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Abstract

A mobile ad hoc network (MANET) is a relatively new networking paradigm.

Mobile ad hoc networks are more exposed to security threats due to the lack

of physical security. That is why the introduction of security protocols, such as

authentication and secure handoff protocols, is necessary. This is especially the

case for private local mobile ad hoc networks. This thesis is a progress towards

producing a secure and efficient authentication protocol as well as a secure and

efficient handoff protocol for private local mobile ad hoc networks.

Our investigations show that there are performance and security problems

with the existing authentication and keying mechanisms. We design and develop

an authentication protocol, which mitigates those problems, using a combination

of well-known cryptographic tools of RSA and Diffie-Hellman. The ns2 simula-

tions demonstrate that authentication and key establishment between two mobile

nodes can be accomplished in just four messages, and in approximately ten mil-

liseconds. The protocol has been analysed and proved secure according to the

BCK and CK approaches, and the GNY logic.

The pre-handoff protocol has been designed so that mobile nodes will hold

the necessary information essential for achieving fast handoffs. This stage is an

extension to the normal exchange of Hello messages among mobile nodes, which

occurs whenever there is a change in network topology. The multipoint relay

(MPR) algorithm is also integrated into the protocol to improve the efficiency.

One feature of MANETs is the topological instability. Currently, no handoff

protocols for pure MANETs are available. We, therefore, introduce an efficient

and secure handoff protocol, which is suitable for the movement of any mobile

node within that domain, i.e. micro-mobility. Our approach again uses the

combination of RSA and Diffie-Hellman protocols. We show that a handoff can

be accomplished in just five messages, and without relying upon any third parties.

The ns2 simulations demonstrate that, on average, it takes less than twenty

milliseconds to complete the handoff process, which is more than twice as fast as

the time recommended by the ITU. The protocol has also been proved secure and

correct according to the BCK and CK formal models, and the GNY analysis.
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Chapter 1

Introduction

1.1 Motivation

The aim of this research is to design and implement a secure and efficient au-

thentication and session key establishment mechanism, and a secure and efficient

handoff protocol (micro-mobility management only) for private local mobile ad

hoc networks.

Wireless networking has become commercially and scientifically more and

more popular. Wireless ad hoc networks are gaining popularity in recent years

due to their mobility, flexibility and ease of deployment. A mobile ad hoc wire-

less network is a network without any central authority, e.g. a central server.

The network is formed by a number of machines (or mobile nodes), which can

communicate directly with their neighbours by using radio links. If a source node

and a destination node are not neighbours, network packets are forwarded from

the source to destination by intermediate nodes within the network. This means

that each mobile station acts as both a machine and a router.

Two usual objectives of security protocols are to guarantee authenticity and

secrecy of communications [Aba99]. Without any security protocols, mobile ad

hoc networks can be vulnerable to various kinds of attacks - passive and active

attacks [DLRS02] - which can be summarised as follows. No authentication: An

attacker could enter and leave the network, and send forged network packets.

No encryption: An attacker could “listen” to all the packets within the network.

Denial of service attacks, which could be a result of the lack of authentication,

are possible. An attacker could re-route the network messages that are sent to a
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particular node. An attacker could advertise himself as a good route to get all

the traffic sent to him. An attacker could replay the sniffed packets. An attacker

could masquerade as another node and pretend to be part of the network. More

security problems in ad hoc networks can be found in [HBC01].

Since mobile nodes have to rely on each other to forward network packets to

destinations, several questions have to be raised. Which user/machine do you

allow to join the network? How can you trust a routing node to send the packets

to the destinations correctly? How do you know that the node will not send

any forged packets? It can be seen that these questions are the ones regarding

trust. This is where authentication comes in. More detail on trust can be found

in [Den93, PM04]. Many authentication and key agreement protocols [LABW92,

BD95, AG00, AST98, Hie00, Sal02, STW97, ZH99, KKA03, BB03, VA00] for ad

hoc wireless networks have been proposed. There have also been a lot of interests

in the study of secure routing protocols [SGLA96, Che97, PH03, PH02, BT01].

Secure routing protocols concentrate more on the route and topology discovery

process, i.e. when a node wishes to find a path to forward a packet, the secure

route discovery process will identify the safest path on which the message will be

sent. Moreover, the nature of wireless networks is that a mobile node is allowed

to move freely within the network. As a result, there has been some interest

in handoff or roaming protocols [Per96, MSA03, PC02b, PC02a, CP96, TLP99,

PC03, ABABD03, VA00]. However, none of those appear to be suited for a

pure mobile ad hoc environment. By “pure” mobile ad hoc networks, we mean

networks that consist of mobile devices communicating with one another only (no

other wired networks or components such as access points or home and foreign

agents are parts of the network).

In order to have a secure network, security protocols have to be able to sup-

port the following security properties, according to [SA99, ZH99]: confidentiality,

integrity, authenticity, availability and non-repudiation. Confidentiality is to en-

sure that the information that is being passed is not exposed. The mechanism

that protects the confidentiality is simply an encryption process. Integrity makes

sure that messages are not corrupted or altered by any malicious nodes. The

available mechanisms that help protect the integrity of a message are, for exam-

ple, message authentication code (MAC) [KBC97]. Authenticity assures mobile

nodes that the party they are communicating with is really who that party says

2



he is. Availability ensures that the services from or within the network are avail-

able, i.e. this attribute protects the network from such attacks as denial of service

attacks. Lastly, non-repudiation states that it is not possible for the origin of a

network packet to deny that he has sent the message.

Authentication and handoff processes are two closely related aspects of wire-

less networks, and are two of the most important issues to consider. The ob-

jectives of the work will be to provide an authentication protocol, so that only

authorised nodes are allowed to enter and join a mobile ad hoc network; and

to provide a secure roaming protocol, so that a mobile station can move freely

and securely within a local network. Apart from trying to overcome the various

vulnerabilities, there are other aspects of mobile ad hoc networks that we have to

consider. They include bandwidth limitations, computational power limitations,

battery life limitations and physical security limitations. Therefore, when design-

ing the protocols, we also have to deal with efficiency in addition to security.

The purpose of my thesis is to provide an authentication protocol and a hand-

off protocol that are more suitable for private local (pure) mobile ad hoc networks.

We will show that the existing protocols do not conform to the limitations and

restrictions of pure mobile ad hoc networks. We will then propose an authenti-

cation protocol, a pre-handoff stage and a handoff protocol which can be applied

within private local mobile ad hoc networks.

1.2 Main contributions

The first contribution of this thesis is the examinations and analyses of the exist-

ing authentication and keying mechanisms that are currently employed in mobile

ad hoc networks, namely ID-based cryptography [Sha84, KKA03, BF01, Sta03],

threshold cryptography [Gem97, KKA03, ZH99, Sta03], cluster based authen-

tication [VA00], zero-knowledge based authentication [WYOP94], resurrecting

duckling [SA99, Sta01] and others such as location-limited authentication [BB03]

and secure spontaneous interaction [KZ04]. We shall argue that these protocols

are not practical to be employed within pure mobile ad hoc networks, because

they do not take into account the constraints of this type of wireless networks.

Secondly, we will examine and analyse the existing handoff protocols that

are currently available. They include Mobile IP [Per96], IEEE802.11 MAC layer

3



handoff process [MSA03], various fast handoff schemes [PC02b, PC02a, CP96,

TLP99, PC03], the Sabino System [ABABD03] and [VA00]. We shall argue

that these protocols are primarily designed for infrastructure wireless networks,

therefore, they are not suited for pure mobile ad hoc networks.

The main contribution of this thesis is the introduction of an authentication

protocol, a pre-handoff protocol and a handoff protocol that are applicable and

suited for private local mobile ad hoc networks. We design the protocols, analyse

the security and prove the correctness of each of the protocols. It will then be

shown that due to the performance of the authentication and handoff mechanisms,

these proposed protocols are more suitable for employing in pure mobile ad hoc

networks than the currently existing ones.

We shall show that by applying two well known cryptographic tools - RSA

public-key cryptosystem and Diffie-Hellman key agreement method - only four

messages are needed in order to complete the authentication and key establish-

ment. Furthermore, it will be demonstrated that the authentication protocol can

be carried out and a new pairwise key can be established in a very short time,

between two participating mobile nodes. We will also explain that the reasons

that our protocol is more suitable to mobile ad hoc networks than the existing

ones are as follows. The protocol eliminates the problem of single point of failure.

The protocol does not require any human interactions. Authentication can be

accomplished even if mobile nodes are not in the line-of-sight. In addition, as a

result of a protocol run, mobile nodes do not have to rely on any other parties

for communications.

The pre-handoff protocol will be developed in order to get mobile nodes ready

for any handoff process that may take place in the future. When there is a change

in network topology, e.g. a new mobile node has just joined the network, most

routing protocols provide a mechanism for mobile nodes to update their routing

information and topology tables. That mechanism is the exchange of Hello mes-

sages among the mobile nodes. In this stage, we have added an extension to this

mechanism, so that necessary information for a handoff can be passed around

the mobile nodes. Moreover, we integrate an efficient flooding technique known

as Multipoint Relay (MPR) algorithm, so that the use of network bandwidth

becomes more efficient.

For the handoff protocol, we will show that in general a handoff and disasso-
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ciation can be accomplished in just five messages. It is also possible to complete

a handoff quickly enough without losing the connection, even if the roaming mo-

bile node travels at a high speed, e.g. the speed of a train. In addition, we shall

demonstrate that any mobile node can carry out the protocol without relying

on any extra pieces of hardware, which is one of the reasons that our handoff

protocol is more suited for pure mobile ad hoc networks.

Some of the results of this thesis have been accepted for publication previously.

The authentication protocol was published in the proceedings of the first Thailand

Computer Science Conference 2004 (ThCSC 2004). The pre-handoff stage and

the handoff protocol were accepted to appear in the proceedings of the third

International Workshop in Wireless Security Technologies 2005 (IWWST 2005).

1.3 Structure of the thesis

This thesis is organised as follows. First, chapter 2 will provide the background

knowledge needed to understand the thesis. This will include the general de-

scription and characteristics of mobile ad hoc networks, the descriptions of RSA

public cryptosystem and Diffie-Hellman key agreement protocol. They are then

followed by the overviews of the BCK, CK models and GNY protocol, all of which

will be used for the analysis and proof purposes.

In chapter 3, we provide the overviews of the existing authentication and

keying protocols which are currently employed in mobile ad hoc networks. Even

though there are no handoff protocols specifically for pure mobile ad hoc networks,

we shall give the overviews of the existing handoff protocols that are available for

infrastructure wireless networks. In this chapter, we also examine the existing

authentication and handoff protocols, and evaluate how they may or may not be

suited for pure mobile ad hoc networks. We shall argue that these techniques

are not satisfactory because they are unable to overcome some of the restrictions

and limitations of mobile ad hoc networks.

In chapter 4, we propose and design an authentication protocol, a pre-handoff

stage and a handoff protocol, all of which will be the solutions to the physical

constraints of mobile ad hoc networks and the problems of the existing protocols.

For the authentication and handoff protocols, we provide the security analyses

using the BCK and CK formal models as well as the proofs of correctness using
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the GNY logic. The main purpose of the analyses and proofs is to emphasise the

security of the protocols.

Chapter 5 describes and explains the simulations that have been run in or-

der to test the authentication, pre-handoff and handoff protocols. In general, we

simulate two different settings - outdoor environment and indoor (office) environ-

ment.

The results of the simulations are provided in chapter 6. The main purpose

of running the simulations is so that we can demonstrate and examine the per-

formances of the three protocols - authentication, pre-handoff and handoff. This

chapter also provides the discussions and evaluations for the authentication pro-

tocol, the pre-handoff protocol and the handoff protocol. We shall see whether

our protocols satisfy the design requirements, and whether or not they are able

to overcome the problems that the existing protocols have.

Chapter 7 provides the conclusion of the thesis as well as possible directions

for future research.

The notations and postulates of the GNY logic are given in appendix A.

The diagrams of the larger network layouts used in the simulations are found in

appendix B.
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Chapter 2

Background Knowledge

This chapter explains the necessary background knowledge that is useful or has

been applied to this research. We start with a description of mobile ad hoc

networks, which is the focus of this research. We then give brief descriptions of the

RSA public-key cryptosystem and the Diffie-Hellman key agreement protocol. A

modular approach to the design and analysis of authentication and key exchange

protocols, namely the BCK approach, is explained in detail, together with the

method for the analysis of key-exchange protocols and their use for building

secure channels, or the CK method. These are the formal models that we followed

during the design and analysis of the authentication and handoff protocols. GNY

analysis will also be described here.

2.1 What is a mobile ad hoc network?

A mobile ad hoc network (MANET) [CM99] or an infrastructureless wireless

network is a network formed, without a central authority (such as a server), by

the collaboration of a number of mobile nodes. These machines can communicate

with their neighbours directly by using radio links. Network packets are relayed

from one machine (source) to another (destination) by other nodes within the

network, on behalf of the source station, if and when the source and destination

mobile nodes are not within each other’s range. This means that each station

acts as both a machine and a router.

Routing is defined as a function which determines the path from a source to a

destination for the traffic flow. Routing protocols for mobile ad hoc networks are
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divided into three categories, on-demand, table-driven and hybrid. On-demand

routing protocols create routes by initiating a route discovery mechanism when

the routes are required by the source node. This type of protocols includes,

but is not limited to, Ad Hoc On Demand Distance Vector (AODV) [PR99],

Temporally-Ordered Routing Algorithm (TORA) [PC97], Dynamic Source Rout-

ing (DSR) [JM96], Associativity-Based Routing (ABR) [Toh97] and Signal Sta-

bility Routing (SSR) [DRWT97].

Table-driven routing protocols maintain up-to-date routing information from

each node to every other node in the network. These routing protocols re-

quire each node to maintain one or more tables, such as a topology table and a

routing table, to store necessary routing information. When there are changes

in the network, the nodes respond to them by propagating updates through-

out the network. Examples of the table-driven routing protocols are Dynamic

Destination-Sequenced Distance Vector (DSDV) [PB94], Wireless Routing Pro-

tocol (WRP) [MGLA96], Clustered Gateway Switch Routing (CGSR) [CCG97],

Zone-based Hierarchical Link State (ZHLS) [JNL99a], Fisheye State Routing

(FSR) [PGC00] and Optimized Link State Routing Protocol (OLSR) [CJ03].

Hybrid routing protocols combine the features of both on-demand and table-

driven routing protocols. Routes are maintained in the same way as the table-

driven protocols by mobile nodes that are close to one another. For nodes that are

further away, paths are discovered by using a route discovery strategy which is de-

fined as part of the on-demand routing protocols. Examples of the hybrid routing

protocols include Zone Routing Protocol (ZRP) [HP99], Zone-based Hierarchi-

cal Link State (ZHLS) [JNL99b], Scalable Location Update Routing Protocol

(SLURP) [WS01] and Distributed Dynamic Routing (DDR) [NLB00].

Another main characteristic of an ad hoc network is that there is always

topological instability within the network due to the ability of the mobile nodes

to move freely from one position to another. That is why a suitable routing

protocol needs to be applied to the network in order to discover and maintain

routes among the nodes in the network.

The origin of ad hoc networks and reviews of some of the routing protocols

can be found in [FJL00] and [RT99, AWD04] respectively.

Wireless ad hoc networks have gained popularity in recent years due to their

mobility, flexibility and ease of deployment. There are, however, several con-
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straints on this type of wireless networks. They include bandwidth limitations,

computational power limitations, battery life limitations and physical security

limitations. In comparison with hardwired networks, the bandwidth of a wireless

network is considerably smaller. For example, for an 802.11b wireless network,

the bandwidth is between five and eleven megabits per second, whereas giga-

bit Ethernet is now widely available. Other factors that affect the bandwidth in

wireless networks include signal fading and signal interference. This suggests that

when developing a security protocol, we would want it to generate as few messages

as possible, and each of the messages should be as short as possible. Moreover,

a mobile station is typically small, e.g. a hand-held computer or a laptop, whose

computational power and battery life are not as great as a conventional desktop

computer. This implies that security protocols should not consume much of the

resources that are available. Mobile ad hoc networks also have limited physical

security. They are more prone to physical security threats than their hardwired

counterparts. In wireless networks, there is an increased possibility of eavesdrop-

ping and spoofing. Therefore, when designing a protocol, we have to take into

account the constraints of mobile ad hoc networks as well as the fact that they

are more vulnerable to attacks than the wired networks.

2.2 RSA cryptosystem

A public-key cryptosystem, specifically RSA, will be applied in our proposed

authentication and handoff protocols. RSA will serve two purposes when used

in our protocols. Firstly, we will use it for encryption during the exchange of

messages before any pairwise key is established. Secondly, RSA will be used for

authenticity and identification purposes. For example, when a message is sent,

the sender will “sign” the message, so that it is possible for the receiver to be

sure that the message is from the expected source. Alternatively, A could send

a challenge encrypted with B’s public key. B could then decrypt the challenge

with his private key, and send the decrypted challenge back to A. A would be

able to know that B is holding the correct private key by checking the received

decrypted challenge.

RSA is a public-key cryptosystem in which each user has a private key and a

public key. As the names suggest, the public key is freely available whereas the
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private key remains secret to the owner. In public-key cryptosystems, encryption

is done with the public key and decryption is done with the private key. Public-

key cryptosystems also offer digital signatures, which can be used by the user to

sign a message. A digital signature can be thought of as a “stamp”, which is

unique to each user and is difficult to forge. The signature also assures that any

changes made to the data that has been signed cannot go undetected. Therefore,

digital signatures can be used to prove the origin as well as the authenticity of

the message.

For example, in the RSA system, Alice and Bob each picks a public and private

key pair. They make the public keys freely available (i.e. Bob knows Alice’s public

key and Alice knows Bob’s public key) and keep the private keys to themselves.

When Alice sends a message to Bob, she encrypts it using Bob’s public key and

signs the message with her own private key. When Bob receives the message, he

decrypts it using his private key, and verifies the signature (authenticity/origin)

using Alice’s public key. The digital signature helps Bob ensure that the message

really comes from Alice.

A full description of the RSA cryptosystem can be seen in [RSA78, MvOV96].

2.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement protocol [DH76] allows two users to establish

a new shared secret key to use between them, without any prior secrets. This key

agreement method will be integrated into both our authentication and handoff

protocols, so that the two communicating parties can establish a new shared key,

which can be used for encryption and decryption in further exchange of messages.

The protocol works as follows.

Alice and Bob share a large prime p and generator g (g has the following

property: for every number n between 1 and p − 1 inclusive, there is a power k

of g such that n = gk mod p). Alice chooses a large integer x, which becomes her

secret component, and computes X = gx mod p. Bob chooses a large integer y,

which becomes his secret component, and computes Y = gy mod p. Alice sends

X to Bob, who then calculates Kab = (gx)y mod p. Bob sends Y to Alice, who

then computes Kab = (gy)x mod p. Alice and Bob now have the same shared

secret key, Kab.
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The Diffie-Hellman key agreement is difficult to break due to its dependence

upon the discrete logarithm problem. That is, given X = gx mod p and Y = gy

mod p, it is computationally infeasible to calculate either x or y, provided that p

is a sufficiently large prime. Having said that, the Diffie-Hellman key agreement

is not totally secure as it is vulnerable to man-in-the-middle attacks.

A full description of the Diffie-Hellman protocol can be seen in [DH76,

MvOV96].

2.4 BCK and CK analysis methods

There are two approaches to the protocol analysis. They are simulation-based

and indistinguishability-based. The BCK and CK methods fall into the latter

category. The reason that we have chosen the BCK and CK analysis methods is

because by following their approach, we are able to gain the benefit of simpler

analysis and easier-to-write proofs of security.

The authentication and secure communication problems deal with preventing

adversaries from controlling the communication links used by legitimate parties.

The adversaries may modify the contents of messages, they may delete messages

and they may replay messages to any mobile nodes within a network. The goal

of security analysis is to make sure that protocols become less vulnerable to the

mentioned attacks. The BCK and CK methods offer attractive approaches to

security analysis. That is, they provide a modular treatment for analysing and

proving the security of cryptographic protocols. A modular approach is more

efficient and less time consuming than methods that evaluate a whole system

at once. [SZ98] also supports the use of modular methods by saying that the

security of a system is determined in terms of that of its components.

A modular approach to the design and analysis of authentication and key

exchange protocols was proposed by Bellare, Canetti and Krawczyk [BCK98a,

BCK98b]. By using this method during the design and development of a protocol,

we can construct a protocol that is secure in an unauthenticated network. Before

we begin explaining the main ideas of the BCK model, we will have to define the

terms that are presented in [BCK98a, BCK98b].

Suppose there is an adversary who is capable of carrying out such attacks as

modifying messages, deleting messages and injecting false messages. The idealised
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authenticated-links model is where the adversary cannot behave as he wishes,

i.e. he cannot carry out any attacks. The attacker is restricted to delivering

messages faithfully. On the other hand, the unauthenticated-links model is where

the adversary is not constrained to delivering messages honestly. He can do

anything he wishes to the messages, namely modifying them, deleting them and

injecting them.

The main component in the BCK modular approach is the concept of au-

thenticators. An authenticator takes a protocol that is proved to be secure in

the authenticated-links model, and turns it into a protocol (that computation-

ally achieves similar characteristics) that is secure in the unauthenticated-links

model. Formally, these authenticators are called universal compilers, C. Given a

protocol, π, in an authenticated model, a compiler C transforms it into a protocol,

π′ in an unauthenticated model. This process can be represented as π′ = C(π). A

more detailed definition of the authenticated-links model, unauthenticated-links

model and a compiler are presented in [BCK98a, BCK98b].

The essential idea of the BCK approach is that “we start with solutions that

work in a model of idealised authenticated communications and then transform

these solutions, via automatic techniques (or compilers), into solutions that work

in the realistic unauthenticated setting” [BCK98a, BCK98b]. Informally, we de-

sign an authentication or a key exchange protocol, and prove that it is secure in

the authenticated-links model. We then construct and apply a particular authen-

ticator or compiler to the designed protocol in order to transform it into a protocol

that is secure in the unauthenticated-links model. How do we know that the re-

sultant protocol is a secure protocol in the unauthenticated-links model? The re-

sultant protocol must emulate the ideal process or the secure authenticator, where

emulation of protocols means that “running π′ in an unauthenticated network has

the same effect as running π in an authenticated network” [BCK98a, BCK98b].

[BCK98a] and [BCK98b] introduce a signature-based authenticator, λsig, which

will be applied to parts of our protocols during the construction, analyses and

proofs. Bellare et al have proved in [BCK98a, BCK98b] that if the signature-

based authenticator, λsig, is applied to a protocol then that protocol will become

secure in unauthenticated networks. The signature-based authenticator works as

follows.

The protocol λsig is a two-party protocol. First, party A sends ‘message:m’
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to party B. Upon receipt of ‘message:m’ B chooses a random value NB ∈R

{0, 1}k, and sends ‘challenge:m, NB’ to A. Upon receipt of that from B, A

sends ‘signature:m, SIGNsA
(m, NB, B)’ to B. Upon receipt of ‘signature:m,

SIGNsA
(m, NB, B)’, B accepts m if the signature is successfully verified. Fig-

ure 2-1 depicts the exchange of messages described here.

A Bm

m, N B

m,SIGN sA
(m,N B,B)

Figure 2-1: Signature-based authenticator

Canetti and Krawczyk introduce the analysis of key-exchange protocols and

their use for building secure channels [CK01]. In their paper, they apply the

concepts of the BCK modular method and explain in more detail the capabilities

of attackers, both in the unauthenticated-links model and the authenticated-links

model.

In addition to the basic attacking capabilities, mentioned earlier in this sec-

tion, Canetti and Krawczyk suggest that the attackers are capable of obtaining

“secret information stored in the parties’ memories via explicit attacks” [CK01].

The attacks are classified into the following categories.

• Party corruption: When a party is corrupted, the attacker learns all the

internal memory of that party, including the long-term secrets (such as

private keys or shared secret) and short-term secrets (such as session keys).

• Session-key query: The attacker provides a party’s name and a session

identifier of a completed session at that party, and receives the value of

the key generated by that session. This attack provides the information

on specific session keys which may result from such events as break-ins,

cryptanalysis and careless disposal of keys.

• Session-state reveal: The attacker provides a party’s name and a ses-

sion identifier of an incomplete session at that party, and receives the state
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of that session. For example, the information revealed via this attack may

be some components that are used for generating a session key. Note that

the attacker does not learn anything about long-term secrets via this attack.

If a session is subject to any of the above attacks, then the session is called

locally exposed. If a session or its matching session is locally exposed, then we

call the session exposed.

Not only do Canetti and Krawczyk explain the possible attacks, they also

introduce a notion of session-key security. They claim that for a key-exchange

protocol to be secure, an attacker must not learn anything about the value of the

key from interacting with the key-exchange protocol and attacking other sessions

and parties. The definition of SK-security is as follows.

Canetti and Krawczyk start by defining an “experiment” in which the at-

tacker, U , will be asked to differentiate the real value of the session key from a

random value. The attacking capabilities of U are extended so that U is allowed

to choose a test-session among the sessions that are completed and unexposed at

the time. We extract the following definition from [CK01].

Let K be the value of the corresponding session-key. We toss a coin, b,

b
R
←− {0, 1}. If b = 0 we provide U with the value K. Otherwise, we provide

U with a random value r. The attacker U is now allowed to continue with the

regular actions, but is not allowed to expose the test-session. At the end of his

run, U outputs a bit b′ as its guess for b. Below is the formal definition, Definition

4 [CK01], of SK-security.

Definition (4 of [CK01]): A protocol π is called SK-secure if the following

properties hold for any KE-adversary U in the unauthenticated-links model.

1. Protocol π satisfies the property that if two uncorrupted parties complete

matching sessions then they both output the same key; and

2. the probability that U guesses correctly the bit b (i.e., outputs b′ = b) is no

more than 1/2 plus a negligible fraction in the security parameter.

If the above properties are satisfied for all KE-adversaries in the authenticated-

links model then we say that π is SK-secure in the authenticated-links model.
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Another important concept introduced in [CK01] is the notion of Secure

Channels. A secure channel is a communication link between two parties that, by

using a shared key generated by a key-exchange protocol, achieves authentication

and secrecy. In [CK01], the authors show that “an SK-secure key-exchange

protocol, appropriately combined with secure MAC and symmetric encryption

functions, suffices for realising such secure channels” [CK01].

In order to understand what a secure network channel is, Canetti and Krawczyk

formalise two important definitions, Secure network authentication and Secure

network encryption.

Network authentication is defined as a two-party protocol, π, in which one

party produces an output m′ = (m, fk(m)) where m is a message and f is a MAC

function, and the receiver outputs (v, ok) as follows. If m′ is of the form (m, t)

then ok = 1 if and only if (i) m is different from all previously received messages

in this session (preventing replay attacks), and (ii) (m, t) passes the message

authenticity verification. If ok = 1 then v = m, otherwise v = null. A protocol

is called a secure network authentication protocol if it emulates protocol SMT in

the unauthenticated-links model. The protocol SMT is defined in [CK01].

A protocol is considered a secure network encryption protocol if an attacker

does not learn information on messages that are exchanged during an unexposed

session. The concept of the secure network encryption protocol is introduced to

overcome the problem of secrecy of communications. The more formal definition

of secure network channel protocols can be found in [CK01].

We are now ready to define what is meant by secure channels. The following

Definition 15 is the formal definition of secure channels presented in [CK01].

Definition (15 of [CK01]): A protocol is called a secure network channels

protocol if it is a secure network encryption protocol and also a secure network

authentication protocol.

In general, by using the BCK modular approach, we can break up a protocol

into smaller and simpler protocols. The modular approach simplifies the design

and analysis work, and helps building the protocol in ways that are easier to im-

plement and maintain in practice. In [CK01], we gain some necessary knowledge

that will help make the analyses and proofs more complete.
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2.5 GNY protocol

It is useful and necessary to apply the GNY logic alongside the BCK and CK

analysis methods. This is because while the BCK and CK methods make sure

that communication channels are secure, the GNY logic provides a way of exam-

ining the components of the protocol messages when they are sent and received.

In other words, GNY protocol helps us figure out what could potentially go wrong

with protocols, so that we could change it. It does not take into account, how-

ever, the communication channels [LABW92]. This is where the BCK and CK

methods come in. Moreover, one could say that GNY protocol focuses mainly

on the authenticity of protocol messages whereas the BCK and CK methods ad-

dress secrecy. Therefore, the GNY logic is complementary to the BCK and CK

methods [GSG99].

The GNY protocol is a formal tool that allows us to analyse cryptographic

protocols, step by step according to the rules provided (they can be found in

Appendix A). The GNY protocol was developed by Gong, Needham and Yahalom

[GNY90] as a new approach based on a similar tool called BAN logic [BAN90].

A protocol, in this context, consists of the exchange of some network messages

between two or more principals. A protocol determines what and when messages

should be sent, and by which particular principal. Each protocol run is referred

to as a session.

According to the GNY logic, each principal in a session maintains two sets,

which are the belief set and the possession set. The belief set contains all the

beliefs of the principal. The possession set contains everything the principal has

received and generated in a particular session.

At the start of a new protocol session, principals have initial sets of beliefs

and possessions (i.e. initial assumptions). A principal can obtain new beliefs as a

result of receiving new messages, thus enlarging the belief set. The rules provided

as parts of the GNY protocol “enable the derivation of new beliefs from current

beliefs and incoming messages” [GNY90]. The possession set can be expanded

when receiving new messages as well 1.

When analysing a protocol, we begin with a set of initial assumptions. The

1“If a belief or a possession is a member of its respective set at any phase of some session,
then it is a member of that set at any subsequent phase of that session.” [GNY90]
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appropriate rules (Being-told, Possession, Freshness, Recognisability, Message

interpretation and Jurisdiction rules, usually in this order) are then applied to

each of the received messages. Once the analysis is finished, the protocol should

end up with the expected outcomes, e.g. a new shared secret. If in any case

the analysis does not terminate, or the protocol does not achieve the expected

conclusions, the feature of the GNY protocol is that it allows the user to see at

which step the analysis is stuck or potentially can be attacked. In other words,

the analysis allows us to realise which essential components are missing from

which message, or what attacks are possible at what stage of the protocol. For

example, if the analysis is stuck when applying the freshness rule, we know that

there is nothing fresh in the received message, which could lead to a replay attack.

From this, we should be able to add some necessary elements to that message,

so that any potential replay attacks become impossible.

GNY protocol provides a debugging tool, and may help protocol designers

get rid of unnecessary elements. For more details about the rules of the GNY

protocol and the logic of GNY itself, the reader is referred to [GNY90], while

[MSNN94] presents some remarks on the GNY logic.

Summary

Here we have presented the definition and the important characteristics of a

mobile ad hoc network, and briefly explained the RSA public-key cryptosystem

and Diffie-Hellman key agreement protocol. We have also summarised the ideas of

a modular approach to the design and analysis of authentication and key exchange

protocols (the BCK model), the analysis of key exchange protocols (the CK

model), and the logic of GNY used for proving the correctness of cryptographic

protocols. All of the above are essential concepts for designing, developing and

analysing the protocols in this research.

The RSA public-key cryptosystem and the Diffie-Hellman key agreement will

be integrated into the proposed authentication and handoff protocols. The RSA

will provide encryption, authenticity and identification prior to the establishment

of a new pairwise key (which applies the Diffie-Hellman method). The BCK and

CK approaches will provide the analysis for the security of the communication

channel between two parties, while the GNY protocol will provide the examina-

tion of each individual protocol message.
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Now we have obtained the necessary background knowledge. In the next

chapter, we will give the descriptions and analyses of the protocols (both authen-

tication and handoff protocols) that are related to and were previously developed

prior to this research.
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Chapter 3

Existing Protocols and Their

Problems

This chapter contains descriptions of the work that was previously developed,

and is related and relevant to the work done in this research. We have divided it

into two categories: authentication and keying mechanisms, and (secure) handoff

protocols. Following this, we state the reasons why the existing protocols fail

to provide adequate solutions to our problems, namely the security, physical

limitations and restrictions of pure mobile ad hoc networks.

3.1 Authentication and keying mechanisms

There are many proposed authentication protocols and keying mechanisms for

ad hoc wireless networks. In this section, we will review each of them in turn.

The existing protocols that will be described in this section are ID-based cryptog-

raphy [Sha84, KKA03, BF01, Sta03], threshold cryptography [Gem97, KKA03,

ZH99, Sta03], cluster based authentication [VA00], zero-knowledge based au-

thentication [WYOP94], resurrecting duckling [SA99, Sta01] and others such

as location-limited protocol [BB03] and secure spontaneous interaction [KZ04].

We will then analyse the authentication and keying mechanisms, and explain

the reasons why they fail to overcome the problems of physical limitations of

mobile ad hoc networks. When examining the existing protocols, it is important

to realise that it is more difficult to design a solution to problems in mobile ad

hoc networks than in conventional wired networks due to several factors. Firstly,
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the nature of a pure ad hoc network is that it has no central authority, such as

a server, which is usually largely responsible for authentication and key distri-

bution. Other constraints include bandwidth limitations, computational power

limitations, battery life limitations and physical security limitations. Therefore,

when designing an authentication protocol, we must keep these physical con-

ditions in mind. The resultant protocol should consume as little resource as

possible. In addition, we would like it to be both efficient and, more importantly,

secure.

3.1.1 ID-based cryptography

ID-based cryptography was first proposed in [Sha84]. The idea was developed

further by Boneh and Franklin [BF01]. The overview of this scheme is provided

below.

An ID-based cryptosystem consists of four main algorithms.

1. Setup - generates global system parameters and a master-key.

2. Extract - uses the master-key to generate the private key corresponding

to an arbitrary public key string.

3. Encrypt - encrypts messages using the public key ID.

4. Decrypt - decrypts messages using the corresponding private key.

The following is an example of ID-based cryptography. If Alice sends Bob a

message, she will encrypt the message using Bob’s identity, such as his email or

his MAC address, as the encryption key. When Bob receives the message, he will

have to contact a third party machine known as a private key generator in order

to get a private key for the decryption. However, Bob will have to authenticate

himself to the private key generator before the private key generation process

begins. Once Bob has obtained the private key, he will then be able to decrypt

the message and read it.

There are advantages gained from using this key distribution scheme. Firstly,

it can be seen that public keys do not have to be distributed, because they are

simply the identities of the machines or users. This plus point is feasible for ad
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hoc wireless networks in that no messages would be needed to distribute the keys.

Thus, the usage of power and network bandwidth can be reduced.

On the other hand, this cryptosystem is not suitable for mobile ad hoc net-

works, because it is necessary to involve a third party node (a private key gen-

erator) in order to establish a private key. This means that the ad hoc networks

would lose their flexibility and scalability. Furthermore, if each user were able

to compute his own key, then it would not be possible to have a secure network.

This is because of a specific way that a private key is generated by an algorithm

that takes user’s identity and a random seed as inputs. Shamir confirms that “if

user A could compute the secret key that corresponds to the public key ‘A’, he

could also compute the secret keys that correspond to the public keys ‘B’, ‘C’

etc. and the scheme would not be secure” [Sha84]. Another problem is that the

private key generator could produce an incorrect key and give it to the user. This

would prevent the user from decrypting the messages he receives correctly.

Even though there are limitations to the ID-based protocol, Khalili et al

have applied the ideas of ID-based cryptography and threshold cryptography to

distribute keys in ad hoc networks [KKA03].

3.1.2 Threshold cryptography

Threshold cryptography is presented in [Gem97]. An example of applications

for this scheme is key escrow protocols in which two or more third parties (or

escrow agents) hold parts of a key or keys. The security provided by the threshold

cryptography includes confidentiality, and data integrity and availability in the

presence of dishonest shareholders. We describe the concept of the threshold

cryptography below.

A k-of-n threshold protocol, Gemmell explains, involves n nodes known as

shareholders, possibly one machine called a dealer and one called a combiner. The

shareholders hold pieces of data known as shares, which are initially distributed

by a dealer. In this particular protocol, any k shares can be combined, by a

combiner, to generate a secret. This means that, in the k-of-n protocol, “no k-1

shares yield any significant information about the secret” [Gem97].

Threshold cryptography has been applied for securing ad hoc networks by

Zhou et al and Khalili et al, and [ZH99, KKA03] present the protocols in detail.
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Both papers propose a similar approach for dealing with key distribution. The

main difference is that Khalili et al have also integrated ID-based cryptography

into their scheme. [KZL+01] and [LL00] also use the concept of threshold cryp-

tography as the basis of their protocols.

After we have studied the threshold protocol and the two schemes proposed in

[ZH99, KKA03], we can conclude that the main advantage present in this protocol

is that it reduces the problem of single point of failure. In other words, for a k-

of-n protocol, the network is said to be broken only if k or more machines are

compromised by an attacker. However, it does not eliminate the problem of single

point of failure altogether. That is, if a combiner or a dealer is compromised,

the protocol will fail. Another benefit is that it is possible for a node to obtain

its secret as long as k machines are reachable, i.e. this mechanism makes the

protocol more flexible when any k of n machines are available.

The disadvantages to this scheme are as follows. Firstly, there are some

limitations to mobile ad hoc networks, such as the limited amount of network

bandwidth and battery power. That means that we would want to send and

receive fewer messages in order to accomplish a task. In this protocol, however,

the user will have to contact at least k machines before obtaining a secret key

and reading or decrypting his message. There is also a danger of not having k

nodes available at any one time. If that happens, the user will have to figure out

a way of obtaining the required number of shares. One such way is to move his

machine so that more nodes can be reached which can give him enough shares to

generate a secret key. This implies that there is a possibility that the user will

be spending more time trying to obtain a secret key, and wasting unnecessary

computing resources.

There are other problems in [KKA03] which should be pointed out. That is

when a new node is joining an existing network, it seems that the protocol could

be vulnerable to man-in-the-middle attacks, and malicious (existing) members

could provide the newly joined node with a false master public key 1. Moreover,

how can we trust the shareholders to give the user a correct value of his/her

share? An adversarial shareholder could lie about his/her value which would

prevent a successful reconstruction of the secret key.

1 [KKA03] states that a master public key is given to all members when they join.
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It can be seen that threshold cryptography gives some benefits and drawbacks

to the security of mobile ad hoc networks when the protocol is employed.

3.1.3 Cluster based authentication

Cluster based authentication [VA00] is based on the concept of a routing protocol

called Clusterhead Gateway Switch Routing. The cluster based architecture, as

claimed by Venkatraman and Agrawal, is most suitable for large networks.

The entire network is divided into a number of overlapping clusters, each of

which has to elect a cluster head. Before a node joins a network, a system public

key and a system private key are given to the node. This pair of keys is shared by

all the nodes in the network. A cluster key, which is generated by the cluster head

is also given to the node. This cluster key is unique to that particular cluster,

and shared by all the nodes in that cluster.

When a node joins a network, a challenge-and-response authentication is car-

ried out, with the system key pair used for mutual authentication between the

joining node and the existing member of the network.

If two nodes from different clusters wish to communicate with one another,

they will have to establish a session key. When a node wants to start a session

with another node from another cluster, it sends a request to the cluster head,

who will then generate a set of random prime numbers2. These numbers are

broadcast to all the nodes in the cluster. Authentication can be achieved by veri-

fying the origin and authenticity of the tags. The full description of the algorithm

for the communication between nodes can be found in [VA00].

The authors, Venkatraman and Agrawal, present the advantages and limita-

tions of the cluster based authentication in their paper [VA00]. The advantages

include the introduction of mechanisms for packet authentication, preventing re-

play attacks and ensuring data integrity. On the other hand, the limitations,

stated in the paper, are to do with how random prime numbers or tags should be

generated. More importantly, though, is the fact that secret keys are not freshly

generated for each session.

A further advantage is that the computational cost of the per-packet authen-

2These numbers are also known as authentication tags.
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tication is reduced by using the authentication tags. The major disadvantage of

this scheme is the problem of a single point of failure. It appears that the cluster

head plays a very important role in this protocol. Its duties include cluster key

generation, creating authentication tags and timestamps, and dealing with some

encryption. If the cluster head is compromised, that particular cluster will not

be able to function and communicate with the others.

We can see that the cluster based authentication provides several positive

features, but the reliance on cluster heads makes it less attractive to mobile ad

hoc networks.

3.1.4 Zero-knowledge based authentication

Zero-knowledge protocols are explained with the help of a certain Ali Baba story,

The Strange Cave of Ali Baba. This story was used to explain the idea of zero-

knowledge by Quisquater, Guillou and Annick. We would like to refer the reader

to [QGAB89] for the complete story. The Ali Baba story goes like this.

Very long time ago, in the Baghdad bazaar, a thief grabbed a purse from Ali

Baba and fled into a cave. Ali Baba ran after him, and discovered that inside

the cave there were two passages, left and right. Ali Baba had to choose which

passage the thief went into. He decided to go to the left, searched everywhere

from the entrance, and found that the left passage ended in a dead end. Ali Baba

thought the thief was lucky that he chose the wrong passage. On the next day in

the bazaar, another thief stole Ali Baba’s basket, and again ran to the same cave.

This time Ali Baba decided to go into the right passage. Again the right passage

ended in a dead end. Ali Baba thought the thief was lucky once again. The same

thing happened for forty days, and Ali Baba did not catch one thief. He thought

that there was no way that the thieves were lucky in every occasion. Therefore,

he decided to hide under a sack in one of the passages to see how the thieves had

escaped him every time. Finally, a thief came in, said the magic words, “open

sesame”, and to Ali Baba’s astonishment, the wall at the dead end opened. Now

Ali Baba knew the magic words. He worked and he worked on the words until

he was able to change them to his own new magic words.

Ali Baba had recorded the story. He did not say what the new magic words

were but he did include some subtle clues about them. The story became an
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interest to many historians. Finally, Mick Ali came out and said that he knew

what the magic words were. He had proved it on television by going into one of

the passages (but he did not let anyone come to the dead end with him as he

did not want to reveal the secret words) and having a reporter flip a coin. If the

coin came up heads, Mick come out on the right. If the coin came up tails, Mick

would come out on the left. They experimented forty times and every time Mick

came out on the correct side.

By doing what Mick Ali had done, he had achieved his real objective. That

is he had shown that it was possible to convince the audience that he knew the

secret words, without having to reveal them. This idea would be the basis of the

zero-knowledge authentication, which is explained below.

The idea of zero-knowledge authentication and identification was first intro-

duced by Fiat and Shamir in [Odl87]. The concept was developed further and

applied by Wulf et al [WYOP94] so that the scheme would become more suitable

to the authentication in distributed systems. We will provide the concept of the

scheme below. [WYOP94] presents the protocol in more detail.

Zero-knowledge based authentication means that the authentication is carried

out without revealing any secret shared by any parties involved in the process. It

is a “mechanism that allows the verifier to ask a question to which the answer can

be verified without knowing what computations lead to the answer” [WYOP94].

The main components of this protocol are two functions, f and g. They must

have the following properties:

f and g are hard to invert and

g(f(x), f(y)) = f(g(x, y))

Here is how the zero knowledge authentication is carried out. For example,

user A would like to identify himself or herself to user B.

• User A selects a function f , which is only known by him or her. A sends

a message to B containing his own identity, an arbitrary value x0 and the

value of f(x0). The message is denoted as:

A→ B : A, x0, f(x0)

where x0 is an arbitrary value.
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• Function g is selected by user B to authenticate future requests for service

from A. Only B knows g. To authenticate, B generates an arbitrary value,

y, and sends a message to A containing the value y and the value of g(x0, y).

B → A : y, g(x0, y)

• A would then return a message to B containing the values of f(y) and

f(g(x0, y)).

A→ B : f(y), f(g(x0, y)).

• B calculates g(f(x0), f(y)) and compares that with the received f(g(x0, y)).

If the values are the same, B can conclude that A is really who he claims

to be.

The authors have shown in their paper [WYOP94] a couple of examples of the

functions f and g. The examples include f(x) = x2, g(x, y) = xy and f(x) = xa

mod n, g(x, y) = (xy)b mod n. Furthermore, there are two “critical elements”,

mentioned by the authors, to this scheme. They are the unpredictability of the

function g(f(x0), f(y)), which must only be known by the authenticator (B in

this case). The other element is that only the user A knows f , otherwise A could

be masqueraded by an attacker. This means that the security of this method

relies on the privacy and unpredictability of f and g.

Other authentication schemes based on the zero-knowledge protocol include

zero knowledge proofs of identity by Feige et al [FFS87], efficient zero-knowledge

identification scheme for smart cards by Beth [Bet88], zero knowledge authentica-

tion scheme with secret key exchange by Brandt et al [BDLP88] and knowledge-

proof based versatile smart card verification protocol by Nyang et al [NS00].

We will now state the advantages and disadvantages of zero-knowledge based

authentication. The first advantage is that there is no need for a centralised

authority which makes the scheme suitable for an ad hoc environment. Another

positive feature is that the protocol does not involve passing any kind of se-

crets between users. Moreover, “an intruder who uses a recorded message can

only play back the recorded message if the questions asked happen to be the

same” [WYOP94] which makes it less vulnerable to replay attacks.

However, there is one question that must be asked. That is, how does the user

B know that the user A can be trusted to initiate and be part of the authentication
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process in the first place? In other words, from the authentication mechanism in

[WYOP94], there is no guarantee that A, who begins the authentication process,

is not an attacker. Another problem of the scheme presented in [WYOP94] is

the lack of mutual authentication. From [WYOP94], it can be seen that only the

party B actually authenticates the party A, not the other way around. The lack

of mutual authentication could make the network vulnerable to such attacks as

man-in-the-middle attacks.

On the whole, with the zero-knowledge method, authentication can be achieved

without revealing any secrets. This protocol also provides some mechanisms

against some attacks, such as replay attacks. However, there are still questions

to be raised, whether or not the parties involved in the process can be trusted.

There is also a shortage of mutual authentication.

3.1.5 Resurrecting duckling

This approach is introduced by Stajano and Anderson in their resurrecting duck-

ling security policy model [SA99]. Stajano extended the idea of the resurrecting

duckling further, and presented it in [Sta01]. Both papers focus on wireless ad

hoc devices in consumer electrical, medical and industrial appliances.

The resurrecting duckling involves two principals, the duckling (or the slave)

and the mother duck (or the master). The mother duck is the one who gives

the duckling its soul (or a shared secret that binds the duckling to its mother).

“As long as the soul is in the body, the duckling will stay faithful to the mother

and obey no one else” [Sta01]. When the association between the duckling and

the mother duck ends, the death command is issued, and the duckling becomes

ready for a new shared secret or a new session. This process is called reverse

metempsychosis.

In authentication, Stajano and Anderson note the absence of a central server,

and suggest that a shared secret is transferred from the mother duck to her

duckling by physical contact. This method, the authors claim, eliminates the

ambiguity about which two principals are actually involved in the process.

The resurrecting duckling security model is based upon a master-slave rela-

tionship. This master-slave bond can only be broken by a master (mother duck)
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issuing a death command or a timeout to the secret shared (between them). This

model is, therefore, secure in this sort (master-slave) of scenario. The protocol

is also secure against such attacks as man-in-the-middle attacks due to the close

distance between two devices when the secret key is being transferred.

The policy, however, is not suitable for large scale ad hoc networks because

of the physical contact needed when a master transfers a secret key to a slave.

This requirement of physical contact between communicating parties may be too

restrictive to some wireless applications.

3.1.6 Other authentication protocols

We have seen a few authentication protocols and keying mechanisms, which have

been employed to make mobile ad hoc networks more secure. In this section,

we will discuss another authentication protocol, which is mentioned briefly in

[BB03]. This technique is called, by its authors, location-limited authentication.

The location-limited authentication is performed between two machines, which

are, as the name implies, very close to one another. This technique is very secure,

claimed the authors, due to the “physical presence and tamper-detection” [BB03].

Having two nodes very close to one another can reassure both parties that they

are authenticating the nodes they think they are authenticating. This protocol is

similar to the duckling technique in that when authenticating, the participating

parties have to be close to one another. However, there is no master-slave rela-

tionship between those devices in location-limited authentication. This location-

limited technique is also adopted by [BSSW02].

There are also other protocols, such as Secure Spontaneous Interaction [KZ04],

which validates the authentication by humans comparing multimedia streams

(ordinary devices such as sounds and LEDs will work). This protocol works as

follows. The operators of the two mobile devices press a button on each of the

devices at the same time. The machine will then interact with one another (e.g.

key exchange etc). At the end, some kind of multimedia stream will be displayed.

For example, an LED on each device will flash or the devices will play music. The

operators will know that the authentication is done successfully by observing the

flashing LEDs, or the sound of a tune chosen by the devices. If the LEDs flash

at the same time or the music is in tune, then the authentication is a success.
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The authors, Kindberg et al, claim that this method enables the users to de-

tect man-in-the-middle attacks if and when they occur during the authentication.

The delay of the multimedia stream will be noticeable to the authenticators if

the attacks happen.

First of all, location-limited authentication, similar to the resurrecting duck-

ling model, is secure and suitable for applications within very small areas. How-

ever, it is not feasible for a larger setting due to the fact that it is required that

the authenticating devices have to be very close to each other.

The second protocol, the secure spontaneous interaction is not suitable nor

practical for larger scale mobile ad hoc networks. This is because the operators

of the two authenticating devices need to be able to see each other’s machine in

order for the protocol to complete successfully.

In this section, we have introduced existing authentication protocols and key-

ing mechanisms. We have also given reasons why they fail to satisfy the physical

restrictions of pure mobile ad hoc networks. We have seen that a lot of effort has

been put in to make mobile ad hoc wireless networks more secure. In the next

section, we shall provide an overview of the existing (secure) handoff protocols.

3.2 (Secure) Handoff protocols

A handoff process in a mobile ad hoc network occurs when a mobile node moves

beyond the radio range of another mobile node, and enters the coverage of a new

node. There are two types of wireless handoff, hard handoff and soft handoff. A

hard handoff is a break-before-make connection. That is, a mobile machine drops

the connection with the current node prior to making a new connection with a

new node. A soft handoff is essentially a make-before-break connection. That

is, a mobile node attempts to make a link to a new node before dropping the

connection with the old one.

The movement patterns of a mobile node are classified into two types, macro-

mobility and micro-mobility. Macro-mobility is the movement between different

domains, where a domain is a wireless network under a single authority. On the

other hand, micro-mobility covers the management of the movement of mobile
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nodes within a local scope inside a given wireless network [RB01].

We focus our work on micro-mobility in mobile ad hoc networks. The reason

for choosing to work on this type of movement is that micro-mobility introduces

a problem that does not occur in the macro-mobility management. That is, in

micro-mobility there are no extra third party, such as access points and central

servers, to help mobile nodes deal with the roaming process. Mobile nodes have

to work among themselves only in order to achieve the required handoff. Having

extensively looked at the published publications, we claim that no work has

been done specifically on (the security of) this type of movement in pure ad hoc

networks, and it is only the inter-domain movement of a mobile device that a

lot of the work concentrates on. [Rep03] even suggests that WLAN roaming is

almost non-existent. Moreover, handoff mechanisms are not mentioned in any of

the existing routing protocols. This view is supported by [TGLN05]. Therefore,

the work presented in this section will be an attempt to give an overview of what

a handoff or roaming process is and how it is handled in wireless infrastructure

(rather than infrastructureless) networks.

We will present the following protocols: Mobile IP [Per96], IEEE802.11 MAC

layer handoff process [MSA03], various fast handoff schemes [PC02b, PC02a,

CP96, TLP99, PC03], the Sabino System [ABABD03] and a protocol explained

in [VA00].

After the description of each of the handoff protocols, we will carry out an

analysis and explain why they are not suited to mobile ad hoc networks. We,

again, should keep in mind when examining the protocols that the problems we

have here are very similar to the ones mentioned in the previous section. We have

to overcome the physical constraints of mobile ad hoc networks, namely no central

authority, bandwidth limitations, computational power limitations, battery life

limitations and physical security limitations.

We have mentioned earlier that our work focuses on designing and developing

a handoff protocol for pure mobile ad hoc networks only. By pure, we mean that

there must be no extra pieces of hardware, such as a home/foreign agent, a

router and a server, present in the network. In other words, a pure mobile ad

hoc network is a network that consists of mobile devices communicating with one

another only (no other wired networks or components such as access points are

parts of the network or parts of the handoff process).
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Therefore, handoffs in mobile ad hoc networks must be carried out without

relying on or involving any third party. When a handoff takes place, the only

participating parties must be the roaming node itself, the old node (the node

that the roaming node is going away from) and the new node (the node whose

coverage the roaming node is entering).

3.2.1 Mobile IP

Mobile IP or IP Mobility Support was proposed by C Perkins and presented in

[Per96]. Mobile IP is intended to enable mobile nodes to move from one IP subnet

to another. The protocol was designed to handle the problems of IP address of

a node and packet forwarding when a node moves from the home network to a

foreign network. The main components of Mobile IP are mobile host (MH), home

agent (HA), foreign agent (FA), home address and care-of address. These terms

are defined below.

• Mobile host: A mobile node that is allowed to change its point of attachment

within a network.

• Home agent: A machine that forwards packets to the mobile host when

away from the home network, and maintains current location for the mobile

node. The home agent also generates and gives the mobile node its home

address.

• Foreign agent: Similar to the home agent, but on the mobile host’s visited

network. The foreign agent also generates and gives the visiting node its

care-off address.

• Home address: The permanent IP address given to a mobile node by the

home agent.

• Care-of address: A temporary IP address given to a mobile node by the

foreign agent when the mobile node is visiting the network.

A mobile node is given a long-term or permanent IP address by the home

agent on a home network. This is called a home address. When the mobile host

moves away from the home network to a new foreign network, a new temporary

address, called a care-of address, is given to the mobile host by a foreign agent.
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The care-of address is associated to the mobile node as long as the node is on

that foreign network. The care-of address also acts as a point of location to the

home agent, which needs to know the mobile node’s care-of address, hence its

location. On the foreign network, the mobile host uses its home address as the

source address when it sends any IP datagram. The messages that are destined

to the mobile node have the node’s home address as the destination address. The

home agent will intercept the incoming packets and forward them to the mobile

node using the care-of address as the destination address. The basic protocol can

be summarised in Figure 3-1.

HA FA

MH MH

1. Home Address

2. Move

3. Care−of address

4. Register Care−of address
            (via FA)

When there is an incoming packet for MH, HA intercepts and
forwards it to MH using MH’s care−of address.

Figure 3-1: The basic Mobile IP process

Authentication between mobile nodes and home or foreign agent is done using

the default keyed MD5 with a 128-bit key. The author also suggests, in [Per96],

some techniques that can help to prevent replay attacks. They include the use

of timestamps and nonces. [Per96], however, does not explain how data privacy

and key management can be handled.

There is a problem with the Mobile IP protocol. That is, during the handoff,

packets are often lost, therefore, the home agent may hold out-of-date location

information for the mobile node. Furthermore, frequent handoffs mean high

overhead and further packet loss. More importantly, as stated in [Per96], Mobile

IP is designed to solve the macro-mobility management problem, as a result it is

less well suited for a more micro-mobility type movement, which is the problem

that we are trying to solve.
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3.2.2 Fast inter-AP handoff using predictive authentica-

tion scheme in a public WLAN

Pack and Choi developed this fast handoff protocol, which they introduced in

[PC02a]. The key idea of this protocol is that a mobile node authenticates with

multiple access points rather than with only one access point. An example of

protocol applications is depicted and described below.

RADIUS

AP1 AP2 AP3

MH

RADIUS

AP1 AP2 AP3

MH MH

Figure 3-2: The fast inter-AP handoff using predictive authentication

From Figure 3-2, the left figure represents the process when a mobile host first

authenticates within the network. The figure on the right shows what happens

when the mobile node moves from one access point to another.

Figure 3-2 shows that when a mobile node wishes to join the network, it

sends an access request packet to AP2, which forwards the received packet to

the RADIUS server [RLMD00]. The RADIUS then sends multiple authentica-

tion responses to AP1, AP2 and AP3. The message from the RADIUS to the

access points should contain such important data as key information. The access

points will remain in, what the authors call, the “soft” state. During the soft

state, if there are no handoffs within a specific time period, the key informa-

tion will be deleted. When the mobile host moves from AP2 to AP3, only the

(re)authentication between the mobile node and AP3 occurs. No other message

exchanges (e.g. AP3 with RADIUS) are needed.

The other key issue in this protocol is how to select the neighbouring access

points to authenticate in advance. It is not efficient to select all of the access

points adjacent to the current one. Any movement patterns of a mobile node and

the access point’s geographical location will have to be taken into account also.

The authors introduce an algorithm called the Frequent Handoff Region (FHR)

Selection, where FHR is “a set of adjacent APs (which is) determined by factors
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such as the AP’s location in a wireless LAN service area and users’ movement

pattern” [PC02a]. Informally, the FHR set consists of access points that mobile

nodes are likely to move to.

There are two steps to the FHR selection algorithm. The first step is to create

a weighted bi-directional graph of access point placement. The weight value is

determined by traffic information and mobility pattern. By doing that, we obtain

an N by N weight matrix, where N is the number of access points. The next

step is to select the frequent handoff region or FHR, using the weight matrix,

a weight bound3 and a specified maximum hop count4. The pseudocode and

detailed algorithm can be found in [PC02a].

Similar schemes are proposed in [PC02b, PC03]. In [PC02b], the authors

also suggest that a mobile node entering a coverage of an access point (or entering

a network) should perform authentication with a set of access points, rather than

just one access point. This method can minimise the time taken to associate with

a new access point when the mobile node moves.

In Prediction-Based Fast Handoff for Mobile WLANs [PC03], the authors

propose that their scheme predicts handoff by making use of the moving pattern

of mobile nodes. Based on two particular mobility characteristics, the moving

pattern tends to be predictable. The first characteristic is that the mobile route

is limited. In other words, vehicles such as buses and trains can only follow some

predefined paths. The other characteristic is the regularity. An example of this

is that public transport tend to run regularly according to their schedules. The

authors use these facts to calculate when the next handoff should be executed.

Both [PC02a] and [PC02b] introduce similar algorithms for mobile nodes to

select access points to authenticate. These algorithms work based on a couple of

facts, one of which is the geographical position of each of the access points within

a network. One of the properties of mobile ad hoc networks is their topological

instability. Since each mobile node does not have a fixed position, the algorithms

proposed in [PC02a] and [PC02b] are not applicable to mobile ad hoc networks.

3The value represents the user’s service class level. If the weight bound value is high, the
user will authenticate with more access points.

4This value provides for the possibility of multi-hop handoff.
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3.2.3 IEEE802.11 MAC layer handoff process

The IEEE802.11 MAC layer handoff process is described in [MSA03]. Mishra,

Shin and Arbaugh (the authors) explain that “The handoff process refers to the

mechanism or sequence of messages exchanged by access points and a station re-

sulting in a transfer of physical layer connectivity and state information from one

AP to another with respect to the station in consideration. Thus the handoff is a

physical layer function carried out by at least three participating entities, namely

the station, a prior-AP and a posterior-AP” [MSA03]. The handoff process is

divided into two phases, the discovery phase and the re-authentication phase.

The discovery phase is the process that helps a mobile node find a new access

point to associate with. When a mobile station moves away from an old access

point, the signal degrades, therefore, causes the mobile node to lose connectivity

and initiate the handoff. The mobile host can find a new access point by using

a MAC layer function, scan, which can be categorised into two methods: active

and passive. In the former method, a mobile host sends a broadcast message and

listens to responses from the available access points. In the latter method, the

mobile station listens to some messages and creates a list in the order of signal

strength.

The re-authentication phase involves the transfer of some credentials and state

information of the mobile node from the old access point to the new access point.

The rest of the re-authentication phase is that two to four messages can be ex-

changed between the mobile node and the new access point, depending on which

authentication method is used.

The IEEE802.11 MAC layer handoff protocol does not appear to be suitable

for mobile ad hoc networks because of the involvement of access points. The

performance of the protocol, as seen in [MSA03] ( [MSA03] shows that on average

it takes approximately 200 - 400 milliseconds to complete the handoff process),

makes it less desirable to be employed in mobile ad hoc networks.

3.2.4 Fast handoff protocols

We will describe two handoff protocols that fall into this category. They are a Fast

Handoff Scheme for Wireless Networks [TLP99] and Fast and Scalable Handoffs
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for Wireless Internetworks [CP96]. There are also other handoff protocols that

fall into this category. They include [KP01] and [BHE+04].

The first protocol, a Fast Handoff Scheme for Wireless Networks, is designed

by Tan, Lye and Pink, and is documented in [TLP99]. The scheme presented

in the paper mainly applies the ideas of Mobile IP (Section 3.2.1). That is it

uses the notions of home and foreign agents, and home and care-of addresses.

The major difference is that the authors introduce a hierarchical structure

in the foreign network. The main component of the hierarchical structure is

the domain foreign agent or DFA, which controls various aspects of the foreign

network including the care-of address and the forwarding of datagrams. This

fast handoff protocol concentrates on the roaming of mobile nodes within one

(infrastructure wireless network) domain, namely within the DFA domain. The

scheme should become more intuitive if explained with the aid of Figure 3-3. The

diagram represents a typical network setup5.

Internet HA

Router

DFARouter Router

Subnet Subnet

BS1 BS2 BS3 BS4

MH

The dotted arrows represent multicast streams.

Figure 3-3: The hierarchical structure of the protocol

The hierarchical structure approach works as follows. When a mobile host

registers with the domain foreign agent, it sends the IP address of the DFA to

its home agent as its care-of address. When the mobile host moves from BSi to

BSj in the same domain, no location update is sent to the home agent. As far as

the home agent is concerned, the mobile node is still in the DFA’s domain, and

5If mobile IP were employed, there would be a foreign agent on each subnet, rather than
just one DFA.
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all the packets destined for the mobile node are forwarded to the DFA.

When a mobile node roams into a new domain and registers with the DFA,

the DFA assigns a multicast address (which is used as the packet forwarding

mechanism from the DFA to the base stations (BSs) surrounding the mobile node)

unique within its domain. The mobile node informs its serving BS to subscribe

to this multicast group. The BS then informs the adjacent BSs to subscribe to

the same group. The job of the adjacent BSs is to buffer the recent few packets

forwarded to the mobile host by the DFA. This way, as long as the mobile node

remains within the same domain, the DFA can be sure that the mobile node will

receive packets. The use of the multicast as the packet forwarding mechanism

eliminates the generation of location update traffic back to the DFA.

The second protocol, Fast and Scalable Handoffs for Wireless Internetworks

[CP96], applies a different hierarchical approach. The authors state that the

hierarchical mobility management scheme can handle three cases; local mobility,

mobility within an administrative domain and global mobility. The paper [CP96]

appears to focus on the local handoff protocol. Figure 3-4 shows the message

exchange during a handoff.

MH New BS Old BS Router

Beacon

Greet

Greet Ack Notify

Notify Ack

Redirect

Figure 3-4: Message exchange during a handoff

When a mobile node is in the overlapping area of two base stations or access

points, the mobile node sends a Greet message to the new base station. The

new base station responds with a Greet Ack message and creates a routing en-

try for the mobile node. The new base station then sends a Notify packet in

order to inform the old base station that the node has moved. After the Notify

Ack is received, the new base station broadcasts a Redirect message to inform
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any interested nodes and routers that the mobile host has now moved to a new

position, and the new base station is now the serving access point. No security

protocols are considered in [CP96].

These fast handoff schemes are not applicable to pure mobile ad hoc networks

because of the extra third parties, including home and foreign agents, needed to

complete the protocol. These agents will not be available in pure mobile ad hoc

networks. [CP96], though, does have a desirable feature in that it takes just a

few messages to complete the handoff protocol. However, as suggested earlier,

the protocol has no security considerations.

3.2.5 Other handoff protocols

There are a couple other handoff protocols that should not be overlooked. They

include the Sabino System [ABABD03] and a description of the movement of

mobile nodes between clusters in [VA00]. We will briefly describe each of them

below.

In Novel Authentication scheme for Ad Hoc Networks (or cluster based au-

thentication) [VA00], the authors briefly mention what needs to be performed

when a mobile node moves around the network. Specifically, when a node moves

from its current cluster to a new cluster, a mutual authentication is performed

between the node and the new cluster head using the system key pair (see Sec-

tion 3.1.3). The old cluster head removes the entry of the node when it does not

receive Hello messages for a certain predefined time interval.

The Sabino System involves the exchange of messages between the old and

new access points and a roaming mobile node. Those exchanged messages may

include such information as the state information of the mobile node and the

information needed for identifying the moving node. In the Sabino system, the

old access point is the one that makes the decision for the mobile node. In other

words, the access point will send a message (which includes the address or loca-

tion of the destination access point) telling the mobile node to move. The decision

is based on the load on the access point. If the load exceeds the threshold, then it

is necessary to notify one or more mobile nodes to find a new access point. This

approach makes the decision-making process transparent to the mobile node. A

38



more detailed description of the protocol can be found in [ABABD03].

None of the protocols described above are applicable to mobile ad hoc net-

works, mainly because of the extra hardware required. In order for all of those

protocols to work, access points or cluster heads, which are responsible for trans-

ferring some of mobile hosts’ information, will need to be present as well. This

is especially the case for the Sabino system in which access points are the ones

which decide when a handoff should occur.

In this section, we have given descriptions of the existing handoff protocols

and explained why they are not suited to be employed in mobile ad hoc networks.

Summary

In this chapter, we have introduced the work that is related to our research. We

have given a description of the existing authentication and keying mechanisms for

mobile ad hoc networks. We have pointed out, after having extensively searched

through the published work, that no work has been done specifically on the micro-

mobility of handoff protocols in mobile ad hoc networks. Nevertheless, we have

attempted to describe the functions of some of the available handoff protocols

that have been proposed to be employed in infrastructure wireless networks.

In addition, we have explained that it is more difficult to design and imple-

ment authentication and handoff protocols in mobile ad hoc networks due to

their physical constraints, which include low bandwidth, low battery life, low

computational power, no central authority and lack of physical security. We have

analysed and explained why the existing authentication and keying mechanisms

are not appropriate for pure ad hoc networks. We have also pointed out that

currently there are no handoff protocols that are well suited for mobile ad hoc

networks, and why the existing ones are not applicable to the ad hoc environment.

In the next chapter, we will present the designs, analyses and resultant proto-

cols that we believe to be able to solve the problems that the existing protocols

have, and to be applicable to pure ad hoc wireless networks.
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Chapter 4

Solutions

In this chapter, we design and analyse our new authentication and secure handoff

protocols, which can overcome the physical constraints of mobile ad hoc networks

and the problems of the existing protocols, stated in the previous chapter, by fol-

lowing the BCK formal model [BCK98a, BCK98b] and applying various theorems

and formal definitions [Kra01, CK01]. Furthermore, the correctness of the pro-

tocols is then proved using the GNY logic. The reasons for choosing the BCK,

CK and GNY methods of analysis are explained in Sections 2.4 and 2.5 respec-

tively. The description of each protocol is provided thereafter. In addition, when

designing and describing the protocols, we try to follow the principles described

in [AN94] as close as possible.

4.1 Authentication and key establishment

The problem we are trying to solve here is that we would like to prevent unautho-

rised mobile machines from freely “joining” an existing private local mobile ad

hoc network. A way to overcome this problem is authentication. Authentication

is a process carried out by two parties in order to identify one another. Without

authentication, an unauthorised node could “come in” and use the available re-

sources within the network. The problem becomes worse if the unauthorised node

is a malicious user. Therefore, it is necessary to have a mechanism for preventing

an “outsider” from being part of and compromising the network.
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4.1.1 Design

There are three main goals that need to be achieved when designing an authen-

tication protocol for mobile ad hoc networks. They are:

• mutual authentication;

• pairwise session key establishment; and

• efficiency, i.e. having as few messages as possible and the lengths of the

messages should be as short as possible.

Mutual authentication is essential, because each node needs to know that the

other party is who he says he is, and the other party is authorised to be part of

the existing ad hoc network. Note that it is not enough for a joining node to be

authenticated by an existing member only. Both nodes must be authenticated

by one another.

The establishment of a pairwise session key after mutual authentication is

necessary, because we will want to provide privacy for future communication

between the two participating parties. Using a shared group key for encryption

does not suffice the privacy requirement, as other parties (who also hold the

shared secret) could easily decrypt and read the messages. The pairwise session

key, established by two communicating nodes, is the way to ensure the privacy.

Finally, the protocol will need to be efficient due to the physical constraints

of mobile ad hoc networks that we explained earlier. We will, therefore, want to

involve as few messages as possible in the process.

As an assumption (and perhaps a necessity), every mobile node in a domain

needs to hold a shared secret, K. By holding the shared secret, each node can

prove that he is allowed to be a member of a local private ad hoc network. The

second assumption is that all of the public keys have been certified by a certificate

authority or CA.

Our authentication protocol consists of two main parts, mutual authentication

and key establishment. First, for the mutual authentication purpose, we will use

the challenge-and-response technique. This part of the protocol allows each party

to assure the other party that he is also holding the same secret key, K, and

hence is allowed to be part of the network. The second half of the protocol is the
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pairwise session key establishment. We will apply the Diffie-Hellman method to

achieve this.

Furthermore, if a node is not already a member of the existing network, all

the packets he sends will be quietly discarded by the existing members, except for

the request-to-join message. This mechanism is designed to prevent a malicious

mobile node from injecting forged messages into the network.

The next section contains the construction, analyses and proofs of an authen-

tication and key establishment protocol.

4.1.2 Analysis and construction

We will construct, analyse and prove an authentication protocol by applying the

BCKmodular method [BCK98a, BCK98b] as well as the CK analysis method [CK01].

The correctness of the protocol will be analysed and proved using the GNY analy-

sis [GNY90]. The complete description of the resultant protocol will be presented

at the end of this section.

Before we begin, we would like to introduce the theorems and formal defini-

tions that are essential for the analyses and proofs of the protocol.

• Theorem (1 of [Kra01]): If ENC is a symmetric encryption scheme se-

cure in the sense of IND-CPA1 and MAC is a secure MAC family (that takes

ciphertext and a secret key as its inputs) then method EtA(ENC,MAC)

implements secure channels (where EtA means encrypt-then-authenticate

scheme).

The above theorem means that if a network packet is composed in such a

way as EtA(ENC,MAC), then the secrecy and authenticity of that par-

ticular network channel is guaranteed. This is under the assumptions that

then MAC scheme is secure and the encryption function is secure in the

following sense. If an attacker sends a packet to an honest user containing

two messages, m1 and m2, and he receives a reply, C = E(mb), the at-

tacker must not be able to guess correctly the value of b with a probability

significantly greater than 1/2.

1IND-CPA means indistinguishability of encryptions against chosen plaintext attack.
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• Definition (2 of [BCK98a, BCK98b]): A compiler C is an algorithm

that takes for input descriptions of protocols and outputs descriptions of

protocols. An authenticator is a compiler C where for any protocol π, the

protocol C(π) emulates π in unauthenticated networks.

The more detailed definitions of a compiler and an authenticator can be

found in Section 2.4.

• Theorem (8 of [CK01]): Assuming the Decisional Diffie-Hellman (DDH)

assumption, protocol Diffie-Hellman is SK-secure in the authenticated-links

model.

The DDH assumption is stated in [CK01] as follows. Let k be a security

parameter. Let p, q be primes, where q is the length k bits and q/p − 1

and g be of order q in Z∗

p . Then the probability distributions of quintuples

Q0 = {< p, g, gx, gy, gxy >: x, y
R
← Zq} and Q1 = {< p, g, gx, gy, gz >:

x, y, z
R
← Zq} are computationally indistinguishable. By computationally

indistinguishable, we mean that given Q0 and Q1, one cannot decide which

is which with a probability of success non-negligibly better than random

guessing.

• Two other essential definitions are the definition of SK-security (Definition

4 of [CK01]) and the definition of secure network channels (Definition 15 of

[CK01]). Both of these are explained in detail in Section 2.4.

We split the authentication and key exchange protocol into three parts or

modules for the analysis. We show that each of the three parts is secure in the

unauthenticated-links model. We use the following notations throughout this

section.

• E+Ki
- an asymmetric encryption function with i’s public key

• D−Ki
- an asymmetric decryption function with i’s private key

• EK() - a symmetric encryption function with key K

• DK() - a symmetric decryption function with key K

• MAC() - a message authentication code function [KBC97]

• Ni - a random nonce generated by i
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Part 1 - Advertising public key components

In this part, the joining mobile node will advertise his or her public key to

the existing members of the network.

Step 0: Initialisation: A computes +Ka,−Ka. B computes +Kb,−Kb. And (as

an assumption) they both have a shared secret, K.

+Ki: public key of i,

−Ki: private key of i

Step 1: The initiator (the node that wishes to join the network) B chooses a

sequence number seq
R
←− {0, 1}n and a random nonce Nb

R
←− {0, 1}n, where

n is 32 bits. B computes C = EK(+Kb, Nb, seq) and MAC(C,K), and sends

(Req, C,MAC(C,K)) to A, an existing member.

Step 2a: Upon receipt of (Req, C,MAC(C,K)), A checks the message integrity

and computes m = DK(C). If both are successful then A holds Nb and the

sequence number, seq.

Lemma 4.1.1. Assume that EK() is secure against chosen-plaintext attacks
2 and

the MAC scheme used is secure. Then we claim that the above steps constitute

a secure channel.

Proof. It can be seen that within this part of the protocol, only one message is

sent. By Theorem 1 in [Kra01], we can see that the way the packet is constructed,

i.e. encrypt-then-authenticate, implements a secure channel. Hence the secrecy

and authenticity is guaranteed.

By Definition 15 (a secure network channel) in [CK01], we can conclude that

if the channel is secure then a secure network encryption protocol and also a

secure network authentication protocol are achieved. This, in addition, implies

that the network channel, and therefore this part of the protocol, is secure in the

unauthenticated-links model.

Part 2 - Mutual authentication

(Carrying on from Step 2a in Part 1)

This part uses the challenge-and-response technique for mutual authentication

between the joining node and the existing member.

2A chosen-plaintext attack is one where the adversary chooses plaintext and is then given
corresponding ciphertext. Subsequently, the adversary uses any information deduced in order
to recover plaintext corresponding to previously unseen ciphertext [MvOV96].
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Step 2b: A chooses a challenge RA
R
←− {0, 1}d and a random nonce Na

R
←−

{0, 1}n, where d is 256 bits and n is 32 bits. A increments seq by 1. Note that A

“sees” seq, Nb and +Kb from computingm = DK(C). A sendsE+Kb
(Na, Nb, seq, RA,+Ka)

to B. A computes EK(RA), which will be needed for the verification of the chal-

lenge.

Step 3: Upon receipt of E+Kb
(Na, Nb, seq, RA,+Ka). B decrypts the message

m = D−Kb
(E+Kb

(Na, Nb, seq, RA,+Ka)). B computes EK(RA).

Before we begin the proof, we have to state that the above protocol (Part 2)

can be thought of as a simple key exchange protocol. That is P1 chooses some

value, sends it to P2. They then use the same (pseudorandom) function, with

that value as the input, to calculate the key. In this case, A chooses and sends

RA to B, and computes EK(RA). B, after receiving the packet, also computes

EK(RA). For the analysis and proof purposes, we call this protocol Temp which

can be formally written as follows.

Protocol Temp:

Note that +Ki is the public key of i, −Ki is the private key of i, and K and EK()

are the key and encryption function known to both parties, respectively.

Step 1: The initiator A chooses RA
R
←− {0, 1}d and sends E+Kb

(RA) to B. A

computes EK(RA). For the sake of argument, we think of EK(RA) as the new

session “key”.

Step 2: Upon receipt of E+Kb
(RA), the responder B computesm = D−Kb

(E+Kb
(RA)).

If the decryption is successful then B computes EK(RA), which can also be

thought of as the new session “key”.

Lemma 4.1.2. Assume that the public key encryption is secure against chosen-

ciphertext attacks3 and EK() is a pseudorandom function4, then the protocol

(steps 2 and 3 of Part 2) is secure in the authenticated-links model.

3A chosen-ciphertext attack is one where the adversary selects the ciphertext and is given
the corresponding plaintext. The objective is to be able to deduce the plaintext from (different)
ciphertext [MvOV96].

4A pseudorandom function is an efficient algorithm that when given an n-bit s and an n-bit
x, returns an n-bit fs(x) such that it is infeasible to distinguish fs(x) from a truly random
function.
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Proof. Our proof for this part of the protocol is largely inspired by the proof of

Theorem 9 in [CK01].

We need to show that this protocol, Temp, is SK-secure [CK01]. According to

Definition 4 (SK-secure) in [CK01], it can be seen that the protocol satisfies the

first condition. If both A and B are uncorrupted during steps 2 and 3 (or steps

1 and 2 of Temp), and both parties complete the exchange, then they both hold

RA or EK(RA).

Now it is left for us to prove that the second condition of the SK-secure

definition also holds. We start by defining a “game”, which captures the cho-

sen ciphertext security of the public key encryption. We will then show that

an attacker that breaks the SK-security of our protocol Temp can win this game,

and break the public key cryptosystem. The game, we call Game, is defined below.

Game involves two parties G and B. G holds both public and private keys, +K

and −K. B holds only the public key +K. Both parties know the shared secret

K and the symmetric encryption function, EK().

Phase 0: G provides B with a challenge ciphertext c∗ = E+K(K0) for

K0

R
←− {0, 1}n.

Phase 1: B sends a test ciphertext c to G, who responds with K ′ where

K ′ = E−K(c). This is repeated a number of times with c being chosen adaptively

by B after receiving G’s response.

Phase 2: G chooses a random bit, b
R
←− {0, 1}. If b = 0 then G sends to B

EK(K0). If b = 1 then G sends a random value r of the same length as EK(K0).

Note that K0 is the value encrypted by G in Phase 0.

Phase 3: B outputs a bit b′. If b′ = b then B wins. In other words, if B guesses

correctly that the value received is real or random, then he wins the Game.

By Lemma 4.1.3 shown below, we have shown that the protocol Temp satisfies

the second condition of Definition 4 in [CK01], which means that the protocol is

SK-secure in authenticated-links model. We prove Lemma 4.1.3 below.

Lemma 4.1.3. Assume that the public key cryptosystem is secure against chosen

ciphertext attacks. Then, with reference to Game defined above, if c∗ is not queried

by B, the probability that B wins is no more than 1/2 plus a negligible fraction.
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Proof. Assume to the contrary that there is an AM (authenticated-links model)

attacker A that breaks the SK-security of the protocol Temp, in the sense that it

can distinguish between real and random values of a test session while not being

allowed to corrupt the parties to this session. Then there is an efficient algorithm

that wins the Game with non-negligible probability over 1/2.

The algorithm works as follows. Let G be the party against which B plays

the Game. G holds a private key and a public key, −K and +K respectively. The

Game starts with G sending a challenge ciphertext c∗ to B. B then proceeds to

Phase 1 of the Game doing the following.

B builds a virtual scenario for the run of the protocol Temp, and activates the

attacker A against this virtual run. Among all n parties in this virtual run, B

chooses one at random, call it P ∗

j . For all other parties, B computes private keys

and provides A with the corresponding public keys. B does not choose a private

key for P ∗

j . Instead he provides A with +K (the public key of G) as the public

key of P ∗

j . Also, B chooses a random session among the sessions where P ∗

j is the

responder and P ∗

i is the initiator. We call this session s∗.

All operations scheduled by the attackerA are performed by B on behalf of the

virtual players in the following way. All session establishments are executed by

B according to the protocol Temp, except for the establishment of the session s∗.

When A schedules to establish the session s∗ between a party P ∗

i and the chosen

responder P ∗

j , B sends c∗ on behalf of P ∗

i to P ∗

j . c∗ is the challenge ciphertext

provided to B by G in Phase 0.

All exposure of session keys performed by the attacker A, via session or party

corruptions, that do not involve P ∗

j as the responder are answered by B using his

knowledge of private keys. When A corrupts a party other than P ∗

j and P ∗

i , B

provides A with the private key of that party. If a session s 6= s∗ between a party

P and P ∗

j , where P
∗

j is a responder, is exposed by A, then B provides the value

of the key in the following way. If P is corrupted at the same time as session s∗

is established then B is the one to choose the key. If P is uncorrupted then all B

knows is the encrypted value, c, sent in Step 1 of the protocol Temp. In this case,

B presents G (as part of Phase 1) the test ciphertext c. The value returned by G

is the value that B provides to A as the queried session key.

If at any point the attacker A queries or reveals session s∗, corrupts P ∗

i or P ∗

j ,

or chooses a test session other than s∗, the run of the attacker A is aborted and
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Phase 2 of the Game is executed. After receiving a response from G, B outputs a

bit b′.

If A chooses the test session s∗, G sends his Phase 2 response to B. B then

passes that value to A as the value of the key for session s∗. When A outputs

the bit b′, B also outputs the same bit b′.

We now have to show that B can win the Game against G with non-negligible

probability over 1/2. First, when the run of the attacker A is aborted, B outputs

a bit b′, so his chances of winning in this case is exactly 1/2. In the case where A

outputs b′, the chances that B will win is exactly the same as those of A to guess

correctly whether the value (G’s response) is real or random. This probability

is, by our contradiction statement, 1/2 + ε for non-negligible ε. This case here

happens when the test session s∗ chosen by A is the same s∗ chosen by B. Since

this event happens with the probability 1/l, where l is an upper bound on the

number of sessions established in the protocol runs, the overall advantage of B is

non-negligible.

We have proved that protocol TEMP is SK-secure in authenticated-links model.We

will now provide a protocol that is secure in the unauthenticated-links model.

In order to make the protocol SK-secure in unauthenticated networks, we will

apply the signature-based MT-authenticator, given in [BCK98a, BCK98b], to the

steps 2 and 3 above. By Definition 2 in [BCK98a, BCK98b], we can see that the

resultant protocol π′ = Cλsig
(π) is secure in unauthenticated networks.

Below is the protocol we get after applying the signature-based MT-authenticator,

λsig. Formally, let π be the “original” protocol that is secure in the authenticated-

links model. Let π′ be the resultant protocol that is secure in unauthenticated

networks. We have π′ = Cλsig
(π):

Step 2: A chooses RA
R
←− {0, 1}d and Na

R
←− {0, 1}n, where d is 256 bits and

n is 32 bits. A increments seq by 1. Note that A “sees” seq, Nb and +Kb from

computing m = DK(C). A sends E+Kb
(Na, Nb, seq, RA,+Ka) together with his

signature SIGA(Na, Nb, seq, RA,+Ka, B). A computes EK(RA).

Step 3: Upon receipt of E+Kb
(Na, Nb, seq, RA,+Ka) and A’s signature, B com-

putes m = D−Kb
(E+Kb

(Na, Nb, seq, RA,+Ka)) and verifies the signature. B only

accepts m if the verification of the signature is successful. (We will talk about
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the nonce Nb and seq later.) B computes EK(RA).

Again, by Definition 2 in [BCK98a, BCK98b], we claim that the protocol

above is secure in the unauthenticated-links model. But, does the above protocol

conform to the signature-based MT-authenticator, λsig? Here, we can say that we

use the nonce Nb, sent to A by B in Step 1 (of Part 1), as the challenge required

by the authenticator. A then sends a message to B together with his signature.

A also includes the challenge Nb and B’s identity in his signature. Note that the

identity of B is necessarily included in the signature, otherwise, as explained in

[DvOW92], the scheme becomes insecure.

We have shown that this part of the authentication and key exchange proto-

col is secure in the unauthenticated-links model because of the application of the

signature-based MT-authenticator, λsig.

Part 3 - Pairwise key establishment

The last stage of the authentication and key establishment protocol is the es-

tablishment of a pairwise session key that will be used by A and B for the com-

munication between themselves.

We have decided to use a simple two-pass Diffie-Hellman protocol to establish

the session-key. The Diffie-Hellman protocol is proved to be SK-secure in the

authenticated-links model in [CK01], according to Theorem 8.

In order to make the protocol, hence this stage, secure in unauthenticated

networks, we apply the same signature-based MT-authenticator as the previous

stage, namely λsig, to the protocol. We get π′ = Cλsig
(π) that is:

Step 3: Upon receipt of E+Kb
(Na, Nb, seq, RA,+Ka), B computes

m = D−Kb
(E+Kb

(Na, Nb, seq, RA,+Ka)) and verifies the signature of A. If the sig-

nature is valid then B computes C = EK(RA) and increment seq by 1. B sends the

message E+Ka
(Na, seq, C, β = gy) together with his signature SIGB(Na, seq, C, β =

gy, A) to A. (We will discuss the nonce and sequence number verification later.)

Also note that β is the DH public component of B.

Step 4: Upon receipt of E+Ka
(Na, seq, C, β) and B’s signature, A computes

m = D−Ka
(E+Ka

(Na, seq, C, β)) and verifies the signature. If successful, A ac-

cepts the message m (we will again discuss the nonce, sequence number and C
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verification later), increments seq by 1 and sends to B E+Kb
(Nb, seq, α = gx) to-

gether with his signature SIGA(Na, seq, α = gx, β, B). A is now able to compute

the pairwise session key Kab = βx. Note that α = gx is the DH public component

of A.

Step 5: Upon receipt of E+Kb
(Nb, seq, α) and A’s signature, B computes

m = D−Kb
(E+Kb

(Nb, seq, α)) and verifies the signature. (Again we will talk about

the nonce and sequence number verification later.) If the signature is valid then

B computes the session key Kab = αy.

Note that we have left the verification of the nonce, sequence number and

encrypted challenge for later discussion, because, at this time, we just want

to show what the protocol “looks like” after applying the signature-based MT-

authenticator, rather than the whole working protocol.

Lemma 4.1.4. Stage 3 (the above protocol) is secure in the unauthenticated-links

model.

Proof. To show that stage 3 is secure in the unauthenticated-links model, we

need to illustrate that the protocol does indeed conform to the signature-based

MT-authenticator, λsig. We look at each step in turn.

In Step 3, we use Na, the nonce sent to B by A, as the challenge for B to

sign. This is adequate, because the nonce Na is chosen by A both freshly and at

random.

In Step 4, we can see that we need to include β = gy (B’s DH public compo-

nent) in the signature. In other words, we use β as a challenge for A to sign. This

is necessary because there is nothing fresh (except for β) in the message received

by A in this step that can be used as a challenge. The sequence number is fresh,

but we do not want to use it as the challenge, because it is incremented by each

party before a message is sent.

Then A and B only accept the message if the verification of the other party’s

signature is successful.

It now appears that our stage 3 behaves as required by the signature-based

MT-authenticator, therefore, we can claim, by Definition 2 in [BCK98a], that

the exchange of the messages in this stage is secure in unauthenticated networks.
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We now have the three stages, constituting an authentication and key ex-

change protocol, that are secure in the unauthenticated-links model. Therefore,

we conclude that the whole (resultant) protocol is also secure in unauthenticated

networks.

4.1.3 Proof of correctness

We will analyse the authentication protocol and pairwise session key establish-

ment by using the GNY logic. The notations and logical postulates of the GNY

protocol that are applied here can be found in Appendix A. The authentication

protocol written in GNY logic is as follows:

1. B→A: A: ¢ ∗Req, ∗{∗+Kb, ∗Nb, ∗seq}K , ∗MAC(∗{∗+Kb, ∗Nb, ∗seq}K)

2. A→B: B: ¢ ∗{∗Na, Nb, ∗RA, ∗seq, ∗+Ka}+Kb
, ∗{∗H(∗Na, Nb, ∗RA, ∗seq,

∗+Ka, B)}−Ka

3. B→A: A:¢ ∗{Na, ∗seq, ∗{RA}K , ∗K
′′}+Ka

, ∗{∗H(Na, ∗seq, ∗{RA}K , ∗K
′′, A)}−Kb

; B |≡ B
K′′

←→ A, where K ′′ = gy mod p

4. A→B: B: ¢ ∗{Nb, ∗seq, ∗K
′}+Kb

, ∗{∗H(Nb, ∗seq, ∗K
′, K ′′, B)}−Ka

; A |≡ A
K′

←→ B, where K ′ = gx mod p

Assumptions

A|≡A
K
←→B B|≡B

K
←→A A|≡A

K′

←→B

B|≡B
K′′

←→A A|≡B|=⇒B
K′′

←→A B|≡A|=⇒A
K′

←→B

A|≡B|=⇒B|≡ ∗ B|≡A|=⇒A|≡ ∗ A|≡ ](Na)

B|≡ ](Nb) A|≡ ](RA) A3K

B3K A3+Ka B3+Kb

A3−Ka B3−Kb A3RA

A3Na B3Nb

Notations:
• +Ka - A’s public key • +Kb - B’s public key

• −Ka - A’s private key • −Kb - B’s private key

• K ′ - A’s DH public component • K ′′ - B’s DH public component

• H() - a one-way hash function
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Analysis

Message 1:

T1:
A¢ ∗Req, ∗{∗+Kb, ∗Nb, ∗seq}K , ∗MAC(∗{∗+Kb, ∗Nb, ∗seq}K)

A¢Req, {+Kb, Nb, seq}K ,MAC({+Kb, Nb, seq}K)

T3:
A¢Req, {+Kb, Nb, seq}K ,MAC({+Kb, Nb, seq}K), A 3 K

A¢Req,+Kb, Nb, seq,MAC({+Kb, Nb, seq}K)

P1:
A¢Req,+Kb, Nb, seq,MAC({+Kb, Nb, seq}K)

A 3 Req,+Kb, Nb, seq,MAC({+Kb, Nb, seq}K)

Since A 3 +Kb, Nb, seq and A 3 K, by P4, A 3 H({+Kb, Nb, seq}K). Now A

can check if H({+Kb, Nb, seq}K) is equal to MAC({+Kb, Nb, seq}K). If so, carry

on.

Message 2:

T1:
B ¢ ∗{∗Na, Nb, ∗RA, ∗seq, ∗+Ka}+Kb

, ∗{∗H(∗Na, Nb, ∗RA, ∗seq, ∗+Ka, B)}−Ka

B ¢ {Na, Nb, RA, seq,+Ka}+Kb
, {H(Na, Nb, RA, seq,+Ka, B)}−Ka

T4:
B ¢ {Na, Nb, RA, seq,+Ka}+Kb

, {H(Na, Nb, RA, seq,+Ka, B)}−Ka
, B 3 −Kb

B ¢Na, Nb, RA, seq,+Ka, {H(Na, Nb, RA, seq,+Ka, B)}−Ka

P1:
B ¢Na, Nb, RA, seq,+Ka, {H(Na, Nb, RA, seq,+Ka, B)}−Ka

B 3 Na, Nb, RA, seq,+Ka, {H(Na, Nb, RA, seq,+Ka, B)}−Ka

P4:
B 3 (Na, Nb, RA, seq,+Ka), B 3 B

B 3 H(Na, Nb, RA, seq,+Ka, B)

Note that B 3 B because B possesses his own identity anyway.

F1:
B |≡ ]seq, ]Na

B |≡ ](Na, Nb, RA, seq,+Ka, {H(Na, Nb, RA, seq,+Ka, B)}−Ka
)

R1:
B |≡ φNb

B |≡ φ(Na, Nb, RA, seq,+Ka, {H(Na, Nb, RA, seq,+Ka, B)}−Ka
)

Let (∗Na, Nb, ∗RA, ∗seq, ∗+Ka) be X.

R5:
B |≡ φ(X), B 3 (X,B), B |≡ φ(B)

B |≡ φ(H(X)), B |≡ φ(H(X,B))
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I4:
B ¢ {H(X,B)}−Ka

, B 3 +Ka, B |≡
+Ka7→ A,B |≡ φ(H(X,B))

B |≡ A |∼ H(X,B), B |≡ A |∼ {H(X,B)}−Ka

B believes that A signed the message, and therefore, sent the message. That

is B |≡ A |∼ X,H(X,B).

Message 3:

B |≡ B
K′′

←→ A is valid because it is an initial assumption.

T1:
A¢ ∗{Na, ∗seq, ∗{RA}K , ∗K

′′}+Ka
, ∗{∗H(Na, ∗seq, ∗{RA}K , ∗K

′′, A)}−Kb

A¢ {Na, seq, {RA}K , K ′′}+Ka
, {H(Na, seq, {RA}K , K ′′, A)}−Kb

T4:
A¢ {Na, seq, {RA}K , K

′′}+Ka
, {H(Na, seq, {RA}K , K

′′, A)}−Kb
, A 3 −Ka

A¢Na, seq, {RA}K , K ′′, {H(Na, seq, {RA}K , K ′′, A)}−Kb

P1:
A¢Na, seq, {RA}K , K

′′, {H(Na, seq, {RA}K , K
′′, A)}−Kb

A 3 Na, seq, {RA}K , K ′′, {H(Na, seq, {RA}K , K ′′, A)}−Kb

A can now verifies {RA}K .

P4:
A 3 (Na, seq, {RA}K , K

′′), A 3 A

A 3 H(Na, seq, {RA}K , K ′′, A)

Note that A 3 A because A possesses his own identity anyway.

F1:
A |≡ ]seq

A |≡ ](Na, seq, {RA}K , K ′′, {H(Na, seq, {RA}K , K ′′, A)}−Kb
)

R1:
A |≡ φNa

A |≡ φ(Na, seq, {RA}K , K ′′, {H(Na, seq, {RA}K , K ′′, A)}−Kb
)

Let (Na, ∗seq, ∗{RA}K , ∗K
′′) be X.

R5:
A |≡ φ(X), A 3 (X,A), A |≡ φ(A)

A |≡ φ(H(X)), A |≡ (H(X,A))

I4:
A¢ {H(X,A)}−Kb

, A 3 +Kb, A |≡
+Kb7→ B,A |≡ φ(H(X,A))

A |≡ B |∼ H(X,A), A |≡ B |∼ {H(X,A)}−Kb
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A believes that B signed the message, and therefore, sent the message. That

is A |≡ B |∼ X,H(X,A).

J2:
A |≡ B |=⇒ B |≡ ∗, A |≡ B |∼ (X ; B |≡ B

K′′

←→ A), A |≡ ](X)

A |≡ B |≡ B
K′′

←→ A

J1:
A |≡ B |=⇒ B

K′′

←→ A,A |≡ B |≡ B
K′′

←→ A

A |≡ B
K′′

←→ A

which now implies that A |≡ B
Kab←→ A. After this message, A believes that

the newly computed key, Kab, is shared between A and B.

Message 4

A |≡ A
K′

←→ B is valid because it is an initial assumption.

T1:
B ¢ ∗{Nb, ∗seq, ∗K

′}+Kb
, ∗{∗H(Nb, ∗seq, ∗K

′, K ′′, B)}−Ka

B ¢ {Nb, seq,K ′}+Kb
, {H(Nb, seq,K ′, K ′′, B)}−Ka

T4:
B ¢ {Nb, seq,K

′}+Kb
, {H(Nb, seq,K

′, K ′′, B)}−Ka
, B 3 −Kb

B ¢Nb, seq,K ′, {H(Nb, seq,K ′, K ′′, B)}−Ka

P1:
B ¢Nb, seq,K

′, {H(Nb, seq,Ki,K ′′, B)}−Ka

B 3 Nb, seq,K ′, {H(Nb, seq,K ′, K ′′, B)}−Ka

P4:
B 3 (Nb, seq,K

′), B 3 (K ′′, B)

B 3 H(Nb, seq,K ′, K ′′, B)

Note that B 3 B because B possesses his own identity, and B 3 K ′′ because

K ′′ is B’s Diffie-Hellman public component.

F1:
B |≡ ]seq

B |≡ ](Nb, seq,K ′, {H(Nb, seq,K ′, K ′′, B)}−Ka
)

R1:
B |≡ φNb

B |≡ φ(Nb, seq,K ′, {H(Nb, seq,K ′, K ′′, B)}−Ka
)

Let (Nb, ∗seq, ∗K
′) be X.

R5:
B |≡ φ(X), B 3 (X,B), B |≡ φ(B)

B |≡ φ(H(X)), B |≡ φ(H(X,B))
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I4:
B ¢ {H(X,B)}−Ka

, B 3 +Ka, B |≡
+Ka7→ A,B |≡ φ(H(X,B))

B |≡ A |∼ H(X,B), B |≡ A |∼ {H(X,B)}−Ka

B believes that A signed the message, and therefore, sent the message. That

is B |≡ A |∼ X,H(X,B).

J2:
B |≡ A |=⇒ A |≡ ∗, B |≡ A |∼ (X ; A |≡ A

K′

←→ B), B |≡ ](X)

B |≡ A |≡ A
K′

←→ B

J1:
B |≡ A |=⇒ A

K′

←→ B,B |≡ A |≡ A
K′

←→ B

B |≡ A
K′

←→ B

which now implies that B |≡ A
Kab←→ B. At this stage, B now believes that

the newly calculated key, Kab, is shared between the parties A and B.

Therefore, we get:

A |≡ B
K′′

←→ A and B |≡ A
K′

←→ B

A |≡ B |≡ B
K′′

←→ A B |≡ A |≡ A
K′

←→ B
which imply that

A |≡ B
Kab←→ A and B |≡ A

Kab←→ B

A |≡ B |≡ B
Kab←→ A B |≡ A |≡ A

Kab←→ B

where Kab = (gx)y mod p = (gy)x mod p.

At the end of the authentication protocol, we have achieved the following

outcomes. The parties A and B believe that the key, Kab, is shared between

themselves. Each of them also believes that the other party believes that the key,

Kab, is a suitable secret for A and B.

4.1.4 Description of the resultant protocol

We will now summarise the authentication and key establishment protocol that

we believe to be secure in the unauthenticated-links model. Again, the following

notations are used throughout the description of the protocol.

• E+Ki
- an asymmetric encryption function with i’s public key

• D−Ki
- an asymmetric decryption function with i’s private key
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• EK() - a symmetric encryption function with key K

• DK() - a symmetric decryption function with key K

• MAC() - a message authentication code function [KBC97]

• Ni - a random nonce generated by i

Here we let: the public key cryptosystem be secure against chosen-ciphertext

attacks, EK() be a pseudorandom function and secure against chosen-plaintext

attacks, and MAC be a secure message authentication code. We assume that

the initialisation is done separately and securely. Also note that a one-way hash

function is applied to a message before it is signed.

Step 0: Initialisation: A computes +Ka,−Ka. B computes +Kb,−Kb. And (as

an assumption) they both possess a shared secret, K.

+Ki: public key of i,

−Ki: private key of i

Step 1: The initiator/requester B chooses a sequence number seq
R
←− {0, 1}n

and a random nonce Nb
R
←− {0, 1}n, where n is 32 bits. B computes C =

EK(+Kb, Nb, seq) and MAC(C,K), and sends (Req, C,MAC(C,K)) to A.

Step 2: Upon the receipt of (Req, C,MAC(C,K)), A checks the message in-

tegrity and computes m = DK(C). If both are successful then A accepts m and

should be able to “make some sense” of the message. A increments seq by 1. A

chooses a random challenge RA
R
←− {0, 1}d and a random nonce Na

R
←− {0, 1}n,

where d is 256 bits and n is 32 bits. A sends E+Kb
(Na, Nb, seq, RA,+Ka) to-

gether with his signature SIGA(Na, Nb, seq, RA,+Ka, B) to B. A computes C =

EK(RA).

Step 3: Upon the receipt of E+Kb
(Na, Nb, seq, RA,+Ka) and A’s signature. B

computes m = D−Kb
(E+Kb

(Na, Nb, seq, RA,+Ka)) and verifies the signature. If

the signature is valid then B verifies the nonce Nb and the sequence number. If

they are what B expects then B knows that A also possesses the shared secret K.

B increments seq by 1. B computes C ′ = EK(RA) and sendsE+Ka
(Na, seq, C

′, β =

gy) together with his signature SIGB(Na, seq, C
′, β = gy, A) to A. B deletes RA.

Note that β is the Diffie-Hellman public component of B.

Step 4: Upon receipt of E+Ka
(Na, seq, C

′, β) and B’s signature, A computes

m = D−Ka
(E+Ka

(Na, seq, C
′, β)) and verifies the signature. If the verification
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succeeds then A verifies the sequence number, the nonce Na, and checks if

C = C ′. If all are correct, i.e. the values are what A expects, then A incre-

ments seq by 1 and sends to B E+Kb
(Nb, seq, α = gx) together with his signature

SIGA(Na, seq, α = gx, β, B). A is now able to compute the pairwise session

key Kab = βx. A erases RA and x. Note that α is the Diffie-Hellman public

component of A.

Step 5: Upon receipt of E+Kb
(Nb, seq, α) and A’s signature, B computes m =

D−Kb
(E+Kb

(Nb, seq, α)) and verifies the signature. If the signature is valid then

B verifies the sequence number and nonce Nb. If successful then B computes the

session key Kab = αy. B erases y and RA.

A and B have now successfully authenticated one another, and established

a new pairwise session key, Kab. Now that an authentication has been accom-

plished, there is a change in network topology, i.e. B has become a new member

of the ad hoc network. By a mechanism of most routing protocols, when the

network topology changes, routing information and topology table have to be

updated. This is usually done by the exchange of Hello messages among mobile

nodes. We extend this mechanism in our pre-handoff protocol so that as a result

of the process, mobile nodes will be ready for any handoff process that may take

place in the future. This is explained in the next section.

Figure 4-1 summarises the authentication and key establishment protocol de-

scribed above.

JN EM

Request

Reply

K’’

K’

Mutual

Authentication

Key

Establishment

JN: Joining node

EM: Existing member

K’’: Joining node’s DH public components

K’: Existing member’s DH public components

Figure 4-1: Summary of the authentication and key establishment protocol
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4.2 Pre-Handoff

Let us say that a node, X, has been authenticated and has joined a mobile ad

hoc network (using the process described above). Using the mechanisms of any

routing protocol, X can now create a list/table of his one-hop neighbours and

generate his topological information. Each of X’s neighbours will now send him

a Hello message containing a list of his one-hop neighbours (X’s two-hop neigh-

bours). Once the Hello messages are received, X updates his topology table, and

a list of his two-hop neighbours can be created. The purpose of the Hello mes-

sage is to give the node an overview of the up-to-date topology of the network.

The Hello message is used for this same purpose anyway by any routing proto-

cols, particularly the table-driven routing protocols such as link state [CJ03] and

fisheye routing [PGC00] protocols.

The following is an extension to the usual exchange of Hello messages. Before

a handoff process takes place, the node X will want to make sure that all of

his two-hop neighbours hold his security information, namely the RSA public

components. X will also want to hold the public key components of each of his

two-hop neighbours. The possession of the security information is necessary for

achieving fast handoff, because when X moves into the coverage of any of the

two-hop neighbours, X will not need to be fully re-authenticated. This is pre-

authentication, which is under the observation that once you have completed the

full authentication process, you do not need to do it again. Also we have designed

the protocol in such a way that all of the two-hop neighbours need to hold the

security information of X under the assumption that a node always moves/roams

past or to its neighbour’s neighbour(s).

Instead of “asking” all of his one-hop neighbours to pass the “security infor-

mation” to the two-hop neighbours, X selects a set of nodes to relay the message.

This is done in order to reduce the number of packet duplications and the traffic

in the wireless network. This reduction of the traffic and duplication is necessary

due to the bandwidth limitations that a mobile ad hoc network has. The algo-

rithm that will be applied to select the relaying nodes is called the Multipoint

Relay algorithm [QVL00]. The mobile nodes that are selected will be called the

Multipoint Relays or MPRs. The (formal) algorithm is as follows:

“To select the multipoint relays for the node X, let’s call the set of one-hop
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neighbours of node X as N(X), and the set of its two-hop neighbours as N 2(X).

Let the selected multipoint relay set of node X be MPR(X).

1. Start with an empty multipoint relay set, MPR(X) = {}.

2. First select those one-hop neighbour nodes in N(X) as the multipoint relays

which are the only neighbour of some node inN 2(X), and add these one-hop

neighbour nodes to the multipoint relay set.

3. While there still exists some node in N 2(X) which is not covered by the

multipoint relay set:

(a) For each node in N(X) which is not inMPR(X), compute the number

of nodes that it covers among the uncovered nodes in the set N 2(X).

(b) Add that node of N(X) in MPR(X) for which this number is maxi-

mum.” [QVL00]

Now that X has selected his multipoint relays, he will need to ask them to pass

his security information to his two-hop neighbours. Remember that when joining

the network, X sent a request packet, including his public key components, to all

of his neighbours. That means that the MPRs are already holding X’s public key

components, n and e, where n is a product of two large prime numbers and e is a

small odd integer. X asks each multipoint relay to send the public key component,

n and e, to its neighbours. Having received X’s public key components, the two-

hop neighbours ask the multipoint relays to send their public key components to

X. These public key components are needed for the identification process when

X roams into the coverage of any of the two-hop neighbours.

In addition, after each mobile node has received the security information of

his two-hop neighbours, he will have to compute a new set of Diffie-Hellman

components, which are an integral part of the handoff protocol (as we will see in

the next section). This step is necessary for achieving a fast handoff. In other

words, by pre-calculating the Diffie-Hellman components at the pre-handoff stage,

when a handoff process takes place there will not be any need for the travelling

mobile node to carry out this computation, which could result in a delay during

the handoff.

Now, all the necessary information is being held by appropriate parties, who

will be ready for the handoff process whenever it occurs.
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4.3 Handoff protocol

We have already stated before that a lot of work has been done on the handoff

process in non-pure mobile ad hoc networks. The existing secure handoff proto-

cols only apply to the wireless environment where there is some involvement of

home and foreign agents, access points, or some extra third parties. A lot of the

work is concerned with the problem of macro-mobility management (movement

between domains) instead of the problem of micro-mobility management (move-

ment within one domain), which is what our work focuses on. Furthermore, after

having extensively searched through published materials, no research has been

found which addresses the problem and security of a roaming or handoff process

of a mobile node in pure ad hoc networks. The mechanism described here is con-

cerned with the efficiency and security of roaming process in local (one domain)

private mobile ad hoc networks (without any use of the third party agents).

4.3.1 Design

There are four main goals that the handoff protocol needs to achieve. They are:

• make-before-break;

• efficiency, i.e. fast and no noticeable delay;

• pairwise session key establishment with the new node;

• mutual authentication;

Make-before-break means that we would like the roaming node to be able

to have made a connection with the node he is approaching before losing the

connection with the node he is moving away from. This leads to the efficiency

of the protocol. When the handoff protocol is executed, there must not be any

long delay. Any delay would be noticeable (a delay of approximately 50 to 100

milliseconds would be considered noticeable) if there are real time or multimedia

data involved or waiting to be processed. Therefore, the handoff protocol must

be done as fast as possible. Thirdly, pairwise session key establishment with the

node he is approaching is important because the new key will provide privacy for

the communication between the two parties. The final goal that we would like to

achieve is mutual authentication. It is important for this criteria to be satisfied,
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because when a mobile node moves to a new position, he and the new node need

to be sure that the other party can be trusted.

The handoff process will begin when a mobile node A is moving away from a

node B towards another mobile node C. As A is moving away from B, the signal

received from B becomes weaker. On the other hand, as A is approaching C, the

signal from C becomes stronger. There will come a point where the signal from B

is below a specified signal threshold, and the signal from C is stronger than that

from B and higher than the specified threshold. That is when the exchange of

the messages for the actual handoff process is invoked. Note that the strength of

the signal can be measured from the Hello message, which is sent periodically by

a mobile node as a specification of most routing protocols. Once the threshold of

the signal strength is reached, A generates a random token (which will be used

in the disassociation process later) and sends it to B.

Having done that A sends a request-to-roam packet to C. C then decides

whether or not to allow A to roam. C bases his decision on the existence of A,

i.e. C checks if A is already a member of the ad hoc network. That is C “decides”

whether A has already been pre-authenticated. This can be done by looking up a

table/list of existing members (or a topology table) of the ad hoc network which

is part of any routing protocol anyway. C also verifies A’s identity (further) using

digital signature (public-key cryptosystem). A does the same with C’s identity. If

A is already a member of the network, C and A begin the message exchange, and

also the process of pairwise session key establishment. For this purpose, we decide

to use the simple two-pass Diffie-Hellman method. (This part of the protocol, i.e.

identification and session key establishment, is solely concerned with securing the

roaming process. This part also completes mutual authentication.)

After the key has been established, A sends the (disassociation) token to B,

via C (because the node A is outside the coverage of the node B). When B receives

the disassociation packet, B checks if the token and A’s identity match any of the

entries in his disassociation table. If so, B removes A from his one-hop neighbour

list, indicating that A has now moved away.
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4.3.2 Analysis and construction

A handoff protocol is constructed, analysed and proved that it is secure in

unauthenticated-links model by following the BCK modular approach [BCK98a,

BCK98b]. We also apply the CK analysis method [CK01] to make sure that

the communication channel between two parties is secure. The GNY proto-

col [GNY90] is then used to prove the correctness of the resultant protocol.

As for the authentication and key establishment protocol, we would like to

refer the reader to Section 4.1.2 for the theorems and formal definitions that are

essential for the analyses and proofs of the handoff protocol.

We divide the handoff protocol into three parts. First, the roaming mobile

host sends a random disassociation token to the node he is moving away from.

The second part is the actual handoff process. The disassociation process com-

pletes the protocol. At the end of the GNY analysis for this design, we will have

illustrated that even though the BCK and CK analyses show that the protocol

is secure, the GNY analysis proves otherwise. This is the reason that we need

to use the BCK and CK methods as well as the GNY protocol to prove that the

protocol is both secure and correct. We re-design the insecure part of the handoff

protocol in the following section.

We use the following notations throughout this section.

• E+Ki
- an asymmetric encryption function with i’s public key

• D−Ki
- an asymmetric decryption function with i’s private key

• EKij
() - a symmetric encryption function with key K shared between party

i and party j

• DKij
() - a symmetric decryption function with key K shared between party

i and party j

• MAC() - a message authentication code function [KBC97]

• Ni - a random nonce generated by i

Part 1 - Pre-disassociation

In this part, A sends a disassociation token to B, who waits until A asks to be

disassociated after completing a handoff.
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Step 0: A generates a random token tok
R
←− {0, 1}d, a random sequence number

seq
R
←− {0, 1}n, and a random nonce (to be used as an identity to which the

random token is associated), id
R
←− {0, 1}n, where d is 256 bits and n is 32 bits.

Step 1: A computes C = EKab
(seq, id, tok) and MAC(C,Kab), and sends

(preDis, C,MAC(C,Kab)) to B, where Kab is the key shared between A and B

and preDis means pre-disassociation. Note that the key was already established

earlier as part of the authentication protocol.

Step 2: Upon receipt of (preDis, C,MAC(C,Kab)), B checks the message in-

tegrity and computes m = DKab
(C). If both are successful then B holds the

random token, tok, and the identity, id.

Lemma 4.3.1. Assume that EKab
() is secure against chosen-plaintext attacks

and the MAC scheme is secure. Then we claim that the above steps constitute a

secure channel.

Proof. One message is exchanged in this pre-disassociation part. By Theorem

1 in [Kra01], we can see that a secure channel is achieved, due to the way the

message is constructed, namely encrypt-then-authenticate.

By Definition 15 in [CK01], a secure network channel, we can conclude that

since the channel is secure, a secure network encryption protocol as well as a

secure network authentication protocol are achieved. Moreover, this implies that

the network channel, and therefore, this part of the protocol is secure in the

unauthenticated-links model.

Part 2 - Handoff process, mutual authentication

This is where the actual handoff process occurs. The mobile nodes that are

involved in the handoff process also authenticate one another.

The two-pass Diffie-Hellman protocol is proved to be SK-secure in the authenticated-

links model by Canetti and Krawczyk, as stated in Theorem 8 of [CK01].

In order to make the exchange of the messages in the handoff process se-

cure in the unauthenticated-links model, we apply the signature-based MT-

authenticator, λsig [BCK98a, BCK98b], to the protocol packets. By Definition

2 in [BCK98a, BCK98b], we can see that the resultant protocol π ′ = Cλsig
(π) is

secure in unauthenticated networks.
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Below is the protocol we get after applying the signature-based MT-authenticator,

λsig. Formally, let π be the “original” protocol that is secure in the authenticated-

links model (the two-pass Diffie-Hellman in this case). Let π ′ be the resultant

protocol that is secure in unauthenticated networks. We have π ′ = Cλsig
(π):

Step 0: A receives a Hello message from C, whose signal is stronger than that

of B.

Step 1: A chooses a random nonce Na
R
←− {0, 1}n and a random sequence num-

ber seq
R
←− {0, 1}n, where n is 32 bits. A sends the message E+Kc

(Req,Na, R,

seq, β = gy) together with his signature SIGA(Req,Na, R, seq, β = gy, C), where

β is the Diffie-Hellman public component of A which has already been pre-

computed during the pre-handoff protocol. Note that R is some random bits

that is sent by C in the reserved field of the Hello message (or we could add a

new field to the Hello message format to hold the random bits), and A possesses

C’s public key, +Kc, due to what happened prior to the handoff process, i.e. the

pre-handoff protocol.

Step 2: Upon the receipt of E+Kc
(Req,Na, R, seq, β) and A’s signature, C com-

putes m = D−Kc(E+Kc
(Req,Na, R, seq, β)) and verifies the signature. (We will

discuss the verification of R later.) C checks his topology table to see if A has

already been pre-authenticated, or if A is already a member of the network. If

the signature is valid and A is already an existing member then C increments

seq by 1 and sends to A, E+Ka
(Na, seq, α = gx) together with his signature

SIGC(Na, seq, α = gx, A), where α is the Diffie-Hellman public component of C.

C is now able to compute the pairwise session key Kac = βx. C also possesses

A’s public key, +Ka, as a result of the pre-handoff protocol.

Step 3: Upon the receipt of E+Ka
(Na, seq, α) and C’s signature, A computes

m = D−Ka
(E+Ka

(Na, seq, α)) and verifies the signature. (We will talk about the

nonce and sequence number verification later.) If the signature is valid then A

computes the session key Kac = αy.

Lemma 4.3.2. The above protocol is secure in the unauthenticated-links model.

Proof. To show that this protocol is secure in the unauthenticated-links model,

we need to illustrate that the protocol conforms to the signature-based MT-

authenticator, λsig.
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In step 1, we use R, a random value sent as part of the Hello message as

a challenge5. Note that at the moment, in the Hello message in any routing

protocols, there is a reserved field, which is unused. We, therefore, propose that

a random value should be put in that field. The use of R as a challenge is adequate

since it is chosen freshly and at random.

In step 2, C only accepts the packet if the verification of the signature is

successful. In the previous step, A sent to C a random nonce Na, which can be

used as a challenge required by the authenticator. C then sends a message to A

together with his signature, which includes the challenge, Na.

In the final step, the message from C is accepted if the signature verification

is a success.

It appears that our protocol behaves as required by the signature-based MT-

authenticator, therefore, we can claim, by Definition 2 in [BCK98a], that it is

secure in the unauthenticated-links model.

Part 3 - Disassociation

Here, the roaming node informs another node that he has already moved away.

Step 0: A holds the random token, tok, the sequence number, seq, and the

random nonce, id, from Step 0 in Part 1.

Step 1: A increments seq by 1. A computes C = EKab
(seq, id, tok) andMAC(C,Kab).

A sends (dis, C,MAC(C,Kab)) to C, the node he has just roamed to, where dis

means disassociation.

Step 2: Upon receipt of (dis, C,MAC(C,Kab)), C looks at the destination ad-

dress and forwards the message to B. Bear in mind that routing or forwarding

packets is part of mobile ad hoc networks anyway.

Step 3: Upon receipt of (dis, C,MAC(C,Kab)), whose source address is A, B

checks the message integrity and computes m = DKab
(C). If B’s calculations

are successful, B checks the sequence number. B then compares the received id

and tok with the entries in his table. If the values match, then B disassociates

A, indicating that A has now moved away and is no longer one of B’s one-hop

neighbours.

Lemma 4.3.3. Assume that EKab
() is secure against chosen-plaintext attacks

and the MAC scheme is secure. Then we claim that the above steps constitute a

5A challenge is an integral part of the signature-based MT-authenticator, λsig.
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secure channel.

Proof. Only one message is sent from A to B, albeit via C. By Theorem 1 in

[Kra01], a secure channel is accomplished because of the way the packet is con-

structed, i.e. encrypt-then-authenticate.

By Definition 15 in [CK01], a secure network channel, we can conclude that

if the channel is secure then a secure network encryption protocol as well as a

secure network authentication protocol are achieved. Moreover, this implies that

the network channel, and therefore, this part of the protocol is secure in the

unauthenticated-links model.

4.3.3 Proof of correctness

We will analyse the resultant protocol of the handoff process by using the GNY

logic. The notations and logical postulates of the GNY protocol that are applied

here can be found in Appendix A. The protocol written in the GNY logic is as

follows:

1. A→B: B: ¢ ∗preDis, ∗{∗id, ∗seq, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab

),

where preDis means pre-disassociation.

2. A→C: C:¢ ∗{∗Req, ∗Na, R, ∗seq, ∗K
′′}+Kc

, ∗{∗H(∗Req, ∗Na, R, ∗seq, ∗K
′′, C)}−Ka

; A |≡ A
K′′

←→ C, where K ′′ = gy mod p

3. C→A: A: ¢ ∗{Na, ∗seq, ∗K
′}+Ka

, ∗{∗H(Na, ∗seq, ∗K
′, A)}−Kc

; C |≡ C
K′

←→ A, where K ′ = gx mod p

4. A→C: C:¢ ∗{∗dis, ∗id, ∗seq, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab

), where

dis means disassociation.

5. C→B: B: ¢ ∗dis∗{∗id, ∗seq, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab

), where

dis means disassociation.
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Assumptions

A|≡A
Kab←→B B|≡B

Kab←→A A|≡A
K′′

←→C

C|≡C
K′

←→A A|≡C|=⇒C
K′

←→A C|≡A|=⇒A
K′′

←→C

A|≡C|=⇒C|≡ ∗ C|≡A|=⇒A|≡ ∗ A|≡ ](Na)

A|≡ ](id) A|≡ ](tok) C|≡ ](R)

A3+Ka C3+Kc A3−Ka

C3−Kc A3Na A3id

A3tok C3R A3+Kc

C3+Ka A3Kab B3Kab

The final four are not really assumptions since A, B and C do really possess

each other’s public key, because they are the results of the pre-handoff stage.

Notations:
• +Ka - A’s public key • +Kc - C’s public key

• −Ka - A’s private key • −Kc - C’s private key

• K ′′ - A’s DH public component • K ′ - C’s DH public component

• Kab - A and B’s pairwise session key • H() - a one-way hash function

Analysis

Message 1:

T1:
B ¢ ∗preDis, ∗{∗id, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab
)

B ¢ preDis, {id, seq, tok}Kab
,MAC({id, seq, tok}Kab

)

T3:
B ¢ preDis, {id, seq, tok}Kab

,MAC({id, seq, tok}Kab
), B 3 Kab

B ¢ preDis, id, seq, tok,MAC({id, seq, tok}Kab
)

P1:
B ¢ preDis, id, seq, tok,MAC({id, seq, tok}Kab

)

B 3 preDis, id, seq, tok,MAC({id, seq, tok}Kab
)

Since B 3 id, seq, tok and B 3 Kab, by the rule P4, B 3 H({id, seq, tok}Kab
).

Now B can check if H({id, seq, tok}Kab
is equal to MAC({id, seq, tok}Kab

). If so,

B knows that the message has not been tampered with.

Message 2:

A |≡ A
K′′

←→ C is valid because it is an initial assumption.
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T1:
C ¢ ∗{∗Req, ∗Na, R, ∗seq, ∗K

′′}+Kc
, ∗{∗H(∗Req, ∗Na, R, ∗seq, ∗K

′′, C)}−Ka

C ¢ {Req,Na, R, seq,K ′′}+Kc
, {H(Req,Na, R, seq,K ′′, C)}−Ka

T4:
C ¢ {Req,Na, R, seq,K

′′}+Kc
, {H(Req,Na, R, seq,K

′′, C)}−Ka
, C 3 −Kc

C ¢Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka

P1:
C ¢Req,Na, R, seq,K

′′, {H(Req,Na, R, seq,K
′′, C)}−Ka

C 3 Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka

P4:
C 3 (Req,Na, R, seq,K

′′), C 3 C

C 3 H(Req,Na, R, seq,K ′′, C)

Note that C 3 C because C possesses his own identity anyway.

F1:
C |≡ ](Na, seq)

C |≡ ](Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka
)

R1:
C |≡ φR

C |≡ φ(Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka
)

Let (∗Req, ∗Na, R, ∗seq, ∗K
′′) be X.

R5:
C |≡ φ(X), C 3 (X,C), C |≡ φ(C)

C |≡ φ(H(X)), C |≡ φ(H(X,C))

I4:
C ¢ {H(X,C)}−Ka

, C 3 +Ka, C |≡
+Ka7→ A,C |≡ φ(H(X,C))

C |≡ A |∼ H(X,C), C |≡ A |∼ {H(X,C)}−Ka

C believes that A signed the message, and therefore, sent the message. That

is C |≡ A |∼ X,H(X,C).

J2:
C |≡ A |=⇒ A |≡ ∗, C |≡ A |∼ (X ; A |≡ A

K′′

←→ C), C |≡ ](X)

C |≡ A |≡ A
K′′

←→ C

J1:
C |≡ A |=⇒ A

K′′

←→ C,C |≡ A |≡ A
K′′

←→ C

C |≡ A
K′′

←→ C

which now implies that C |≡ A
Kac←→ C. After this message the party C be-

lieves that the freshly generated key, Kac, is shared between himself/herself and

the party A.
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Message 3:

C |≡ C
K′

←→ A is valid because it is an initial assumption.

T1:
A¢ ∗{Na, ∗seq, ∗K

′}+Ka
, ∗{H(Na, ∗seq, ∗K

′, A)}−Kc

A¢ {Na, seq,K ′}+Ka
, {H(Na, seq,K ′, A)}−Kc

T4:
A¢ {Na, seq,K

′}+Ka
, {H(Na, seq,K

′, A)}−Kc
, A 3 −Ka

A¢Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc

P1:
A¢Na, seq,K

′, {H(Na, seq,K
′, A)}−Kc

A 3 Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc

P4:
A 3 (Na, seq,K

′), A 3 A

A 3 H(Na, seq,K ′, A)

Note that A 3 A because A possesses his own identity anyway.

F1:
A |≡ ]seq

A |≡ ](Na, seq,K ′, {Na, seq,K ′, A}−Kc
)

R1:
A |≡ φNa

A |≡ φ(Na, seq,K ′, {Na, seq,K ′, A}−Kc
)

Let (Na, ∗seq, ∗K
′) be X.

R5:
A |≡ φ(X), A 3 (X,A), A |≡ φ(A)

A |≡ φ(H(X)), A |≡ (H(X,A))

I4:
A¢ {H(X,A)}−Kc

, A 3 +Kc, A |≡
+Kc7→ C,A |≡ φ(H(X,A))

A |≡ C |∼ H(X,A), A |≡ C |∼ {H(X,A)}−Kc

A believes that C signed the message, and therefore, sent the message. That

is A |≡ C |∼ X,H(X,A).

J2:
A |≡ C |=⇒ C |≡ ∗, A |≡ C |∼ (X ; C |≡ C

K′

←→ A), B |≡ ](X)

A |≡ C |≡ C
K′

←→ A

J1:
A |≡ C |=⇒ C

K′

←→ A,A |≡ C |≡ C
K′

←→ A

A |≡ C
K′

←→ A
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which now implies that A |≡ C
Kac←→ A. At this stage, A believes that the

key, Kac, is a secret shared between that parties A and C.

Therefore, we get:

C |≡ A
K′′

←→ C and A |≡ C
K′

←→ A

C |≡ A |≡ A
K′′

←→ C A |≡ C |≡ C
K′

←→ A
which imply that

C |≡ A
Kac←→ C and A |≡ C

Kac←→ A

C |≡ A |≡ A
Kac←→ C A |≡ C |≡ C

Kac←→ A

where Kac = (gx)y mod p = (gy)x mod p.

At the end of message 3, we have achieved the following outcomes. The par-

ties A and C believe that the key, Kac, is shared between themselves. Each of

them also believes that the other party believes that the key, Kac, is a suitable

secret for A and C.

Message 4:

T1:
C ¢ ∗dis, ∗{∗id, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab
)

C ¢ dis, {id, seq, tok}Kab
,MAC({id, seq, tok}Kab

)

C, having received this message, forwards it to B.

Message 5:

T1:
B ¢ ∗dis, ∗{∗id, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab
)

B ¢ dis, {id, seq, tok}Kab
,MAC({id, seq, tok}Kab

)

T3:
B ¢ dis, {id, seq, tok}Kab

,MAC({id, seq, tok}Kab
), B 3 Kab

B ¢ dis, id, seq, tok,MAC({id, seq, tok}Kab
)

P1:
B ¢ dis, id, seq, tok,MAC({id, seq, tok}Kab

)

B 3 dis, id, seq, tok,MAC({id, seq, tok}Kab
)

Since B 3 id, seq, tok and B 3 Kab, by the rule P4, B 3 H({id, seq, tok}Kab
).

Now B can check if H({id, seq, tok}Kab
is equal to MAC({id, seq, tok}Kab

). If so,

B knows that the message has not been tampered with.
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F1:
B |≡ ]seq

B |≡ ](dis, id, seq, tok)

Applying the rule R1, the recognisability rule, the process does not terminate.

This is due to the fact that there is nothing that the node B recognises from

earlier exchange of messages. B, therefore, cannot be certain that this message

is really from the party that he has been communicating with, i.e. the node A.

The GNY analysis has shown that potentially the disassociation stage can be

under threat. In order to solve the problem of recognisability, we need to go back

to the pre-disassociation stage. The node B, after receiving the disassociation

token (tok) from A, will have to send a “reply” or an acknowledgement packet

to A in order to indicate that the token has been received.

4.3.4 Re-design

The following is the description of the re-designed pre-disassociation part of the

protocol. It will be analysed and proved to make sure that it is secure and correct.

Part 1 - Pre-disassociation

In this part, A sends a disassociation token to B, who waits until A asks to be

disassociated after completing a handoff. B informs A that he has received the

token.

Step 0: A generates a random token tok
R
←− {0, 1}d, a random sequence number

seq
R
←− {0, 1}n, and a random nonce (to be used as an identity to which the

random token is associated) id
R
←− {0, 1}n, where d is 256 bits and n is 32 bits.

Step 1: A computes C = EKab
(seq, id, tok) and MAC(C,Kab), and sends

(preDis, C,MAC(C,Kab)) to B, where preDis means pre-disassociation.

Step 2: Upon receipt of (preDis, C,MAC(C,Kab)), B checks the message in-

tegrity and computes m = DKab
(C). If both are successful then B holds the ran-

dom token, tok, and the identity, id. B chooses a random nonce, Nb
R
←− {0, 1}n,

where n is 32 bits, and increments the sequence number by 1. B computes C =

EKab
(id, seq,Nb) and MAC(C,Kab). B then sends to A (Ack, C,MAC(C,Kab)).

Step 3: Upon receipt of (Ack, C,MAC(C,Kab)), A checks the message integrity

and computes m = DKab
(C). If all are successful then A knows that B has

received the message. A saves the random nonce, Nb.
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Lemma 4.3.4. Assume that EKab
() is secure against chosen-plaintext attacks

and the MAC scheme is secure. Then we claim that the above steps constitute a

secure channel.

Proof. Two messages are exchanged in this re-designed pre-disassociation part of

the protocol. The two packets are constructed in the same way, namely encrypt-

then-authenticate. By Theorem 1 in [Kra01], we can see that a secure channel is

achieved.

By Definition 15 in [CK01], a secure network channel, we can conclude that

if the channel is secure then a secure network encryption protocol as well as a

secure network authentication protocol are accomplished. Moreover, this implies

that the network channel, and therefore, this part of the protocol, which includes

the exchange of two messages, is secure in the unauthenticated-links model.

We have shown that the newly re-designed pre-disassociation part is secure in

the unauthenticated networks. The pre-disassociation module will be integrated

into the rest of the unchanged protocol. We will carry out the GNY analysis again

in order to make sure that the proof of correctness terminates, hence potential

attacks are no longer possible.

4.3.5 Proof of correctness (again)

We analyse the protocol with the newly integrated pre-disassociation part. Ap-

pendix A explains the notations and rules of the GNY protocol that are applied

here. The handoff protocol can be written in the GNY logic as follows:

1. A→B: B: ¢ ∗preDis, ∗{∗id, ∗seq, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab

),

where preDis means pre-disassociation.

2. B→A: A: ¢ ∗Ack, ∗{id, ∗seq, ∗Nb}Kab
, ∗MAC(∗{id, ∗seq, ∗Nb}Kab

), where

Ack means acknowledgement.

3. A→C: C:¢ ∗{∗Req, ∗Na, R, ∗seq, ∗K
′′}+Kc

, ∗{∗H(∗Req, ∗Na, R, ∗seq, ∗K
′′, C)}−Ka

; A |≡ A
K′′

←→ C, where K ′′ = gy mod p

4. C→A: A: ¢ ∗{Na, ∗seq, ∗K
′}+Ka

, ∗{∗H(Na, ∗seq, ∗K
′, A)}−Kc

; C |≡ C
K′

←→ A, where K ′ = gx mod p
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5. A→C: C:¢ ∗dis, ∗{∗id, ∗seq, ∗Nb, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq, ∗Nb, ∗tok}Kab

),

where dis means disassociation.

6. C→B: B:¢ ∗dis, ∗{∗id, ∗seq,Nb, ∗tok}Kab
, ∗MAC(∗{∗id, ∗seq,Nb, ∗tok}Kab

),

where dis means disassociation.

Assumptions

A|≡A
Kab←→B B|≡B

Kab←→A A|≡A
K′′

←→C

C|≡C
K′

←→A A|≡C|=⇒C
K′

←→A C|≡A|=⇒A
K′′

←→C

A|≡C|=⇒C|≡ ∗ C|≡A|=⇒A|≡ ∗ A|≡ ](Na)

A|≡ ](id) A|≡ ](tok) C|≡ ](R)

A3+Ka C3+Kc A3−Ka

C3−Kc A3Na A3id

A3tok C3R A3+Kc

C3+Ka A3Kab B3Kab

The final four are not really assumptions since A, B and C do really possess

each other’s public key, because they are the results of the pre-handoff protocol.

Notations:
• +Ka - A’s public key • +Kc - C’s public key

• −Ka - A’s private key • −Kc - C’s private key

• K ′′ - A’s DH public component • K ′ - C’s DH public component

• Kab - A and B’s pairwise session key • H() - a one-way hash function

Analysis

Message 1:

T1:
B ¢ ∗preDis, ∗{∗id, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id, ∗seq, ∗tok}Kab
)

B ¢ preDis, {id, seq, tok}Kab
,MAC({id, seq, tok}Kab

)

T3:
B ¢ preDis, {id, seq, tok}Kab

,MAC({id, seq, tok}Kab
), B 3 Kab

B ¢ preDis, id, seq, tok,MAC({id, seq, tok}Kab
)

P1:
B ¢ preDis, id, seq, tok,MAC({id, seq, tok}Kab

)

B 3 preDis, id, seq, tok,MAC({id, seq, tok}Kab
)

Since B 3 id, seq, tok and B 3 Kab, by the rule P4, B 3 H({id, seq, tok}Kab
).

Now B can check if H({id, seq, tok}Kab
) is equal to MAC({id, seq, tok}Kab

). If

73



so, B knows that the message has not been tampered with.

Message 2:

T1:
A¢ ∗Ack, ∗{id, ∗seq, ∗Nb}Kab

, ∗MAC(∗{id, ∗seq, ∗Nb}Kab
)

A¢ Ack, {id, seq,Nb}Kab
,MAC({id, seq,Nb}Kab

)

T3:
A¢ Ack, {id, seq,Nb}Kab

,MAC({id, seq,Nb}Kab
), A 3 Kab

A¢ Ack, id, seq,Nb,MAC({id, seq,Nb}Kab
)

P1:
A¢ Ack, id, seq,Nb,MAC({id, seq,Nb}Kab

)

A 3 Ack, id, seq,Nb,MAC({id, seq,Nb}Kab
)

Since A 3 id, seq,Nb and A 3 Kab by the rule P4, A 3 H({id, seq,Nb}Kab
).

Now A can check if H({id, seq,Nb}Kab
) is equal to MAC({id, seq,Nb}Kab

). If

they equal, A knows that the message is authentic, i.e. it has not been tampered

with.

F1:
A |≡ ](seq,Nb)

A |≡ ](Ack, id, seq,Nb)

R1:
A |≡ φ(id)

A |≡ φ(Ack, id, seq,Nb)

Let (id, ∗seq, ∗Nb) be X.

I1:
A¢ ∗{X}Kab

, A 3 Kab, A |≡ A
Kab←→ B,A |≡ φ(X), A |≡ ](X)

A |≡ B |∼ X,A |≡ B |∼ {X}Kab
, A |≡ B 3 Kab

A believes that B sent the message, hence B had received the disassociation

token sent by A in the previous message.

Message 3:

A |≡ A
K′′

←→ C is valid because it is an initial assumption.

T1:
C ¢ ∗{∗Req, ∗Na, R, ∗seq, ∗K

′′}+Kc
, ∗{∗H(∗Req, ∗Na, R, ∗seq, ∗K

′′, C)}−Ka

C ¢ {Req,Na, R, seq,K ′′}+Kc
, {H(Req,Na, R, seq,K ′′, C)}−Ka

T4:
C ¢ {Req,Na, R, seq,K

′′}+Kc
, {H(Req,Na, R, seq,K

′′, C)}−Ka
, C 3 −Kc

C ¢Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka
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P1:
C ¢Req,Na, R, seq,K

′′, {H(Req,Na, R, seq,K
′′, C)}−Ka

C 3 Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka

P4:
C 3 (Req,Na, R, seq,K

′′), C 3 C

C 3 H(Req,Na, R, seq,K ′′, C)

Note that C 3 C because C possesses his own identity anyway.

F1:
C |≡ ](Na, seq)

C |≡ ](Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka
)

R1:
C |≡ φR

C |≡ φ(Req,Na, R, seq,K ′′, {H(Req,Na, R, seq,K ′′, C)}−Ka
)

Let (∗Req, ∗Na, R, ∗seq, ∗K
′′) be X.

R5:
C |≡ φ(X), C 3 (X,C), C |≡ φ(C)

C |≡ φ(H(X)), C |≡ φ(H(X,C))

I4:
C ¢ {H(X,C)}−Ka

, C 3 +Ka, C |≡
+Ka7→ A,C |≡ φ(H(X,C))

C |≡ A |∼ H(X,C), C |≡ A |∼ {H(X,C)}−Ka

C believes that A signed the message, and therefore, sent the message. That

is C |≡ A |∼ X,H(X,C).

J2:
C |≡ A |=⇒ A |≡ ∗, C |≡ A |∼ (X ; A |≡ A

K′′

←→ C), C |≡ ](X)

C |≡ A |≡ A
K′′

←→ C

J1:
C |≡ A |=⇒ A

K′′

←→ C,C |≡ A |≡ A
K′′

←→ C

C |≡ A
K′′

←→ C

which now implies that C |≡ A
Kac←→ C. After this message the party C be-

lieves that the freshly generated key, Kac, is shared between himself/herself and

the party A.

Message 4:

C |≡ C
K′

←→ A is valid because it is an initial assumption.
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T1:
A¢ ∗{Na, ∗seq, ∗K

′}+Ka
, ∗{∗H(Na, ∗seq, ∗K

′, A)}−Kc

A¢ {Na, seq,K ′}+Ka
, {H(Na, seq,K ′, A)}−Kc

T4:
A¢ {Na, seq,K

′}+Ka
, {H(Na, seq,K

′, A)}−Kc
, A 3 −Ka

A¢Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc

P1:
A¢Na, seq,K

′, {H(Na, seq,K
′, A)}−Kc

A 3 Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc

P4:
A 3 (Na, seq,K

′), A 3 A

A 3 H(Na, seq,K ′, A)

Note that A 3 A because A possesses his own identity anyway.

F1:
A |≡ ]seq

A |≡ ](Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc
)

R1:
A |≡ φNa

A |≡ φ(Na, seq,K ′, {H(Na, seq,K ′, A)}−Kc
)

Let (Na, ∗seq, ∗K
′) be X.

R5:
A |≡ φ(X), A 3 (X,A), A |≡ φ(A)

A |≡ φ(H(X)), A |≡ (H(X,A))

I4:
A¢ {H(X,A)}−Kc

, A 3 +Kc, A |≡
+Kc7→ C,A |≡ φ(H(X,A))

A |≡ C |∼ H(X,A), A |≡ C |∼ {H(X,A)}−Kc

A believes that C signed the message, and therefore, sent the message. That

is A |≡ C |∼ X,H(X,C).

J2:
A |≡ C |=⇒ C |≡ ∗, A |≡ C |∼ (X ; C |≡ C

K′

←→ A), B |≡ ](X)

A |≡ C |≡ C
K′

←→ A

J1:
A |≡ C |=⇒ C

K′

←→ A,A |≡ C |≡ C
K′

←→ A

A |≡ C
K′

←→ A

which now implies that A |≡ C
Kac←→ A. At this stage, A believes that the

key, Kac, is a secret shared between that parties A and C.
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Therefore, we get:

C |≡ A
K′′

←→ C and A |≡ C
K′

←→ A

C |≡ A |≡ A
K′′

←→ C A |≡ C |≡ C
K′

←→ A
which imply that

C |≡ A
Kac←→ C and A |≡ C

Kac←→ A

C |≡ A |≡ A
Kac←→ C A |≡ C |≡ C

Kac←→ A

where Kac = (gx)y mod p = (gy)x mod p.

At the end of message 4, we have achieved the following outcomes. The par-

ties A and C believe that the key, Kac, is shared between themselves. Each of

them also believes that the other party believes that the key, Kac, is a suitable

secret for A and C.

Message 5:

T1:
C ¢ ∗dis, ∗{∗id, ∗Nb, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id, ∗Nb, ∗seq, ∗tok}Kab
)

C ¢ dis, {id,Nb, seq, tok}Kab
,MAC({id,Nb, seq, tok}Kab

)

C, having received this message, forwards it to B.

Message 6:

T1:
B ¢ ∗dis, ∗{∗id,Nb, ∗seq, ∗tok}Kab

, ∗MAC(∗{∗id,Nb, ∗seq, ∗tok}Kab
)

B ¢ dis, {id,Nb, seq, tok}Kab
,MAC({id,Nb, seq, tok}Kab

)

T3:
B ¢ dis, {id,Nb, seq, tok}Kab

,MAC({id,Nb, seq, tok}Kab
), B 3 Kab

B ¢ dis, id,Nb, seq, tok,MAC({id,Nb, seq, tok}Kab
)

P1:
B ¢ dis, id,Nb, seq, tok,MAC({id,Nb, seq, tok}Kab

)

B 3 dis, id,Nb, seq, tok,MAC({id,Nb, seq, tok}Kab
)

SinceB 3 id,Nb, seq, tok andB 3 Kab, by the rule P4, B 3 H({id,Nb, seq, tok}Kab
).

Now B can check ifH({id,Nb, seq, tok}Kab
is equal toMAC({id,Nb, seq, tok}Kab

).

If so, B knows that the message has not been tampered with.

F1:
B |≡ ](seq)

B |≡ ](dis, id,Nb, seq, tok)

R1:
B |≡ φ(Nb)

B |≡ φ(dis, id,Nb, seq, tok)
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B has received a message with something he recognises. Therefore, with the

new design, the rule R1 is satisfied.

Let (∗id,Nb, ∗seq, ∗tok) be X.

I1:
B ¢ ∗{X}Kab

, B 3 Kab, B |≡ B
Kab←→ A,B |≡ φ(X), B |≡ ](X)

B |≡ A |∼ X,B |≡ A |∼ {X}Kab
, B |≡ A 3 Kab

B believes that the message really originated from A.

B is now able to compare the received id and tok with the ones in his list. If

the values match then B disassociates A, indicating that A has now moved and

is no longer his one-hop neighbours.

4.3.6 Description of the resultant protocol

We now summarise the handoff protocol that, we believe, is correct and secure in

unauthenticated-links model. Again, we use the following notations throughout

the description of the protocol.

• E+Ki
- an asymmetric encryption function with i’s public key

• D−Ki
- an asymmetric decryption function with i’s private key

• EKij
() - a symmetric encryption function with key K shared between party

i and party j

• DKij
() - a symmetric decryption function with key K shared between party

i and party j

• MAC() - a message authentication code function [KBC97]

• Ni - a random nonce generated by i

Here we let: the public key cryptosystem be secure against chosen-ciphertext

attacks, EK() be secure against chosen-plaintext attacks, and MAC be a secure

message authentication code. Also note that a one-way hash function is applied

to a message before it is signed.
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Step 0: A receives a Hello message from C, whose signal is stronger than that of

B. Within the Hello message, there is a field that contains a random challenge. A

holds his own public and private keys, +Ka and −Ka, and also, from the earlier

exchange of messages during the pre-handoff protocol (see Section 4.2) A knows

C’s public key, +Kc. Similarly, C holds his own public and private key pair, +Kc

and −Kc, and also, as a result of the pre-handoff protocol, A’s public key, +Ka

is known.

A generates a random token tok
R
←− {0, 1}d, a random sequence number

seq
R
←− {0, 1}n, and a random nonce (to be used as an identity to which the

random token is associated) id
R
←− {0, 1}n, where d is 256 bits and n is 32 bits.

+Ki: public key of i,

−Ki: private key of i,

Kij: session key of i and j

Step 1: A computes Ciph = EKab
(seq, id, tok) and MAC(Ciph,Kab), and sends

(preDis, Ciph,MAC(Ciph,Kab)) to B, where preDis means pre-disassociation.

Step 2: Upon receipt of (preDis, Ciph,MAC(Ciph,Kab)), B checks the mes-

sage integrity and computes m = DKab
(Ciph). If both are successful then B

holds the random token, tok, and the identity, id. B chooses a random nonce,

Nb
R
←− {0, 1}n, where n is 32 bits, and increments the sequence number by 1.

B computes Ciph = EKab
(id, seq,Nb) and MAC(Ciph,Kab). B then sends to A

(Ack, Ciph,MAC(Ciph,Kab)), where Ack means acknowledgement.

Step 3: Upon receipt of (Ack, Ciph,MAC(Ciph,Kab)), A checks the message

integrity and computes m = DKab
(Ciph). If all are successful then A knows that

B has received the identity and disassociation token. A saves the random nonce,

Nb.

Step 4: A chooses a random nonce Na
R
←− {0, 1}n and a new sequence number

seq
R
←− {0, 1}n, where n is 32 bits. A sends the message E+Kc

(Req,Na, Challenge,

seq, β = gy) together with his signature SIGA(Req,Na, Challenge, seq, β = gy),

where β is A’s Diffie-Hellman public component. Note that Challenge is some

random bits that is sent by C in the reserved field of the Hello message (or we

could add another field for holding the random bits to the Hello message).

Step 5: Upon the receipt of E+Kc
(Req,Na, Challenge, seq, β) and A’s signature,

C computes m = D−Kc(E+Kc
(Req,Na, Challenge, seq, β)) and verifies the signa-
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ture. C checks his topology table to see if A has already been pre-authenticated,

or if A is already a member of the network. If the signature is valid and A

is already an existing member then A increments seq by 1 and sends to A,

E+Ka
(Na, seq, α = gx) together with his signature SIGC(Na, seq, α = gx), where

α is C’s Diffie-Hellman public component. C is now able to compute the pairwise

session key Kac = βx. Here Challenge serves two purposes. Firstly, Challenge

is returned to C so that C “knows” that the received packet is a “reply” to the

Hello message that he sent earlier. Secondly, Challenge is used as a challenge

that is required by the signature-based MT-authenticator. C erases x.

Step 6: Upon the receipt of E+Ka
(Na, seq, α) and C’s signature, A computes

m = D−Ka
(E+Ka

(Na, seq, α)) and verifies the signature. If the signature is valid

then A verifies the nonce Na and the sequence number. If all are OK then A

computes the session key Kac = αy. A erases y. Both A and C have now

established a new session key, Kac.

Step 7: A holds the random token, tok, the sequence number, seq (the old seq),

and the random nonce, id, from Step 0. A increments seq by 1. A computes

Ciph = EKab
(seq, id, tok) andMAC(Ciph,Kab). A sends (dis, Ciph,MAC(Ciph,Kab))

to C.

Step 8: Upon receipt of (dis, Ciph,MAC(Ciph,Kab)), C looks at the destination

address and forwards the message to B.

Step 9: Upon receipt of (dis, Ciph,MAC(Ciph,Kab)), whose source address

is A, B checks the message integrity and computes m = DKab
(Ciph). If B’s

calculations are successful, B checks the sequence number. B then compares the

received id and tok with the entries in his table. If the values match, then B

disassociates A, indicating that A has now moved away and is no longer one of

B’s one-hop neighbours.

This section introduces a “correct” and secure handoff protocol, which solves

the problem of micro-mobility management. The resultant protocol consists of

five messages, which accomplish the handoff process, key establishment and the

disassociation process.

Figure 4-2 summarises the handoff protocol. Note that the last message, the

disassociation token, will be forwarded by the new node if the roaming node is
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already outside the coverage of the old node.

ON RN NN

pre−dis token

Ack

Handoff Request

Handoff Reply

Disassociation token

ON: Old node

RN: Roaming node

NN: New node

Pre−dis: Predisassociation

Ack: Acknowledgement

Figure 4-2: Summary of the handoff protocol

The reason that we have design the handoff protocol in such a way that A

sends a disassociation token to B before initiating a handoff with C is because

we would like B to be able to keep up-to-date the status of A, the roaming node,

as it is about to move away.

Summary

This chapter gives the design of the authentication and secure handoff protocols

that, we believe, are suited for pure mobile ad hoc networks. During the design,

we clearly stated the problems that would need to be overcome, and the goals

that would need to be achieved at the end of each protocol run. The protocols

were then analysed using the combination of the BCK modular approach and the

CK analysis method. The correctness of each of the protocols was proved using

the GNY technique, during which we found that there was a problem with the

original design of the secure handoff protocol. This led us to re-design a part of

the protocol, re-analyse and then re-prove (the correctness of) the protocol. We

presented the descriptions of the authentication and secure handoff protocols at

the end of their section.

The authentication and handoff protocols are constructed by using a combi-

nation of well known cryptographic tools, namely RSA public-key cryptosystem

and Diffie-Hellman key agreement. We have shown that only four messages are

needed to complete the authentication and key establishment, while a handoff

process can be accomplished in just five messages. The multipoint relay algo-

rithm is integrated into the pre-handoff protocol in order to reduce the usage of
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the network bandwidth.

At first glance, one may wonder why we do not just do another authentication

when roaming, since it only takes four messages to complete the authentication

protocol rather than five messages for the handoff protocol. The main reason

for it is that within the five messages of the handoff protocol we also achieve

disassociation. In order to accomplish secure disassociation, three messages are

needed. This means that it would take seven messages in total if we were to carry

out the authentication protocol together with the disassociation process.

The authentication, pre-handoff and handoff protocols are closely related to

one another. We can see that once an authentication is complete, there is a change

in the network topology (since a new mobile node has just joined). The routing

information and topology tables need to be updated. This is accomplished by the

exchange of Hello messages among the mobile nodes. In the pre-handoff protocol,

we extend this mechanism so that mobile nodes possess necessary information

for future handoffs that may take place. During the pre-handoff stage, mobile

nodes exchange security information with one another. This security information,

namely the RSA public components, which is also the main components of the

first message of the authentication protocol, is then used for the encryption and

identification purposes while the handoff process is carried out.

The resultant protocols, we claim, are suitable and practical for local private

mobile ad hoc networks. More importantly, they are correct (according to the

GNY protocol) and secure in the unauthenticated-links model (according to the

BCK and CK methods). The implementations and simulations of the protocols

will be provided in the next chapter.
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Chapter 5

Simulations and Implementations

In this chapter, we describe the simulations that we carried out in order to il-

lustrate the working of our protocols - authentication and key establishment,

pre-handoff, and handoff. These simulations are run using the network simulator

ns2 [MF]. The simulations are divided into three main categories with respect

to the protocols designed in the previous chapter. At the end of this chapter,

we will give an overview of how the protocols can be employed in a sample ad

hoc network, and how the pre-handoff stage is implemented (authentication and

handoff protocols are implemented according to the descriptions given in Chapter

4). Results of running the simulations are presented in the next chapter.

The simulations will range from a simple scenario with two or three mobile

nodes, to a more complex ones with more than two hundred mobile nodes.

For the simulations, we use a Pentium IV 1.8GHz processor PC that has

256Mb of RAM and runs Redhat Linux 7.2. The network simulator is ns2 ver-

sion 2.27. The Openssl library is also applied for the protocol implementations.

In ns2, we have followed an application-layer approach, and developed UDP-like

transport agents that allow for message delivery of the actual protocols.

The simulations are carried out in two different settings or environments.

Firstly, an outdoor environment, where the line of sight between two communi-

cating parties (transmitter and receiver) is clear, and the condition is that the

communication range is modeled as a circle around each mobile node. If a re-

ceiver is within the coverage, it receives all the packets. Otherwise, it loses all

the packets. The maximum transmission range of any mobile node in this model
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is approximately ninety-five metres, according to our findings in the network

simulator. This model is known as the Two-ray ground reflection model, which

considers both the direct and ground-reflected propagation path between trans-

mitter and receiver [New04]. More detail on this model can be found in [Pro03].

The following variables define the outdoor environment and the settings of the

IEEE802.11b mobile nodes.

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802 11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 250 ;# max packet in ifq

set val(rp) DSDV ;# routing protocol

#Settings for IEEE802.11b

$val(mac) set SlotTime 0.000020 ;# 20us

$val(mac) set SIFS 0.000010 ;# 10us

$val(mac) set PreambleLength 144 ;# 144 bit

$val(mac) set PLCPHeaderLength 48 ;# 48 bits

$val(mac) set PLCPDataRate 1.0e6 ;# 1Mbps

$val(mac) set dataRate 11.0e6 ;# 11Mbps

$val(mac) set basicRate 1.0e6 ;# 1Mbps

$val(netif) set freq 2.4e+9

$val(netif) set Pt 3.3962527e-2

The second environment is an office environment, where the line of sight be-

tween two communicating parties is obstructed, and the conditions are not ideal

in that the coverage of each mobile node is not always a perfect circle. The

maximum transmission range of any mobile node in this model is between five

and seven metres. In this particular setting, each mobile node can be thought of

as situating in a room surrounded by brick walls. This model is known as the
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Shadowing model, and can be found in [Pro03]. The following variables define

the office environment and the settings of the IEEE802.11b mobile nodes.

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/Shadowing ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802 11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 250 ;# max packet in ifq

set val(rp) DSDV ;# routing protocol

#Settings for IEEE802.11b

$val(mac) set SlotTime 0.000020 ;# 20us

$val(mac) set SIFS 0.000010 ;# 10us

$val(mac) set PreambleLength 144 ;# 144 bit

$val(mac) set PLCPHeaderLength 48 ;# 48 bits

$val(mac) set PLCPDataRate 1.0e6 ;# 1Mbps

$val(mac) set dataRate 11.0e6 ;# 11Mbps

$val(mac) set basicRate 1.0e6 ;# 1Mbps

$val(netif) set freq 2.4e+9

$val(netif) set Pt 3.3962527e-2

#Set values of shadowing model

$val(prop) set pathlossExp 4 ;# In building. Obstructed.

$val(prop) set std db 7 ;# Office. Hard partition.

From the above settings, the path loss exponent (pathlossExp ) is set to 4

which means that this is a building environment and the line of sight between

any two mobile nodes is obstructed. The shadowing deviation (std db ) is set to

7, which means that each mobile node is in an office separated from other mobile

nodes by hard partitions. Figure 5-1 shows a pictorial representation of a sample

setting in the indoor environment. It can be seen that mobile nodes are separated
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from one another by hard partitions. Note that the network simulator does not

show the lines between mobile nodes. We have drawn them in Figure 5-1 because

we would like to illustrate the separation of the nodes.

denotes a brick wall or
a hard partition.

Figure 5-1: A typical indoor setting

The Tables 5.1 and 5.2 show the lengths of the messages involved in the

authentication and handoff protocols respectively. We refer the readers to the

descriptions of the respective protocols in the previous chapter for the reference

of the message numbers.

Table 5.1: The lengths of authentication messages
Authentication message number Message length (bytes)

1 139
2 389
3 388
4 260

Table 5.2: The lengths of handoff messages
Handoff message number Message length (bytes)

1 168
2 136
3 272
4 264
5 172

86



The rest of the chapter describes the simulation scenarios for all three pro-

tocols - authentication, pre-handoff and handoff. Note that for all of the nodes

in the simulations, there is background traffic among them. Specifically, there

are ICMP messages being sent among the mobile nodes in all of the simulations

while the authentication protocol, pre-handoff protocol and handoff protocol are

being carried out.

5.1 Authentication and key establishment

The main objective when generating the simulations is to cover as many scenar-

ios as possible. In this section, we have four different settings for the simula-

tions. First, we let one pair of mobile nodes authenticate each other at any one

time (one-to-one authentications). Secondly, more than one mobile node sends

a request-to-join message to one node simultaneously (many-to-one authentica-

tions). Thirdly, one mobile node broadcasts a request packet, and the authenti-

cation and key establishment with all the nodes that receive the request packet is

carried out (one-to-many authentications). Fourthly, a number of mobile nodes

send a request packet to one another simultaneously to initiate authentication

(many-to-many authentications).

5.1.1 One-to-one authentications (Scenario 1)

Figure 5-2 shows an example of how a mobile node could be positioned when

trying to join an existing ad hoc network. Let’s suppose that Node (0) is an

existing member of a private local mobile ad hoc network. Node (1) is the first

that would like to join. He sends a request packet to Node (0) to start the

authentication. Then Node (2) and Node (3) join the network afterwards, one

at a time. Note that in this scenario, Node (1), Node (2) and Node (3) are not

within each other’s range. That means that when a request is sent, only Node (0)

can receive it and, therefore, respond to it.

In addition, we place a pair of nodes randomly in such a way that they

are within each other’s radius, and let them authenticate one another. This

is repeated ten times so that an average authentication time can be calculated.
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Figure 5-2: One-to-one authentications

5.1.2 Many-to-one authentications (Scenario 2)

The aim of this scenario is to test whether or not a mobile node can handle the

situation where multiple request packets are sent to him simultaneously. Figure 5-

3 shows an example of how the simulations are set up. In this particular setting,

Node (1), Node (2), Node (3) and Node (4) all send a request-to-join packet to

Node (0) simultaneously. For these simulations, the number of mobile nodes that

send the request packet will range from two to ten.

Figure 5-3: Many-to-one authentications

5.1.3 One-to-many authentications (Scenario 3)

In this scenario, Node (0) broadcasts a request packet suggesting that he would

like to join an existing ad hoc network. All of the existing members (up to

ten nodes, in these simulation) who receive the packet, will respond accordingly.

Node (0) will, therefore, carry out the authentication and key establishment with

all the reachable nodes. Note that the nodes around Node (0) are positioned
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randomly each time the simulation is executed. Figure 5-4 depicts an example of

the simulation setup.

Figure 5-4: One-to-may authentications

5.1.4 Many-to-many authentications (Scenario 4)

In addition to the first three scenarios, we place a number of mobile nodes ran-

domly in such a way that all of the nodes can communicate directly with one

another. This simulation begins with one pair of nodes simultaneously sending

a request packet to one another. The number of nodes is then increased up to

twenty five nodes, all of which broadcast a request packet at the same time.

This scenario can be thought of as when mobile nodes are forming a private

local mobile ad hoc network for the first time. Once the network is formed, any

of the first three scenarios could happen when a new node or new nodes join the

network.

The simulations, described above, are run in order to illustrate the authenti-

cation and key establishment protocol in a private local mobile ad hoc network.

We begin the simulations with a simple scenario, where the authentication is

between a pair of mobile nodes, and go up to a more complex ones. We have

covered one-to-one authentications, many-to-one authentications, one-to-many

authentications and many-to-many authentications.

After the authentication and key establishment, there is a change in the net-

work topology. Therefore, the mobile nodes have to update their routing infor-

mation as well as their topological information. The next section contains the

description of how the simulations for the pre-handoff stage are done.
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5.2 Pre-handoff

In this section, the simulations show the process of what happens after a mobile

node or mobile nodes have been authenticated and have joined a private local

mobile ad hoc network, i.e. when the network topology changes. At this stage,

Hello messages are exchanged so that the necessary topological information can

be updated. This includes the update of the list of the one-hop neighbours,

the list of the two-hop neighbours and the topology table. Moreover, during

this stage, a set of multipoint relays (MPRs) will be computed. The multipoint

relays, after having been selected by each node, will send to that node the security

information of the node’s two-hop neighbours. The multipoint relay will also pass

the security information of that mobile node to his two-hop neighbours. After

receiving the necessary security information, the mobile node will compute a new

set of Diffie-Hellman components (as stated in the description of the protocol in

Section 4.2), then the mobile node will be ready to handle any handoff process

that may occur.

Due to the fact that the performance and complexity of the Multipoint Re-

lay algorithm is presented in [QVL00], and the exchange of the Hello messages

and the updates of routing and topological information are already parts of most

routing protocols (especially table-driven routing protocols), we will focus the

simulations on the process of getting mobile nodes ready for future handoffs,

which is the extension to the usual exchange of Hello messages. This process

consists of the exchange of security information of the nodes’ two-hop neigh-

bours and the computation of Diffie-Hellman components, both of which will be

necessary for the handoff protocol.

The purpose of running these simulations is that we would like to demonstrate

the performance of this particular stage of the pre-handoff protocol. Each simu-

lation will begin after all the nodes have been authenticated and have joined the

network. The mobile nodes will then send a Hello message to inform each other of

the up-to-date information regarding the topology of the network. Each mobile

node will then process the packet according to the protocol description stated in

Section 4.2. The simulation will end after the nodes have been informed of their

two-hop neighbours’ security information, and the Diffie-Hellman components

have been computed, which will be needed for the future handoff process.
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5.3 Bringing the two together

Having simulated and tested the authentication protocol in scenarios 1, 2, 3

and 4 as well as the pre-handoff stage, we are able to incorporate them into

more complex settings, where there are a lot more mobile nodes involved. The

main purpose of these simulations is that we would like to demonstrate that our

protocols will work in larger settings as well as smaller and simpler ones. The

simulations are carried out in the following network settings.

A number of mobile nodes are positioned randomly within an area of the

size 800m x 800m. At the same time, all the nodes broadcast a request packet

in order to initiate the authentication and key establishment protocol with the

surrounding nodes. These scenarios can represent the situation where a number

of mobile nodes are setting up a private local mobile ad hoc network for the

first time (in a larger setting than that in Scenario 4 and not all of the mobile

nodes are within each other’s radius). Once the authentication is complete, the

pre-handoff will begin. That is the nodes will start sending Hello messages,

updating their topology information, selecting their multipoint relays, passing

security information and computing Diffie-Hellman components.

We simulate the authentication protocol and the pre-handoff protocol with

twenty mobile nodes, fifty nodes, one hundred nodes, one hundred and fifty nodes,

two hundred nodes, and two hundred and fifty mobile nodes within the specified

area. Note that we alter the number of nodes within the same area each time

the simulation is run, because we would like to experiment the protocols with

different node densities (i.e. Number of nodes/area).

The positions of the mobile nodes are generated randomly by a tool known

as setdest, which is part of the network simulator, ns2. The protocol is run five

times on each set of mobile nodes, where the positions of the nodes are different

each time. This is done because we would like to vary the scenarios rather than

restrict them to one particular setting. The diagrams of the network layouts can

be seen in Appendix B.

Once the above simulations have finished, i.e. the network has been set up,

any of the authentication scenarios can take place. We simulate this by “adding”

mobile node or mobile nodes to the existing network, and let them carry out the

authentication process as usual. Once the node or nodes have been added as new
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members of the network, the pre-handoff protocol will again be invoked (as there

is a change in network topology).

The simulations in this section will allow us to learn whether or not our

authentication and pre-handoff protocols will be able to cope with larger and

more complex network settings.

5.4 Handoff

By completing the authentication and pre-handoff protocols, mobile nodes now

hold enough necessary information to carry out the handoff protocol. In this

section, we provide the simulations for single handoffs in the outdoor and indoor

environments, simultaneous (multiple) handoffs and handoffs with non-stationary

mobile nodes.

We have mentioned at the end of the previous chapter that at first glance, it

may appear simpler to just do another full authentication when roaming to a new

position. However, this is not the case, since the four messages needed by the

authentication protocol do not include secure disassociation. In order to achieve

secure disassociation with the mobile node that the roaming node is moving

away from, three more messages are needed. This means that it would take

seven messages to complete a handoff if the authentication protocol were used as

part of the process, whereas the handoff protocol, designed in Section 4.3, takes

just five messages. This is the main reason why we have decided to apply the

handoff protocol rather than doing the re-authentication.

5.4.1 Outdoor environment (single handoffs)

The handoff protocol is illustrated by having a mobile node roam from one po-

sition to another in such a way that the node leaves the coverage of a node and

enters that of another. The speed of the movement will be varied from the aver-

age walking speed (1.34ms−1) to the average speed of Eurostar (83ms−1), which

are as follows.

• The average walking speed, 1.34ms−1

• The average running/jogging speed, 5.00ms−1
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• The speed of a car travelling at 30 mph, 13.4ms−1

• The speed of a car travelling at 60 mph, 26.8ms−1

• The average speed of Eurostar, 83.0ms−1

The simulations are carried out in this way in order to demonstrate that the

transfer of the necessary data, the handoff process itself and the disassociation

process can be executed and completed quickly enough for the nodes to roam

without losing the connection. We would also like to illustrate that the non-

moving nodes are also capable of handling the handoff process. Figure 5-5 shows

how the simulation is set up.

represents the movement of the node.

Figure 5-5: Handoff simulation set up

Node (0) and Node (1) are neighbours. Node (1) and Node (2) are each

other’s neighbour, and Node (3) is the other one-hop neighbour of Node (0)’s.

Here, Node (3) is the roaming node, and will move from Node (0) towards Node (2).

Node (3) is currently within the coverage of Node (0) only. As he approaches

Node (1), the handoff process begins. The same process is repeated when Node (3)

approaches Node (2).

All of the nodes in all of the simulations have already been authenticated,

and therefore are members of the network. Before the handoff protocol begins,

all the nodes will have exchanged and computed all the information necessary for

the handling of the handoff process (i.e. pre-handoff will have already been done

prior to this).
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In addition, after the handoff protocol is finished, the pre-handoff process will

be carried out. That is Hello messages are exchanged due to the change in network

topology, and topological information are updated. As a result of the pre-handoff

phase, the mobile nodes will again be ready to handle any future handoffs that

may take place. This means that it is important for the mobile nodes, especially

the travelling node, to complete this process before a new handoff process begins.

The following simulations (using the setup shown in Figure 5-5) will determine

how many neighbours Node (1) can have, so that when Node (3) finishes the

handoff protocol with Node (1) (Node (1)’s neighbours will become Node (3)’s

two-hop neighbours), he will have enough time to complete the pre-handoff phase

before initiating the handoff with any of Node (1)’s neighbours. In other words,

we would like to find out the maximum number of two-hop neighbours that

Node (3) can have, so that he can complete the pre-handoff stage before the next

handoff can begin with any of those two-hop neighbours.

The simulation setups will be the same as before. The speed of the travelling

mobile node will also be varied. For each speed, we will keep adding a new one-

hop neighbour to Node (1) until the roaming node, Node (3), cannot complete

the pre-handoff stage before the next handoff process begins with Node (2).

5.4.2 Indoor environment (single handoffs)

There are three scenarios which are considered in the office environment. First

of all, the setup is similar to the one shown in Figure 5-5, where the roaming

node, Node (3), moves in a straight line from Node (0) to Node (2) (which could

represent a node moving in a straight line along a corridor). Secondly, the roaming

node moves diagonally from one node to another (which could represent a node

moving past a corner inside a building). Figure 5-6 depicts a couple of examples

of this scenario.

Special case of handoff

The third scenario or the special case is as follows. Figure 5-7 shows that Node (3)

is roaming towards Node (0). When Node (3) approaches Node (0), it is expected

that Node (3) and Node (1) (which is Node (3)’s two-hop neighbour) carry out

the handoff mechanism. However, at that point, it is likely that the signal from
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represents the movement of the node.

(a) First diagonal
movement

represents the movement of the node.

(b) Second diagonal
movement

Figure 5-6: the roaming node moves diagonally.

Node (0) will actually be stronger than the signal from Node (1) (Node (3) is

closer to Node (0) than Node (1)). Therefore, Node (3), by the definition of the

handoff process, should carry out the handoff process with Node (0) rather than

Node (1). The problem is that Node (3) does not hold any security information

of Node (0) since it has not been one of Node (3)’s one-hop or two-hop neigh-

bours. This means that before the handoff process can commence, Node (3) will

have to contact Node (2) in order to obtain the security information that be-

longs to Node (0). Node (0) will have to contact Node (1) so that he can obtain

Node (3)’s security information. Note that Node (2) holds the information of

Node (0) and Node (1) holds the information of Node (3) due to the pre-handoff

process that has been done prior to this stage. Once these exchanges of messages

is finished, Node (3) and Node (0) can continue processing the usual handoff

protocol.

Alternatively, for the special case of the handoff protocol, re-authentication

could be carried out by the roaming mobile node and the node it is approach-

ing. This process works as follows. With reference to Figure 5-7, as Node (3)

moves away from Node (2), according to the description of our handoff protocol,

Node (3) sends a disassociation token to Node (2), who replies with an acknowl-

edgement. When Node (3) approaches Node (0), they will carry out the full au-

thentication protocol. That is Node (3) starts the protocol by sending a request
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represents the movement of the node.

Figure 5-7: Handoff simulation (special case)

message to Node (0). Mutual authentication and key establishment between the

two mobile nodes will then be completed in the subsequent packets in accordance

with the description of the authentication protocol in Section 4.1.4. Once that is

finished, Node (3) will send a disassociation message to Node (2) in order to end

the handoff process.

5.4.3 Simultaneous handoffs

All of the previous handoff simulations are concerned with single handoffs. That is

mobile nodes handle one handoff at any one time. Now, we would like to illustrate

whether or not our handoff protocol will be able to manage simultaneous handoffs

as well. For these simulations, we let mobile nodes roam from Node (1) to either

Node (0) or Node (2). At any one time, Node (1) will have to handle more

than one disassociation wait packet and more than one disassociation packet.

Node (0) or Node (2) will have to handle more than one handoff request packet

or one handoff process at once. By running these simulations, we should be able

to show whether or not simultaneous handoffs are possible.

Figure 5-8 shows an example of how these simulations are set up.

5.4.4 Handoffs with non-stationary nodes

So far we have only covered the situation where a travelling mobile node leaves

the coverage of a non-moving mobile node and enters the coverage of another

stationary mobile node. Here, we present the simulations for the situation, where
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represents the movement of a mobile node.

Figure 5-8: Simultaneous handoffs

a mobile node carries out the handoff process with another mobile node, which

is also moving, but in a different direction.

Figure 5-9 shows an example of how the simulations are set up in this section.

From the diagram, the network is laid out as follows. Node (0) and Node (2) are

one-hop neighbours of Node (1). Node (1), Node (3) and Node (4) are within

each other’s radius. Similarly, Node (1), Node (5) and Node (6) are each other’s

one-hop neighbours. Moreover, Node (0) and Node (2) are nodes 3, 4, 5 and 6’s

two-hop neighbours.

represents the movement of a mobile node.

Figure 5-9: Handoff with non-stationary nodes

For this particular simulation, we let Node (3) roam to Node (2) while Node (4)

moves to Node (0). At the same time, we let Node (5) roam to Node (2) and

Node (6) to Node (0). All of the node movements happen simultaneously.
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What will we learn from these simulations? What we have seen so far, as

explained earlier, is the situation, where one mobile node roams away from a

stationary mobile node. These simulations will show whether or not our handoff

protocol can cope with the situation where a mobile node moves away from a

stationary mobile node as well as away from a mobile node that is moving in a

different direction. With reference to Figure 5-9, it can be seen that nodes 3 and

4 are moving away from each other in opposite directions, while they are both

roaming away from Node (1), which is stationary.

In the above sections, we have explained the different scenarios that are simu-

lated in order to illustrate the working of our protocols - authentication and key

establishment, pre-handoff and handoff. We set up the simulations in two extreme

environments. They are the outdoor environment (where there is no obstruction

between two communicating nodes) and the non-ideal office environment (where

the path between two mobile nodes is blocked by hard partitions). The results

of these simulations are provided in the next chapter. The next section explains

how the three protocols - authentication, pre-handoff and handoff - fit together

and how they are implemented.

5.5 Protocol overviews and implementation

This section will describe the authentication protocol, pre-handoff and handoff

mechanism, starting from the moment node X joins to when the handoff process

is complete. The protocols are implemented in accordance with the protocol

descriptions and specifications explained in Chapter 4.

We now describe how our protocols can be employed in a sample ad hoc

network. Let’s say that there is an existing ad hoc network, which is shown in

Figure 5-10. Figure 5-10 displays the layout of the sample mobile ad hoc network.

The lines connected two mobile nodes denote that the two nodes are neighbours.

For example, from the diagram we can see that Node (A) is connected to nodes

F and G. Therefore, Node (A) is a one-hop neighbour of both nodes F and G.

Another example is that Node (C) is connected to nodes H, I and L. Therefore,

Node (C) is a one-hop neighbours of nodes H, I and L.

X joins the network by carrying out the authentication and pairwise key
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Figure 5-10: A sample mobile ad hoc network

establishment. The process begins by X broadcasting his Request-to-Join packet.

A, B, C, D and E reply and the rest of the protocol is executed. This is basically

the same as Scenario 3 (see Section 5.1.3), i.e. X authenticates and establishes

pairwise session keys with all of the reachable nodes - A, B, C, D and E in this

case. Having established a pairwise session key with A, B, C, D and E, X is now

part of the network and a new one-hop neighbours of nodes A, B, C, D and E.

Figure 5-11 depicts the network after X has joined.

A
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J

K

L

X

Figure 5-11: Node (X) has joined the mobile ad hoc network.

X now has a list of his one-hop neighbours - A, B, C, D and E. The list

is created and updated as X executes the authentication and key establishment

protocol. Since there is a change of network topology, i.e. X has just joined the

wireless network, the next step is the pre-handoff protocol. That is the mobile

nodes will begin sending each other Hello messages, so that they get the up-to-

date topological information. Each of X’s neighbours will also send him a Hello

message containing a list of his one-hop neighbours. Once the Hello message is

received, X updates his topology table and create a list of the two-hop neighbours.
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Table 5.3: Node (X)’s topology table
A F G
B G H
C H I L
D I J
E F J K

Table 5.4: Node (X)’s list of two-hop neighbours
F 2
G 2
H 2
I 2
J 2
K 1
L 1

X’s topology table, created by the program implemented, is shown in Table 5.3.

Note that the first column contains the one-hop neighbours of X. Other

columns are the one-hop neighbours of the node in the first column. For ex-

ample, F and G are the neighbours of A. One might ask why X is not in the

table since it is also a neighbour of all the nodes in the first column. We have

implemented the function to create the topology table in such a way that the

host itself, X in this case, is not added to the list.

X’s list of two-hop neighbours will then be generated and will look like Ta-

ble 5.4. This has to be a table rather than a list, because there needs to be one

extra column which indicates the number of neighbours that each of the two-hop

neighbours of X has. This information will be useful for later algorithm, namely

the Multipoint Relay algorithm.

The first column is the list of X’s two-hop neighbours. The second column, as

mentioned before, is the number of neighbours that the node in the first column

has.

Before the roaming process can take place, X wants to receive the “security

information” of all of his two-hop neighbours as well as pass his own information

to the two-hop neighbours. Instead of asking all of his one-hop neighbours to
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pass the “security information” to X and X’s two-hop neighbours, X selects a

set of nodes to relay the message. This is done in order to reduce the number

of packet duplications and to reduce the traffic in the wireless network. The

algorithm that will be used to select the replaying nodes is called the Multipoint

Relay algorithm. The nodes that are selected will be called Multipoint Relays or

MPRs. The formal algorithm is explained in Section 4.2.

Next how the MPR algorithm is coded will be explained. The topology table

and the two-hop table have been created by the earlier processes, Steps 1 and 2

of the algorithm are now ready to be implemented.

First, we look at the two-hop table to find a node, whose second column

contains 1, i.e. has one neighbour. Once found, we compare the node to the list

of nodes in the topology table. When a match is found, we add the node in the

first column of that row (in the topology table) to the multipoint relay set. Then

another node (in the two-hop table), whose second column contains 1 is looked

for. This step is repeated until all the nodes with 1 in the second column are

found. At the end of this step, we will end up with an initial list of multipoint

relays. Next, Step 3 of the MPR algorithm will be implemented.

We create a list of nodes that are covered (can be reached from X via the

multipoint relays) by the selected MPRs. This is done by working with the

topology table and the list of MPRs. We look at the first item in the MPR list

and compare that with the nodes in the first column of the topology table. If the

match is found, the nodes in that row of the table (excluding the one in the first

column) are added to the list of covered nodes. Then look at the next item in

list of MPRs, and again try to find a match in the topology table. When found,

instead of simply adding all the nodes in that row to the list of the covered nodes,

we will have to check whether they are already in the list or not. If a node already

exists in the list, it is discarded. If not, it is inserted in the list.

Now the list of the nodes that are covered by the multipoint relays has been

created. The next thing we will do is create a list of the nodes that have not

been covered by the MPRs, i.e. the remaining two-hop neighbours. This step

can be done by subtracting the list of the covered nodes from the first column

of the two-hop table. The difference between the two sets will be the set of the

uncovered nodes. Once this process is done, we will be able to know which nodes

cannot be reached by the existing set of the multipoint relays.
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In order to select more MPRs (to cover the remaining two-hop neighbours),

another table is created, which will show the number of nodes that are not yet

covered by the current set of the multipoint relays. For this table to be generated,

we use the existing tables including the topology table, the list of the multipoint

relays and the list of the uncovered nodes. First, we take a node from the first

column of the topology table and compare it with the existing MPRs. If the node

is not already a multipoint relay, we will add it to the second column of this new

table. In the same row as the node we have chosen, we compare all the nodes to

the list of the uncovered nodes and count the number of matches. We then add

the number of matches to the first column of the new table, in the same row as

before. By looking at the table, we can tell how many nodes, not yet covered,

a non-MPR node has. This process is carried out until all the non-MPRs are

selected. The table is sorted in the order of the number of matches. Note that if

the number of matches is zero, we do not add that node to the table.

Selecting a multipoint relay is now an easy task. We will just have to look at

the newly created table and pick the first node in the table. This is because that

node has the maximum number of nodes uncovered by the current multipoint

relays. Once the selected node is added to the MPR list, we repeat the whole

process. This is done until the list of the uncovered nodes is empty, i.e. all of

the two-hop neighbours are covered. At the end of the algorithm, we will have

obtained a list of multipoint relays. In this example, the multipoint relays are

nodes B, C and E. Figure 5-12 shows that nodes B, C and E are the multipoint

relays of Node (X).
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Figure 5-12: Multipoint relays: Node (B), Node (C) and Node (E)

Now that X has selected his multipoint relay set, he will need to ask them to
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pass his “security information” to his two-hop neighbours as well as ask them to

send him the public key components of the two-hop neighbours. Remember that

when joining the network, X broadcast a request packet, including his public key

components, to all of his neighbours, A, B, C, D and E. That means that the

MPRs, B, C and E are already holding X’s public key components and those of

X’s two-hop neighbours. We can see that by asking the nodes B, C and E to

pass/relay the messages, all of X’s two-hop neighbours will be able to receive the

message. These public key components are needed for the identification process

when X roams into the range of any of the two-hop neighbours. The arrows in

Figure 5-13 denote how the messages are relayed to and from X.
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Figure 5-13: Multipoint relays passing information

For a handoff process, let’s say that X roams from where he is to node L. The

handoff protocol will be processed in accordance with the protocol description

(see Section 4.3.6 for detail). The pre-handoff process can then be repeated in

order to get the up-to-date topological information to the mobile nodes, and to

get X and other mobile nodes ready for the next handoff.

Summary

This chapter describes and explains how the protocols - authentication, pre-

handoff and handoff - are simulated and tested. Different simulations ranging

from simple to more complex are set up in order to cover as many scenarios as

possible. The simulations are set in two different environments, outdoor and

indoor.

For the authentication protocol, we have covered one-to-one authentications,

one-to-many authentications, many-to-one authentications and many-to-many
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authentications. For the pre-handoff protocol, we will find out (in the next

chapter) how long it takes to compute or process security information that is

passed among mobile nodes. For the handoff protocol, we have set up the simu-

lations to ensure that we have covered both single and multiple handoffs as well

as handoffs with stationary and non-stationary nodes. The special cases of hand-

off, where the roaming node does not hold any security information of the node

he or she is approaching, will also be simulated. These simulations include the

re-authentication method as well as the normal handoff protocol with additional

messages.

At the end of the chapter, we explain how the three protocols can be employed

in a private local mobile ad hoc network, and how they are implemented.

Next chapter provides the results of the simulations and the evaluations of all

of the protocols - authentication, pre-handoff and handoff.
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Chapter 6

Results and Evaluations

Each section in this chapter is divided into two main parts - results and evaluation.

First of all, the results sections will consist of the results that are obtained from

the simulations described in Chapter 5. The results presented here include the

time taken to complete the initialisation stage, the time taken to complete the

authentication protocol (which includes both the packet processing time and the

transmission time), the time taken to process security information in the pre-

handoff stage and the time taken to complete the handoff protocol (which also

includes both the processing time and the transmission time). We will present

the results in the order of the simulations run in the previous chapter.

Note that in this chapter, what we mean by “outdoor” is that the line of sight

between two mobile nodes is clear. When we say “indoor”, however, we mean

that each mobile node is situated in a room, hence the line of sight between two

mobile nodes are obstructed by hard partitions.

The results will then be analysed and discussed in the evaluation parts. We

will discuss the results in order to see whether or not the protocols meet the

criteria set in Chapter 4, and whether or not the protocols can overcome the

problems that the existing protocols have (these problems are stated in Chapter

3).

The first two sections will present the results and evaluations for the initiali-

sation stage and the authentication and key establishment protocol. They will be

followed by the results and evaluations for the pre-handoff and handoff protocols.

It should be reiterated that all of the simulations are run on a Pentium IV

1.8GHz processor PC that has 256Mb of RAM and runs Redhat Linux 7.2. The
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network simulator is ns2 [MF] version 2.27. The Openssl library is also applied

for the protocol implementations.

Note that we validate the simulations and protocols by monitoring the outputs

and activities of all of the mobile nodes in the simulated networks. This way, we

can be sure that the mobile nodes and the protocols behave in the ways that we

expect.

6.1 Initialisation

We refer back to Step 0 in Section 4.1.4. We can see that Step 0 is the initialisation

stage, i.e. computing the RSA and Diffie-Hellman components prior to initiating

the authentication. In this section, we will present the time it takes to compute

the RSA and Diffie-Hellman components. We run the calculations of RSA and

Diffie-Hellman separately. The times recorded in the table are the average times

taken to complete each calculation. Each function is looped fifty times. The total

time is then divided by fifty in order to give an average of an individual time.

This process is repeated ten times. The results obtained from this experiment

are shown in the Table 6.1.

6.1.1 Results

Table 6.1 shows how long it takes to compute the RSA and DH components. The

times in the table have been rounded to three significant figures. Figure 6-1 is

the bar chart generated from Table 6.1. The bar chart shows the time taken to

complete the initialisation stage each time the protocol is executed. From the

values we have in the table, on average it takes 3.09×10−5 seconds to complete the

computation of RSA components, and 5.67×10−5 seconds to compute the Diffie-

Hellman components. Overall, the mean value of the time taken to complete the

initialisation step is 8.76× 10−5 seconds.

6.1.2 Evaluation

The RSA and Diffie-Hellman public and private components are calculated at

this stage so that the time taken to complete the actual authentication and key

establishment protocol can be reduced. The Diffie-Hellman calculation could
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Table 6.1: Time taken to compute RSA and DH components
RSA (×10−5seconds) DH (×10−5seconds)

1 3.28 5.43
2 7.73 6.45
3 2.34 7.66
4 2.85 4.69
5 2.85 6.76
6 1.95 4.65
7 2.11 6.59
8 2.62 4.26
9 3.01 5.55
10 2.15 4.68

Figure 6-1: Time taken to complete the initialisation stage

actually be integrated into the authentication protocol itself. However, if that

were the case, there could be a short delay during the authentication (hence it

would take longer), which is not what we want.

The results suggest that on average it takes approximately 0.000031 seconds

in order to complete the initialisation step. Every mobile node will have to

complete this initialisation before initiating the authentication protocol. Even

though 0.000031 seconds may not seem to be a noticeable delay, it is a good idea

to pre-compute these components prior to the actual authentication, so that the

time taken to carry out the authentication protocol can be shortened.
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6.2 Authentication and key establishment

For each scenario in Section 5.1, the results of the authentication protocol are

categorised into the results for outdoor environment and indoor environment. We

first present the time taken for a pair of mobile nodes to authenticate each other.

This will be followed by the results for many-to-one authentications, one-to-many

authentications and many-to-many authentications. Note that the times recorded

in the tables are the times obtained from the ns2 simulation files (or trace files).

6.2.1 One-to-one authentications (Scenario 1)

This scenario is where only two mobile nodes authenticate each other at any one

time. First of all, the outdoor environment, Table 6.2 shows the time taken to

complete the authentication process each time the simulation is run. From the

results we have gathered, the average time taken for the authentication protocol

to complete between two parties is 0.0099 seconds or 9.90 milliseconds.

Secondly, the indoor/office environment, the times recorded when running the

simulation are shown in Table 6.2. On average in the indoor/office environment,

the time taken to complete the authentication and key establishment between

two mobile nodes is 0.0101 seconds or 10.10 milliseconds. These times exclude

the initialisation step.

Table 6.2: Time taken to complete the authentication (in seconds)
Authentication number Outdoor Indoor

1 0.0094 0.0094
2 0.0094 0.0094
3 0.0094 0.0094
4 0.0094 0.0094
5 0.0090 0.0094
6 0.0090 0.0094
7 0.0090 0.0101
8 0.0111 0.0116
9 0.0110 0.0110
10 0.0120 0.0120
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6.2.2 Many-to-one authentications (Scenario 2)

In scenario 2, more than one mobile node send a request message to the same ex-

isting member simultaneously. Table 6.3 records the results that we have gathered

from running the simulations in outdoor environment and indoor environment.

The results are plotted in the graph shown in Figure 6-2.

Table 6.3: Time taken to complete the authentication when receiving multiple
request packets

Number of nodes Time outdoor (s) Time indoor (s)
2 0.0192 0.0212
3 0.0267 0.0279
4 0.0384 0.0397
5 0.0477 0.0494
6 0.0554 0.0569
7 0.0680 0.0692
8 0.0782 0.0806
9 0.0877 0.0912
10 0.0937 0.0958

Figure 6-2: Time taken to complete the authentication when receiving multiple
request packet
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6.2.3 One-to-many authentications (Scenario 3)

This scenario is where a mobile node broadcasts a request packet, and those

that receive the packet will respond accordingly, i.e. the joining mobile node

simultaneously carries out the authentication with two or more mobile nodes.

The simulations are run with two up to ten neighbouring nodes (i.e. the request

message reaches two up to ten mobile nodes), and the times it takes to complete

the process are recorded. Again, we run the simulations in both outdoor and

indoor environments. The Table 6.4 shows the results that we have obtained.

The results are plotted and the graph is shown in Figure 6-3. Note that each of

the times in the Table 6.4 is an average time taken to complete the authentication

with n nodes.

Table 6.4: Time taken to complete the authentication with n nodes
Number of nodes Time outdoor (s) Time indoor (s)

2 0.0236 0.0256
3 0.0298 0.0312
4 0.0379 0.0365
5 0.0451 0.0456
6 0.0526 0.0506
7 0.0595 0.0647
8 0.0626 0.0676
9 0.0710 0.0767
10 0.0802 0.0806

From Figure 6-3, it can be seen that the relationship between the time taken

to complete the authentication and the number of mobile nodes is approximately

linear. As a result, we can form one equation for the outdoor environment and

one equation for the indoor environment (even though the times recorded for

both environments are almost identical), so that it will be possible to estimate

the time it would take one mobile node to carry out the authentications with n

mobile nodes. Equation 6.1 is a linear equation for the outdoor environment and

Equation 6.2 is a linear equation for the indoor environment. For both equations,

y is the time and x is the number of mobile nodes.

y = 0.007075x+ 0.00945, (6.1)
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Figure 6-3: Time taken to complete the authentication protocol

where x ≥ 2. Equation 6.1 approximately has the sum of squared absolute error

of 1.358e− 05.

y = 0.006875x+ 0.01185, (6.2)

where x ≥ 2. Equation 6.2 approximately has the sum of squared absolute error

of 3.729e− 05.

6.2.4 Many-to-many authentications (Scenario 4)

This is the scenario where a number of mobile nodes are randomly positioned, and

the authentication protocol is carried out by all the nodes as if they are setting

up a network for the first time. In this simulation, all the nodes are placed in

such a way that all of them are within each other’s coverage.

Again we have obtained the results, i.e. the time taken to complete all of

the authentications, for the outdoor and indoor environments. The times in

Table 6.5 are the average times calculated for each set of mobile nodes. Figure 6-

4 represents the results for the outdoor setting and indoor setting.

From the graphs shown in Figure 6-4, we can see that there is a non-linear

relationship between the number of mobile nodes and the time taken to form a

network (or to authenticate one another). Specifically, an equation, which can

be used to estimate how long it would take n mobile nodes to set up a private
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Table 6.5: Forming a mobile ad hoc network
Number of nodes Time outdoor (s) Time indoor (s)

2 0.0202 0.0202
3 0.0378 0.0378
4 0.0977 0.0970
5 0.1289 0.1370
6 0.1738 0.1744
7 0.2703 0.2721
8 0.3269 0.3288
9 0.4668 0.4658
10 0.5893 0.5907
15 1.1634 1.1659
20 2.0322 2.0521
25 3.8425 3.8526

mobile ad hoc network, has been formed. Equation 6.3 and Figure 6-4 show that

there is approximately a quadratic relationship between the time and number of

mobile nodes. In the equation, y represents the time taken to “form” an ad hoc

network, and x is the number of mobile nodes. Remember that in this scenario,

all of the nodes are within each other’s range.

y = 0.00505x2, (6.3)

where x ≥ 2. Equation 6.3 approximately has the sum of squared absolute error

of 0.1537.

6.2.5 Evaluation

The main purpose for simulating the four scenarios is that we would like to en-

sure that the authentication protocol will work in all of the possible situations.

They include one-to-one authentication (scenario 1), many-to-one authentication

(scenario 2), one-to-many authentication (scenario 3) and many-to-many authen-

tication (scenario 4).

Once the initialisation is done, the authentication protocol can be carried out.

The first scenario shows that the time taken to complete the authentication and

key establishment between two parties is approximately 10 milliseconds in both
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(a) Forming a network outdoor (b) Forming a network indoor

Figure 6-4: Time taken to form a network when all mobile nodes are in each
other’s coverage

outdoor and indoor environments.

In the second scenario where a mobile node receives more than one request

packet (many-to-one), the results and graph show that the time taken that node

to complete the authentication protocol with all other nodes is approximately

directly proportional to the number of the request packets he receives. It is

not surprising to see that the time taken to complete the authentication in this

scenario is approximately n × the time taken to complete the authentication with

one node, where n is the number of received request packets. This is because a

full authentication and key establishment has to be done with each of the mobile

nodes.

The graph of scenario 3, where a mobile node broadcasts a request packet,

shows an approximately linear relationship between the time and the number of

nodes that the request packet can reach. Some of the times recorded appears to

be a little bit longer than n × the time taken to carry out authentication with one

node, where n is the number of reachable mobile nodes. The reason is that if and

when the broadcasting node receives more than one reply packet, it is necessary

to compute a new set of Diffie-Hellman components for each of the additional

replies. This is because it is important to have a different set of private and pub-

lic components for establishing a different pairwise session key. If the same set of
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Diffie-Hellman components were used for all key establishments, perfect forward

secrecy and backward secrecy would not be achieved. In other words, each of

the keys established would not be entirely unique, which would make it more

vulnerable to attacks by passive adversaries (who know a subset of the key). By

computing a new set of Diffie-Hellman components, we guarantee backward se-

crecy and prevent known-key attacks. That is, by using the knowledge of the old

keys, the adversaries will not be able to establish the new keys. A full description

of the known-key attacks can be found in Section 12.17 of [MvOV96]. Further-

more, this can prevent any passive adversaries from discovering any preceding

keys by using the knowledge they have on the newly established keys. Hence,

perfect forward secrecy is achieved. A formal description of forward secrecy can

be found in Section 12.16 of [MvOV96].

The results and graph obtained from running the simulations in scenario 4

show how long it takes mobile nodes to complete the authentication and key es-

tablishment when all of the nodes initiate the protocol by broadcasting a request

packet simultaneously. The times recorded in the table suggest that it does take

longer than n × the time taken to carry out authentication with one node. This

is because each mobile node sends a request packet and also receives a request

packet, which means that potentially the authentication protocol will be carried

out twice by each pair of the nodes. However, the results in Table 6.5 indicate

that it does take less than 2 × n × the time taken to carry out authentication with

one node. This indeed is what we expect since the protocol is implemented in

such a way that when this situation occurs (i.e. a node sends a request and also

receives a request), the established keys are compared with one another. That

is if they are already shared between two parties, there will not be any need to

complete the other outstanding authentication and key establishment.

We have covered all of the possible situations that could take place when

joining a private local mobile ad hoc network. The results have been obtained.

Now we will discuss whether the performance of the authentication and key es-

tablishment protocol meets the criteria set in Section 4.1.1, and whether it can

overcome the problems (Section 3.1) that the existing authentication protocols

have.

Section 4.1.1 states the three goals that the authentication and key estab-
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lishment protocol must achieve. They are mutual authentication, pairwise key

establishment and protocol efficiency.

Firstly, by completing the authentication protocol, mutual authentication is

automatically achieved. Mutual authentication is achieved within the first three

messages of the protocol in that both parties will have proved to one another that

they hold the same shared secret, K, hence they are authorised to be members

of the same ad hoc network. In more detail, the request message is encrypted

with the shared secret, K. If the recipient (of the request packet) also possesses

the same secret, he will be able to decrypt the message. Some of the decrypted

information is then used as part of the reply packet, specifically the sequence

number and the initiator’s random nonce. In addition, the reply packet contains a

challenge text. When the initiator receives the reply packet, he checks whether the

nonce and the sequence number match his own nonce and the expected sequence

number respectively. If they match, he knows that the party that sent the reply

message must have the same shared secret, K. The received challenge text is

then encrypted using the secret, K. The encrypted challenge is sent back to the

other node. Upon the receipt of the encrypted challenge, the receiver encrypts

his challenge that was sent earlier. Both encrypted challenge texts are compared.

If they are the same, then both parties must possess the same shared secret, K.

Having done this, both parties can be sure that the other node holds the same

secret, hence mutual authentication is accomplished.

Pairwise session key establishment is the second goal that our authentication

protocol must achieve. That is at the end of a protocol run, the two participating

parties must possess the same secret key, which is freshly generated. Messages

three and four of the protocol are responsible for the key establishment. In the

third packet, one node sends his Diffie-Hellman public components to the other

node. After receiving the packet, the receiver will be able to compute a new key

using the received information and his private components. This node then sends

his Diffie-Hellman public components back to the sender of the third message.

Upon the receipt of the message, a new key can be computed. By the definition

of Diffie-Hellman key agreement, the two established keys will be the same. The

simulation results confirm that the keys computed by two authenticating mobile

nodes are indeed the same. Therefore, by using Diffie-Hellman keying mechanism

as part of the authentication and key establishment protocol, we have achieved
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the second objective, which is the establishment of a new pairwise session key.

The final design criteria that the authentication protocol will be evaluated

against is the efficiency, in terms of the performance. In Section 4.1.1, we state

that we would like the protocol to involve as few messages as possible and to run

as fast as possible, while also achieving the other two goals. In our authentication

and key establishment protocol, four messages are exchanged between two mobile

nodes. Within these four messages, we achieve mutual authentication and the

establishment of a new pairwise session key as explained above. Excluding the

initialisation stage, no matter which setting or which situation a mobile node is in,

on average the time taken to complete the authentication and key establishment

between two mobile nodes is approximately ten milliseconds. The time taken

only increases linearly as the number of mobile nodes authenticating with one

mobile node increases.

However, when a private local mobile ad hoc network is first formed, our re-

sults suggest that the time taken for all the nodes (if they are all within each

other’s radius) to authenticate and establish a new pairwise key with one another

increases quadratically as the number of mobile nodes increases. This is admit-

tedly the negative point of our protocol in that there will be a noticeable delay

if and when there are more and more mobile nodes within the coverage of one

another. Nevertheless, the network setup only has to be done once, and all the

mobile nodes will be able to communicate with one another securely due to the

keys that have been established as a result of the protocol run(s).

Once the network is set up, the time taken for a mobile node to complete

the authentication when joining the network will increase linearly as the number

of mobile nodes that it can reach increases. Even though this is the case, the

results appear to be satisfactory in terms of the speed of the protocol, especially

in a one-to-one situation which takes around ten milliseconds only. Even if a

joining node can reach around 140 mobile nodes, it would take less than one

second to complete the authentication as well as establish a new shared secret

with all of them in the outdoor environment, according to our Equation 6.1. This

situation (having more than 140 reachable nodes) in the indoor environment is

very unlikely, considering the maximum range of each of the mobile nodes, as we

have found in the network simulator, is only about five to seven metres. On the

whole, the time taken for a mobile node or mobile nodes to join an existing ad
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hoc network, whether it is a one-to-one, one-to-many or many-to-one situation,

is very little when we think about the work that the protocol accomplishes (i.e.

mutual authentication and the establishment of a new key with every reachable

nodes) after the protocol has finished.

It appears that the authentication and key establishment protocol has met all

of the criteria set in Section 4.1.1. Now we will analyse it to see whether or not our

protocol can overcome the problems of the existing protocols (see Section 3.1).

The advantages that our authentication and key establishment protocol has

over the existing protocols are as follows. First of all, the main problem with ID-

based cryptography is that a mobile node has to contact a private key generator

in order to get a decryption key. It is also not possible for each node to compute

his own key, and achieve a secure network. Threshold cryptography has a similar

problem in that the mobile node has to contact a number of machines in order

to obtain the private key for decrypting the message. Our protocol overcomes

this problem by integrating the Diffie-Hellman key agreement as part of the au-

thentication mechanism. As a result, each party will hold the keys necessary for

decrypting the messages received, hence there is no need to contact any third

party in order to obtain the key(s). Moreover, having each mobile node hold

a pairwise key for each of his neighbours does not increase the vulnerability or

decrease the security of the network. It actually improves the privacy of the com-

munication between two parties in that only those parties that hold the correct

key can decrypt the message. By not having to contact any other parties, our

protocol provides better efficiency, flexibility and scalability as a result.

Secondly, our protocol has solved the problem of a single point of failure, which

arises in cluster based authentication. Our authentication protocol has each node

working independently of one another. Each of the mobile nodes carries out the

authentication and keying mechanism without relying on any external third party.

This means that even if a mobile node is compromised the mobile ad hoc network

will still function.

Thirdly, the problem of zero-knowledge based authentication explained in [WYOP94]

is that there is a lack of mutual authentication. Our authentication protocol mit-

igates this in the first three messages of the protocol, as explained above.

Fourthly, the problem with the resurrecting duckling techniques and location-
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limited authentication is that the two authenticating parties must be very close to

one another to carry out the protocol securely. When using our protocol, however,

mobile nodes do not even have to be in the line-of-sight of one another to carry out

the protocol, as long as they are within each other’s radius. Our protocol is also

secure according to the analyses and proofs done in Sections 4.1.2 and 4.1.3. This

implies that our authentication protocol provides better flexibility and scalability.

The ability to operate the protocol without “seeing” other mobile nodes is also

an advantage over the secure spontaneous interaction method, which needs some

human interaction when executing the protocol (e.g. looking at flashing lights

or listening to a musical tune). This brings us to another advantage of our

protocol which is there is no need for any human interaction when carrying out our

protocol, as everything is processed in accordance with the protocol description.

On the whole, our authentication and key establishment protocol has ad-

dressed all the problems created or not solved by any of the existing protocols.

This includes the ability for each mobile node to compute his own decryption

key(s), the ability for each node to work without relying on one another, the

ability for the protocol to work in a large scale and the ability of the protocol

to work without any human interaction. Moreover, our authentication and key

establishment protocol appears to fall under the authentication class known as

the homogeneous class of authentication protocols [ARE+05]. The reason for this

is that all mobile nodes in the network have the same role with respect to the

authentication operation.

In general, the authentication and key establishment protocol has met all

of the design criteria that are set in Section 4.1.1. The protocol can achieve

mutual authentication, pairwise key establishment between two mobile nodes,

and efficiency to a certain degree. Our protocol has also overcome the problems

that are present in the existing protocols. However, there is one drawback to the

protocol. That is, the time it takes to set up a network depends on how many

mobile nodes are within each other’s coverage. The more mobile nodes there are,

the longer it would take, as seen in the quadratic relationship explained above.

One might also say that because a shared secret, K, must be known and used

by all the parties when joining the network, there is a risk that if the secret is

compromised then the whole network could also be compromised. We could argue
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that because this protocol is designed to work within a private local mobile ad

hoc network, the shared secret is a must-have, so that any node that would like

to join could be verified that he or she is authorised to be part of the network.

We believe that the authentication and key establishment protocol provides

sufficient security as seen in the proofs and analyses in Chapter 4. Moreover, as

the results of the simulations suggest, the protocol is efficient enough in terms of

the performance to be employed in private local mobile ad hoc networks.

The next section provides the results and evaluations of the pre-handoff, i.e.

what happens after a network is formed or after a new node has joined the

network.

6.3 Pre-handoff

The results of the simulations are presented in Table 6.6. The table shows how

long it takes one mobile node to process the security information of n mobile

nodes, after Hello messages have been exchanged and the multipoint relays have

been selected. By “processing” information, we mean receiving and storing the

RSA public components of each node, and computing new Diffie-Hellman com-

ponents, so that the node is ready for the handoff protocol. The results are then

plotted and shown in Figure 6-5.

Note that each of the times given in the table is the average time obtained

from running each simulation ten times. Also note that we only concentrate

on the performance of this stage of the protocol, because the exchange of Hello

messages and the topology information updates are already parts of most routing

protocols, and the performance of the multipoint relay algorithm can be found

in [QVL00].

6.3.1 Evaluation

The aim of the pre-handoff stage is to get mobile nodes ready for the handoff

process. This stage involves the exchange of Hello messages, the selection of

multipoint relays and the security information processing.

As explained in Chapter 4, the multipoint relay algorithm is applied so that a
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Table 6.6: Time taken to process security information
Number of nodes Time (s)

1 0.0000
5 0.0031
10 0.0113
20 0.0141
30 0.0227
40 0.0305
50 0.0379
60 0.0492
70 0.0504
80 0.0515
90 0.0535
100 0.0613
110 0.0660
120 0.0730
130 0.0758
140 0.0824
150 0.0973

mobile node can select a set of one-hop neighbours to pass his security information

to his two-hop neighbours. In using the multipoint relay algorithm, the time

taken to relay messages to the two-hop neighbours of any mobile node can be

reduced approximately by half when compared to the normal flooding technique

(according to the findings in [QVL00]). Moreover, multipoint relaying creates

much less traffic in the mobile ad hoc network, which has bandwidth limitations,

as mentioned in the earlier chapters. By generating less traffic and taking less

time to send messages, we claim that the multipoint relay algorithm can help

overcome some of the mobile ad hoc network limitations - including bandwidth

limitations, computational power limitations and battery life limitations.

The simulations test how long it would take one mobile node to process the

security information of his two-hop neighbours received from the selected mul-

tipoint relays. The simulations are run with the number of two-hop neighbours

ranging from one to one-hundred and fifty nodes. The results and graph suggest

that there is approximately a linear relationship between the number of nodes

and the time taken to process the security information. Our findings show that
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Figure 6-5: Time taken to process security information

it takes less than 0.1 seconds to process the information of one-hundred and fifty

mobile nodes. This is significant because this step has to be completed before

a handoff process can begin, it is important that the information is processed

quickly. In processing the information for one-hundred and fifty nodes in less

than 0.1 seconds, we have demonstrated that it is possible to complete this step

before a handoff protocol is initiated (although how much information can be

processed also depends on the speed of the roaming node as will be seen in the

next section).

The selection of multipoint relays and the processing of security information

of mobile nodes constitute a large part of the pre-handoff stage. We have not

mentioned the performance of the exchange of Hello messages and the updates

of topology tables and neighbour lists, because most routing protocols use these

mechanisms anyway. The multipoint relay algorithm is useful in this stage be-

cause it helps to reduce the amount of traffic within the network. We have also

demonstrated that it is possible to complete the security information processing

within a very short period of time.
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6.4 Bringing the two together

We have already illustrated that separately the authentication and key establish-

ment and the pre-handoff protocol function as we expect. This time, we combine

the two protocols in larger networks, which consist of twenty mobile nodes, fifty

mobile nodes, one hundred nodes, one hundred and fifty nodes, two hundred

nodes and two hundred and fifty mobile nodes. All of the network layouts can

be found in Appendix B.

One significant outcome that we have found during the simulations is that

as the network becomes denser (i.e. there are more mobile nodes within the

network), there seems to be a more noticeable delay before the authentication

protocol and the pre-handoff protocol are completed.

On the other hand, it appears that the simulations give the results as expected.

That is, the correct topological information is produced after the authentication

has been accomplished as well as after the pre-handoff protocol. As a result of

the pre-handoff protocol, the mobile nodes process and store the security infor-

mation correctly. Also when “adding” new mobile nodes to the network, the

authentication and key establishment for each mobile node behaves in one of the

four scenarios that we have tested earlier. The pre-handoff stage also behaves as

our protocol description states when there is a change in the network topology.

6.4.1 Evaluation

As we have mentioned before, the main purpose of the simulations in this section

is that we would like to demonstrate that our authentication protocol and the

pre-handoff stage are able to cope with a larger number of mobile nodes within

larger settings.

For the authentication protocol, specifically when the network is first set up,

in these larger settings, the time taken to complete is approximately equal to

that of a “sub-network” with the biggest number of mobile nodes that can reach

one another. The reason that it takes longer when there are more mobile nodes

lies within the scenario 4 of the authentication simulations (or many-to-many

authentications) as well as the fact that the denser the network, the more mobile

nodes will be within each other’s radius. In other words, as Equation 6.3 suggests,

the more mobile nodes there are that are within each other’s coverage, the longer
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it will take to complete the authentication and key establishment.

Similarly, for the pre-handoff stage in the larger settings, the time taken to

complete this stage is approximately equal to the time it takes a mobile node,

which has the most security information to process (i.e. the node that has the

biggest number of two-hop neighbours) to complete the pre-handoff stage. Again,

if the density of the network is greater, each mobile node should have more neigh-

bours, which means that his one-hop neighbour should also have more neighbours.

Those neighbours would then become other nodes’ two-hop neighbours. There-

fore, as it is shown in the previous section, the bigger the number of two-hop

neighbours, the longer it will take to complete the pre-handoff stage.

From the simulations in this section, it is shown that our authentication and

pre-handoff protocols are able to function in larger and more complex settings as

well as smaller and less complex ones (as shown in previous sections).

Once mobile nodes have completed the authentication and pre-handoff pro-

tocols, they are ready to initiate or handle the handoff process, whose results of

the simulations will be shown in the next section.

6.5 Handoff

We divide the results into several sections according to the settings of the simula-

tions - outdoor environment (single handoffs), indoor environment (single hand-

offs), simultaneous (multiple) handoffs and handoffs with non-stationary mobile

nodes.

6.5.1 Outdoor environment (single handoffs)

The results presented here are the average times that are obtained from running

each particular setting ten times. The speed of the roaming node is varied from

the average walking speed to the speed of a Eurostar train. The results are

presented in Table 6.7.

In the Table 6.7, 1.34 ms−1 is the average walking speed, 5.00 ms−1 is the

average jogging/running speed, 13.4 ms−1 is the speed of a node traveling at 30

mph, 26.8 ms−1 is the speed of a mobile node travelling at 60 mph and 83 ms−1
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(or 186 mph) is the average speed of the Eurostar.

Note that each of the times in the Table 6.7 is the total amount of time

starting from when the disassociation wait (or pre-disassociation) packet is sent

until the disassociation message is received by the old mobile node (i.e. the node

that the roaming node has moved away from).

Table 6.7: Time taken to complete the handoff protocol
Speed (ms−1) Time (s)

1.34 0.0102
5.00 0.0093
13.4 0.0097
26.8 0.0092
83.0 0.0094

From the results that we have acquired, the average time taken to complete

the handoff process is 0.00956 seconds or 9.56 milliseconds.

The second simulation, explained in Section 5.4.1, is to determine the max-

imum number of two-hop neighbours the roaming node can have, so that he

can complete the pre-handoff phase before initiating a new handoff with any of

those two-hop neighbours (in case the handoffs are to happen in succession). The

Table 6.8 shows the results of the simulations.

Table 6.8: The maximum number of two-hop neighbours, whose information the
roaming node can process prior to a next handoff

Speed (ms−1) Number of nodes
1.34 560
5.00 170
13.4 67
26.8 33
83.0 11

6.5.2 Indoor environment (single handoffs)

This section presents the results of the handoff protocol simulated in an in-

door/office environment. These simulations include the special scenarios (ex-
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plained in Section 5.4.2) as well. Table 6.9 shows the time taken to complete a

handoff process in the following scenarios. Simulation 1 is where a mobile node

moves in a straight line (which could be thought of as moving along a straight

corridor), simulations 2, 3, 4 and 5 are where a mobile node moves diagonally

(which could be thought of as a mobile node moving past a corner in a building)

in different network setups. Each of the simulations was run ten times. The

average time for each of them is recorded in the Table 6.9.

Table 6.9: Time taken to complete the handoff process indoor
Scenario Time (s)

1 0.0115
2 0.0287
3 0.0134
4 0.0098
5 0.0261

From the scenarios 1 to 5, the results we have obtained suggest that on average

the time taken to complete the handoff process in an indoor environment is

approximately 0.0179 seconds or 17.90 milliseconds.

Special cases

For the special cases, there are two methods that allow us to accomplish a hand-

off. They include the handoff protocol with additional messages and the re-

authentication protocol. Both methods are explained in Section 5.4.2. Each of

the simulations was run ten times. The average times of the simulations are pre-

sented in the Table 6.10. Figure 6-6 shows a bar chart comparing the time taken

to complete a handoff process using the two different approaches.

The results that are shown in Table 6.10 suggest that if the handoff protocol

with extra messages is used in the special cases, the average time it takes to

complete a handoff is approximately 0.0267 seconds or 26.7 milliseconds. If the re-

authentication process is carried out, however, the average time is approximately

0.0215 seconds or 21.5 milliseconds.
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Table 6.10: Time taken to complete the special case of handoff
Method Time (s)

Handoff (1) 0.0338
Handoff (2) 0.0232
Handoff (3) 0.0231

Re-authentication (1) 0.0318
Re-authentication (2) 0.0164
Re-authentication (3) 0.0173

Figure 6-6: Time taken to complete a handoff in special cases

6.5.3 Simultaneous handoffs

The main purpose of these simulations is that we would like to demonstrate

whether or not our handoff protocol will be able to handle the situation where

multiple handoffs happen simultaneously.

The results of the simulations show that the mobile nodes, which roam to

either Node (0) or Node (2), update their neighbour lists and topology tables,

and are added to the neighbour list and the topology table of the “destination”

node correctly. They are also correctly disassociated from Node (1), and vice

versa.

Figure 6-7 shows simultaneous handoffs that take place in a sample network.

Figures 6-7(a) and 6-7(b) display the setup of the sample network together with

an extract from our protocol output showing the list of one-hop neighbours of
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each mobile node, after the authentication protocol has been carried out. Fig-

ure 6-7(c) provides the setup of the network after the mobile nodes have moved.

Figure 6-7(d) provides the list of one-hop neighbours of each mobile node, after

the handoffs have been carried out simultaneously by the roaming mobile nodes.

From the extract of the protocol output (as well as the results of other simula-

tions), it can be seen that the mobile nodes and the handoff protocol are able to

handle simultaneous handoffs.

represents the movement of a mobile node.

(a) Network setup
before handoff

(b) Lists of neighbours before handoff

(c) Network setup af-
ter handoff

(d) Lists of neighbours after handoff

Figure 6-7: Results of simultaneous handoffs

127



6.5.4 Handoffs with non-stationary nodes

As we have explained before, the main aim of running these simulations in this

section is to illustrate what happens when a mobile node roams away from another

mobile node, which is also moving, but in a different direction. That is we would

like to see whether the nodes would be able to operate the handoff protocol and

the disassociation process properly.

We have obtained the results, which suggest that mobile nodes carry out the

handoff protocol correctly as well as properly disassociate themselves with both

the other moving mobile nodes and the ones that are stationary.

Figure 6-8 shows the handoffs that take place in a sample network. Fig-

ures 6-8(a) and 6-8(b) display the setup of the sample network together with an

extract from our protocol output showing the list of one-hop neighbours of each

mobile node, after the authentication protocol has been carried out. Figure 6-8(c)

provides the diagram of the network after the four mobile nodes have roamed.

Figure 6-8(d) provides the list of one-hop neighbours of each mobile node, after

the handoff protocol. From the extract of the protocol output (as well as the

results of other simulations), we can see that the mobile nodes managed to carry

out the handoff protocol as well as the disassociation process correctly.

6.5.5 Evaluation

We have presented the results of the simulations for the handoff protocol in both

outdoor environment (where the line-of-sight between mobile nodes is clear) and

indoor environment (where nodes are separated by hard partitions, hence the line-

of-sight between nodes is obstructed and the coverage of a node is not always a

perfect circle), single and multiple handoffs, and handoffs with stationary and

non-stationary mobile nodes. In this section, the results will be analysed, and

we will explain whether our handoff protocol satisfies the requirements set in

Section 4.3.1 and whether it solves the problems, explained in Section 3.2, that

the existing handoff protocols have.

Once the pre-handoff stage is finished, mobile nodes will be ready to handle

the handoff process. For the outdoor environment, our results show that the

average time taken to complete the handoff protocol is approximately 0.00956

seconds or 9.56 milliseconds.
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represents the movement of a mobile node.

(a) Network setup
before handoff

(b) Lists of neighbours before handoff

(c) Network setup af-
ter handoff

(d) Lists of neighbours after
handoff

Figure 6-8: Results of a sample simulation

The results of the simulations that are set in the outdoor environment indicate

that no matter how fast the roaming node travels, it takes roughly the same

amount of time to complete the handoff protocol. We have shown by running

these simulations that our handoff protocol is able to cope with variety of speeds

of the roaming node, ranging from the walking speed up to the speed of Eurostar.

The results of the next simulations suggest that there is a limit of how many

two-hop neighbours a travelling node can have while roaming. In details (with

the help of Figure 5-5), once Node (3) completes the handoff process, by the

mechanism of any routing protocol the Hello messages will be exchanged (due to

the change in network topology) in order to update the topology information. In
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addition, our pre-handoff phase states that the roaming node should have all of

the security information of the two-hop neighbours ready for the future handoffs.

With reference to Figure 5-5, this means that Node (3) will have had to process

the information of all of the Node (1)’s one-hop neighbours before he can carry

out the next handoff.

In the case where the node never stops moving, our results show that if a

mobile node is travelling at 1.34 ms−1 or at an average walking speed, the node

can handle approximately up to 560 two-hop neighbours. That means the roam-

ing node can process the information of 560 mobile nodes before starting the

next handoff. When a roaming node travels at 5 ms−1 or at a running speed,

the maximum number of nodes that he can process before the next handoff is

approximately 170 nodes. When travelling at 30 mph and 60 mph, a node can

handle 67 nodes and 33 nodes respectively. If a node travels at 83 ms−1 or at the

average speed of the Eurostar, he can process the information of 11 other nodes

before initiating the next handoff. These results indicate that the faster a node

travels, the less information he can process in time for the next handoff protocol.

The main purpose of running these simulations is that we would like to know the

limitation of the handoff protocol if it were to happen in succession.

For the handoff protocol in the indoor settings, we will analyse the results

from the scenarios 1 to 5 (handoffs with no extra messages) separately from the

special cases. The time taken to complete the handoff protocol in the scenarios

1 to 5 tend to vary from approximately 10 milliseconds to 29 milliseconds, which

makes the average time approximately 17.90 milliseconds. The results are as

expected due to the properties of the indoor environment. That is each of the

mobile nodes is separated from one another by hard partitions, and the coverage

of each mobile node is not always a perfect circle. This means that the strength

of the signal, the ability to receive the signal and the sensitivity of the antenna of

any one mobile node is not constant around the node. Furthermore, because of

the partitions the signal strength is sometimes unpredictable, i.e. the signal may

be stronger in one place but considerably weaker in another. Another factor that

contributes to the variation of the time taken to complete the handoff process is

the amount of time it takes a disassociation message to travel from the roaming

mobile node to the node that he/she is moving away from.

For the special cases, where the signal from a three-hop neighbour is stronger
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than that from a two-hop neighbour. The problem with this is that by the

mechanism of our pre-handoff protocol, a roaming node only has the information

to carry out the handoff protocol with his two-hop neighbours. However, it has

been demonstrated by the simulations that these special cases can be handled

by both our handoff protocol with additional messages and the re-authentication

method.

The simulation results suggest that the average time taken to complete the

handoff protocol in the special cases using our handoff protocol with additional

messages is approximately 26.70 milliseconds. The time taken is longer than that

of the normal cases. This is as we expected because there are four extra messages

exchanged before the protocol can be completed. With reference to Figure 5-7

as an example, those four messages are that Node (3) has to obtain Node (0)’s

information from Node (2), and Node (0) has to obtain Node (3)’s information

from Node (1). This can be accomplished because Node (0) is Node (2)’s two-

hop neighbour and Node (3) is Node (1)’s two-hop neighbour. By completing

the pre-handoff protocol prior to the handoff, they should have the necessary

information to pass on to Node (3) and Node (0).

The other method that has been simulated for the special cases is the re-

authentication. The simulation results show that on average, it takes approxi-

mately 21.50 milliseconds to complete a handoff. The time taken to complete a

special case of a handoff is not as long as that of the normal handoff protocol due

to the smaller number of messages being exchanged during the process. That

is, seven messages are needed for this re-authentication method rather than nine

messages for the handoff protocol.

At this stage, it seems appropriate to remind ourselves that the first mes-

sage of the authentication protocol, which is also the first message of the re-

authentication process, is encrypted using the key, K, shared by all members

of a private mobile ad hoc network. For the special cases, even though it takes

less time for the re-authentication method to complete a handoff process, we

would still recommend that the usual handoff protocol with additional messages

should be employed. This is because we would like to avoid the constant re-use

of the shared secret, K. The use of the shared secret, K, should be restricted

to authentication purpose when a mobile node first joins the network only. If

the re-authentication method were used during a handoff process, the constant
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re-use of the shared key could make the wireless network more vulnerable in that

an adversary could carry out statistical attacks to recover plaintext.

In addition, we have also tested two further scenarios, including simultaneous

handoffs and the situation where mobile nodes move away from each other into

the coverage of different nodes. We have shown that our handoff protocol is able

to cope with more than one handoff at any one time. We have also demonstrated

that when mobile nodes move away from one another and enter the coverage of

different mobile nodes our handoff protocol functions properly, and the nodes

disassociate themselves from each other correctly, too (as shown by the list of

neighbours of each mobile node in the protocol output).

From the handoff simulations that were run and the results that were ob-

tained, we have shown that our handoff protocol is able to cope with both single

and multiple handoffs as well as handoffs with both moving and non-moving mo-

bile nodes.

We will now discuss whether the performance of the handoff protocol satisfies

the criteria set in Section 4.3.1, and whether the protocol can overcome the

problems, mentioned in Section 3.2, that the existing handoff protocols have.

The four criteria, stated in Section 5-7, that the handoff protocol must achieve

are make-before-break, protocol efficiency , pairwise key establishment with the

new node and mutual authentication.

First of all, the simulations have shown that our handoff protocol can achieve

make-before-break in all of the scenarios that we have tested, even in the special

case where extra messages are exchanged. That is the roaming node makes a new

connection with the node he is approaching before losing the connection with the

one he is moving away from. However, there is a limit to how many (new) two-hop

neighbours a travelling node can have after the first handoff (in the case where

the node keeps on travelling, more handoff processes will be necessary). By the

description of our protocol(s), the roaming mobile node must have all of the

necessary information of all of his two-hop neighbours before a handoff process

can begin. This is important, because if all of the information is available, it

will not matter which direction the node is moving and which party the node

carries out the handoff protocol with. Even though there is a limit, the number

of two-hop neighbours that a roaming node can have is still large (although the
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number decreases as the speed of the node increases). Despite the limitation, we

claim that our handoff protocol can run quickly enough to satisfy the first design

criteria, make-before-break.

Secondly, the travelling node must be able to establish a pairwise session

key with the node that he is approaching. The key establishment is achieved

during the exchange of the third and fourth messages of the protocol, namely

the Handoff Request and Handoff Return. The Diffie-Hellman key agreement

method is used to accomplish this task. By the definition of Diffie-Hellman key

agreement, the two parties should end up with the same key. The simulation

results have shown that the keys established by the roaming node and the “new”

node are indeed the same. Therefore, by incorporating this keying mechanism

into our handoff protocol, we have achieved our objective in having two mobile

nodes compute a new pairwise session key.

Protocol efficiency is the third goal that our handoff protocol must achieve.

The results of the simulations in both outdoor and indoor settings show that

it takes approximately ten and twenty milliseconds respectively to complete the

handoff protocol. This is less than the time recommended by the International

Telecommunication Union or ITU. The ITU guidance states that the total handoff

latency should be less than fifty milliseconds. This claim is also supported by

Ben Guderian, the director of marketing at SpectraLink, who says “As you go

above 50 milliseconds, you start to run into situations where you have to have

larger buffers in order to compensate for the fact that there’s that variability

in how long the handoff is going to take. What happens when you have larger

buffers is that adds delay into the system. When you get above 50 to around 100

milliseconds, it’s a noticeable delay, kind of like what we used to deal with satellite

telephone calls.” On the whole, five messages (nine messages in the special cases)

are exchanged between nodes during the handoff process. Within that time, the

roaming node successfully completes the handoff, disassociates himself with the

“old” node and establishes a new pairwise key with the “new” node. On average,

this can be done more than twice as fast as the time recommended by the ITU.

One factor that contributes to the fast performance of the handoff protocol is that

the calculations of Diffie-Hellman components (needed for key establishment)

have been done during the pre-handoff protocol. We, therefore, claim that, in

terms of the performance, our handoff protocol suffices the efficiency criteria.
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The final criteria to be met is mutual authentication between the roaming

node and the node he/she is approaching. This is achieved during the exchange

of the actual handoff messages, i.e. messages 3 and 4 of the protocol. That

is, the travelling node sends a Handoff Request message to the node he/she is

approaching together with his/her signature. Upon receiving the message, the

new node checks the identity of the sender in the existing topology table as well as

verifying the sender’s signature. If the sender exists as a member of the network

and the signature verification succeeds, the new node sends a reply message saying

that the handoff process is allowed. When the reply packet reaches the roaming

node, he/she does the same checking and signature verification process. By doing

this, mutual verification is accomplished.

In addition to those four criteria that the protocol has so far satisfied, there is

another feature that our handoff protocol has achieved. That is pre-authentication.

What we mean by pre-authentication of handoff is that when roaming, the trav-

elling node does not have to be fully authenticated again. The authenticity and

identity of the roaming node and the node that is being approached are verified

by using the public key cryptosystem (i.e. digital signature) as well as the ex-

istence of the node in the topological information. This is possible due to the

exchange of messages and information processing that has been done during the

pre-handoff stage prior to the current handoff. This pre-authentication feature is

another reason that contributes to the fact that our handoff protocol takes less

time than what the ITU recommends.

It appears that the handoff protocol has met all of the criteria set in Sec-

tion 4.3.1. Now we will analyse the protocol to see whether or not it can overcome

the problems of the existing protocols (see Section 3.2).

The main problem that the existing handoff protocols have is that they are

more suited to solving the macro-mobility problem (movement of mobile nodes

between domains) or handoff in infrastructure wireless networks, whereas our

work focuses on the micro-mobility problem (movement of mobile nodes within

one domain) and handoff in pure mobile ad hoc networks. The existing proto-

cols including [Per96, PC02a, PC02b, TLP99, CP96, MSA03, ABABD03], as

explained in Section 3.2, are not specifically designed to work within mobile ad

hoc networks. They often involve other third party hardware, such as home and
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foreign agents, and/or access points. Some of the protocols even go as far as

having access points decide when mobile nodes should begin a handoff process.

Our goal, therefore, is to solve these problems by eliminating the involvement of

any third party and having the roaming mobile nodes make their own decision

of when to initiate the handoff protocol.

Firstly, as the description of our handoff protocol says, the handoff process

will be initiated if the roaming node receives a stronger signal from some node

other than the one(s) he is currently associated to. From this account, it can be

seen that the roaming mobile node is the one who makes the handoff decision

rather than relying on other party to make it for him. Secondly, the handoff

protocol is designed specifically for pure mobile ad hoc networks, which results

in involving the mobile nodes that are parts of any particular handoff only. In

general, only the roaming mobile node and the node that is being approached

are involved in the actual handoff process. The node that the travelling node is

moving away from is part of the protocol for the disassociation purpose only.

One may argue that our handoff protocol is somewhat similar to the handoff

protocols that are designed for infrastructure wireless networks, such as [MSA03]

and [ABABD03], in that information is transferred among the old and new ac-

cess points, and the travelling mobile node itself. However, the performance of

our protocol has shown that the time taken to complete our handoff protocol

is significantly lower. In the case of [MSA03], on average their protocol takes

approximately ten to twenty times longer than our protocol, about two hundred

to four hundred milliseconds. This fact indicates that our protocol has indeed

improved the efficiency of the existing handoff protocols, which further confirms

that the protocol has achieved the efficiency required by the design criteria stated

in Section 4.3.1.

On the whole, our handoff protocol has addressed the problems that the ex-

isting protocols have. We have overcome the problems by eliminating the extra

third party hardware and having roaming mobile nodes make a handoff decision

themselves. By doing that, the scheme has become more suited to pure mobile

ad hoc networks.

The handoff protocol has met all of the design criteria stated in Section 4.3.1.
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The protocol can achieve mutual authentication, make-before-break, pairwise key

establishment with the approached node and protocol efficiency. Our protocol,

as explained above, has also overcome the problems that the existing protocols

have. Furthermore, we have shown that the performance of our handoff protocol

is significantly better than that of the existing protocols (even though the existing

handoff protocols are not designed for mobile ad hoc networks).

We believe that the handoff protocol provides sufficient security, as seen in

the proofs and analyses given in Section 4.3. Moreover, as the results of the sim-

ulations suggest, the protocol is efficient in terms of performance, which makes

it more suitable to be employed in a private local mobile ad hoc network.

From the descriptions and the performances of the authentication, pre-handoff

and handoff protocols, it can be seen that all of them are closely related. First,

when forming a mobile ad hoc network or joining an existing network, a mo-

bile node broadcasts his RSA public components which are integrated into the

request-to-join packet. All of the mobile nodes that “hear” the request packet

will then hold this information. Next, during the pre-handoff stage, this secu-

rity information is exchanged among mobile nodes (a mobile node, his selected

multipoint relays and his two-hop neighbours). The same information (the RSA

public components) is used for encryption, decryption and identification purposes

during the handoff protocol. By doing this, as suggested before, there is no need

for any node to be completely re-authenticated while carrying out the handoff

process, i.e. pre-authentication.

Summary

This chapter has provided the results and the evaluations of the performances

of the authentication and key establishment protocol, the pre-handoff stage and

the handoff protocol. We have demonstrated that the authentication protocol

has met all of the design criteria which include mutual authentication, pairwise

session key establishment and efficiency. We have also shown how our protocol

is able to mitigate the problems that the existing protocols have. The results

suggest that on average a one-to-one authentication and key establishment takes

approximately ten milliseconds to complete. The time increases linearly in the

one-to-many and many-to-one situations. Furthermore, we have found that in a
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many-to-many scenario (or when a network is being set up for the first time),

the time taken to complete this protocol increases quadratically as the number

of mobile nodes increases. Note that this is the case only if and when all of the

mobile nodes are within each other’s coverage.

The pre-handoff stage applies the multipoint relay algorithm which helps re-

duce the traffic and the time it takes for all of the two-hop neighbours of a node

and that particular node to receive the security information. Hence it assists in

overcoming the limitations of mobile ad hoc networks, including the bandwidth

limitations. The time taken to process the security information increases linearly

as the number of nodes increases. Even that is the case, the results show that

this stage can be completed quickly.

For the handoff protocol , our results show that it can be completed in between

ten and twenty-six milliseconds, depending on the environment the network is in

at the time. There is, however, a limit to how many new two-hop neighbours the

roaming node can have after the first handoff. This is because the information of

all the two-hop neighbours has to be processed before the next handoff can begin.

Even though there is a limit, our results show that it should still be adequate for

any mobile ad hoc networks. For the special cases of handoff, we have explained

that despite the shorter time that the re-authentication process takes, we would

choose the handoff protocol plus the additional messages over it. The reason is

that the constant re-use of the shared secret, K, should be avoided. We have also

run the simulations to show that as well as single handoffs, simultaneous handoffs

can be correctly handled. In addition, mobile nodes, when applying our handoff

protocol, appear to have the ability to cope with handoffs with both stationary

and non-stationary mobile nodes. Furthermore, we have shown that the handoff

protocol has met all of the design requirements stated in Section 4.3.1. We have

also explained how our protocol would perform better in mobile ad hoc networks

than the existing handoff protocols.

Moreover, we can see from the descriptions and simulation results of the pre-

handoff and handoff protocols that wherever a mobile node moves to, all of the

nodes within the two-hop radius will always be able to handle the handoff process.

From the results and evaluations of the performances of the protocols, we can

claim that we have designed and developed an authentication protocol, a pre-

handoff protocol and a handoff protocol that are suited and applicable to private
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local (pure) mobile ad hoc networks.

Here we have shown and evaluated the performances of the authentication

protocol, the pre-handoff stage and the handoff protocol. In the next chapter, we

will conclude the dissertation.
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Chapter 7

Conclusion and Future Work

In this last chapter, we will give a summary of the contributions of this work.

Specifically, we look at the three protocols that we have designed and developed.

They will be examined to see whether they have satisfied the security properties

set in Chapter 1. We will again state the problems that we faced when developing

these protocols for mobile ad hoc networks. At the end of the chapter, we outline

several possible directions of future work.

7.1 Conclusion

A mobile ad hoc network (MANET) is a relatively new networking paradigm.

It is different from the infrastructure wireless networks in that mobile nodes

communicate directly with their neighbours via radio signals. Mobile ad hoc

networks, being a type of wireless networks, are more exposed to security threats

than the traditional wired networks. This is why the introduction of security

protocols, such as authentication and secure handoff protocols, is necessary. This

is especially the case for private local mobile ad hoc networks.

Our work is an attempt to produce a secure and efficient authentication pro-

tocol as well as a secure and efficient handoff protocol for private local mobile

ad hoc networks. It aims at developing protocols which take the restrictions and

limitations of pure mobile ad hoc networks - the lack of central authority, limited

network bandwidth, computational power limitations, battery life limitations and

physical security limitations - into consideration. The guiding principle of our

protocols is that the protocols must be secure and efficient. That is, both the
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authentication and handoff protocols must satisfy security properties, including

confidentiality, integrity, authenticity, availability and non-repudiation. More-

over, with regard to the physical restrictions of pure mobile ad hoc networks,

the protocols must be able to accomplish their tasks quickly with the smallest

number of packets possible and without involving any extra third party.

Designing and developing security protocols, specifically authentication and

handoff protocols, for mobile ad hoc networks is more challenging, due to the

physical limitations (e.g. the lack of fixed cables and the lack of central authority)

and the lack of topological stability. The existing authentication and keying

mechanisms that are currently employed in mobile ad hoc networks do not take

these physical properties into consideration. Therefore, as we have explained in

Chapter 3, they are not suitable to be employed in pure mobile ad hoc networks.

For the handoff protocols, as far as we know, there are none that have been

designed specifically for pure mobile ad hoc networks.

In this thesis, we have shown that there are performance and security prob-

lems with the existing authentication and handoff protocols which are currently

employed in mobile ad hoc networks. Consequently, we have designed and devel-

oped an authentication and key establishment protocol, a pre-handoff protocol

and a handoff protocol, all of which address the problems that the existing pro-

tocols have as well as take into account the physical constraints of mobile ad hoc

networks.

We have also pointed out that the three protocols are closely related to one

another. That is, the information used as part of the authentication protocol is

passed among mobile nodes during the pre-handoff stage. The same information,

namely the RSA public components, then becomes an integral part of the handoff

protocol. Alternatively, the connection among the three protocols can be thought

of as follows. After an authentication has been carried out, there is a change in

network topology, which triggers mobile nodes to exchange Hello messages. We

have extended this mechanism so that security information of mobile nodes as

well as the topological information can be passed by the mobile nodes to one

another. These processes constitute our pre-handoff protocol. As a result of

running the pre-handoff, the mobile nodes should be ready to initiate or handle

any handoff that may take place. After a handoff process has taken place, there

is again a change in network topology, which again triggers the exchange of Hello
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messages and the pre-handoff protocol. The latter view of the relationship among

our three protocols is depicted in Figure 7-1.

Authentication change in topology Hello messages/Pre−Handoff

When a mobile
  node roams

    Handoff

Figure 7-1: How the protocols are related

We have claimed that the authentication and handoff protocols are secure in

unauthenticated-links model, according to the proofs and analyses using the BCK

and CK methods. The correctness of the protocols has also been proved using

the GNY logic. When carrying out the analyses and proofs, our thought was

confirmed that the BCK and CK models must be used in conjunction with the

GNY analysis. This is because the BCK and CK approaches alone only ensure

that the communication channel between two parties is secure, and the GNY

analysis helps reassure that any essential components that constitute a protocol

message are not missing (which may make the protocol insecure).

In claiming that the authentication and handoff protocols are secure, they

have achieved the security properties - confidentiality, integrity, authenticity, non-

repudiation and availability - as follows. The protocols achieve confidentiality in

that all of the messages are encrypted by either asymmetric encryption (RSA)

or symmetric encryption (shared secret). Furthermore, as a result of each of

the protocol run (authentication or handoff), the parties involved will have es-

tablished a new pairwise key, which will be used as an encryption key in further

communications. Both protocols achieve integrity in that message authentication

code (MAC) or header checksum are integrated into all of the messages to ensure

that it is possible to detect if and when the messages have been tampered with.

Authenticity and non-repudiation are achieved by several means, including the

use of public-key cryptosystem (digital signatures) and random nonces for prov-

ing the sender’s identity. Lastly, availability is accomplished due to the following
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reasons. First, denial of service is (partly) prevented by having mobile nodes

quietly discard all the packets (except for the request-to-join packet) sent by any

nodes that have not yet been authenticated or part of the network. Secondly,

since mobile nodes do not have rely on any other nodes to function, they will still

be able to function even if others are compromised. Moreover, as explained in

Chapter 6, both authentication and handoff protocols also achieve forward and

backward secrecy as no information is used to establish a new shared secret more

than once.

In addition to the security, due to the physical limitations of mobile ad hoc

networks, the efficiency of the protocols in terms of performances is another im-

portant issue. We have demonstrated in our ns2 simulations, in Chapters 5 and

6, that the authentication and handoff protocols are able to perform efficiently.

The results have shown that it only takes around ten milliseconds to complete a

one-to-one authentication, and approximately only ten milliseconds to complete

a handoff process in the outdoor environment, and twenty milliseconds in the

indoor environment. We have achieved this by restricting the number of proto-

col messages to the smallest possible when carrying out the authentication and

handoff. That is, only four messages for the authentication protocol and five

messages for the handoff protocol. The authentication and handoff protocols are

constructed by using a combination of well known cryptographic tools, namely

RSA public-key cryptosystem and Diffie-Hellman key agreement. Moreover, by

applying the multipoint relay algorithm to the pre-handoff stage, the traffic or

the use of network bandwidth is reduced approximately by half.

However, there are a couple of limitations to our protocols. Firstly, there

is one drawback to our authentication protocol when many-to-many authenti-

cations occur. That is, when every mobile node is within each other’s radius,

and they carry out the authentication and key establishment with one another

simultaneously. The time taken to complete the protocol in this scenario has

a quadratic relationship, as explained in Chapter 6, with the number of mobile

nodes involved. The second limitation is the limitation of the pre-handoff and

handoff protocols. If handoffs are to happen in succession, i.e. a roaming node

never stops moving, there is a limit, depending on the speed of the traveling node,

of how much information he or she can process prior to the next handoff. We have

demonstrated that the faster the speed, the less information can be processed.
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Even though we consider this as a restraint, the results show that the amount of

information that can be processed by the roaming node should still be adequate

for the next handoff to be executed successfully.

It is also shown in Chapter 6 that both authentication and handoff proto-

cols have satisfied the design requirements and can overcome the problems that

the existing protocols have. For the authentication protocol, we have achieved

mutual authentication, pairwise key establishment and (with reference to the

performance and results) protocol efficiency. For the handoff protocol, we have

achieved mutual authentication, make-before-break, pairwise key establishment

and (with reference to the performance and results) protocol efficiency. It can

also be seen that both protocols do not have to rely upon any extra third party

in order to accomplish their tasks. Any node in the network can carry out the

authentication protocol and the handoff protocol at any time, provided that they

hold enough necessary information.

From the evidence that we have seen and presented, including the security

analyses and the performances of the protocols, we claim that we have designed

and developed an authentication protocol and a handoff protocol together with

a pre-handoff protocol, which are suited for private local pure mobile ad hoc net-

works.

How will our authentication and handoff protocols be useful in the real world?

In which situation(s) might the protocols be employed? First of all, our authen-

tication protocol makes sure that a mobile ad hoc network is set up securely, and

by the mobile nodes who are authorised to be part of the network only. The au-

thentication protocol also ensures that only the authorised parties are allowed to

join the network after it has been set up. Secondly, our handoff protocol ensures

that the mobile nodes in the ad hoc network are able to roam securely within the

network without losing the connection. Having a secure mobile ad hoc network is

important and useful in the situations where there is a need of an ad hoc network

being set up quickly, and where mobile nodes are required to roam around the

network securely and efficiently. Such situations may include military operations,

emergency rescue operations and meetings or conferences.
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7.2 Future work

In this section, we discuss possible directions for future work. Specifically, we

discuss how a new group key could be constructed using the existing functions

in our protocols as basic functions. Next, we look at how our handoff protocol

could be extended in order for it to help mobile nodes roam between different

domains. Also, we explain how our pre-handoff protocol could be a basis for

detecting adversaries within a mobile ad hoc network.

If and when a mobile ad hoc network becomes larger and turns into a multi-

domain network, it may be necessary to create a new unique group key for

each domain. One technique that could be applied to establish a group key

is Cliques [STW97]. Why might this protocol be ideal for extending our pro-

tocols? The reason is that Cliques bases the computation of a new group key

on Diffie-Hellman, the same method that we have employed for our pairwise key

establishment. This means that our protocols have already provided the basic

functions for the calculation of new group keys. Other group key generation tech-

niques can be found in [YTCC02].

Secondly, one of the areas that this thesis focuses on is micro-mobility man-

agement in mobile ad hoc networks or movement of mobile nodes within one ad

hoc network domain. It would be interesting to further our work by extending

the handoff protocol, so that inter-domain handoff would be possible. We have

already seen in Chapter 3 that there are many handoff protocols which assist mo-

bile nodes in moving between domains. However, none of these existing protocols

are specifically designed to work within an ad hoc environment. The solution to

this macro-mobility management problem could lie in the concept of a chain of

trusts which is mentioned in [OS05] and the notion of indirect trusts which is

explained in [YKB93].

Another security aspect that could be extended or integrated into our system

is how to detect adversaries. In more detail, apart from the authentication and

secure handoff protocols, which could act as a line of defence, one may want to

detect adversaries within an ad hoc network. Some efforts have been put in in
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order to address this problem, including [ZL00, MGLB00]. One way to detect

adversaries is to see whether or not the mobile nodes in the network behave

as they are supposed to. The Byzantine Generals problem [LSP82] is a possible

solution to mitigate this problem. Our pre-handoff stage provides an opportunity

to integrate this technique to help detect potential adversaries.

During the pre-handoff stage, a mobile node asks his multipoint relays (MPRs)

to pass his security information to his two-hop neighbours. The asking node could

see if the MPRs actually pass the information or not. This is possible due to the

nature of wireless networks. The asking node and the MPRs are within each

other’s radius, therefore, if and when the MPRs send the security information

(albeit not destined to the asking node), the asking node should be able to detect

the signals (even though he might not be able to make any sense of what is

actually sent). If the asking node cannot “hear” any signals from the MPRs, he

at least knows that no information has been passed to his two-hop neighbours.

Based on this, we could have a system, where each mobile node keeps a “score”

for each of his MPRs. If an MPR misbehaves, the score will be deducted. The

mobile nodes could then consult one another about that particular node. They

could then “vote” to see whether or not that MPR is an adversary. This could

be the first step towards detecting adversaries within a mobile ad hoc network.

Summary

In this thesis, we have shown a progress towards producing a secure, correct and

efficient authentication and key establishment protocol for private local mobile ad

hoc networks together with a secure, correct and efficient handoff protocol which

is suitable for the movement of mobile nodes within one domain, i.e. micro-

mobility.
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Appendix A

GNY

In this appendix, we list the notations for the GNY logic and the logical postulates

(or rules) that are used for the analysis and proof for correctness. The GNY

protocol was developed by Gong, Roger and Yahalom as an analysis method

for cryptographic protocols. The contents in this appendix are extracted from

[GNY90].

A.1 GNY notations

Let P and Q be principals. The following are the basic notations used in the

GNY protocol.

P ¢X: P is told formula X. P receives X, possibly after performing some com-

putation such as decryption. That is, a formula being told can be the message

itself, as well as any computable content of that message.

P 3 X: P possesses, or is capable of possessing, formula X. At a particular stage

of a run, this includes all the formulae that P has been told, all the formulae he

started the session with, and all the ones he has generated in that run. In addi-

tion P possesses, or is capable of possessing, everything that is computable from

the formulae he already possesses.

P |∼ X: P once conveyed formula X. X can be a message itself or some content

computable from such a message, i.e. a formula can be conveyed implicitly.
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P |≡ ](X): P believes, or is entitled to believe, that formula X is fresh. That is,

X has not been used for the same purpose at any time before the current run of

the protocol.

P |≡ φ(X): P believes, or is entitled to believe, that formula X is recognisable.

That is, P would recognise X is P has certain expectations about the contents of

X before actually receiving X. P may recognise a particular value (e.g. his own

identifier), a particular structure (e.g. the format of a timestamp), or a particular

form of redundancy.

P |≡ P
S
↔ Q: P believes, or is entitled to believe, that S is a suitable secret for P

and Q. S will never be discovered by any principal except P , Q. This notation

is symmetrical: Q
S
↔ P and P

S
↔ Q can be used interchangeably.

P |≡
+K
7→ Q: P believes, or is entitled to believe, that +K is a suitable public key

for Q. The matching secret key −K will never be discovered by any principal

except Q.

P ¢ ∗X: P is told a formula which he did not convey previously in the current

run. That is, X can be regarded as a not-originated-here formula.

Let C be a statement.

P |≡ C: P believes, or P would be entitled to believe, that statement C holds.

A.2 Logical postulates

In this section, we list the logical postulates that are used in the analysis and

proof of correctness in Chapter 5. The description of each of the rule is also given.

A.2.1 Being-told rules

T1:
P ¢ ∗X

P ¢X
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Being told a “not-originated-here” formula is a special case of being told a formula

T3:
P ¢ {X}K , P 3 K

P ¢X

If a principal is told a formula encrypted with a key he possesses then he is con-

sidered to have also been told the decrypted contents of that formula.

T4:
P ¢ {X}+K , P 3 −K

P ¢X

If a principal is told a formula encrypted with a public key and he possesses

the corresponding private key then he is considered to have also been told the

decrypted contents of that formula.

A.2.2 Possession rules

P1:
P ¢X

P 3 X

A principal is capable of possessing anything he is told.

P4:
P 3 X

P 3 H(X)

If a principal possesses a formula then he is capable of possessing a one-way

computationally feasible function of that formula.

A.2.3 Freshness rule

F1:
P |≡ ](X)

P |≡ ](X,Y )

If P believes a formula X is fresh, then he is entitled to believe that any formula

of which X is a component is fresh.
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A.2.4 Recognisability rule

R1:
P |≡ φ(X)

P |≡ φ(X,Y )

If P believes a formula X is recognisable, then he is entitled to believe that any

formula of which X is a component is recognisable.

A.2.5 Message interpretation rules

I1:
P ¢ ∗{X}K , P 3 K,P |≡ P

K
↔ Q,P |≡ φ(X), P |≡ ](X,K)

P |≡ Q |∼ X,P |≡ Q |∼ {X}K , P |≡ Q 3 K

Suppose that for principal P all of the following conditions hold: (1) P re-

ceives a formula consisting of a X encrypted with key K and marked with a

not-originated-here mark; (2) P possesses K; (3) P believes K is a suitable se-

cret for himself and Q; (4) P believes formula X is recognisable; (5) P believes

that K is fresh or that X is fresh.

Then P is entitled to believe that (1) Q once conveyed X; (2) Q once conveyed

the formula X encrypted with K; (3) Q possesses K.

I4:
P ¢ {X}−K , P 3 +K,P |≡

+K
7→ Q,P |≡ φ(X)

P |≡ Q |∼ X,P |≡ Q |∼ {X}−K

Suppose for principal P , all of the following conditions hold: (1) P receives a

formula consisting of X encrypted with a private key; (2) P possesses the corre-

sponding public key; (3) P believes that public key is Q’s; (4) P believes X is

recognisable.

Then P is entitled to believe that (1) Q once conveyed the formula X; (2) Q once

conveyed the formula consisting of X encrypted with the private key.

A.2.6 Jurisdiction rules

J1:
P |≡ Q |=⇒ C,P |≡ Q |≡ C

P |≡ C
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If P believes that Q is an authority on some statement C and that Q believes in

C, then P ought to believe in C as well.

J2:
P |≡ Q |=⇒ Q |≡ ∗, P |≡ Q |∼ (X ; C), P |≡ ](X)

P |≡ Q |≡ C

If P believes that Q is honest and competent, and P receives a message X ; C

which he believes Q conveyed, then P ought to believe that Q really believes C.
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Appendix B

Network Layouts

We provide the diagrams showing the layouts of the network that are used in the

simulations described in Section 5.3. In the first section, we provide five different

layouts for twenty mobile nodes. Second section gives five layouts for fifty mobile

nodes. In the third section, we show five layouts for one hundred nodes. The

network layouts for two hundred and two hundred and fifty nodes are shown in

Section B.5 and Section B.6 respectively.

The positions of the mobile nodes are randomly chosen by running a program

called setdest, which can be found in ns-2.27/indep-utils/cmu-scen-gen/setdest/.

setdest allows ns2 users to specify the number of mobile nodes and the area in

which they will be placed.

Note that having different layouts for each set of mobile nodes does not affect

the performances or the ways the protocols behave.
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B.1 20 nodes

The following figures show how twenty mobile nodes are laid out each time the

simulation is run.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-1: Network layouts for 20 mobile nodes
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B.2 50 nodes

The following figures show how fifty mobile nodes are laid out each time the

simulation is run.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-2: Network layouts for 50 mobile nodes
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B.3 100 nodes

The following figures depicts the layout of one hundred mobile nodes each time

the simulation is run.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-3: Network layouts for 100 mobile nodes
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B.4 150 nodes

The following figures depicts the layout of one hundred and fifty mobile nodes

each time the simulation is run.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-4: Network layouts for 150 mobile nodes
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B.5 200 nodes

Below are the diagrams of the network layouts of two hundred mobile nodes.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-5: Network layouts for 200 mobile nodes
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B.6 250 nodes

Two hundred and fifty mobile nodes are placed in the network as follows.

(a) Layout 1 (b) Layout 2 (c) Layout 3

(d) Layout 4 (e) Layout 5

Figure B-6: Network layouts for 250 mobile nodes

169


