PDF cascading row open, and then create another search, leaving only the
pictures row open. The general consensus of the task was that ‘I would never need to do
that’. Therefore, perhaps the task was not relevant enough for participants to attempt.
Several participants did comment that they would simply look through a results list of
all file types and ignore items they did not need. This can be linked to the IF principle
in Section 2.8.1 as a patch is created through the subdivision of the search space based
on specific file attributes.

Three users attempted to create a complex query using the smart folder view. They
tried to add criteria to imitate the query in the task, but resorted to searching for
‘cheese’ and minimising the sections which were not relevant.

3.7 Preliminary Requirements Validation and Revision

The results in Section 3.6 represent a summarised account of the evaluation transcrip-
tions. They indicate particular activity patterns exhibited by participants. From these
evaluation results, clear definitions of IR and IG were established.

The problem-tasks were designed to encourage the participants to retrieve and gather
information and the key finding was that there is a void between users retrieving in-
formation and the ability to retain knowledge of the whereabouts of this information.
The evaluations demonstrated that participants either consciously or subconsciously
gathered retrieved information, but the conceptual problems arose when there was no
tool to support the gathering of this information. This shows that Spotlight is not an
IG system, rather a combination of an IR and data retrieval system.

The usability problems identified in the evaluations related to the representation and
selection of results retrieved from Spotlight searches, for example, the lack of location
information about a result or poor categorisation of results. Users did not exhibit any
conceptual problems with the standard implementation of Spotlight, however this was
not the case with the advanced view. Users did not understand the main function of
the advanced view and consequently were not able to use it effectively. Users stated
that they assumed it allowed them to create more advanced queries, or allowed them
to save searches.

3.7.1 IR and IG

The evaluations demonstrated that for recursive information problems, participants
exhibited the tendency to identify relevant sources of information to return to at a later
time. This common process was performed in different ways, from minimising windows,
to bookmarking web-sites, to simply remembering the location of a relevant file. It is
this ongoing collection of pointers to relevant documents which defines the process of
IG.

44

The main difference between IR and IG is that IR is concerned with locating and
retrieving relevant information, whereas IG is concerned with collecting pointers to the
identified information of relevance. The term ‘pointers to information’ is important,
as an IG system must not gather the document information, rather a link to that
information. This is derived from the section 3.6, where participants would identify
sources of information to return to, rather than store the information itself. During the
evaluations, when users felt they had retrieved enough information, or could not find
anything of relevance, the task finished. With IG, their is no clear stopping point, as
the process of collecting information is ongoing.

The IG function must not only allow the user to collect information, it must also al-
low the user to re-access this information. This function was demonstrated in section
3.6 where participants identified relevant information, continued their search and then
returned to the relevant information later in the search process.

The evaluations results suggest that IG is a sub-function of another process, such as IR
or data retrieval. Participants gathered relevant sources of information after performing
a information or data retrieval process. In tasks 1-4, participants would initially retrieve
or forage for information using Spotlight and then gather relevant items. On the rare
occasions participants chose to browse for information, they would still identify relevant
information, therefore, IG supports IR, IF, data retrieval and browsing. The gathering
of information may rely on other processes, but the re-access of gathered information
can take place at the point the user identifies an information need, therefore, the system
must allow the user to re-access gathered information at any point in the process.

One of the key characteristics of IR and IG illustrated by the evaluations was that IR
and IG do not change the participants knowledge of an information subject, rather the
participant is aware of where they can access the required information to change their
knowledge. Tasks 1-4 demonstrated that participants were concerned with finding the
sources of information for future work, but not necessarily an answer to a problem which
would improve their knowledge of the subject. As tasks 5 and 6 were more data retrieval
oriented, they provided participants with answers to the questions which changed their
knowledge of the subject area. This demonstrates the key roles of IR and IG. IR is
a techniques to find relevant files, and IG is a technique which gathers links to these
retrieved files in one location.

The evaluations demonstrated that there is a clear link between IG and IF. IG com-
pliments IF as it transforms IF from a forgetful, exhaustive process, to a persistent
process, which allows the user to gather information as search each patch.

The main component of the Information Gathering System (IGS) must be comprised
of a customised IRS. The evaluations demonstrated various failings with Spotlight and
these must be addressed with the proposed system.

The IR component of the system can be divided into the following stages:

45

3.7.2 Query formulation

The system must allow the user to retrieve information by matching a user defined
query. The evaluations indicated that query formulation was the first stage of the IR
process for every task. Participants resorted to browsing or exploring the hard drive,
as a secondary process, to ensure that they had not overlooked any information. The
evaluations reinforced the query formulation principle in Section 2.8 as users did submit
tentative queries which often subdivided the information space to allow them to browse
through a smaller set of results. The system must also support the matching of results
which are ‘like’ the query and not exact matches as users rarely remember exact details
about a file.

3.7.3 Query Result Representation

The results representation is concerned with displaying the results to the user. The
evaluations identified filename and file location as the key attributes to determine in-
formation relevance during the IR process, therefore these must be the most prominent
attributes in the result representation. The result representation must also include a
file preview to improve the result recognition process. This was identified in the query
information visualisation design principle in Section 2.8 and the evaluations reinforced
this principle as participants placed much importance on the use of file previews to
distinguish between file types in the Spotlight results view.

3.7.4 Query Results Categorisation

The evaluations demonstrated the importance participants placed on result categori-
sation. Participants ignored categories which were not relevant to their information
need and mainly concentrated on the same category with each task. Participants iden-
tified the constraints with the current results categorisation and suggested categories
can be found in table A.1. The results categorisation is a sub-component of results
representation as it categorises the results displayed to the user.

The query information clustering and categorisation principle in Section 2.8.1 discusses
the use of clustering to group results. However, customised faceted categorisation will
be used instead of clustering because participants in the evaluations were extremely
reliant on document type categorisation to select search results.

3.7.5 Results Manipulation

The system must support the basic result tasks identified in Section 3.4. Users identified
the tasks they commonly perform with search results and explained how the current
Spotlight implementation does not clearly support all of these tasks. The system must
visibly support the basic result tasks.

46

3.7.6 Query Re-access

The recursive nature of IR must be supported by allowing users to re-access saved
queries. In Section 3.4, users identified one of the constraints with Spotlight is that
they are not able to re-access previous queries. This reinforces the information re-access
design principle in Section 2.8.1.

3.8 Conclusion: From Forgetful Foraging to Persistent Gath-
ering

This chapter detailed the two user studies which were used, in conjunction with the
design principles identified in Section 2.8.1 to produce the full requirements specification
in Appendix A.2. The requirement validation above lead to an important redefinition
of an IR and IG system, from a forgetful IF system to a persistent IF and IG system.
The system will incorporate the key techniques of IF, allowing the user to search within
patches, however, they will be able to gather relevant information during their foraging
activities to retain information. The requirements specification is used to guide the
design of ’Searchlight’ a prototype IR and IG system in the next chapter.

47

Chapter 4

Design of ‘Searchlight’, a
Prototype IR and IG System

4.1 Introduction

This chapter describes the high level system design which has been derived from the
requirements specification. Important design decisions are discussed and the adopted
design methodology is explored. The high level systems architecture is analysed which
provides a basis for the first evolutionary prototype design. The prototype, Searchlight,
is then evaluated with users and a redesign is proposed which provides the design
structure for the low level implementation.

4.2 Design Decisions

‘Choosing appropriate features and devoting the needed resources to implement them
correctly can save you time and effort later’ [Apple, 1992-2006a].
The primary aim of the project is to investigate the concepts of IG and IR, therefore
the design emphasis has been placed on implementing the core components identified in
the requirements specification. This means that the application will not be a complete,
commercial package ready for distribution. The decision was made to concentrate on
these core components areas and push ‘aesthetic features’ such as user preference stage
and help documentation, towards the end of the development. The reason for this is
because this added functionality is vital for a complete application, but concentrating on
it early in the design process would have meant that the key areas would have suffered
and potentially may not have been implemented.

The decision was made to omit user customisation from the prototype design. Most
native Macintosh applications use preference panels accessed through the main menu bar
where the user can change and save various preferences. This was not implemented in
the final prototype as it was necessary to concentrate on creating a standard prototype

48

design which was used to evaluated the concepts of IR and IG. The requirements, design
and testing processes were user oriented to investigate the key features and components
of the system which support typical activities, therefore the final prototype should
closely support the needs of the majority of the target audience.

4.3 Design Methodology

A user centred evolutionary prototyping technique [Sommerville, 2001] was adopted
during the design and implementation phases. As described in section 1.2 the design
and implementation were concurrent activities. This is true to a certain extent, as the
design of each prototype evolved concurrently with the implementation of each pro-
totype. However, an initial prototype was developed as a conceptual model from the
requirements specification before the implementation of the intermediate functioning
prototypes were developed. This was because it was important to translate the con-
cepts ascertained during the requirements process, into a physical object to ensure the
specification was feasible.

The design and implementation processes were guided by the Model View Controller
design paradigm.

4.3.1 Model-View-Controller Paradigm

This design pattern classifies objects into appropriate layers depending on the role of
that object. The model objects contain the underlying data, or data structures of
the application, which are not visible to the user. For example, the model in this
system would be an object which creates the query to search System Store for matching
metadata attributes. View objects are objects which make up the Aqua1 user interface.
In this system, the view objects were windows, buttons, views etc. View objects do
not interact directly with the model, therefore an intermediate layer is needed, the
control layer. The controller acts as a mediator between the two layers, for example,
the controller layer would link the query text a user enters into a search field to the
query object in the model layer.

The MVC design pattern was chosen for the following reasons

• The layered design allowed the view to be developed before, during and after the
implementation of the model and controller layers without out having a negative
impact on the entire system.

• The view could be developed before the controller and model layers to expose to
users and gain feedback on the design before the system was fully implemented.
This saved a lot of time in the design process as it meant a GUI could be quickly
developed without having to implement any functionality and feedback could be
quickly obtained.

1The standard UI environment for Mac OS X 10.4

49

• The program was more extensible, as once the basic back end was implemented,
there was more time to redefine and discover requirements with the users.

The design stage concentrates on the overall systems architecture and discusses the
detailed design of the view layer. This is because, as stated above, the initial prototype
will be an advanced GUI which will closely match the GUI design of the final prototypes.
The initial prototype will be developed in Interface Builder, which is a GUI development
package for Mac OS applications. The MVC design pattern is used during the full
implementation of the system and the model and controller layers are discussed in
Section 5.4.

4.4 Architectural Design

The architectural design is discussed by dividing the main components of the system,
as identified in Section 3.7, into their respective MVC components, rather than dividing
the entire system architecture into the MVC layers. This is because it is important
to understand how the system functions as a whole before going into greater depth to
understand the relationship between the individual MVC components.

4.4.1 Overview

Figure 4.1 illustrates the relationship between the individual system components sug-
gested in Section 3.7

The diagram begins by assuming the person has identified an information problem and
has chosen to use the system. The query formulation component represents the user
formulating and entering a query string into the system. This query is then executed
and the system displays the results to the user in the results representation compo-
nent. These two components have a two-way relationship as the results returned to the
user may not be relevant, therefore they may decide to reformulate their query. The
result representation component is made up of two sub-components, file information
representation and results categorisation.

When the results are returned, they are sorted into categories which the user can select
to display results of particular types. When the user has selected a desired category,
they will make their result selection, this is guided by the file information representation
component which controls the information displayed for each result. If the user decides
that the results are not relevant and does not wish to reformulate the query, or has
exhausted their search, they may decide to end the process. If the user has selected a
result they consider to be relevant, they can manipulate the results in various ways, for
example, open the file, or gather the result. After result manipulation, the user may
wish to end the process, gather the relevant result, or reformulate the query. If the user
decides to gather the relevant result, they may then end the process, reformulate the
query to retrieve more results, manipulate another result or manipulate the gathered

50

Figure 4.1: System Architecture Diagram

51

result itself. If they manipulate the gathered results, they may then return to the IG
component or end the process.

Query Formulation, Query re-access and Information Gathering components have been
identified as possible starting points in the system, as the process could begin at any one
of these points. As functional requirement 14 states, the user may wish to re-access a
saved query to retrieve information which they had previously accessed. Alternatively,
as functional requirement 17 states, the user may wish to re-access gathered informa-
tion, therefore, they would only use the IG component and disregard the rest of the
system.

The diagram helps to emphasise the recursive nature of IR and IG and demonstrates
that there are many paths through the system. The ‘end’ point has been added into the
diagram to demonstrate the finishing point for interaction with the system. However,
‘end’ of the IR and IG process may be the start of a task process, or may lead directly
back to the start of the IR and IG process itself.

Figure 4.2 illustrates how all of the individual layer objects of the system components
are related.

Figure 4.2: MVC Design Model

4.4.2 Query Formulation

The query formulation requirements discuss the need for a query formulation interface
which allows the user to create a custom query to search their hard drive for informa-
tion.

The model will be a query object which uses the query string entered by the user in the

52

query view to define the search. The query object will interact with the system store
to return metadata items which match the user’s query.

The view consists of the query object view, which is the primary input to the system.
The query view is an editable input field where the user enters a query string to retrieve
information from their hard drive.

In a simple IR scenario, the query view acts as the second stage of the IR process. The
first stage is the identification of the information problem, the second stage is translating
this problem into a query. In a more complex IG scenario, the query view will act as
a starting point and intermediary in the process. The user may commence the search
using the query view, gather relevant information and then return to the query view to
redefine the query.

Figure 4.1 demonstrates that when items are returned, they are passed to the results
view in the form of search results. It is important to acknowledge that the search
results can be used to reformulate the query entered in the query view and this is
demonstrated by the use of double arrows between the query view and the results view.
This functionality was derived from functional requirement 3, ‘Users must be able to
reformulate existing queries’.

The controller will link the query object and the query object view together. Figure
4.2 shows that the controller ‘stores’ a value from the query object view in the query
object. This means that the controller must store the query string from the query view
in a variable, to be used by the query object when required. This is discussed in detail
in section 5.4.4.

4.4.3 Result Representation

The result representation manages the retrieval and organisation of query results.

The model depends on the implementation of the results view. The model must provide
the results view with the data to be displayed in the UI. Figure 4.2 describes the model
as the ‘results data source’, which would typically be a dictionary or an array which
stores all of the returned results.

The view is made up of the results view and the result information view. The results
view is the core view of the results representation component. The results view is a
collection of all of the results which match the users query. The user utilises the results
view to select particular results and identify whether or not they are relevant. The
results view is the centre point of the IR and IG process, as it is from here the user
decides which files they wish to manipulate. The result view leads the user into a
selection process, by providing specific result information to allow them to choose a
particular result. The results view incorporates the file information representation and
result categorisation modules to perform this task.

The result information view displays relevant information for each result in the result
view, for example, filename and file type. The information displayed for each result

53

guides the user’s result selection process and the information displayed must include
the required file attributes identified in functional requirement 5. The information view
will also include a file preview which gives the user a visual representation of the file
type to aid the result selection process, this was derived from functional requirement
7.

Figure 4.2 shows that the controller for the results view and information view have dif-
ferent functions. The controller for the results view must maintain the flow of data from
the results data source to the results view. Whereas, the controller for the information
view returns the data from the data source to the view object. This is discussed in
detail in section 5.4.4.

4.4.4 Result Categorisation

The results categorisation component organises the returned results into categories de-
fined in Appendix A.1.

The model for the results categorisation component is the results data source as it stores
or manages all of the matched query results.

The results categorisation view is vital for the management of large amounts of infor-
mation in the results view. The results categorisation view allows the user to select
different categories to order the results in the results view, this was derived from func-
tional requirement 9.

Figure 4.2 shows that the controller returns data from the model to the results cate-
gorisation view. The controller must return the results from the results data source to
the results categorisation view in their respective categories. This view then orders the
results in the results view based on category selection.

4.4.5 Result Manipulation

The result manipulation component encompasses the tasks users perform on query
results. This common set of tasks was identified in the requirements gathering phase.
They are, open the file, show the location of the file and reveal more information about
that file.

The results manipulation component is not included in figure 4.2 as it does not conform
to the MVC design paradigm. The results manipulation component essentially consists
of actions the user can perform on results, therefore most of the functionality will be
implemented in the controller layer. This is because the controller will provide the
functionality for the actions and link this to the selected result.

54

4.4.6 Query Re-access

The query re-access component is concerned with saving and re-accessing previously
saved queries, this was derived from functional requirement 14. The model will consist
of a saved search object which stores the saved query for future use.

The view consists of the saved query view which could have many different implemen-
tations, ranging from a list of recent queries, to a source list of saved queries, to a query
history. The saved query view provides a secondary input into the system as the user
can access a saved query at any time during the process.

Figure 4.2 demonstrates that the query object passes the query to the saved query
object. It is then the role of the controller to return the saved query to saved query
view to display to the user.

4.4.7 Information Gathering

The IG component acts as a secondary input and a result manipulation tool in the
system. As demonstrated in figure 4.2 the model for the IG component is the gather
view data source. This must store a pointer to each gathered item of information, which
could be in the form of an object for each information item, or in a container such as
an array or a dictionary.

The main view object is the gather view which acts as a storage area for links to gathered
results. Users may use the results returned in the results view to store a subset of these
results in the gather view, this was derived from functional requirement 15.

Figure 4.2 demonstrates there is a two way relationship between the gather view and
the gather view data source. The controller must perform two functions, it must store
the items added to the gather view whilst returning these items from the data source
to be displayed by the gather view.

4.5 Prototype 1: GUI Prototype

The primary aim of the initial prototype was to obtain feedback to guide the design
of the UI and the key features of the system. The emphasis was placed on quickly
obtaining feedback on the initial system to verify that the initial requirements were
accurate and could be translated into something the user could understand. For this
reason, a GUI prototype was implemented and evaluated with users.

The prototype consisted of a sophisticated interface which was created using an applica-
tion called Interface Builder. This is a drag and drop development environment which
requires no code implementation to create complete interfaces which closely match the
final look and feel of the system.

The system architecture details the functionality and the flow of data between com-
ponents, but it does not describe the individual interface components and interaction

55

design. When creating a dedicated Mac OS X 10.4 application, Apple suggest guidelines
to ensure that the application complies to interface and interaction standards. Two dif-
ferent sets of guidelines are suggested, Apple Human Interface Design Principles [Apple,
1992-2006a] and Apple Human Interface Guidelines [Apple, 1992-2006b].

The Human Interface Design Principles detail key principles which are vital for de-
signing intuitive interfaces. They are more general principles about Human Computer
Interaction and how to design your application to be ‘usable’. The Apple Human Inter-
face Guidelines are specific guidelines to be followed for the design of particular elements
of the interface, for example, the appropriate button type for a particular action. The
human interface design principles were used to create the GUI prototype. The reason
the specific design guidelines were not used in the creation of the GUI prototype was
because they are extremely detailed and more time would have been spent configur-
ing the look and feel of the system than addressing the key concepts. These detailed
guidelines were used in the intermediate prototypes.

As none of the back end of the system was implemented, the users were not able to
see the results of their actions, therefore, during the user evaluations, the evaluator
had to run through the functions of the system with the user. This approach was
adopted because to implement any of the back-end of the system would result in a long
development time to learn the required language and implement these features.

4.5.1 Detailed Design

This section discusses the detailed design of the view layer of the system. Figure 4.3
illustrates a GUI design template which will be used to guide the design process

Window Types

The first stage of the GUI design is to decide what form the main application window
will take. The system will be a single, main windowed application with optional sub
windows and drawers. To design the system for modelessness, the gather view will
be created in a separate window, accessed through the main application window, or
application menu bar.

The application will not allow for multiple main windows as it does not conform to the
Apple multiple windowed paradigm which document based applications adopt. Adopt-
ing a multi-windowed design which enables users to perform multiple searches simulta-
neously would cause system bottlenecks when performing searches. One of the benefits
of Spotlight, as identified by users, is the speed of result retrieval, if multiple searches
were being performed at the same time, the response would be unacceptably slow and
the system would not satisfy functional requirement 9, ‘The retrieval speed of the system
must be as fast, or faster than the current Spotlight implementation’.

The main window is optimised for a 1024 x 768 display to conform to Apple design
principle, ‘unless you know that your users will be using a specific display size, it is best

56

Figure 4.3: GUI Design Template for GUI prototype

to optimise your applications for display at 1024 x 768 pixels’.

The only sub window of the application is the gather view, which is a floating window
used to store gathered items.

Query View

The query view consists of a single search field. The search field conforms to the
consistency principle as it is the same search field used in Finder and the advanced
Spotlight view.

Results View

The results view consists of a table view which has three columns. Each column rep-
resents an attribute of the returned result and each row represents a result. The first
column is a check box which indicates whether or not the user has already viewed the
result, this conforms to functional requirement 8. A check box was chosen so that if
a user has seen a result but wishes to mark it as unseen again, they are able to. This
was preferred to changing the colour of the text when selected as it could introduce too
many colours to the interface.

The second column contains the name of the file and the third column contains the

57

location of the file. These attributes were identified to be the most important file
attributes for recognition in the requirements gathering stage. A table view was chosen
over a scroll view or a non list layout as they are ideal for storing large amounts of similar
data and have built in sort descriptors. The results view columns are interchangeable
and resizable and the vertical and horizontal scrollers are provided if necessary.

Result Information View

The information view consists of a custom view which displays file attributes and a file
preview. When the user selects a particular result, the attributes for that result update
to display the metadata attributes for the selected file. This is a static view which is
not resizable or customisable, this is to give the impression of stability and consistency
throughout the application, as each result reacts in the same way. The file preview is an
image field which represents a file system preview of the document. A large thumbnail
view is used to ensure that it is clearly recognisable to aid the user’s result recognition
process. The whole information view is non-editable and is placed below the result
view to give a natural progression down the results list to the information view. The
information view was originally positioned in the table view, e.g. a column for each
information attribute, however, this is a poor use of space and scrollers have to be used
to view all of the information.

Result Categorisation View

The result categorisation view is a filter menu positioned above the results view. The
verb ‘filter’ is used to indicate to the user that they are able to filter the results based
on the criteria in the list, this simple naming convention (the use of verbs for actions)
adheres to Apple design principles. A filter menu was used instead of a list to save
space and because a filter drop down menu is consistent with other OS applications.
When the user selects a category, the results view changes to display only the results
which match the filter criteria. This method was chosen because users in the evaluations
placed so much emphasis on categorisation of search results. It also ensures that the
results view is manageable and the user is not overloaded with information.

Result Manipulation

The main information tasks which were identified in requirements specification, are
supported through the use of the task buttons. Each task has a separate button at
the bottom of the interface, again to show natural progression through the system.
The buttons are standard buttons used throughout the OS and they are identical in
size, spacing and operation. Each button has a label which identifies the action of the
button. The ‘open’ button opens the selected result, the ‘more info’ button displays the
standard OS ‘Get info’ inspector window and ‘reveal’ reveals the file in Finder. The
reveal button is used to support the gather view, by displaying the file for the user
to drag to the gather view. The application tries to ensure that there are no hidden

58

features and that complexity is kept to a minimum by only presenting the user with
closed options for result manipulation. The application also reduces the occurrence of
errors as the only user input into the system are the query and gather views.

Gather View

The gather view is the only other window in the application. The gather view consists of
a floating utility window containing a table view with two columns, name and location.
A floating window was used instead of a drawer because it supports modelessness by
allowing the gather view to be open whilst the main window is closed. A table view was
used again as it is ideal for storing and ordering large amounts of similar information.
The columns identify the name and location attributes for the gathered information as
they were the most important file attributes identified in the user studies. The gather
view supports direct manipulation as it allows the user to drag a file onto the tableview,
to reinforce the gathering metaphor used in the system. This was chosen instead of
including a task button with adds the file to the gather view because it provides the
user with more feedback and they can see the results of their actions. A file in the
gather view also uses the same task buttons as a file in the results view, this is to keep
actions consistent and avoid unnecessary repetition.

Query Re-access

Queries are saved and loaded through two buttons at the top of the interface. When
the user selects the save button, a standard save sheet appears to ask the user for the
location of the save. A standard loading sheet appears asking the user where they wish
to load the saved search from, when the load button is pressed. This method is used so
the save and load methods match user expectations and are consistent with other OS
applications. When a search is loaded, the saved state overwrites the current state of
the system as if the user was continuing their previous search.

Figure 4.4 displays the first GUI design

4.6 Prototype Evaluations

The evaluations for the initial GUI prototype differed from the cooperative evaluations
for requirements gathering, this was because the aims of the evaluations were different.
The aims of the prototype evaluations were as follows:

• To identify usability problems with the interface

• To identify any components which did not match the users expectations

• To walkthrough the concepts of the system with the user to ensure that the re-
quirements and principles are valid

• To identify positive and negative feature of the interface

59

Figure 4.4: Initial GUI design

60

Five Mac OS users were chosen to walkthrough the interface with an evaluator. The
evaluations were extremely informal, and lasted approximately fifteen minutes. Notes
were taken during the interviews and the main results are detailed below.

4.6.1 Evaluation Results

The evaluation results suggested that the main problems with the interface are us-
ability problems, rather than conceptual problems. Users understood the key IR and
IG concepts and generally expressed positive comments regarding the usefulness of the
system.

Users expressed their dislike of the query saving method. It was identified to be ‘too
much hassle’ and most users said that they would not use the function as it was too
complex.

Issues regarding where the search would be saved were raised and one user noted it was
ironic that they would have to use a search tool to find a saved search. A suggestion
was to have a visible list of saved searches that a user can simply click on to recompile
the search. There was also a problem between the user expectations and the system
actions when a search is saved. A user was not sure if it saved the previous search state
or would update as soon as it was loaded.

The ‘open’ button was deemed unncheck-boxecessary as most users thought it was
too inconvenient to have to select the search result and navigate to another button to
simply open it. A simple double click use of the return key on a search result was
suggested.

The ‘filter’ button caused a divide in the group as some users liked it because it did
not take up space, whereas, others did not like the extra click involved to view the
categories. Some users also did not like the idea of hidden categories. Users were happy
with the categories used and the suggestion to create a category for ‘other files’ was
made.

The file attributes proved to be the most popular attributes users look for in files
and the associated actions represented typical file activities. Users suggested that the
‘more info’ button should display a selection of attributes instead of the standard ‘get
info’ window as the application already displays most of the information the ‘get info’
inspector displays.

Users were slightly confused with the function of the check-box used to identify if a
result had already been selected. They felt that it was not that important to dedicate
a column to a check-box and it looked out of place in the interface.

The gather view also prompted differences of opinion as some people preferred the
floating window as they were able to close the main window and keep the gather window
open. Others felt that it ‘got in the way’ and that a drawer would be more applicable.
The final design will experiment with both views.

61

4.6.2 Redesign

Using the feedback from the GUI prototype evaluation, the prototype was redesigned
to incorporate the changes. The key changes are as follows:

Result Categorisation View

The result categorisation view changed type from a drop down menu to a table view
populated with the same options. This has been placed along side the results view and
has been given the heading ‘file type’.

Gather View

The decision was made to move the gather view from a floating utility window into a
drawer view as users did not like the idea of a floating window in the application. The
drawer view also uses less space as it is hidden until activation.

Saved Query View

Saving queries has been completely redesigned. There is now a single save search button
which adds the query string to a saved query list in the drawer view above gather view.
The user then selects the appropriate saved query and re-runs it. This simply passes
the original query to the query view and recompiles the new search.

Result Manipulation

The ‘more info’ button now opens a custom inspector which contains custom attributes
for the selected file. The method of identifying a previously selected result was changed
from a check-box to changing the text colour of a link when selected.

Figure 4.5 displays the redesigned GUI.

62

Figure 4.5: Redesigned GUI

63

4.7 Conclusion

The design process was guided by the functional requirements derived in the require-
ments gathering stage and the design principles in Section 2.8.1. The design demon-
strates that design principle 6 ‘Collaborative Foraging’ has moved out of the scope of the
system. The collaborative principle is out of scope for the system as it is based around
the sharing collaboration between multiple users to build information networks. The
desktop environment is a predominantly individual environment, therefore the sharing
of information is not applicable for this system at this moment in time.

The GUI prototype provided some valuable information to guide the design of the fully
functioning prototypes. The redesigned prototype will provide the basis for the imple-
mentation of the final prototype. It also proved that the key concepts identified in the
requirements phase are transferrable to a usable interface. However, as no function-
ality was implemented, users must be involved in the implementation and evaluation
processes to ensure that the system closely matches the user’s needs.

64

Chapter 5

Detailed Design and
Implementation of ‘Searchlight’

5.1 Introduction

This chapter builds on the high level design of the first GUI prototype to implement
the functionality of the system. The chapter begins by discussing the possible imple-
mentation languages and moves on to discuss the more complex aspects of the model
and controller layers of the system. The chapter presents the first fully functioning
prototype, ‘Searchlight’ for user evaluations.

5.2 Hardware Analysis

A brief analysis of the hardware required to run the final prototype is necessary as
not all PC users will be able to run the developed system. Due to the architecture
of the operating system which is designed for the IBM PowerPC platform, any native
Macintosh application will not run on any other operating system, regardless of its
architecture (x86 or otherwise). As the operating system only runs on Apple Macintosh
hardware the audience of the application is limited, as Apple computers on represent
roughly 3% of the entire PC market.

Apple are currently undergoing a hardware transition from the IBM PowerPC plat-
form to x86 Intel chips. This means any application built to run on the old PowerPC
platform will not run on the new Intel machines. Therefore, to ensure longevity and
future development of the application, it must be compiled to run on Intel machines.
Apple introduced a concept called ‘Universal Binaries’ which is an application built
for both PowerPC and Intel architectures, therefore, the application must created as a
Universal Binary. The only hardware requirement would be that the user has a machine
which is capable of running Mac OS X 10.4. As Apple machines have a relatively long
life, machines dating back to 2002 and earlier are capable of running this operating

65

system.

Despite developing a dedicated Mac OS X application, it is important to acknowledge
that the concepts and ideas developed in this project are transferrable to other plat-
forms. It is the development methods which are not transferrable.

5.3 Implementation Language

As stated in requirements and design chapters, the system is manipulated through
a GUI, therefore the development language selected must support easy creation of a
sophisticated GUI which adheres to Apple Interface Design guidelines. Additionally,
as the interface will undergo a series of changes driven by users, the interface for the
system must be easy to update without leading to large development times.

Non-functional requirement 4. states that the application must be a native Macintosh
application, therefore this automatically excludes languages such as Visual Basic, which
are not available on the Macintosh platform. An object-oriented language was chosen
for the implementation of the system as the difficulties of implementing a system in,
for example, C or Pascal, far outweigh the benefits. The main disadvantage with im-
plementing the system in a language such as C, would be that there are no specific
libraries provided with C to create an interface. The appropriate libraries, for example
Swing in Java or AppKit in Objective C, would have to be downloaded, configured and
installed.

This lead to the choice of three possible implementation languages, Java, C++ and
Cocoa frameworks with Objective C.

One of the benefits of Java is that it has built in libraries for interface development,
swing and awt. These would provide all of the necessary tools to create a complete
interface, however, the layout managers used in Java, such as ‘gridbag’, are notoriously
intricate and it would be difficult to create an application which has the look and feel
of a native Mac OS X application.

Another benefit of using Java is that it is a cross platform programming language,
therefore an application created on Mac OS X 10.4 would run on Windows. Conversely,
the system is centred around the use of Spotlight technology, therefore creating an
application in Java would not make it cross platform as other operating systems do not
use Spotlight technology.

Java uses garbage collection as opposed to reference counting for memory management
which has benefits and constraints. A major benefit of garbage collection is that it
allows the developer to quickly create applications which do not leak memory, thus
enabling them to concentrate on other areas of the development. One drawback is that
garbage collection is slower than reference counting, therefore an application developed
in Java would be slower than a native application.

One of the major benefits of choosing C++ over Java is that it is a native language
whereas, Java is an interpreted language. The interpreted nature of Java means that

66

applications written in Java run much more slowly than native applications created in
C++. Both C++ and Java have similar characteristics and were not chosen as the
implementation languages for one main reason, Cocoa Frameworks with Objective C is
the primary application environment for Mac OS X 10.4 applications.

5.3.1 Cocoa Frameworks with Objective C

Cocoa is a Mac OS X application environment which is effectively divided into two
sections, the runtime environment and the development environment. The runtime
aspect of the Cocoa environment is the Aqua user interface the application displays
to the user, whilst the development aspect is a suite of object-oriented class libraries.
These libraries are divided into two core frameworks, the foundation framework and the
application kit. The application kit provides all of the appropriate libraries to design
user interfaces, whereas the foundation framework provides libraries for all objects which
are not exclusively used to support a user interface

Cocoa applications can be developed using C, C++, Objective C and Java, however,
using languages other than Objective C or C can lead to problems. Java can be used
with Cocoa as Apple have implemented a set of parallel Java classes which ‘bridges Java
interfaces to their corresponding Objective C implementations’ 1. However, Apple are
no longer providing APIs for Java-Cocoa with the next release of the operating system,
so suggest that using Java-Cocoa is only for developers with a good Java background
who want to learn the basics of Cocoa.

Objective C is an object-oriented extension of ANSI C and is the primary language
used for developing Cocoa applications. All of the major OS applications are created
using Cocoa and Objective C, therefore it would be ideal to create a solid, efficient
application which has the look and feel of a Macintosh application. Objective C uses
reference counting for memory management which has advantages and disadvantages.
The major advantage is that it is quicker than garbage collection and gives the developer
more control over objects in the system. The major disadvantage is that the developer
must ensure that the application de-allocates all objects after use otherwise it will have
adverse effects on system performance.

The main benefits of using Cocoa with Objective C are that it supports the rapid devel-
opment of robust applications, fully working Cocoa applications can be created without
writing a line of code. The development environment for Cocoa applications consists
of XCode and Interface Builder. Interface Builder is an interface development environ-
ment for Cocoa applications. It works with the application kit framework to provide a
palette of key interface components to create a fully working Cocoa application. Inter-
face Builder is tightly integrated with XCode which is an IDE for common programming
languages.

The analysis of the possible implementation languages demonstrated that using Cocoa
frameworks with Objective C would be the best choice. All commercial applications for

1http://developer.apple.com/documentation/Cocoa/Conceptual/JavaTutorial/chapter01/

67

the OS are creating in Cocoa, therefore it would be foolish to forego its benefits and use
another language which is not so tightly integrated. Cocoa provides a plethora of classes
which cover a wide array of components, including the creation of Spotlight queries. The
major constraint with using Cocoa and Objective C is the time that must be invested
in learning the language and implementation techniques. As these are completely new
languages and environments, a substantial part of the development time will be learning
these new development approaches.

5.4 Prototype 2: MVC Revisited

The system design in Chapter 4 was guided by the MVC paradigm, however, only
the view layer was implemented in the first prototype. The implementation process
for prototype 2 is discussed below, with particular concentration on the more complex
components of the model and controller layers.

5.4.1 Overview

The system consisted of three classes, Controller.m, Transformers.m and Gatherboard
ArrayController.m, one category, ToolbarCategory.m and an interface object main
menu.nib. The Controller.m class contained the majority of model objects and was
instantiated to create the controller object which was exposed to the mainmenu.nib
interface object. The mainmenu.nib object contained all of the view objects such as
the NSSearchField and NSTableView objects. The Transformers.m class contained
transformer methods which took a value from a view object, converted it to another
value and returned it to the view object. For example, a transformer method was
used to transform the size of a file in bytes to kilobytes, megabytes and gigabytes. The
GatherboardArrayController.m class contained the model objects for the gather view.
The ToolbarCategory.m category extended the Controller.m class to manage the the
interface toolbar.

5.4.2 Model Layer

The low level design and implementation techniques for the model objects identified in
figure 4.2 are discussed. Figure 4.2 suggests that the model consisted of four objects,
however, the actual implementation differed. The results data source object was not
implemented, as due to a Cocoa technique called ‘bindings’, discussed in section 5.4.4
the model object for the results view did not need to be implemented directly. The
model layer was divided into the query object, the saved query object, and the gather
view data source. As the query object is the largest and most complex component of
the system, it is described in the most detail.

68

Query Object

The main component of the IR function of the system is centred around the use of
Spotlight to query the system store for files matching the query string. This is the main
core of the application and required the longest development time.

Two APIs are available for querying metadata using Spotlight, they are MDQuery pro-
vided by the Core Services framework and the NSMetadataQuery provided by Cocoa
Foundation Framework. The concepts are identical for both APIs, however, the imple-
mentation is different and as NSMetadataQuery is an Objective C class as opposed to
a Core Foundation class. NSMetadataQuery was chosen as it is the Cocoa interface to
Spotlight.

There are three main stages to querying metadata with Spotlight, query expression
definition, query configuration and query execution.

Stage 1: Query Expression Definition

The design of the query expression defines the query the Spotlight engine uses to match
metadata attributes in the system store. The standard Finder Spotlight query expres-
sions is defined as follows:

(* = "queryString*"wcd || kMDItemTextContent = "queryString*"cd)
&& (kMDItemContentType != com.apple.mail.emlx)
&& (kMDItemContentType != public.vcard)

The entire query is called a compound query because it consists of four individual
queries, a comparison query, a content query and two exclusion queries. The comparison
query, * = "queryString*"wcd searches all metadata attributes in the System Store
to match the query entered by the user which is represented by queryString. The
content query, kMDItemTextContent = "search string*"cd, searches the text content
of each file to match the queryString. The exclusion queries, (kMDItemContentType
!= com.apple.mail.emlx) exclude certain file types from being returned by the query.
This is the Finder implementation of a Spotlight query and it differs from the standard
Spotlight query implementation only in the exclusion queries, as the standard Spotlight
implementation returns emails and vcards.

Non-functional requirement 8 states that the system should imitate the standard Spot-
light query, however, the NSMetadataQuery API, does not use the same query syn-
tax as the Finder implementation of a Spotlight query. Therefore, another object, an
NSPredicate object, must be used to define the query expression. The NSPredicate
object was created in the createQueryPredicate method of the Controller.m class.
Five separate NSPredicate objects were created to imitate the standard Spotlight query
expression. Only the comparison predicate and the exclusion predicates are discussed
as they demonstrate the key characteristics of the final predicate.

The comparison predicate, * = "queryString*"wcd, as identified in the standard Spot-
light query was implemented in the following way:

NSExpression *leftExp = [NSExpression expressionForKeyPath: @"*"];

69

NSExpression *rightExp = [NSExpression expressionForConstantValue:
_queryString];

unsigned comparisonPredicateOptions = (NSCaseInsensitivePredicateOption
&& NSDiacriticInsensitivePredicateOption);

comparisonPredicate = [NSComparisonPredicate predicateWithLeftExpression:
leftExp rightExpression: rightExp modifier: NSDirectPredicateModifier type:
NSInPredicateOperatorType options: comparisonPredicateOptions];

This demonstrates the difference in construction of the two query expressions. The
NSComparisonPredicate implementation divides the query into two expressions, a left
and right expression which are compared. This means that all metadata attributes,
identified by the * value are compared with the value stored in the queryString
object. One problem encountered using an NSComparisonPredicate was trying to
configure the metadata attributes which are like the queryString. This is because
the standard Spotlight implementation does not require the user to enter the ex-
act query string. If the user is looking for a document entitled ‘some spoons’ and
they enter a query string as ‘spoons’ Spotlight will retrieve this file. When using an
NSComparisonPredicate object, the predicate type must be specified. In the above ex-
ample, the NSInPredicateOperatorType is specified. This is because, the original type
was set to NSLikePredicateOperatorType which should imitate the functionality of the
standard Spotlight implementation. This proved not to be the case, as the system would
only return exact query string matches. Therefore, the NSInPredicateOperatorType
was used, which solved this problem.

Section 3.4 suggested that Spotlight users do not require certain file types to be returned
by Spotlight. These excluded file types, such as .plist files, were excluded by creating
the typeExclusionPredicate object detailed below.

typeExclusionPredicate = [NSPredicate predicateWithFormat:@"
(kMDItemContentType != ’dyn.ah62d4rv4ge81a5dmsr4a’)"];

The alphanumeric string in the above example represents the file system classification
of file types. This is the exclusion predicate for a Mac OS Preference file. The final
predicate was created by combining all of the individual predicates together.

Stage 2: Query Configuration

When the query expression was defined, the query itself was configured. This in-
volved defining the scope of the query and providing a method of sorting the returned
data.

The scope of the query defines in which locations the query will search to match meta-
data attributes. The scope of the query was defined using the setSearchScope method.
If the search scope is not specified, the system will look through the entire file system to
match the query expression. There is no real benefit gained from searching the entire file
system as each user’s data is confined to their individual user directory. Searching the

70

entire file system dramatically decreases the performance of the system. Non-functional
requirement 9 states that the result retrieval must be as fast as the current Spotlight
implementation, therefore, the decision was made to limit the search scope to the user’s
home directory. This was executed in the following way:

[_query setSearchScopes:[NSArray arrayWithObjects:
NSMetadataQueryUserHomeScope, nil]];

The constant NSMetadataQueryUserHomeScope limits the search to the user’s home
directory. A n added advantage of setting the scope of the search to the user’s home
directory is that this also excludes default system folders which typically contain ap-
plication and OS configuration files. This meant that the number of irrelevant files
returned by the system decreased.

The result categorisation was implemented in two stages, grouping and sorting of the
results. The grouping of the results was based on the kMDItemContentType attribute
which defines the type of file returned and was executed using the setGroupingAttributes
method of the NSMetadataQuery class.

[_query setGroupingAttributes:[NSArray arrayWithObjects:
(id)kMDItemContentType, nil]];

An array containing grouping attributes is passed to the setGroupingAttributes
method of the query. The kMDItemContentType attribute was the only grouping at-
tribute specified, as further grouping of results would make the results view over com-
plex.

The sorting of the results was based on custom categorisation of the grouping attributes.
The standard grouping attributes originally returned values such as com.apple.mail.emlx
which is the kMDItemContentType for an email, however, this is meaningless to the user.
The metadataQuery:replacementValueForAttribute:value method was used to cus-
tomise the result categories.

- (id)metadataQuery:(NSMetadataQuery *)query replacementValueForAttribute:
(NSString *)attrName value:(id)attrValue {

if([attrValue isEqualToString:@"com.apple.safari.bookmark"])
return NSLocalizedString(@"Bookmarks", @"Bookmark category");
}

In the above example, if the content type matched the bookmark content type, a lo-
calised string was returned which changed the category name displayed to the user
from com. apple. safari. bookmark to Bookmark. One of the benefits of using
this categorisation method is that only the categories that contain results are returned,
for example, if no music files are matched, the music category is not displayed. This
reduces the amount of information on the screen and allows the user to only view par-
ticular categories.

Stage 3: Query Execution

When the query object has been created and configured, it has to be executed when

71

the user performs a search. This was performed using the simple [query startQuery]
method, which was called after the NSPredicate objects, detailed above, were created
based on the user’s query string.

Once the query has been executed, it has two phases, the results gathering phase and
the live update phase. The results gathering phase returns results from the system store
in batches and the live update phase runs after the initial results gathering phase and
updates the results if a new file is added to the file system. The live update phase runs
indefinitely as a background process, unless the user stops the process using a toolbar
button.

When the query has been executed, it is the role of the controller and view layers to
display the information in a meaningful way.

Saved Query Object

The saved query object model was implemented using an XML file to store the user’s
saved query. When the user selected to save a search, the system created an NSMutable
Dictionary object and stored the current queryString as a value in that dictionary.
The system would then read the saved XML file and place the saved value in a table
view. This method was chosen as it was the most simplistic method of saving query
objects.

Gather View Data Source

The gather view data source stores the name, date, and location of the gathered file.
The model was based on sample code taken from a drag and drop table view tutorial
found at http://homepage.mac.com/mmalc/CocoaExamples/controllers.html. The
reason this code was used was because it fitted the needs of the gather view perfectly.
The original code was designed to support the collection of Internet based bookmarks,
but was adapted for this project to support collection of all file types. One of the key
features of the model is that it supports drag and drop direct manipulation. When
a file is dragged, the information for that file is stored in a custom URL Pasteboard
and when the file is dropped, the gather view accesses this pasteboard to display the
required information. Much of the work was implemented through the use of bindings,
discussed in section 5.4.4.

5.4.3 View Objects

The implementation of the view objects from Figure 4.2 are discussed.

The UI consists of a mainmenu.nib file which contains all of the UI components and re-
sources, such as the windows and the main menu. The nib file also contains information
about how the UI components are all connected. The design of the interface was based
on the redesign of the GUI prototype created in Section 4.6.2. The main layout of the

72

interface closely followed the layout of the GUI prototype, however, the Apple Interface
Design Guidelines were applied at this stage. This is because the final prototype needed
to reflect the look and feel of a Macintosh application. If the prototype was left in its
original GUI form, it would not be consistent with other applications across the OS.
Any important changes from the GUI prototype are discussed.

Window Type

The first consideration was the type of windows in the application. The design guidelines
state that there are four types of windows: document windows, application windows,
utility windows and dialogue boxes. The system used an application window with
a drawer for the main view and a floating utility window for the additional results
information view.

The design guidelines offer two main distinctions between window types, brushed metal
windows and standard aqua windows. Brushed metal windows are used for applications
which provide an interface for a digital peripheral, something which represents a real
world device, or a source list based single-windowed application. The application par-
tially falls into the final category, therefore the brushed metal interface could have been
used. However, the decision was made to use the standard ‘unified’ Aqua interface,
because the brushed metal interface makes the application appear ‘too heavy’. Apple
are moving away from brushed metal to a ‘dark unified’ interface with the latest re-
lease of the OS, therefore creating a brushed metal application would appear dated and
inconsistent with the rest of the OS.

The overall design of the application changed from a single window with a collection of
objects, to a partitioned single window representing different sections. This UI design
was chosen, to imitate the look and feel of OS applications such as ‘Mail.app’ and
‘iTunes.app’ and to provide the user with a clear, structured layout. The main interface
was a border-less window divided into 4 sections, a side bar, a main view, a sub view
and a toolbar. Each separate section was separated using a black separator line, also
common with standard OS applications, such as Mail.app and iTunes.app. Figure 5.1
represents the redesigned main window.

Query View

The query view object was identical to the redesigned prototype, however, it was moved
to the main toolbar along with the result manipulation controls so that all of the appli-
cation controls were located in one place.

Results View

As shown in figure 5.1 the results view is the main component of the UI and it has
been placed in the main view of the application. The results view is identical to the
results view object of the redesigned GUI, however, when the view is populated with

73

Figure 5.1: Redesigned Main Window

search results, the user is able to sort the results by name or by location, by clicking
the column headings. This was derived from functional requirement 13, where the user
should be able to apply a degree of custom sorting to results. Additionally, the results
view performs one main function, when a result is double clicked, the file itself opens.
This functionality was derived from section 4.6 as during the evaluations, users noted
that the use of an open button to open a file was awkward and not intuitive. When a
result is double clicked, the text colour for that entire row changes from black to deep
purple to indicate that the results has already been opened. This idea was originally
disregarded as it may introduce too many different colours into the system, however,
users identified in section 4.6 that using a check-box in the column was a waste of space
and looked out of place with the rest of the interface.

Result Information View

As shown in figure 5.1 the main result information view is positioned below the main
results view. There information view is similar to the redesigned prototype, however,
the information attributes displayed have been renamed to adhere to the naming con-
ventions used across the OS. For example, instead of using the word ‘location’ for the
file-path of the result, the word ‘where’ is used to indicate to the user where the result
is stored. The file preview has been moved from within the information view, to the
sidebar below the result categorisation view. This is because it makes much better
use of the space in the sidebar and imitates the iTunes.app sidebar appearance. The
additional information view was not changed from the redesigned prototype.

74

Results Categorisation View

The results categorisation did not change from the redesigned prototype, however, it
was moved to the sidebar.

Gather View

The gather view was redesigned to support the drag and drop of any file type from any
location. One of the major omission of the GUI prototype was the ability to delete an
item from the gather board. The redesign implemented a ‘remove item’ button which
was situated at the bottom of the gather drawer, which simply removed the selected
item when pressed.

Saved Query View

The save query view did not change, however, a save search icon was positioned along
side the search view in the toolbar.

5.4.4 Controller

The control layer initially proved to be the most problematic layer of the implemen-
tation. The controller consisted of a single implementation file, ‘Controller.m’ and
category, ‘ToolbarCategory.m’. The role of the controller was to link the interface
objects of the view layer to the underlying objects of the model layer. Application con-
trollers can have different roles, a mediating controller and a co-ordinating controller. A
mediating controller design was adopted for the implementation as it controls the flow
of data between model object and view objects instead of controlling the functioning
of the entire application. Using a mediating controller, allowed most of the controller
functions to be implemented through a new Cocoa technology called ‘bindings’.

Bindings

Due to the importance of bindings in this implementation, a discussion of how they
work is necessary. The key benefits of using bindings are that they take out much of
the code implementation of the control layer and facilitate the communication between
model and view objects.

Bindings allow the developer to create relationships between view objects and model
objects without having to programmatically create these relationships. For example,
if a binding was made between a view object which displays an integer and a model
object which stores an integer, the controller would automatically update one object if
the other object changed.

75

Cocoa objects have particular components, which are referred to as properties, these
properties are divided into two types, attributes and relationships. Attributes are
characteristics of the object itself, for example, an attribute of a NSMetadataQuery
object would be a query result. The relationships defines the relationship between one
object and another, for example, the relationship between the NSPredicate object and
the NSMetadataQuery object. Each property of an object is called a key and can be
accessed through its keypath.

Object Class Object Key Keypath

NSMetadataQuery query resultCount query.resultCount

Table 5.1: Object keypath

Table 5.4.4 shows the relationship between an object and its keypath. In this example,
the query object is the query object itself and the resultCount key returns the number
of results matched by the query. To access this key through bindings, the key path would
be query.resultCount. However, this raises a question, how can the key path for the
query.resultCount key be accessed through the path query.resultCount when the
name of the object is query? This leads on the concept of Key-Value Coding.

Key-value Coding

Key-value coding is a technique of accessing properties of a particular object by using
strings instead of programmatically invoking the accessor (getter and setter) methods for
that object. This is done by adhering to particular naming conventions when creating
the accessor methods. When naming the object setter method, the name of the object
must be used, without the underscore and prefixed with set. For example, the setter
method for the queryString object is setQueryString. The getter method must be
the name of the object without the underscore and the object name itself must be
prefixed with an underscore. The queryString object methods are used to give a
simplified definition.

}
NSString *_queryString;

- (void)setQueryString: (NSString *)value {
if (_queryString !=value) {
[_queryString release];
_queryString = [value copy];
[self createQueryPredicate];
}
}

- (NSString *)queryString {

76

return [[_queryString copy] autorelease];
}

The above sample displays the three methods used to store the value entered into the
query view object, in the query object model. queryString effectively represents the
query the user enters into the query object in the view layer. The setQueryString
method is designed to be passed a string object as an argument and store this value to
create the NSPredicate object, which in turn defines the query expression and executes
the query. This is where the concepts of key-value coding and bindings are crucial.

The query view object is bound to the keypath queryString which subsequently passes
the query entered in the query view, to the queryString object, where it is stored and
the query is ultimately executed. By specifying the key path as queryString, key value
coding conventions are employed to set the value of the object. The program will ini-
tially search for a setter method by the name setQueryString, to set the value of the
object. If this is not found, the program will look for the getter method queryString
to return the value of the queryString object and if this is not found, it will re-
turn the texttt queryString object itself. In the above example, the setQueryString
method was executed and the user’s query was stored in the queryString object.
These naming conventions answer the above question, ‘how can the key path for the
query.resultCount key be accessed through the path query.resultCount when the
name of the object is query?’

It is difficult to understand how this can be implemented without the need for any
code implementation, therefore figure 5.2 demonstrates the Interface Builder binding
interface for the query object view.

Figure 5.2: Interface Builder Bindings Interface

The above example aims to demonstrate the concept behind bindings and how the
technique was applied in the system, however, the main use of bindings in the system
was to bind the table columns of the result and result categorisation views to individ-
ual metadata attributes. This posed a more difficult problem to solve, as when the
NSMetadataQuery ran, it returned multiple results which needed to be arranged and
displayed to the user. The solution was to use an array controller to manage all of the
results returned by the query object.

When an NSMetadataQuery finds query matches, it returns batches of NSMetadataItem
objects, therefore an array controller, named Query Results, of class NSMetadataItem

77

was created to handle all of the results returned by the query object. The content
of the array was bound to the query.results key, where the results attribute are
metadataitems. A benefit of using this it method is that the array controller manages
the content of the array without having to implement a single line of code.

The Query Results array controller simply returns matched metadataitems, it does not
manipulate the results or display any result information. The next stage was to group
the results in some sort of meaningful way, therefore another array controller, Item
Kind Grouping was implemented. Cocoa provides an object which handles grouping
of metadataitems, called NSMetadataQueryResultGroup, therefore the array controller
was set to the NSMetadataQueryResultGroup class. The role of this array was to in-
teract with the NSMetadataItems to sort them into the correct groups identified by the
setGroupingAttributes method detailed above. The content array of this array con-
troller was set to the groupedResults attribute of the NSMetadataQueryResultGroup
object. To display the query groups in the result categorisation view, the result categori-
sation view was bound to the Item Kind Grouping controller and the key path was set
to value. Value is an attribute of the NSMetadataQueryResultGroup, which returns the
value of each individual kMDItemContentType configured in the model layer using the
setGroupingAttributes method, detailed above. The grouping attributes were then
customised using the metadataQuery:replacementValueForAttribute:value method,
also detailed above.

These two array controllers return the query results and sort them into the appropriate
custom groupings, however, they do not display the results in the results view. To
do this, the final array controller was created, called MD Item Attributes. The role
of this array controller was to display the desired metadata attributes of all of the
results returned from the Query Results array controller. As this array controller
needed to store and display metadataitem attributes, a mutable dictionary was used
as the array controller class. The dictionary stores chosen metadata attributes, such
as kMDItemDisplayName to display for each metadataitem. Since the metadataitems
need to be sorted into groups, the MD Item Attributes content is bound to the Item
Kind Grouping array controller and the key path is bound to results which returns
the query results from the selected group.

The final stage was to bind each result view column to the MD Item Attributes array
controller with the key path set to the relevant metadatattribute to be displayed.

Figure 5.3 displays the first fully functioning iteration of Searchlight.

5.5 Conclusion

This chapter detailed the implementation decisions made and methodologies adopted
during the implementation of the first iteration of Searchlight. The work reported in
this chapter has addressed the personal aims set out in Chapter 1 in a manner that is
consistent with the overall IR and IG investigation.

78

Figure 5.3: Prototype 2: Searchlight

79

Chapter 6

Evaluation of Searchlight and
Generic IR and IG
Requirements

6.1 Introduction

Chapter 5 discussed the low level design of the system leading to the development of
the Searchlight, the first fully functioning prototype. This chapter discusses the user
evaluations which lead to the redesign of the second prototype and the introduction of
‘Gathertron’, together with reflections on the validity of the IR and IG requirements
and principles

6.2 Methodology

Evaluations have been used throughout the project to ensure that at each major stage
of creating a user centred IR and IG system, the design matched the needs of the
user. The majority of the testing and evaluation is discussed in this chapter. The
prototype testing was conducted using the same co-operative evaluation technique used
throughout the project. The evaluations focussed on discovering usability and UI design
problems, improvements that could be made to the system and any required additional
features.

As the Searchlight is a conceptual prototype which concentrates on supporting the core
areas of IR and IG, functional and structural testing techniques were not adopted during
the testing process. Functional testing, such as black box testing could have been used
to verify the system produced the correct outputs based on a set of inputs. However,
this would provide data on whether the system functions correctly, but would not offer
any information regarding the usability and efficacy of the concepts.

80

White box testing was carried out at object, unit and integration level progressively dur-
ing the build. This chapter focusses on the interaction model embedded into Searchlight
for IR and IG activities

Figure 6.1 illustrates the testing and evaluation process from the first prototype to the
distribution of the final prototype. The term distribution does not mean distribution
in the normal sense of distributing a commercial application, rather the distribution
of the application to a large Mac OS X 10.4 audience. This was used as a method of
functional testing and to gain further feedback from a larger user group.

Figure 6.1: Evaluation and Testing Methodology

The full evaluation process in figure 6.1 is depicted as a larger process than the other
evaluation stages, as the main body of the prototype evaluations took place in this
stage. This was due to time and resource constraints on the project, as it was important
to ensure that there was sufficient time to make changes to Searchlight. If the main
prototype testing was carried out after implementation of the third prototype, there
would not have been sufficient time to implement the suggested improvements.

6.3 Prototype Evaluations

The prototype evaluation adopted the D E C I D E framework as described in detail in
Section 3.5.1. Only the key stages are discussed for this evaluation. Many of the same

81

constraints and ethical issues which exist with the evaluations in the requirements stage
also exist with the evaluations during the testing phase.

The goals of the evaluation were as follows:

• Identify usability problems with the prototype

• Identify conceptual problems with the prototype

• Identify additional features or improvements

Five participants were involved in the evaluations, the majority of whom were involved
in the evaluation reported in Section 4.6.

The evaluations commenced with the evaluator demonstrating how to use the main
features of the system and participants were told that they had to use the system to
solve a series of information problems. The problem tasks were all aimed at evaluating
the different components of the system and were similar in style to the tasks used in
section 4.6. However, this time, participants were all required to use Searchlight to solve
the problem. During the evaluations, participants were prompted to offer their opinions
and were actively encouraged to identify any constraints with the system.

Table B.1 in Appendix B.1 details each problem task along with their respective domains
and aims. Problems 1 and 2 are aimed at assessing whether participants choose to use
the IG components of the system without being directly instructed to do so. Problems
3-6 target particular components of the system and aim to test that the user is able to
use the key features effectively with little instruction.

As the volume of data obtained from the evaluations was less than in the requirements
gathering evaluations, the key points could be placed into a tabular format, identify-
ing usability constraints, conceptual constraints and suggested improvements. Each
constraint or improvement is accompanied with a description and suggested design cri-
teria.

6.4 Evaluation Results

Tables 6.1 to 6.3 detail the main results from the evaluations.

Tasks 1 and 2 were successful from a conceptual point of view, as all users attempted
to use the IG component to save links to relevant information during their search for
information. The IR component of the system also proved to be successful as users
automatically chose particular result categories and quickly chose results based on the
filename, preview and the location of the file. A surprising constraint with the results
view was the negative feedback on the text colour change feature. When the participants
selected a result and the colour changed, they were confused as to what this meant, and
instead of indicating that a file had already been clicked, it seemed to make the result
stand out more.

82

Table 6.1: Results Part 1, Interface and Usability Issues

Component Description Design Criteria

1 Query view
feedback

Users identified a lack of feedback
during query execution and post
execution

Provide indication of query in
progress, detail number of re-
sults found and possibly display
the query relating to the results
in the results view

2 Gather
View

Users were not able to use the
gather view effectively as they
had to open a drawer to drag files
to the view

Place the gather view in a float-
ing utility window

3 Gather
View

When the user shows a file in
Finder, the gather view window
is automatically hidden and the
user is not able to drag the file
onto the gather view

Ensure gather view always re-
mains visible, unless otherwise
instructed by the user

4 Saved
Query View

Placing the saved query view in
the same drawer as the gather
view caused problems. Also,
when the user saved a search,
there was no feedback, as the
query would be added automat-
ically to a list in the drawer

Provide a separate window for
saved searches so the user can
see when a search is saved and
where it is saved to

5 Additional
Info View

Users felt that the more info view
was not important enough to have
a separate window. Also, the win-
dow would take the application
focus when opened, which meant
the user had to close the window
before being able to continue us-
ing the system

Move the additional info view to
a drawer

6 Gather
View

When users attempted to re-
access saved information, if the
filename of the gathered informa-
tion offered little semantic mean-
ing, the participant could not re-
member exactly what the infor-
mation was about

Provide a method of tagging or
labelling the gathered informa-
tion.

83

Table 6.2: Results Part 2, Conceptual Constraints

Component Description Design Criteria

1 Saved
Query View

Users were confused with the pro-
cess of saving searches. The idea
of saving the query to a drawer
and choosing the saved query
from a list re-executing the query
without using the main query
view was not intuitive

Possibly use a recent searches
list in the query view to be con-
sistent with other applications,
such as Safari

2 Results
View,
Result
selection
Feedback

The changing text colour fea-
ture of the results view proved
to be inconsistent and confused
the user. The text colour would
change when a user selected a re-
sult, but it did not provide the
user with any additional informa-
tion. Users said that the changing
text colour was confusing and did
not match their expectations, as
the were not sure if it was to in-
dicate that a result was relevant,
or the result had already been
opened. As this feature caused
confusion with users, its inclusion
must be considered

Remove text highlighting fea-
ture

84

Table 6.3: Results Part 3, Suggested Improvements

Component Description Design Criteria

1 Main Win-
dow

Several users mentioned that the
main window was too wide

Reduce the size of the main win-
dow

2 Results
view, In-
formation
View

The result location attribute was
repeated in the results and infor-
mation view, poor use of space

Remove location attribute from
results view

3 Query View The query view is too large and
should be on the right of the main
window

Reduce the length of query view
and move it to the right side
of the window to be consistent
with search facilities in other OS
applications

4 Results cat-
egorisation
view

The results view does not con-
tain a category which contains all
search results. Users suggested
that this may be a useful category

Add a category to the results
categorisation view which con-
tains all search results

5 Results
view,
gather
view

Users identified that it could be
useful to drag results directly
from the results view to the
gather view

Enable drag and drop function-
ality from the results view to the
gather view

85

This can be related to the IF principle in Section 2.8.1 as the aim of changing the text
colour was to improve the trace between information patches or items. In theory, the
idea of indicating which results have been selected, to decrease time spent searching in
exhausted areas, seems effective, however, in practise this was not the case.

Even though tasks 1 and 2 were successful from a conceptual point of view, they were
problematic from a usability perspective. Participants experienced trouble using the
IG view as the drawer would go out of view when the application was out of focus.
Additionally, when re-accessing gathered information, if the filename of the gathered
information was ambiguous, the participant could not remember exactly what the doc-
ument was about. Participants also noted that the use of a split view in the drawer was
strange as they were not really sure what the main function of the drawer was. An-
other constraint with the gather view implementation was the inability to drag results
from the results view to the gather view. Two participants attempted to drag results
directly from the results view onto the gather view, however, when they were unable to,
they opened the file, verified its relevance and then dragged the file itself to the gather
view.

The saved query view proved to be extremely unusable, as when the search was saved,
the user was not always aware that the search was stored in the drawer and was unsure
how to re-access the query, as the query had to be selected from a table view and an
associated button had to pressed.

Overall, the participants understood the features of the system, but were not able to
use the IG and saved query views, either due to their poor implementations, or insuffi-
cient time to learn the application. Users were satisfied with the results categorisation
view and did not identify any problems with groupings of the files into particular cate-
gories.

6.5 Redesign

The evaluation results identified many areas of the system which required improvements
or complete redesign. The redesign focuses on the main components of the system which
were redesigned.

6.5.1 Gather View

The gather view underwent a major interface change. The first change was to move the
gather view into a separate window which opened through a dedicate toolbar button.
This addressed problems 1.2 and 1.3 as the gather view remained visible even when the
application was not in focus. An additional column was added to the gather view, which
allowed the user to label the gathered item. This addressed problem 1.6 as users could
name the gathered items to provide more meaningful definitions to guide the re-access of
gathered information. This relates to IG design principle in section 2.8.1, which states

86

that users must be able to attach semantic meaning to gathered information to aid the
recognition process.

Figure 6.2 illustrates the original gather view on the left and the redesigned gather view
on the right.

Figure 6.2: Original and Redesigned Gather Views

6.5.2 Saved Query View

The functionality and the UI for the saved query view were completely redesigned.
The saved query view was removed and a recent search menu was added to the query
view. This stored up to fifty recent searches and provided the user with the option to
clear recent searches. When a user executes a query in the query view, the query is
automatically added to the drop down list in the search field. This redesign addresses
problems 1.4 and 2.1. Using a standard recent query list removes all of the confusion over
the function of the saved query view as every query is added to the list, which creates a
consistent query saving process. This implementation is common in other applications,
therefore the users should not have any problems identifying how to re-access a previous
query. The major constraints with this implementation are that the user may wish to
access a query which is beyond than the 50 query threshold. Additionally, from a
privacy perspective, the user may not wish to save every query. Figure 6.3 shows the
original saved query view on the left and the redesigned query view on the right.

87

Figure 6.3: Original and Redesigned Saved Query Views

6.5.3 Results View

The location column in the results view was removed as the information was repeated
in the information view. This allowed the entire application to be reduced in size,
addressing problems 3.1 and 3.2. The text colour changing feature was removed as
it offered little benefit to the user’s results selection process, this addressed problem
2.2.

An additional feature was added to the results view, a small icon column was added to
graphically display the file type for each result. As the location column was removed, the
user would need another method of sorting through the results view to select relevant
results, therefore the file type icon would allow the user to recognise the file type within
each category.

6.5.4 Query Feedback

An additional view was added to the interface, the query feedback view, this was to
address problem 1.1. The feedback view used an icon to indicate when the query was
in progress, a result count at the end of the query and displayed the query string itself
to link the results to the query string. Figure 6.4 shows the query feedback view.

88

Figure 6.4: Query Feedback View

6.5.5 Aesthetic changes

The additional information view was moved from a floating window to a drawer view,
this was to reduce the number of floating windows in the applications. This addressed
problem 1.5. The query view in the toolbar was re-arranged and moved to the right, as
well as shortened in length. This addressed problem 3.3

One subtle change made in the redesign was the application name change from ‘Search-
light’ to ‘Gathertron’. The icon for the application also changed from a magnifying
glass to an image of the Transformer, ‘Galvatron’ flying towards the screen carrying a
basket and a magnifying glass. This change was made because it was important that
the application name reflected the concepts the system represented.

Improvements 3.4 and 3.5 were not implemented as the complexity of their respective
implementations meant that they could not be implemented in the time available. This
is discussed further in section 6.7

Figure 6.5 displays the final prototype

Figure 6.5: Final Prototype

89

6.6 Redesign Evaluation

Gathertron in figure 6.5 underwent two phases of final testing, informal task based
evaluations and distribution testing.

The first stage was to evaluate the changes made to the application to assess whether
they solved the problems identified in section 6.4. The evaluations concentrated on the
components which underwent the most changes as it was important to ensure that after
such a major redesign, the system was usable. Due to time and resource constraints,
only three participants were available to carry out the final evaluations. These were the
same participants used in the evaluations throughout the design, implementation and
evaluation sections. The participants were asked to complete four simple tasks aimed
at evaluating the IG and saved query components of the system. The tasks were as
follows:

• Gather information about cockroaches

• Gather information about cars or car repairs

• Re-access your gathered information about cockroaches

• Re-access any searches you created about cars

The tasks proved successful at evaluating the redesigned IG and saved query views.
The results from the evaluation were very encouraging as participants were able to fully
utilise the new implementations. The most important change in the IG view was using
a separate window which allowed the participant to close the main window and use the
gather view separately to the rest of the system. An unexpected benefit of this was the
ability to use the system as an aid for information browsing. One user closed the main
window and used the gather view to gather items whilst browsing for information in
a particular folder. This functionality was not considered to be inside the scope of an
IR and IG system, however, it shows that an IG system is not bound to the domain of
IR.

All participants were able to re-access saved queries from the query view without the
need for instruction. One participant did instinctively open the gather view to locate
the saved query view, however, this was because they had used the previous prototype
and assumed it was in the same location.

As the evaluation was aimed at testing the redesigned components, no new problems
were raised, however, problems 3.4 and 3.5 from the initial evaluations still existed in
the system. These exclusions are discussed in Section 6.7

As a final stage of testing, the application was packaged and distributed to 12 Mac OS
X 10.4 users to run over a longer period of time and report any faults with the system.
Table 6.6 lists the identified faults.

90

Table 6.6 Additional System Faults

Component Description Possible Cause

1 File Pre-
view

When the application is resized,
the image in the image view be-
comes pixelated

Image view is not correctly
calculating the correct propor-
tions of the image when re-
sized

2 Query
object

The result retrieval time for sin-
gle letter queries is exponentially
longer than any other string.

The query object matches
hundreds of files and returns
large result batches causing
the system response to be slow

3 Query
object

Blank query strings can be en-
tered into the query view and
the system will return all results
which match a blank space char-
acter

The query view is functioning
correctly as it treats the blank
character as a string.

4 Results
Categorisa-
tion View

If the query is still returning re-
sults and the user opens a result,
the result category defaults to the
first category

The query object is still re-
turning and updating results
and defaults to the first cate-
gory.

5 Query Feed-
back

If the user deletes the query string
in the query view and presses re-
turn, the results view stays popu-
lated but the feedback view goes
blank

The feedback view is bound
to the query view, therefore
deleting it and pressing return
will change the feedback view

6 Information
Representa-
tion

The size attribute for folders does
not display the folder size

Folders are not key value cod-
ing compliant for the size
metadata attribute

7 Result Cat-
egorisation

Not all file types have been ac-
counted for, some files appear in
the ’other files’ category

Not all file types have been
sorted into custom categories

The above problems represent small usability or interface problems with the Gathertron.

91

As the system is only a prototype, faults of this size are to be expected. None of the
faults caused major problems during the evaluations as it was only when users were
trying to break the system that they discovered these faults. If Gathertron was to be
developed as a commercial application, these faults would have to be addressed.

The distribution testing produced positive results, from stability, usability and aesthetic
perspectives. The prototype was also tested on one Intel based Macintosh and no errors
were reported

6.7 Conclusion

The implementation techniques, requirements and design principles are evaluated.

6.7.1 Implementation Evaluation

The main criticism with Gathertron was the failure to implement improvements 4 and
5 from table 6.3. Improvement 5, ‘Users identified that it could be useful to drag results
directly from the results view to the gather view’, is discussed first.

During the final prototype evaluations, one of the common user activities was to attempt
to drag results directly from the results view to the gather view. Three of the five users
involved in the evaluations first attempted to drag results to the gather view and when
they realised this was not possible, they looked up the location of the file and dragged it
from Finder. This feature was not implemented in the redesigned prototype in section
6.5 as due to the difficulty of the implementation in the time constraints, a fully working
solution was not developed.

The main problem with implementing this drag and drop functionality was registering
the results view table as a draggable source. When performing drag and drop actions
between tables in Cocoa, a drag source and destination must be configured. The drag
source was the results view and the destination was the gather view. When dragging a
row from a table view, the selected row must be copied to an object called a pasteboard,
and the destination accesses this pasteboard to paste the dragged row into the table
view. The problem with creating a custom pasteboard for the dragging source was that
the source contained metadata items and not standard files, this meant that if the desti-
nation source, the gather view, was able to accept this data type, it had to be configured
to read this custom pasteboard. This meant that the user would not be able to drag
and drop files from any location, as another method would have to be implemented to
handle this functionality. This had a definite impact on the usability of the system, as
users naturally tried to drag results from the results view as well as dragging files from
Finder. This feature would have to be addressed in future work.

Improvement 4, ‘the results view does not contain a category which contains all search
results’, was not implemented as it required a complete redesign of the query view. The
reason an ‘all results’ category was not implemented was because the method which
handled the grouping of query results, setGroupingAttributes, did not provide a way

92

of including an ‘all results’ category. This is because when the method is called, it sorts
the results into individual categories based on the file type, and when a result is sorted
into one category, it cannot be sorted into another. One possible method of addressing
this could be to create two query objects and run them both simultaneously. One query
object would return all results and the results would be ungrouped and the other query
object would return all grouped results. As stated, this would have meant redesigning
the entire query and results views which could cause further errors in the code, thus
requiring further retesting. The time taken to develop this feature would outweigh the
benefits gained.

This feature suggested demonstrates that users not only require their information space
to be subdivided into patches, as the IF and categorisation principles in Section 2.8.1
suggest, they also wish to see the whole collection of results. This could be to gain an
overall understanding of the structure of their information space, which ties in with the
information browsing principle.

From a functional point of view, the implementation was very solid and no application
crashes or memory leaks were experienced. One of the major benefits of the application
was the number of relevant results that were returned. The evaluations highlighted that
one of the major problems with Spotlight was the number of irrelevant results which
impedes the IR process when selecting results. The application limited the number
of results by reducing the scope of the search and excluding certain file types. This
coupled with the customised categories ensured that the results in each category were
meaningful results which the user did not have to constantly ignore. This had a positive
impact on the result selection process as users trusted the categorisation of the results
to return meaningful data. This relates to the query formulation principle in Section
2.8.1 as users required a higher density of meaningful results from a limited search
scope.

The query object of the system was also extremely effective at matching the same results
as the standard Spotlight implementation. Non-Requirement 8 states that the system
should imitate the Spotlight query functionality and the implementation succeeded in
doing this. The system was informally tested against a series of inputs to ensure that
the outputs produced were similar to those of the standard Spotlight implementation.
The system always returned the same results as Spotlight, minus the exceptions and
scope limitations of the search.

One major achievement with the prototype was to implement a system which was
intuitive and usable for users of all skill levels. The evaluations demonstrated that users
understood the concepts of the system and were able to use all of the features with
little or no instruction from the evaluator. This was achieved by adhering to the Apple
Design Principles during the design and implementation phases. By adopting a design
which was common with other applications across the OS, Mac OS X 10.4 users were
immediately able to recognise the key functions and actions of the system.

One criticism of the implementation was the inconsistency of the file preview feature.
The file preview displayed a preview of each result to the user. For certain file types,
for example, .png files, the system would display a preview of the image, rather than

93

the file type so the user could immediately identify the image. However, for file types,
such as PDF, a generic PDF file icon was used to indicate that result was a PDF file.
Finder displays a file preview for PDF files, however, this was not implemented in the
system due to time constraints. It would have been ideal to have file previews for all
file types, so that the user could immediately recognise the content of each file without
having to open the file to verify its relevance.

6.7.2 Requirement and Design Principle Evaluation

The final requirements specification in Appendix A.2.1 evolved throughout the design
process as requirements were added and removed, however, only minor changes were
made from the original specification. The original specification was based on a combi-
nation of the design principles in Section 2.8.1 and user studies in Chapter 3.

A major scope change, or a requirement which was not met, was the inclusion of tech-
nical support for the user. Section 2.3.1 in the literature review identified the need for
support in the system and this was omitted in the design stage. When the prototype
was evaluated in Section 6.4, users identified the lack of feedback in the system to be
a problem. Therefore functional requirement 19 was introduced to include query feed-
back into the system to inform the user of the system state. As the prototype itself was
very simple, there was little scope for conceptual support as the main actions in the
system were very intuitive. A method of accounting for this lack of support was using
carefully named icons and titles in the system. For example, each icon in the toolbar
was carefully selected to reflect the users mental model of the action performed. The
icon name also reflected the nature of the action, such as ‘Show File’ instead of ‘Reveal
in Finder’. Potentially the most complex component in the system, the Gatherview,
used the title ‘drag files and folders to the gatherboard’, to indicate the function of the
gatherboard itself. Support could have been included in the system in the form of help
documentation, however, as stated in Section 4.2 this was decided to be out of the scope
of the prototype.

One of the major requirements additions was functional requirement 18 , ‘users must be
able to drag results directly from the results view to the gather view’. This requirement
was derived from the final prototype evaluations as users stated more than once that
this functionality is necessary. The benefit of using this method to gather results is
that it removes an extra step from the IG process, the user can retrieve results and
store a subset of these results in a particular location. The main disadvantage with this
method is that users will gather the results before they have opened the file to verify
its relevance. This could lead to the collection of gathered information which is not
relevant.

Design Principles Revisited

1. Query Formulation. The final prototype demonstrates that the query principle
accurately defined the user’s interaction with the system. The query formulation

94

in the final system supported the formulation of tentative queries which could be
reformulated and allowed the user to browse through a list of retrieved results.
The scope of the query was also limited to the user’s home directory to decrease
the number of irrelevant results returned.

2. Query Information Visualisation. The results representation component was built
around the use of file previews and the visualisation of important file attributes
to support the user’s file recognition process.

3. Query Information Clustering and Categorisation. The result categorisation com-
ponent used faceted categories to organise results into meaningful groups. The use
of clustering was decided to be out of the scope of the project as users relied on
faceted categorisation during the user studies. The use of clustering also requires
a sophisticated algorithm to be developed, which would need a project of its own
to develop and evaluate successfully.

4. Information Browsing. This principle was not implemented in the conventional
sense of creating a browser and allowing the user to navigate through the file
system. A browser was not implemented as it was out of the scope of the IR
and IG system and there was not sufficient time to develop a file browser. The
concept of information browsing was applicable to the browsing of search results
within the system and the concepts of using file thumbnails in the results view
was implemented.

5. Information Foraging. Users exhibited IF activities during the initial user studies
by exhaustively searching information patches. The requirements identified a
move from an IF system which does not support the use of IG, to a system which
incorporates IF and IG to exhaustively search and retain information.

6. Collaborative Foraging. This principle was out of the scope of the project as IG
and IR in the desktop environment is an individual activity.

7. Information Re-access. The saved query view supported the concept of informa-
tion re-access. The query view saved the exact query string the user entered to
retrieve results, therefore this provided enough meaning for the user to be able to
re-access more complex or ambiguous information.

8. Information Gathering. The initial definition of IG, has been redefined during this
project. IG in the scope of this project does not allow the user to collect infor-
mation, it allows them to collect links to this information. IG can be performed
as a sub-process of IR, IF and information browsing. The gather view in the
final prototype supports the metaphor of gathering information into a container
by allowing the user to drag and drop files onto the gatherboard. Labelling this
gathered information provides the user with a method of recognising information
for re-use at a later date.

The evaluations demonstrate that the majority of the design principles identified in the
literature review, were used throughout the project to define the final prototype. These
design principles define the characteristics of a user oriented IR and IG system and

95

further studies using these principles could lead to a generic definition for user oriented
IG.

96

Chapter 7

Conclusions

7.1 Overview

The primary focus of the project was to investigate the role and characteristics of infor-
mation gathering during the information retrieval process and develop an information
retrieval and gathering prototype which supports the needs of the user.

The literature review provided the research into exploratory search, particularly fo-
cussing on IR, IF, IG and information browsing. This research identified that there
was no framework which characterised an IG system. Therefore, eight design principles
were developed which aimed to characterise the users interaction with an IR and IG
system.

Two user studies were carried out to investigate IR and IG. The first study evaluated
an existing system, Spotlight, to determine usability issues, system constraints and
benefits. The second study used a co-operative evaluation technique to identify the
characteristics of user oriented IR and IG and the results were verified against the
design principles derived in the literature review. A definition of various components
of an IR and IG system was developed and a requirements specification was produced
based on the evaluation results and the eight design principles.

The design process divided the system architecture into the core system components
and the MVC design paradigm was used to design the individual layer objects of each
architectural component. The design was guided by the requirements specification and
design principles identified in the literature review and an initial GUI prototype, was
created and evaluated by a group of Mac OS X 10.4 users. The evaluations lead to
a redesign of the GUI prototype and the exclusion of collaborative foraging from the
scope of an IR and IG system.

The redesigned GUI prototype was used to guide the implementation of the view layer
of the first fully functioning prototype, ‘Searchlight’. Searchlight was a native Mac OS
X 10.4 prototype implemented in Cocoa and Objective C.

Searchlight was evaluated with the end users of the system and a number of usability

97

issues, constraints and improvements were discovered. The majority of these issues
were resolved leading to the final prototype, renamed ‘Gathertron’. Gathertron was re-
evaluated and distributed to twelve Mac OS X 10.4 to report any further faults.

7.2 Critical Analysis

The exploratory development process proved successful in supporting analysis and de-
sign of an IR and IG prototype. The benefits of involving users in the design and
evaluation processes far outweigh the constraints placed on time and resources, as the
observation of user IR and IG activities and feedback from user evaluations defined
design of the final system.

The users studies proved very successful at producing a requirements specification which
characterised an IR and IG system and guided the design and implementation processes.
The initial requirements specification proved to be accurate and only minor changes to
the specification were made during the entire process.

The co-operative evaluation technique was extremely successful at obtaining large amounts
of data regarding peoples search activities. A limitation with the user studies is that
they were performed on a small scale, therefore, it is difficult to determine whether the
results obtained can be applied to a larger user group.

The design and implementation stages of the project were very successful. The design
stage focussed on applying the derived design principles and requirements to design a
system which met the user’s needs. The implementation stage fulfilled the personal
development aims of developing a system, whilst using the appropriate tools and tech-
niques to develop a usable system which characterised IG and IR.

The main obstacle to overcome during the implementation was learning how to develop
a Cocoa application, this is because the techniques are radically different from most
other programming languages. Much of the development time was devoted to learning
the basics of the language and development environment and only when enough re-
search and practise (the creation of many, many example applications) was undertaken,
could the development of the final system start. The entire development process was
a learning process, as each new feature added to the prototype had to be investigated
to discover the appropriate implementation techniques. This was one of the major dis-
advantages with the implementation process, as towards the end of the development
process, when prototypes were evaluated and changes needed to be made, time con-
straints were even more crucial. One key feature of the system, functional requirement
18, ‘users must be able to drag results directly from the results view to the gather view’
was not implemented due to the difficulty of the implementation in the time available.
One of the major improvements would be to start the development process earlier on
in the project, for example, learning the implementation language during the literature
review stage.

The prototype evaluations were successful at identifying the usability issues and concep-
tual constraints with the prototype. However, due to the small scale of the evaluations,

98

only including five people, it is not possible to determine whether the system would
meets the needs of a large audience.

7.3 Information Gathering and Retrieval Defined

The project set out to investigate IG with the aim of developing a set of principles
which characterise the user’s information gathering process. A set of eight principles
were derived from the literature review and were used throughout the project to guide
the design of the system. The requirements specification was derived from a combination
of these eight principles and user studies. As the requirements specification may change
depending on different system implementations, it is the principles which really define
an IR and IG system. Below is the finalised framework which characterises the key
components of an IR and IG system.

1. Query Formulation. The system must support the formulation of in-exact queries
to return a list of results which the user can browse through. The query itself
must be limited to exclude irrelevant sources of information which will not return
relevant results.

2. Query Visualisation. The system must place emphasis on the use of recognition
over recall to retrieve results. File previews and essential result attributes, such
as filenames and locations, must be used to aid the result selection process

3. Query Information Categorisation. The system must group results into cus-
tomised, faceted categories. The categories used in Gathertron were file type
categories, however, other categories, if relevant to user search activities can be
used.

4. Query Result Browsing. The system must allow a degree of exploration of the
information space. This can be in the form of browsing result lists or the provision
of a file system browser.

5. Query Result Foraging. The system must combine IG and IF to produce the con-
cept of persistent foraging. The system must allow the user to gather information
during IF

6. Query Re-access. The system must provide a method of re-accessing previously
executed queries. These queries must also have attached semantic meaning to aid
the recognition process when re-accessing queries.

7. Information Gathering. The system must support the collection of links to relevant
information sources. These links must have attached semantic meaning to aid the
recognition process when re-accessing gathered information. The system must
support the gathering metaphor through use of direct manipulation to drag and
drop results to the gather area. The system must also support the gathering of
results directly from the results source as well as through information browsing.

99

The Collaborative Foraging principle was omitted from the IR and IG design principles
as collaborative foraging does not support the individual process of gathering informa-
tion. Collaborative foraging is best suited to an information rich, networked environ-
ment, where many users actively classify relevant information. This is not indicative of
the desktop environment at this current moment in time.

What does Gathertron bring to IG?

Gathertron uses the design principles identified to demonstrate a physical implementa-
tion of user oriented information gathering. Due to the limited research into IG, Gath-
ertron can be seen as a leading example of a practical implementation of user oriented
IG and can be used as a basis for the development of more advanced implementations
in the future.

7.4 Future work

Gathertron is a basis for an IR and IG system, therefore, there are many improvements
which could be made.

• The most fundamental improvement would be to implement the gathering of re-
sults directly from the results view to the gather view. If there was more time
available for the project, this feature could be easily implemented.

• Investigation into the utility of a category which allows the user to view ‘all search
results’ could be carried out. This was not implemented in this system due to time
constraints, therefore would be assessed in future work.

• Further research into the effect of document previews on the user’s recognition
process could be undertaken, with the aim of implementing previews for all types
for documents. For example, text summaries of text based documents to identify
the content of a file could be investigated.

• The clustering of search results based on relevance or specific grouping attributes
could be investigated and implemented.

• The system supports basic exploratory search, however, it does not actively sup-
port exploratory information browsing. Gathertron could support the inclusion
of a file system browser which allowed the user to choose between query based IR
and information browsing.

• Research into explicit information tagging could be undertaken with the aim of
investigating the efficacy of users ‘tagging’ information for re-use. This could tie
in with collaborative foraging and be used in networked environments

• The principles of an IR and IG system must be refined with the aim of producing
a standardised definition for user centred information gathering.

100

7.5 Personal Reflection

This project was a success from research and developmental perspectives. I was able to
use knowledge learnt from HCI modules to plan and execute successful evaluations. I
learnt much about evaluation techniques and how to get the most out of users during
observations and how to analyse the data obtained to produce relevant design princi-
ples.

The main skill learnt from this project was the ability to develop in Cocoa and Objective
C on the Macintosh platform. I was able to learn a lot about Cocoa and implement a
sophisticated and complex system in a short time frame. This was a real achievement
as the development techniques for Cocoa applications are very different to traditional
techniques taught in modern computer science.

The project taught me a lot about time management and the importance of sticking to
a structured plan. The magnitude of the final year project is far greater than anything
I have previously undertaken and without planning, the results of this project would
have been unobtainable.

To conclude, this project was successful in developing a set of characteristics of a generic
IR and IG system and applying these to create a usable, experimental prototype to act
as a basis for future work.

101

Bibliography

Apple. In Apple Human Interface Design Principles, 1992-2006a. URL
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines.

Apple. In Apple Human Interface Guidelines, 1992-2006b. URL
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines.

Anna Aula and Mika Kaki. Less is more in web search interfaces for older adults. 2005.

Anne Aula, Natalie Jhaveri, and Mika Käki. Information search and re-access
strategies of experienced web users. In WWW ’05: Proceedings of the 14th interna-
tional conference on World Wide Web, pages 583–592, New York, NY, USA, 2005.
ACM Press. ISBN 1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.1060831.

Caldiera V. Basili and D.H Rombach. Goal question metric paradigm. In J. J. Marciniak
(ed.) Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

Giorgio Brajnik, Stefano Mizzaro, and Carlo Tasso. Evaluating user interfaces to infor-
mation retrieval systems: a case study on user support. In SIGIR ’96: Proceedings of
the 19th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 128–136, New York, NY, USA, 1996. ACM Press.
ISBN 0-89791-792-8. doi: http://doi.acm.org/10.1145/243199.243249.

Stuart Card and Peter Pirolli. This term was coined by the palo alto research center
(previously xerox parc) by , and colleagues as the result of human-computer interac-
tion research. In http://www.motive.co.nz/glossary/information-foraging.php.

Edward Cutrell and Susan T. Dumais. Exploring personal information. In Communi-
cations of the ACM, Vol 49, No. 4, page 50, 2006.

James Duncan Davidson. In Learning Cocoa with Objective-C. O’Reilly, 2004. ISBN
0-596-00301-3.

Jolon Faichney and Ruben Gonzalez. Goldleaf hierarchical document browser. In AUIC
’01: Proceedings of the 2nd Australasian conference on User interface, pages 13–20,
Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-0969-X.

II Franklin P. Tamborello and Michael D. Byrne. Information search: the intersection
of visual and semantic space. In CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, pages 1821–1824, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-002-7. doi: http://doi.acm.org/10.1145/1056808.1057031.

102

Simson Garfinkel and Michael Mahoney. In Building Cocoa Applications: A Step-by-Step
Guide. O’Reilly, 2002. ISBN 0-596-00235-1.

Marti A. Hearst. Clustering versus faceted categories for information exploration. In
Communications of the ACM, Vol 49, No. 4, page 59, 2006.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accu-
rately interpreting clickthrough data as implicit feedback. In SIGIR ’05: Proceedings
of the 28th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 154–161, New York, NY, USA, 2005. ACM Press.
ISBN 1-59593-034-5. doi: http://doi.acm.org/10.1145/1076034.1076063.

Stephen G. Kochan. In Programming in Objective C. Sams Publishing, 2004. ISBN
0-672-32586-1.

Flip Korn. A taxonomy of browsing methods: Approaches to the ’lost in concept space’
problem. 1996.

F.W. Lancaster. Information retrieval systems: Characteristics, testing and evaluation.
1968.

Gary Marchionini. Exploratory search: From finding to understanding. In Communi-
cations of the ACM, Vol 49, No. 4, page 41, 2006.

Professor George A. Miller. In Wordnet: A lexical database for the English language.
URL http://wordnet.princeton.edu/.

John C. Mitchell. In Concepts in Programming Languages. Cambridge University Press,
2003. ISBN 0-521-78098-5.

P. Mulhem and L. Nigay. Interactive information retrieval systems: from user centered
interface design to software design. In SIGIR ’96: Proceedings of the 19th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 326–334, New York, NY, USA, 1996. ACM Press. ISBN 0-89791-792-
8. doi: http://doi.acm.org/10.1145/243199.243280.

Peter Pirolli and Stuart K. Card. Information foraging models of browsers for very
large document spaces. In AVI ’98: Proceedings of the working conference on Ad-
vanced visual interfaces, pages 83–93, New York, NY, USA, 1998. ACM Press. doi:
http://doi.acm.org/10.1145/948496.948509.

Peter Pirolli, Stuart K. Card, and Mija M. Van Der Wege. Visual information foraging in
a focus and context visualization. In CHI ’01: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 506–513, New York, NY, USA, 2001.
ACM Press. ISBN 1-58113-327-8. doi: http://doi.acm.org/10.1145/365024.365337.

Wanda Pratt, Marti A. Hearst, and Lawrence M. Fagan. A knowledge-based approach
to organizing retrieved documents. In Proceedings of 16th Annual Conference on
Artificial Intelligence, 1999.

Jennifer Preece, Yvonne Rogers, and Helen Sharp. In Interaction Design: beyond
human-computer interaction. John Wiley & Sons, Inc, 2002. ISBN 0-471-49278-7.

103

K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Does organization by similarity
assist image browsing? In Proceedings of SIGCHI 2001, 2001.

R. Sacks-Davis, P. Wallis, and R. Wilkinson. Using syntactic analysis in a document
retrieval system that uses signature files. In SIGIR ’90: Proceedings of the 13th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 179–192, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-408-
2. doi: http://doi.acm.org/10.1145/96749.98219.

Stephen J. Schultze. A collaborative foraging approach to web browsing enrichment.
In CHI ’02: CHI ’02 extended abstracts on Human factors in computing systems,
pages 860–861, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-454-1. doi:
http://doi.acm.org/10.1145/506443.506635.

Michael F. Schwartz and Calton Pu. Applying an information gathering architecture
to netfind: a white pages tool for a changing and growing internet. pages 426–439,
Piscataway, NJ, USA, 1994. IEEE Press. doi: http://dx.doi.org/10.1109/90.336327.

Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information retrieval
using implicit feedback. In SIGIR ’05: Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 43–50, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-034-5. doi:
http://doi.acm.org/10.1145/1076034.1076045.

A. Smeaton and F. Kelledy. User-chosen phrases in interac-
tive query formulation for information retrieval. 1998. URL
citeseer.ist.psu.edu/smeaton98userchosen.html.

Ian Sommerville. In Software Engineering Sixth Edition, Tottenham Court Road, Lon-
don, UK, 2001. Addison-Wesley. ISBN 0-201-39815-x.

Ryen White, Bill Kules, Steven M. Drucker, and m.c. schraefel. Supporting exploratory
search. In Communications of the ACM, Vol 49, No. 4, page 36, 2006.

Baeza Yates and Ribeiro-Neto. Modern information retrieval. Addison Wesley Longman,
1999.

104

Appendix A

Where possible, the term ‘user’ will be replaced with a personal pronoun, as ‘user’ is
a rather dispassionate term for labelling a person who uses a computer. People have
complex human needs and this can often be overlooked when using a such a generic
word.

• IR - Information Retrieval

• IRS - Information Retrieval System

• IS - Information Seeking

• IF - Information Foraging

• IG - Information Gathering

• IGS - Information Gathering System

• OS - Operating System

A.1 Spotlight Analysis Results

The Spotlight Analysis Table lists the main results from the Spotlight analysis inter-
views

Spotlight Analysis Results

Quote Description Domain Requirement

Id like the ability to do
web searches from it

User would like the
ability to search pass
the search string to
Google to perform web
searches

SUGGESTION
- Web Interface
for IR

Provide a
method of
searching
Google from
Spotlight

105

there’s that pointless re-
sults window

User expresses con-
fusion and disregard
for advanced Spotlight
view

CONSTRAINT
- Spotlight Ad-
vanced view
- redundant
feature?

Differentiate
system from
advanced
Spotlight view

on my mac, as it is slow,
it can be annoying to wait
for a search result you
know exists, but it gives
all the other results first

Criticism of speed and
relevance matching
can have a negative
effect if it returns
other files even if the
user is certain the file
is tagged

CONSTRAINT
- Speed. CON-
STRAINT -
Results view,
relevance
matching

System must
be respon-
sive. Provide
a consistent,
fast method
of matching
known files

sometimes, searches are
saved when you click
again, sometimes not

When a user searches
for something using
Spotlight, the list re-
mains populated for
a certain amount of
time. When then
user clicks back on
the Spotlight symbol
to create a new search,
sometimes the list is
populated, sometimes
it is not.

CONSTRAINT
- Results view
inconsistency

System must
either retain
results in re-
sults view, or
clear results
view for new
search

smart folders say source
code and spotlight says
documents

In the standard Spot-
light results view,
source code is grouped
under Documents, In
smart folder view, it
says Source Code

CONSTRAINT
- Results
grouping
inconsistency

System must
be consistent
in results
grouping

106

documents full of stuff
that isnt relevant

In the Spotlight results
view, the documents
category is often more
populated with docu-
ments such as source
code, package files etc

CONSTRAINT
- Results
grouping

System must
provide more
user centred
results group-
ing

Ignore preference files,
fonts and packages!!!!

Application preference
files, fonts and installer
packages should not be
included in the results

CONSTRAINT
- Results
grouping

System must
exclude prefer-
ence files, fonts
and packages

no way of telling if u have
clicked something in list

If user is opening many
documents and return-
ing to the same list,
there is nothing to in-
dicate a document has
already been opened

CONSTRAINT
- Results view

System must
indicate which
files have al-
ready been
opened from
the results
view

reveal in Finder doesnt
work with top link without
using the mouse

Instead of opening
each file, often users
wish to go to their
location. This is not
possible using the
keyboard with the
top hit in the list, the
mouse must be use

CONSTRAINT
- Results view
tasks

System must
allow consis-
tent method of
accessing the
location of a
file

Cant save searches from
advanced search view

After creating an ad-
vanced search, it is not
possible to save this

CONSTRAINT
- Results re-use

System must
allow searches
to be saved

if i kick a search off from
apple+space, and its tak-
ing ages to run, i cant like
’detach’ from the search
and let it run in the back-
ground while i carry on
with another task

If Spotlight response is
slow, it is not possi-
ble to leave it to run
in the background and
continue with another
task

CONSTRAINT
- Multitasking

System must
support multi-
tasking

107

umm... it would be nice
if it were easier to get to
the location of what you
have searched for rather
than just opening the file
you searched for (although
i know its possible if you
open the bigger spotlight
window)

Difficult to reveal a file
in Finder

CONSTRAINT
- Result Tasks

System must
provide an
easy method of
accessing a file
location

i like how fast it is to get
stuff

User comments on the
overall speed improve-
ment with Spotlight
over other systems

BENEFIT
- Spotlight
speed

System must
be as re-
sponsive as
Spotlight

most of all, its speed,
without compromise of
accuracy

User comments on
how they are able
to quickly find files
without having to type
in the exact name

BENEFIT
- Spotlight
query con-
struction

System must
match or
exceed the
Spotlight
query engine

108

Table A.1: User Suggested Result Categories

Category File Type

Documents PDFs, MS Office documents, rtf, plain text,
iWorks documents. Anything text based
which isnt source code!

Folders All folders

Images All image types

Email and contacts All email messages

Source Code All technical documents, e.g. java, .m, .c files
etc

Movies All movie types

Web Documents Any web related document e.g. html, .php

Music All music/ files, e.g. mpeg 4

109

A.2 Requirements Specification

The requirements section is divided into functional and non-functional requirements.

A.2.1 Functional Requirements

Query Formulation Requirements

1 The system must retrieve information from non-exact user
queries

Description The user muse be able to enter a query which they assume
to be close to the exact query to retrieve information

Source Chapter 2, Section 2.8, Design Principle 1

2 The user must be able to browse search result from queries

Description Users must be able to submit a tentative query and browse
the results produced

Source Chapter 2, Section 2.8, Design Principle 1 and 4

3 Users must be able to reformulate existing queries

Description The system must support the reformulation of existing
queries

Source Chapter 2, Section 2.8, Design Principle 1. Chapter 3, Sec-
tion 3.6

4 The system must limit the search scope to the user’s home
directory

Description The system must only search in the user’s home directory for
results to reduce the number of irrelevant results returned

Source Chapter 2, Section 2.8, Design Principle 1

110

Query Result Representation Requirements

5 Results must display the file name and file location as a min-
imum

Description When search results are returned, attributes for each file must
be displayed to aid the user’s result selection process. These
attributes must be the attributes identified by users during
the Spotlight analysis and cooperative evaluations

Source Chapter 3, Section 3.7.3. User studies identified most popular
file attributes

6 File previews must be displayed for each selected result

Description File previews for certain file types allow users to recognise
files without having to read filenames

Source Chapter 2, Section 2.8, Design Principle 2.

7 Additional file information must be displayed for each se-
lected result

Description In addition to the simple information displayed with each
result, additional information should be available for each
selected file

Source Chapter 3, Section 3.6. During the evaluations, users utilised
the advanced Spotlight view to display more file information
for results

8 The system shall indicate when a user has already selected a
result from the results view

Description When a user selects a result from the list, the state should
change to indicate to the user that this item has already been
selected.

111

Source Chapter 3, Section 3.6. During the evaluations, several users
opened the same file twice, not realising it was the same file.

Query Result Categorisation Requirements

9 Results must be grouped according to categories identified in
the user studies.

Description The evaluations found that users experienced problems with
categorisation of search results. The documents category
which users presumed would contain common documents,
e.g. PDFs, Word documents etc, were mainly populated with
source code files. Groupings can be found in Appendix A.1

Source Chapter 3, Section 3.4. Chapter 2, Section 2.8, Design Prin-
ciple 3

10 Results grouping must be consistent for each search

Description The categories for each search must always be consistent and
one file type should not appear in more than one category

Source Chapter 3, Section 3.4. Chapter 2, Section 2.8, Design Prin-
ciple 3

11 Categories must exclude file types users identified as not rel-
evant

Description The search results must exclude file types which users iden-
tified as non-relevant

Source Chapter 3, Section 3.4. The Spotlight analysis identified var-
ious file types which users find irrelevant.

112

Query Result Manipulation Requirements

12 Users must be able to perform basic file tasks

Description When a search result is returned, the user will wish to per-
form basic actions with that file

Source Chapter 3, Section 3.4

13 Users must be able to order their results.

Description Users may wish to order results alphabetically, or by date
etc, to aid browsing through result lists

Source Chapter 3, Section 3.6. During the evaluations, several users
attempted to re-order their search results using the Spotlight
Advanced view.

Information Re-access and Gathering Requirements

14 Users must be able to re-access previous searches

Description Users need to re-access searches that they have created in the
past. The system must support re-access of previous searches,
whether it is in a recent search list or saving queries

Source Chapter 2, Section 2.8, Design Principle 7. Chapter 2, Sec-
tion 3.6

15 Users shall be able to save pointers to files or folders from
search results

Description User shall be able to use the system search results to mark a
file as relevant or store a pointer to a relevant file for re-use

Source Chapter 2, Section 2.8, Design Principle 8. Chapter 2, Sec-
tion 3.6

16 Users shall be able to re-access gathered information

113

Description Users must be able to use the information which has been
previously gathered.

Source Chapter 2, Section 2.8, Design Principle 8. Chapter 2, Sec-
tion 3.6

17 Users shall be able to gather information through browsing

Description The system must allow users to gather information by brows-
ing the file system.

Source Chapter 2, Section 2.8, Design Principle 8

18 Users must be able to drag results directly from the results
view to the gather view

Description The results returned in the results view must be draggable
to the gather view, without the need to reveal the location of
the file in Finder and drag from there

Source Chapter 6, Section 6.4

114

Additional Requirements

19 Feedback must be provided to inform the user on the state
of the system

Description Users need to be informed of the current state of the system
and require feedback such as ‘search is running’

Source Chapter 6, Section 6.4

115

A.2.2 Non-functional Requirements

Usability and Interface Requirements

1 The system must be designed for users of abilities

Description The target audience for the system is effectively all Mac OS
X 10.4 users, therefore the system must be designed for users
of all abilities

Source Requirements Sources

2 The system must conform to Apple Design Guidelines and
Human Interface Principles

Description When designing Apple application it must comply to basic
HI and UI design principles

Source Apple HI Design Principles

3 The system must be fully usable without the need of support

Description Most Apple applications are very intuitive and should be us-
able without having to consult a user guide

Source The literature review identified the importance of user sup-
port in complex systems. This system should be designed to
include all necessary features without requiring the user to
consult a user guide

116

Miscellaneous Requirements

4 The system shall be a native Mac OS 10.4 application

Description The system shall be a dedicated Mac OS 10.4 application,
therefore, it must adopt the look and feel of a Mac OS 10.4
application

Source Project Aims

5 The system must not drain system resources

Description The system must be able to run for as long as necessary
without leaking memory or causing the system to slow down

Source Apple Design Guidelines.

6 The system must be a Universal Application

Description The system must be designed to run on both PowerPC and
Intel Macs

Source Hardware Analysis

7 Searches must be able to run in the background

Description The system must be able to run in the background until the
user needs to gather information. It must also be able to run
queries whilst the focus is on another application.

Source The Spotlight analysis identified the constraint of being
bound to a search window

8 The system must return the same results as the current Spot-
light implementation, excluding those out of the search scope

Description Users identified the results Spotlight retrieves to be accurate,
but there are just too many irrelevant files. The system must
return the same set of relevant files, whilst excluding the
irrelevant results.

117

Source Chapter 3, Section 3.4

9 The retrieval speed of the system must be as fast, or faster
than the current Spotlight implementation

Description Users identified one of the major benefits of Spotlight is the
speed of result retrieval, therefore the system must be as fast
Spotlights

Source Spotlight Analysis Results Appendix A.1

118

Appendix B

B.1 Problem Task Analysis

The table below describes the problems tasks created for the users to address in the
prototype evaluations

Evaluation Problem Tasks

1

Scenario You are writing a document about mice and remember that
you have a few documents saved somwhere on your computer,
which contain information about house mice.

Task Gather information about house mice

Domain IR and IG components

Aims To evaluate the efficacy of the IR and IG components. To
assess whether users utilise the gather view to store informa-
tion.

2

Scenario A friend has recently become interested with ‘badger watch-
ing and asks you for any information or tips about badgers
in general.

Task Gather information about badgers

Domain IR and IG

119

Aims To evaluate the efficacy of the IR and IG components. To
assess whether users utilise the gather view to store informa-
tion.

3

Scenario You are writing another document about house mice and re-
member that you have previously gathered information on
the subject

Task Find the information you gathered about house mice

Domain IG

Aims To evaluate the retrieval of previously gathered information

4

Task Search for the word ‘bumper’ and save your search.

Domain Query re-access

Aims To evaluate whether users understand the save search process

5

Scenario You are writing another document about badgers and re-
member that you have previously gathered information on
the subject

Task Find the information you gathered about badgers

Domain IG

Aims To evaluate the retrieval of previously gathered information,
but to also assess how the users looks through the gathered
information for a particular item of information

6

Task Re-access your ‘bumper’ search

120

Domain Query Re-access

Aims To evaluate whether the users can re-access saved searches
effectively

121

Appendix C

C.1 Gathertron Icon Creation

Figure C.1 illustrates the sources used to create the final Gathertron icon

Figure C.1: Gathertron Icon Sources

122

