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Summary

Construction of software from existing components is a long standing goal of software engineering.

Cost is an important factor distinguishing a component created for reuse from a component built

for a particular application. Construction of reusable components requires investment that the

developer can recoup only by reuse or by marketing the component for reuse by others. Much

of today’s software construction is not aimed at markets but to fulfill specific objectives set out

in requirements. This thesis proposes a means of constructing more reusable software, including

software that is not destined for component markets, by combining subjectivity and ownership.

Subjectivity, in the form of Subject-Oriented Programming, is a software development technol-

ogy in the area of Aspect-Oriented Software Development that enables software decomposition into

partially overlapping modules known as subjects. Subjects enable the creation of modular imple-

mentations of use cases, features and systemic requirements, all within the familiar environment of

object-oriented programming. Anomalous interactions during stateful inter-subject interactions are

an acute problem in reuse and for modular subject development. In the worst cases, they require

either patching or invasive modifications. To tackle this problem, we propose annotations in the

form of ownership types. In object-oriented programming, Ownership Types have been proposed as

a solution to the endemic problem of aliasing. Structured use of aliases facilitates the construction

of robust software that ensures representation encapsulation and supports modular reasoning. The

subject-oriented approach to problems previously modelled using object-oriented idioms requires a

novel solution to the concept of ownership. Subjects do not have a representation; instead, ownership

types annotate the ownership structure of object collaborations implemented by subjects.

In this thesis we propose the Subjective Alias Protection System or SAPS. It is a tool both

for subject design and reuse. At a small syntactic overhead, SAPS supports the design of well

structured subjects whose classes ensure representation containment. SAPS improves the reusability

of subjects: Subjective Ownership Types are per-object annotations of the places an object may

be referenced or modified. Our extensions to subject composition rules constrain subject and class

reuse to meaningful cases and can prevent compositions leading to anomalous interactions. SAPS

facilitates modular development of subjects because aspects of subject effect on state can be observed

from the points of inter-subject interaction. Finally, Subject-Oriented Programming with SAPS can

address more concerns than is possible without it.
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Chapter 1

Introduction

In this thesis we propose the Subjective Alias Protection System (SAPS) – a synthesis of Subject-

Oriented Programming and an Alias Protection System. Subject-Oriented Programming (SOP) [49]

is a programming paradigm that builds on the strengths of object-oriented programming by in-

troducing subject as a new kind of module. Subjects abstractly modularise many concerns that

are difficult to modularise using object-oriented programming technology. Each subject is an ordi-

nary object-oriented program and subject interaction occurs at join points – key points in subject

structure. These properties make subjects very good at cleanly separating many functional and

implementation domain concerns.

These properties also make subjects very reusable, but we will show that subject reusability comes

at a cost. The absence of an abstract functional interface is both a positive and a negative reuse

factor. On the one hand, interfaces facilitate structured reuse that guarantees desirable correctness

properties, and on the other, they make it difficult to extend or modify software in ways that were

not intended by the original developer. Subject interaction can lead to undesirable interference that,

at worst, requires invasive redefinitions. Reuse of stateful subjects is expensive because the reuser

must understand the implementation in detail in order to reuse successfully.

To address these problems we specify Subjective Ownership Types (SOT). SOT are a new type

system that supersedes the existing types in subjects. They are inspired by the Ownership Types

for Flexible Alias Protection [23]. In object-oriented programming, Alias Protection Systems are

an attempt to address the problems caused by proliferation of object aliases [57]. This continues

to be the purpose of SOT when viewing programs one subject at a time. We propose SAPS as a

combination of SOT and the necessary extensions for subject interaction. SAPS constrains subject

composition (interaction) in order to ensure that only elements with mutually compatible types are

joined. We will show that SAPS makes significant contributions in a number of areas: both modular

development of subjects and subject reuse are more feasible than with SOP alone; some interaction

problems are addressed directly while other anomalies are easier to detect because the extent of

object aliasing is explicit in the types of elements at join points; and it is possible to use SOP to

address new kinds of concerns.

In order to introduce our work, Section 1.1 establishes our position on software reuse. The posi-

tion motivates us to understand reuse better and guides us towards proposing SAPS as a pragmatic

reuse technology. The progression from the reuse position to SAPS is detailed in Section 1.2. Section

1.3 explains the objectives of this thesis and describes the way it is organised.

1
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1.1 Position on Software Reuse

Our work is motivated by the technical challenges underlying software reuse. Software reuse has

received a lot of research attention and there have been success stories [14, 113]. However, reuse

remains a topic for research because software engineers are constantly facing new challenges as

software pervades all areas of human activity and challenges grow in scale. To set out our reuse

position we will play out a typical software development scenario that goes on in many software

houses across the world.

Consider an application developer who has been tasked with creating a program to address the

needs of some client. Our developer faces two constraints common to many of today’s projects. The

first is programming in a mainstream object-oriented programming language. The second is time.

The time it takes the developer to create the product is a major contributor to cost. To reduce overall

costs the programmer is prepared to purchase components, use application frameworks, scavenge

code and apply the latest methods in software engineering. The developer takes pride in his work and

wishes to create well structured software that will be easy to maintain, predictable during evolution

and reusable in future projects. However, time is the overriding concern and corners can be cut to

ensure that the product is delivered on schedule.

Now, an interesting question: what is the chance that the code he writes can be reused in future

projects? We believe that the tug-of-war between the interests of the developer on a schedule and a

reuser in a hurry are at the core of the software reuse problem.

The developer must complete the project on time which means that all good design ideas that

aid future code reuse but cost time may not be adopted. Many design guidelines, although valuable

in theory, are dropped by programmers in practice when they require effort. This effort is only

rewarded in future maintenance, evolution and reuse tasks. For example, separating types from their

implementations or using accessor methods for field look-up and update are known ways of improving

the separation of concerns and, therefore, reusability. However, unless enforced technologically or

institutionally, developers will often ignore good practices in order to save time.

The reuser would like to reduce costs by assembling code from pre-existing components rather

than writing code from scratch. The problem is one of finding code to reuse, possibly extracting it

from another application, and adapting it to meet the needs of the project. The reuser’s job is made

more difficult as the result of shortcuts taken by previous developers.

We believe that improving opportunities for reuse depends on ideas that are of value to the

original developer and facilitate future reusability. Reuse ideas stand more chance of being ac-

cepted by practitioners when they are beneficial to the original developer. Our attempts to improve

opportunities for reuse are influenced throughout by this position.

1.2 From Reuse Problems to SAPS

Ultimately motivated by issues in software reuse, this Section describes the progression towards the

Subjective Alias Protection System. Software reuse is achieved through construction of reusable

software [82]. In order to make software more reusable it is necessary to separate all pertinent con-

cerns. Separation of concerns is of value to the software developer because tackling one subproblem

at a time is easier than tackling the whole problem at once. We will show that using the current

mainstream programming languages such as Java [45], the time-pressured developer cannot cleanly
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separate all pertinent concerns. Enter Multi-Dimensional Separation of Concerns (MDSOC) [122].

MDSOC proposes to organise software into multiple dimensions of concerns. By enabling the modu-

larisation of all concerns along all dimensions that developers believe to be important we can reduce

the cost of software development over the lifecycle and improve opportunities for reuse.

The pursuit of the MDSOC idyll is the domain of technology broadly referred to as Aspect-

Oriented Software Development (AOSD) [90]. In AOSD, concerns are realised by modules called

aspects. Instead of interacting by message passing, aspect interaction is based on so-called join

points. Join points are defined in different ways [66], but usually they are either programming

language constructs or arcs in the program’s dynamic call graph. Join point interfaces enable sepa-

ration of concerns for functional and non-functional requirements. Having identified the join point

interfaces, aspects can be developed independently and integrated using aspect-oriented compilers.

From a reuser’s perspective, code associated with pertinent concerns from past projects is abstract

and modular, making it more easily reusable than when programmed with conventional technology.

Subject-Oriented Programming is one strand of AOSD that adheres well to the MDSOC model.

A subject is a module denoting an aspect. SOP concepts are realised in the programming language

Hyper/J [121]. This language combines the modelling potential required for separating many con-

cerns with the familiarity of mainstream object-oriented programming: subjects are written in pure

Java. Each subject has a very large number of join points determined by the underlying language.

Together these form its potential interface to other subjects. The actual interaction points, along

which subjects communicate, only become apparent when subjects are composed, i.e. subjects do

not explicitly publish a composition interface.

Our experience with programming Hyper/J has highlighted the strengths and weaknesses of evo-

lution and reuse in the SOP paradigm. Each subject is relatively easy to understand as it addresses

either a single concern or a well-defined concern set. However, relationships between concerns and

subject interaction are often complicated. We will show that the difficulty of understanding all con-

sequences of communication can lead to unwanted interactions or interaction problems. These affect

subject reuse, potentially limiting the range of concerns to which Subject-Oriented Programming

can be realistically applied.

Interaction problems are a topic of our investigation. Within the range of interaction problems,

there are those that can be solved by re-specifying inter-subject interaction and those which re-

quire invasive modifications to subjects. Re-specification of interaction affects the ‘cement’ between

‘building blocks’, whereas changes to subjects affect the ‘building blocks’. The latter is a lot more

expensive to correct, making reuse uneconomical. Modular subject development is also affected by

this problem; independent design can begin only when the effect of join point interaction on state

is well understood.

One way to facilitate structured reuse is to introduce formal composition interfaces. That is,

to allow join point interaction but only at predefined join points. However, subjects are meant to

be reusable in ways not anticipated by their original developers and, for this reason, we must look

for an alternative solution. Instead, we propose to help subject composers to understand the effect

of composition on object state by making explicit the way subjects use objects. Our challenge is

compounded by the reuse motivation problem stated in the reuse position: any solution must benefit

the original developer as well as future reusers. We believe that Alias Protection Systems (APSs)

satisfy our reuse position. APSs are a solution to problems caused by unstructured object aliasing

in object-oriented programming. APSs constrain object aliasing to enable modular reasoning (on
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objects). But each subject is an object-oriented sub-program and design-in-the-small is a purely

object-oriented activity. An APS is useful to the subject designer because it helps him to structure

subjects better in order to avoid aliasing problems. An APS is also useful to the composer for it

annotates the elements at composition join points, thereby helping to explain the effect that one

subject has on another subject.

Inspired by Flexible Alias Protection, we propose the Subjective Alias Protection System. Sub-

jects can be composed when Subjective Ownership Types at join points are mutually compatible.

The new emphasis on aliasing issues helps to prevent some interaction problems. It also aids de-

tection of other interaction problems by helping the composer to understand the effect of subject

interaction on state.

1.3 Thesis Outline

1.3.1 Aims, Objectives and Limitations

The main aim of this thesis is to introduce SAPS as a reuse technology that has value to the original

developer of software. The secondary aim is to tackle interaction problems experienced in subject-

oriented programming. To motivate these aims and defend the thesis we propose a sequence of

objectives:

1. Develop an understanding of the factors affecting software reuse and how to construct reusable

software.

2. Review the state of the art in Aspect-Oriented Software Development with the goal of identi-

fying the technological trends that best meet our reuse position.

3. Investigate the phenomenon of interaction problems in Subject-Oriented Programming and

identify how they may be tackled.

4. Propose a set of requirements for an APS for Subject-Oriented Programming.

5. After presenting SAPS, show that SOT are a useful APS for subject design; explain how

SAPS enhances subject-oriented software development; and demonstrate that SAPS addresses

interaction problems.

The material presented in this thesis is of a conceptual nature, so our approach is predominantly

informal. We emphasise the software engineering issues rather than a type system because we

believe that an explanation of the relationships between reuse, interaction problems, subjectivity

and ownership must come first. A rigorous formal model that follows on from the conceptual

understanding is future work.

SAPS is not specific to any programming language, although it is expected that subjects will be

developed in an object-oriented language that combines subclassing with subtyping and has single

inheritance. Our subject composition semantics are based on the observed semantics of Hyper/J

and our subject composition language is interoperable with the core of Hyper/J.

1.3.2 Conventions

Examples are presented in Java pseudocode. We use the following typeface conventions. When

writing code fragments we use the typewriter family of fonts. Where programming languages
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use common English words for operators and keywords, we use the boldface series to distinguish

from the words’ general usage. Important words and phrases are emphasised with italics. The sans

serif fonts are used in the presentation of SAPS concepts and to refer to ownership contexts. For

displaying mathematical expressions the slanted font is used.

1.3.3 Chapter by Chapter

Chapter 2: Evolution and Reuse

Having already established our position, this Chapter describes the factors influencing reuse and

the challenges in constructing reusable software. It reviews object-oriented programming as a reuse

technology from the perspective of programmers of mainsteam programming languages.

Chapter 3: Advanced Separation of Concerns

In moving beyond OOP, this Chapter looks at research in the area of Aspect-Oriented Software

Development. Multi-Dimensional Separation of Concerns is presented as a model for understand-

ing many of the problems in software engineering. We evaluate AOSD technology based on the

capability for separating two kinds of concerns: feature concerns from the problem domain, usually

associated with object collaborations; and aspectual concerns from the solution domain that are

difficult to modularise with conventional programming languages. Subject-Oriented Programming

can modularise collaborations and many aspectual concerns. It also satisfies our position on reuse.

Chapter 4: Interaction Problems in Subject-Oriented Programming

In this Chapter we relate our own experience and that of other researchers with regard to interaction

problems. The problems we identify are categorised based on the kind of solution they require. The

first interaction problem can be addressed by reformulating the composition specification. The

second by extending SOP with more powerful composition rules. The third requires invasive subject

modifications and is caused by an unanticipated state change in an object. This anomaly is hard to

detect because data concerns are scattered across subjects.

We propose to develop an Alias Protection System for SOP in order to encourage subject devel-

opers to create well structured subjects and to help subject composers to understand the effect of

subject interaction on state.

Chapter 5: Alias Protection and Subjectivity

This Chapter presents the state of art in Alias Protection Systems in object-oriented programming

and sets out the requirements for a system that is suitable for Subject-Oriented Programming. SOP

decentralises class development, letting each subject define abstractions from its own viewpoint. The

decentralised style of software development makes existing APSs unsuitable. The requirements for

an APS in SOP lay the foundations for the Subjective Alias Protection System.

Chapter 6: SAPS – Subject Design

This Chapter presents the principles of Subjective Ownership Types. It describes the way SOT are

used in subject design and describes the way types are checked.
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The containment properties of SOT are similar to those of Ownership Types proposed by Clarke

et al [23]. Ownership Types, like other APSs, are based on a centralised definition of classes. Subjects

define new classes, most of which do not have a centralised view. We use the concept of centralisation

to partition classes into two hierarchies called composable and uncomposable. Uncomposable classes

can use an ownership type system very similar to that proposed by Clarke. Composable classes

require a new type system. Instead of ownership parameters, we propose explicit and unknown

context identifiers for labelling object owners.

Chapter 7: SAPS – Subject Composition

At the core of a subject-oriented language like Hyper/J is a subject composition model. We extend

the subject composition model discussed by Ossher et al [95] with contexts and describe what it

means to compose elements annotated with Subjective Ownership Types. The model is extensible

allowing new kinds of composition rules to be defined. The challenges include the specification of

unknown context resolution. This is a mechanism by which partial knowledge of ownership structure

specified in one subject is filled in by composing with other subjects. The output of composition is

a new subject containing the synthesis of concerns implemented by the input subjects.

Chapter 8: Evaluation

The evaluation presented in this Chapter demonstrates that SAPS can eliminate some interaction

problems entirely and can help to detect other interaction problems by annotating the effect of

subject interaction on state. The utility of SAPS to the subject-oriented developer is shown through

a range of design problems. We show also how to use our system to express security concerns that

cannot be represented in SOP without SAPS.

Chapter 9: Conclusions and Future Work

In the final Chapter, SAPS is reviewed in terms of its contributions to reuse, interaction problems,

and as a tool for improving the design of subject-oriented programs. We conclude with a discussion

of plans to extend SAPS with additional aliasing capabilities.



Chapter 2

Evolution and Reuse

The position on reuse, outlined in Section 1.1 on page 2, is that improving opportunities for reuse

depends on technologies that also have value to the original developer. There are at least two ways

of making the construction of reusable software beneficial to the developer. The first is building

reusable artifacts with the aim of marketing to a wide audience. The second is better separation of

concerns within software; that is, not to build software for reuse markets but to make software more

reusable as a consequence of improved modularity.

The position on reuse also describes the pressures on developers which make code less reusable,

highlighting the significance of making all software more reusable and not just software which was

intended for reuse. This dissertation takes the second approach above: to seek improvements in

modularity as the way of improving reusability. To defend the approach, the present Chapter

describes software evolution and reuse. Section 2.1 defines reuse and reusable software. Section 2.2

explores the modularity issues in reuse. Section 2.3 presents the challenges of constructing software

for reuse. Mainstream software development is presently dominated by object-oriented programming

(OOP). Object-oriented programming was touted as a means of improving opportunities for reuse.

In Section 2.4, we discuss its successes and failures in that respect.

2.1 What Is Reuse?

Software reuse has been proposed as a solution to the software crisis – the problem of building

large, reliable software systems in a controlled and cost effective way [82]. The benefits of reuse are

improved quality of the finished product from reuse of pre-tested artifacts and reduced development

costs due to economies of scale – the development cost of a single reusable artifact is amortised by

all who integrate it in their products. Software reuse is difficult because useful reuse abstractions

are typically complex. The programmer must either be familiar with the artifacts or take time to

study and understand them. Either way, it must be cheaper to reuse the software artifact than to

develop software from scratch [70].

It is important to distinguish software reuse from reusable software. Software reuse is the activity

that takes place afterward, when software was initially created in the past. To best support this,

reusable software must be created beforehand in such a way that it is easy to reuse later.

In its most general sense, reuse is the act of taking existing artifacts related to the creation of

software and incorporating them in a new project or extending software with new functionality.

7
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The types of artifacts that can be reused are not limited to pieces of code. It is possible to reuse

requirement specifications, design patterns, test cases, and anything else related to the construction

of software. However, when talking about reuse we usually think of code, and that is what we will

mean when discussing reuse.

There exists a difference between the act of reuse and usage of software by a client. For instance,

according to Poulin [103], the use of high-level languages, software development tools, applications

and application generators is not reuse because an applications developer is generally not expected

to write this software. Categories which represent reuse are:

• The first use of a component but not the subsequent uses.

• Code from utility, domain-specific and corporate libraries.

We broadly agree with Poulin’s categorisation but would like to include software evolution with

the aim of incorporating new requirements. We define software evolution as the process by which

systems are extended with new code due to changing requirements. The new code is called the

extension. Poulin [103] does not count evolution as reuse because strictly it does not involve using

code in an unrelated project. But in the ‘real world’, evolution and reuse often look like two sides

of the same coin. Consider the way Meyer defines reusable components [87]:

“a software element that must be usable by developers who are not personally known

to the component’s author to build a project that was not foreseen by the component’s

author.”

This definition readily applies to software evolution. For the following reasons, we are inclined to

include evolution in forthcoming discussions on reuse:

• The person creating the extension is not necessarily the original author and therefore may be

unfamiliar with the application.

• The adaptation of the extended artifact to accommodate the extension is often unanticipated

with respect to the original requirements, requiring the original program to be adapted to

accommodate the extension.

• The extension writer invests time in creating the extension instead of reconstructing the ap-

plication from the ground up. Just as when one reuses code in an unrelated application, the

extension writer must believe that understanding the original program takes less effort than

rewriting it.

• As often happens, documentation may be absent or hopelessly out of date.

• In object-oriented programming, inheritance is associated both with seamless evolution for

creating families of types and with code reuse [101].

Impediments to software reuse are technical and non-technical. Although the emphasis of this

dissertation is on technical factors, the non-technical factors are also reviewed.

Organisations are generally all too happy to cut costs. In the experience of Schmidt [110] organ-

isations would like to reward internal reuse efforts but a number of non-technical factors conspire to

make reuse hard:
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Organisational. Development, deployment and support of reusable artifacts requires a deep under-

standing of the application developer’s needs and business requirements. In a large organisation

with many projects the number of reusable artifacts increases, making it harder to structure

an organisation to provide interaction between teams.

Economic. Creation of reusable assets requires investment which needs to be charged for each

project. Organisations find it difficult to institute appropriate taxation on reused artifacts

when reuse departments are responsible for balancing their books.

Administrative. It is common for developers to scavenge classes or functions from existing pro-

grams developed within their immediate workgroup. However, it is harder to catalogue, archive

and retrieve reusable assets across multiple business units in a large organisation.

Political. Rivalry between business units may stifle reuse of artifacts developed by other units when

it is perceived as a threat to job security or influences the balance of power.

Psychological. The ‘not invented here’ syndrome is ubiquitous in many organisations. Enforce-

ment of reuse practices is seen as management lacking confidence in the developers’ technical

ability.

Reuse as a multi-organisational problem requires a community of developers who are prepared to

share ideas, tools, methods and code. However, sharing is not traditionally an ethic of commercial

companies. On the contrary, companies prefer to keep their products proprietory in order to maintain

competitiveness [80].

2.2 Modularity and Reuse

In order to understand reuse problems it is important to understand what the developers want to

reuse. Reuse is usually discussed in terms of particular modular artifacts such as functions and

classes, whereas programmers generally wish to reuse code associated with concerns. Modularity

is at the core of reusability; getting it right will have great impact on reusability. Maintenance

significantly impacts reusability. We argue that improving the traceability of requirements in designs

can reduce the negative impact of evolution and facilitate the reuse of code associated with those

requirements.

2.2.1 Modularity

Decomposing artifacts into smaller parts is at the core of software development. We decompose

systems into modules because tackling problems one module at a time is easier than tackling the

whole problem at once. In terms of software, a system is modular when each activity of the system

is performed by exactly one module, and when the inputs and outputs of each module are well

defined [99]. An activity can be understood as code which executes in response either to a client or

system requirement.

Parnas questioned the criteria we use for decomposing systems into modules [97]. He stated

that modules should hide difficult design decisions or design decisions which are likely to change.

Applied to data representation, this principle is the foundation for abstract data types (ADTs) and

is at the core of object-oriented programming. The module user or client is interested in what the
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module does and not how it does it. The functionality of the module is accessed through an interface

which does not reveal the way the module is implemented. The process of modular decomposition

continues until each module in the system has a clear purpose.

The complete set of modules exhibits a hierarchical structure. At the root is the whole system

and each module is composed of modules below it in the hierarchy. Parnas observed that better

reuse can be achieved if modules higher up in the hierarchy use modules lower down but not the

other way around. This way the modules closer to the root can be removed and a new tree grown

using the low level modules at the leaves.

Modularity affects evolution and reusability directly [17]. The concerns which the developer

chooses to modularise will be easy to maintain, evolve and reuse. Other concerns, which were not

deemed important or which were not made modular for one reason or another will be harder to

reuse. A number of factors conspire to make the initial choice of modules less than straightforward:

• The technology must enable separation of concerns identified as important. It is well known

that it is possible to write a program in any language that is general enough, but some lan-

guages are better suited to separating certain kinds of concern. For example, in object-oriented

programming, inheritance can be used seamlessly to introduce a new variant of a type. Dy-

namic dispatch – the technology that makes this possible – can be simulated in a procedural

programming language. However, the procedural programmer will not build dynamic dispatch

into the program before it is needed.

• There are many concerns, which makes it hard to determine which ones to modularise. It

is hard to identify those concerns which are important. For example, at an early stage in

the specification of a matrix manipulation system, the developer is concerned with matrix

operations available to a client. The set of available operations may change. If this happens, it

would be nice to introduce new operations without invasive changes to existing code. For this

reason, the developer considers treating each matrix operation as a module. For reasons of

efficiency, the implementation of each operation is tied closely to the matrix implementation.

There may be one algorithm for sparse matrices and one for full matrices, or a single algorithm

that treats both kinds of matrix the same. Now the developer believes that each kind of matrix

should be a module.

• Having separated concerns identified as important it should be possible to compose modules

cheaply and predictably. When reuse of modules becomes common, relatively little time will

be spent writing new modules, and most of the programming effort will lie with combining

modules [59]. Composition is part of the cost of reuse. As the time spent adapting and

debugging the interaction increases, so reuse of those modules becomes less appealing.

Modularity clearly affects reuse, but what affects modularity? The choice of modules is guided

by the programming technology. Reusable artifacts are associated with what the underlying pro-

gramming language determines as modules.

2.2.2 Reuse Artifacts

Reuse fundamentally depends on the reuser’s ability to extract code. If the concern is realised as a

modular artifact from a library then no work is necessary. Otherwise, the reuser must disentangle the

code in order to reuse it. In order to be cost-effective, reuse should not involve major modifications.
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In mainstream programming technology, functions, procedures or components are modular artifacts.

Programming technology dictates those concerns that become modular and those that do not have

a modular form, instead becoming implicit or tightly integrated in components and architectures.

Functions are the most fine-grained modular artifacts of reuse that we distinguish. For example,

many cryptographic libraries are full of functions that compute factors of large numbers. Pure

functions are some of the easiest things to reuse because they have single entry and exit points, do

not modify global data and offer referential transparency. Referential transparency allows a pure

function to be replaced by its value which means that a function can be referenced anywhere without

adverse consequences [37].

Procedures embody elements of functionality that may depend on or modify some global state.

By comparison, pure functions are easier to reuse because in order to reuse procedures one also

has to understand the procedure’s effect on shared state. In object-oriented programming, non-

trivial procedures are analogous to object collaborations. The state is not global but instead is

attributed to objects involved in the collaboration. Collaborations are hard to reuse because objects

are generally associated with multiple collaborations [86]. Reusing collaborations involves factoring

out all other concerns attached to the objects. For example, graph traversal algorithms are useful

in many applications. Among the algorithms which can be applied to an arbitrary graph is the

computation of the number of unconnected subgraphs. This algorithm should be readily reusable in

many applications but the objects playing the roles of vertices or edges also contain other behaviour

that is hard to separate. Programming languages and other technology for improving collaboration

modularity are reviewed as part of Chapter 3 (page 22) on Advanced Separation of Concerns.

Components are aggregations of functions and procedures. They present interfaces that let

clients access their functionality and customise the components to address application requirements.

The thing that characterises components and makes them different from sets of related functions

and procedures is the sharing of a representation – a common implementation that remains hidden

beneath the facade. Components can be large or small. At one extreme are common abstract

data types; at the other there are components which can function as stand-alone applications.

For example, a spreadsheet tool is a component that has interfaces for adding and removing data

from cells, for changing the number of rows and columns, for creating relations between cells and

for changing data views. It is normal for clients to request extra functionality from successful

components which may require the interfaces to be extended or modified.

Architectures are assemblies of components; they are subsystems that provide services. Reuse

of architectures permits substantial savings over stand-alone components. Developers are keen to

reuse architectures to leverage application development. Architectures can support concerns such

as distribution, letting the application developers concentrate on the business end of their system.

For example, an agent framework is an architecture. An agent framework allows for the creation of

autonomous, heterogeneous objects that have the ability to ‘reason’ for themselves, negotiate with

other agents or refuse to accept messages [130]. Conformance with existing technology may guide

the developer to selecting one agent platform over another. Reusability is often in the requirements

for architectures.

The reused concern or the unit of change during evolution is not determined by the technology

used to implement it but by what the reuser or maintainer considers important. Reuse is simpler

when the concern happens to coincide with a modular artifact, be it a function, a procedure, a

component or an architecture. Programmers may wish to reuse all sorts of concerns including
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code associated with implementation abstractions and feature concerns, i.e. code addressing an

aspect of end-user functionality. To facilitate reusability, all pertinent concerns require a modular

representation.

Seamless evolution and reusability are achievable through investment in architecture but external

pressures negatively impact architectures, slowly eroding any inherent flexibility.

2.2.3 The Effect of External Pressures on Reusability

It has been observed that reusability is affected by the deadline effect. Projects often have tight

schedules that force the programmers to come up with quick solutions to problems. Any reusability

which was inherent in programs initially is eroded little by little by a sequence of unanticipated

extensions [104]. Many projects start out with a well-defined architecture which gradually gets

eroded until the program becomes a big ball of mud. According to Foote and Yoder [41], the

big ball of mud architecture predominates in practice. Programs that have such architecture are

“haphazardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle”. The

problem with big balls of mud is that they are of no use to anybody except the current users who

become dependent on the services these systems offer. Big balls of mud are an oil slick in the ocean

of reusable software – as systems grow larger they become more and more difficult to understand,

raising the cost of reuse [17].

A project which starts out with a discernible architecture becomes a big ball of mud largely

because of cost. The customer usually needs something by tomorrow. Often, the people who manage

the development process simply do not regard architecture as a pressing concern. If programmers

know that workmanship is invisible, and managers do not want to pay for it, a vicious circle is born.

In muddy code the important data is global, the rest is passed surreptitiously through various

channels. Variable and function names are uninformative or even misleading. Control flow and pro-

grammer intent is hard to understand. The code is patched numerous times by different maintainers

and there is no up to date documentation.

The prevalence of the big ball of mud approach to software development has lead Foote and Yoder

to conclude that it is a method which works. It is a path of least resistance when one is confronted

with the forces described above. In order to restore structure Foote and Yoder suggest that systems

should be refactored. Refactoring improves the program’s structure, improving its understandability

and facilitating evolution without changing the program’s functionality [93]. Refactoring enables

consolidation – a process by which experience accrued as the system evolves gets absorbed into the

system’s structure. When code has declined beyond comprehension and repair, reconstruction or

restarting from the ground up remains the sole viable approach.

We believe that realistic technology-based solutions to stopping programs turning into big balls

of mud must take into account the time pressures placed on developers. For example, in a pressured

environment, changes in requirements are hacked directly into code. Instead of applying changes

to design artifacts and then applying the changes to code, code is changed and the designs slip

into obsolescence. Design artifacts are discarded because of the effort associated with maintaining

them when all that really counts is whether the code works or not. Making designs more useful to

maintainers is the way to raise interest in design artifacts. We believe that code is less likely to turn

into big balls of mud when up-to-date design documents are available for assessing the impact of

modifications and extensions during maintenance.
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For object-orientation, Clarke et al [25] believe that there are three reasons why developers do

not use designs throughout the software lifecycle:

• Designs are often large and monolithic. Classes and interfaces are centralised notions and only

one designer at a time can work on a given design unit. Centralisation causes early commit-

ment to structure which may overconstrain the set of possible designs too early, consequently

increasing the impact of change.

• Designs are too difficult to reuse because they bundle too many pieces together. Classes

designed for a particular system are too specialised for general use. Potentially reusable classes

include a lot more functionality than a reuser requires, decreasing their comprehensibility and

reusability.

• Most importantly, there is structural misalignment between requirements and code with the

design caught in the middle. In requirements, the units of abstraction and decomposition

relate to capabilities, features and other concepts in the problem domain. Object-oriented

code focuses on classes, interfaces and methods. This causes the problems of traceability of

requirements in code. Design languages such as UML [18] produce designs that align well

with code. Consequently, designs also align poorly with requirements. When the requirements

change, the developer does not wish to incur the cost of making changes twice – once for design

and once for code. So he changes only code.

The reuse lesson is that designs and code should modularise what is in the requirements as well

as what is necessary to modularise in the implementation.

Decentralisation can drive down costs for the original developer: given the right technology one

development team can be assigned to the implementation of each requirement despite the structural

overlap in implementations. Modular development of each requirement may speed up project delivery

making the technology that enables decentralisation attractive to the original developers and the

reusers.

2.3 Challenges in Constructing Reusable Software

Component and framework development are associated with the construction of reusable software.

In order to successfully market software as a reuse artifact, it is necessary to make software adapt-

able to a range of applications. This requires developers to anticipate changes and then provide

flexibility through design. Blackbox and whitebox are two strategies for making software adaptable

to evolution.

2.3.1 Frameworks and Component Based Development

Composition and generation technologies are two accepted ways of constructing reusable soft-

ware [16]. Frameworks – a generation technology – are semicomplete applications that can be used to

generate custom applications. They are specialised to a range of applications and designed to solve

a narrow set of problems [36]. Component-based development (CBD) – a composition technology –

involves building systems using prepackaged components. Standard component architectures such

as CORBA [13], JavaBeans [48] and Microsoft COM [108] enable developers to market components

to wide audiences.
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Components, such as those designed for the JavaBeans model, can be customised but only in the

way intended by the developer. The adaptation interface is limited to introspection – the ability to

observe and modify a predefined range of properties. There is no conventional access to the internal

design which makes it difficult to modify beans if the modification was originally not anticipated.

Also, there exist concerns that we would like to reuse but which are not easily modularised by a

component. For instance, a Tracer component that gathers statistics about data flow between other

components is difficult to define. All components that may be traced are required to implement a

certain interface and to support the notification of data flow within their implementation. Manual

selection of data flow points is prone to error. Even more importantly, when components are devel-

oped independently by third parties, it is not reasonable to expect component developers to know

about all other components with which they may be connected.

Frameworks can significantly increase software quality and reduce development effort [36]. One

problem is finding the right framework to reuse. Companies attempting to use large-scale frameworks

often fail to recognise and resolve challenges such as [35]:

• the learning curve the programmers must go through before they become proficient at using a

particular framework,

• integration between frameworks that address parallel concerns,

• framework maintenance will require application code to be updated,

• reliance on framework developers to remove defects, and

• efficiency penalties over custom applications.

Many impediments to framework reuse are non-technical and are, in general, connected to prob-

lems a customer can experience when relying on external services. Overall, the benefits of frame-

works significantly exceed the drawbacks but reuse remains a problem in new application areas where

frameworks are unavailable.

2.3.2 Problems with Planning for Reuse

When constructing reusable software, the developers aim to to make their component as generally

useful as possible in order to open it up to a wider market. The process requires the developer

to anticipate variation and create hooks for future evolution. It also helps to avoid invasive code

modifications with respect to planned extensions. For example, in framework construction, certain

extensions are part of the requirements and, therefore, should be built-in. In order to create a

successful framework one must foresee the uses to which the framework will be put.

The programming language used in software development determines the cost of providing ex-

tension points. For instance, abstract data types such as lists are conceptually generic with respect

to the kinds of components that can be stored within. When building component libraries, ADTs

can be made generic in any sufficiently general programming language. However, in order to eas-

ily construct generic ADTs the language must support either generalisation or inheritance. For

example, C++ supports genericity with template classes [115]. Template classes allow families of

related classes to be specified without a significant syntactic overhead. When the cost of providing

a particular kind of adaptation is not significant within some language, programmers will take ad-

vantage of the available language features in order to make components more adaptable as part of
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good design. Programming language features such as genericity can lead to more reusable software

without requiring investment.

The problem with planning for reuse beyond the original requirements is elegantly summed up

by Fowler [42]:

“One way to deal with changing requirements is to build flexibility into the design so

that you can easily change it as the requirements change. However, this requires insight

into what kind of changes you expect. A design can be planned to deal with areas

of volatility, but while that will help for foreseen requirements changes, it won’t help

(and can hurt) for unforeseen changes. So you have to understand the requirements well

enough to separate the volatile areas, and my observation is that this is very hard.”

The advice of Extreme Programming [11] is that you do not build flexible components on purpose.

Let the structures grow as they are needed. The reasons are economic – if work is done on features

that may be needed tomorrow, time will be lost for features that need to be done for this iteration.

Also, working on things for the future is outside the contract the programmer has with a customer.

It should be up to the customer to decide what extra work should be done.

2.3.3 Black-box and White-box Reuse Strategies

The terms white-box reuse and black-box reuse are defined in relation to what the reuser believes

to be the interface for adapting the artifact. With white-box reuse, programmers are free to modify

code beyond the adaptation interface to suit their needs. In CBD, the adaptation interfaces of

components are the points of interaction between the components and with the component model.

In frameworks, the adaptation interface consists of the preplanned extension points. This approach

gives a lot of freedom for component adaptation but is also fraught with difficulty because consistent

modification requires complete familiarity with code. The other extreme is black-box reuse which

disallows unanticipated modification of the retrieved component. The black-box strategy can make

it more difficult to find suitable artifacts. Black-box components in CBD technologies allow a limited

degree of adaptation which may be insufficient to customise the component to the needs of another

project.

Common abstract data types are black-boxes because the reuser is interested in their functionality

but not implementation. Larger-grained components are often black-boxes to reuser-clients but

white-boxes to reusers who require access to parts of the internal design. For example, consider the

development of user-interface (UI) software for mobile phones. There are two kinds of reusers. The

UI company producing the software and the telecom company configuring the software. Changes to

the underlying model are made by the UI company who see the software in white-box form. The

telecom company may configure the software for phones with a different number of keys, displays in

monochrome or colour, and introduce different menu options. The telecom company is a black-box

reuser.

Confusingly, frameworks are classed as white-box reuse [35] despite the implementation of frame-

work classes being hidden from the reuser. The reuser needs to access documentation explaining

how to extend the framework to create an application but does not need to know the details of

implementation of framework classes.

The information hiding aspect of black-boxes is appealing because it allows more complex systems

to be built by using black-boxes as building blocks. The open-ended adaptability of white-boxes is
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appealing too because it gives considerable freedom to adapt components. The situation is analogous

to the drivers of racing cars. Although it is possible to drive a car without understanding anything

about the details of engine or gearbox design, or the principles of power and torque, an expert

driver will use his knowledge of the way the machine works to harness its potential for winning.

Furthermore, to drive a racing car well it is not necessary to know anything about, for example, the

way the gearbox shifts cogs. Hence, at every stage, there is extra information which separates an

expert user from a novice and additional details which are not relevant to perfoming the task well.

Returning to computing, Kiczales believes that Open Implementations can address the problem

by providing multiple interfaces [64]. Open Implementations is a proposal for writing substrate sys-

tems – programs used by developers for creating and supporting the execution of client applications.

Programming technology and operating systems are examples of substrate systems. Such programs

have two kinds of interfaces: the meta-level interface is a side door into substrate systems that is

used to tailor the base-level interface to meet the special needs of clients. The meta-level interface

uses meta-object protocols [65] to provide three kinds of openings:

Introspection. Access to implementation state.

Invocation. Access to internal fuctionality.

Intercession. Changes to behaviour or implementation strategy to improve performance.

A power user can exploit the meta-level interface to modify the system in powerful yet structured

ways. Writing substrate systems as Open Implementations is more expensive initially. The cost is

recouped through reduced extension costs. When the substrate lacks functionality needed by its

user, the user can use the meta-level interface to extend the substrate.

Clearly, only a small proportion of programming activity is concerned with writing substrates.

Nevertheless, meta-object protocols demonstrate their flexibility when coping with changing require-

ments and the resulant changes to systems. In order to be more adaptable to unanticipated changes

a component needs to provide facilities for changing from the inside.

2.3.4 Setting The Research Direction on Reuse

Construction of reusable software plays an important role in the software reuse spectrum but it is

not the whole of the spectrum. A lot of software is not built for reuse but to address the functional

requirements.

There are at least two ways that construction of reusable software can be motivated. The

first is to develop marketable components. The incentive comes in the form of component trade.

Building reusable components for marketing is an established practice in the software industry. One

of the challenges concerns opening up component markets to improve availability and drive down

prices [105]. The second is to seek improvements in software modularity. Due to the unanticipated

nature of evolution and reuse, it is often not possible to predict what concerns the current project

will share with other projects. However, the units of software decomposition will be more reusable if

each module addresses one well-defined concern. As a starting point, the feature concerns identified

in the requirements specification should be considered for modularisation.

This dissertation focuses on modularity for reuse. Object-orientation is today’s dominant pro-

gramming paradigm. In the rest of this Chapter, the way object-oriented programming enables

software reuse is examined.
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2.4 Reuse in Object-Oriented Programming

When object-oriented programming (OOP) was introduced, it was marketed as a programming

paradigm that facilitates reusability (e.g. [40]). But as we have shown, reuse has many facets and

two people who have an intuitive understanding of reuse may each have a different intuitive under-

standing. Presently, OOP is discussed in the way it is commonly perceived by many object-oriented

programmers [83]: through the languages C++ [115] and Java [45]. For reasons of compatibility

and for non-technical reasons programmers are often required to use these languages in projects.

2.4.1 Key Aspects of Object-Oriented Programming Languages

A number of factors combine to make object-oriented programming amenable to code reuse:

Abstraction. Data abstraction encourages the creation of modules which hide their implementation

behind an abstract interface.

Inheritance. A new class can be derived by reusing code from an existing class.

Polymorphism. With polymorphism, an object of a derived class can be used in place of an object

of the expected class.

Abstraction

Objects can be used to represent abstractions in the problem domain and in the solution domain, i.e.

the domain of implementation. To understand what an object does it is not necessary to look inside

the object; the behaviour is characterised by what is observed at the interface. The data abstraction

properties of object-oriented languages are well suited for modelling abstract data types.

The class is the modular design unit in OOP. Its designer decides what is internal and external.

Visibility modifiers private and public determine the services that are available to clients. The

abstraction properties support the construction of black-boxes where the interface makes available

those services that are required by clients in the object’s sphere of application. It is not in the

interests of the original designer to anticipate any additional services to which a reuser will require

access.

The conceptual separation of type specification from implementations of the type is opaque in

C++ and Java. A class defines both the type of objects and their implementation; although, Java

does allow programmers to separate the type from the implementations with interface constructs.

Multiple classes can implement an interface, defining variants, and a single class can implement

multiple interfaces, in effect permitting an object to have many types or views. In order to be useful

in reuse the developer must be consistent in separating all classes from interfaces. Good object-

oriented practice suggests also that one should hide all field variables. Accessor methods should

provide controlled access. These practices improve the separation of concerns by abstracting the

client away from the implementation, allowing one to change the implementation without affecting

the clients. This good advice is not always followed by programmers probably because it requires

extra keystrokes or due to misplaced concerns for execution speed.

Solutions need not come in the form of a different programming language. Extensive labour-

saving tool support exists for Java and C++ to discourage bad practice.
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Inheritance

Inheritance is a relationship defined between classes. In object-oriented terminology, a subclass

extends a superclass inheriting its non-private members, possibly overriding inherited methods and

defining new members. Class members are field variables and methods. Reuse with inheritance

comes in two forms: superclass reuse and client reuse.

Superclass reuse is the most common form associated with inheritance. When two classes have

similar parts, these can be extracted and placed into a common superclass which both classes

inherit [61]. Alternatively, one can start from an existing class or classes (in C++), inherit and

make the required modifications. The first form of superclass reuse is more likely to occur during

initial development as code gets factored into a common superclass. The second form is common

during a posteriori reuse.

Client reuse is the reuse of code associated with clients. When inheritance is used to create a

subtype, all the code that uses the supertype instances can seamlessly migrate to using subtype

instances. The amount of code reused this way is often more significant than with superclass

reuse [15].

Multiple inheritance allows a subclass directly to inherit members from multiple superclasses.

Languages that support multiple inheritance of implementation, such as C++, also have a con-

flict resolution mechanism for disambiguating the order of inherited members when similarly named

members are inherited from different superclasses. Multiple inheritance simplifies reuse because

it allows one to create classes that contain combinations of properties inherited from distinct su-

perclasses. On the other hand, it can make the behaviour of objects more difficult to understand

because it requires comprehension of more branches in the hierarchy.

Polymorphism

Subtype polymorphism, genericity and multiple dispatch are different kinds of polymorphism. C++

and Java have subtype polymorphism in common. Objects interact by sending each other messages.

The object whose code is executed in response to a message is known as the receiver. In these

languages, subtype polymorphism requires a dynamic check. When a method is called, the code

which gets executed is determined at run-time based on the type of the receiver.

This polymorphic behaviour is useful when a group of objects have the same general form but

differ in specific details. The client can treat related objects in the same way but the behaviour that

is invoked depends on the actual type of the receiver. Polymorphism reduces initial development

costs by treating a set of objects of different types in a generic way; clients can refer to the subset

of the interface all objects share. To achieve the same effect in procedural languages one can define

maintenance intensive if-then-else structures.

Genericity is also known as parametric polymorphism. C++ supports genericity through tem-

plate classes. Template classes are instantiated by giving concrete classes as special type parameters.

Genericity is extremely useful where an upfront requirement for genericity is identified, e.g. for cre-

ating reusable containers such as List[X] which can be parameterised by different types X of list

elements.

Multiple dispatch appears in CLOS [63] – the object-oriented extension to the Lisp language. It

allows code selection based on the dynamic type of the receiver and parameters. Multiple dispatch

can reduce the cost of class reuse in some designs. Consider the example of two or more modems.
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Modem m1 = new XModem(); // notice that static type is different

Modem m2 = new XModem(); // to dynamic type.

Modem m3 = new YModem();

m1.connect(m2); // invokes proprietory

m1.connect(m3); // invokes standard

abstract class Modem {

void connect(Modem m) { .. } // the standard protocol

}

class XModem extends Modem {

void connect(XModem m) { .. } // proprietory protocol

}

class YModem extends Modem {

void connect(YModem m) { .. } // proprietory protocol

}

Figure 2-1: Example demonstrating multiple dispatch.

Suppose that to enable faster data transfer, a modem connects to another modem of the same make

using a proprietory protocol. Two modems of different makes communicate using the standard

protocol. Multiple dispatch allows us to define a simple interface that is common to all modems.

When a new modem model is produced, we create a new subclass of the abstract modem class which

defines the proprietory protocol. The client code can treat all modems the same but connection

invokes the propretory protocol when the dynamic type of the receiver and parameter are the same.

Figure 2-1 shows the Modem example using Java-like pseudocode. Unlike Java, the parameter type

is dynamic. In the absence of multiple dispatch, the effect of connect(..) will be to call the

standard protocol each time.

2.4.2 The Role of Inheritance in Reuse

Object-oriented programming associates reuse with classes. A class is a versatile reuse unit because

it spans all levels of abstraction from basic abstract data types to large and complex components.

Inheritance is the main reuse operator introduced by object-oriented programming. Reusers employ

inheritance to derive a new class from existing classes. Maintainers also use inheritance when re-

quirements change. Reluctance to modify existing classes for fear of breaking them leads maintainers

to using inheritance instead. Inheritance acts as version control: the subclass is a newer version of

the superclass. However, inheritance is also used for conceptual modelling, to express supertype-

subtype relationships, and to introduce variant implementations of types. Using inheritance for

reuse without establishing a clear conceptual relationship between the superclass and the subclass

leads to the the ball of mud architecture described earlier. The elimination of multiple inheritance

of implementation from the Java language can be seen as a way of trying to combat bad practice.

LaLonde and Pugh [72] discuss three distinct interpretations of inheritance. Subclassing refers

to inheritance of implementation. Subtyping permits an instance of a subclass to be used in the

place of the superclass. Inheritance between classes is modelled using the ‘is-a’ test. The problem

is that mainstream programming languages have few ways of expressing the different relationships.

Inheritance problems are a consequence of misunderstanding the precise nature of the relationship.

Porter [101] proposed separating the subtype hierarchy from inheritance of implementation as

a way of improving the understandability of object-oriented programs. In the subtype hierarchy,
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method signatures defined in the supertype can be redefined in the subtype, but no method im-

plementation overriding takes place. The subtype hierarchy achieves full substitutability. In the

implementation hierarchy code sharing occurs. An implementation class implements zero or more

types and can inherit implementations from multiple classes.

All reuse examples so far have concentrated on reuse of a single class in creating a new class.

However, much can be gained by subclassing multiple abstractions. The absence of multiple inher-

itance is a hurdle to class reuse. The problem is one of using multiple inheritance in a structured

way in order to keep programs easy to understand and facilitate reusability in the future.

Gardner [44] has distinguished between different fundamental forms of inheritance. She proposes

five structured inheritance relationship (SIRs) for object-oriented programming. The relationships

are conceptually orthogonal, all SIRs are necessary to model the conceptual relationships that occur

in software systems, and SIRs are sufficient for modelling uses of inheritance described in object-

oriented literature:

Variant. Describes a relationship where the subclass satisfies the type specification in the super-

class. For example, a linked list or array implementation of a stack type.

View. Describes a use of multiple inheritance by which an instance of the superclass can be viewed

as a number of different types. In this way it is possible to develop different interfaces to the

same object which are appropriate to different kinds of client. For example, view of a person

as a student, parent, employee, patient, etc.

Evolution. Allows the implementation of abstraction to be built up over time due to changing

requirements. The evolved abstraction is not expected to work in the original system, although

the evolved abstraction may be conformant with the old system. For example, in moving from

monochrome to colour displays we may inherit class Point to create ColourPoint.

Construction. A form of inheritance for reuse which uses an existing class in building another

class. For example, a number of graphical application windows may inherit the same menu

abstraction.

Specialisation. Creates a hierarchy of types where a subtype is substitutable wherever the super-

type is expected. For example, Child and Adult subtypes of a Customer.

Of the five relationships, specialisation is associated with the behavioural notion of subtyp-

ing [74] and variant with type conformant implementations. All but specialisation can be used

to establish some kind of code reuse relationship. Multiple inheritance can be used with most SIRs

to create new abstractions. The atomic natures of each SIR ensures that the relationship with the

inherited abstractions is conceptually sound and explicit in the design. For example, variant and

view SIRs can be used together, e.g. an object of the 2DPoint class can be viewed as a IPair.

Implementation class IPair is a variant of type TPair. In another example, construction can be

used multiple times, e.g. to add the behaviour of Scrollbar and TitleBar abstractions to a Window

abstraction. Gardner demonstrates that multiple inheritance is conceptually valid and that it has a

role in modelling and reuse.

In object-oriented programming languages, visibility modifiers public and private delineate

the interface from the implementation and protect secure data from direct access. Class members

marked protected are accessible within subclassess but not to external clients. In Java, the modifier
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final signifies that the subclasses should not redefine that member. final also facilitates compiler

optimisation. These modifiers fundamentally affect the reusability of a class by specifying valid

extension points. Reuse is a problem where the required extension point is not visible to the subclass

due to the presence of certain modifiers.

Object-oriented programming permits black-box reuse of classes using delegation and inheritance.

With delegation, instances of existing classes are used to build new abstractions. Programmers may

prefer to use inheritance over delegation due to the advantages associated with client reuse. When

the subclass is not a behavioural subtype of the reused abstraction the reuser must ensure that

the new abstraction will be conformant with all existing clients. With delegation, the clients must

always co-evolve whether the new abstraction is conformant or not. Inheritance is often preferred to

delegation when the derived abstraction has a similar interface and shares aspects of implementation

with the reused class. Using inheritance to do programming-by-difference the reuser only specifies

the way in which the new class differs from its superclass(es).

2.4.3 Reuse Artifacts Not Associated with a Class

Reuse problems also occur when the concern is not captured by a single class. Either a single

class addresses multiple concerns or there are many classes that jointly contribute to a concern.

Respectively, these are problems of tangling and scattering. Discussion of such reuse artifacts forms

part of Chapter 3 (page 22) on Advanced Separation of Concerns.

In summary, reuse in object-oriented programming languages requires a degree of preplanning.

Concerns that were not modularised by a class originally are difficult to reuse. Non-invasive evolution

of classes is not always possible because the variance points are hidden within and are not part of

the object’s externally specified behaviour.

2.5 Conclusion

This Chapter discussed the challenges associated with software evolution and reuse. Better separa-

tion of concerns is a way to improve the reusability of software in projects where reusability is not

a primary concern. Modularisation in design of concerns derived from the problem domain has the

potential to benefit both the original developer and the reuser. The original developer benefits from

parallel modular development of concerns. Reusers who share goals with those addressed by existing

projects can reuse artifacts from those systems. Due to traceability of requirements in design, the

reuser is better able to identify and extract the code associated with the reuse artifact.

Object-oriented programming emphasises the reuse of classes. Preplanned reuse is supported

through a combination of inheritance and delegation, but reuse of software where reusability was

not a concern a priori often requires access to extension points that are hidden inside the class.

In moving beyond mainstream object-oriented languages, the next Chapter looks at extensions to

mainstream languages and other programming technologies which

• modularise concerns that are not easily represented by classes, and

• facilitate reuse of software in ways not anticipated by its original developers.



Chapter 3

Advanced Separation of Concerns

Modularity is key to making reuse possible. The previous Chapter reviewed object-oriented pro-

gramming as perceived by developers of mainstream languages. Today, thanks to object-oriented

programming, the reuse of abstractions represented by classes is a reality. However, problems remain

when a class cannot be extended due to the absence of suitable extension points. Reuse of concerns

that are not modularised by a single class requires a degree of advance planning. For instance, many

concerns in the problem domain and certain concerns in the solution domains, such as persistence,

synchronisation and distribution are not modular in object-oriented programs. Modularity of these

concerns is achieved through advanced separation of concerns.

The aim of this Chapter is to review the state of art and understand the challenges involved

in advanced separation of concerns. Our view on modularity coincides with that taken by Tarr

et al [122]. These researchers propose Multi-Dimensional Separation of Concerns (MDSOC) as a

new programming paradigm for improving the modularity of concerns that developers identify as

important. Section 3.1 presents MDSOC and describes the motivational factors for changing the

way software is developed.

Many concerns in the problem domain are not captured by a single class but associated with

collaborating suites of classes. These collaborations are modular in design languages such as UML

in the form of sequence and collaboration diagrams. MDSOC technologies for making collaboration

modular in code are reviewed in Section 3.2.

Aspect-Oriented Programming (AOP) addresses certain goals of MDSOC by modularising per-

sistence, synchronisation and distribution concerns, as well as many other concerns that cut across

application functionality. Mechanisms for modularisation of solution domain concerns that have

proven difficult to modularise in object-oriented programs are reviewed in Section 3.3.

Subject-Oriented Programming (SOP) is an instance of MDSOC that can modularise collabora-

tions and many solution domain concerns. Section 3.4 justifies the selection of SOP as the vehicle

for supporting reuse.

3.1 Multi-Dimensional Separation of Concerns

MDSOC is a new paradigm for modelling and implementing software artifacts [122]. It proposes

the separation of overlapping concerns along multiple dimensions of composition and decomposition.

A concern is any matter of interest in a software system. Dimensions group concerns; they are a

22
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Figure 3-1: Scattering and tangling in SEE

perspective on to the system. MDSOC improves reusability by modularising all pertinent concerns

at the same time – concerns from the problem domain, those emerging as part of the design, during

initial software development, and in maintenance.

The problems of degrading software comprehensibility, common maintenance tasks leading to

high-impact invasive changes and limited reusability are caused, in large part, by our inability to keep

separate all concerns of importance in software systems. All formalisms support the decomposition

of problems into subproblems to some extent, but provide a restricted set of decomposition and

composition mechanisms. These mechanisms support a single dominant dimension of separation,

ignoring all other possible dimensions. Tarr et al have termed this phenomenon the ‘tyranny of the

dominant decomposition’. In order to break the tyranny, the MDSOC proposal requires technology

to support simultaneous separation of multiple concerns in multiple dimensions.

What follows is a summary of the problems identified by Tarr et al that motivate the introduction

of the MDSOC model; a review of the main concepts of the MDSOC model that help to explain the

way systems should be modelled; and a a critique MDSOC based on our reuse position.

3.1.1 Motivation for MDSOC

To illustrate the problems in software development Tarr et al [122] develop the Software Engineering

Environment application. The application supports the specification of algebraic expressions with

a collection of tools that manipulate the shared abstract syntax tree representation. The initial

tool set includes an evaluation capability to determine the result of evaluating an expression, a

display capability, and a check capability which determines both semantic and syntactic correctness
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of expressions.

The UML design for the application (shown in Figure 3-1) contains a class for each kind of

Expression in the abstract syntax tree. Each class defines the eval(), display() and check()

operations which realise the tools in the standard object-oriented fashion. The code has a simi-

lar structure to the design. This example illustrates an important issue in software development:

the system is decomposed differently when viewed from the perspectives of requirements and de-

sign/code. Requirements are decomposed by tool or feature, and design/code is decomposed by

class. This phenomenon leads to the problems of scattering and tangling:

Scattering. A single requirement affects multiple design and code units.

Tangling. Multiple requirements are implemented within a single module.

Each of eval(), display() and check() is scattered across the class hierarchy with many classes

contributing to the realisation of each concern. The implementation of each class tangles the feature

concerns.

Having used the application, clients request functionality for optionally making expressions per-

sistent. The clients also require different kinds of style checking functionality, and it should be

possible to mix and match syntactic, semantic and different kinds of style checker.

These seemingly simple additions (from the perspective of the client) significantly impact the

design and code; scattering and tangling pose a problem to the evolution of the Software Engineering

Environment. Persistence requires modifications to the accessor methods of each class to retrieve

persistent objects and save modified state to the database. It is possible to use inheritance to add

persistence functionality but all clients must be evolved to create instances of the new abstractions.

Moreover, the persistence requirement is affected by the selection of checkers; the style checkers

must include their persistent state together with expressions. Mix-and-match of checkers requires

infrastructure support that was not necessary originally. The Visitor design pattern introduces the

flexibility at the cost of higher coupling between the AST classes and the visitor classes [43]. The

Visitor pattern is useful when many distinct operations need to be performed on objects in an

object structure. The introduction of the Visitor pattern may impact future extensions if new kinds

of Expression need to be defined. The changes are invasive because units of change do not match

the units of abstraction within the design/code. Subclassing and design patterns require particular

changes to be anticipated, but anticipating future change is not in the requirements of many projects.

Different artifacts associated with software creation have varying levels of abstraction. They are

decomposed and structured differently because of emphasis on different kinds of concerns. Scattering

and tangling of requirements occur because the concerns of importance in the requirements do not

map cleanly to design and code units. Hence, when changes to requirements happen, propagation

takes a great deal of effort.

The cause of the problem is the ‘tyranny of the dominant decomposition’. Today’s formalisms

support a small set of decompositions and usually have a single ‘dominant’ one at a time. The

dominant decomposition satisfies some important needs but usually at the expense of others. For

example, in the original object-oriented solution to the Software Engineering Environment, decom-

position based on data encapsulation concerns reduces the traceability of feature concerns which are

equally important. Solving the problem involves breaking the tyranny by modularising simultane-

ously all concerns identified as important. The dimensions of concerns identified as important to

the Software Engineering Environment include:
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Feature. These include display, evaluate, persistence, syntactic check, style check, semantic check.

Unit of change. Additions made due to user requests.

Customisation. Additions or changes needed to specialise the component to a particular purpose.

Object. The classes involved in the system.

There are many other dimensions of concerns which may be applicable, such as to separate

‘optional’ from ‘required’ pieces, or to customise the application to different kinds of user, etc. The

dimensions are rarely orthogonal, they overlap and can affect one another. A flexible solution to

modularisation must allow the pertinent dimensions to apply at the same time and handle overlap

and interaction between them.

3.1.2 The MDSOC Model

The MDSOC model is intended to capture all concerns and all dimensions of concerns in a software

intensive project. It introduces hyperslices as an additional flexible means of software decomposition.

Hyperslices are intended to modularise concerns in dimensions other than the dominant one. Hyper-

slices are implemented using a set of convensional modules and units, written in any formalism. For

instance, Figure 3-2 shows hyperslices applied to UML class diagrams. The modules are classes and

a hyperslice is a collection of classes. Attributes and operations are the units in the hyperslice. A

collection of units corresponds to a module, e.g. a class or an interface. To understand the hyperslice

it should not be necessary to look inside its units. The hyperslice contains exactly those modules

and units that are required to address the concern.
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Hyperslices are expected to overlap such that the modules and units in one occur, possibly in

a different form, in other hyperslices. A system is written as a collection of hyperslices, reflecting

the concerns in the system that have been identified as important along as many dimensions as

necessary. Systems are created by composing hyperslices on the basis of composition rules. A set

of input hyperslices and a composition rule together are called a hypermodule. A new hyperslice is

created by applying a composition rule to input hyperslices, so a hypermodule can be used whenever

a hyperslice is expected. The complete runnable system artifact, e.g. a component or a subsystem

represented as a class diagram, can be modelled as a hypermodule.

Composition is established by a process known as matching – identifying elements which de-

scribe the same concept in different hyperslices. The differences between corresponding elements are

resolved before integration of elements produces a unified whole. The specification of composition

is part of the design process and cannot be automated. Figure 3-3 shows the matching process and

generation of a hypermodule in SEE.

Application of the MDSOC model to the Software Engineering Environment example leads to

the separation of major concerns of importance identified during requirements analysis. Hyperslices

can modularise the ‘kernel’ functionality which contains the state and accessor methods, and each of

the display, evaluation and checking features. Checking is itself a hypermodule made up of hyperslices

specifying the different kinds of checks present in the system. With MDSOC instantiated on UML

class diagrams, each hyperslice contains the design for one concern. Hyperslices modularise the

features, and within each hyperslice the object concerns are separated in the class diagram. If

these modules can be kept separate in code then separation of feature concerns can persist over the
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lifecycle.

Modularisation of features also solves the problem of scattering and tangling: all elements per-

taining to a concern are specified within its hyperslice. The AST concept – the most general concern

in the application – is modularised by the kernel hyperslice. It has been separated from its context

and can be reused in other applications. Other concerns, such as checking, although more specific,

can still be reused in other contexts if the situation arises.

The final application is created on the basis of the composition rule. By including or excluding

hyperslices it is possible to mix and match features. When requirements change, such as the addition

of persistence described earlier, a new concern is introduced along two dimensions. Persistence is

a feature and also represents a unit of change. It can be modelled as a separate hyperslice and

composed with other hyperslices.

The MDSOC model is not a panacea for bad design. It is possible to over or underseparate

concerns. Overseparation leads to a large number of hypersices with complex inter-slice relationships

that may actually reduce comprehension and increase complexity.

3.1.3 MDSOC and The Position on Reuse

Technology implementing the MDSOC model can facilitate reuse by improving the modularity of

concerns that are presently tangled and scattered in designs in code. Therefore, this technology is

going to be attractive to practitioners who wish to create well structured systems. However, at least

two aspects of MDSOC may detract practitioners:

• The MDSOC model introduces a lot of duplication. If each hyperslice defines the functionality

it requires, the same behaviours may be defined multiple times. By contrast, modern pro-

gramming trends have tended to minimise duplication. Pragmatic MDSOC technology must

endeavour to avoid duplication during hyperslice design and coding stages; although, as in

multiple inheritance, duplication during reuse should be expected.

• The MDSOC model improves modularity but does not improve encapsulation. A class is both

a modular artifact and a unit of encapsulation; however, a hypermodule does not provide any

additional encapsulation. Composing hyperslices to form a hypermodule reduces duplication

by integrating matching modules and units, but a hypermodule does not hide any more im-

plementation details than the hyperslices from which it is created. Recall that a hyperslice

consists of modules and units. Only the units of a hyperslice are modular artifacts in the

traditional sense as defined in Section 2.2.1 on page 9.

The absence of additional means of information hiding can impact hypermodule reusability. Un-

derstanding the impact of adding further hyperslices is no easier with hypermodules than with the

hyperslices from which a hypermodule is composed.

MDSOC permits decomposition of systems along many dimensions. For example, requirements,

design and code hyperslices pertaining to the development of the ‘expression’ concept in the ‘kernel’

concern of the Software Engineering Environment can be a hypermodule. This decomposition helps

to trace the development of the ‘kernel’ through the lifecycle. This and other decompositions may be

useful during reuse or maintenance but what decompositions have value to the original developer?

In order to change the way practitioners develop software, it is important to motivate new kinds of

decompositions. We believe that there are two dimensions of concerns that have value to the original

developer:
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• Concerns in the feature dimension. Modularisation of a system along feature concerns may

enable concurrent development of features by teams. Feature modularisation facilitates re-

quirement traceability and may reduce the duration of development cycles as teams work in

parallel on realising each feature.

• Cross-cutting concerns in the solution domain. Cross-cutting concerns that are scattered and

tangled in the dominant dimension have become popularly known as aspects. In addition to the

usual benefits associated with improved modularity, modularisation of aspects often reduces

the amount of code overall [66].

In any large project there are concerns which arise in the solution domain. These concerns are

defined by the solution techniques. Aksit et al [4] emphasise the importance of solution domain

over problem domain concerns. They argue that the problem domain concerns do not include the

necessary concerns for implementing the software system because many important concerns are

transparent to the user. To illustrate the point an example of sharing components in a network is

presented. The subconcerns of consistency management and performance optimisation emerge as

part of the solution domain. These are not explicitly included in the requirements specification but

should be treated as aspects of the system.

An alternative view is presented by Jacobson [60] who argues that systems should be sliced use

case by use case. Use cases have been widely adopted for requirements specification. They are a core

part of the Unified Process – a way of constructing software with UML. In order for a feature-based

decomposition to be attractive in projects where feature modularity is not an a priori requirement,

the total cost of development, including hyperslice composition, should be comparable to the cost

of conventional software development. In other words, the benefits to the original developer should

help outweigh the initial investment.

In order to make it easier to concentrate on the problem domain concerns, it has been proposed to

make feature concerns oblivious to aspects, i.e. system level concerns [38]. For instance, it should be

possible to specify the features of the application without making provisions for security. The security

policy is applied separately. The features neither need to declare the secure artifacts nor make special

provision for security to be applied. Obliviousness makes it possible to make functional changes to the

application without concern for particular aspects; the aspects can easily adapt to changes in feature

code. Obliviousness is not an intrinsic property of MDSOC but programs created using MDSOC

technology can be designed to support obliviousness with respect to certain concerns. Most Java

programmers are oblivious to details of memory deallocation thanks to garbage collection. Also,

in component development with JavaBeans aspects of bean deployment are separated from bean

functionality. The design of beans is oblivious to the deployment strategy. Essential to obliviousness

in MDSOC are powerful means of connecting hyperslices.

In the following two Sections we review the technology for modularisation of collaborations and

aspects. There is a degree of overlap: a number of proposals are well suited to modularisation of

both collaborations and aspects. Subject-Oriented Programming [49] and Object Teams [54] are

two such models. The presentation of these proposals is split over the two Sections.
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3.2 Technology for Modularisation of Collaborations

Many functional concerns are associated with collections of classes rather than with a single class.

At runtime, objects of the types derived from these classes collaborate on a task defined by the

concern. A way to achieve the reusability of object collaborations is with a straightforward mapping

from design level concepts into distinct implementation elements [111].

In the present Section, the recent work related to the modularisation of collaborations is pre-

sented. The presentation starts with attempts to extend object-oriented programming with support

for collaborations, and leads to alternative software development models that also enable related

classes to be modularised.

3.2.1 Collaborations in Object-Oriented Programming

Contracts is the name given to a technique for formally specifying behavioural compositions [53, 58].

A contract defines a set of communicating participants and their contractual obligations. Partici-

pants are mutually recursive: they refer to each other and send each other messages. Contractual

obligations consist of:

Type obligations. The participant must support certain variables and an external interface.

Causal obligations. The participant must perform an ordered sequence of actions and make cer-

tain conditions true in response to messages sent to the external interface. Causal obligations

capture the behavioural dependencies between objects.

Each contract also defines invariants that participants cooperate to maintain and actions which

should be taken to resatisfy the invariant. In order to initiate a contract, the state of all participants

must be set up in line with the invariants.

This formalism has constructs for the refinement and inclusion of behaviour defined in existing

contracts. Refinement allows for the specialisation of contractual obligations and invariants. The

obligations of multiple participants are specialised in concert. Inclusion allows contracts to be

composed from simpler contracts. A subcontract relates a subset of the participants of the contracts

which include it.

Contracts are specified in a high-level language that allows abstract description of behaviour and

realised using conformance declarations. In a conformance declaration, classes map to participant

specifications, i.e. the program must be shown to satisfy the specification. A class conforms when its

methods and instance variables satisfy the typing and causal obligations required by the participant

definition. The implementation of a participant can be distributed among a number of classes related

by inheritance, and a class can implement the contractual obligations of a number of participants.

For example, code common to a number of contracts may be extracted into an abstract superclass.

Contracts make explicit those interactions which in object-oriented programming are hidden

inside constructors or implicit in sequences of method calls. They are intended to be implemented

directly in an object-oriented language. Although modularity of collaborations is achieved at the

design level, the separation of concerns is not propagated into code, thereby losing the traceability

between design and code.
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Template-Based Implementations of Collaborations

An implementation of collaborations based on template classes in C++ is proposed by VanHilst

and Notkin [125, 126]. Each object in a collaboration is said to play roles in collaborations with

other objects [12]. Template classes can be used to implement roles. Role participants are passed

as parameters to the templates. A template parameterises all participants to which it must refer,

including self. For example, the father’s role in a two parent household might be defined in part as:

template <class ChildType, class MotherType, class SuperType>

class FatherRole : public SuperType {

ChildType *child;

MotherType *mother;

...

};

In this collaboration, the ChildType and MotherType parameters are the collaborators with this

FatherRole. Template parameters indicate that, as yet, they are of unknown type. The SuperType

role is used in every definition, since every role is part of some unknown class. Templates are instan-

tiated by specifying classes for each template parameter. For example, suppose that ChildClass

and MotherClass play the child and mother roles in the above collaboration, HusbandClass plays

the self role, Then an instantiation of the FatherRole appears as:

class FatherClass : public FatherRole<ChildClass, MotherClass, HusbandClass> {};

Roles from different collaborations can be composed in this model. It is possible to compose roles

from different but related collaborations and from repeated uses of the same collaboration. New

roles are created by passing template classes as parameters to other templates. Smaragdakis and

Batory later propose an improvement to template-based implementations of collaborations entitled

Mixin Layers [112]. Mixin Layers address certain scalability issues by defining roles as nested or

inner classes of an outer class that denotes the entire collaboration. A C++ implementation of a

two parent household is given below:

template <class CollabSuper>

class TwoParentFamily : public CollabSuper {

public:

class MotherRole : public CollabSuper::MotherRole { ... };

class FatherRole : public CollabSuper::FatherRole { ... };

class ChildRole : public CollabSuper::ChildRole { ... };

};

The template-based approach makes it possible to implement many collaborations modularly in

code, addressing the traceability problem associated with contracts.

The roles of a collaboration can be reused in the creation of new roles using inheritance, but

in many collaboration specialisation scenarios a set of role classes must evolve at the same time.

The set of evolved classes participating in the collaboration must be used together. Although code

is shared with the super-roles, the roles are not type substitutable for their superclasses. Neither

subtype polymorphism nor multiple dispatch can provide the static safety guarantees which ensure

that only objects of the same collaboration participate. To address this problem, Ernst has proposed

family polymorphism [34].
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Family Polymorphism

The classes of objects participating in a collaboration, i.e. roles, form a family. Family polymorphism

allows to statically declare and manage the relations between several classes polymorphically, in such

a way that a given set of classes is known to constitute a family but it is not known statically exactly

what classes they are.

In a system containing more than one variant of a class family, in order to avoid mixing families

inappropriately it is necessary to maintain consistency in the usage of family members. Family

polymorphism is a mechanism that helps to resolve this problem, statically ensuring that the roles

of any set of families are never mixed. Besides supporting collaboration refinement, family polymor-

phism also confines role objects to their family, thereby encapsulating role objects in collaborations.

The Object Teams approach to making collaborations modular uses the encapsulation properties of

family polymorphism to create reusable collaborations.

3.2.2 Object Teams

The Object Teams [54] proposal introduces a new kind of module, a team, for modularising object

collaborations. A team is an instantiable aggregation of confined objects called roles. It contains a

collection of classes that define the roles and a set of operations and variables defined at team-level.

Teams support three kinds of inheritance-style relationship:

• Explicit inheritance between teams is used to create specialised teams as well as to reuse code

specified in the superteam. For example, imagine an application that allows a passenger to

collect bonuses with every flight. A Bonus team, as an abstract collaboration between the

scheme Subscriber and a BonusItem, may be extended to create a FlightBonus team. The

FlightBonus refines Bonus by redefining the function calculateCredit() to return a rounded

value. Explicit inheritance links FlightBonus to Bonus.

• Inheritance between roles is called implicit inheritance. By redefining a role class in a subteam

we implicitly gain access to the members of that role in the superteam. The calculateCredit()

operation is overridden due to implicit inheritance between BonusItem in team FlightBonus

and the same role class in team Bonus.

• Team composition is achieved with object-based inheritance (which is in fact delegation). This

establishes a relationship between a role in a team and some base class, i.e. the class begins

to play a role. For example, suppose we want to apply the FlightBonus team to a particular

application involving air miles. Class Segment defines the attribute which specifies the segment

length. In order to calculateCredit(), we require access to the air miles travelled. This is

formalised in code by declaring:

class BonusItem playedBy Segment

Object Teams supports the encapsulation of team representation. Usually, a role instance is

confined to its enclosing team, however, a role can be exposed but only if the team reference is

declared final, i.e. immutable. The modifier ensures that no other team is assigned to this variable

while the role is exposed. The exposed roles cannot be passed to a different team from the one in

which they originate.
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3.2.3 GenVoca

GenVoca is a component model for constructing hierarchical software systems [10]. It provides direct

language support for a design model that supports component composition. The familiar notions of

abstraction, encapsulation and parameterisation are extended to include the new kind of GenVoca

component which has the following properties:

Abstraction. Support for standardised interfaces in the form of the realm construct. Standardis-

ation leads to functionally similar, interchangeable and interoperable components.

Encapsulation. Large-scale construction is supported through the component construct. Compo-

nents can encapsulate collaborations of multiple classes.

Parameterisation. Customisation and composition of components is supported with parameter-

isation. In particular, realm parameters can be passed to components to create layered or

hierarchical compositions of components.

A set of function and class declarations defines the realm. To implement a realm it is necessary

to specify implementations for all classes and functions defined in the realm. It is also possible to

introduce totally new classes and members in the implementation.

Instead of using inheritance, GenVoca employs parameterisation to create connections between

components. Any component which is instantiated with a realm parameter implements a new layer.

A layer is the term used to describe a component built by reusing another component. The new layer

can extend the realm parameter’s interface to create new classes. The result is a new component

which implements new functionality on top of the component it extends.

GenVoca is implemented in the P++ language which is an extension to C++. The language

hides a template-based implementation, similar to the one described in the previous Section. Similar

to Mixin Layers and Object Teams, GenVoca adds a concept of a higher-level module.

GenVoca emphasises construction of reusable components with a strong emphasis on valid com-

binations of features implemented by components. More recently Batory et al propose to scale

step-wise refinement to hyperslice level [8, 9]. Step-wise refinement asserts that complex programs

can be derived by progressively adding features. By considering the combinations of orthogonal,

i.e. non-overlapping features, Batory et al show that valid combinations can be specified relatively

concisely. In a model that can be decomposed along n dimensions of concerns with k features along

each dimension, there could be as many as O(kn) feature combinations to consider. However, based

on the results achieved by Batory and his colleagues, specifications of length O(kn) can be produced.

The shorter specifications enable the programmer faster to convince himself of the correctness of his

program for all combinations of its features.

3.2.4 Subject-Oriented Programming

Subject-Oriented Programming (SOP) [49] is a programming paradigm that can modularise feature

concerns. In SOP, the subject is the artifact playing the role of the hyperslice. A subject models

its domain from its own particular perspective and is implemented using classes, instance variables

and operations in a standard, object-oriented way. It is a subprogram that addresses a concern from

the problem domain or the solution domain. Subjects facilitate a clean separation of concerns by

defining only those elements which contribute to addressing the concern.
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Harrison and Ossher [49] observed that OOP is well suited for building independent applications

but less well suited for building integrated suites or families of applications. The traditional view

of OOP is of a model for representing abstractions in the real world. The complexities of object

implementations are hidden behind a compact, abstract interface. However, real world abstractions

have a multitude of requirements and constraints. For instance, a car abstraction can be viewed

from the perspectives of the driver, salesman or mechanic. Each domain has its own vital properties

of the car and has particular demands on behaviour which can affect those properties. The driver

may classify cars based on size, economy, reliability and is concerned primarily with the behaviour

of driving. The salesman may classify cars based on model designation; the choice of cars to buy and

sell depends on the demand for a particular model, the wholesale and retail prices. The mechanic

classifies cars based on parts and tool availability. European models have attachments measured in

metric units while American cars use imperial measures. In the traditional object-oriented view of

the world, when requirements arise, all these views must be accommodated by the interface. As

software evolves, more requirements get introduced, bloating the interface further and leading to the

scattering and tangling problems discussed in the motivation for MDSOC in Section 3.1 on page 22.

The SOP solution facilitates independent development of cooperating applications as subjects.

Cooperation is achieved by sharing objects and jointly contributing to the execution of operations.

In the above example, the domains of driving, car sales and mechanic responsibilities can be treated

as separate subjects which can be implemented independently and subsequently composed to satisfy

application goals. The aims of SOP are:

• Treating each subject as an application: there should be no explicit dependence in code on

other applications.

• The composed applications may cooperate loosely or closely.

• It should be possible to add new applications that serve to extend existing applications in

unanticipated ways.

• Each application should maintain the advantages of inheritance, polymorphism and encapsu-

lation.

SOP conforms well to the MDSOC model described earlier. Subjects can implement features

and concerns emerging in the solution domain. Composition of subjects takes place after all points

of interaction between subjects have been agreed. Subjects can be implemented independently or

reused if a suitable subject exists already.

The similarity between SOP and MDSOC is not surprising given that MDSOC generalises many

of the ideas first presented as part of SOP. The programming language Hyper/J [121] implements

all SOP concepts. Our description of SOP semantics is based on the specification of Hyper/J.

Subject Design

Within a single subject, design is a purely object-oriented activity. In the Hyper/J language, each

subject is programmed as a Java package. Composition is performed on compiled subjects, i.e. on

the Java Virtual Machine bytecodes. Therefore, each subject must compile correctly before it can

be composed and the classes of each subject must be valid Java classes. For example, it is common

for a problem decomposed by feature to share a ‘kernel’ concern which defines operations used in
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the implementation of other features. The other subjects can either define a method with an empty

implementation or declare the shared method abstract. Neither solution is ideal. In the first, a

non-void method must return a value. As no implementation is defined, the subject author must

specify an arbitrary value to return. In the second, if a method is abstract then the Java class

which declares it must also be abstract. In Java, an abstract class has no direct instances, making

this solution unsuitable in those cases where the subject needs to instantiate that class.

As an object-oriented artifact, a subject has a functional interface defined by one or more of its

classes. As a subject-oriented artifact, it also has a compositional interface. The behaviour of a

subject can be invoked using either or both interfaces. When the subject implements a feature it

often has a functional interface that is invoked by external clients through method dispatch. Subjects

may also implement concerns which are not invoked as a result of a method call but in conjunction

with control flow related events in other subjects, e.g. when an operation is called within another

subject. For instance, consider a Caching subject that can be applied to a subject implementing

an arbitrary data structure. Saved values are stored in the cache before being stored in the data

structure, and retrieved values are first looked up in the cache. The caching behaviour is invoked

when values are stored and retrieved from a data structure. The Caching subject is activated via the

compositional interface. The subjects to which caching applies are affected at their compositional

interface.

The compositional interface is wider than the traditional functional interface. The points in code

where elements are stored and retrieved from a data structure need not be part of the functional

interface. The compositional interface is essential to cleanly separate concerns, and it helps to add

new concerns without modifying existing code.

Subject Composition

Composition forms a single program which is a synthesis of the input subjects. It takes place stati-

cally, before the composed program is run. Subject composition is defined in terms of two concepts:

correspondence and integration. Correspondence identifies the places of interaction between subjects

and integration determines the action taken on corresponding elements.

The primary point of interaction is the class or the interface. Classes can correspond only to

classes and interfaces only to interfaces. The views of the same kind of object as expressed by the

class or the interface in corresponding subjects must be composed. Subjects can agree that a set

of classes or interfaces represent the same type of object from different perspectives without having

anything else in common. Class or interface composition makes it possible to view an object via

different types in each subject.

At runtime, most subject interactions need to share more than just object identity; behaviour

and state may also need to be shared. Subjects are static entities and do not have state as such.

State is associated with objects of executing subject-oriented programs. Statically, that is in terms

of program text, state is captured by instance variables. Behaviours affecting the state take the

form of operations which are associated with classes directly or inherited. Subject interactions that

involve state or behaviour are specified by defining correspondences between instance variables and

operations of corresponding classes.

State can be shared between subjects when corresponding classes define the same instance vari-

able. For example, both the car driver and salesman share the notion of car key. By establishing

correspondence between the instance variables representing the car key, subjects can share key ob-
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jects at runtime. Behaviour is shared when subjects define the same activity in response to an

action. For instance, starting the car is a behaviour which is the same for both its driver and the

salesman. The realisation of shared behaviour can be delegated to one subject and activated by all

who need it. We have also observed other interactions:

• Request by one subject to invoke behaviour in another. For example, a driver who has lost his

key may request the mechanic to start the car using other means. Here the behaviour is not

the same for both, rather, just one subject has the behaviour which the other may require.

• Performance of an activity in which another subject participates, e.g. a prospective purchaser

may ask a mechanic to help him evaluate the car’s condition. The purchaser’s decision is based

both on his own assessment and that of the mechanic.

• An event which may be of interest to another subject, e.g. if the car is stolen, its driver will

want to notify the police.

Integration is the process of establishing an interaction between corresponding elements. In order

to synthesise a single program from the inputs, SOP unifies the corresponding elements based on inte-

gration rules. During execution, methods are invoked from multiple input subjects. Which methods

are invoked depends on the subject where the call originates, the correspondences, and the integra-

tion strategy. Many kinds of integration rules can be defined but there are two general-purpose rules

which are used in many compositions. The merge rule describes a union of corresponding elements

and the override rule describes the selection, at composition time, of one of the corresponding

elements.

The definitions of both these integration rules are overloaded to specify the unification of multiple

kinds of corresponding elements. The merge rule is defined as follows:

• For instance variables, its effect is to create a single variable in the output.

• For operations, the method bodies are set to execute in arbitrary order (but not in parallel).

When the operation is called in any input subject, all method bodies are executed. If meth-

ods return values, all the return values are packaged into an array and a composer-specified

summariser method is used to determine the return value for the merged operations.

• For classes, this integration rule creates a single class in the output. All member integrations

can only be performed in the context of a corresponding class. For example, if two subjects

both declare anEngine to be an instance variable of class Car, then in order to merge the views

of engines, it is necessary to specify the correspondence between Car classes.

The override rule also applies to classes and their members. The compositional effect of over-

ride on instance variables is the same as merge. For operations, the overriding method replaces

all overridden methods such that when any one of the corresponding operations is called, only the

overriding method executes. The overridden methods do not contribute to the behaviour of the

output subject and cannot be invoked. On classes, the override rule has a quantifying effect: each

element of the overriding class replaces the corresponding elements of the overridden classes. The

members of the overridden classes without corresponding overriding elements are unchanged.

The integration rules presented above and other, custom integration rules (that can be defined by

a power user who is familiar with the SOP rule framework) are the operators in the SOP composition
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language. The language gives the composer fine-grained control over the interaction, making it

possible to express many compositions. However, when subjects implement feature concerns that

have been designed in concert, the compositions should be concise. More verbose specifications may

be required to compose subjects which have been developed separately.

Composition is specified in terms of a top-level rule that applies to all elements, followed by

a sequence of lower-level rules describing exceptions and additional directives. The top-level rules

are1:

compose. Specifies a sequence of subjects to compose and the name of the output subject, e.g. com-

pose S1, S2 into S;.

mergeByName. Establishes correspondences between all identically named elements and applies

the merge integration rule to each correspondence.

overrideByName. Establishes correspondence between identically named elements and uses the

override integration rule. The first subject in the compose clause is the overriding subject

(the source of the overriding elements).

The simplest composition specification contains one compose directive and one of the ByName

rules. At the lower level, correspondence between elements that have different names can be estab-

lished using the equate directive. This takes n elements of the same kind from n different subjects

and specifies that these elements correspond. Exceptional integrations are specified in terms of

merge, override and other basic integration rules.

When composing feature concerns, it is common to use the mergeByName strategy at the top-

level. The features represent corresponding views which must be integrated to form the complete

program. At the lower level, when two or more subjects share a method implementation, only one

subject needs to implement it. The override rule can be used to select the implemented method.

This integration rule can also be used to select just one implementation from a set of equivalent

implementations of a method, e.g. one setter method implementation from the set of equivalent

setters.

Additional directives which can be specified after the top-level rule include bracket relationships.

Brackets are useful for specifying aspectual interactions: when one subject augments or modifies the

behaviour of another at key points in its control flow. These relationships are discussed in the next

Section together with technology for supporting aspect-oriented programming.

On Composition Validity

So far we have described key principles of composition but not the way an SOP language checks

composition correctness.

In the Hyper/J language, subjects are pieces of ordinary Java code. When instance variables and

operations are composed, the return types and parameters in the same positions must have the same

types. Type correspondence is required during merge integration because any input subject may

attempt to access or modify the shared element. Type equivalence is also conceptually meaningful

during merging as it suggests that the views of the object interface are mutually compatible. Hyper/J

requires type equivalence for override also. The need for type equivalence here is less clear as

1Note that we diverge from Hyper/J syntax in order to simplify the presentation, but composition semantics are
unaltered.
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override makes it possible to apply changes one subject at a time, rather than one class at a time

as is the case with inheritance in a language like Java. It is possible to use override to evolve

an application to using a new family of types. Returning to the earlier example, in some modern

vehicles the engine is started not with a key but by entering a code on a keypad. A new subject

can be developed which replaces the Key class and changes all existing clients of the Key class.

Nevertheless, in Hyper/J type equivalence in corresponding elements is required even for override.

Type equivalence is not as restrictive as it may sound; corresponding classes cause elements of

these types to be composition compatible. Hence, different subjects can have different names for the

same concept, e.g. Warranty and Guarantee describe the same kind of artifact. As another example,

consider the merging of Sink and Source classes (as variants of some kind of buffer). One subject

creates a Sink object; the reference becomes visible in another subject as a Source object through

a shared instance variable or a merged operation. The merge of these classes is meaningful only if

all objects of these types can be viewed from both perspectives.

The choice of Java constrains what can be done to check composition correctness. It is well

known that types are only a small part of what makes a program correct. The emphasis on formal

specification of collaborations in contracts and on valid combinations of GenVoca realms is aimed

at ensuring that the interactions are not only conceptually relevant but functionally correct. Family

polymorphism [34] is concerned with consistent evolution of a family of classes in a way that preserves

type subtitutability and maximises class reuse. Comparatively, in SOP little attention is given to

the important topic of interaction validity. In the following Chapter on interaction problems in SOP

(starting on page 44), we analyse the interactions that are difficult to detect during reuse or before

independent subject development commences.

3.2.5 Conclusion

The technologies presented in this Section enable the modularisation of collaborations. In object-

oriented programming, contracts enable the high-level specification of mutually recursive objects,

collaboration refinement and composition. Programming techniques based on templates and inner

classes can be used to compose collaborations. Family polymorphism supports the evolution of sets

of classes while maximising class and client reuse.

Direct programming language support for collaborations can be found in Object Teams, GenVoca

and Subject-Oriented Programming. For programmers of a mainstream object-oriented language

transition to SOP is probably the easiest. SOP lets the developer implement subjects using the

familiar object-oriented techniques. Only the subject composer needs to know about the composition

language. However, the SOP composition rules presented to now have affected classes and some

decompositions require object-level granularity. GenVoca also operates on classes rather than objects

but allows new components combining a number of features to be synthesised dynamically. By

contrast, subject-oriented composition is specified during a separate phase of software development.

Object Teams has object-level granularity. Teams can be activated and deactivated dynamically,

and multiple instances of a team can be present at the same time. Consequently, with Object Teams

it is possible to separate more concerns more cleanly.

The previous Chapter discussed the often unanticipated nature of reuse. To facilitate reuse it

should be possible to reuse a component in a way not anticipated by its original developers. The

compositional interfaces in SOP enable subjects to be connected to other subjects in unanticipated

ways. The layer reusers in GenVoca create new layers by extending existing layers. The set of
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valid layer extension points is restricted to the predefined interface. The team modules of Object

Teams are reused at their functional interface but Object Teams also support additional forms of

interaction detailed in the following Section on Aspect-Oriented Programming.

A priori creation of reusable software in SOP is supported by inheritance and delegation in the

language used to implement the subjects. GenVoca supports the creation of component families.

The client can create new components by mixing and matching features created earlier as part of

a family. Object Teams leverages family polymorphism for reuse of collaborating suites of classes.

GenVoca supports polymorphism using the realm construct but a realm is the interface of a single

component rather than a component family.

GenVoca and Object Teams provide stronger support for creation of reusable components for

use by third parties. GenVoca focuses on valid permutations of modules and Object Teams focuses

on type substitutable component families. By contrast, Subject-Oriented Programming has an

extensible set of composition rules that make subjects better suited for reuse in ways which were

not initially anticipated. SOP has comparatively poor support for checking interaction correctness.

Unlike teams, subjects can modularise collaborations but do not encapsulate collaboration state.

There is no way of determining interaction correctness until all subjects in the composition are

known. In conclusion, we believe that in order to improve the reusability of collaborations without a

priori investment in reusability, Subject-Oriented Programming is the better candidate technology.

3.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is an approach to modularising cross-cutting concerns – con-

cerns that are hard to modularise using today’s mainstream programming technology. Initially,

the term ‘AOP’ was associated with a particular approach to addressing cross-cutting concerns by

Kiczales et al [66], but due to the popularity of the programming language AspectJ, AOP has be-

come synonymous with other programming technology including Composition Filters [3], Adaptive

Programming [73] and Subject-Oriented Programming. See [90] for an overview of approaches.

AOP (as described in [66]) is a generalisation of the ideas behind domain-specific languages

RIDL and COOL for distribution and concurrency [78, 76]. AspectJ introduces language extensions

to Java that allow distribution, concurrency and other concerns to be modularised. A domain-

specific language allows only a few concerns to be separated and a set of domain-specific languages

may not be mutually compatible. AOP addresses some of the goals of MDSOC: it facilitates the

modularisation of many solution domain concerns that are difficult to modularise within a mainsteam

programming language.

The concepts of join point and aspect unite all AOP approaches. Join points are places in the

program where modules interact. Join points can be determined in different ways. In SOP, language

constructs like instance variables, operations and classes are join points, so the places of subject

correspondence and join points are synonymous. In AspectJ, join points are certain places in the

program’s control flow. Thus, join points are dynamic concepts. Aspects are modules containing

the code which addresses some concern.

Join point interaction can be symmetric or asymmetric [50]. In an asymmetric model, the aspects

are ‘woven’ into the ‘base’ modules at the join points. The selection of join points comes from the base

program and aspects are written with respect to some base. AspectJ is an example of an asymmetric

model. In a symmetric model, every module is treated as an aspect. A base is not distinguished
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linguistically although it may be distinguished logically within the domain of application. The join

points come from each aspect and the interaction is usually specified separately. The SOP model is

symmetric.

In order to separate some concerns it is necessary to have fine control over the join points.

Many concerns affect only a subset of instances of a class. For example, AOP technology can be

used to modularise the reusable parts of design patterns [47]. Consider the Observer pattern [43]:

subscribers register with publishers2 to receive notifications about state changes. The reusable

parts of the aspect include the Subscriber and Publisher interfaces, and the protocol for enabling

Subscriber registration and event notification.

Suppose that in an application, the Rectangle dimensions are observed by Shapes whose pro-

portions are linked to that of the Rectangle, and the Rectangle’s colour property is observed by

a different but possibly overlapping collection of Shapes which set their colour in relation to the

colours of adjacent Shapes. Each Shape is possibly both a Publisher and an Subscriber and a

Shape needs to be a Publisher to two sets of Subscribers. Composition rules such as merge

in SOP affect classes but cannot distinguish between instances and it is not possible to reuse the

Observer pattern in the required setting. In fact all subject-oriented composition rules presented to

now relate classes rather than objects.

This Section reviews the technology for modularisation of concerns that cross-cut other function-

ality. The review includes today’s most popular AOP technology, AspectJ; extensions to SOP which

enable more concerns to be separated; and the two most recent proposals Caesar [88] and Object

Teams [54].

3.3.1 AspectJ

AspectJ is a forward-compatible extension to the Java language: valid Java programs are also valid

AspectJ programs. AspectJ introduces a new kind of module known as an aspect. Like an ordinary

Java class, an aspect contains members that define its state and behaviour. Instead of the usual

functional interface, an aspect has a compositional interface that is based on join points. To select

the join points of interest the aspect body defines pointcuts – specifications of join points of interest

to an aspect. The behaviour associated with an aspect is set to execute before, after or around the

join points. The last of these executes the aspect code instead of the code at the join point, possibly

calling the code at the join point using the proceed(..) statement.

Pointcuts are specified in terms of designators. These describe events in the control flow such as

when some instance variable is read or some event is thrown. Although AspectJ has a huge selection

of designators, the most commonly used ones are concerned with method invocation and execution.

In the ‘Hello World!’ of AspectJ programs, an aspect is used to modularise the Tracing concern.

The Tracing concern, shown in Figure 3-4, requires a message to be printed immediately before and

immediately after any method executes.

Note that asterisks are used as wildcards to match the execution of any operation on any class.

In a traditional object-oriented program, tracing requires either that every method body is modified

to include a call to the tracer module or for the program to be run within a debugging suite. The

first solution does not scale while the second one is fine by itself but causes complications when

collaboration with another application is required, e.g. a review of the recorded trace to see that

2The usual terms ‘subject’ and ‘observer’ have been replaced by ‘publisher’ and ‘subscriber’ to avoid confusion
with SOP terminology.
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aspect TraceAllClasses {

pointcut myMethod(): execution(* *(..));

before (): myMethod() {

Trace.traceEntry("" + thisJoinPointStaticPart.getSignature());

}

after(): myMethod() {

Trace.traceExit("" + thisJoinPointStaticPart.getSignature());

}

}

public class Trace {

public static void traceEntry(String str) {...}

public static void traceExit(String str) {...}

}

Figure 3-4: AspectJ program implementing the Tracing concern.

execution has passed certain key points.

AspectJ has a very powerful join point language that allows programmers to modularise code per-

taining to many non-functional concerns, separating the non-functional concerns from the program’s

main functionality. Concerns that should be separated [75] include synchronisation, location control

(organisation issues), real-time constraints, failure recovery, debugging, persistence and transaction

management. The aspect is linked to the base program through pointcuts, but the base program

creates no explicit links to the aspect. Furthermore, good aspect-oriented design suggests using

inter-aspect inheritance to separate the aspect functionality from the pointcuts that declare the way

the aspect interfaces the base.

AspectJ is appealing to the original developer because modularisation of scattered code reduces

the size of the whole program and improves its understandability. The declarative style for describing

join points makes AspectJ more attractive to programmers than meta-object protocols from which

it evolved.

3.3.2 Bracket Relationships in SOP

Bracket relationships (brackets for short) are an advanced compositional mechanism in the subject-

oriented programming language Hyper/J. We describe them here because their introduction was

inspired by the dynamic join points of AspectJ. Bracket relationships allow the methods of one

subject to wrap the method call and execute sites in other subjects. The methods which are set to

execute before or after another method are called wrappers and every bracketed method or method

call point is known as the wrappee. Similar to call and execution designators of AspectJ, the

bracket relationships of Hyper/J can use pattern matching to specify the wrappee points.

Figure 3-5 shows subject Tracing which contains the code for this concern and a fragment of

the composition specification which enables the tracing of all method calls in the program. The

meta-parameter $signature references the String represention of the operation signature at the

join point. The syntax of the example is simplified from true Hyper/J syntax but consistent with

SOP examples that follow.

Bracket relationships are implemented with the correspondence and integration rules of SOP.

Brackets actually set up correspondences between classes containing the wrappers and the classes
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subject Tracing {

public class Trace {

public static void traceEntry(String str) {...}

public static void traceExit(String str) {...}

}

}

bracket ‘‘*.*’’ with before Tracing.Trace.traceEntry($signature)

after Tracing.Trace.traceExit($signature);

Figure 3-5: Hyper/J-style program implementing the Tracing concern.

containing the wrappees. merge semantics are used to integrate the corresponding elements; the

instance variables and operations are integrated, then calls to wrappers are inserted at the relevant

points.

Bracket relationships are applied after the top-level composition strategy, e.g. mergeByName.

The composition specification may contain equate directives which create correspondences between

differently named elements which should be composed, and the wrappers execute around all equated

wrappees whenever at least one of them matches the pattern. Because brackets also setup corre-

spondences between the classes of the wrappers and the wrappees, it is an error for the wrappers to

have correspondences derived from the top-level composition rule. However, a wrapper class does

have a functional interface of its own and it is possible to create instances of wrapper classes directly.

Hyper/J does not have the around construct of AspectJ which helps to separate concerns in

some cases. The around construct permits the wrappers dynamically to determine if the wrappee

should be executed. Although, the SOP framework provides an opportunity to introduce this and

other rules.

3.3.3 Caesar

The Caesar language [88] builds on the strengths of the AspectJ approach to modularisation of

cross-cutting concerns by improving the separation between the definition of the aspectual modules

and the definition of the deployment of those modules with the base and other aspects.

The Observer pattern, seen earlier, benefits from instance level application. But even then, its

definition in AspectJ is not as reusable as may be required in practice. The AspectJ definition does

separate the pattern protocol from its applications by using inter-aspect inheritance but the solution

is not sufficiently general. Specifically:

1. As discussed earlier, a component may play the role of a publisher more than once, i.e. it may be

observed independently for changes of two different properties. For this reason, the AspectJ

implementation uses PublisherSubscriberProtocol aspect singleton to combine both the

publisher and subscriber roles, using a hashtable to map between instances of publishers and

their subscribers. The tangling of roles in a single aspect makes the relationship between

the core pattern functionality and different specialisations of it unclear. For instance, if later

SpecialPublisher specialises the publisher role conceptually, we have to subclass the whole

protocol to create an extension of just one role. To avoid such problems it is necessary to keep

each aspect role separate.

2. Applying the aspect to a problem requires mapping each role directly on to a class, i.e. af-
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fected classes have to implement the Publisher or Subscriber interfaces. However, for some

applications of the pattern, the role may be implicit in a collaboration. For example, suppose

that Screen needs to observe changes in points and lines. Points are represented by Node

objects and lines implicitly by pairs of adjacent Node instances. Thus, for lines, there is no

single abstraction that can inherit the Publisher interface.

3. In certain cases the aspect bindings should be reusable. Such is the case with compositions be-

tween a class-based representation of an abstract syntax tree and a general tree representation.

Abstract syntax trees are used in many applications. Many different tree implementations may

be used with such a binding, e.g. ones to display trees or to perform algorithms. These kinds

of bindings require a special kind of polymorphism to make them truly reusable.

4. In AspectJ, the aspect is woven statically at compile time. It is not possible dynamically to

select a different aspect implementation at run-time, to activate or deactivate the aspect. For

example, with respect to the Observer pattern, we must select in advance whether to have

synchronous or asynchronous notification of changes, i.e. there is no aspectual polymorphism.

Caesar addresses these shortcomings through aspect collaboration interfaces (ACIs). These are

bidirectional interfaces between two sets of modules, called aspect implementations and aspect bind-

ings. The first part is called the provided interface and the second, the expected interface. The

aspect implementations realise the part of the ACI’s interface that is concerned with the aspectual

functionality, e.g. the Observer pattern protocol. The provided part of the ACI binds the aspect

roles to the target application abstractions.

Addressing the deficiencies in the AspectJ solution, we see that for point 1 the aspects can be

represented in terms of their own class structure. There is no need for global aspect state because

each aspect deployment hides the state within instances of aspect roles. For point 2, Caesar uses

aspect bindings to map aspects to domain abstractions. Bindings are fully-fledged Java classes

with additional features that the programmer can use to specify complex aspect interactions with

base code. For point 3, aspect binding reusability is achieved in three directions. One can define

functionality that is polymorphic with respect to (a) aspect implementations by being written to a

certain aspect binding type, (b) aspect bindings by being written to a certain aspect implementation

type, or (c) both of them, by being written to an ACI. Finally, for point 4, inheritance between

aspects is combined with polymorphism to allow specialised aspects to be used in the future.

Caesar is an instantiation of MDSOC as it divides problems into multiple dimensions of concerns,

allowing one to view and use the system from different perspectives. Unlike Caesar, in SOP there is

no explicit notion of composition interface and reuse is associated with subject code but not usually

the composition specifications. Reuse of composition specifications is not considered because it is

expected that for most compositions, the relationships can be concisely defined using a top-level

composition strategy. This is certainly the case for subjects designed in concert where most corre-

spondences are inferred by name equivalence. Where subjects are built for reuse, the composition

specification is also a potential reuse artifact. To reuse subjects successfully, one requires documen-

tation which includes a description of the way the subject may interact. The examples can be used

as informal templates for creating a composition specification. Finally, Caesar is an object based

approach whereas SOP is class based.
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3.3.4 Object Teams

Object Teams also supports advanced interaction between teams in the style of AspectJ. Recall from

Section 3.2.2 on page 31 that a team class encapsulates a number of role classes. Using object-based

inheritance each role is bound to a class that begins to play that role. Object Teams requires all

roles to be bound.

Team interaction is handled by so-called callins and callouts. Method delegation uses callouts.

These allow a role instance to delegate the call to an instance of a base class. A callin mimicks

AspectJ’s before, after and around advice. At certain points specified in the team, the base

object calls into the the role, passing state and meta information to the role.

3.4 A Case for Subject-Oriented Programming

This Chapter has discussed technology for advanced separation of concerns. The goals of reuse can

be better addressed by modularising concerns in the feature dimension and by separating more of

the cross-cutting concerns that emerge as part of the solution from the rest of the functionality.

We propose SOP as the reuse vehicle because it best fits our reuse position. Subject-Oriented

Programming keeps the initial development costs low for programmers familiar with today’s main-

stream programming languages. It has a powerful join point language that enables the separation

of many kinds of concerns. SOP supports reuse by allowing extensions and compositions at points

that may not have been anticipated by the original developer.

SOP also has disadvantages compared to other approaches:

• A subject is a modular artifact. However, when non-public join points are used for creating

extensions and specifying subject interactions, the subject no longer encapsulates the state of

collaborations it implements.

• The benefits of inheritance and polymorphism are restricted to subject implementations. Con-

sequently, construction of software for reuse and expression of conceptual relationships where

inheritance between subjects is appropriate must rely more on composition rules. For instance,

present composition rules cannot express the relationship between an ‘abstract’ subject and

its ‘concrete’ variants.

We believe that the second problem may be tackled with new composition rules but the first point

is more challenging. Subjects break the encapsulation of objects yet fail to encapsulate state common

to the collaboration as happens in Object Teams. Broken object encapsulation is an inhibitor

to modular development and reuse of subjects. In the next Chapter we detail our experiences

of programming with Hyper/J and discuss interaction problems which we believe result from the

invasive nature of subject interaction.



Chapter 4

Interaction Problems in

Subject-Oriented Programming

Subject-Oriented Programming is a technology for separation of concerns. It enables subject reuse

using powerful composition rules. Subject reuse and evolution is not defined on pre-declared compo-

sition interfaces in the same way as traditional components. Instead, interaction between subjects

takes place at the points defined by subject structure. The absence of a more abstract interface

makes it difficult to predict all consequences of interaction in advance. We call the unwanted inter-

actions between subjects interaction problems. The present Chapter explores interaction problems

in SOP and suggests possible solution spaces.

Section 4.1 defines interaction problems. We compare interaction problems in subject-oriented

programming to feature interaction problems in telecom applications. Examples of interaction prob-

lems are drawn from existing work and through our personal experience of programming with Hy-

per/J. Sections 4.2, 4.3 and 4.4 present examples of interaction problems. In each case, we compare

the subject-oriented program to a functionally-equivalent OO program, and present existing work

intended to address the problem or a description of a possible solution. Section 4.5 concludes by

proposing to develop a subject-oriented Alias Protection System.

4.1 Introduction to Interaction Problems

Decomposition of programs by feature rarely leads to orthogonality. Features often read and write

a common set of properties which in an object-oriented design would be encapsulated in an object.

SOP supports decomposition by feature by defining corresponding classes and class members, and

by allowing one subject to interface another at method call sites and potentially other internal join

points. Broken object encapsulation leads to a wide interface, making modular development of

subjects more challenging compared to conventional programming where encapsulation is preserved.

For example, in order to reuse a subject in a composition, it is not enough to know what the

component does. One must look beneath the interface at how the component is implemented. So, if

two subjects both have views of the Employee class which share the salary field, both must agree

on the type of this field, its valid range and usage policy. This kind of interaction requires one to

have knowledge of the way other subjects implement and use data.

We believe that broken encapsulation combined with a high number of interacting subjects leads

44
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to interaction problems. In order to be able to tackle interaction problem, it is first necessary to

find a suitable definition for interaction problems. A definition should help us to understand the

problem space and also to evaluate the solution space. There has been little published on interaction

problems in SOP specifically, so the net is cast further afield to other domains where interaction

occurs between modules that describe overlapping perspectives.

Viewpoint-Oriented Systems Engineering (VOSE) [39] is a framework for supporting the de-

sign of heterogeneous systems. A viewpoint is a locally managed entity which encapsulates partial

knowledge about the system or domain, specified in a particular, suitable representation scheme; it

carries partial knowledge of the process of design. VOSE uses inter-viewpoint checks to verify the

consistency of a specification with those maintained by other viewpoints. Conflict resolution is part

of the specification process. The aim of inter-viewpoint checks is to eliminate inconsistencies and

produce a conflict-free design. Inconsistencies are equally undesirable in subject-oriented composi-

tion because they make subjects uncomposable. However, SOP does permit variation to a degree.

Each subject can define classes from its own perspective and each subject can define its own class

hierarchy. Other inconsistencies are undesirable, requiring invasive modifications to subjects.

Feature interaction problem is a term coined in the telecommunication domain to describe inter-

ference between services. A bad feature interaction is one that causes the overall system behaviour

to be undesirable. Interference occurs when the behaviour of one feature is affected by the behaviour

of another feature or another instance of the same feature [68]. It has been recognised that research

into methods for detection and resolution of feature interactions in telecom systems is also of signfi-

cance outside the telecom domain. According to Plath [100], feature interaction problems can often

be traced back to the fact that two or more features manipulate the same entities in the system,

and in doing so, violate some underlying assumptions about these entities that the other features

rely on. Our intuitive understanding of interaction problems is comparable to feature interaction

problems as defined by Plath.

In her work on subject-oriented design, Clarke has investigated the composition of object-oriented

design models [24]. In her experience there exist

“. . . additional properties arising for the output of composition. These are not defined in

any input subject but arise as a result of composition itself.”

Clarke’s definition implies that the composition is meaningful overall but particular interactions

were either not foreseen or unexpected. Assuming that the additional properties are unwanted,

some action must be taken to correct the interaction. Changes can be made to the composition

specification, the input subjects or by using a patch subject. The last two approaches are least

desirable because they raise the cost of subject reuse. The following definition reflects our view that

whether the interactions are unforeseen, unspecified or unexpected, the overall effect is undesirable

and requires some corrective action on behalf of either the composer or a subject designer.

Definition: (Interaction Problem) A subject interaction occurs when the behaviour of one

subject influences the behaviour of another. Interaction problems are unwanted subject interactions.

Interaction problems are important to us because they affect modular subject development and

reuse of subjects. Having established a definition, we now look at the current understanding of

interaction problems in related areas and evaluate the approaches to tackling them.
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4.1.1 Feature Interaction Problems in Telecom Applications

The best understanding of interaction problems that we have comes from the telecom domain. Tele-

com applications are built around features which surround the basic service. The aim is to develop

features modularly and resolve any interaction issues between features in a reasonable amount of

time without modifying the feature specifications. Features subtly interfere because they manipulate

the same common service variables. In the telecom domain it is important to be able to rapidly

develop and deploy new features without disrupting the functionality of existing features.

Kimbler points out [67] that the trick is not in finding resolutions but in developing mechanisms

to detect and resolve interactions that are efficient and that apply in the majority of cases. The

approaches to tackling feature interactions can be broadly grouped into design methods, architectural

approaches and runtime techniques [52]:

• In the design approach, specifications of separately developed features are composed. The

composition is searched for interactions. Undesirable interactions are resolved by modifying

feature specifications. However, a feature cannot be redesigned independently to eliminate

the interaction and features may not be open for re-design. So instead, most design-time

resolutions specify how groups of features behave together, using various techniques to define

valid permutations of features. The main problem with the design approach is scalability.

Most telecom systems have hundreds of features with the number of interactions growing

exponentially as yet more features are added.

• The architectural solutions involve co-ordinating the features’ access to shared resources. For

instance, a pipe-and-filter architecture serialises features’ reactions to each event. The problem

with this approach is that it tends to over-constrain access. The analysis of feature interaction

is still required to ensure that features do not miss key events occurring further down the

pipeline. Architectural solutions are too general to prevent interactions that violate all feature

constraints.

• Resolutions that are not resolved statically must be resolved dynamically. Resolution can be

deferred until the unwanted interaction occurs and some action needs to be taken.

The design approaches are also applicable to subject-oriented interaction problems. For instance,

Van Der Straeten and Brichau [114] propose to use declarative metalevel representation of the

feature’s implementation to detect interaction and interference (i.e. interaction problems). Feature

interaction is detected using logic rules, e.g. a logic rule can detect access to the same instance

variable by two different features. Rules for detecting interference are expressed as constraints or

invariants on the implementation.

Analysis of subject-oriented composition is also constrained by scalability. The complexity of

interaction analysis grows significantly as the number of interacting subjects increases. The design

approach is a useful way of understanding interactions and resolving problems but unless the model

is imbedded in code, the reuser must construct a new model for each new feature every time its

subject is introduced to an existing set. A design approach consistent with our reuse position must

have value not just for the composer but also for the subject developer.

An architectural solution is useful in the telecom and other domains where there exists some well

defined set of common resources. But Subject-Oriented Programming can be used in areas where

there is either no common set of resources or the architecture itself is subject to evolution.
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SOP only supports design-time composition. Runtime resolution of conflicts introduces overheads

that may be acceptable during testing but not in the deployed system. We believe that resolvable

conflicts are addressed best using composition rules.

4.1.2 Composition Anomalies

Tekinerdogan et al [123] have conducted an evaluation of the different kinds of composition schemes

(e.g. inheritance, delegation and join point based composition) in order better to understand anoma-

lies occuring during concern composition. They distinguish three categories of problems:

• Composition is not possible for logical reasons. One tries to compose concerns which are

inherently uncomposable.

• Composition cannot be realised because the adopted composition scheme does not support it,

although composition is possible from the logical perspective.

• Composition is realisable with the adopted composition scheme, but requires additional work-

arounds or glue code that reduces the maintainability of the resulting design.

Composition anomalies are examples of the last two categories only. In order to be composable

concerns have to be both functionally and procedurally composable [123]. Functional composability

depends on composition being conceptually sound. For instance, it makes sense to compose a

buffer concern with locking facilities but not with a random number generator. The composition

must have useful and correct semantics, which means that the integration of subconcerns must

provide the intended functionality. For example, although it is meaningful to compose a graph

representation with an algorithm for counting subgraphs, the two are semantically uncomposable

if they are represented as sets of vertices and adjacency lists. Procedural composability refers to

interoperability or the dependencies and interactions between components. There are three kinds of

procedural composability:

• Signature level composability refers to the signatures of various components.

• Protocol level composability refers to the ordering of operations.

• Semantic level composability refers to the semantics of the composed operations.

For a given composition scheme, a composition anomaly occurs when concerns which are func-

tionally and procedurally composable either cannot be composed using the composition scheme or

deviate from the expected interaction. The composer may adopt a different composition scheme,

modify one or more of the input concerns, or create glue code to achieve the desired behaviour.

According to Tekinerdogan et al,

“Although there is no fundamental problem with the need for additional code, it turns out

that this reduces quality properties such as adaptability, reusability and maintainability,

in virtually all cases.”

With respect to SOP interaction problems, choosing a different composition scheme is synony-

mous with changing the composition specification or defining new composition rules; modification of

input concerns is analogous to subject modification; and glue code is the creation of a new subject to

patch up an interaction. A different composition rule may not be available or it may not be possible

to create a practical implementation within the SOP composition framework.
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Composition Rules versus Refactoring

One problem with reusing subjects is the absence of adequate join points [7]. In the terminology

of Tekinerdogan et al [123] from the previous Section, the subjects are functionally composable but

the set of available composition rules cannot establish protocol level composability.

Lopes et al believe [77] that more powerful means of referencing are required, capable of exposing

all kinds of join points. A powerful composition language enables the separation of more concerns

and makes it easier to change the specification of interaction without changing the structure of

the module. An alternative to new composition rules is refactoring. Refactoring is a semantics

preserving program transformation [124]. Where possible, the subject composer may refactor a

subject to expose join points for the purpose of composition. Refactoring should be the preferred

approach when it leads to lower coupling between subjects. Refactoring can also make composition

specifications shorter and easier to understand.

In the following discussion of interaction problems, it will be assumed that join points necessary

to express the composition exist already.

4.1.3 Interaction Analysis in AOP

Interaction problems have been observed in the domain of Aspect-Oriented Programming. This is

not surprising given that separation of feature concerns and cross-cutting concerns from the solution

domain both use join point interception.

Douence et al [33] propose to formally analyse stateful aspects. Analysis takes place on an asym-

metric AOP framework which supports the concepts of join point, aspect and aspect composition.

Aspect composition determines when aspects match; aspects are said to interact when they match

the same join point. Stateful aspects are defined in terms of sequences of join points; they take ac-

count of the history of computation instead of a single point. The framework permits static analysis

of interactions between aspects. Specifically, it is possible to detect when aspects do not interact.

The framework supports composition rules which specify the correct order for execution of aspects

when multiple aspects affect a join point. The composition rules are the main means of resolving

conflicts. Aspect reuse is addressed by the use of explicit requirements on the base program. These

requirements specify join point history conditions that ensure the correct application of the aspect.

The reuse requirement part of Douence’s AOP framework is of use to the aspect developer also.

It makes explicit the otherwise implicit requirement for the correct application of an aspect, making

it useful for supporting the modular development of the aspect.

Katz [62] proposes to diagnose harmful aspects using regression verification. He defines harmful

aspects as those that make the desirable properties of the base object-oriented system untrue in

the combination of the base with the aspect. Regression testing is a process by which the system

is tested with every new aspect that is added to it, to ensure that the test suite which previously

was passed is still passed. Regression testing is not well suited to aspect-oriented systems because

aspects affect the original control flow making original tests irrelevant. As aspects inherently affect

many parts of the program, it is difficult to determine what part of the test suite might still be

relevant. Instead, Katz proposes regression verification as a combination of static type analysis,

deductive verification and model checking.

Static analysis can prove that an aspect does not invasively affect the base system. Deductive

verification over aspect code can establish a lack of harm with respect to specific properties, e.g. an
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invariant of an existing system can be shown to be an invariant of the system containing the aspect.

Model checking techniques can help to detect harmful aspects by showing that each interaction

specified in the aspect is acceptable. Each interaction triggers a set of verification tasks and all

required test conditions are automatically checked. In order to enable regression verification, the

systems to which the aspects are added need to be augmented with specifications describing the

desirable properties of the system. Regression verification may also be applicable to subject-oriented

development. However, it requires better discipline on behalf of the subject developer to specify the

desirable properties of subjects.

4.1.4 Towards Understanding Interaction Problems

The following three Sections present three interaction problems. These cases have been chosen

because they demonstrate the kinds of actions that need to be taken in order to correct an anomaly.

In the worst cases correction entails invasive modifications to subjects or patching. In order to

understand the impact of subject-oriented decomposition on interaction problems, every subject-

oriented solution is compared with a functionally equivalent object-oriented solution.

4.2 Persistence and Association

The first example of an interaction problem is concerned with the ordering of subjects in their

interaction with each other1. There are three concerns, implemented as three subjects.

• The Persistence concern stores objects’ fields in a file system or a database. An object is made

persistent automatically when another persistent object holds a reference to it. Once an object

becomes persistent it stays persistent until it is destroyed.

• The Association concern updates binary associations between objects. Suppose x and y are

related by association, if some object x is set to reference y then y is set to reference x. Each

object can be involved in at most one association relationship.

• The Transaction concern implements a business case relating a Customer and an Order. A

customer references an order and an order is associated with a customer.

The code for these subjects is given in Figure 4-1. By bringing these three subjects together we

create a new kind of TransactionPA subject that supports persistence and association functionality.

Combinations of Transaction with Association or of Transaction with Persistence work very

well. But when the three are brought together, their order of interaction becomes significant.

Let us consider the first of two composition specifications.

1 compose Persistence, Association, Transaction into TransactionPA;

2 mergeByName;

3 equate class AssocX, Customer into Customer;

4 equate class AssocY, Order into Order;

5 equate field AssocX.y, Customer.order into order;

6 equate field AssocY.x, Order.cust into cust;

7 equate operation AssocX.setY, Customer.setOrder into setOrder;

8 order operation AssocX.setY after Customer.setOrder;

9 equate operation AssocY.setX, Order.setCust into setCust;

10 order operation AssocY.setX after Order.setCust;

11 bracket ‘‘*.set’’ with before Persistence.PersistentClass.setValue;

1Adapted from an example in Renaud Pawlak’s PhD thesis [98].
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subject Persistence {

class PersistentClass {

static Store s;

void setValue(Object value) {

if(s.isPersistent(this)) {

s.makePersistent(value);

}

}

}

subject Association {

class AssocX {

AssocY y;

void setY(AssocY y) {

if(y.getX() != this) y.setX(this);

}

AssocY getY() { return y; }

}

class AssocY {

AssocX x;

void setX(AssocX x) {

if(x.getY() != this) x.setY(this);

}

AssocX getX() { return x; }

}

}

subject Transaction {

class Customer {

Order order;

void setOrder(Order order) { this.order = order; }

}

class Order {

Customer cust;

void setCust(Customer cust) { this.cust = cust; }

}

}

Figure 4-1: The subjects implementing the Persistence, Association and Transaction concerns
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Consider a program that has a customer object aCust and an order object anOrder. To start

with, aCust is transient and anOrder is persistent, and there is no link between them. We execute

aCust.setOrder(anOrder). In addition to the behaviour specified in Transaction, the effect of this

interaction should be to make aCust persistent and to set anOrder to reference its customer. The

following sequence of method bodies is run:

1. Persistence.PersistentClass.setValue: receiver object aCust is not persistent, do noth-

ing.

2. Transaction.Customer.setOrder: set the customer to reference the order.

3. Association.AssocX.setY: anOrder does not have a reference to aCust so update the asso-

ciation.

4. Persistence.PersistentClass.setValue: receiver object anOrder is persistent, so save the

state of aCust, i.e. save anOrder.cust = null.

5. Transaction.Order.setCust: set the order to reference the customer. That is, anOrder.cust

= aCust.

6. Association.AssocY.setX: aCust does have a reference to anOrder, so do nothing.

After this interaction, the value in storage is different to the value in memory. In store we have

anOrder.cust = null and in memory anOrder.cust = aCust. This is an anomalous interaction.

Suppose we change the composition specification such that the Persistence concern is applied after

the merge of Association and Transaction, i.e. replace line 11 in the above composition specification

with:

bracket ‘‘*.set’’ with after Persistence.PersistentClass.setValue;

Now we get the following sequence of calls. The values in storage and memory are the same, and

the interaction is as intended:

1. Transaction.Customer.setOrder: set the customer to reference the order.

2. Association.AssocX.setY: anOrder does not have a reference to aCust so update the asso-

ciation.

3. Transaction.Order.setCust: set the order to point to the customer.

4. Association.AssocY.setX: do nothing because the customer already references the order.

5. Persistence.PersistentClass.setValue: control is still with the order object. anOrder is

persistent, so save the state of aCust, i.e. save anOrder.cust = aCust.

6. Persistence.PersistentClass.setValue: control has now returned to the customer object.

aCust is now persistent. Save aCust.order = anOrder.
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4.2.1 Interaction Problem Analysis

Would this problem occur in an object-oriented program? A functionally similar solution is the one

where the Persistence and Association concerns are tangled and scattered in a single program. In

an object-oriented program, the interaction is a sequence of statements, probably appearing within

a single method body. This problem is much less likely in object-oriented programming because

the statements are localised. It is also possible that the subject composer as a reuser has failed to

understand the artifacts well enough in order to reuse them successfully.

The understandability of reuse artifacts may be improved by defining composition interfaces.

However, we are reluctant to define composition interfaces because they may restrict composition in

ways not anticipated by the original developer.

The interaction problem may be avoided through better concern modelling. Sutton and Rou-

vellou [120] propose Cosmos for modelling concerns through the lifecycle. A concern in Cosmos is

‘any matter of interest in a software system’. A Cosmos model provides a form of documentation

for basic information about concerns and their relationships. The detailed information about con-

cerns is found inside subjects (or other design and implementation artifacts) but a schema affords

a global perspective. Relationships between concerns can be modelled within the schema. Physi-

cal relationships describe the composition dependencies between concerns. A specialisation of the

Cosmos schema to SOP may be used to describe the precedence of concerns in the above example,

e.g. Persistence activatesAfter Association where activatesAfter is a physical relationship.

After the relationship has been identified, assertions can be used to validate the composition [69].

Assertions describing composition relationships between concerns are an extension to design-by-

contract rules as used in the Eiffel language [85]. Assertions can validate that the application

contains a suitable set of subjects applied in the right order but it cannot help to identify in which

order the subjects should be composed.

4.3 Water Beans

Our second example concerns the development of a series of JavaBeans components [119]. JavaBeans

are reusable software components that can be manipulated visually in a builder tool and composed

to create end-user applications. The requirements for an object to be a bean are as follows:

• Objects must have a zero-argument constructor and must be either Serializable or Externaliz-

able.

• Any properties of the object that are to be treated as bean properties, changeable by the user,

should be indicated by the presence of appropriate get and set methods whose names are getP

and setP where P is property name.

• Some bean properties, known as bound properties, fire events whenever their values change

so that any registered listeners (i.e. other beans) will be informed of those changes. Making

a bound property involves keeping a list of registered listeners, and creating and dispatching

event objects in methods that change the property values, such as setP methods.

The application consists of three beans: WaterSource, Valve and Pipe. These can be con-

nected arbitrarily while observing the condition that no component can be connected up-stream of a
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WaterSource component. Water can flow out from any WaterSource, Valve and Pipe to any num-

ber of Valves and Pipes. Water can flow in to a Valve or Pipe from any number of WaterSources,

Valves and Pipes. Water comes from WaterSources at some user specified volume and all compo-

nents have a graphical representation that shows when water is flowing. From the topology of the

example one should be able to determine the water pressure in any given pipe segment.

The client would like to build networks of Water Beans by using the Bean Box environment for

JavaBean experimentation [31]. The Bean Box environment allows beans to be connected in order

to enable data flow between them. The Water Beans have two responsibilities. First, they should

enable water pressure to be determined based on the supply volume and the network topology.

Secondly, they should have a graphical representation which conveys a sensation of water flowing

through the network.

SOP may be used to extract bean behaviour [51]. The benefit of separating bean properties from

an abstract data type, e.g. a CartesianPoint class, are clear – it untangles the ADT implementation

from code for listeners and automatic firing of events for changed property values. The benefit of

separating bean properties from the Water Beans is less clear – the event system and property value

changes are part of the model. Water Beans properties are conceptually tangled with the JavaBeans

implementation logic and separation in code would be overkill. Therefore, the system is decomposed

into the following two subjects based on the two main concerns identified from the requirements.

• The WaterPressure subject abstracts the algorithms for calculating the water pressure for each

pipe segment in the network based on some user specified supply volume and the properties

associated with the valve or pipe. Supply volume downstream from a valve drops to zero when

a valve is closed. Supply volume is restored when the valve is open. The topology and the

state of the pipe network determines the pressure in any given pipe.

• The Graphics subject contains Water Beans drawing algorithms. The design of the subject

follows the Model-View-Controller paradigm [20] whenever possible, separating the drawing

algorithms from the model that controls their activation. The controller interprets user input

during network design in the Bean Box. The Bean Box creates connections between the

beans. In the model, instances of the WaterEventObject class ‘carry’ the water supply. The

WaterSource ‘drips’ one WaterEventObject per second to its list of listeners. An open Valve

passes on the received WaterEventObjects to its WaterListeners. A closed Valve does not

pass on any WaterEventObjects. A Pipe works in the same way as an open Valve.

This decomposition modularises the definition of graphics for the Water Beans, localising the changes

that affect the aspect of Water Beans visual representation. Also, it becomes possible to create

families of Water Beans, i.e. with or without the WaterPressure concern.

Both the WaterPressure and the Graphics subjects use the event system to enable communi-

cation between the Water Beans. The client requires that connections between the Water Beans

should be established by drawing a single link from the upstream component to the downstream

component. This integration requirement indicates that the event systems of each subject should

be combined.

Before a detailed design can be developed for each subject we have to work out the subjects’

composition interfaces. In order for the event models to be composable a degree of coordination is

required in the area of event model design. One area of interaction identified between concerns is

water supply volume dropping to zero. This event is similar to a valve being shut; the water stops



CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 54

Valve

open : Boolean

lastEvent : FlowEvent

listeners : Vector

thread:Thread

handleEvent(e: FlowEvent) : void

dispatchEvent() : void

run() : void

FlowEvent

timeOfEvent : int

Pipe

lastEvent : FlowEvent

listeners : Vector

thread:Thread

handleEvent(e: FlowEvent) : void

dispatchEvent() : void

run() : void

WaterSource

listeners : Vector

thread:Thread

dispatchEvent() : void

run() : void

<<utility>>

Canvas

<<Interface>>

FlowListener

handleEvent(e: FlowEvent) : void

Figure 4-2: Water Beans class diagram for the Graphics subject

flowing. Once the composition interface has been defined, work can commence independently on the

detailed design for these subjects.

4.3.1 Detailed Design Considerations

The Graphics subject uses the JavaBeans event model to simulate water delivery. Every event

carries a timestamp. In the model underlying the Graphics concern, a Water Bean is considered

to be carrying water if the timestamp of the last event is less than 2 seconds before the present

time. If the last event came more than 2 seconds ago then the bean changes its representation to

indicate that water is no longer flowing. The effect of the model is to produce the sensation of water

emptying over time rather than instantaneously. Figure 4-2 contains the class diagram of the main

<<Interface>>

RateChangeListener

handleEvent(e: RateChangeEvent) : void

Valve

open : boolean

lastEvent : RateChangeEvent

listeners : Vector

handleEvent(e: RateChangeEvent) : void

dispatchEvent() : void

Pipe

lastEvent : RateChangeEvent

listeners : Vector

handleEvent(e: RateChangeEvent) : void

dispatchEvent() : void

WaterSource

listeners : Vector

dispatchEvent() : void

RateChangeEvent

Figure 4-3: Water Beans class diagram for the WaterPressure subject
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features of the Graphics subject. Each bean uses a thread to check for elapsed time. Method run()

executes a loop that periodically compares the timestamp of the last event against the current time.

The WaterPressure subject uses the JavaBeans event model to propagate changes in supply

volume. Pipes have an observable pressure property that is determined by the rate at which water

enters the pipe (rate equals volume over time) and the diameter of the pipe. Valves are either

fully open or fully closed; either they let the full volume of water pass through or none at all.

When the water supply volume changes the change in water pressure in each pipe is virtually

instantaneous. Figure 4-3 contains the class diagram of the main features in the WaterPressure

subject. handleEvent(..) methods are called by the bean framework when a new event is received.

The dispatchEvent() methods are called when the rate change is propagated to listeners.

To compose, merge integrates the listener interfaces, the event classes, and the Water Bean

classes that correspond by name.

4.3.2 An Interaction Problem

Composition of these subjects produces an anomaly. When a closed valve v opens, the volume of

supplied water toggles from zero to the volume upstream from the valve. The upstream rate is taken

from the last event that v receives. The change in volume causes v to release events to all listeners.

When a bean downsteam of v receives the event, it coincidentally changes its visual representation

because the event also indicates that water is flowing. In the meantime, v is still showing that water

is not flowing because it is waiting for an event from an upstream object. Finally, when v receives an

event from an upstream bean, its representation changes to indicate that water is passing through.

Figure 4-4 shows a time trace for this interaction problem. WaterSource (visually represented

by a tap) supplies water at 10 litres per minute. The tap is connected in sequence to a pipe, followed

by a valve, followed by two more pipe segments. At time t the valve is closed, there is water in the

pipe preceeding the valve but no water beyond it. The water pressure before the valve is 5 bar and

0 bar afterwards. At time t + 1 the valve opens. In the WaterPressure subject, the valve creates

and dispatches an event to all listeners to indicate that a change in supply volume has occurred and,

consequently, a change in pressure. Coincidentally, the pipes downstream from the valve interpret

the incoming event as water flow, rendering the pipes a grey colour. The valve is still clear because

its representation will change only in response to an incoming event. At time t + 2 the event from

the pipe connected immediately before the valve arrives at the valve, and the program returns to

the correct state.

There is no simple way to correct this interaction problem. On the one hand, keeping the

event models separate leads to no undesirable interactions. On the other, there is a requirement

to integrate event models which leads to this anomaly. With the SOP integration rules we have

described up to now, to rectify the interaction we must modify the input subjects or create a new

subject to patch things up.

The problem is that the WaterPressure and Graphics subjects use the event model in different

ways. The integration requirement demands a single event type to describe both variants. In effect,

a single event type quantifies over or generalises the two uses of the event system. A distinction

between different events is required in order to specialise the treatment for each event type. SOP

does not define integration rules to express this relationship at present.
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Figure 4-4: The Water Beans interaction problem.

FlowEvent RateChangeEvent

FlowAndRateChangeEvent

WaterEvent

Figure 4-5: Water Beans conceptual event model

4.3.3 An Object-Oriented Solution

Lets look at the way the Water Beans could be designed as an object-oriented program. It is possible

to model this interaction using inheritance. We need to define a common event type such that a

single connection between Water Beans is sufficient to establish their interaction. Also, it should still

be possible to distinguish between three kinds of event: water flow, water pressure change and the

union the two. Figure 4-5 shows an inheritance hierarchy describing this relationship. At the root

of the hierarchy is an abstract WaterEvent class which quantifies over all other kinds of events. The

WaterPressure concern creates RateChangeEvents, and the Graphics concern creates FlowEvents.

When a new Water Bean is connected into the network, the upstream bean should dispatch a

FlowAndRateChangeEvent object. Conceptually, this is an action that is performed jointly by the

Graphics and WaterPressure concerns.

There are problems with implementing this design elegantly in JavaBeans.

• Java does not support multiple inheritance of implementation, so the FlowAndRateChangeEvent

has to be declared as a direct subclass of WaterEvent instead. This increases code duplication.

• Java does not have multiple dispatch – a variant of the inheritance mechanism that uses

the dynamic type of the parameters as well as well as the dynamic type of the receiver to

choose the method to dispatch. Multiple dispatch enables the dynamic selection of the right
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void handleWaterEvent(WaterEvent e) {

if(e instanceof FlowEvent) { ... }

else if(e instanceof RateChangeEvent e) { .. }

else if(e instanceof FlowAndRateChangeEvent e) { ... }

else { ... }

..

}

Figure 4-6: Simulating multiple dispatch in Java

method to execute depending on whether one gets a FlowEvent, a RateChangeEvent or a

FlowAndRateChangeEvent object from an upstream bean. Instead, the receiver must manually

switch based on the type of the incoming event as shown in Figure 4-6.

• There are conceptual problems with using Java’s inheritance mechanism to model this rela-

tionship. The Graphics concern is interested only in the timestamp of the event, whereas

the WaterPressure concern is interested only in the volume of water. Inheritance in Java is

monotonic – classes cannot disinherit the methods they inherit. One can call the getVolume

method on a FlowEvent object in spite of its not being well defined conceptually. This can

lead to future reuse problems.

Clearly, an object-oriented design can be created to address this problem. But a Java-based solu-

tion does not have inheritance relationships which can model the conceptual relationships faithfully.

In other languages, e.g. Eiffel [84], the unsuitable methods may be disinherited, thereby addressing

the last point above.

Gardner has proposed Structured Inheritance Relationships (discussed in Section 2.4.2 on page

19) in order to overcome problems associated with inheritance, improve conceptual modelling and

facilitate reuse [44]. Among her recommendations is a View inheritance relationship which allows a

subclass to provide an alternate interface to target objects that is more appropriate to some clients

than the interface provided by the default view. Languages that provide natural classifications of

objects will produce more robust object-oriented programs than those that model one solution to

the problem [81].

4.3.4 A Solution For Subject-Oriented Programming

The interaction problem can be addressed by a composition rule that allows objects to be dis-

tinguished by the subject that instantiates them. We propose the view-merge integration rule

for dynamic selection based on subject of origin. The view-merge rule is inspired by the View

structured inheritance relationship [44] but scaled to subject granularity.

The view-merge integration rule can be applied on a set of corresponding classes. When a

view-merged object is received as an operation parameter, the method body to execute is selected

based on the subject which instantiated it. An object is considered to be instantiated by subject S

when it is:

• instantiated on an instance variable in S that has no corresponding instance variables, or

• created in the body of a method in S with the exception to those methods which have corre-

sponding abstract methods in other subjects.
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When subjects S1 . . . Sn are composed, an object is considered to be instantiated by all subjects

when it is

• instantiated on an instance variable vi in Si and there exists some vj in Sj with i 6= j such

that vi, vj correspond, or

• created in the body of method mi in Si and there exists some mj in Sj with i 6= j such that

mi, mj correspond and mj abstract.

The last of these deserves an additional explanation. Recall that in SOP, a method is declared

abstract when another subject is responsible for its implementation. When a set of abstract

methods is merged with implemented operations, the effect is to share the implementations between

all host classes. Objects created in these operations are classed as belonging to all subjects.

We believe that the view-merge rule can be implemented within the SOP rule framework.

Whereas the standard merge rule in SOP creates a single class in the output from a set of input

subjects, view-merge creates an inheritance hierarchy as follows:

When view-merge is applied to S1.A, S2.A and S3.A, create class X by merge in-

tegration of S1.A, S2.A and S3.A. Also create three subclasses of X called X Si.A,

i ∈ {1, 2, 3}, by augmenting the interface of each Si.A with stub methods order to make

them into proper subclasses of X (to satisfy Java type rules). When A is instantiated in

S1, create an instance of X S1.A if the point where instantiation occurs is exclusive to

S1, but create an X object instead if the instantiation point is shared by two or more

subjects. For example, if A is instantiated in a method exclusive to S2 then instatiate

an object of type X S2.A. But if A is instantiated in a method in S2 that does have

corresponding abstract methods then instantiate X instead.

When an object of a view-merged class is received as a parameter, the method body

to execute is selected dynamically using the instanceof operator in Java to simulate

multiple dispatch. The code of the kind given in Figure 4-6 for dynamic selection is

injected automatically into all methods that have a parameter of type A.

The details of rule implementation are hidden from the rule user. In the Water Beans ap-

plication, view-merge can be applied to the composition of FlowEvent and RateChangeEvent

classes to create class FlowAndRateChangeEvent. When Graphics instantiates an event object and

sends it to listeners, only the Graphics subject’s handler method gets executed. Similarly, when

WaterPressure instantiates an event and sends it to listeners, only the WaterPressure subject’s

handler method is executed. However, when a method belonging to both these subjects instantiates

an event object, both handlers will be run.

Further development of this rule should extend it to operations with multiple parameters. Con-

sider method doSomething(A a, B b) where A and B are view-merged. The dynamic types of

both a and b must be used to select the method body to execute. In order to continue the discussion

on interaction problems, the design of this composition rule is not developed further at this point.

Other rules may be inspired by various uses of inheritance; subject composition rules describe

relationships between abstractions that may be modelled with inheritance in object-oriented pro-

gramming. Development of integration rules is open-ended in nature. It depends on the existence of

a suitable composition framework – this is already the case with Subject-Oriented Programming. By

increasing the composition vocabulary it becomes possible to compose more subjects non-invasively.
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Employee

myMembership : Membership

Union

member2rep : Hashtable

reps : Vector

join(e: Employee) : void

Membership

representative : UnionRep

UnionRep

repName : String

MembershipSecretary

theUnion : Union

employee : Employee

joinUnion() : void

creates

acquires

Figure 4-7: The JoinUnion subject class diagram

4.4 Union Members and Representatives

The third anomaly we present is not solved by changing the order of subject composition or by

defining more powerful composition rules. The interaction problem is caused by incompatible domain

views. The example concerns the development of software for a trade union. The initial description

of system functionality is as follows:

The employees of a company can become members of a union. The union is a large

organisation consisting of workers and union representatives. Upon joining, an employee

is assigned a representative who advises the member on his or her rights in case of

an industrial dispute or if a member feels that he has been treated unfairly by the

company which employs him. An employee deals solely with his union representative.

The representative handles small cases personally. Bigger issues are taken back to the

union committee who take a collective decision on behalf of all members. An issue which

all union representatives get to deal with is dismissals. The representatives deal with

dismissals on a personal basis. A dismissed employee contacts the representative who

can investigate the causes of a dismissal and so on.

During analysis, joining the union and dismissal features are identified. In the design the

JoinUnion subject describes the way an employee becomes a union member. The Dismiss sub-

ject describes the procedure involved in getting help when an employee is dismissed. These subjects

are shown in Figures 4-7 and 4-8.

In the JoinUnion subject, the MembershipSecretary.joinUnion method sends an Employee

object as argument to Union to register him as a member. Union generates a Membership object

that is stored by the Employee. A Membership contains a reference to the employee’s UnionRep.
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Company

employees : Vector

dismiss() : void

Employee

myMembership : Membership

appeal() : UnionRep

Membership

representative : UnionRep

UnionRep

get representative

Figure 4-8: The Dismiss subject class diagram

Union

member2rep : Hashtable

reps : Vector

retire(rep: String) : void

Member

UnionRep

repName : String

theUnion : Union

retire() : void

retire

Figure 4-9: The Retire subject class diagram

The interaction in the Dismiss subject starts with the Company object that dismisses an

Employee. The Employee can call the appeal method. This returns the assigned union repre-

sentative in the form of a UnionRep object to handle the allegations of unfair dismissal.

The composition specification joins all identically named artifacts. Membership classes are joined,

representative field is the same union representative in both subjects. The two views of the

Employee class share the myMembership field also.

An additional requirement is introduced into the design at a later stage. A union representative

is now able to retire from the post. UnionRep sends a retire message to the Union giving his name.

The members that the retiring representative served are assigned an alternative representative from

the pool. This concern is elegantly captured by the Retire subject as shown in Figure 4-9. The

collaboration involves updating the member2rep collection to reference some new representative,

then removing the retiree from the reps pool. When composing, we equate classes Employee and

Member for they represent the same abstraction from different perspectives.

4.4.1 An Interaction Problem

There exists an anomaly in the composed program that emerges during a particular interaction

between the Retire and Dismiss subjects. The problem manifests itself when an employee is

dismissed after his union representative retires. The union now associates the employee with a new

union representative but the employee’s membership still refers to the retired representative. The

Dismiss subject returns the retired union rep instead of his replacement. The JoinUnion subject
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Figure 4-10: JoinUnion, Dismiss and Retire concerns as a (badly structured) OO program

informally expects the relationship between an employee and his union representative to be invariant.

The Dismiss subject reinforces this assumption by relying solely on myMembership for information

on the representative.

Invasive modifications to the Water Beans example seen earlier were avoided by defining composi-

tion rules which reflect the true relationship between abstractions. However, this anomaly cannot be

solved non-invasively by addition of composition rules because the interaction cannot be expressed

as a relationship between the composable elements of corresponding subjects.

We observe two ways of correcting this interaction with design. The first solution is to make

the Retire subject update all references between the employee and the representative. The Retire

subject becomes responsible for updating each Employee’s membership details in the Union object

and all Membership objects. The second requires reconstruction of JoinUnion and Dismiss concerns

such that Union class becomes the only source of information regarding the relationships between

employees and representatives. The first solution extends the design which has outgrown its useful-

ness in a highly coupled way. To its credit, the first solution requires no modifications with respect

to the JoinUnion and Dismiss subjects. According to Tekinerdogan et al [123], it is a composition

anomaly because the additional code affects quality factors (see Section 4.1.2 on page 47). Also,

the explicit capture of cross-cutting concerns in subjects should be the natural consequence of good

modularity and not the result of a corrective measure due to a tangled implementation [29]. The

second solution is a better design because it localises the employee-union representative relationship

but it requires invasive modifications to all input subjects. Clearly, neither solution is ideal.

The cause of this interaction problem is understood best by looking at an object-oriented design

for JoinUnion, Dismiss and Retire concerns.

4.4.2 An Object-Oriented Solution

An object-oriented design addressing these concerns is shown in Figure 4-10. The interaction prob-

lem experienced in the output of subject-oriented composition occurs also in this object-oriented

program. This kind of problem in object-oriented programming has been blamed on uncontrolled

object aliasing [57].

In object-oriented programs, objects are passed by reference. An object is said to be aliased when
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there are two or more references to it. Object state depends on the values of its variables and the

state of other objects it references. Aliasing problems can occur when an object reveals references to

the objects contained within through the interface. The client can obtain a reference and proceed to

dispatch messages to the reference without going through the interface of the object that revealed

it. This can pose problems when trying to understand object-oriented programs because a state

change to one object affects all others that alias it. Confusion can arise when object state changes

not as a result of a message sent to its interface but because of an alias into its state.

Aliasing problems are particularly acute in object-oriented programming because most objects

have mutable state. Object state mutates as the result of changes to values and the state of refer-

enced objects. Some objects are immutable: their state cannot be changed although the values of

variables referencing them can. This includes atomically typed objects such as integers and booleans.

Immutable objects can be aliased more freely because their state cannot be modified.

To address aliasing problems, a number of researchers have proposed Alias Protection Systems

(APSs) [56, 6, 91, 5, 127, 23]. At the core of any APS is a concept of object representation.

Representation consists of objects that are used in the implementation of abstractions (classes).

Pragmatic approaches to alias protection do not hide the representation within one object but

enable controlled exposure to support idiomatic uses of object-oriented programming. Flexible

Alias Protection (FAP) [92] is one of the most advanced APSs. The inspiration for FAP came from

the observation that problems are not caused by aliases per se; rather, they are due to non-local

changes caused by aliases. Aliasing should be allowed so long as the visibility of changes to objects

is controlled. The Union example could be redesigned, using FAP to enforce encapsulation, thus

steering clear of the aliasing problem in Figure 4-10.

4.4.3 Redesigning the Object-Oriented Solution

Flexible Alias Protection takes the form of aliasing mode declarations (additional types) that are

inserted into code by the programmer and checked statically by an automated checker. The full

details of FAP are not relevant for our example2. Suffice it to say that in our example objects of

non-value types have one of three modes:

• Representation objects (mode rep) can be manipulated freely inside the container but never

exposed.

• A representation object can be passed to internal containers as an argument object (mode

arg). To minimise its effect, an argument object must appear immutable from the perspective

of objects that access it. The messages sent to argument objects should appear to be purely

functional.

• Variable objects (mode var) may be manipulated and aliased freely anywhere in the program

in the same way as objects in a mainstream object-oriented programming language.

Most objects require a single mode to describe the aliasing policy. Classes implementing ADTs,

such vectors and hashtables, require additional modes: vectors require one additional mode for the

elements stored inside; hashtables require two additional modes – one for the keys and one for the

values. Being able to specify the mode of container elements parametrically makes ADTs more

reusable. Assignment between expressions of different modes is forbidden in most cases, but an

2Chapter 5 on page 70 contains a detailed review of Alias Protection Systems.
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object can be viewed using different modes at different times. A rep object can be viewed as an arg

object when it is passed to another rep object for storage, e.g. a union representative can be stored

in a data structure containing all other union representatives.

Figure 4-11 contains the improved object-oriented implementation for the JoinUnion, Dismiss

and Retire concerns annotated with FAP aliasing modes. The aliasing problem has been elimintated

in this design. The Membership class has been deleted and Employee objects use Union as the sole

source of employee-union representative relationships. In the Union class, a hashtable is used to

store member-to-representative associations (line 29). This hashtable is the private representation

of its Union object as indicated by the leading rep mode. Inside the angle brackets, members can

be referenced but not modified by the Union as indicated by arg. Union representatives have mode

rep; they are treated as representation objects which must not be exposed externally.

During a dismissal appeal (line 9), when getRepName method is called by the employee, instead

of returning a reference to a UnionRep, we return its repName field (line 38 followed by 23). This

object is immutable; once created, it is accessed in a purely functional way, leading to no unexpected

state changes in objects that reference it directly or transitively.

4.4.4 Towards a Solution for Subject-Oriented Programming

In object-oriented programming FAP aliasing modes serve two roles. The first role is alias protection;

it is to protect representation objects from external access. The second role is annotational. Aliasing

modes annotate object usage, describing the permissions to access and modify the state of an object.

It is the second role which motivates our application of FAP to Subject-Oriented Programming.

Aliasing modes may also be useful for describing the way subjects use objects. At present in

Hyper/J, Java types are the only interface-level formalism for checking composition validity, and

the composer must rely on informal documentation or implementation inspections to check that

subject interaction is problem free. The addition of aliasing modes will improve the composer’s

ability to reason about interaction.

In Figure 4-12, FAP aliasing modes are applied to the JoinUnion (fig. 4-7), Dismiss (fig. 4-8)

and Retire (fig. 4-9) subjects. Subjects are purely object-oriented and aliasing modes are applied

without making any structural or functional changes. No changes are necessary because on its

own each subject is a reasonable object-oriented design. The modes in each subject are chosen

independently from other subjects. When two or more modes are applicable, the conceptually most

descriptive mode is chosen.

The modes were selected based on the following justifications. In the JoinUnion subject:

• MembershipSecretary.theUnionhas mode rep to indicate that only this MembershipSecretary

can visibly change the state of theUnion.

• MembershipSecretary.employee has mode var because an employee need not be a member

of a union. Mode arg is not appropriate because of changes to an employee’s mutable state

when setting membership.

• Employee.myMembership has mode arg because changes to the state of myMembership are not

expected after it is created.

• Membership.representative has mode arg to indicate that the representative’s state is im-

mutable.



CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 64

1 class MembershipSecretary {

2 var Union theUnion;

3 var Employee employee;

4 void joinUnion() { theUnion.join(employee); }

5 }

6
7 class Employee {

8 var Union theUnion;

9 arg String appeal() { return theUnion.getRepName(this); }

10 }

11
12 class Company {

13 rep Vector<var Employee> employees;

14 void dismiss() {

15 var Employee e = selectEmployeeToDismiss();

16 arg String repName = e.appeal();

17 ...

18 }

19 var Employee selectEmployeeToDismiss() { ... }

20 }

21
22 class UnionRep {

23 arg String repName;

24 var Union theUnion;

25 void retire() { theUnion.retire(repName); }

26 }

27
28 class Union {

29 rep Hashtable<arg Employee, rep UnionRep> member2rep;

30 rep Vector<rep String> reps;

31 void join(arg Employee e) { member2rep.add(e, selectRepRandomly()); }

32 void retire(arg String r) {

33 rep UnionRep old = getRepByName(r);

34 changeRep(old, selectRepRandomly());

35 reps.remove(old);

36 }

37 void changeRep(rep UnionRep oldRep, rep UnionRep newRep) { ... }

38 arg String getRepName(arg Employee e) { return member2rep.get(e).getRepName(); }

39 rep UnionRep selectRepRandomly() { ... }

40 rep UnionRep getRepByName(arg String repName) { ... }

41 }

Figure 4-11: OO Program implementing the JoinUnion, Dismiss and Retire concerns annotated with
FAP aliasing modes
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subject JoinUnion {

class MembershipSecretary {

rep Union theUnion;

var Employee employee;

void joinUnion() { theUnion.join(employee); }

}

class Employee {

arg Membership myMembership;

}

class Membership {

arg UnionRep representative;

}

class UnionRep {

arg String repName;

}

class Union {

rep Hashtable<var Employee, arg UnionRep> member2rep;

rep Vector<arg UnionRep> reps;

join(var Employee e) { ... }

}

}

subject Dismiss {

class Company {

rep Vector<rep Employee> employees;

void dismiss() { ... }

}

class Employee {

arg Membership myMembership;

arg UnionRep appeal() { ... }

}

class UnionRep {

}

class Membership {

arg UnionRep representative;

}

}

subject Retire {

class UnionRep {

var Union theUnion

arg String repName;

void retire() { ... }

}

class Union {

rep Hashtable<arg Member, rep UnionRep> member2rep;

rep Vector<rep UnionRep> reps;

void retire(arg String repName) { ... }

}

class Member { }

}

Figure 4-12: JoinUnion, Dismiss and Retire subjects annotated with FAP aliasing modes
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• Union.member2rep is the representation of its container. It cannot be exposed outside.

Employee objects used as the hashtable keys have mode var because they can be aliased

and changed outside this object. UnionRep objects used as hashtable values have mode arg

because they are aliased but not visibly changed within this class.

• Union.reps is also the represention of its container. The decision to use a vector to reference all

union representatives is a design decision that should be hidden in an OO program. UnionRep

objects stored in the vector have mode arg because they are aliased but not visibly changed

in this class.

In the Dismiss subject:

• Company.employees is a vector of Employee objects. rep mode on the vector and the elements

within indicates that the choice to use a vector to reference employees is an implementation

decision that should be hidden from clients. Company employees cannot be contacted directly

by the company clients.

• Employee.myMembership has mode arg to indicate that the state of myMembership is not

changed by this Employee instance.

• Membership.representative has mode arg to indicate that representative’s state is not

changed by this class.

In the Retire subject:

• UnionRep.theUnion has mode var. By retiring, the representative changes the state of the

union. However, more than one representative may retire, requiring the union to be modified

by multiple representatives.

• UnionRep.repName has mode arg because the representative’s name is not expected to change.

• Union.member2rep is the representation of its object so it has mode rep. The union associates

members to representatives but does not change them in any way. Members have mode arg

because employees can be a member of more than one union. Representatives have mode rep

because they are exclusively the representatives of this union.

• Union.reps is also the representation of its container. UnionRep objects stored in the vector

have mode rep because they are exclusively the members of this union and should not be

referenced outside.

Having specified the subjects, attention now turns to their composition. Composition of aliasing

modes has not been addressed in existing work and requires further investigation before being

applied. Two choices are apparent: either only elements with the same modes may be composed or

it should be allowed to compose elements with non-matching modes. Mode equivalence is meaningful

because subjects in Figure 4-12 are different views of the same domain. Lets consider the semantics

of pairwise composition of modes. This is easily extended to n-ary compositions:

rep with rep. All compositions take place in the context of corresponding classes. Hence, this

composition means that both subjects can alias this object freely inside the encapsulating

object but not expose it to external clients.
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arg with arg. Both subjects can pass the object freely but never modify it in a way that is visible.

var with var. Both subjects can alias and modify the object freely.

Composition of elements with the above modes leads to the same mode in the output as in the

input but only if equivalent modes appear at all join points. Modes in different classes are interre-

lated, and a change in aliasing mode in one class would have a cascading effect on modes in other

classes. Composing the above subjects, the views of corresponding elements in Employee/Member

(different views of the same entity), Membership and UnionRep classes are equivalent across all three

subjects. For class Union there are two places where modes are not equivalent:

• In JoinUnion, employees have mode var. This mode is required in order legally to pass an

Employee instance when calling Union.join and to be able to modify it within Union. In

Retire, employees have mode arg because the Union does not affect or depend on their state.

However, purely from the point of view of aliasing other FAP modes can be used in this position

in Retire.

• In JoinUnion, union representatives have mode arg because they are assigned to Employee.my-

Membership’s representative field in the body of Union.join (method body elided in Figure

4-12). Mode var is also legal in this case. In Retire, union representatives have mode rep

because conceptually Union objects cannot expose them. Although other modes are also valid

here.

Although not a join point, MembershipSecretary and UnionRep refer to the same Union object

in separate subjects. JoinUnion uses mode rep to specify that MembershipSecretary is the sole

object that can modify MembershipSecretary.theUnion. Retire uses var to specify that any

object can change the state of UnionRep.theUnion.

The different modes in corresponding elements and, occasionally, in non-corresponding elements

indicate differences in the way the domain is perceived from the perspectives of different concerns.

In many cases there is more than one choice of modes. Mode var is the superset of uses described

by rep and arg; it can be used in places where the other two modes are appropriate, and, during

composition, var may replace modes rep and arg.

The requirement of mode equivalence prevents composition and averts the interaction problem.

The use of FAP modes for conceptual modelling of subject aliasing properties has helped to show

that the subjects have differing views of the domain. However, this composition may not have been

preventable if other modes had been chosen. The application of FAP concepts to Subject-Oriented

Programming raises a number of interesting questions:

• Do aliasing modes help to understand subject interaction for the purpose of avoiding interaction

problems?

• Is mode equivalence the only meaningful composition or is it also meaningful to compose

elements with different modes?

• What are the criteria for choosing aliasing modes?

4.4.5 The Role of Aliasing Modes in Understanding Subject Interaction

In the terminology of Multi-Dimensional Separation of Concerns, it can be said that data sharing

between subjects leads to ‘object encapsulation’ becoming a dimension of concerns. Subjects scatter
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and tangle code which in an object-oriented design would be hidden in the representation of some

class. In the Union example broken object encapsulation has been shown to lead to an interaction

problem.

Composition of elements with equivalent aliasing modes helps to address the scattering and

tangling. It constrains composition but in a structured way. FAP does not reduce the set of

available join points. Aliasing mode equivalence shows an agreement on object aliasing policy

between subjects. Modes used as part of the compositional interface support independent subject

development and subject reuse by strengthening the typing of composable elements of each subject.

Aliasing modes help the composer to reason about subject interaction and also fit well with our reuse

position. Subjects are object-oriented programs and object aliasing is a concern in subject design.

An alias protection system such as FAP is of value to the subject developer: it helps to create well

structured subjects that encapsulate and protect object representation from access at the subject’s

functional interface.

The Union example has shown that different modes for corresponding elements do not necessarily

indicate interaction problems. The selected modes are not mutually exclusive. However, this need

not be the case for other Alias Protection Systems. For example, consider mode val which describes

value types and immutable objects. Suppose we compose two String classes and integrate two

corresponding String-type variables from each subject. In the first subject the String class is

immutable. In the second subject String is mutable; it introduces the setValue(..) method

which enables the value to be changed. Suppose that in the first subject the variable has mode

val and the second subject mode rep. These String classes should not be merged because the first

subject may depend on String being immutable. There is no problem with composing elements with

different modes per se. The challenge is determining the mode of the output element and of all other

elements affected by this composition. Clearly, FAP was never intended for subject composition.

Further work is required to determine the best modes to use and the policies for mode selection and

composition.

4.5 Conclusion

This Chapter has described interaction problems in subject-oriented programs. We defined an inter-

action problem as an unwanted subject interaction. Interaction problems are undesirable because

they raise the cost of subject reuse and impact modular development of subjects. In the worst

cases, interaction problems require either invasive subject modifications or patching. This Chap-

ter has presented a range of interaction problems occurring in Subject-Oriented Programming and

suggested ways of tackling them.

The first example demonstrated the importance of concerns and the way they relate to each

other. We looked at the combinations of Persistence with Transaction and Association with

Transaction. However, it is insufficient to evaluate interactions in a pairwise manner. Unless

there exists no connection between concerns then any interaction analysis must involve all concerns

together.

The second example demonstrates the tension between concerns with respect to a shared re-

source. The intention of having a single connection between the Water Beans causes a single event

model to be shared for carrying two kinds of event. The composition rules available in the SOP

language Hyper/J cannot resolve the interaction without changes to the input subjects. However,
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the SOP composition framework allows other rules to be defined. The view-merge composition rule

is proposed for addressing the anomalous interaction non-invasively.

The Union example demonstrates that interaction problems can be caused by encapsulation

issues. Subjects have dependencies on object state that may be subverted during inter-subject

interaction, resulting in interaction problems. Some data dependencies can be made explicit in

subjects with the aid of modes proposed as part of Flexible Alias Protection [92]. For instance,

aliasing modes can describe where and how object state can be changed. By using Flexible Alias

Protection as part of the composition interface it becomes easier to observe data dependencies and

detect interaction problems.

Alias Protection Systems (of which Flexible Alias Protection is but one) help to create well

structured object-oriented programs. By ensuring the absence of external aliases into object repre-

sentation they enable modular reasoning. This property makes APSs useful to the original subject

developer who is also an object-oriented programmer. Being useful to the original developer and

the reuser potentially makes APSs an excellent reuse technology in projects where future reusability

is not part of the initial requirements. Moreover, APSs annotate the objects which depend on or

modify the state of other objects. The annotational properties facilitate the reuse of subjects. For

these reasons, we believe that APSs are a topic worthy of further investigation. In the next Chapter,

we review the background on Alias Protection Systems and discuss alias annotation in the context

of Subject-Oriented Programming.



Chapter 5

Alias Protection and Subjectivity

The previous Chapter described the current understanding of interaction problems – unwanted

interactions between subjects. Interaction problems affect the reusability of subjects and are an

impediment to independent subject development. In the worst case, the anomalous interactions can

be corrected only by invasively modifying subjects or by defining a patch subject. In our example the

problem was caused by broken assumptions about object state. We observed that the opportunity

to detect the anomalous interaction improved when annotations from Flexible Alias Protection [92]

were applied within each subject. The way subjects use and modify objects is made explicit with

alias annotations. We believe that alias annotations will be generally useful to subject composers

(that is, subject reusers) for the purposes of understanding interactions and preventing anomalies.

In object-oriented programming, unstructured aliasing has been identified with understandabil-

ity and reasoning problems. Alias Protection Systems (APSs), including Flexible Alias Protection,

constrain object aliasing in a structured way, improving object encapsulation and facilitating modu-

lar reasoning. In this sense, APSs have value to the subject developer. The subject developer, as an

object-oriented programmer, is concerned with creating well structured and maintainable subjects.

APSs fit well with our position on reuse: we believe that a reuse technology has more chance of

being accepted when it has value to the original developer.

The aim of this Chapter is to present our understanding of the way subjectivity affects aliasing

properties. We lay the foundation for creating an APS for SOP. Section 4.4 on page 59 talked about

Flexible Alias Protection in the context of an interaction problem. In the present Chapter, Section

5.1 describes the background to APSs and reviews the related area of effects annotation. SOP is

different to OOP in the way it approaches certain design problems. Following the background, we

commence our analysis of the way SOP affects alias annotations, that is, the way the alias protection

policy is realised by aliasing modes. These Sections form a part of our contribution to the thesis.

Section 5.2 presents the strategies for selecting aliasing modes and the meaning of mode equivalence

and inequivalence. Section 5.3 looks at the problems caused by ownership parameters. In Section 5.4

the reusability of subjects is explored; we analyse a subject which should be useful within a family

of applications. Section 5.5 describes the properties of APSs that are useful for understanding

subject-oriented interaction.

70
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5.1 A Review of Alias Protection Systems

Encapsulation is one of the corner-stones of object-oriented programming. Well structured objects

hide their implementation and present an abstract interface to clients. Non-trivial object-oriented

programs consist of many collaborating objects that send each other messages which include objects

in parameters and return values. Object-oriented languages pass objects by reference. An object’s

state is made up of the values of its field variables and the state of all objects it references. When

an object is referred to using two or more names, it is said to be aliased. Aliases are created during

variable and field assignment, and when an object is passed in a method argument or returned by

another method call. Aliases pose a problem particularly in object-oriented programming because

objects have persistent local state [57]. When object A receives a reference to object B, A may send

messages to B which modify its state. Execution of a method call affects the state of the receiver

object B and all other objects which reference the receiver. The states of objects that reference B

change seemingly without the affected objects being accessed.

Visibility modifiers such as private are not an adequate protection from aliases. They protect

variables from direct access but fail to disallow object exposure. One can easily write a getter

method that reveals a private object. For example, consider class Rectangle, implemented using

Points as shown below:

class Rectangle {

private Point topleft;

private Point bottomright;

Point getTopleft() { return topleft; }

void setTopleft(Point topleft) { this.topleft = topleft; }

Point getBottomright() { return bottomright; }

void setBottomright(Point bottomright) { this.bottomright = bottomright; }

void shiftBy(Point p) {

topleft.shiftBy(p);

bottomright.shiftBy(p);

}

}

There are times when a Rectangle client needs to know and change its rectangle’s geometry.

Accessor methods are provided for this purpose. However, the client who gets the Point objects

from a rectangle should use them with care because they are a part of the rectangle’s mutable

state. For instance, suppose a client, who is unaware of the way Rectangle is implemented, has

two Rectangle objects r1 and r2. At some moment he wishes to resize and move r2 such that the

topleft coordinate of r2 becomes the same as that of r1. Then, he shifts r1 to another location

by calling method void shiftBy(Point p):

1 Rectangle r1, r2;

2 Point p;

3 Point r1_tl = r1.getTopleft();

4 r2.setTopleft(r1_tl);

5 r1.shiftBy(p);

The unforeseen result will be also to shift r2 by the amount denoted by p. As a consequence

of this interaction, after line 4, r1 and r2 share the same Point object and not just the same top

left coordinate. This is problematic to a client who is expecting only the top left coordinate to be

shared. The problem is solved post hoc by cloning Point objects either in the implementation of

Point or in the client. To the reuser of Rectangle, in order to use the Rectangle well, the clients

must be aware of the way it is implemented.
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Most solutions for tackling problems such as this have been in the area of alias prevention and

control. Flexible Alias Protection uses aliasing modes to describe what a Rectangle object and the

clients of rectangles can do with Point objects. When the Rectangle designer’s intention is to keep

Point objects hidden, he should use mode rep. Objects of mode rep cannot be disclosed outside

their container, hence getter methods must return clones of topleft and bottomright.

For the most part programmers avoid aliasing problems, probably because objects mostly com-

municate in close groups [56]. The problem faced by APS designers is to create APSs that provide

a degree of alias protection while supporting common object-oriented idioms. The emphasis is on

practicality: discouraging bad practice without forbidding the designer from creating all sorts of

object-oriented programs. Presently, we discuss in detail two recent proposals which fit this descrip-

tion best. Clarke et al’s Ownership Types [23] derive from a formalisation of the core of Flexible

Alias Protection. Aldrich et al’s AliasJava [5] is an alias annotation system that emphasises the

description of aliasing properties over strong encapsulation.

The issue of alias protection is related closely to effects annotation. An effects system describes

the way that the state of a component may be accessed during program execution. This information

is useful to programmers for reasoning about data dependencies between computations [106]. An

effects system has the ability to infer the effects of a computation, to declare the permitted effects

and to check that the inferred effects are permitted. Aliases introduce additional dependencies

between computations making precise effects description more difficult. This Section also describes

the role of effects systems in understanding subject interaction.

5.1.1 Ownership Types for Flexible Alias Protection

Ownership Types [23] have been proposed as a way of encapsulating objects used in the implemen-

tation of classes. At the core of Ownership Types is the concept of contexts. Every object owns a

context and is owned by a context. The context an object owns is known as the object’s representa-

tion. The context that owns the object is the object’s owner. Contexts partition objects into nested

groups, making it possible to talk about the inside and the outside of an object.

Program execution begins within a default system context world1. Any object created with

owner context world can be referenced everywhere in the program. Objects of value types implicitly

have world as owner, indicating that they can be aliased anywhere in the program. Every new

object created comes with a new representation context by default. In essence, the only objects

that can access this representation context are the object itself and other objects nested inside this

representation context but only as long as they have been granted a permission. Thus, an object

o’s representation context is not accessible from outside o. This property is known as representation

containment.

An ownership type is the data type of an object extended with an angle-bracketed list of contexts.

Non-value types are derived from classes. Class names are followed by a sequence of ownership

parameters. When creating a new object, the object owner is passed as the first ownership parameter.

The owner can be either world, the current representation context or any context from the ownership

parameters of the class containing the expression.

For example, the Queue class with field variable head of type Link may be defined as follows:

1 class Queue<owner, data> {

1The notation of Ownership Types changed in later work [21]. The more recent notation is used here.



CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 73

2 Link<this, data> head;

3 ...

4 }

data in line 1 is the name of the second ownership parameter. It is bound by the client instan-

tiating Queue. The owner of head is the current representation context, i.e. this queue instance, as

indicated by this. Class Link requires an additional ownership parameter. data in line 2 is bound

to the same context which binds data in line 1.

Ownership Types are flexible because the owner need not be the object which does the instan-

tiating. In fact, the object owner does not need to reference the objects it owns and can reference

objects owned by others.

The system of ownership parameterisation allows clients to customise the ownership properties

of objects. An object’s owner context and ownership parameters are bound at instantiation and

remain invariant until the object is destroyed. For example, with ownership parameters it is possible

to create two Queue objects where in the first, the queue and data within are owned by the current

representation context, and in the second, the queue is owned by the current representation context

but the data inside is owned by world:

Queue<this, this> q1;

Queue<this, world> q2;

Variables q1 and q2 can never be aliases for the same objects because they have different types.

Although both are have the same owner, the data sets referenced by each are disjoint.

Representation containment is best understood in terms of object graphs. A snapshot of an

object-oriented program at runtime can be represented by an object graph. Objects are vertices

and solid edges denote inter-object references. As the program executes, the graph evolves, with

new vertices and edges added and old ones removed. At the root of the graph is context world

representing the system in which the program runs. The sequence of solid edges between the root

vertex world and any other vertex of interest forms a path. In a well formed object graph, all vertices

are reachable by paths but there may be multiple paths for each object.

The dashed edges relate objects to their owner contexts. In a graph that satisfies the representa-

tion containment property, every path to an object must pass through that object’s owner. Consider

the graph in Figure 5-1. Its properties are:

• Object o4 is owned by o2 and o4 is in o2’s representation context.

• o2 is owned by o1. o2 is in o1’s representation context.

• Global objects with owner world are o1, o3, o5 and o7.

• o1 owns o6 but does not reference it. All paths to o6 must pass through its owner context o1.

• The world owned object o3 can alias o6 so long as all path to o6 pass o6’s owner. o3 cannot be

aliased outside o1 because that would lead to the exposure of representation of o1 – the edge

marked with a cross.

The program in Figure 5-2 demonstrates Ownership Types applied to the development of the

Queue abstract data type. Queue is implemented as a collection of Link objects. The first element

in the queue is referred to by head and the last element by tail.
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world

o1

o2 o3

o4 o5 o6 o7

not valid

Figure 5-1: An object graph showing ownership arcs

Class names are followed by a sequence of ownership parameters where the first parameter is

always owner. This refers to the owner context of the current instance. The Queue class also has

ownership parameter data which refers to the owner of elements stored in the queue. In order for all

elements to be treated as a single collection they must have the same ownership type, Object<data>

in the example. In addition to owner, the Link class also has ownership parameter d. In collaboration

with the queue, d gets bound to the owner of the data referred to by the link.

When links are created, their ownership parameters are bound. Link objects are owned by the

queue, given by this, and the Link’s ownership parameter d is bound to the same context as Queue’s

data. Ownership Types uses the self reference this to state that links are the representation of

their queue. Variables head and tail can be aliases for the same object because they both have the

same ownership type.

The implementation of Queue requires links to refer to each other. This can happen only when all

links have the same owner context. In the Link class we refer to the next link’s owner parametrically

with owner. The type of the next field is Link<owner, d> indicating that the owner of next is the

same as the owner of this link, i.e. the queue which owns all the links. Figure 5-3 illustrates an

object graph with ownership edges for a queue with 5 elements.

Object-oriented programming idioms such as Iterators [43] need short-term access to representa-

tion objects. In order for an efficient implementation to be possible, iterators must alias representa-

tions of the collections over which they iterate. The representation containment properties presented

to now have enforced encapsulation fully making it difficult to create efficient iterators.

In an extension to Ownership Types, Clarke and Drossopoulou proposed support for dynamic

aliases [21]. Dynamic aliases allow objects from the representation context temporarily to escape

outside. The word dynamic refers to the way short-term aliases are implemented. In object-oriented

languages, object references held in instance variables are stored on the heap while those held in

a method’s local variables are stored on the stack. All stack allocated variables are dynamic; they

are destroyed when the method returns. Heap allocated references survive between method calls.

In Ownership Types, external dynamic aliases to other objects’ representation are allowed so long

as the owner object is also in scope. Thus a representation object can be exposed but only in the
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class Queue<owner, data> {

Link<this, data> head = null;

Link<this, data> tail = null;

void put(Object<data> o) {

Link<this, data> l = new Link<this, data>(o);

if(head == null) {

head = tail = l;

} else {

tail.next = l;

tail = l;

}

}

Object<data> get() {

if(head == null) return null;

Object<data> o = head.o;

if(head == tail) {

head = tail = null;

} else {

head = head.next;

}

return o;

}

}

class Link<owner, d> {

Object<d> o;

Link<owner, d> next;

Link(Object<d> o) { this.o = o; }

}

Figure 5-2: Program demonstrating Ownership Types

scope of its owner.

In the original Ownership Types [23], the ownership parameter bindings for an object could

come only from the set of ownership parameters of the host class (including owner) and the set

{this, world}. For dynamic aliases, the bindings can also come from any variable which is also in

scope. For example, Figure 5-4 shows an iterator extension to the Queue class seen originally in

Figure 5-2.

To obtain an iterator, the queue client calls makeIterator. The client gains sequential access to

the data in the queue by repeatedly calling iterator’s next method. In the following code fragment,

first a queue is created and then an iterator is obtained from the queue:

Queue<this, d> q = new Queue<this, d>();

Iterator<q, d> it = q.makeIterator();

Note that the owner of the iterator is the queue. The owner context of it signifies that it is

allowed to access the representation of q but only while q is in scope.

An alternative perspective on aliasing is taken by Aldrich et al in their work on AliasJava [5].
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queue

link1 link2 link3 link4 link5

data1 data2 data3 data5data4

head tail

next next next next

Figure 5-3: Ownership structure for a Queue instance

class Queue<owner, data> {

...

Iterator<this, data> makeIterator() {

return new Iterator<this, data>(head);

}

}

class Iterator<owner, dt> {

Link<owner, dt> current;

Iterator(Link<owner, dt> first) { current = first; }

boolean hasNext() { return current != null }

Object<dt> next() {

Object<dt> currentData = current.data;

current = current.next;

return currentData;

}

}

Figure 5-4: Iterator extension to the Queue class with Ownership Types

5.1.2 AliasJava

AliasJava is an alias annotation system for specifying data sharing relationships in Java programs.

It claims to capture several common forms of sharing that exist in object-oriented systems. The

annotation system takes the form of a type system that lives alongside visibility modifiers and data

types (like aliasing modes in FAP). There are five kinds of annotation found in AliasJava:

unique. A newly created object is considered unique – there is only one reference to it. After a

unique variable is read, the source location must be set to another value before executing

any other statement that may result in the original value being read a second time. unique

values can be assigned to any other data sharing annotation but the inverse is not true as

other annotations do not guarantee uniqueness.

owned. Objects that are confined to the scope of the enclosing object are considered owned. A

reference to an owned object may be passed to another container if an explicit permission

is granted. Unlike objects which are declared private, we cannot write a getter method to
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expose owned objects. owned objects may be aliased freely inside their container.

ownership parameters. An owned object may be shared with other objects by granting access at

instantiation time with ownership parameters. An owned object can be passed several levels

down the object hierarchy. When granting access, ownership is passed either directly by

referring to the owned annotation, or by using any of the client’s ownership parameters –

these represent ownership properties associated with other objects. In classes which declare

ownership parameters, objects with annotations taken from the set of ownership parameters

are treated the same as owned objects.

shared. Objects which are intended to be aliased throughout the program are considered shared.

Objects which are either global or do not have an owner are given the shared annotation.

lent. A unique, shared or owned object can be lent to another object for the duration of a method

call. A lent object cannot be stored in an instance variable or returned from a method call.

However, it can be passed on as a parameter to other operations as long as other operations

also treat the reference as lent. A unique object can be aliased temporarily with lent. An

owned object may be exposed externally with lent.

Figure 5-5 contains the Queue example with AliasJava annotations. The head and tail links are

owned by their queue. Iterator instances are unique when created and can be bound to any mode

in the client. The right to reference data objects is granted to Queue using ownership parameter

data.

5.1.3 Understanding Aliasing Modes

Ownership Types and AliasJava approach encapsulation and aliasing from slightly different but

intimately object-oriented perspectives. Both are concerned with the development of black-boxes

which hide their implementation details. Ownership Types and AliasJava have the concept of object

owner. Every object has exactly one owner that does not change over time (with the exception of

unique references). Ownership parameterisation is used to separate the owner of the abstraction from

the owners of elements stored within. The checking of types and modes is static, demonstrating the

pragmatic nature of these approaches. Aldrich et al [5] go even further to suggest algorithms for

inferring annotations in legacy software.

The containment properties of Ownership Types are stronger than those of AliasJava. In Own-

ership Types, the set of contexts forms a partial order. In order for object x to refer to object y,

the representation of x must be inside the valid owners of y [22]. This property permits the creation

of robust ownership structures where the representation of objects remains hidden behind the inter-

face. This property has beed dubbed deep ownership. AliasJava instead enforces shallow ownership

which guarantees that the owner of an object will not change. The stronger containment properties

of Ownership Types are instrumental in making it possible to reason about the absence of aliases.

By contrast, the unique aliasing mode of AliasJava ensures the absence of aliases but requires an

unconventional programming style or explicit language support.

Beside Ownership Types and AliasJava, a number of other APSs have been proposed. Islands [56]

and Balloon types [6] focus on full object encapsulation in which all representation objects are

inaccessible outside the container. Objects can be moved in or out with unique references or using

other techniques that prevent aliases escaping. The Universes approach [91] makes extensive use of



CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 78

class QueueClient {

owned Queue<owned> q = new Queue<owned>();

void run() {

owned Object o1 = new Object();

owned Object o2 = new Object();

q.put(o1);

q.put(o2);

}

}

class Queue<data> {

owned Link<owned, data> head = null;

owned Link<owned, data> tail = null;

void put(data Object o) {

owned Link<owned, data> l = new Link<owned, data>(o);

if(head == null) {

head = tail = l;

} else {

tail.next = l;

tail = l;

}

}

data Object get() {

if(head == null) return null;

data Object o = head.o;

if(head == tail) {

head = tail = null;

} else {

head = head.next;

}

return o;

}

unique Iterator<owned, data> makeIterator() {

return new Iterator<owned, data>(head);

}

}

class Link<queueAsOwner, dt> {

dt Object o;

queueAsOwner Link<queueAsOwner, dt> next;

Link(dt Object o) { this.o = o; }

}

class Iterator<queueAsOwner, dt> {

queueAsOwner Link<queueAsOwner, dt> current;

Iterator(queueAsOwner Link<queueAsOwner, dt> first) { current = first; }

boolean hasNext() { return current != null }

dt Object next() {

dt Object currentData = current.data;

current = current.next;

return currentData;

}

}

Figure 5-5: Queue with AliasJava annotations
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read-only references to specify a powerful APS. Boyapati et al [19] propose extending Ownership

Types with dynamic aliases that are scoped to a group of related classes. Confined Types [127]

focus on the security of objects. An object of a confined type is statically scoped within a package

and any external references are disallowed. Confined Types are motivated by the need to prevent

access by untrusted programs running in the same space. For instance, a Java applet can confine

all objects of a certain type to the module denoted by the package which contains the applet. The

realisation of Confined Types depends on anonymous methods that do not expose, manipulate or

depend on the identity of the receiver object. In order to keep the identity of the confined objects

hidden within the package, unconfined objects can only call anonymous methods.

Aliasing modes and properties can be roughly divided into those which describe the places where

an object can be aliased and those which restrict access to the object’s interface. Both AliasJava and

the core of Ownership Types are concerned with the former: when an object acquires a reference,

it has unrestricted access to its interface. Some APSs use interface restrictions to implement their

aliasing policy. For instance, in Confined Types anonymous methods allow confined objects to

be mutated while keeping their identity hidden. Flexible Alias Protection has the arg mode [92].

Representation objects (mode rep) which should be hidden from external clients can be passed to

internal objects under mode arg. The client of an arg object only accesses the immutable interface.

Messages sent to the immutable interface do not modify object state in a way that is visible. The

client is protected from mutable state and the effect of an arg object on the client is constant.

Noble et al [92] partition modes into those which constrain external clients and those which

constrain the implementation. Modes which constrain the external clients of an object are upwardly

restrictive. Those which constrain the implementation are downwardly restrictive. Pragmatic con-

siderations suggest that downwardly restrictive modes are preferable to upwardly restrictive ones.

Components designed with the aid of an APS should be usable in existing systems but upward

restrictions require other components to be aware of the APS used in this component’s design. For

example, anonymous methods are downwardly restrictive: the design of packages is constrained to

disallow direct access to confined objects and their identities from objects outside the package. The

arg mode downwardly constrains the receiver to using the immutable interface of the object in a

parameter. In the Islands model [56], the read mode annotates variables to indicate read-only ac-

cess to their state. The read mode is transitive: any reference obtained from the interface is also

read-only. This mode is upwardly restrictive because it constrains the object’s clients.

The modes introduced to now have annotated object references. Effects annotations are instead

placed on methods. Effects are also of interest to us because, like aliasing modes, we believe that

they can improve the understandability of subject interaction.

5.1.4 On Effects Annotations

Effects annotations describe the possible of method execution on state at signature level. Alias con-

trol is at the heart of effects systems in object-oriented programming. The choice of effects is driven

by the goals of the effects system’s designers. Greenhouse and Boylands’s Object-Oriented Effects

System [46] is motivated by the intention to perform semantics-preserving program transformations.

Transformations often require the order of statements to be changed. Two computations do not

interfere when one computation does not write state that is read or written by another. Therefore,

Greenhouse and Boyland only track read and write effects. The FX language [79] also introduces

the alloc effect which describes memory allocation and initialisation. The alloc effect adds to the de-
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scriptiveness of the effects system and proves useful for compiling programs that execute on parallel

computers.

In Greenhouse and Boyland’s system [46], effects are described on regions which are encapsu-

lations of mutable state. Instance and static variables appear in regions which together form a

hierarchy. Each variable has a default region and a special region called All is at the top of each

class. Effects are specified on method declarations similarly to throws clauses in Java. The private

state of an object is abstracted using the unshared annotation. Fields declared unshared have no

aliases, that is, they are unique. Objects read from an unshared object and stored in local variables

must not be revealed beyond the scope of the method call. Their effect is totally encapsulated

within the object. In the terminology of regions, unshared objects appear in the regions of their

enclosing container, and consequently their effects are hidden by the effects of the container as a

whole. Unaliased objects, annotated with keyword unique, are used to insert and extract objects

from containers. Static analysis ensures that parameters and return values are unaliased during the

method call.

Trying to redesign the Queue example to use Greenhouse and Boyland’s effects annotations shows

some of the limitations of this approach. Suppose we try to use the linked list representation as be-

fore; in order to keep representation objects hidden, the program has to be redesigned to incorporate

uniqueness. The main change involves the removal of field tail in order to make all links unaliased

within the Queue. The get() method (which returns the last element) now has algorithmic complex-

ity O(n) over the elements in the queue because it must traverse all preceding elements to get to the

tail. This compares unfavourably with the Ownership Types or Alias Java implementations which

were O(1). Other, more efficient implementations of the Queue abstraction are possible. However,

it is important to note that the implementation must reflect the idiosyncrasies of Greenhouse and

Boyland’s effects system. In order to maintain performance, the preferred implementation cannot

be used and another implementation is required.

In the absence of a lentmode as seen in AliasJava, the iterator is made integral to the Queue class.

Method resetIterator now performs the function of creating a ‘new’ iterator. This implementation

prohibits multiple simultaneous iterators from being created. Figure 5-6 shows the main design

elements.

The JOE language (Java+Ownership+Effects) extends a Java-like language with Ownership

Types and an effects system [21]. Instead of using regions for describing effects, JOE employs

ownership contexts to describe effect shapes. As described earlier, the contexts in the scope of a class

include this, world, owner and the other ownership parameters. There are two kinds of effect shapes.

The band effect denotes the set of objects referenced by the instance variables of one object. The

band is specified in relation to the current context this. For instance, suppose {p, this, owner, world}

is the set of contexts in scope. The bands include:

• Each one of this, owner, world is a band.

• this.1 describes the band which has the present instance as owner.

• owner.1 is the same as this.

• this.2 describes the band which has this.1 as owner.

• p.0 is the same band as p; it denotes all objects referenced by the instance variables of p.
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class Queue {

region Data;

unshared Link head = null;

unshared int index;

void put(Object o) reads nothing writes Data { ... }

Object get() reads Data writes nothing { ... }

void resetIterator() reads nothing writes nothing { ... }

boolean hasNext() reads nothing writes nothing { ... }

Object next() reads Data writes nothing { ... }

}

class Link {

region Data;

Object o in Data;

unshared Link next;

Link(Object o) reads nothing writes Data { ... }

}

Figure 5-6: Queue example extended with Greenhouse and Boylands effects annotations

The under effects denote a set of objects whose contexts are inside of and include a band.

An under effect is written by wrapping a band within under(..). For instance, the annotation

under(this) denotes an effect which concerns all objects referenced by this and other objects in

the representation context of this. The annotation under(p.1) denotes an effect which concerns all

objects referenced by contexts represented by bands p.i where i ≥ 1.

In Figure 5-7 the Queue example is annotated with JOE effects. For instance, the put method

declares the writes under(this) effect. The call to the Link constructor writes the newly cre-

ated Link object as specified in the writes this annotation on the Link constructor. In Queue

this is equivalent to writes this.1. The new object is assigned either to tail or to both head

and tail, with effect writes this. Hence, the combined effect of the first statement in put is

writes under(this). All other statements in put either read or write the under effect denoted by

under(this) (note that read is included in write).

5.1.5 Conclusion

APSs are a response to a call for better treatment of object aliases [57]. Uncontrolled aliasing has

been shown to lead to programs which are hard to understand and maintain. The present Section

has shown that APSs have in common the concept of an owned object. In Ownership Types the

emphasis is on strong encapsulation. The core of Ownership Types is concerned with constraining

object aliasing to a subset of objects in the program. In AliasJava the emphasis is on alias annotation.

Instead of strong encapsulation, modes describe where the objects are aliased. Aliasing is managed

by a combination of parameterisation, dynamic aliases to allow temporary access, and uniqueness

which enables the object to change its owner. In all APSs, the aliasing annotations, modes or types

work together to implement the containment policy. A mode is like a role that changes depending

upon where the object is referenced.

We have described two computational effects systems. The effects systems are motivated by

requirements for modular reasoning in order to perform program transformations or to enable paral-

lelisation. While we expect that effects systems will be useful to understanding subject interaction,
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class Queue<owner, data> {

Link<this, data> head = null;

Link<this, data> tail = null;

void put(Object<data> o) writes under(this) {

Link<this, data> l = new Link<this, data>(o);

...

}

Object<data> get() reads this.1 writes this { ... }

Iterator<this, data> makeIterator() reads this writes this.1 { ... }

}

class Link<owner, d> {

Object<d> o;

Link<owner, d> next;

Link(Object<owner, d> o) writes this { ... }

}

class Iterator<owner, dt> {

Link<owner, dt> current;

Iterator(Link<owner, dt> first) writes this { ... }

boolean hasNext() { ... }

Object<dt> next() reads this.1 writes this { ... }

}

Figure 5-7: Queue example extended with JOE effects annotations

compared to APSs, effects systems are not as universally useful to subject designers. Moreover, as

exemplified by JOE, effects systems are built on top of alias protection systems. For these reasons,

we choose to explore APSs as the means of improving the understandability of subject interaction. In

the following Sections we look at the way the difference between subject-oriented and object-oriented

programming impacts Alias Protection Systems.

5.2 The Impact of the Subject-Oriented Paradigm on APSs

Subject-Oriented Programming is based on a belief that in many cases there is no single intrinsic

view of objects. Instead, the behavour is determined by a combination of a number of possibly

overlapping extrinsic perspectives. In the previous Chapter SOP was applied to a number of such

examples. SOP decomposes software into subjects, and each subject uses classes to model the

perspective assigned to it during decomposition. SOP introduces new concepts of correspondence

and integration for synthesising the various views of abstractions and for reusing subjects.

Common abstract data types such as queues and hashtables have been used to demonstrate APSs.

The object-oriented mechanisms of inheritance and delegation have proven well suited for conceptual

modelling of ADT families and for reuse of ADTs. Stacks and hashtables do not exemplify SOP

precisely because there exists a clear instrinsic understanding of the behaviour of these abstractions.

Multi-perspective development opens a question on how to deal with the different views that

subjects have of object aliasing and ownership. Should subject designers agree on the aliasing

policies or is there room for different views? What role does the composition specification play in

determining the mode in the output subject? In the following, we apply a selection of ideas from

APSs to the challenges posed by SOP examples.
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5.2.1 The Car Mechanic Example

Suppose there exists a car hire company which leases vehicles out to clients. Each client is a driver

who takes the vehicle for the period of the lease and returns it to the hire company when the lease

expires, the car breaks down or the driver has an accident. Cars in good condition can be leased out

again, however, cars which have been in accidents or are broken down must await the mechanic. The

task of the mechanic is to restore cars to working condition. This is done by removing the working

engine from crashed cars and using it to replace the broken engine in a car which has broken down.

The example is decomposed into two subjects. The HireCompany subject contains the functionality

associated with car leasing, driving, breaking down and crashing. The Mechanic subject contains

the engine swapping functionality.

Without reference to any particular APS, this example invites a number of questions:

• Is the Mechanic subject an extension to the HireCompany base, or are these subjects peers?

Aliasing modes may be treated differently in each case.

• Should the modes be equivalent, and if not, what is the meaning of different modes on corre-

sponding elements?

• These subjects are being developed in concert. In view of the future composition, what are

the criteria for mode selection?

Suppose AliasJava annotations are chosen to describe the subjects2. The annotated HireCompany

and Mechanic subjects are shown in Figures 5-8 and 5-9 respectively. The composition specification

that ties these subjects together is given by:

compose HireCompany, Mechanic;

mergeByName;

bracket ‘‘Driver.rent’’ with after Mechanic.afterHire;

Let us now look at the above questions in more detail.

5.2.2 Peer and Extension Subjects

Peer subjects are perspectives on to the same domain. They represent partial and potentially

overlapping views which should not be contradictory. By contrast, an extension subject extends

some base with optional or exceptional functionality. The extension may modify properties in a way

that is contradictory with respect to the base view. But why does it matter if subjects are peers or

related by evolution? – the strategy for determining the output mode may be tailored accordingly.

Looking at the Car Mechanic example we observe that the HireCompany subject is the main

part of the application. Conceptually, it can be understood without reference to any other subject.

The Mechanic subject represents an exceptional case that is meaningful only in relation to a base,

e.g. the HireCompany subject. In the present case, it can be said that the Mechanic subject extends

the HireCompany subject.

Having agreed that conceptually the Mechanic extends HireCompany, how does SOP specify when

subjects are peers or related by extension? The composition specification has two purposes. The

first is to specify the way subjects should be synthesised from the inputs. Secondly, the composition

specification has a conceptual dimension which describes the way elements relate. Conceptually,

2we can equally well have chosen Ownership Types or another APS for this example.
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class CarHireCo {

owned Vector<owned> fleet;

void addCar(unique Car c) {

fleet.add(c);

}

void hireTo(shared Driver d) {

lent Iterator it = fleet.iterator();

while(it.hasNext()) {

lent Car c = (lent Car)it.next();

if(c.state == 0) {

d.rent(c);

return;

}

}

// no working cars left to rent

}

void main() {

shared CarHireCo f = new CarHireCo();

f.addCar(new Car());

f.addCar(new Car());

shared Driver d1 = new Driver();

shared Driver d2 = new Driver();

f.hireTo(d1);

f.hireTo(d2);

}

}

class Car {

// 0 = rentable, 1 == crashed but engine ok, 2 = broken engine

shared int state;

owned Engine e;

void go() {

e.start()

...

}

}

class Engine {

void start() { .. }

}

class Driver {

void rent(lent Car c) {

drive(c);

}

void drive(lent Car c) {

c.go();

// breakdown, crash or return the car unchanged

}

}

Figure 5-8: The HireCompany subject with AliasJava annotations
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class Mechanic {

unique Engine spareEngine;

shared Car brokenCar;

void afterHire(shared Car c) {

switch(c.state) {

case 0: break;

case 1:

spare = c.extractEngine();

if(brokenCar != null) doRepair();

break;

case 2:

brokenCar = c;

if(spareEngine != null) doRepair();

}

}

void doRepair() {

brokenCar.fitEngine(spareEngine);

spareEngine = null;

brokenCar.state = 0;

brokenCar = null;

}

}

class Car {

// 0 = rentable, 1 = crashed but engine ok, 2 = broken engine

owned int state;

unique Engine e;

unique Engine extractEngine() {

unique Engine r = e;

e = null;

return r;

}

void fitEngine(unique Engine e) {

this.e = e;

}

}

class Engine { }

Figure 5-9: The Mechanic subject with AliasJava annotations
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merge describes the joining of views with no implicit order or precedence and implies compatibility

between aliasing modes. Compatibility need not mean equality although equality is the most straight

forward measure of compatibility. Equality is meaningful for the modes of both Ownership Types

and AliasJava. If, for example, all corresponding variables are declared owned, the output mode

is also owned. The override rule specifies an ordering where the overriding element replaces the

overridden element, e.g. the overriding operation replaces the overridden operation. Conceptually,

the overriding element may totally change the aliasing policy in a way that is not compatible with the

previous modes. So a parameter with a unique annotation may be overridden by a shared annotation

from the signature of the overriding operation.

In SOP, the mechanics of composition at times clash with the conceptual model. One such case is

when a composer has to use override to select one method body from two identical definitions while

conceptually merging corresponding views. Looking at the composition specification for the Car

Mechanic example, we observe that mergeByName is used to join subjects. The rule is necessary

for describing the synthesis of subjects but the rule fails to convey the conceptual relationship

between the concerns. The bracket relationship induces an order but only between classes and

operations.

5.2.3 How to Treat the Modes of Corresponding Elements

The treatment of modes of corresponding elements may be related to the top level composition rule

relating the subjects. One can require modes to be the same or introduce a level of variability that

fits in with the SOP model of decentralised development.

There is no reason why different modes cannot be composed conceptually. Modes help to reason

about the aliasing properties of objects in the output subject only when the output mode does not

degenerate to unrestricted aliasing. For instance, in AliasJava, the shared mode conveys little useful

information. Composition using merge inevitably increases object aliasing because each subject

introduces behaviour which increases aliasing. If most objects become shared due to composition,

aliasing annotation benefits that the APS brings will be lost.

Once again, consider the composition in the Car Mechanic example. In the HireCompany subject,

cars are owned by CarHireCo and lent to the hirer for the duration of the method call. Engines are

owned by cars with the driver having no direct access to the car’s engine. In the Mechanic subject,

cars are globally aliased objects as indicated by the shared annotation. To the mechanic each car

has a single engine as indicated by unique. When the engine is replaced from a crashed car to one

with the broken engine, uniqueness annotates with precision the effect of the swap. AliasJava does

not allow an object to be simultaneously owned and unique as these are totally different aliasing

properties. Likewise objects cannot be shared and lent at the same time. The combination of the

properties of any of these modes leads to global aliasing as described by shared.

The problem lies in part with the choice of modes and in part with the way modes are selected

from those available. An APS with a menu of finer grained modes than those offered by AliasJava

may prevent all compositions of non-equivalent modes degenerating to shared. For example, if the

APS allowed both the CarHireCo and the Mechanic to share the ownership of cars, some mode such

as co-owned could replace shared when elements with owned and lent modes are composed. A

lent object in one subject may become aliased as owned in another so long as no references are

passed back to the original subject.

At times, more than one mode is capable of describing the actual aliasing properties. For example,
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a car’s engine is owned by the car in HireCompany. Mode unique could have been used equally well

without any changes to subject implementation. This topic is discussed in more detail in the next

Subsection.

Consistency checking is a concern when composing different modes. In an APS like AliasJava,

aliasing modes are used in concert. For instance, an owned object may be passed to another container

using ownership parameters and later lent to other objects. Changing the mode in any one class

will have a ripple effect on other classes that alias the object.

5.2.4 Criteria for Mode Selection

An APS like AliasJava makes it possible to use more than one mode in some cases. We have identified

the following strategies for programmers to use when selecting modes:

• Design the subject in order to conform with an APS. Encapsulation is a cornerstone of

object-oriented programming and one should design subjects with representation encapsulation

in mind. APSs support encapsulation but with a certain programming style that may not fit

with all applications of object-oriented programming. By following the APS’s idiom strictly,

the developer may be pressured into creating designs that do not satisfy other concerns. For

example, in Figure 5-6 on page 81, the range of available modes affected efficiency: the program

returns object clones when references would lead to a more efficient implementation.

• Use the most constraining mode while still making it possible to create the same

design as envisioned originally. In this case, one selects the most constraining mode in

order to describe the interaction. It suggests that one should not follow the idiomatic style of

the APS but instead use the APS to annotate the latent relationships. This is the approach

taken by any mode inference algorithm. Inference algorithms identify the most constraining

aliasing mode.

• Use the mode which is the most suitable conceptually. In this case, conceptual mod-

elling is identified as a priority. The choice of mode is influenced not by the domain of imple-

mentation but rather by the problem domain. Selection is an option when the available modes

are not orthogonal and two or more modes can describe the interaction.

• Use the strongest mode possible in view of composition. One should bear in mind that

subjects are often incomplete designs; subjects contribute to the behaviour of classes through

composition. When subjects are designed as part of a collaborative effort, i.e. designed with

a particular composition in mind, the choice of modes may be influenced by the subjects with

which the present subject is going to be composed. For example, suppose that the mode most

suitable conceptually is owned. However, composition introduces behaviour that produces

external aliases, requiring a change to mode shared. Thus, mode selection is predicated on

whether the problem domain is understood to be a single subject or a collection of subjects.

In conclusion, when composing elements with different modes, a fine grained APS is necessary

in order to avoid all composition leading to a complete generalisation of properties, e.g. mode

shared. Determination of the output mode may depend on both the input modes and the way the

composition is specified. Mode compatibility is required for the merge composition strategy. For

override, mode compatibility is not essential. However, the overriding of one mode by another

requires some form of consistency checking to ensure that all mode changes are mutually consistent.
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5.3 Problems with Ownership Parameters

Both AliasJava and Ownership Types use parameterisation to grant containers access to objects

which are not part of their immediate representation. Ownership parameters are important for

creating reusable classes. For example, the following two Queue objects have different aliasing

properties (using Ownership Types):

Queue<this, this> s1;

Queue<this, world> s2;

Both queues are the immediate representation of the objects in which they are declared, but in

s1 the elements are owned by the current representation context while in s2 the elements can be

aliased anywhere.

Ownership parameterisation works very well for classes with an intrinsic view like Queue but not

so well for classes created using SOP from a collection of overlapping domain views. Some objects

and their owners are relevant only to a subset of composed subjects. These different views of classes

translate to different ownership parameter lists. We present two examples of this problem.

First, consider Finance and HR (Human Resources) subjects in an office suite shown in Figure 5-

10. Both subjects manipulate Employee objects. In Finance, employee expenses are reimbursed by

sending ExpensesSheet objects to the FinanceDept. For this reason, during instantiation, Employee

objects are parameterised by the owner of FinanceDept, giving rise to ownership parameter fd. In

subject HR, the human resources department assigns line manangers to employees. In order for

an employee to reference the line manager, the Employee class has ownership parameter lm. The

program in Figure 5-10 uses Ownership Types annotations. Problems occur when one subject is

responsible for instantiating Employee. Suppose subject Finance does the instantiating. Although

both Finance.Employee and HR.Employee have ownership parameter lists of the same length, these

parameters represent different concepts that may well denote different owners.

The second program performs graphical transformations on Coordinate objects. It consists

of two subjects, shown in Figure 5-11, and uses AliasJava annotations. In the subject AlgIn2D,

manipulations of coordinates are done in two dimensions, using only x and y values. In subject

AlgIn3D, the algorithms apply to three dimensions, incorporating the z axis. Problems occur when

a Coordinate instantiated in one subject is passed to another subject. For instance, both subjects

declare class X with corresponding fields someC. Any object assigned to someC in one subject auto-

matically becomes visible in another subject. When AlgIn2D creates a coordinate, it binds only the

n and m parameters, and parameter p is unbound. It is not clear how the unbound parameter should

be treated. When AlgIn3D creates a coordinate, it binds parameters n, m and p. If that coordinate

is passed to AlgIn2D, the value bound to p will be lost. In order to restore the binding to p we must

track its value while the object is aliased within AlgIn2D.

Naively, one may require that corresponding classes have ownership parameter lists that map

one-to-one. Different names for corresponding ownership parameters should not pose a problem

because the renaming facilities of SOP can be easily extended to include ownership parameters. In

the first example, this entails introducing concepts from the Finance concern into the HR concern

and vice versa. In the second example, this means introducing the z axis into all classes which refer

to Coordinate objects in AlgIn2D. However, any such action violates a fundamental principle of

Subject-Oriented Programming concerning clean separation of concerns. It would be inappropriate

to have to include additional ownership parameters in order to satisfy some other concern.
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subject Finance {

class FinanceDept<owner> {

void acceptExpenses(ExpensesSheet<owner> es) { ... }

}

class Employee<owner, fd> {

FinanceDept<fd> finDept;

Employee(FinanceDept<fd> finDept) { this.finDept = finDept; }

void sendExpenses() {

ExpensesSheet<fd> es = new ExpensesSheet<fd>(...);

fd.acceptExpenses(es);

}

}

class ExpensesSheet<owner> { ... }

// example code using these definitions

FinanceDept<q> finDept;

Employee<p, q> emp = new Employee<p, q>(finDept);

emp.sendExpenses();

}

subject HR {

class HRDept<owner, lm> {

Vector<this, lm> lineManagers;

void addLineManager(LineManager<lm> lineMan) {

lineManagers.add(lineMan);

}

void assignLineManager(Employee<owner> e) {

e.setLineManager((LineManager<lm>)lineManagers.firstElement());

}

}

class Employee<owner, lm> {

LineManager<lm> lineMan;

void setLineManager(LineManager<lm> lineMan) {

this.lineMan = lineMan;

}

}

class LineManager<owner> { ... }

// example code using these definitions

LineManager<g> lm;

HRDept<f, g> hr;

Employee<f, g> emp;

hr.addLineManager(lm);

hr.assignLineManager(emp);

}

Figure 5-10: Composition of subjects with incompatible ownership parameter lists
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subject AlgIn2D {

class Coordinate<n, m> {

n int x;

m int y;

}

class X<a, b> {

owned Coordinate<a, b> someC;

}

}

subject AlgIn3D {

class Coordinate<n, m, p> {

n int x;

m int y;

p int z;

}

class X<a, b> {

owned Coordinate<a, b, a> someC;

}

}

Figure 5-11: Composition of subjects with partially overlapping ownership parameter lists

Moreover, there is another way in which ownership parameters and SOP interfere. In SOP,

corresponding classes can have different and non-corresponding superclasses. Each class has an

ownership parameter list which the subclasses inherit. Therefore, the problem can occur also when

classes with non-corresponding superclasses are composed.

As a reprieve, there is always at least some overlap in the ownership parameter lists. In AliasJava

and Ownership Types, each object has an owner that is set at instantiation and does not change

until the object is destroyed. In SOP programs, the owner is guaranteed to be bound for all objects

in all subjects. Classes which have a single ownership parameter denoting the object owner can be

composed without these problems.

In the following Subsections we look in greater detail at the problem of ownership parameters

in SOP, starting from the development of abstract data types and moving on to the way ownership

parameters contribute to creation of larger programs with SOP.

5.3.1 Ownership Parameters and ADTs

Common abstract data types like stacks, queues and hashtables are not candidates for decomposition

along purely functional lines. These classes have clear intrinsic properties and we cannot improve

their design by fragmenting further. ADTs can be associated with aspectual concerns such as

synchronisation and persistence. SOP bracket relationship and other aspect-oriented technology

can modularise these aspects. Aspectual concerns like synchronisation and persistence apply on a

per instance basis; it should be possible to have two instances of the same basic ADT with different

combinations of properties.

Most aspects affect behaviour but in a way that is transparent to the existing clients. So long

as aspects do not introduce data which require parametric specification of ownership, all subjects

have the same view of an ADT and all ownership parameters are bound no matter which subject
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instantiates such a class. In conclusion, ownership parameters do not pose a problem if all subjects

that use parameterised components have the same view of their parametric properties. This is a

good result for ADT reuse; ownership parameters support reusability by letting the client specify

the aliasing properties of each instance.

But ADT reuse does not end with common components like stacks and hashtables. Programmers

create arbitrarily complex components which use common ADTs in their implementation. For

example, consider a Spreadsheet component. A client may want to create multiple spreadsheets

with different ownership properties. But a Spreadsheet is a large and complex application supporting

many features. SOP can simplify Spreadsheet development by enabling modular development of its

features. By mixing and matching, the composer can tailor a Spreadsheet to the client by providing

the required features. The Spreadsheet example would benefit from the modularisation potential of

SOP and the customisation afforded by ownership parameters.

5.3.2 A Layered Architecture

Parnas [97] was among the first to suggest that modules should be arranged into a hierarchy, with

modules higher up using modules lower down but not vice versa. An architecture that describes

this layering is called a layered architecture. SOP enhances programs built of layers by supporting

additional dimensions of decomposition. SOP can be used at each layer to separate concerns in the

development of large components such as the Spreadsheet discussed above. Still larger applications

built using SOP technology may use Spreadsheet objects in their implementation. And so on

towards even larger components.

In order to achieve separation of concerns between layers, at each layer the component used in

the implementation of a subject has to be a black-box. For example, Spreadsheet may support a

degree of adaptation based on particular reusability requirements. The adaptations can be performed

without looking inside the black-box. Functional changes which cannot be affected with parameters

or other interface-level adaptations require the black-box to be opened up. The changes consist of

one or more subjects and are applied using SOP composition rules.

In order to scale, an APS should help SOP to build large components by subject composition.

At each layer:

• Aliasing modes should help composers avoid interaction problems by improving the under-

standability of interaction.

• Aliasing modes should protect the representation of the output component from access by

external clients.

• Ownership parameters should facilitate client-end customisation of containers used in subject

design.

5.3.3 The Two Roles of Ownership Parameters

A further problem with ownership parameters concerns the way they are used in design. Refer back

to the Queue example annotated with Ownership Types in Figure 5-2 page 75. Suppose two subjects

both define a Link class. Another way of defining this class is:

class Link<owner, l, d> {

Object<d> o;
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Link<l, l, d> next;

Link(Object<d> o) { this.o = o; }

}

In Figure 5-2, both the Link owner and the next link have ownership context owner. Above, the

Link owner can be set separately from the owner of the next link.

Suppose two subjects both define the Link class but in different ways as shown here. These

classes are conceptually composable but require significant modifications to subjects or extensive

glue code. The problem is that in Figure 5-2, the owner parameter is reused when defining the

owner of the next Link. This solution suffices for the implementation of the Queue class but makes

the Link class less reusable than it can be. In a reuse setting, a client may require two links with

different ownership types, e.g.:

Link<this, owner, world> link1;

Link<this, this, world> link2;

This example shows that while constructing class Queue for reuse, Link is treated as an imple-

mentation abstraction whose reusability does not concern the designer. Refer back to the criteria for

mode selection in Section 5.2.4 on page 87. The original design of Link in Figure 5-2 used ownership

parameters to describe the conceptual relationship between classes Queue and Link. In the context of

Queue, this link and the next link have the same owner. The decision to use an additional ownership

parameter is characteristic of an intention to achieve the best separation of concerns by conforming

with the APS. The conceptual selection of modes was better at annotating existing usage but made

Link less reusable.

This example shows also that ownership parameters play two roles in APSs:

• As the means of customising the ownership properties of ADTs, and

• As an implementation mechanism for passing access permissions.

The former is required because we want to reuse ADTs with different ownership properties. The

latter is problematic within SOP because within each subject, classes define only those ownership

parameters that are needed to realise the current concern. Defining additional parameters to satisfy

other concerns is contrary to the spirit of SOP. Consequently, we believe that in subject-oriented

programs, for class definitions that are distributed across subjects, ownership parameters are not

the best way to pass access permissions. Some other system is required.

Finally, we also observe that ownership parameters pass access permissions but have little value

as an annotational aid. An ownership parameter denotes that ‘some other object owns this object’

without making it clear which object it is. A concrete mode that pinpoints the actual owner or

describes an aliasing policy is better for understanding subject composition because it conveys at a

glance the extent of aliasing.

Client side customisation of ownership properties is necessary not only for ADTs but also for

concerns implemented by subjects. This is the topic of the following Section.

5.4 Dealing with Incomplete Specifications

When decomposing a program into subjects, more often than not there are subconcerns which are

common to more than one subject. In order not to duplicate code, a set of subjects delegate the
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subject Composite {

abstract class Component {

abstract Object doAction();

}

abstract class Composite extends Component {

Vector children;

Object doAction() {

Iterator it = children.iterator();

while(it.hasNext()) {

Component c = (Component)it.next();

perChild(c);

}

return null;

}

abstract void perChild(Component c);

}

}

Figure 5-12: Composite design pattern as a subject

implementation of the subconcern to just one subject. For instance, consider a banking application

in which subjects implement the OpenAccount and BalanceTransfer concerns. Both subjects make

use of operation Account.deposit(..). In OpenAccount, it is called to set the initial balance

when a new account is opened. In BalanceTransfer, it is called after the donor account has been

withdrawn. Only one subject need implement deposit(..).

In AliasJava and Ownership Types, ownership parameters make container classes more reusable

by allowing clients to specify the ownership properties. In SOP, subjects are elements of reusable

software that can implement patterns in a generic way. The subject designer may want the composer

to specify the precise aliasing properties of a subject. Some subjects are made more reusable if their

aliasing properties are not set in stone but allowed to vary based on the other subjects with which

the reused subject is composed.

Reusability requirements and delegation are two reasons why an APS should have a way of

specifying modes in some general way. Let us consider an example. A computer aided design (CAD)

application creates pictures from primitive objects such as rectangles, lines and other pictures. The

components making up a picture can be aliased by any other component. When a client needs to

redraw the picture, draw() is called on all primitive elements and, recursively, on all pictures within.

In an unrelated program, consider a file system consisting of files and directories. Directories contain

files and other directories. Files or whole directories can be moved from one place to another. When

a client calls the size() command on a file or a directory, the value associated with the size of the

file or directory is calculated from the constituent parts.

Drawing in the CAD application and calculation of file system size are feature concerns that

affect multiple classes in the base application. The behaviour associated with draw() and size()

can be extracted into separate subjects, but it is possible to go still further. The concern that ties

these subjects together is ‘object hierarchy traversal’. The Composite design pattern [43] describes

how to build object hierarchies consisting of primitive and composite objects. Primitive objects can

be composed into more complex objects, which in turn can be composed, and so on recursively.

Clients treat primitive and composite objects in the same way.
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aPicture
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Figure 5-13: Ownership structure examples for the Draw concern in a CAD application (left) and
for the Size concern in a File System application (right)

subject CADdraw {

abstract class Component<owner> {

abstract Object<world> draw();

}

class Picture<owner, topPic> extends Component<owner> {

Object<world> draw() { /* to be composed with doAction() */ }

void perChild(Component<topPic> c) {

c.draw();

}

}

class Line<owner> extends Component<owner> {

Object<world> draw() { .. }

}

class Rectangle<owner> extends Component<owner> {

Object<world> draw() { .. }

}

}

Figure 5-14: CADdraw subject annotated with Ownership Types

With SOP we can implement the Composite pattern in a non-application specific way, and extend

the generic pattern definition to create the subjects for doing draw() and size(). The Composite

subject without aliasing modes is given in Figure 5-12. However, problems occur when we try to give

an aliasing annotation or type to the objects referenced in the Composite pattern. The problem is

illustrated by the object graphs in Figure 5-13. The solid edges denote references and dashed edges

denote ownership relations. In the CAD application, all pictures, lines and rectangles are owned

by the root picture. This structure allows for lines, rectangles and pictures to be shared between

pictures at different levels. In the file system, the files and directories are owned by the directory

that references them. The movement of a file from one directory to another changes the file’s owner.

The different ownership structures required by these two problems translate into different aliasing

modes in the design of the Composite pattern. The CAD drawing subject (Figure 5-14) requires

the children of a composite object to be parameterised by the owner, which is the top-level picture.

Annotated with Ownership Types, the Composite subject acquires the following modes:

abstract class Composite<owner, topPic> extends Component<owner> {

Vector<this, topPic> children;

...

}
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subject FileSystemSize {

abstract class Component<owner> {

abstract int size();

}

class Directory<owner> extend Component<owner> {

int tempSize = 0;

int size() { return tempSize; }

void perChild(Component<this> c) {

tempSize += c.size();

}

}

class File<owner> extends Component<owner> {

int fileSize;

int size() { return fileSize; }

}

}

Figure 5-15: FileSystemSize subject annotated with Ownership Types

In the file system (Figure 5-15), the directories and files inside another directory are owned by

that directory, giving the following Ownership Type annotations:

abstract class Composite<owner> extends Component<owner> {

Vector<this, this> children;

...

}

The problem occurs whether we use Ownership Types or AliasJava. In fact, the problem is

more serious in AliasJava because the file system can employ the unique mode instead of ownership

parameterisation. However, suppose that we stay with non-unique ownership. It should then be

possible to design the Composite subject while allowing a degree of freedom when selecting the

owner of the components referenced by the composite.

In related work, Clarke and Walker [26] discuss composition patterns which separate the design of

cross-cutting requirements into reusable, extensible design models. Composition patterns are an ex-

tension to UML templates and composition semantics defining how both structural and behavioural

design elements may be merged. Composition patterns use template parameters as placeholders for

elements replaced by real elements in the composed design. The template parameters have con-

straints. For instance, when modularising a design pattern such as Observer [43] as a composition

pattern, operations that are specific to pattern instantiation are specified as composition pattern

parameters. The Observer pattern has already featured heavily in the examples of Chapter 3 on page

22. To recap, the Observer pattern describes a collaboration between a Publisher and a number of

Subscribers. Subscribers dynamically register and deregister an interest in Publishers, so that when

the Publisher’s state changes all its registered Subscribers are notified of the change. The template

parameters of this composition pattern are:

• The Publisher and Subscriber classes.

• The behaviour which constitutes a state change in the Publisher.

• The behaviour for performing updates in response to state change notifications.
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• The behaviours for initiating the registration and deregistration of Subscriber objects with

Publishers.

Each template parameter is typed as either a class or an operation, with operations having

certain parameters of their own, e.g. this is the case with registration and deregistration behaviours.

Clarke and Walker [27] have shown a mapping from composition patterns to Hyper/J and AspectJ.

Template parameters are the client-specific elements of subject designs.

We believe that the reusability of composition patterns will be improved by the introduction of

aliasing modes that are bound during composition. Aliasing modes should be in the list of template

parameters. To best support the creation of reusable subjects and to enable delegation during

design, it is necessary to specify the aspect of aliasing that should be parameterised, the constraints

on parameterisation and a representation for parameters and constraints.

5.5 Towards an APS for Understanding Subject Interaction

Over the previous Sections this Chapter has described the main properties of Alias Protection

Systems and the way the shift towards Subject-Oriented Programming affects those properties. The

current Section brings these threads together in order to evoke the desirable properties for a subject-

oriented APS. That is, to highlight those properties which best help subject composers to understand

subject interaction.

According to Aldrich et al [5], a way of evaluating an Alias Protection System is by showing

how annotations can help programmers answer questions that are difficult to answer in existing

programs. We discuss some questions that are hard to answer presently in SOP programs and for

each question describe:

1. The reason it is difficult to answer this question presently with SOP.

2. The APS properties that can help to answer the question.

• Which objects may modify this object’s state? For example, suppose there is an in-

teraction problem when a collection of subjects are composed. The problem is traced to an

unwanted state change in an object.

1. The cause of the state change is difficult to diagnose because almost any object in the

system is potentially a client of the object whose state changes.

2. Containment properties of Ownership Types are superior to the annotations of AliasJava

because Ownership Types do not allow objects outside the owner to change the object’s

state. In AliasJava, only the owner is invariant but ownership can be granted to any

object created subsequently. Ownership Types offers stronger representation containment

guarantees. The objects that can modify another object depend also on dynamic aliases

allowed by an APS.

• How does one subject affect the objects of another subject? Most complex behaviour

is specified inside of and occurs within a subject. It is natural to think of a subject in terms

of the object collaborations it implements. Objects passed as arguments to the collaboration

from the outside and those created within appear to be owned by the subject. Of course, there

is no actual subject ownership because subjects are merely packages.
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1. This question is difficult to answer at present with SOP because one is required to study

operation implementations to understand their effect on shared state.

2. A mode specified in the signature can help one understand the way a subject affects an

object that is also referenced by another subject. For example, if an operation in subject

S1 is merged with a read-only operation (with read-only transitive) from S2 then there

are no unwanted state changes to objects ‘owned’ by S1 in calls to the merged operation.

• What integration tests should be run on the output subjects created by this com-

position? Before a component created by subject composition can be released it must be

tested to check that it satisfies the requirements. Subjects interact when sharing control or

data, hence compositions which integrate classes but never their members require no integra-

tion testing. Subjects that share control but not data, e.g. the Tracing concern in Chapter 3

on page 22, cannot be analysed through APSs because they do not pass object references over

join points.

1. Where subjects pass object references over join points, the modes of the shared data

elements affect the range of tests required.

2. Subjects that use only the immutable interface of shared objects, e.g. mode arg in Flexible

Alias Protection, are not affected by state changes to those objects. When one subject

depends on the mutable state of objects in another subject but is read-only on the

objects it accesses, only the subject with read-only access needs to be tested for state

changes. This is similar to the Spectators and Assistants model [28] defined for AspectJ.

Aspects that only read but never modify objects at join points are spectators, the rest are

assistants. In AspectJ an aspect is a class but a subject is a family of classes. The notion

of spectator may be defined over the set of inter-subject join points by using aliasing

modes that denote read-only access.

For understanding subject interaction, we believe that the initial challenge lies in getting control

over object aliasing in a multi-subject environment in order that the first question above can be

answered. The effect of one subject on another can be better understood only when the extent of

aliasing is known.

5.6 Conclusion

This Chapter has reviewed Alias Protection Systems and discussed the challenges of developing

an APS for SOP. An APS annotates the objects which depend on or modify the state of other

objects. This property is useful to the subject composer because it can help to understand subject

interactions and thus prevent interaction problems.

The differences in approach to software development between SOP and OOP impact the selection

of aliasing modes. The main technical challenges are:

• Ownership parameters are problematic because each subject may need to reference objects

from partially overlapping sets of owners.

• Ownership parameters are still required for creating traditional container classes.
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• Certain subjects should be parameterisable by concrete aliasing modes of objects in other

subjects.

• Subject-oriented composition may be used to create new black-box components.

In the following Chapters we present the Subjective Alias Protection System. SAPS addresses

many of the above challenges: it is a fully fledged APS that also improves subject reusability.



Chapter 6

SAPS – Subject Design

The Subjective Alias Protection System is our proposal for improving reusability in a way that is

also useful to the original developer of software. SAPS is an Alias Protection System for subject

design and an annotation system for subject composition. The APS part of SAPS, also known as

Subjective Ownership Types (SOT), helps subject designers to create well structured subjects that

avoid problems which are known to result from bad uses of aliases. In this sense, SOT are of use

to the original developer of software. SAPS is SOT plus subject-oriented composition rules. SOT

annotate object aliasing at the points of subject interaction, helping the composer to understand the

effect of subject interaction on state. Through explicit alias management, SAPS helps the subject

integrator to prevent interaction problems.

The presentation of the SAPS is split over this and the following Chapter. The present Chapter

describes the Subjective Ownership Types used in subject design. Chapter 7 discusses the compo-

sition of subjects annotated with Subjective Ownership Types.

Like Ownership Types [23], SOT enforced deep ownership properties. However, the traits of

subject-orientation distinguish SOT from any object-oriented APS. For a number of reasons that will

be explained inside this Chapter, SOT makes it possible to define two kinds of classes: composable

classes and uncomposable classes. Subject definitions predominantly contain composable classes.

We say that a subject has an ownership structure which is a model of the subject’s ownership

relationships. In composable classes the ownership structure is formalised by a system of explicit

context naming. We will show that when separating concerns into subjects there are parts of the

ownership structure which a subject either does not know or should not need to know about. For this

purpose composable classes feature a new kind of context variable that has no equivalent in object-

oriented programming. These so-called unknown contexts make it possible to specify subjects in a

more reusable way than is possible with explicit contexts alone. Uncomposable classes are black-

box abstractions that retain ownership parameters as the means for formalising their ownership

structures.

This Chapter continues the presentation of our contribution to the thesis. Section 6.1 explains

the principles of SOT and links them to the observations made in the previous Chapter concerning

the differences in approaches to software construction between subject-oriented and object-oriented

programming. Section 6.2 explains the principles of explicit context naming used in composable

classes. Section 6.3 describes unknown contexts and their relationship to explicit contexts. Uncom-

posable classes and their relationship to composable classes are described in Section 6.4. Along the

99
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Figure 6-1: SAPS composition process

way we present the properties of correctness for Subjective Ownership Types. These include deep

ownership checks. Section 6.5 concludes this Chapter.

6.1 Subjective Ownership Types and SAPS

This Section describes the principles of Subjective Ownership Types. In order to put SOT into

context we will outline the SAPS process.

Subjective Ownership Types are part of a process that consists of two key stages. Figure 6-1

shows that subjects annotated with Subjective Ownership Types are individually compiled using

the SOT Compiler (also known as the Subject Compiler). The SOT Compiler type checks the

subject, generating Ownership Types Labels as one part of its output. For the second part, the SOT

compiler strips out the Subjective Ownership Types and uses a standard programming language

compiler to generate object code. The Ownership Types Label contains the stubs denoting the

subject’s composable elements, types and other attributes of constructs found in object code.

For the second stage, the Subject Composer takes as input object code, Ownership Types Labels

and a composition specification. Initially, the composition specification is applied to Ownership

Types Labels. The output label is generated if the Subjective Ownership Types found in the in-

put labels permit composition. Finally, object code for the output subject is linked based on the

composition specification and object code of the input subjects.

6.1.1 Deep Ownership

To create a useful Alias Protection System for Subject-Oriented Programming it is necessary to

find the right balance between an APS for subject design and an annotation system for subject

interaction. We believe that the right balance can be struck by devising a system that enforces

deep ownership both for a single subject and across a set of subjects linked by a composition

specification. That is, to extend SOP with additional types and composition rules for enforcing the

same containment properties as Ownership Types [22].

In deep ownership only the object’s owner and other trusted objects inside the owner can refer-

ence the object. This means that representation objects are totally hidden from external clients. In

the setting of one subject, representation containment properties of Ownership Types better sup-
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port modular reasoning at the object level than shallow ownership as used in AliasJava. AliasJava’s

constraints on owned objects do not prevent owned or representation objects from passing to ex-

ternal clients. The capability to reference objects owned by others can be passed using ownership

parameters to an object with any other owner. Consequently, the effect on state is not constrained

to the same degree as with deep ownership. The previous Chapter has argued that deep ownership

is better suited to answering interaction questions about the effect of interactions on the state of

objects. We anticipate that deep ownership will help to trace the source of an anomaly in many

cases.

Object-oriented programming and SOP are different ways of addressing design challenges. In

subject-oriented development, we have found the notation used by Ownership Types for communi-

cating the ownership constraints inadequate for enforcing deep ownership. Instead, we propose a

new system; one that is better suited to the SOP paradigm and its idioms. Before delving into the

details of Subjective Ownership Types we summarise the motivation for its constituents.

6.1.2 The Origin of the Notation

The Subjective Alias Protection System is simultaneously inspired by a number of observations

detailed in the previous Chapter. We review these in order to help explain the origin of our notation.

• Observation 1: The Suitability of the Deep Ownership Model.

As described above, we want SOT to enforce deep ownership. We feel that it represents an

agreeable compromise between a flexible alias protection model for subject design and an alias

annotation system for subject interaction.

• Observation 2: Customisation of Ownership Properties of ADTs.

APSs have been demonstrated in terms of ADTs such as one may find today in utility libraries.

SOP will not be used to extend the definitions of these classes as for the most part inheritance

and delegation are well suited to creating new types based on these abstractions. Common

ADTs and types derived from them by inheritance or delegation will be used in subject defi-

nitions. Ownership Types and AliasJava have employed ownership parameterisation to enable

clients to customise the aliasing properties of ADTs. The inherent flexibility of ownership

parameterisation also should prove useful for subject design.

• Observation 3: The Annotational Properties of Ownership Parameters.

SAPS is motivated by interaction problems. It should help programmers to steer clear of and

subsequently detect anomalies. Consequently, in order to help the composer to understand

the intra-subject relationships Subjective Ownership Types should annotate the ownership

structure of subjects. Ownership parameters convey little information about the ownership

structure; with the exception of the first parameter which denotes the object’s owner, ownership

parameters represent objects at possibly arbitrary points in the owner hierarchy. Parameteri-

sation is useful for customising the ownership properties of ADTs (see Observation 2, above)

but is less suited for annotating the ownership structure of subjects. The composer gains little

useful information about the role an object plays in collaborations implemented by the subject

when its owner is denoted parametrically.

• Observation 4: Parameterisation is Characteristic of an Objective Perspective.
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A subject defines only those abstractions and functions that contribute to addressing its con-

cern. The same principle should also extend to ownership concepts: a class in a subject

should only have to define those ownership concepts that pertain to implementing its concern.

We have shown in Section 5.3 on page 88 that subjectivity concepts interfere with ownership

parameterisation. When instantiating, a subject does not and should not have access to all

contexts which an object of that type may need to reference in all subjects. In many cases this

results in a subject being unable to bind all ownership parameters declared in all other sub-

jects. We believe that ownership parameterisation is characteristic of an objective perspective

of software development where the client always sees the whole interface. To handle subjective

perspectives, SAPS proposes an alternative to this permission passing mechanism.

• Observation 5: Construction of New Components.

Subject-Oriented Programming enables the decomposition of programs by feature. Decompo-

sition by feature applies not just to end-user programs but also to components built for reuse

in component frameworks. These components are intended to be reused as black-boxes but

may support certain anticipated extensions and adaptations. In order to extend the benefits of

SOP to the design of components for use with existing frameworks, the restrictions on aliasing

must be hidden within the output subject. If necessary, subjects may restrict each other but

any aliasing modes emergent in the output subject should be downwardly restrictive.

• Observation 6: Partially Specified Ownership Structures.

Subjects are often incomplete programs, delegating to other subjects certain implementation

details. At other times, subjects implement collaborations with certain reusability require-

ments. Both cases require some form of genericity. With respect to ownership, Section 5.4 on

page 92 identified an example where the ownership structure of one subject may be parame-

terised by other subjects.

The present Chapter is dedicated to explaining how the above observations have influenced

Subjective Ownership Types. A combination of observations 2, 3, 4 and 5 have inspired us to

formalise the separation of ADT utility library classes from those classes created as part of the

subject definition. ADTs from utility libraries and other classes requiring customisation of aliasing

properties are in the set of uncomposable classes. The vast majority of classes created as part of

subject design are part of the set that we call composable classes. Interaction between objects of

composable and uncomposable classes is possible in most cases.

Uncomposable classes do not participate in compositions; however, their instances can. ADTs are

cohesive black boxes; we believe that for common ADTs, SOP cannot simplify their implementation.

Based on observation 2, in order for clients to be able to customise the aliasing properties of ADTs,

ownership parameterisation is used with these classes. Composable classes are defined using an

alternative type system that does away with ownership parameters.

Observations 3 and 4 have inspired a new notation of explicit context identifiers for describing

externally owned objects in composable classes. This notation replaces ownership parameterisation

to enforce deep ownership. Based on observation 6, we introduce unknown context identifiers. These

are used in composable classes for referring to objects whose ownership contexts are not known in

the current subject. An unknown context identifier is part of another subject’s design decision.

They are bound when subjects are composed to form complete programs.
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Observation 5 is concerned with our rules for subject composition. SAPS helps to hide the objects

used in the implementation of components from the framework clients of the component. Subjects

agree on the representation objects and each subject specifies representation objects using Subjective

Ownership Types. In conjunction with subject composition rules that preserve types, the output

subject continues to hide the common representation. SOT create no restrictions on the use of the

output subject within a component framework. Observation 5 also concerns subject-oriented design

in the large, i.e. the co-design of multiple subjects together. This aspect of Subjective Ownership

Types is discussed in the following Chapters.

In this Chapter, we will present 12 properties that are required to ensure SOT correctness. The

properties will be presented gradually and brought together at the end in order to describe checks

for type correctness.

6.2 Explicit Context Identifiers

Explicit context identifiers are at the core of SOT and the design of composable classes. To make

further discussion of explicit context identifiers more manageable, they will be referred to as exps

(singular: exp). exps replace ownership parameters in composable classes. The exp annotations are

used by the subject compiler to check that the subject satisfies the contraints of deep ownership.

The term explicit has been adopted because the ordering of contexts is explicit in the exp no-

tation. To help explain the ordering of contexts and the origin of the notation we present object

graphs more formally than they were described in the previous Chapter. A snapshot of an executing

subject-oriented program can be represented as an object graph:

Definition: (Object Graph) An object graph is a finite directed graph whose ωi vertices repre-

sent objects. References are denoted ω1 → ω2. The root object ρ is a distinguished vertex with all

objects reachable from root either directly or along a path formed by edges.

In order to support deep ownership all references to the object must come either from the ob-

ject’s owner or from other objects which are inside that owner. Graphically, this property can be

understood in terms of paths between ρ and the object of interest. All paths from the root to the

object must pass through the vertex representing the object’s owner. In graph theory, the owner is

the immediate dominator for the objects it owns. The immediate dominator comes from a set of

dominators of an object:

Definition: (Dominator) For a given object graph, vertex ω1 is a dominator for ω2 if and only if

every path from ρ to ω2 includes ω1. dominator (ω2) is the set denoting all such dominators including

ω1.

A useful way of representing dominator information is in a tree, which in our case is called the

ownership tree. The root vertex is ρ and each vertex dominates only its descendants in the tree [2].

Such a tree is induced by dominator (ω2) ⊇ dominator (ω1):

Definition: (Ownership Tree) The ownership tree of an object graph is given by the partial
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Figure 6-2: An Ownership Tree

order ≤ on objects:

ω2 ≤ ω1 iff dominator (ω2) ⊇ dominator (ω1)

ρ as the biggest element. Vertex ω2 is the immediate dominator of ω1 if and only if ω2 is the least

element of dominator (ω1) not including ω1. We write ω1 < ω2 when ω2 is the immediate dominator

of ω1.

The owner of ωi is defined as the immediate dominator of ωi. As the program executes the object

graph evolves. New objects and references are added, other objects and references are removed. The

ownership tree co-evolves with changes to the object graph. Potter et al [102] observed that object

graphs have an implicit domination structure. Although changes to the domination structure are

inevitable, in well structured programs changes are limited. The purpose of an ownership type

system is to formalise the domination structure in order to constrain the evolution of the object

graphs, such that new references can be added only in a structured way.

Subjective Ownership Types formalise the ownership structure by numbering the dominators.

The dominator set of ωi forms a sequence with ωi as the first, ωj with ωi < ωj as the second,

until ρ as the last element. The elements of the sequence can be identified with their position in

the sequence. Let 7→ denote the relationship between a sequence position index and the sequence

element denoted by the index. Also let σ be a set of such tuples. The element identified by index

i is denoted σ(i) with σ(1) = ωi as the first element. For example, consider the ownership tree in

Figure 6-2. In the Figure, world owns objects o1 and o7; o1 owns o2, o3 and o4; o4 owns o5 and o6;

object o7 owns o8. Object o4 is associated with sequence 〈o4, o1, world〉 of dominators. Then for o4,

σ is defined as:

σ = {1 7→ o4, 2 7→ o1, 3 7→ world}

Object o7 is associated with sequence 〈o7, world〉 of dominators. Its σ is defined as:

σ = {1 7→ o7, 2 7→ world}

Now, suppose that Figure 6-2 is the intended ownership structure that we wish to formalise

using types. We use the dominator indices dom(σ) ∪ {0} (the domain of σ including zero) to define
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Figure 6-3: Ownership structure for subject FloorPressButton

explicit context identifiers for each object. With respect to o4, explicit context identifier 0 is shared

by all objects that have o4 as owner, i.e. objects o5 and o6 in the representation context of o4.

Explicit context identifier 1 refers to o4, the current context of interest. The owner of o4 is o1 – the

immediate dominator of o4. We use explicit context identifier 2 to refer to the object that owns the

current instance. Finally, explicit context identifier 3 refers to world, the ownership context of o1.

From now on, we shall adopt notation expn to refer to explicit context identifier n. For example, for

explicit context identifier 0 we will write exp0, for explicit context identifier 1 we will write exp1.

No two objects can have the same σ because exp1 always refers to a different this. σ is based on

perspective and an object can be referred to by two different exps. For example, world is referred to

as exp4 from o5 and exp2 from o7.

Explicit context identifiers denote object owners in program texts. In the body of a composable

class, a type is formed by extending the name of a composable class with an angle bracketed exp,

world or an unknown context identifier. Like this in Ownership Types, exp0 denotes objects in

the current representation context. The owner context is always labelled using exp1. The other

explicit context identifiers refer to greater dominators in the ownership tree. We retain context

identifier world for referring to global objects which can be aliased anywhere. Objects of value types

have world as owner implicitly and do not require additional annotations. This scheme allows new

objects and references to existing objects to be created in the current representation context, in

the representation context of this object’s owner, in the global context or in any other context that

dominates this object.

6.2.1 exps in Action

To show the exp notation in action we use an example from a lift operation system. Suppose that

one use case in the specification of a lift operation system describes the action of pressing a button

at some floor. The floor on which the button is pressed should be added to the lift’s list of floors to

visit. One subject can modularise the implementation of this use case.

To understand the ownership structure of a subject, the subject designer can draw the intended

ownership tree. Figure 6-3 shows that the lift and the floors within it are owned by the building.

The buttons are owned by their respective floors.

Figure 6-4 shows that this structure can be formalised in subject code using exps. From line

2 we observe that in class Building the lift is owned by the Building. In line 3, the floors
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1 class Building {

2 Lift<0> lift;

3 Floor<0,0>[] floors = new Floor<0,0>[10];

4 void main() {

5 for(int i = 0; i < 10; i++) floors[i].setLift(lift);

6 }

7 }

8
9 class Lift {

10 Floor<0,1>[] floorToVisit;

11 int index = 0;

12 void addFloorToVisit(Floor<1> f) {

13 if(index < 10) floorToVisit[index++] = f;

14 }

15 }

16
17 class Floor {

18 Lift<1> lift;

19 Button<0> button;

20 void setLift(Lift<1> lift) {

21 this.lift = lift;

22 button.lift = lift;

23 button.thisFloor = this;

24 }

25 }

26
27 class Button {

28 Floor<2> thisFloor;

29 Lift<2> lift;

30 void press() {

31 lift.addFloorToVisit(thisFloor);

32 }

33 }

Figure 6-4: Code for subject FloorPressButton
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array and the elements within it are owned by this Building instance. In class Lift, floorToVisit

array (line 10) is owned by this Lift instance but the Floor objects, passed as arguments in calls

to addFloorToVisit(..) (lines 12–14) and stored in the vector, are owned by this Lift’s owner.

When method Button.press() is called (lines 30–32), the floor on which the button is pressed is

added to the lift’s list of floors to visit. As seen in Figure 6-3, from the perspective of a button,

thisFloor (line 28) and lift (line 29) both have owners given by exp2.

6.2.2 Context Identifier Arithmetic

The numeric notation that we have adopted for exps is used both by programmers and the Subject

Compiler to type check programs. SAPS programmers use data flow between objects to mentally

check the validity of explicit context identifiers, i.e. to check that two references in different classes

are mutually consistent if objects of those classes can ever reference the same object. References are

generally passed between objects as arguments or return values in method calls, during field variable

update and access. When references are passed as method parameters or in a field update, data

flows out from source to target. For method call return values and field variable access, data flows

the other way. To help programmers do the mental calculations we introduce functions ∆1 and ∆2

for outward and inward data flow respectively. The Subject Compiler relies on ∆2 to type check

expressions.

In the outward direction, two factors contribute to calculating the context identifier at the target:

• The exp representing the ownership context of the object to which the reference is passed, k.

• The exp or exps of the object whose reference is being passed, m.

The calculation of the context identifier at target is arithmetically simple, though it takes a

knack to grasp the concept. To explain the calculation, first one must remember that exps number

the dominators of this object. In order to prevent representation exposure, only the owner object

m and other objects inside m are allowed to access the representation of m. The receiver context k

must be inside the context of the argument object m, i.e. k ≤ m. Conversely there is representation

exposure: by definition of dominators, if an object with owner k also references an object with owner

m then m is not a dominator for that object.

Whatever the value of k is at source, in the target the ownership context of the self reference is

given by exp1. There exists a difference of m − k contexts between the argument and the receiver.

Putting the difference in relation to the ownership context of the self reference in the target, the

passed reference has context identifier m − k + 1 in the target object. This calculation is captured

by ∆1:

∆1(k, m)
def
= m − k + 1

Let us demonstrate ∆1 in action using the code in Figure 6-4 on page 106. Consider the loop

shown in line 5 which passes a Lift reference to each of the floors. In the body of the loop each

floor object has type Floor<0>; thus k = 0. In class Building, the lift object whose reference is

being passed has type Lift<0>; thus m = 0. By ∆1 in class Floor the type of this lift object must

be Lift<1>. As seen at line 20, this is indeed the case.

In the return direction, the exp value of the reference in the current context is obtained from

field variable accesses or from the return value of method calls. Two factors contribute to calculate

the context identifier at the destination:
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• The exp representing the ownership context of the object from which the reference is ob-

tained, k.

• The exp or exps in the source of the object whose reference is being obtained, n.

The ownership context of the self reference in the source object is given by exp1. In order to

prevent representation exposure, n must be greater than zero. Conversely, the object with owner

n is the representation of n, and it may not be accessed by any object other than the one bound

to this. There exists a difference of n − 1 contexts between the owner of the object and the self

reference. Putting the difference in relation to the the receiver’s context k, the obtained reference

has context identifier n − 1 + k. This calculation is captured by ∆2:

∆2(k, m)
def
= k + n − 1

To demonstrate ∆2 turn once more to the code in Figure 6-4 on page 106. The field update

expression at line 22 sets the Button.lift field. During type checking, the types of expressions on

both sides of assigment must be equal. On the left hand side, the type of button.lift is determined

by obtaining k and n. The type of button in the class of the expression is Button<0>; thus k = 0.

The type of the field in source class is Lift<2> as shown at line 29; thus n = 2. By ∆2, the type of

expression button.lift at target is Lift<1> as expected.

6.2.3 Type Checking and Representation Containment

An important purpose of exps is to prevent representation exposure by enforcing deep ownership

constraints at compile time. In deep ownership, in order for object x to reference y, x must be inside

the set of valid owners of y [22]:

x → y ⇒ x ≤ owner(y)

So far we have presented only exps. So the only valid types we can form at this time are

those derived by substituting an exp for the owner context. To prevent representation exposure,

substitution must satisfy two properties:

• Property 1. If exp0 is in the type of a parameter, return value or field variable then this is

the only valid receiver expression.

• Property 2. The context in the actual parameter must be as given by ∆2.

In a static check, only this is guaranteed to be the owner of the representation. Any other

expression may denote other objects whose representation context is different to this. Consequently,

this is the only valid receiver when the type of a method parameter, a method return value or a

field variable contains exp0. Figure 6-5 shows examples of valid and invalid accesses. In line 5, field

variable e has exp0 in its type. However, it can be updated because this is the implicit receiver

expression. The same is not true of line 6 because d may contain a reference to any D object (not

just this. Lines 7 to 10 show valid and invalid expressions involving method calls.

For well-typed exressions the explicit context identifiers must be mutually consistent. The Sub-

ject Compiler uses ∆2 to check types for mutual correctness. Figure 6-6 shows ∆2 being applied

to field access, field update and method call expressions. In line 6, a newly declared variable e0 is

initialised with an object returned by a field access. By ∆2 the type of the field access expression is
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1 class D {

2 D<0> d;

3 E<0> e;

4 void foo() {

5 e = new E<0>(); // Valid. Equivalent to ’this.e = new E<0>();’

6 d.e = ... // Invalid. e is in the representation of d

7 e = getSomeE(); // Valid. Implicit receiver ’this’ in rhs expression

8 .. = d.getSomeE(); // Invalid. getSomeE returns a representation object

9 setSomeE(e); // Valid. The expected and actual parameter type is E<0>

10 d.setSomeE(e); // Invalid. Only ’this’ can access this method

11
12 }

13 E<0> getSomeE() { .. }

14 void setSomeE(E<0> someE) { .. }

15 }

16
17 class E { }

Figure 6-5: Static visibility check exemplified.

1 class C {

2 D<0> d0;

3 D<1> d1;

4 D<2> d2;

5 main() {

6 E<0> e0 = d0.e1;

7 d1.e1 = new E<1>();

8 E<2> e2 = d2.getE1();

9 d1.setE1(new E<1>());

10 }

11 }

12
13 class D {

14 E<1> e1;

15 E<1> getE1() { return e1; }

16 void setE1(E<1> e1) { this.e1 = e1; }

17 }

18
19 class E { }

Figure 6-6: ∆2 applied to different kinds of expression.
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1 class LibraryClass {

2 T libfun(V v) { .. }

3 void register(Object c) { /* e.g. for async notification */ }

4 }

5
6 subject S {

7 class C {

8 D<0> d;

9 void foo() {

10 LibraryClass<world> lc;

11 V<world> v;

12 T<world> t = lc.libfun(v);

13 d.v = v; <- ok to pass world owned objects

14 // lc.register(this); <- representation exposure!

15 }

16 }

17 class D {

18 V<world> v;

19 }

20 }

Figure 6-7: Using world owned objects.

E<0>. Line 7 contains a field update expression. By ∆2 the type of the expression on the left hand

side of assignment is E<1>. In line 8, a newly declared variable e2 is initialised with object returned

by a method call. The exp in the return type is given by ∆2(2, 1) = 2. Finally, line 9 shows a method

call that passes a reference into d1. Here ∆2 is used to check the type of the actual parameter. exp1

is the context identifier of the owner in the receiver expression. exp1 is also the declared context

identifier in class D. Thus, ∆2(1, 1) = 1 is the expected context identifier in the type of the actual

parameter.

Function ∆2 is used also when this is the receiver expression. For some class D, this has type

D<1> and ∆2 is applied conventionally to expressions involving this (whether used implicitly or

explicitly) to determine the expected context identifier in the type of the expression.

world versus exps

world denotes the global context but by definition of exps there is always one exp that denotes the

global context also. The decision to keep world for objects of non-value types is a pragmatic one.

It enables SAPS programs to interact with existing libraries by treating as world-owned all objects

created from library classes or obtained from the interfaces of library objects. Implementations of

existing libraries are unaware of ownership concepts and deep ownership, so representation objects

passed to objects of library classes may be exposed.

Despite the overlap with exps, we class world as representing a context that is external to all

other contexts. This decision enables objects of library classes to be referenced and passed freely

within SAPS programs but also restricts world owned objects from referencing other objects whose

context is specified by an exp. The Subject Compiler must ensure that only world owned objects are

received from and passed to the interface of a world owned object. Assignment between exp owned

and world owned objects is not allowed. This leads to our third property for SOT correctness:

• Property 3. world is external to all contexts denoted by exps.
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1 subject S {

2 class A {

3 B<0> b;

4 C<1> c;

5 void foo() {

6 c = b.c;

7 }

8 }

9 class B {

10 C<2> c;

11 }

12 }

13
14 main() {

15 A<world> a;

16 B<world> b;

17 }

Figure 6-8: Example showing out of range exps

Figure 6-7 shows the use of a LibraryClass object within a subject. In line 10, lc is declared

with owner world. This enables objects to be obtained from and safely passed to the lc object

(line 12), but prevents us from being able to register self with the library (line 14).

Out of range exps

References whose types feature exp0 and exp1 are always well formed because they always represent

objects that are known to exist. However, it is possible to use the other exps to create references

to non-existent contexts, e.g. type T<999> can be created from class T. Such types are problematic

because they are meaningless, i.e. the exp in the type does not refer to a real dominator. exps must

prevent representation exposure but out of range exps do not cause representation exposure as they

always refer to objects outside the current representation context. Consequently, we do not check

for out of range exps.

Figure 6-8 shows an example of out of range exps. Lines 15 and 16 show two objects being

created in the global context. In this program all exps in class A refer to contexts that exist: exp0

is the representation context of main’s a; exp1 refers to the ownership context of main’s a, i.e. the

global context otherwise referred to by world. In class B, exp2 refers to the context that owns this B

instance. There are two possible bindings for exp2: through object a or through object b in main.

Through a, exp2 binds to the global context. However, through b exp2 denotes the owner of the

global context, i.e. the owner of context world. But world is the root of the ownership tree and has

no dominators. Hence, exp2 is an out of range context identifier.

Attempting to access an object with an out of range context is a conceptual error although not a

type error. In the example of Figure 6-8, most probably the designer of subject S intends for objects

of type B to be used as part of a collaboration with objects of type A and clients should not create

instances of B directly. Judicious use of visibility modifiers should help prevent unauthorised access.

By declaring class B private, it is possible to disallow the instantiation of B outside S.
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6.3 Unknown Context Identifiers

For many applications of subjects, exps make it possible to refer directly to all the contexts an

object needs to reference, e.g. Figure 6-3 on page 105. However, there exist concerns implemented

by subjects which need to refer to contexts which are not known in advance for one of two reasons:

• The context is external to the ownership structure of the subject, such as when a collabo-

ration implemented by the subject refers to data objects external to the set of collaboration

participants.

• The decision about the context should be delegated to another subject. Subjects implement

concerns that cross-cut the structure of other subjects. In order for a subject to adapt to the

ownership structure of another subject the ownership context has to be stated more generally

than is possible with exps.

Unknown context identifiers address both issues. In order to condense the presentation we shorten

‘unknown context identifer’ to unk (plural: unks). unks abstract explicit context identifiers in the

sense that each unk represents one exp per class. They are context variables with subject scope but

class level binding.

To motivate unks, consider the development of the SuperTax concern. A super tax is a flat levy

on taxable objects in a tax declaration. It is envisaged that this concern will apply to a number of tax

departments. During analysis the internal organisation of tax departments is translated to ownership

structures within the design. Some of the requirements and their ownership interpretations (in an

italicised font) are given below:

• The declaration artifact and the goods specified within belong to a tax declaration. TaxCalcu-

lation owns the declaration and the Goods objects.

• The tax declaration is part of an overall tax calculation for a trader. TaxCalculation owns

the declaration.

• The tax declaration is the responsibility of the tax assessor who works with all aspects

of trader’s tax liabilities. TaxAssessor owns TaxCalculation objects and the associated

declarations.

• The tax declaration belongs to the Customs and Excise office which employs the tax assessors.

CustomsAndExciseOffice owns the TaxAssessors.

• The goods listed in the tax declaration belong to the Customs and Excise office. CustomsAnd-

ExciseOffice owns the Goods objects in the declaration.

In realising the SuperTax concern we create the SuperTax subject. This subject classifies Goods

as either Taxable or NonTaxable, levying a flat duty of 200 on every Taxable object. When a

client calls calculateTax(..) with a declaration array as argument, the duty is calculated and

stored in the TaxCalculation’s amount field. Figure 6-9 shows the key parts of the implementation.

It adopts an ownership structure where the declaration and the Goods objects are owned by the

TaxCalculation. The same subject with an alternative ownership structure is shown in Figure 6-10.

Here the declaration is owned by the TaxAssessor object and the Goods objects are owned by the
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subject SuperTax {

class TaxAssessor {

TaxCalculation<0> tc;

}

class TaxCalculation {

int amount;

void calculateTax(Goods<0, 0>[] declaration) {

for(int i = 0; i < declaration.length; i++) {

amount += declaration[i].calculateSuperTax();

}

}

}

abstract class Goods {

int calculateSuperTax();

}

abstract class Taxable extends Goods {

int calculateSuperTax() { return 200; }

}

abstract class NonTaxable extends Goods {

int calculateSuperTax() { return 0; }

}

}

Figure 6-9: SuperTax subject with examplar ownership structure 1.

subject SuperTax {

class CustomsAndExciseOffice {

TaxAssessor<0> ta;

}

class TaxAssessor {

TaxCalculation<0> tc;

}

class TaxCalculation {

int amount;

void calculateTax(Goods<1, 2>[] declaration) {

for(int i = 0; i < declaration.length; i++) {

amount += declaration[i].calculateSuperTax();

}

}

}

...

}

Figure 6-10: SuperTax subject with examplar ownership structure 2.
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subject SuperTax {

unk k, m;

ucirc k <= m;

class TaxCalculation {

int amount;

void calculateTax(Goods<k, m>[] declaration) {

for(int i = 0; i < declaration.length; i++) {

amount += declaration[i].calculateSuperTax();

}

}

}

abstract class Goods {

int calculateSuperTax();

}

abstract class Taxable extends Goods {

int calculateSuperTax() { return 200; }

}

abstract class NonTaxable extends Goods {

int calculateSuperTax() { return 0; }

}

}

Figure 6-11: SuperTax subject implemented using unks

CustomsAndExciseOffice object. The two solutions differ only in terms of ownership structures as

expressed by the exps in the types.

unks enable the ownership structure to be stated more generally than is possible with exps. A

single program in Figure 6-11 can replace the two programs shown in Figures 6-9 and 6-10. In the

SuperTax subject unks facilitate two kinds of ownership variations: the owner of the declaration

array and the owner of the Goods referenced in the declaration. The variation is introduced

through unks k and m (referred to as unkk and unkm henceforth). unkk denotes the owner of the

declaration and unkm denotes the owner of the Goods. Figure 6-11 shows the SuperTax subject

with exps replaced by the new unks.

An unk is a context variable that binds to one exp per class. Figures 6-9 and 6-10 presented

two possible bindings for unkk and unkm. For Figure 6-9, in class TaxCalculation unkk binds to

exp0 and unkm binds to exp0. For Figure 6-10, in class TaxCalculation unkk binds to exp1 and

unkm binds to exp2. Now, thanks to unks, a single SuperTax subject can replace a family of subjects

that vary purely in terms of the ownership structure formalised by their explicit context identifiers.

Figure 6-11 also contains a ucirc declaration. This will be explained once we have described the

unk concept in greater detail.

6.3.1 Understanding unks

unks are characterised by the following list of properties:

• As seen in the SuperTax example, an unk generalises an explicit context identifier in a class. It

represents a choice of explicit context identifiers which enables a subject to adapt to a greater

number of ownership structures.

• An unk gets bound by composition. To avoid confusion, we use resolution to refer to ‘unk

binding by subject composition’, reserving binding for function and ownership parameters.
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subject S {

unk k;

class A {

B<0> b;

void passC(C<k> c) {

b.doStuffToC(c);

}

}

class B where 1 <= k {

void doStuffToC(C<k> c) { ... }

}

class C { }

}

Figure 6-12: An example involving an unknown context identifier.

• unks are scoped at subject level. Conceptually an unk represents a single unknown context,

that is, one object in the collaboration defined in the subject.

• unks resolve on a per class basis. Different resolutions in different classes are inevitable: two

objects at different ownership tree depths will use different exps to refer to a common object.

The global scope and class level resolution mean that an unk is a set of tuples of the form

〈ClassName, unk〉, where each tuple maps onto a set of exps. This is illustrated by the example in

Figure 6-12. A k-owned object c is passed to an A object which collaborates with a B object by

doing something with c.

unkk resolves to an exp in A, B but not C because C does not contain any expressions whose

type contains unkk. unkk can resolve to any exps in classes A and B so long as the resolutions are

mutually consistent such that the subject type checks successfully. Valid resolutions are shown in

the following table below. Any row represents a valid resolution. The ellipsis indicates that other

values matching this pattern are also acceptable.

A B

0 1

1 2

2 3

. . . . . .

By using ∆1 the reader can mentally check that any resolution for A will produce the correspond-

ing resolution for B. In this Chapter, the focus is on exp–unk interaction within subjects. Subject

composition and unk resolution are presented in the next Chapter.

6.3.2 unk Resolution Constraints

In a few cases an unk can resolve to any exp; however, mostly the set of values to which an unk

can resolve is constrained by other relationships. This introduces the notion of an unknown context

identifier resolution constraint, formalised in SAPS by ucirc1 declarations. A ucirc is a predicate

that expresses a constraint on unk resolution.

1pronounced “you-serk”
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subject S {

unk k;

unk m;

class A where 1 <= k, k <= 1 { ... }

class B where m <= 1, 1 <= k, 2 <= m { ... }

}

Figure 6-13: unks and resolution sets.

There are two kinds of ucirc appearing in code both of which have made an appearance in the

preceding examples:

• Subject level ucirc declarations express an inter unk constraint. These appear at subject level

because they express a context ordering that should hold for all classes in which the two unks

appear together. For example, ucirc k <= m expresses that the context denoted by unkk is

always inside the context denoted by unkm.

• Class level ucircs are specified in where clauses of classes [30]. They express a constraint on unk

resolution applicable to that class and classes derived from it. For example, class A where

k <= 2 expresses that in class A unkk may resolve to exp0, exp1 or exp2. Also, class B where

1 <= m, m <= 2 expresses that in class B unkm may resolve to exp1 or exp2.

The Subject Compiler performs checks against ucircs at both class and subject level. But before

the body of a class is checked, the ucircs themselves are checked for consistency.

ucirc Consistency Checking

A consistency check ensures that ucircs are well formed and offer meaningful constrains on unk

resolution. An unk implies a choice of exps and it is misleading to use an unk when ucircs imply one

or no exps. We use the term resolution set to refer to the set of exps to which an unk may resolve in

a class as determined by the ucircs. An empty resolution set indicates a type error. The unk should

be replaced by the exp when its resolution set is a singleton. In Figure 6-13, for class A, unkk should

be replaced by exp1. For class B, unkm has an empty resolution set but the resolution set for unkk

is valid.

The ucircs are checked per class, but first the class level ucircs are extended with those at subject

level. In order to be consistent the ucircs of each class should satisfy the following conditions:

• All unks appearing in ucircs are declared.

• There are no cycles in ucirc declarations.

• The combination of class and subject level ucircs produces valid resolution sets.

Looking at cycles, consider r = {(u ≤ v), (v ≤ w), (w ≤ u)}. This set has a cycle. Clearly,

u = v = w is the only resolution which satisfies all constraints. This set of contexts and the

associated constraints should be replaced by a single unk. We require cycles to be removed from

designs because they may cause confusion. That is, at a glance unks and ucircs lead the subject to

reuser to believe that there exists a choice contexts when there is no such choice.

When subtypes are introduced, the resolution constraints of the subtype must be valid sub-

constraints of the supertype. An unk in the subclass may never resolve to a value that is outside
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the resolution set specified in the superclass. The subclass may strengthen the ucircs defined in

the superclass but it may never weaken them. That is, the superclass constraints must imply the

constraints of the subclass. Consistency checking of ucircs is formalised by the following property:

• Property 4. The resolution sets of all unks must be well formed.

6.3.3 Checking Classes Against ucircs

ucircs can be understood as sanity conditions for unks. They have three responsibilities:

• To check that types are well formed.

• To communicate valid resolution sets.

• To type check expressions involving objects whose types contain unks.

The checking of types derived from uncomposable classes will be described later in this Chapter.

However, we are in a position to describe arrays.

Checking Arrays

In general, the contents of an array should be accessible everywhere the array is accessible. For one

dimensional arrays two context identifiers are required: the owner of the array must be inside the

owner of the elements of the array. In arrays of higher dimension, each earlier dimension must be

inside the later ones. The constraints on context identifier substitution for arrays introduces our

next property for SOT correctness:

• Property 5. The context substitutions for ownership parameters of arrays must allow access

to lower dimensions wherever higher dimensions are accessible.

Recall the SuperTax example of Figure 6-11 on page 114. The Goods objects in the declaration

should be accessible wherever the declaration object is accessible. From left to right, the two

context identifiers in the type of declaration denote the array and the elements. The ucirc relating

unkk and unkm guarantees that the declaration array will be accessible only where its elements

are accessible.

Communicating Valid Resolution Sets

Property 1 ensures that objects in the representation context cannot be accessed externally. There-

fore, if an unk-owned class member is accessed externally, then exp0 is not in the realisation set of

that unk. In order to communicate valid resolution sets to subject reusers, SOT requires ucircs for

all unk-owned class members with external clients. Declarative completeness of subjects makes it

possible to validate all members for external access.

Recall the example in Figure 6-12 on page 115. This example features a where clause on class B

that constrains the resolution set of unkk. This ucirc is required in order to prevent representation

exposure by expression b.doStuffToC(c) in the body of method A.passC(..). In order to prevent

representation exposure in the body of class A, class B requires a resolution constraint.

In order to understand the motivation for this constraint, consider the effect of unkk resolving to

exp0 in B. Then expression b.doStuffToC(c) would lead to representation exposure. Thus ucirc 1

<= k is a sanity check that constrains the resolution set of unkk in B order to prevent representation

exposure during composition.
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subject S {

unk k;

unk m, n;

ucirc m <= n;

class U where 2 <= k {

T<2> t;

V<k> v;

W<m> w;

X<n> x;

void foo() { t.bar(v); }

void fee() { w.x = x; }

}

class T where 1 <= k {

void bar(V<k> v) { ... }

}

class W where 1 <= n {

X<n> x;

}

class V { ... }

class X { ... }

}

Figure 6-14: Checking expressions involving unks.

Checking Expressions

ucircs are also used when checking field access, field update and method call expressions. Within a

subject, an object whose context is given by an unk must always be referred to using the same unk.

It is an error for an unk to bind to an exp (and vice versa) in a method call, field update, or any

other expression.

There are number of cases, we will go through each one in turn.

• First, in Figure 6-14, suppose that we are checking the expression in the body of method

U.foo(..). Consider the analogy with exps. Recall that exps number the dominators of

an object. Suppose U.v has type V<1>. By definition or exps, v is inside exp1. An exp2

owned object t cannot reference v; conversely, contrary to the definition of exps, exp1 does not

dominate v. In order for t to reference v, t must be inside v.

Now examine Figure 6-14. In the body of class U, in order for t to reference v, t must be inside

v. The resolution set of unkk may contain neither exp0 nor exp1. The resolution constraint in

the where clause of U formalises this constraint. Note this ucirc may be omitted when an unk’s

resolution set is unrestricted.

One special case concerns the treatment of the self reference this. The owner of this is always

given by exp1. Although it is technically valid to pass the self reference in relation to an unk

whose resolution set is {0, 1}, in the present work this can be passed only in relation to exp0

and exp1. This is a simplification that is intended to improve clarity with minimal impact on

subject reusability.

• Secondly, in Figure 6-14, suppose that we are checking the expression in the body of method

U.fee(..). By the same principle as in the previous case, in order for w to reference x, w must

be inside x. The owners of these objects are given by unks, so this constraint is expressed at

subject level by ucirc m <= n.
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subject S {

unk k;

class F {

H<k> h;

J<2> j;

void foo() { h.j = j; }

}

class H {

J<3-k> j; // o-o!

}

}

Figure 6-15: Further checking of expressions involving unks.

subject S {

unk k, m;

ucirc k <= m;

class F {

H<k> h;

J<m> j;

void foo() { h.j = j; }

}

}

class H where 1 <= m {

J<m> j; // that’s better!

}

Figure 6-16: Yet more checking of expressions involving unks.

• Thirdly, we disallow expressions which place an unk owned object as the receiver against types

containing exps in method parameters, return types, or field variables. The resulting type

contains context expressions which may be correct but difficult for the reader to comprehend.

Class H in Figure 6-15 shows the context expression produced by exp arithmetic. According

to ∆2 the type of F.j is correctly given as ∆2(k, 3 − k) = 2. To avoid context expressions

involving unks, the programmer should introduce unkm and rewrite the ucircs as shown in

Figure 6-16.

Type checking expressions whose types contain unks introduces two further correctness properties:

• Property 6. The ucircs must imply the inter-unk ordering required by the type or expression.

• Property 7. The ucircs must imply the resolution constraints required by the type or expres-

sion.

6.3.4 Per-Class Checks

unks are abstractions over exps and so inherit all the properties associated with exps. unks represent

a choice of exps. So a program that uses unks should have a choice of exps to use in the place of its

unks. An ownership structure that cannot be expressed using exps also cannot be expressed using

unks. For example, type checking fails in R.foo() in Figure 6-17 because one of the two field update

expressions is invalid. This program should also fail type checking when unks are used in the place of

exps. The unk checks we have described to now are insufficient. They check each semicolon delimited

expressions separately but this condition requires the recording of history. As shown in the following
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1 subject S {

2 class R {

3 T<0> t0;

4 T<1> t1;

5 V<2> v;

6 void foo() {

7 t0.v = v; <- valid

8 t1.v = v; <- invalid

9 }

10 }

11 class T {

12 V<3> v;

13 }

14 class V { ... }

15 }

Figure 6-17: Additional checks for unks. Case 1.

table, there are two problem cases. Columns Case 1 and Case 2 show the replacement types for

declarations in Figure 6-17.

Declaration Case 1 Case 2

t0 in line 3 T<0> T<a>

t1 in line 4 T<1> T<b>

v in lines 5 and 12 T<k> T<k>

In case 1, given expressions in lines 7 and 8 of Figure 6-17 and a valid resolution for unkk in R, unkk

will resolve to different exps in T. In case 2, if unka and unkb resolve to different exps in R then unkk

will resolve to different exps in T. Conceptually, two unks refer to two different contexts, so unka and

unkb should be replaced by a single unk.

To detect these cases the Subject Compiler uses an ExpressionRepository that records the

types of receiver objects of affected expressions. Entries have the following form:

〈k, C, v〉

where k is an unk whose usage is recorded. It appears in a field, return value or parameter type. C is

the class containing the expression. v is either an unk or exp denoting the last usage. Method calls,

field accesses and updates trigger a look-up and a possible update to the ExpressionRepository.

Errors are detected as follows:

• In case 1 at line 7, the ExpressionRepository object has no prior entry for 〈unkk, T〉, so tuple

〈unkk, T, exp0〉 is inserted. Upon checking code in line 8, we lookup 〈unkk, T〉 which returns

exp0. But, exp0 6= exp1, so line 8 fails type checking.

• In case 2 at line 7, the ExpressionRepository object has no prior entry for 〈unkk, T〉, so tuple

〈unkk, T, unka〉 is inserted. Upon checking code in line 8, we lookup 〈unkk, T〉 which returns

unka. But, unka 6= unkb, so line 8 fails type checking.

Our next correctness property states:

• Property 8. All type checking of expressions whose types contain unks uses the ExpressionRepository.
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class Queue<data> {

Link<0, data> head = null;

Link<0, data> tail = null;

void put(Object<data> o) {

Link<0, data> l = new Link<0, data>(o);

if(head == null) {

head = tail = l;

} else {

tail.next = l;

tail = l;

}

}

Object<data> get() {

if(head == null) return null;

Object<data> o = head.o;

if(head == tail) {

head = tail = null;

} else {

head = head.next;

}

return o;

}

}

class Link<d> {

Object<d> o;

Link<1, d> next;

Link(Object<d> o) { this.o = o; }

}

class QueueClient {

Queue<0, 1> q1;

Queue<0, 0> q2;

}

Figure 6-18: Queue class implemented using Subjective Ownership Types

6.4 Classes with Ownership Parameters

Abstract data types are implemented as classes with ownership parameters in SOT. These classes

are special because the owners of the data they reference should be specifiable independently from

the owner of the abstraction itself. Multiple instances of the same kind of abstraction, possibly with

different aliasing properties, may be required in the body of the same class. unks are insufficient

to specify this kind of diversity because unks are resolved per class while we require per object

variability.

Our solution is to adopt ownership parameters for additional contexts which should be specifiable

parametrically. Linked lists, queues and stacks have a single ownership parameter for their data.

Hashtables have two ownership parameters: one for the keys and the other for the values. Figure 6-

18 shows class Queue implemented using ownership parameters. Multiple instances of Queue with

different ownership properties can be created in class QueueClient. Contrast this design with the

one for Ownership Types shown in Figure 5-2 on page 75.
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The set of contexts that can be referenced in the implementation of Queue is {0, 1, data, world}.

exp0 and exp1 denote the representation context and the owner of the current instance. No other

exps are allowed. Observe that classes do not declare the owner parameter in the list of ownership

parameters.

6.4.1 Composable and Uncomposable Classes

Classes with ownership parameters are uncomposable in SAPS: subject-oriented composition rules

which describe join points inside these classes are disallowed, but delegation and inheritance can

still be used to extend uncomposable classes. Classes that use exps and unks in their definition are

composable. These can participate in inheritance, delegation and all subject-oriented composition

rules.

The inheritance hierarchies of composable and uncomposable classes are separate except for

the uncomposable default class Object found at the root of both composable and uncomposable

hierarchies. A class which does not declare a superclass implicitly extends Object. Uncomposable

classes are distinguished syntactically by having a (possibly empty) comma separated sequence of

ownership parameters following the class name as shown in Figure 6-18. Both kinds of classes share

the same name space and it is illegal to have an uncomposable and a composable class with the

same name in one subject.

As detailed at the beginning of this Chapter, the motivation for separation comes from a series of

observations detailed in Chapter 5. Common to these is the tug-of-war between wanting to cleanly

separate concerns while still providing encapsulation. In Section 2.3.3 on page 15 we compared black-

box and white-box reuse strategies. Programmers as experts of their trade often require access of

certain key aspects of implementation. We concluded that in order to be adaptable to unanticipated

changes a component needs to provide facilities for changing from the inside. But there is often a limit

to the details that will benefit the expert. Section 2.3.3 used the racing driver analogy to motivate

this model. In Section 3.1.3 on page 27 it was noted that the MDSOC model aims to improve

the modularity of scattered and tangled concerns but does not improve encapsulation. Subject-

Oriented Programming is a flexible model for separating and recomposing concerns. It provides

access to implementation that programmers require but it has no programmatic way of marking a

component as an implementation abstraction which should not be decomposed further. SOP lacks

the encapsulation mechanisms that stop the programmers being overwhelmed by implementation

details.

In SAPS, uncomposable classes are a way of marking a class as an implementation abstraction.

The most immediate example of an implementation abstaction is a class such as Queue shown above.

The vast majority of software developers will not want to know how Queue is implemented, they are

black-box users of Queue. Later on, the same will probably be true of subject-oriented programs

implemented using Queue objects. New components constructed by composing subjects will be used

as basic building blocks in larger systems. And so the cycle will continue.

The subject designer chooses whether to define a class as composable or uncomposable. Overall

we expect that developers will be defining composable classes. Uncomposable classes are used

mostly to define new kinds of container abstractions. Unlike abstractions of “real world” entities,

containers are characteristic of an objective perspective and have been the hallmark of object-

oriented programming. In general, the implementations of these abstractions cannot be improved

by subject-oriented decomposition.
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We anticipate that common ADTs will be reused from uncomposable class libraries. Definition

of new uncomposable classes should be relatively rare and limited to the following cases:

• To define new kinds of container abstractions.

• To define classes whose instances need to be reused in conjunction with different ownership

properties, and the system of exps cannot provide the required flexibility.

• To create abstractions that should be sealed, thereby artificially restricting the composition

interface of a subject.

Class Queue shown in Figure 6-18 exemplifies the first point. For the second point we propose

the following heuristic:

Create an uncomposable class when requiring an abstraction that may have many in-

stances, possibly in many subjects, each with different ownership properties. Create a

composable class otherwise.

In a later Subsection we will present the limitations of the exp notation compared to parameterisa-

tion. The evaluation Chapter 8 contains examples of uncomposable classes being used for interface

restriction and for sealing.

unks or Ownership Parameters?

unks are not the same as ownership parameters and they can never be confused for one another. unks

are used in composable classes and ownership parameters are used in uncomposable classes. They

are conceptually similar in the sense that both provide a way of parameterising programs, allowing

third parties to customise ownership structures. Beyond this, unks and ownership parameters work

very differently:

• The scope of an ownership parameter is a class and the classes derived from it. The scope of

an unk is a subject – a collection of heterogeneous classes.

• unks are resolved by subject composition and ownership parameters are bound during object

instantiation.

• An unk can bind an ownership parameter of an uncomposable class, but an ownership param-

eter is never resolved.

6.4.2 Interaction Between The Hierarchies

Interaction between hierarchies encompasses both inheritance and aggregation, the so-called is-a and

has-a hierarchies respectively. Apart from a common root, the two inheritance hierarchies cannot

be mixed. It is not possible to create an uncomposable class by inheriting from a composable class

or vice versa. Although there may be implementation related reasons for doing so, conceptually the

two hierarchies serve different purposes and so should not be mixed.

When defining a new composable class, instances of both composable and uncomposable classes

can be used in the implementation. The evaluation Chapter 8 relies extensively on the uncomposable

class Vector whose core interface (and that of the associated Iterator) is shown in Figure 6-19.
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class Vector<data> {

void add(Object<data> o);

Object<data> remove(Object<data> o);

Iterator<1, data> iterator(); // a version that respects deep ownership

}

class Iterator<data> {

bool hasNext();

Object<data> next();

}

Figure 6-19: Vector class core interface.

class Pair<m, n> {

X<m> fst;

Y<n> snd;

}

class PairQueue<p, q, r> {

// p binds owner of Pair, q binds Pair.m, r binds Pair.n

void put(Pair<p, q, r> obj) { ... }

...

}

Figure 6-20: Class PairQueue specialised to uncomposable classes.

When types are created exps and unks bind the ownership parameters of uncomposable classes but

the way ownership parameters are used in uncomposable class definitions is hidden from clients.

Uncomposable classes are defined using instances of both composable and uncomposable classes.

Queues and Vectors store instances of Object. Objects of any class can be stored because all

classes derive from Object. Specialised subclasses of Queue or Vector may be usable only with

uncomposable classes. For instance, in Figure 6-20 class PairQueue is usable only with objects of

uncomposable class Pair.

Composable class instances can be used in the definitions of uncomposable classes only when the

implementation is restricted to accessing members whose types feature contexts exp1 and world only.

exp0 is the representation context which cannot be accessed. unks and all other exps are undefined

in uncomposable classes. Thus, container classes which store references to objects of composable

classes but never access the interface can always be used with composable class instances. This

restriction introduces another property necessary for SOT correctness:

• Property 9. Expressions in uncomposable classes must be restricted to contexts {1, world} in

the members of composable classes.

Subclasses of uncomposable classes can declare additional ownership parameters to those which

are inherited. Uncomposable classes can be declared in subjects; however, it is best to declare them in

class libraries. The libraries can then be imported by all subjects which need to use these abstractions

in their implementations. Those which are declared in subjects are not modified by composition, but

depending on the composition rules either forwarded to the output subject unchanged or discarded.
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1 class E<p, q> where p <= q {

2 Queue<p, q> s; // requires p <= q

3 X<0, p> x;

4 Y<p> y;

5 void foo() {

6 x.y = y;

7 }

8 class X<p> {

9 Y<p> y;

10 }

11 class Y<> { }

12 }

Figure 6-21: Ownership parameter ordering.

6.4.3 Ownership Parameter Ordering

In uncomposable classes the owner parameter is implicitly inside other parameters. Therefore, any

substitution must satisfy the implicit constraint of uncomposable classes that requires the owner to

be inside all other contexts. This leads to our next property:

• Property 10. In a substitution for the parameters of an uncomposable class the context

binding owner must be inside other contexts.

Whereas for exps the ordering of contexts is explicit in the notation, the ordering of contexts

represented by ownership parameters may need to be made explicit. To help explain the issue,

consider the example in Figure 6-21. Line 2 requires p <= q because the Queue owner must be

inside the data referenced by the Queue. Line 6 requires 1 <= p because contexts that bind to

ownership parameters must be outside the context that binds exp1, i.e. the owner context. In order

to disambiguate the context ordering in view of such types and expressions, we again employ where

clauses. These clauses are required only where the context ordering needs disambiguating. So if no

type or expression in E depends on p <= q then the where clause is not required. Constraint 1 <=

p is implicit in SOT and does not require a where clause. The requirement for ordering of ownership

parameters introduces our next property for representation containment:

• Property 11. A substitution for the ownership parameters of an uncomposable class must

obey the context ordering in its where clause.

As in composable classes, cycles in the constraints specified in where clauses should be removed

because they misleadingly represent a choice of contexts. Subclasses of uncomposable classes may

define additional ownership parameters and constraints on ownership parameter substitution. To

ensure representation containment we require the final property:

• Property 12. The ownership parameter ordering of uncomposable classes must be well

formed.

The use of types derived from an uncomposable class Map in both composable and uncomposable

classes is shown in Figure 6-22. A map is an ADT that stores key, value pairs and supports operations

for addition and removal of pairs. This abstraction has a containment property which states that

values may be accessed only where the keys can be accessed, formalised in line 1 by a constraint

on ownership parameters of class Map. Map is defined as an uncomposable class; it is a traditional
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1 class Map<key, value> where key <= value {

2 void put(Object<key> k, Object<value> v) { ... }

3 Object<value> get(Object<key> k) { ... }

4 }

5
6 subject SafetyBoxFeature {

7 class SafetyBox<data> {

8 Map<0, 0, data> datamap;

9 Password<0> password;

10 Object<data> getItem(String pw) {

11 if(password.accepted(pw)) return datamap.get(password);

12 }

13 }

14 class Password {

15 bool accepted(String pw) { ... }

16 }

17 }

18
19 subject AddNewAccount {

20 unk k, m;

21 ucirc k <= m;

22 class AccountPortfolio {

23 Map<0, k, m> accounts;

24 addAccount(Account<k> acc, Integer<m> amount) {

25 accounts.put(acc, amount);

26 }

27 }

28 class Account {

29 String holder;

30 ...

31 }

32 }

Figure 6-22: Using types derived from uncomposable classes.
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object-oriented abstraction whose design cannot be improved by subject-oriented decomposition.

Ownership parameters enable multiple maps to be created, each with different ownership properties.

Figure 6-22 defines two clients of Map. The uncomposable class SafetyBox uses a map to hide

data. Data can be accessed by providing the right password. SafetyBox is an example of an

abstraction constructed from and built on top of an existing Map class. Its designer envisages that a

reuser will require multiple safety boxes to implement a security policy subject, each with a different

aliasing policy. In line 8, to create a type from Map the available contexts are substituted for the

ownership parameters of Map. The first identifier denotes the owner, the second and third bind key

and value respectively. Map requires that owner <= key <= value. The substitution satisfies this

condition.

Another client of Map exists in the AddNewAccount subject. This subject implements a feature

for adding a new account to a portfolio. Class AccountPortfolio is composable; this subject will

be composed with others to create a suite of financial tools. In order to maximise reusability the

subject defines unkk and unkm to denote the owners of the Account object and the amount it

contains. These will be resolved by other subject with which AddNewAccount will be composed.

A map is used in AccountPortfolio to store the accounts and their amounts. exp0, unkk and

unkm bind the owner context and other ownership parameters of Map. Properties 10 and 11 ensure

that only substitutions satisfying the ownership parameter ordering are accepted. Validity depends

on ucirc k <= m (line 21) because Map requires that the context binding to key is inside the context

binding to value. Correctness property 6 ensures that it is possible to observe this constraint from

the ucircs. Conversely, this would be an invalid substitution.

6.4.4 Strengths and Limitations of the System of exps

exps are well suited to annotating the ownership properties of subjects because SOP shifts from

classes to collaborations of classes as units of interest. In object-oriented programming the class

is the modular unit; an object of a class may appear at any point in an object graph including at

the top with world as owner. No assumptions can be made about objects outside the owner. In

subject-oriented programming, subjects often implement collaborations where objects are tightly

coupled. The subject is the pertinent modular unit. We think of objects as playing very particular

roles in collaborations; the subject creator has a priori knowledge of the existence of objects external

to the owner. This is very well demonstrated by the FloorPressButton subject: it is possible to

sketch the ownership structure of FloorPressButton from the types of inBulding and thisFloor

in Figure 6-4. The labelling of dominators numerically contributes to making SOT into an elegant

system for specifying programmer intent.

The ordering of contexts inherent in the exp notation can be achieved with ownership parameters

by specifying an order for the contexts bound to ownership parameters. This ordering is explicit in

Boyapati et al [19]. However, ordering alone does not address the fundamental problems caused by

the combination of ownership parameters and subjectivity (see Section 5.3, page 88).

Compared to Ownership Types, SOT can be classed as more permissive. The system of exps

allows one object to reference another with a different owner without prior permission. In Ownership

Types, a permission in the form of ownership parameterisation is always required. Seen from a

collaboration perspective this is a strength: pre-established collaborators generally do not seek

permission to communicate; subjects pre-establish the boundaries of object collaboration.

Compared to ownership parameterisation, explicit contexts appear to hardwire the ownership
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subject S1 {

class A {

Pair<0, 0, 1> p1;

Pair<1, 1, 1> p2;

X<0> f1() { return p1.fst; }

Y<1> f2() { return p1.snd; }

X<1> f3() { return p2.fst; }

Y<1> f4() { return p2.snd; }

}

class Pair<m, n> {

X<m> fst;

Y<n> snd;

}

class Main {

void main() {

A<0> a;

Y<0> y1 = a.f2();

X<0> x2 = a.f3();

Y<world> y2 = a.f4();

}

}

}

subject S2 {

class A {

Pair<0> p1;

Pair<1> p2;

X<0> f1() { return p1.fst; }

Y<0> f2() { return p1.snd; }

X<1> f3() { return p2.fst; }

Y<1> f4() { return p2.snd; }

}

class Pair {

X<1> fst;

Y<1> snd;

}

class Main {

void main() {

A<0> a;

// Y<0> y1 = a.f2(); representation exposure

X<0> x2 = a.f3();

Y<0> y2 = a.f4();

}

}

}

Figure 6-23: Example with Pair composable/uncomposable
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• Property 1. If exp0 is in the type of a parameter, return value or field variable then this is
the only valid receiver expression.

• Property 2. The context in the actual parameter must be as given by ∆2.

• Property 3. world is external to all contexts denoted by exps.

• Property 4. The resolution sets of all unks must be well formed.

• Property 5. The context substitutions for ownership parameters of arrays must allow access
to lower dimensions wherever higher dimensions are accessible.

• Property 6. The ucircs must imply the inter-unk ordering required by the type or expression.

• Property 7. The ucircs must imply the resolution constraints required by the type or expres-
sion.

• Property 8. All type checking of expressions whose types contain unks uses the
ExpressionRepository.

• Property 9. Expressions in uncomposable classes must be restricted to contexts {1, world} in
the members of composable classes.

• Property 10. In a substitution for the parameters of an uncomposable class the context
binding owner must be inside other contexts.

• Property 11. A substitution for the ownership parameters of an uncomposable class must
obey the context ordering in its where clause.

• Property 12. The ownership parameter ordering of uncomposable classes must be well
formed.

Figure 6-24: Correctness Properties for SOT

structure into the design of each class. Subject design with exps forces the developer to make decisions

about the ownership structure. This was a motivating factor in the introduction of unknown context

identifiers. When exps cannot provide the required flexibility, uncomposable classes must be used. To

demonstrate the limitations of the exp notation consider Figure 6-23. The Figure shows two subjects:

in S1 class Pair is uncomposable and in S2 it is composable. In S1 the ownership parameters of

A.p1 and A.p2 are bound to different contexts. Method calls to A.f2(), A.f3() and A.f4() from

Main.main() are valid but a call to A.f1() would cause representation exposure. Turning to the

case where Pair is composable, note that no choice of exps within A and Pair can produce the same

types for the methods of A. S2 shows one of a number of failed attempts. exps cannot adapt to the

subtle differences in ownership structures. unks cannot address this problem: an unk resolves to one

exp per class and not per object. The subject designer must use the uncomposable class Pair if the

full range of ownership structures is required within the subject.

6.4.5 Types and Type Checking

We are now in a position to summarise the properties and describe valid types. SOT correctness

is ensured by the checks performed when enforcing the properties given in Figure 6-24. Before

expression checking commences work is carried out to check property 4.

A Subjective Ownership Type is created by substituting the available context identifiers for the

owner and any other ownership parameters of a class. Different types are created in the bodies of



CHAPTER 6. SAPS – SUBJECT DESIGN 130

composable and uncomposable classes. In composable classes, the set of contexts to choose from

includes the exps, the unks and world. In uncomposable classes, the selection is made from the

current set of ownership parameters, exp0, exp1 and world.

The validity of substitution relies on context identifier ordering in the class where the type is

formed and on the substitution constraints of the uncomposable class from which the type is formed.

Inside a composable class properties 3, 6, 7, disambiguate the order of substituted contexts and

properties 5, 10 and 11 ensure that the substitutions are valid. In an uncomposable class properties

3, 10 and 11 disambiguate the order of substituted contexts and properties 5, 10, 11 ensure that the

substitutions are valid.

When checking composable classes, the check for property 1 guarantees representation contain-

ment. Checks for properties 2, 3, 6, 7 and 8 ensure that expressions are well formed. When checking

uncomposable classes, representation containment is ensured by property 1 also. Property 12 en-

sures that ownership parameters are ordered in a structured way. Property 9 makes certain that

objects of composable classes are accessed correctly by expressions. Expression checking proceeds by

extracting the substitution for the ownership parameters and checking that the type of the actual

parameter matches the expected type in the field or method parameter. Ownership parameters

are adopted from Ownership Types, and the checks performed by the Subject Compiler mirror the

description in [23].

6.5 Conclusion

This Chapter has introduced Subjective Ownership Types for use in subject design. Subjective

Ownership Types provide alias protection for objects and support deep ownership. With SOT two

kinds of classes can be created:

• Composable classes use a new system of explicit and unknown context identifiers. We believe

that explicit contexts identifiers or exps are well suited to specifying the intended ownership

properties of collaborations implemented by subjects. The domination structure is explicit in

the notation. Unknown context identifiers or unks make it possible to defer the selection of an

explicit context until composition. The full range of subject-oriented composition rules can be

used on composable classes.

• Uncomposable classes use ownership parameters to create black-box components where the

ownership properties can be set by the client on a per-object basis. Interface-level subject-

oriented composition rules which affect instances of uncomposable classes are allowed.

Composable and uncomposable classes exist in separate class hierarchies but have a common

superclass. SOT allow instances of one kind of class to be safely used in the definition of the other

kind. Uncomposable classes enable the creation of black-boxes which are used as building blocks

in subject construction. The design of subjects uses composable classes predominantly. Features

implemented by subject can be composed to form larger grained components.

The following Chapter presents the second part of the Subjective Alias Protection System: ex-

tensions to Subject-Oriented Programming to support the composition of subjects annotated with

Subjective Ownership Types.



Chapter 7

SAPS – Subject Composition

This Chapter is concerned with all aspects of subject composition. Its overall aim is to present a

model of composition that synthesises subjects annotated with Subjective Ownership Types (SOT).

This aim can be broken down into three top level objectives:

• Review the composition rules and describe the underlying model for subject composition.

• Describe the effect of composition on SOT concepts presented in Chapter 6.

• Specify SAPS by defining the necessary extensions to the underlying model to support the

composition of SOT annotated elements.

Chapter 3 has already presented much of the syntax of the SOP composition language. Af-

ter reviewing composition rules, we will show that composition primarily involves three activities:

bringing together artifacts which should be composed, reconciling their differences and synthesis.

But before artifacts can be brought together each subject must be decomposed into its composable

elements. We will present the system of labels – a model for describing the composable elements

of subjects. Composition rules written by the subject integrator are parsed into a series of compo-

sition directives. Groupers are directives that bring together elements and perform reconciliation.

Combinator perform synthesis.

For the second item, we will discuss the challenges of composing SOT annotated elements. One

way to achieve deep ownership in the output subject is for composition to preserve the ownership

declarations in the input subjects. Correctness depends on the notion of type equivalence and

SOT-aware composition rules. Equivalence is not as restrictive as it may sound. Ownership types

have data and context identifier components; class composition leads to datatype equivalence, and

explicit contexts can be composed with unknown context identifiers. Unification of explicit and

unknown contexts yields resolutions: the unknown context identifier becomes bound to the explicit

context identifier. In the model we propose all unknown context identifiers must be eliminated;

that is, composition of subjects should map all unks to exps. With SOT-aware composition rules

composition elements are either forwarded to the output unchanged or modified in a semantically

consistent way. No declarations are removed. We will argue that a consistent mapping of this kind

leads to desirable deep ownership properties in the output subject.

For the third item, we will specify the elements required to implement the model described as

part of the second item. In order to support SOT concepts, the system of labels will be extended with

131
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new primitives. We will specify type combinators for checking element composability and introduce

functions that collect unk resolutions. An important part of SAPS is checking that a collection of

unk resolutions is consistent. We will present an algorithm that, given a set of resolutions, attempts

to resolve all unks in a subject. The algorithm performs unk resolution propagation. It relies on

static links between classes to forward resolutions from one class to the next.

Section 7.1 is analysis of past work on SOP and Hyper/J. It summarises the composition rules and

redescribes the effect of composition on subjects. Section 7.2 presents the system of labels – a model

of primitives on top of which we define composition directives. Our model is an extensive reworking

of the original [94, 95] and forms a part of the contribution to the thesis. Section 7.3 defines

groupers which manipulate elements from the system of labels and bring together elements from

different subject that should be composed. The above three Sections conclude the presentation of

subject composition in general, i.e. not specific to composition of subjects annotated with Subjective

Ownership Types. The following Sections are concerned with extensions that will enable SOT

annotated elements to be composed, they are also part of our contribution. Section 7.4 describes the

meaning of composing SOT annotated elements. Section 7.5 defines type combinators and resolution

mapping functions. Combinators check that the types of grouped elements can be composed and,

where necessary, determines the type in the output subject. Resolution mapping functions collect

unk resolutions and store them as attributes of labels. At the end, the results of resolution mapping

functions are used by resolution propagation functions defined in Section 7.6. Section 7.7 concludes

this Chapter.

7.1 Composition Rules

In this Section we review and analyse the composition rules first seen in Chapter 3. The SOP

language is an extensible collection of composition rules. Applied to a collection of input subjects

the composition rules cause an output subject to be created. Composition takes place statically,

before the program is run. Each input subject realises some concern by defining a set of classes, field

variables and operations whose execution will produce the desired behaviour. The output subject

also is a set of classes, field variables and operations. The behaviour of the output subject depends

on the input behaviours and the semantics of the composition rules used in its creation. The subject

integrator must choose the right mix of composition rules to produce the intended behaviour. Most

compositions can be achieved with a relatively small selection of rules. However, more exotic rules

can be defined for particular cases. For instance, in Section 4.3 on page 52 we proposed the view-

merge rule which directly addressed the needs of a tricky interaction issue.

For the most part, composition is about bringing together definitions from the input subjects.

The main difference between rules concerns the action to take at the point of contact, i.e. at the join

point. In the core set of most commonly used rules there are four actions:

unify By far the most common action is to unify the elements, e.g. create a single Employee class

based on a set of Employee classes from input subjects.

slct Select one element from a range of alternatives, e.g. choose one setAccountNo(..) operation

implementation from a set of implementations in the input subjects.

exec Prepend a set of behaviours with another behaviour, or append a new behaviour to an existing

set, e.g. prepend Caching behaviour in order to save the values passed as parameters to
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operations.

call Insert a trigger such that a behaviour is invoked before or after a set of behaviours, e.g. trig-

ger a balanceCheck(..) operation for account withdrawals of bank customers with limited

borrowing.

The first two actions are symmetric and the last two are asymmetric. In a symmetric action the

elements at a join point are different parts of the same concept. A single element will be created

in the output. Unifying the elements brings together all the definitions from all input subjects and

produces one definition in the output. Selection nominates one definition above all others and puts

that into the output subject. When the output subject is run, a reference to any input element

involved in a symmetric action will return the output element. We call this process forwarding

because references to input elements are forwarded to the output element. In a symmetric action,

all input elements forward to the same set in the output.

In an asymmetric action, a new element e is partnered with each element in an existing set of

elements {s1 . . . sn}. The new element adds to existing concepts. A set of elements {〈s1, e〉 . . . 〈sn, e〉}

will be created in the output. In asymmetric actions forwarding takes place from the input elements

si to the output elements 〈si, e〉, e forwards only to e. For example, Caching behaviour is added

to multiple abstractions. When messages are dispatched to these abstraction, the cache behaviour

is invoked. In most cases, it is not expected that invocation of cache behaviour directly will invoke

the cached abstractions.

Symmetric and asymmetric actions may be combined. In the simplest case, an asymmetric

action will apply after the symmetric action. For instance, a set of elements {s1 . . . sn} may be

composed using a symmetric action to form S. A new element e will be composed with S using an

asymmetric action to produce some output element 〈S, e〉. Other more exotic composition rules are

also conceivable.

There is an important difference between the two kinds of asymmetric actions shown in the above

list. exec does not distinguish the source of the request for behaviour. The behaviour is adapted

universally and is the same for all clients. In call the behaviour is adapted more specifically to the

needs of the client. For instance, when registering with a medical centre, the nurse asks all new

patients to register their personal details. The procedure is universal and exec should be used. But,

suppose a bunch of patients with flu symptoms attend the medical centre. The treatment dispensed

by the doctor is not the same for all patients with flu symptoms. For instance, patients who recently

returned from abroad may undergo additional tests to those who have not had any recent foreign

trips. This interaction may use call to specialise behaviour.

The concepts of bringing elements together, forwarding, symmetric and asymmetric actions un-

derlie subject-oriented composition rules. A core set of composition rules is summarised in Figure 7-1.

We will use these composition rules when writing composition specifications.

The subjects to compose and the name of the output subject are specified using compose.

equate establishes that the named input elements should be composed in some way but does not

specify the action to take during composition. merge builds on equate. In addition to grouping a

set of elements it also specifies an action. Applied to a set field variables, merge creates a single

field variable in the output. Applied to a set of operations, merge creates a single operation in

the output. Applied to a set of classes, merge creates a single class in the output. The merge of

operations and field variables is meaningful only in the context of a class, and the Subject Composer
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compose. Specifies a sequence of subjects to compose and the name of the output
subject, e.g. compose S1, S2 into S;.

equate. Groups together elements of the same kind, giving the grouped element a
new name in the output subject. Overloaded by element type. For example,
equate S1.A, S2.B, S3.C into S.D; equates classes.

merge. Specifies the unify action on a set of elements of the same kind, giving
the output element a new name. It is overloaded by element type, e.g. merge
S1.A.v, S2.A.w into S.A.x; merges instance variables.

override. Specifies the slct action on a set of operations. One operation is nomi-
nated above others, this is the overriding operation. The output operation can
be given a new name, e.g. in override S1.B.foo, S2.B.bar with S1.B.foo

into S.B.bee; it is applied to operations.

bracket. Specifies either an exec or a call action on a set of operations. The opera-
tions to be bracketed (or wrapped) can be specified exactly or using wildcards.
The brackets (or wrappers) can include before and after parts which are exe-
cuted either immediately before or immediately after the wrapped operations.
The intergrator may specify either before or after and need not specify both
parts.

The exec form of brackets has three parts: the wrappee specification, the
before and after wrappers. At most one of before and after wrappers is
allowed to be null. For example, consider bracket ‘‘*.foo’’ with before

S1.A.bar after S1.A.bee;. This rule will cause operation S1.A.bar to exe-
cute immediately before any operation matching pattern *.foo and S1.A.bee

to execute immediately after any operation matching the same pattern.

The call form of brackets has an extra from part that narrows the set of
matched operations. It can be either a list of classes or operations. For exam-
ple, bracket ‘‘*.foo’’ from S2.B, S2.C with before S1.A.bar after

S1.A.bee; is identical to the exec form above with the exception that the
wrappers are run only when called from the methods of classes S1.B and S2.B.

mergeByName. Brings together all identically named elements and applies the
unify action throughout.

overrideByName. Brings together all identically named elements and applies the
slct action throughout. The first subject in the compose clause is the over-
riding subject (the source of the overriding elements).

order. Specifies an order for operation composition, e.g. order S1.A.foo after

S2.A.foo; Used in conjunction with merge on operations. By default merge
does not imply an order.

Figure 7-1: Composition rules summary.
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subject S1 { subject S2 { subject S3 {

class A { class A { class B {

int value = 1; int value = 1; int value = 1;

void f() { void f() { void g(){

value += 3; value *= 3; value *= 5;

} } }

void S1_op() { void S2_op() { void S3_op() {

f(); f(); g();

} } }

} } }

} } }

// subject external clients:

A a1 = new A();

A a2 = new A();

B b = new B();

a1.S1_op();

a2.S2_op();

b.S3_op();

Figure 7-2: Example showing

is required to check that the output field variable or operation has a valid destination. The merge

of classes sets the output class but does not group the class members.

override also builds on equate by specifying an action. It applies only to operations, selecting

one operation implementation over others. override on field variables and classes works the same

as merge.

bracket is a composition rule that combines both a grouping facility and actions. The operations

to be bracketed are grouped with the bracket operations, and either the exec or the call action is

applied to each grouping. Behind the scenes, the bracket composition rule uses the unify action

to compose the classes containing the wrappers and the wrappees, and the slct action to compose

wrapper and wrappee operations.

The composition rules presented to now provide fine grained control over the composition ele-

ments. But using these rules to compose non-trivial programs would produce very lengthy com-

position specifications. In order to make composition specification more concise, SOP introduces

top-level composition rules which group elements based on a strategy of some kind. For subjects

designed in concert, grouping by name is useful. Identically named elements of the same kind across

all input subjects can be brought together: classes are grouped with classes, operations with oper-

ations and field variables with other field variables. mergeByName and overrideByName are

two composition rules that combine grouping based on name equivalence with an action. Whenever

mergeByName or overrideByName are used, the other composition rules become exceptions to

the groupings and actions implied them.

To help ground the presented concepts consider the three subjects shown in Figure 7-2. Suppose

that these subjects are to be composed: compose S1, S2, S3 into S;. Each subject contains

method S* op that calls either f or g. Figure 7-2 shows three subject-external clients of the output

subject which call operations S* op in turn. Before the call, a1.value = 1, a2.value = 1 and

b.value = 1. Figure 7-3 shows the value field after the execution of each S* op based on the

composition specification shown in the row.

(1) shows that without any additional rules the calls are malformed. Without addition rules
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composition specification ↓ a1.value a2.value b.value

(1) no additional specs invalid invalid invalid

(2) overrideByName; 4 4 5

(3) mergeByName; order S2.A.f after S1.A.f 12 12 5

(4) overrideByName; merge S1.A.f, S2.A.f into S.A.f;

order S2.A.f after S1.A.f; 12 12 5

(5) mergeByName; bracket ‘‘A.f’’ with before S3.B.g;

order S2.A.f after S1.A.f 24 24 5

(6) mergeByName; bracket ‘‘A.f’’ with after S3.B.g;

order S2.A.f after S1.A.f 60 60 5

(7) mergeByName; bracket ‘‘A.f’’

from S1.A with before S3.B.g;

order S2.A.f after S1.A.f 24 12 5

(8) mergeByName; bracket ‘‘A.f’’

from S1.A with after S3.B.g;

order S2.A.f after S1.A.f 60 12 5

(9) overrideByName; bracket ‘‘A.f’’ with before S3.B.g; 8 8 5

(10) overrideByName; bracket ‘‘A.f’’ with after S3.B.g; 20 20 5

(11) overrideByName; bracket ‘‘A.f’’

from S1.A with before S3.B.g; 8 4 5

(12) overrideByName; bracket ‘‘A.f’’

from S1.A with after S3.B.g; 20 4 5

Figure 7-3: Results of applying composition rules.

classes A and B are not been formed in the output. Clearly, S3 is unaffected by any composition,

so we will concentrate on the behaviour of S1 and S2 only. (2) specifies that S1 overrides other

subjects. When any f is called only S1 contributes to changing value. (3) combines all views of

f and disambiguates the order of operation execution. In (4), the top-level composition rules is

specialised by a merge to cancel out the effect of overrideByName on f. A bracket in (5), (6),

(7) and (8) affects all places matching the pattern except the subject which is the source of the

wrapper. In (5) the sequence of calls is: S3.A.g, S1.A.f, S2.A.f for both S1 op and S2 op. In (7)

the sequence of calls is: S3.A.g, S1.A.f, S2.A.f for S1 op but S1.A.f, S2.A.f for S2 op. In (9)

to (12) S2.A.f is overridden by S1.A.f. So calls to either operations will execute only the body of

S1.A.f.

7.2 A System of Labels

Subject-oriented composition rules are specified in terms of an open and extensible framework known

as the system of labels [94, 95]. This Section presents a model for describing the composable elements

of subjects and shows how composition rules map on to the model.

A subject label is the composition interface of the subject, it contains all information about a

subject needed for specifying and carrying out composition. The composition process is a function

from the input subject labels to result or output labels. The output subject is created by linking

code based on the result label. In order to support the above composition rules, subject labels should

contain the following information:

• Classes defined or used by the subject.

• Instance variables including their types.
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Set

Subject

ClassOperation

Instance
Variable

Realisation

Call SetRealisation

Figure 7-4: Subject label represented as a tree of nodes

• Operations including their signatures.

• Method execution mappings that map operations and classes to method bodies to be executed.

• Method call mappings that map operations and classes to execution mappings.

Two points require clarification: method execution and method call mappings. Method execution

mappings describe the effect of method dispatch. In an uncomposed subject a mapping is similar to

a method definition in an object-oriented language: a single method body is executed in response to

a method call on a receiver. In a subject created by composing other subjects many method bodies

may need to be executed in response to a method call. We use the term realisation to distinguish

an abstraction of a method body from an operation which describes a target for a method call. A

realisation set contains the realisations to execute in response to a method call on a receiver.

Method call mappings also describe the effect of method dispatch but from the call end. By

default a single call will execute the code associated with a single realisation set. But bracket

relationships that perform the call action described in the last Section cause multiple realisation

sets to execute. A call set contains the realisation sets to execute in response to a method call.

When implementing concerns, each subject defines its own class hierarchy. Composition of

subjects with different class hierarchies is an important part of subject-oriented programming. In-

heritance makes sense within a subject but not when multiple subjects are considered together.

Also, combination of inheritance hierarchies so as to preserve their effect can lead to cycles [129].

To alleviate these problems, class hierarchies are done away with by flattening or inheritance expan-

sion [96]: all inherited information is made explicit in each class by copying declarations from the

class where they are defined to the classes which inherit the declarations.

The subject label can be represented by an abstract syntax tree (AST) of nodes shown in Figure 7-

4. A subject label is a collection of operations and classes. Instance variables are nested inside classes.

Operations are not nested inside classes but shared between a set of classes based on the subject’s

inheritance relationships. Realisation sets are nested simultaneously within composable classes and

operations, indicating that to gain access to a realisation set we must know its subject, the operation

and class name. Realisations are nested inside realisation sets. Perhaps surprisingly, call sets are

nested inside realisation sets instead of realisations; after all, calls emanate from method bodies. Call

sets do not change the method call at source but act as dictionaries for redirecting control flow to
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S : subject
S .cls : classes
S .ops : operations
S .map : mappings
S .cls .c : class
S .cls .c.v : instvar of type t
S .ops .o : operation with signature 〈t0, t1 . . . tn〉
S .map.o.c : realisation set returning u
S .map.o.c.r : realisation
S .map.o.c.m.r : call set 〈. . . ,S .map.m.r , . . .〉

Figure 7-5: Label clauses.

various realisation sets. The redirection is affected per class or per operation making it appropriate

to nest call sets inside realisation sets.

The AST may be an elegant model for representing and searching for composable elements but

it is not well suited for explaining composition rules. We would like to use a single notation both for

subject labels and for composition concepts. Fortunately, an AST can be equally well represented

as a flat set given that fully qualified names are used in place of nesting.

We propose a clausal notation. All activity takes place within the clause universe U . Clauses can

be specified in arbitrary order. Label clauses describe both the subjects’ composable entities and

the output subject. Control clauses describe the details of composition. In the following Subsections

we describe the clausal representation of labels and the label composition model.

7.2.1 Clausal Representation of Subject Labels

Subject labels are represented by an unordered list of clauses. An element from the subject label is

an attribute-value binding for some compound name:

CompoundName : AttributeName OptionalValue

A compound name is a dot-separated list of identifiers. In general, compound names are interpreted

hierarchically, where the leftmost element is the most general and the rightmost element is the most

specific with dots specifying node tree depth. An attribute name is some identifier. Some attributes

have no values while others may be arbitrarily complex. A single compound name can have several

attribute-value pairs.

Figure 7-5 shows all clauses necessary to define the composition rules shown in Figure 7-1 on

page 134. The root of the AST for a subject is given by the subject clause. S is the name of

some subject. A subject has three subgroups which are always defined. The cls group contains all

classes, the ops group contains all operations and the map group contains all method mappings,

i.e. realisation sets and their sub-elements. At the next level down, the class clause shows class c

in subject S. Instance variables are given as subelements of classes: v is an instance variable of

class c in subject S. t is an attribute of the instvar clause that denotes the type of v. operation

clauses have signature types as attributes. t0 is the type of the return value and t1 to tn are the

parameter types. In the clause universe all operations have distinct names. This is not a constraint

on implementation; rather, the clause universe is an abstraction and the Subject Composer maintains



CHAPTER 7. SAPS – SUBJECT COMPOSITION 139

a mapping between actual operation names and their labels in the clause universe.

A realisation set clause specifies the result of calling an operation on an instance of a specific

class; realisations are specified separately. o is the operation and c is the class on which the

operation is called. u is the return value specification. For input subjects there is at most one return

value but for subjects which are the product of composition the return values must be amalgamated

in some way. In general, u is passed to some function f which uses a strategy to select or calculate

the return value. The ordering of operation name before class name is not intended to convey

nesting. Instead, the o and c components of a realisation set clause form a two-dimensional matrix

for selecting a set of realisations and call sets. A realisation clause specifies a method body to

execute within a realisation set.

A call set clause is a subcomponent of its realisation set. The compound name states that

realisation set given by o × c in subject S contains a call to realisation set m × r where m is the

method and r is the class identifier. Subjects are declaratively complete so there is no need to

include an additional subject name in the label. The Subject Compiler has proven that realisation

set m× r is defined in S. All method call sites in all operations are nodes because each is a potential

join point. Composition rules work at class member level, so for specifying composition rules it is

sufficient to know that a realisation set contains a particular call without exposing the details of

control flow inside. The call set attribute is a sequence of realisation sets to call. This set usually

includes m × r. By default, the return value is taken from realisation set m × r.

Control Clauses

The intuitive concepts of grouping elements and applying actions are formalised in the clause universe

by control clauses. We distinguish between three kinds of control clauses:

• Correspondence clauses directly specify grouping between label clauses.

• Grouper clauses are a more powerful way of grouping labels. Groupers are a means of auto-

matically determining correspondences.

• Combinator clauses combine the attributes of corresponding clauses and help generate the

output clauses.

Top level composition rules are specific collections of attribute combinators and node groupers.

Other composition rules directly manipulate correspondence clauses.

7.2.2 Correspondence Clauses

Correspondence clauses specify which labels are to be combined to produce an output label.

n : composed-of(q, F )

The correspondence clause has three parts. n is the output label which will be added into the

universe. q is the input sequence of labels of corresponding elements whose attributes are to be

combined in some way. The order in the sequence sets the order for attributes. F is called the

forwarding set ; it’s main role is to realise the concept of forwarding introduced earlier. Forwarding

concerns class and operation labels:
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• For classes it describes which of the classes in the input set are to be replaced by the composed

class. When a class in the forwarding set is instantiated, an object of the new class in the

output label will be created.

• For operations it describes which of the operations in the input sequence get replaced by the

output operation. When an operation in the forwarding set is called, all input operations will

be executed.

Clearly, an input operation or class must exist in exactly one forwarding set, lest it is ambiguous

which operations to execute or which class to instantiate. Overridden elements forward once to a

special null subject which tells the Subject Composer to unlink the code represented by it. Entities

which have no correspondences in other subjects are involved in an identity correspondence. The

effect is to forward the node without changes, e.g.:

S .ops .foo : composed-of(〈S1 .ops .foo〉, {S1 .ops .foo})

S .cls .A : composed-of(〈S1 .cls .A〉, {S1 .cls .A})

For operations and classes, the separation of input labels from the forwarding set facilitates

creation of advanced interactions. For example, suppose when creating printing software we have two

subjects: NormalPrint and HeaderPrint. Calling print(Account, Doc) on a Printer object in

NormalPrint activates HeaderPrint’s method followed by the NormalPrint’s method. The former

debits the account, prints the summary and account info, and the latter prints the actual document.

However, calling print(Account, Doc) in the scope of HeaderPrint, only prints the account info

without debiting the account. A correspondence clause to express this relationship is given by:

TotalPrint .ops .print : composed-of(〈HeaderPrint .ops .print ,NormalPrint .ops .print〉,

{NormalPrint .ops .print})

The forwarding set is used also with realisation sets to denote those elements that contribute to

the return value calculation. For instance, this feature is used to implement the bracket rule: only

the bracketed methods contribute to the return value. The forwarding set is not used with any other

kinds of element.

7.2.3 Groupers

A grouper generates correspondence clauses automatically based on some strategy. A common way

of determining correspondences is by name. Elements representing the same concept in different

subjects should be grouped together. This stategy is used in both mergeByName and override-

ByName composition rules. Once a grouper completes its work other rules can create alternative

correspondence clauses to add to or to replace those created by the grouper.

Figure 7-6 shows a synopsis of groupers used to implement the composition rules in Figure 7-1

on page 134. Groupers name-match and select-first work in the context of specific constructs.

In order to group classes or operations, their subjects must correspond. Instance variables can

be grouped only in the context of corresponding classes. corresponding-rs is used solely with

realisation sets. Realisation sets can be grouped only if their subcomponents are already known

to correspond. name-match, select-first and corresponding-rs can be described as symmetric

groupers in the sense that they group elements representing the same concept from all input subjects.
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• name-match Draws into a new correspondence clause those label clauses that have the same
last name component.

• select-first Draws into a new correspondence clause the input label from the first input subject
that contributes to the output label.

• corresponding-rs Draws into a new correspondence clause those realisation sets whose con-
stituent classes and operations correspond.

• bracket-exec Updates a collection of correspondence clauses including the realisation set of
each wrappee with the realisation sets of the wrappers and the classes of each wrappee with
the classes of the wrappers.

• bracket-call Updates a collection of call sets of correspondence clauses including the call set
of each wrappee with calls to the wrappers and the classes of each wrappee with the the classes
of the wrappers.

Figure 7-6: Grouper synopsis.

For classes and operations, name-match forwards all elements to the output. select-first only

forwards the overriding element. The overridden elements forward to the special null subject. These

groupers have no error conditions.

bracket-exec and bracket-call groupers generate correspondence clauses for bracket relation-

ships. They create correspondences for method execute and call locations respectively. The activities

performed by these groupers can be summarised in terms of the following steps:

1. Bracket relationships use a pattern to specify those locations that should be wrapped. These

groupers generate a list of classes containing the join points based on the pattern. In order to

prevent recursive bracketing, this list never includes the classes in subjects which are the source

of the wrapper methods. Recursive bracketing can occur when both wrappees and wrappers

are the same element, and should be prevented.

2. “Clones” of classes containing the wrapper methods are composed with classes containing the

bracketed locations. We have put clone above in quotes because the appearance of cloning is

created using correspondence clauses and there is no explicit clone operator. Figure 7-7 shows

the difference between bracket-exec and bracket-call: the former composes the wrapper

class “clone” with the class containing the wrapped operation, while the latter composes the

wrapper class “clone” with the class containing the wrapped method call.

3. The wrappees are set to execute around the wrapped elements. For bracket-exec, the resolu-

tion set of each wrapped method is augmented with the resolution sets denoting the wrappers.

For bracket-call, the relevant call set of each wrapped realisation set is augmented with new

calls to the wrapper realisation sets. All members of wrappee and wrapper classes are set to

correspond. “Cloned” wrapper classes’ member operations forward to the output operation.

In conjuncton with inheritance the two forms of bracket relationship realised by these two

groupers can produce different interactions. bracket-call selects call points based on the declared

type, so a call will be bracketed irrespective of the dynamic type of the receiver. Thus, bracket-call

affects all classes below it in the inheritance hierarchy. bracket-exec selects execution points by

class, so when the pattern specifies the class, classes below it in the hierarchy will not be bracketed.

There are two error conditions for these groupers, both detected during step 1 above:
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void wrapper() { }

B

void bar() { }

X

void wrapper() { }

A

B myB;

void foo() { myB.bar(); }

B

void bar() { }

X

A

B myB;

void foo() { myB.bar(); }

subject S2

subject S2

subject S1

subject S1

composed using:  bracket "B.bar" from A.foo with before X.wrapper;

composed using:  bracket "B.bar" with before X.wrapper;

Figure 7-7: Correspondences created by bracket relationships: bracket-exec top; bracket-call
bottom.
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• identity. The sequence of attributes must be of length 1 or an error is flagged; the output is
the attribute of the sole element.

• equivalent. All values must be equivalent. The result is the first return value. Equivalence
needs to be defined for each type of attribute.

• first or last. The first or last values is returned from the sequence.

• union. Return a set containing the union of all attributes.

• forwarding-set[]. This is a parameterised combinator that takes another combinator as a
parameter. The return value is selected from the forwarding set of this correspondence clause,
e.g. forwarding-set[equivalent] uses the return value from the first realisation set in the
input sequence if all return values in the forwarded realisation sets are equivalent and the
forwarding set is not empty.

Figure 7-8: Return value combinators.

• It is an error for the pattern not to match any elements. This is a sanity check that prevents

ineffective compositions.

• It is an error for a class containing a wrapper method to have corresponding classes from prior

composition rules. Bracketing in conjunction with prior correspondences can create forwarding

cycles.

7.2.4 Combinators

Once all correspondences are established, combinators are applied to the attributes of corresponding

elements. A combinator determines the output label’s attribute from a sequence of input attributes.

From Figure 7-5 on page 138 we observe that there are three kinds of attribute to combine:

• The types of corresponding instance variables.

• The sequences of types for signatures of corresponding operations and signatures of operations

specified in call set clauses.

• The return value of corresponding realisation sets.

In order for instance variables to be composable, either they must have the same type or the clause

universe should contain a correspondence clause that forwards all input types to the same output

type. In general, in order for operations to be composable they must have equivalent signatures.

Exceptions include operations used as wrappers in bracket relationship which may accept meta

parameters in the signatures of wrapped operations (e.g. see the example in Figure 3-5 on page 41)

and may have void return types. Otherwise, signature combination repeatedly applies the type

combinator used for variables. For call set clauses, the combinator only checks that operations can

be combined. Composition aborts if a sequence of input types cannot be combined.

A combinator for realisation sets describes the way the return value should be computed from all

corresponding realisation sets, that is, from all return values. The attribute of the output realisation

set label is itself a combinator. For instance, in Hyper/J bracket relationship semantics, only the

bracketed operations contribute to the return value. Figure 7-8 lists a number of general purpose

combinators that can be used in composition rules. Composition aborts if a return value combinator
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generates an error. The combinator for call set label attributes must determine the call set for the

output label from a sequence of input call sets.

7.2.5 On the Correctness of the Composition Model

Confidence in the correctness of the system of labels can be attained if it can be shown that for

all composition specifications all expressions which may get executed are well formed. Composition

does not change realisations but does change what realisations are executed during method dispatch.

Expressions are well formed when they have valid targets. Thus for correctness it is sufficient to

check that all references extending outside realisations still have valid destinations after composition.

Program created by subject composition will crash if a reference to a class or any of its members

cannot be resolved. There are two kinds of problems: either the class or its member cannot be found

in the output subject or a reference to an element is ambiguous. Ambiguity results from having

more than one choice of class to instantiate or member to access. We can address these problems

by enforcing two properties:

• Monotonic composition: no composition rule removes declarations.

• Correct forwarding: each reference to an element in the input must resolve to one element in

the output.

The first property ensures that references to classes or members always have targets. To enforce

it, all classes, operations and instance variables in input subjects must also exist in the output

subject. With respect to forwarding: for classes it ensures that types resolve to a distinct class;

for operations it ensures that a method call has one target operation; and for instance variables it

ensures that a field reference has a distinct target.

In order to enforce the above properties each kind of realisation artifact that extends links outside

evokes constraints on the composition rules that may be created:

• Types. Realisations form types from classes. It is important that all types that can be

created before composition, can still be created afterward. In the system of labels the relation

between input and output types is governed by the input sequences and forwarding sets of

correspondence clauses. Monotonic composition is ensured by requiring each input class to

be in the input sequence of one or more output classes. By definition, the forwarding set

only contains elements in the input sequence. Correct forwarding requires that no input class

forwards to null. Moreover, for all correspondence clauses containing the class in their input

sequence, only one may forward it. By following these principles when devising composition

rules the output will contain exactly one class for each input class.

• Field Access/Update. The nesting properties of the system of labels ensure that instance

variables always correspond in the context of corresponding classes. To ensure both monotonic-

ity and forwarding, for each distinct instance variable in corresponding classes there should be

one instance variables in the output class.

• Method Calls. In order for a method call to succeed it must have a valid receiver type and

method name. There are no constraints on what is executed during a method call. Constraints

on class composition ensure that all receiver types remain valid after composition. Monotonic

composition requires that for each realisation set in the input subjects there is at least one
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• Each input class must appear in exactly one forwarding set of a correspondence
clause.

• If class C appears in the input set of correspondence clause S.cls.C’, then each
instance variable C.v of C must appear in the input set of correspondence
clause S.cls.C’.v’.

• Each input realisation set must appear in the input sequence of a correspon-
dence clause.

• Each input operation must appear in exactly one forwarding set of a corre-
spondence clause.

Figure 7-9: Correctness properties of control clauses.

realisation set in the output subject. But realisation execution is guarded by the forwarding set

of operation clauses, so correct forwarding requires that each distinct input operation appears

in exactly one forwarding set. Note that this places no constraints on the output label and an

operation may forward to null.

In summary, composition rules must have the properties shown in Figure 7-9. The following

composition rule definitions enforce the above properties.

7.2.6 Mapping Control Clauses to Composition Rules

In this Section we explain the way in which composition rules are implemented in terms of the system

of labels. Rules in the composition specifications are evaluated from the top down. There are two

passes: first groupers create and update correspondence clauses, secondly attribute combinators are

applied. Composition specifications start with a mergeByName or another top level composition

rule The other composition rules specify exceptions. mergeByName is used with most composition

specification and for this reason the composition process is outlined in that Section.

compose

The compose directive inserts a single correspondence clause into the clause universe. For example,

compose S1, S2, S3 into S; inserts:

S : composed-of(〈S1 ,S2 ,S3 〉, ∅)

equate

Typically, the equate directive is used to bring together elements that represent the same concept

but have not been brought together by a top level composition rule. For this reason the input

elements are symmetrically forwarded to the output. Parameters given to equate must come from

different (and corresponding) subjects. equate is mindful of existing correspondence clauses: it

checks if any parameters already participate in composition. There are two error conditions:

• The output element exists but contains none of the input elements. So the present equate is

in a race with an existing clause.
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• An input element already forwards to an output label that is different to that required by

equate. This is an error because each input element is allowed to forward to at most one

output element.

These correctness criteria are the same whether equate is applied to classes, operations or vari-

ables. For example, suppose that we are parsing equate S1.A, S2.B into S.C;, then composition

will abort if the clause universe already contains any of:

S .cls .C : composed-of(〈S3 .cls .E ,S4 .cls .F 〉, {S3 .cls .E ,S4 .cls .F })

S .cls .D : composed-of(〈S1 .cls .A,S3 .cls .E 〉, {S1 .cls .A,S3 .cls .E})

In the first case above, the output class C is already formed by composing classes unrelated to

parameters of equate. So, the present equate is in a race with an existing clause. In the second

case, a parameter to equate already forwards to a different output label. Each input element is

allowed to forward to at most one output element.

equate succeeds in all other cases:

• No prior clauses exist.

• An input element participates in an “identity” correspondence.

• One or more of the input elements already forward to the output element required by equate.

For example, in the following, the first two clauses denote “identity” correspondence clauses.

S .cls .A : composed-of(〈S1 .cls .A〉, {S1 .cls .A})

S .cls .B : composed-of(〈S2 .cls .B〉, {S2 .cls .B})

S .cls .C : composed-of(〈S3 .cls .E ,S2 .cls .B 〉, {S3 .cls .E ,S2 .cls .B})

In the third clause, one or more of the parameters to equate already participates in a composition.

It is acceptable because it allows an omitted element to be added to an existing clause, creating:

S .cls .C : composed-of(〈S1 .cls .A,S3 .cls .E ,S2 .cls .B 〉,

{S1 .cls .A,S3 .cls .E ,S2 .cls .B})

For instance variables, equate additionally checks that all classes containing the corresponding

variables contribute to the same output class, i.e. contribute means “appear in the same input

sequence”. equate on operations sets up correspondences for operations, classes and realisation sets.

Consider equate S1.A.foo, S2.B.bar into S.C.fee;. With no prior clauses, equate creates the

following correspondence clauses:

S .cls .C : composed-of(〈S1 .cls .A,S2 .cls .B〉, {S1 .cls .A,S2 .cls .B})

S .ops .fee : composed-of(〈S1 .ops .foo,S2 .ops .bar 〉, {S1 .ops .foo,S2 .ops .bar })

S .map.fee.C : composed-of(〈S1 .map.foo.A,S2 .map.bar .B 〉, {S1 .map.foo.A,S2 .map.bar .B })

merge

merge brings together elements and applies the appropriate combinators. For classes, it does the

work defined for equate. class label clauses do not have attributes, so there are no attributes to
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combine. For instance variables, merge additionally checks that all classes containing the corre-

sponding variables contribute to the same output class and applies the type combinator to set the

type of the output variable. For operations, merge does the work defined for equate. The signature

combinator creates the signature of the output operation. The attribute of output realisation set

clause is set to forwarding-set[equivalent].

override

override creates correspondence clauses for the overriding elements and deletes the clauses of over-

ridden elements. Consider override S1.A.foo, S2.B.bar with S1.A.foo into S.C.fee;. This

directive indicates that all calls to S1.A.foo and S2.B.bar should forward to S1.A.foo (which is

renamed to S.C.fee in the output subject). override creates/updates the following correspondence

clauses:

S .cls .C : composed-of(〈S1 .cls .A,S2 .cls .B〉, {S1 .cls .A,S2 .cls .B})

S .ops .fee : composed-of(〈S1 .ops .foo〉, {S1 .ops .foo})

null : composed-of(〈S2 .ops .bar 〉, {S2 .ops .bar})

S .map.fee.C : composed-of(〈S1 .map.foo.A,S2 .map.bar .B 〉, {S1 .map.foo.A,S2 .map.bar .B })

The first clause helps to ensure that operation overriding takes place between corresponding classes.

The second clause states “execute foo whenever foo is requested.” The third clause composes into

null which indicates that no node should be created for the input elements. When running the

output program, calls to bar will execute no code. The last clause states that only that all input

realisation sets contribute to the output subject. In a nutshell, a call to S2.B.bar will forward to

the elements in the input sequence of S.map.fee.C which, through forwarding, executes S.C.fee.

S2.ops.bar forwards to null, so no realisations are executed on the behalf of S2.map.bar.B.

override has two error conditions that conceptually mirror those of equate:

• For the first and second clauses above, no input element may forward to an output that is

different to that which is required by override parameters. The overridden elements will be

reforwarded to null. Realisation sets use forwarding clauses for other purposes (see Section 7.2.2

on page 139.

• For the first, second and fourth clause above, if the output label clause required by equate

exists already, then at least one of the input elements must be related to override parameters.

This error condition prevents a race for an output label with other rules. The output label

null is unaffected by races.

When the output labels are created, the signature of the overriding operation is taken as the

attribute of the output operation; the signature combinator checks that corresponding operations

have compatible signatures. The attribute of output realisation set label is set to forwarding-

set[equivalent].

mergeByName and overrideByName

The mergeByName composition strategy specifies that all correspondences should be established

based on construct name. Figure 7-10 shows it as a bundle of groupers and combinators to be

applied at each kind of node or to its attributes. overrideByName also uses name equivalence as
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Composition Attribute Grouper Combinator

Construct

subject (explicit match)
class name-match

instance variable name-match

type type combinator
operation name-match

signature signature combinator
realisation set corresponding-rs

ret. val. spec. last

realisation name-match

call set name-match

call set attrib. union

Figure 7-10: Table showing the elements used in the definition of the mergeByName composition
rule

Composition Attribute Grouper Combinator

Construct

subject (explicit match)
class name-match

instance variable name-match

type type combinator
operation select-first

signature signature combinator
realisation set corresponding-rs

ret. val. spec. first

realisation name-match

call set select-first

call set attrib. first

Figure 7-11: Table showing the elements used in the definition of the overrideByName composition
rule
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S1 : subject

S1 .cls.A : class

S1 .cls.A.value : instvar of type int

S1 .ops.f : operation with signature 〈void〉
S1 .ops.S1 op : operation with signature 〈void〉
S1 .map.f .A : realisation set returning identity
S1 .map.S1 op.A : realisation set returning identity
S1 .map.S1 op.A.f .A : call set 〈S1 .map.f .A〉
S1 .map.S1 op.A.S1 A S1 op : realisation

S1 .map.f .A.S1 A f : realisation

S : composed-of(〈S1 , S2 ,S3 〉, ∅)
S .cls.A : composed-of(〈S1 .cls.A, S2 .cls.A〉, {S1 .cls.A, S2 .cls.A})
S .cls.A.value : composed-of(〈S1 .cls.A.value, S2 .cls.A.value〉, ∅)
S .ops.f : composed-of(〈S1 .ops.f , S2 .ops.f 〉, {S1 .ops.f ,S2 .ops.f })
S .map.f .A : composed-of(〈S1 .map.f .A, S2 .map.f .A〉, {S1 .map.f .A, S2 .map.f .A})
S .map.f .A.S1 A f : composed-of(〈S1 .map.f .A.S1 A f 〉, ∅)
S .ops.S1 op : composed-of(〈S1 .ops.S1 op〉, {S1 .ops.S1 op})
S .map.S1 op.A : composed-of(〈S1 .map.S1 op.A〉, {S1 .map.S1 op.A})
S .map.S1 op.A.f .A : composed-of(〈S1 .map.S1 op.A.f .A〉, ∅)
. . .

Figure 7-12: Label clauses for S1 and correspondences created by mergeByName.

S : composed-of(〈S1 ,S2 , S3 〉, ∅)
S .cls.A : composed-of(〈S1 .cls.A, S2 .cls.A〉, {S1 .cls.A, S2 .cls.A})
S .cls.A.value : composed-of(〈S1 .cls.A.value, S2 .cls.A.value〉, ∅)
S .ops.f : composed-of(〈S1 .ops.f 〉, {S1 .ops.f })
null : composed-of(〈S2 .ops.f 〉, {S2 .ops.f })
S .map.f .A : composed-of(〈S1 .map.f .A, S2 .map.f .A〉, {S1 .map.f .A, S2 .map.f .A})
. . .

Figure 7-13: Clauses created by overrideByName.

the basis for bringing elements together and Figure 7-11 also shows it as a bundle of groupers and

combinators.

A composition specification consisting of a compose statement and either mergeByName

or overrideByName establishes correspondences that satisfy the correctness properties given in

Figure 7-9 on page 145. Other composition rules preserve the status quo, changing correspondences

to preserve the correctness properties.

We will use this opportunity to explain the composition process. Composition is set in motion

by specifying corresponding subjects using the compose rule. Input subjects are required to have

distinct subject names. Composition involves the application of groupers at successively finer levels

of construct granularity. Correspondences arising from a top level composition rule are created

first. Output labels for realisation sets and call sets are created. These specify how to compose

the attributes. Next, the remaining composition rules are applied in the sequence given by the

composition specification. These rules create, modify and delete correspondences; and possibly

change the combinators set by the top level composition rule. Finally, a walk over the clause

universe applies the combinators and creates the output labels. Combinator selection is driven by

the type of corresponding elements.
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S3 .cls.B : class

S3 .cls.B .value : instvar of type int

S3 .ops.g : operation with signature 〈void〉
S1 .ops.S3 op : operation with signature 〈void〉
S3 .map.g .B : realisation set returning identity
S3 .map.S3 op.B : realisation set returning identity
S3 .map.S3 op.B .g .B : call set 〈S3 .map.g .B 〉
S3 .map.g .B .S3 B g : realisation

S3 .map.S3 op.B .S3 B S3 op : realisation

S .cls.A : composed-of(〈S3 .cls.B , S1 .cls.A, S2 .cls.A〉, {S1 .cls.A, S2 .cls.A})
S .cls.A.value : composed-of(〈S1 .cls.A.value, S2 .cls.A.value, S3 .cls.B .value〉, ∅)
S .ops.f : composed-of(〈S3 .ops.g , S1 .ops.f ,S2 .ops.f 〉, {S1 .ops.f , S2 .ops.f })
S .map.f .A : composed-of(〈S3 .map.g .B , S1 .map.f .A, S2 .map.f .A〉,

{S1 .map.f .A,S2 .map.f .A})
S .map.f .A : realisation set returning forwarding-set[last]
. . .

Figure 7-14: Clauses created by a bracket relationship on execute sites.

To exemplify mergeByName we return to the composition of subjects in Figure 7-2 on page 135.

To top part of Figure 7-12 shows the input label clauses for subject S1. The bottom part of

Figure 7-12 shows some of the correspondence clauses created by composition (3) in Figure 7-3

on page 136. Note that operations that have no corresponding elements, e.g. S1.A.S1 op, are in

“identity” correspondences.

Figure 7-13 presents some of the correspondence clauses created by composition (2) in Figure 7-3

on page 136. Note that only overridden operation labels forward to the null subject. In accordance

with the correctness principles, realisation sets, classes and instance variables are unified.

bracket

The two forms of bracket relationship are realised by groupers bracket-exec and bracket-call.

Essentially, there is a one-to-one mapping between a bracket composition rule in the composition

specification and the groupers. bracket-call is selected if the rule has a from part.

Figure 7-14 shows some of the correspondence clauses created by composition (5) in Figure 7-

3 on page 136. This composition specification first applies mergeByName and then a bracket

relationship of the bracket-exec variety. The top part shows the labels of the wrapper class B.

The bottom part shows some of the correspondence clauses created by the bracket-exec grouper.

In the bottom part, the label of the wrapper class is added to the existing correspondence clause.

The wrapper class is instantiated when the bracketed classes are instantiated but not vice versa.

The members of the wrapper class are set to correspond with the members of the class whose

operations are bracketed. Note that the realisation set denoting the wrapper operation is prepended

to the sequence of input realisation sets. The order of input realisation sets determines the order of

operation execution. The bracket relationship changes the default attribute of the output label for

affected realisation sets: wrappers do not contribute to return value calculation.

Figure 7-15 shows some of the correspondence clauses created by composition (7) in Figure 7-3.

This composition specification first applies mergeByName and then a bracket relationship of the

bracket-call variety. The Figure shows the correspondence clauses created by the bracket-call
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S .cls.A : composed-of(〈S3 .cls.B , S1 .cls.A, S2 .cls.A〉, {S1 .cls.A, S2 .cls.A})
S .cls.A.value : composed-of(〈S1 .cls.A.value, S2 .cls.A.value, S3 .cls.B .value〉, ∅)
S .ops.g : composed-of(〈S3 .ops.g〉, {S3 .ops.g})
S .ops.S3 op : composed-of(〈S3 .ops.S3 op〉, {S3 .ops.S3 op})
S .map.S3 op.A : composed-of(〈S3 .map.S3 op.B〉, {S3 .map.S3 op.B})
S .map.S3 op.A.g .A : composed-of(〈S3 .map.S3 op.B .g .B〉, ∅)
S .map.S1 op.A.f .A : call set 〈S3 .map.g .B , S1 .map.f .A〉
. . .

Figure 7-15: Clauses created by a bracket relationship on call sites.

grouper. The wrapper class and its members are composed with the class containing the bracketed

operations. From the top, class A is formed by composing the merged classes with the wrapper class.

The value fields are grouped into a correspondence clause. The operations g and S3 op, realisation

sets and call set clauses have no name based correspondences, so they get placed into identity

correspondence clauses. Finally the call set attribute of the bracketed operation is prepended with

a call to the wrapper operation. The order in the call set sequence denotes the call order for calling

operations, ensuring that the wrapper is called before the wrappee.

order

Ordering of behavours is significant and can change the overall effect of composed operations. Bracket

relationships imply an order but the unify family of composition rules, which include merge and

mergeByName, do not. The order directive performs pair wise modification of input sequences

of realisation set clauses. It allows the order of execution to be set where the order is significant.

Without order, the sequence of execution cannot be assumed. Compositions (3) to (8) in Figure 7-3

on page 136 use order to disambiguate the sequence in which merged operations are executed. This

rule will fail if the clause universe does not contain the elements given by parameters.

7.2.7 Definitions

The following Sections will define groupers, type combinators, etc that rely on functions for manip-

ulating the clause universe U in following ways:

• Finding all clauses matching some pattern.

• Replacing a label clause attribute with a new value or overwriting one clause by another.

• Extracting information from a compound name of a label clause.

A label clause has been defined as an attribute-value binding for a name. The label is identified by

a compound name; it is a list of identifiers separated by dots:

name0.name1.name2 . . .namen : Attribute description and values

Figure 7-16 shows a list of functions. match and extract use underscores as non-null wildcards.

Other names are matched exactly. For example:

• match(S .cls . ) is the set of class labels in subject S.
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• match(n). Searches U for label clauses that match the compound name pattern n. Returns
a set of such elements which may be empty.

• replace(x, y) or replace(x$t, x$t′). Replaces clause x by clause y in U , or replaces attribute
t of clause x by attribute t′ and clause y. x is discarded. Clause x must exist in U or there is
an error condition.

• extractp(n). Filters compound name n based on pattern p. The pattern is a dotted expression
of a form similar to a compound name which uses the question mark to denote the name to
extract. Other names are used for pattern matching. It is an error for the compound name
not to match the pattern.

• dt(t). Extracts the class name from type t when t has form n1.n2.n3〈p1 . . . pk〉. n1.n2.n3 is
the compound name of a class label. dt is defined as:

dt(n1.n2.n3〈p1 . . . pk〉)
def
= n1.n2.n3

• forwards-to(l). Searches U for correspondence clauses and returns the output label clause
to which l forwards. In a well formed clause universe, each input class or operation label
forwards to one output label or null :

forwards-to(l)
def
= n where n : composed-of(q, F ) ∈ U ∧ l ∈ F

Figure 7-16: Functions used in the definition of composition directives.

• match(S .cls . .v) is the set of instance variable labels in subject S of classes that define instance

variable v.

• match( .map. . ) is the set of all realisation sets in all subjects in U .

A well formed pattern for extract has exactly one question mark. Trailing underscores can be

omitted.

• extract?.cls(S .cls .c.v) = S. The cls in the pattern matches cls in the corresponding position

in the compound name. This pattern can also be specified as ?.cls . . .

• extract .ops.?(S .ops .o) = o. The underscore indicates that we do not care about the name of

the first element. The second element must be ops .

• extract .map. .?(S .cls .c.v) is an error. The map name does not match the name in the corre-

sponding position of the compound name.

replace is commonly used with correspondence clauses to modify the input sequence and to change

the attribute of an existing label clause, for example:

• replace(c : composed-of(q, F ), c : composed-of(q′, F ′)) replaces q by q′ and F by F ′ for

the correspondence clause associated with label c.

• replace(d : instvar of type t, d : instvar of type t′) overwrites type t by t′ for instance

variable label d.
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7.3 Grouper Definitions

In this Section we define groupers used in the specification of top level composition rules mergeBy-

Name and overrideByName. Groupers generate composition clauses either automatically based

on the labels in the clause universe or based on the parameters. There are five groupers to present.

Groupers name-match, select-first and corresponding-rs are the “automatic” groupers repre-

senting prior art [94]. bracket-exec and bracket-call accept parameters consisting of a pattern

specifying points to bracket and the wrapper operations. Additionally, bracket-call takes a from

parameter constraining the call points.

7.3.1 Name Matching

Grouper name-match(n, Q) generates correspondence clauses based on name equivalence. As in-

put it takes label n denoting a prefix for the output label and sequence Q of sets containing the

elements from which correspondences will be drawn. Name matching creates correspondences for

sets of classes, instance variables and operations, etc. It works by checking for equivalence in the

last name component of the elements’ compound names. Elements with equivalent names in the last

component are drawn into a correspondence clause. Elements that have no corresponding counter-

parts in other sets are put into identity correspondence clauses.

Definition: (Name Matching) For prefix n specifying the node type and sequence of sets

Q ≡ 〈S1 . . . Sk〉, the name matching grouper is defined as:

name-match(n, Q)
def
= {n.x : composed-of(〈n1.x . . . nk.x〉, {n1.x . . . nk.x})

where x is a distinct last name component of

at least one set in Q : ∃i ∈ [1, k], ni.x ∈ Si

name-match also creates the forwarding set as the following example demonstrates. The forwarding

set is used with operations and classes only:

name-match(S.ops, 〈{S1 .ops .fn1 ,S1 .ops .fn2 ,S1 .ops .fn3 }, {S2 .ops .fn1 ,S2 .ops .fn2 }〉)

S .ops .fn1 : composed-of(〈S1 .ops .fn1 ,S2 .ops .fn1 〉, {S1 .ops .fn1 ,S2 .ops .fn1 })
S .ops .fn2 : composed-of(〈S1 .ops .fn2 ,S2 .ops .fn2 〉, {S1 .ops .fn2 ,S2 .ops .fn2 })
S .ops .fn3 : composed-of(〈S1 .ops .fn3 〉, {S1 .ops .fn3 })

7.3.2 Selection

For overrideByName the output contains elements taken from the first set in Q. No pattern

matching is required. Overridden elements are forwarded to the null subject which indicates to the

Subject Composer that no code should be generated for this node. This is specified as:

Definition: (Select First) For prefix n specifying the node type and sequence of subjects Q ≡
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〈S1 . . . Sk〉 the selection grouper is defined as:

select-first(n, Q)
def
= {n.x : composed-of(〈n1.x〉, {n1.x})

null : composed-of(〈n2.x . . . nk.x〉, {n2.x . . . nk.x})}

where x is a distinct last name component of

the first set of Q : n1 ∈ head(Q)

7.3.3 Correspondence Matching

For grouping realisation sets, a special corresponding-rs grouper is specified. Realisation sets

correspond when their constituent classes and operations correspond. That is, in order to estab-

lish realisation set correspondence, prior correspondence should exist between classes and operations.

Definition: (Corresponding Realisation Sets) For prefix n of the form S.map and sequence of

subjects Q ≡ 〈S1 . . . Sk〉, the grouper for realisation sets is defined as:

corresponding-rs
def
= {n.o.c : composed-of(〈n1.o.c . . . nk.o.c〉, {n1.o.c . . . nk.o.c})}

where o, c are distinct operation and class names

and the clause universe contains:

S .ops .o : composed-of(qo, Fo)

S .cls .c : composed-of(qc, Fc)

for some o, c, qo, Fo, qc, Fc, such that

Si.ops .oi ∈ qo ∧ Si.cls .ci ∈ qc ∀i ∈ [1, k]

7.3.4 Grouper For Execute Sites in Bracket Relationships

The bracket-exec grouper is a control clause. It sets up correspondences that realise the bracket

relationship which wraps method execution sites in classes. One control clause is placed into the

clause universe for each bracket relationship in the composition specification. It is envisaged that

multiple grouper instances affecting overlapping sets of bracketed locations will be applied. The

order in which the groupers are evaluated sets the order of wrapper method execution. The earlier

ones are executed closer to the bracketed location. The activity of bracket-exec can be summarised

as follows:

1. Identify the pertinent realisation set clauses representing the locations to bracket.

2. Add to them the realisation sets denoting the wrapper operations.

3. Compose into each class containing bracketed operations the elements of each class containing

the wrappers, thereby “cloning” the wrapper classes.

This control clause has the following form:

bracket-exec(n, 〈p, before, after〉)
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The first parameter n is the label of the output subject. The second parameter is a 3-tuple where p is

the match pattern, before and after are the realisation set labels for the before and after wrappers.

At most one of before and after can be null.

The pattern p matches realisation set clauses in the output subject n. For example, suppose

we wish to bracket all operations matching ‘‘C.*’’, i.e. execution of any operation in class C. The

following set contains the realisation set labels in U described by this pattern:

{c | c ∈ match(n.map. .C )}

Pattern are specified as regular expressions which bracket-exec expands into a set of matches in

U . ‘‘*.*’’ matches all methods in all classes. Let p1 . . . pk be the compound names for realisation

sets in subject n created from pattern p.

before and after are realisation set labels from an input subject. Using forwards-to and extract

we construct output subject labels for these realisation sets. Let M be those realisation sets that

should be bracketed:

M = {p1 . . . pk} \

{n.map.forwards-to(extract .map.?(before)).forwards-to(extract .map. .?(before)),

forwards-to(n.map.extract .map.?(after )).forwards-to(extract .map. .?(after ))}

For each entry in M , bracket-exec replaces the correspondence clause in U with a new correspon-

dence clause containing the updated input sequence q. The forwarding set, describing the elements

of q which contribute to return value computation, is unchanged.

replace(mi : composed-of(q, F ), mi : composed-of(〈before , q, after〉, F )) ∀mi ∈ M

Next, the classes containing the brackets and their members are introduced into the classes con-

taining bracketed locations. Mc, Ms and Mo respectively specify the class, instvar and operation

labels that require changing:

Mc = {match(n.cls .extractn.map. .?(mi)) | ∀mi ∈ M}

Ms = {match(n.cls .extractn.map. .?. (mi)) | ∀mi ∈ M}

Mo = {match(n.ops .extractn.map.?(mi)) | ∀mi ∈ M}

Figure 7-17 shows the clause universe being updated with new clauses containing the elements

from the wrapper classes. replace is applied for each mc ∈ Mc, ms ∈ Ms and mo ∈ Mo. Note

that the forwarding sets for classes and operations are unchanged. For classes, the wrapper class

is instantiated only when the wrappee class is instantiated. For operations, before and after are

called only when the bracketed operation is invoked. This property ensures that forwarding is done

correctly. At this point the work of bracket-exec is complete.

7.3.5 Grouper for Call Sites in Bracket Relationships

The bracket-call grouper is a control clause that sets up correspondences that realise the bracket

relationship which wraps methods at the call point. For each bracket relationship containing a from
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replace(mc : composed-of(q, F ),
mc : composed-of(〈extract?.map(before).cls .extract .map. .?(before),

q,
extract?.map(after ).cls .extract .map. .?(after )〉,

F ))

Let v = extract .cls. .?(ms) in
replace(ms : composed-of(q, F ),

ms : composed-of(〈extract?.map(before).cls .extract .map. .?(before).v,
q,
extract?.map(after ).cls .extract .map. .?(after ).v〉,
∅))

replace(mo : composed-of(q, F ),
mo : composed-of(〈extract?.map(before).ops .extract .map.?(before),

q,
extract?.map(after ).ops .extract .map.?(after )〉,

F ))

Figure 7-17: Updating existing clauses with correspondences from the wrapper class.

clause in the composition specification, a bracket-call control clause is placed into the universe.

Multiple groupers may be applied to a possibly overlapping set of call points. The order in which

bracket-call groupers are processed sets the order of wrapper method invocation. The activity of

this clause can be summarised as follows:

1. Use the pattern to identify the call set clauses whose attributes will be extended with the

wrappers.

2. Add the realisation sets denoting the wrappers to each call set label attribute.

3. Compose into each class containing a bracketed call set the elements of each class containing

the wrappers.

This control clause has the following form:

bracket-call(n, 〈p, f, before, after〉)

The first parameter n is the name of the output subject. The second parameter is a 4-tuple where p is

the pattern describing the methods which should be bracketed, f is a list of either class or operation

labels describing the call points, before and after are the realisation sets of wrapper methods. The

return value from the bracketed method call is passed back to the calling context and the return

values from wrapper calls are discarded. At most one of before and after can be null.

Let p1 . . . pk be the realisation set labels matched by pattern p. In order to select the call points,

we determine set M of realisation set labels matched by p. To prevent recursive bracketing, this set

does not include the realisations denoting the wrappers:

M = {p1 . . . pk} \

{n.map.forwards-to(extract .map.?(before)).forwards-to(extract .map. .?(before)),

forwards-to(n.map.extract .map.?(after )).forwards-to(extract .map. .?(after ))}
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Next, we search U for call set clauses that describe calls to nodes in M . Set D contains the call set

labels which should be bracketed:

D = {match(n.map. . .extract .ops.?(f
′). ) ∨

match(n.map. . . .extract .cls.?(f
′)) | f ′ ∈ f}

The attribute of each d ∈ D is extended with before and after realisation sets:

replace(d$cs , d$〈before, d$cs , after〉)

where d$cs is the attribute of a call set clause d

The final step is the same as for bracket-exec. Each class containing a wrapper method and its

members is introduced into the classes containing bracketed call points. Mc, Ms and Mo respectively

specify the class, instvar and operation labels that require changing:

Mc = {match(n.cls .extractn.map. .?(d)) | ∀d ∈ D}

Ms = {match(n.cls .extractn.map. .?. (d)) | ∀d ∈ D}

Mo = {match(n.ops .extractn.map.?(d)) | ∀d ∈ D}

Figure 7-17 shows the clause universe being updated with new clauses containing the elements from

the wrapper classes. replace is applied for each mc ∈ Mc, ms ∈ Ms and mo ∈ Mo. At this point

the work of bracket-call is complete.

7.4 The Model of Type Composition

In this Section we introduce the model for composing subjects annotated with Subjective Ownership

Types. We will argue that subject composition based on our notion of type equivalence leads to

deep ownership in the output subject.

The aim of subject composition is to create a program that combines the functionality of its

input subjects in a useful way. The role of SAPS is to clarify subject interaction by constraining

aliasing in a multi subject environment. So SAPS should enable the ownership properties of the

output subject to be determinable from the inputs and the composition specification.

The model we propose is one where composition preserves the ownership properties of its input

subject. Subjects may be composed using the rules we have described so long as the ownership

properties of each input subject continue to hold. We intend for all subjective ownership type

declarations in each input subject to stay true after composition for all valid compositions. On the

positive side, this model leads to a nice property that every object keeps its representation context;

representation containment is preserved and no object is exposed outside its owner. On the negative

side, this model requires subjects with inherently different ownership properties to compromise on

a common ownership structure. The consequences of this composition model for subject-oriented

programming are evaluated in Chapter 8.

Our model depends on two factors presented over the following two Subsections:

• A means of determining equivalent subjective ownership types across the input subjects.

• SOT-aware composition rules that preserve each subject’s ownership properties.
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7.4.1 Subjective Ownership Type Equivalence

In Subject-Oriented Programming the composable elements of subjects are brought together by

defining a correspondence between them. Corresponding elements are composed into a single element

in the output. The attributes of corresponding elements are combined to create the attribute of the

output element. Types are attributes of both field variables and operations. SOP only permits

composition of elements with equivalent types. In the case of value types equivalence is observable

immediately, e.g. composition of int type variables is allowed but composition of variables of type

int and float is not allowed. For abstract types, equivalence means either that corresponding

elements have types common to all subjects or type equivalence results from class correspondence.

Common types are generated from classes which are defined in class libraries and imported into each

subject that uses them.

Subjective Ownership Types are an extension to existing type declarations of an object-oriented

language. All elements with value types have global aliasing properties and require no additional

type checking. Abstract types are derived from composable and uncomposable classes. The data

component of a type is followed by a sequence consisting of the owner context and other identifiers

which bind the ownership parameters in the uncomposable class declaration.

For types derived from composable classes, data type equivalence usually is inferred from the

composition specification. By definition, uncomposable classes cannot be composed. Uncomposable

classes are defined in libraries and imported into all subjects that need them. For types derived

from uncomposable classes, data type equivalence is observable immediately. Context identifiers

appear in a sequence after the data component. Suppose a number of such sequences are combined.

Clearly, all sequences are of the same length: atomic types have no context identifiers; abstract data

types derive from the same uncomposable class and thus require the same number of contexts in

all subjects; all types derived from composable classes require exactly one context representing the

owner. The equivalence in the context component of a type is checked one position at a time. There

are three possible combinations of contexts:

1. Explicit context combined with an explicit context.

2. Explicit context combined with an unknown context.

3. Unknown context combined with another unknown context.

In Figure 7-18, context correspondences labelled (1), (2) and (3) relate to the points in the

enumerated list above. For explicit contexts, equivalence is observable immediately from the repre-

sentation. Case (1) in Figure 7-18 shows that subjects S1 and S2 both view A.h as being owned by its

container, an object of class A. In case (2) an exp combines with an unk in class A. The unk assumes

the value of the exp in A, producing a resolution. In the Figure, unkk resolves to exp1 in class A. In

case (3), when all corresponding contexts are unknown, no resolutions occur but the composition

specification must infer a correspondence between those unks. The composition specification must

specify that unkm in S1.A corresponds with unkm in S2.A. This is indeed the case in Figure 7-18:

the mergeByName composition strategy will create a correspondence for unkm.

unk Resolution

In principle, a subject composition need not resolve all unks appearing in all composed subjects, and

each composition can resolve more and more unks. Section 9.2 on page 215 will show that partial
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Figure 7-18: Context correspondences

resolution plays an important role in the future development of SAPS. However, presently we require

that:

1. Every context combination yields a resolution.

2. Subject composition resolves all unks in all input subjects. An unk must resolve in every class

where it may be observed in the type of a declaration, an expression or subexpression.

Resolutions can occur in two ways:

• Directly through combination of types of corresponding elements. When a resolution occurs,

the Subject Composer creates a resolution mapping ρ which maps class name, unk pairs to exp

values:

ρ
def
= {(C, k) 7→ n}∗

• Indirectly using association and inheritance relationships between classes. Associations are

formalised in code by field accesses, updates and method calls. Associations and inheritance

can propagate a resolution between classes. Section 7.6 on page 170 will present the resolution

validation algorithm which consumes a resolution mapping and attempts to resolve unks in all

classes.

Direct and indirect resolution is shown in Figure 7-19. Suppose that subjects S1 and S2 are

merged by name. Classes S1.A and S2.A correspond, and so do instance variables S1.A.c and

S2.A.c. Instance variable correspondence produces resolution (A, k) 7→ 1. However, class S1.B also

has a construct whose type depends on unkk which is not resolved by composition. Composition of

S1 and S2 cannot resolve unkk in B because S2 has no concept of this kind. These sort of differences

are totally consistent with subject-oriented development: each subject should only define concepts

that serve to address its concern. Indirect resolution uses the association between classes S1.A and

S1.B to propagate the resolution from S1.A to S1.B. S1.A.foo defines a field update expression
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subject S1 {

unk k;

class A where 1 <= k {

B<1> b;

C<k> c;

void foo() { b.c = c; }

}

class B where 1 <= k {

C<k> c;

}

class C { }

}

subject S2 {

class A {

C<1> c;

D<1> d;

void bar() { c.d = d; }

}

class C {

D<1> d;

}

class D { }

}

Figure 7-19: Example showing direct and indirect unk resolution

which associates classes A and B. Feeding the resolved values into ∆1 (defined in Section 6.2.2 on

page 107) yields resolution (B, k) 7→ 1.

Indirect resolution is meaningful because most subjects implement collaborations. Objects col-

laborate by sending each other messages containing references to other objects. Indirect resolution

depends on the fact that at runtime field access, update and method call expressions create a link

between two references to the same object. It then uses the principles of explicit context identifier

arithmetic to calculate the correct type at the other end of the association. Thus, for subjects im-

plementing a single collaboration, a single direct resolution may be sufficient to resolve the unknown

context for all classes. Other subjects may require multiple direct resolutions to achieve subject-wide

resolution.

Resolution Constraints

unks often have resolution constraints in the form of ucircs. Conceptually, resolution constraints

ensure that in each class an unk denotes a range of exps and no resolution in the valid range

causes representation exposure. Recall that at subject level, ucircs specify inter-unk ordering. Given

declaration ucirc k <= m and some class A where the value of unkk and unkm can be observed, any

resolution for unkk and unkm in A must satisfy k <= m. At class level, ucircs are stated in where

clauses. These specify a range to which an unk must resolve in that class. Given declaration class

B where 1 <= k, unkk must resolve to a value greater than exp0 in B and its subclasses.

Resolution constraints are important during composition. After all, this is the time when unks

are replaced by exps. However, the declared ucircs are not suitable for this purpose. Composition

changes the make-up of a class, introducing new instance variables and changing operation be-

haviour. For instance, the override composition rule selects one method definition over a number

of others. The resolution constraints required by the overriding expression are likely to be different
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subject S1 {

class TitleBar {

Widget<0> w;

}

...

}

subject S2 {

class Window {

Widget<0> w;

}

...

}

Figure 7-20: Example for SOT-aware composition rules.

to the constraints of overridden operations. Consequently, to ensure valid resolution the resolution

constraints pertaining to a class must be inferred from its declarations and definitions in the output.

7.4.2 SOT-Aware Composition Rules

Composition rules are defined in terms of element grouping and attribute combination. The preced-

ing Subsection was concerned with combination of type attributes. Presently we are concerned with

element grouping. There are two points which concern grouping: first, we argue that the composi-

tion rules in this Chapter do not cause representation exposure; secondly, we take a look at bracket

relationships in the contexts of SAPS.

Composition Rules and Representation Exposure

We require subject composition to preserve the ownership properties of input subjects. We propose

that in order to do so, all class member grouping should take place in the scope of grouped classes.

Given type equivalence, this property ensures that for all objects, a representation object in one

subject is treated as representation in all other subjects.

The SAPS model has two kinds of class member: instance variables and operations. The struc-

tural properties of the system of labels ensure that instance variables can correspond only within

corresponding classes. To demonstrate this point, consider Figure 7-20. In order for S1.TitleBar.w

and S2.Window.w to ever reference the same Widget object, S1.TitleBar and S2.Window must

correspond. If both subjects type checked correctly before composition, then we can be certain that

no subject exposes the Widget object outside its representation context.

Structural properties alone are not enough to ensure that newly introduced behaviour does not

cause representation exposure – this is the domain of composition rules. In the system of labels,

behaviour is abstracted by realisation labels. All is safe while classes execute realisations sourced

from their own subject. Representation exposure can be caused by an external realisation that finds

its way into the set by composition. So, this problem can be addressed if composition rules control

what realisations get executed.

In the system of labels, realisations are nested inside realisation sets. By definition of realisation

set, during method dispatch on a receiver all realisations in a realisation set will be executed. If that

realisation set is itself composed of others, then all input realisation sets will contribute to the set

of executed realisations. But, access to realisations is guarded by (operation, class) label pairs.
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void f4(Stack<1,1> s)

void f3(Stack<1,1> s)

Class C

void f2(Stack<0,k> s)

Class B

void after(Stack<m,n> s)

void before(Stack<m,n> s)

class X

Subject S3

void after(Stack<m,n> s)

void before(Stack<m,n> s)

void after(Stack<m,n> s)

void before(Stack<m,n> s)

void after(Stack<m,n> s)

void before(Stack<m,n> s)

void after(Stack<m,n> s)

void before(Stack<m,n> s)

void after(Stack<m,n> s)

Subject S1

Subject S2

(Clones of)(Correspondences)

void before(Stack<m,n> s)

Clone of class X for B

Clone of class X for C

Clone of class X for A
Class A

void f1(Stack<0,0> s)

Figure 7-21: The effect of bracket relationships on unk resolution

It follows that the executed realisations will come from some input class. Consequently, in order to

prevent representation exposure it is necessary for classes guarding that behaviour to be composed.

This property is true of all valid combinations of composition rules that we have specified. Top

level composition rules use name-match to group classes. All finer grained composition may add

but never delete classes from correspondence clauses.

Bracket Relationships and SAPS

Recall that bracket relationships are an asymmetric subject composition mechanism that enables the

behaviour defined in one subject to extend the behaviour defined in another. Bracket relationships

take a pattern parameter which expands into a list of classes containing the join points. The bracket

relationship composes the classes containing the wrapper methods with each class in the list. The

wrapper methods are set to execute around the bracketed points. Bracket relationships create the

effect of cloning, with the bracketed locations and wrapper methods coming from corresponding

classes. It follows that the type combination principles apply also to bracket relationships: the type

in the interface of the wrappers must be equivalent to the type of the bracketed locations.

Operations that play the role of wrapper methods can use exps and unks in the types of their

parameters. By using unks, the aspectual subject can adapt to the contexts appearing in the

bracketed locations. Recall that an unk resolves to one exp per class. The resolution is well-defined if

for multiple bracketed locations within one class, each join point resolves to equivalent exps. Figure

7-21 shows the effect of bracket relationships. Class X is “cloned” once for each class containing

bracketed locations. The unks in the wrapper methods of “cloned” classes correspond with the

contexts (both explicit and unknown) in the bracketed sites, producing the following resolutions and

unk correspondences:
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context\class A B C

m 0 0 1

n 0 k 1

Section 7.2.3 on page 140 described the conceptual difference between its two forms. Both forms

establish correspondences between the wrappee classes and the wrapper classes, in effect merging

the classes of the wrappers with each class of the wrappee. bracket-exec creates correspondences

at the receiver of the call whereas bracket-call creates correspondences at the class containing

the call. Both forms of bracket relationship lead to type combination and, hence, unk resolution

Technically, bracket-exec and bracket-call differ in terms of where resolutions occur. In bracket-

exec resolutions occur in the class containing the bracketed realisation set(s). In bracket-call

resolutions occur in the class containing the bracketed call set(s).

The SAPS notion of composable and uncomposable classes adds a new dimension to the way

the two forms are understood. In SAPS only bracket-call can be used with bracket operations

of uncomposable classes. There are two reasons for disallowing bracket-exec on operations of

uncomposable classes:

• Uncomposable classes are black-boxes. bracket-exec implies that all calls to an object of an

uncomposable class should be extended with additional behaviour. This is a “static extension”

– an extension that affects all existing clients. Inheritance is black-box extension mechanism

that should be used to specialise an uncomposable class, i.e. a black-box.

• bracket-exec implies “bracket calls to all objects of this kind”. bracket-call allows for a

more accurate specification of intent by implying “bracket calls to objects of this kind from

this set of call points”. SAPS prevents composers from making overly broad statements about

interaction. Specifying interaction in the most semantically precise way will make programs

more resilient to future changes [77]; which aids reusability.

7.4.3 Extensions to the System of Labels

SAPS introduces many new concepts into SOP. These concepts primarily affect type combination.

Composition of elements whose attributes are subjective ownership types requires us to define new

combinators. Type combination produces unk resolutions. To ensure that subject are composed

correctly it is necessary to check that unks have resolved completely. Direct resolution through

type combination creates some but not all resolutions. Therefore, in an additional final step to the

composition process the Subject Composer uses resolution propagation to indirectly resolve all unks

in all subjects.

We propose to extend to the system of labels to incorporate the following SAPS concepts:

• Composable and uncomposable classes defined or used by the subject.

• Instance variables and operations in composable classes only.

• Unknown contexts declared in the subject.

• Call sets appear only in composable classes but may call operations of composable classes.

• Clauses to collect unk resolutions from type combinations.
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∗ S : subject
S .cls : composable classes
S .imp : uncomposable classes

∗ S .ops : operations
∗ S .map : mappings

S .own : unknown contexts
S .cls .c : composable class
S .cls .c : resolution mapping ρ
S .imp.c : uncomposable class 〈k1 . . . kn〉

∗ S .cls .c.v : instvar of type t
∗ S .ops .o : operation with signature 〈t0, t1 . . . tn〉

S .ops .o : partial resolution mapping ρ∂

S .imp.o.c : uncomposable realisation set
∗ S .map.o.c : realisation set returning u
∗ S .map.o.c.r : realisation
∗ S .map.o.c.m.r : call set 〈. . . ,S .map.m.r , . . .〉

S .own.k : unknown context

Figure 7-22: Label clauses.

Figure 7-22 shows the additional clauses created to incorporate these. The * in the leftmost column

indicates that the clause is unchanged from Figure 7-5 on page 138. Working from the top, the cls

group now contains only composable classes. The imp group refers to uncomposable classes which

are either defined in subject S or imported from an external library into S. The own group contains

the subject’s unks.

The composable class clause labels composable classes. The new resolution mapping attribute

of composable classes collects the direct resolutions pertaining to each class. ρ is a set whose entries

are of the form k 7→ n where k is an unk and n is an exp. Operation labels gain the partial

resolution mapping attribute. ρ∂ has the same form as the resolution mapping attribute of

class labels. ρ∂ temporarily store resolutions from operation signature combinations which take

place independently of classes. An uncomposable class clause introduces class c which has sequence

〈k1 . . . kn〉 of ownership parameters. The sequence does not include the implicit owner parameter.

Uncomposable classes are included because they are used as types of composable elements. An

uncomposable realisation set clause denotes operation o in uncomposable class c. This clause is

included because the call set of a composable class may include calls to operations of uncomposable

classes. An unknown context clause defines an unk appearing in a subject. Unknown context

identifiers are also composable elements of subjects that may be grouped with unks from other

subjects.

The creation of resolution mappings is closely related to the issue of attribute combination.

Therefore, it makes sense to describe combination and resolution mappings together in Section 7.5.

Checking resolution mappings for consistency can take place only once all direct resolution are

collected. These checks are described in Section 7.6 on page 170.
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Composition Attribute Combinator Resolution

Construct Mapping Fn

instance variable Rinst

type Ct

operation Rops

signature Cg

realisation set Rrs

call set Rcs

call set attrib. Cg

Figure 7-23: Composition elements used in the definition of the SAPS mergeByName composition
rule

7.5 Type Combinators and Resolution Collection

This Section defines type combinators and resolution mapping functions used by composition rules.

Figure 7-23 shows that there are two type combinators: Ct for combining a sequence of types and

Cg for combining types in signatures. The latter simply calls the former to combine the types at

each position. Signature combination is used to combine the attributes of operation clauses and

to check the attributes of call set clauses.

Type combination produces unk resolutions for the class where resolution occurs. Resolution

mapping functions are shown in the third column in Figure 7-23. Type combinators are applied

in the context of some clause. Figure 7-4 on page 137 shows that in the case of instvar and call

set labels, the class in which resolution occurs is known from the compound name; call sets and

instance variables are nested inside a class. The same is not true of operation labels. Resolutions

from compositions of operation labels cannot be immediately attributed to the a class. Instead, we

postpone resolution mapping creation until realisation set labels are combined. Resolution map-

pings are stored as attributes of the output class labels. When operation signatures are combined

we store partial resolution mappings as attributes of operation labels.

7.5.1 The Type Combinator

The type combinator Ct(Q) determines the output type by composing types in Q. In the process, Ct

checks that the types can be combined. What denotes a composable sequence of types? Ownership

types have two parts: the data type and the ownership context. In order for types to be composable

both parts should correspond. The data types must come either from the same uncomposable class

or from composable classes that are specified as corresponding. For example, for composable classes

R and S the following must hold:

Ct(〈S1 .cls.R〈1〉, =⇒ S .cls.T : composed-of(〈S1 .cls.R,S2 .cls.S 〉,

S2 .cls.S 〈1〉) = T 〈1〉 {S1 .cls.R, S2 .cls.S}) ∈ U

Ownership contexts can be made up of explicit and unknown context identifiers. When unks are

used, we require every combination of contexts to yield a resolution. Hence, for any sequence Q

there must be at least one type with an exp for each context parameter position.

Before Ct is presented, we must describe the functions used in its definition. dt-forward(Q)

determines the name of the data component of the output type from a sequence of input types

Q = 〈t1 . . . tk〉.
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dt-forward(〈t1 . . . tk〉)
def
= dt(t1) if ∀i ∈ [1, k] extract .?(ti) = imp ∧

dt(t1) = dt(t2) = . . . = dt(tk)

forwards-to(dt(t1)) if ∀i ∈ [1, k] extract .?(ti) = cls ∧

forwards-to(dt(t1)) = . . . = forwards-to(dt(tk))

Let Mc be a two-dimensional matrix of contexts created from Q. The context identifiers of each

type are placed into a row such that Mc[i, j] refers to the jth context in the ith type in Q. We define

two indices expindex (Mc, j) and unkindex (Mc, j) to column j of matrix Mc as follows:

expindex (Mc, j)
def
= {i | Mc[i, j] ∈ N ∪ {world}}

unkindex (Mc, j)
def
= {i | Mc[i, j] /∈ N ∪ {world}}

Note that i is in range [1, |Q|].

The exp-exists test holds if there is at least one exp for a corresponding set of contexts in

column j of Mc. The exp-equiv test holds if exp-exists and all corresponding exps in column j

are equivalent (or equal to world). exp-value returns the output context value for column j:

exp-exists(Q, j)
def
= expindex (Mc, j) 6= ∅

exp-equiv(Q, j)
def
= exp-exists(Q, j) ∧ ∀i, i′ ∈ expindex (Mc, j), Mc[i, j] = Mc[i

′, j]

exp-value(Q, j)
def
= Mc[i, j] if exp-equiv(Q, j) ∧ i ∈ expindex (Mc, j)

null otherwise

Now we can present the type combinator. Ct takes a sequence of types to combine Q and returns

the output type.

Definition: (Type Combinator)

Ct(Q)
def
= dt-forward(Q)〈exp-value(Q, 1), . . . , exp-value(Q, m)〉

where Q = 〈t1〈c1,1 . . . c1,m〉, t2〈c2,1 . . . c2,m〉 . . . tk〈ck,1 . . . ck,m〉〉

The Main Resolution Mapping Function

The resolution mappings of unks are stored in the clause universe as attributes of class labels.

Alongside combinators, the Resolution Mapping Function R(Q) is called to create the resolution set

for a sequence of corresponding types Q. The definition of R also uses the matrix representation of

types.

The exps and the unks appearing in the same column of Mc generate resolutions. For some

column j of Mc, res-map creates a set of resolutions:

res-map(Q, j)
def
= {Mc[i, j] 7→ exp-value(Q, j) | i ∈ unkindex (Mc, j)}

A union of resolutions produced by all columns gives the complete resolution mapping for a sequence

of corresponding types in Q:
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Definition: (Resolution Mapping Function)

R(Q)
def
=

⋃
j∈[1,m] res-map(Q, j)

where Q = 〈t1〈c1,1 . . . c1,m〉, t2〈c2,1 . . . c2,m〉 . . . tk〈ck,1 . . . ck,m〉〉

Resolutions on Instance Variables

When instance variables are composed, the resolution mapping attribute for the class containing the

instance variable n is updated with resolutions from combinations of types in Q:

Rinst (n, Q)
def
= replace(c : resolution mapping ρ, c : resolution mapping ρ ∪ R(Q))

where c = extract?.cls(n).cls .extract .cls.?(n)

7.5.2 Type Sequence Combinator

The type sequence combinator is best understood in terms of its application to operation signatures.

Signatures are the attributes of operation clauses and this combinator is most commonly used to

combine the signatures of corresponding operations. In order to be composable, operations must

define the same number of parameters. The return values and parameters in corresponding positions

must have equivalent types as defined by Ct.

The type sequence combinator Cg(Q) takes a sequence Q of type subsequences to be combined,

and produces the output subsequence. Cg is defined in terms of the type combinator Ct which is

called once for each set of corresponding types.

Definition: (Type Sequence Combinator)

Cg(Q)
def
= 〈Ct(〈t0,0, t1,0 . . . tk,0〉), . . . Ct(〈t0,m, t1,m . . . tk,m〉)〉

where Q = 〈〈t0,0, t0,1 . . . t0,m〉, 〈t1,0, t1,1 . . . t1,m〉, . . . , 〈tk,0, tk,1 . . . tk,m〉〉

Resolutions in Operation Signatures

Signature combination produces unk resolutions which should be associated with output classes.

But operation signature combination is defined separately from classes. The missing information

becomes available only when realisation sets are combined. In the meantime, we associate resolutions

from signature combination with the partial resolution mapping attribute of the output operation

label n.

Rops(n, Q)
def
= replace(n : partial resolution mapping ρ∂ ,

n : partial resolution mapping
⋃

i∈[1,m]

R(〈t0,i, t1,i . . . tk,i〉))

where Q = 〈〈t0,0, t0,1 . . . t0,m〉, 〈t1,0, t1,1 . . . t1,m〉, . . . , 〈tk,0, tk,1 . . . tk,m〉〉

Realisation set combination provides an opportunity to fill in the missing information for partial

resolutions created by signature combination. Partial resolution mappings are stored as attributes
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of output operation labels such as the following:

n.ops .foo : partial resolution mapping {k 7→ v}

The name of the class is taken from the name of the output realisation set label r, and the resolution

mapping attribute of this class is updated. Notation m$prm denotes the partial resolution mapping

attribute of label m:

Rrs(r)
def
= replace(c : resolution mapping ρ, c : resolution mapping ρ ∪ ρ∂)

where c = extract?.map(r).cls .extract .map. .?(r)

and ρ∂ = (extract?.map(r).ops .extract .map.?(r))$prm

7.5.3 Checking Call Sets

A call set label has as its attribute a sequence of realisation sets. Any method calls to the realisation

set denoted by the label generate calls to the elements in the attribute. This property is used

with bracket relationships on call sites. During composition it is necessary to type check that the

signatures of operations described by the call sets match because the same arguments are bound

to the parameters of all operations. However, there is an exception. The wrapper operations used

in bracket relationships also accept either no parameters or special meta-parameters describing

the bracketed operation, e.g. the bracketed operation name. These do not concern us, for wrapper

operations with no parameters or meta-parameters do not combine types. Methods used as wrappers

always have void return type, so only parameter types are checked.

Call set checking applies Cg to sequences of signature types not including the return type. For

attribute M of a call set label CS this sequence is given by:

Br = 〈[match(extract?.map(CS ).ops .extract .map.?(M [i]))]$params | i ∈ [1, |M |]〉

where params denotes the parameter types of an operation label

Resolutions from Call Sets

Allied with the above checks is resolution mapping collection from call sets. The unks in the interface

of wrapper methods resolve the exps in the types of the wrapper operation.

Function Rcs updates the resolution mapping of the class containing the call set label. It has two

parameters where the first parameter n is the compound name of the call set label, and the second

parameter Q is a sequence of signature types not including the return type given by Br above:

Rcs(n, Q)
def
= replace(c : resolution mapping ρ,

c : resolution mapping ρ ∪
⋃

t∈[1,s]

R(〈p0,t, p1,t . . . pk,t〉)

where c = extract?.map(n).cls .extract .map. .?(n), and

Q = 〈〈p0,0, p0,1 . . . p0,s〉, 〈p1,0, p1,1 . . . p1,s〉 . . . 〈pk,0, pk,1 . . . pk,s〉〉
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subject FireController {

unk sc_owner, arr_owner, pr_owner;

ucirc arr_owner <= pr_owner;

abstract class Stage {

SafetyCurtain<sc_owner> sc;

Vector<0,pr_owner> props;

abstract void arrangeProps(Prop<arr_owner,pr_owner>[] pr);

void makeSafe() {

arrangeProps(null);

sc.lower();

}

}

...

}

subject Performance {

class Stage {

SafetyCurtain<1> sc;

Vector<0,2> props;

void arrangeProps(Prop<1,2>[] pr) { .. }

}

}

compose Performance, FireController into SafePerformance;

mergeByName;

Figure 7-24: Composition of Performance and FireController subjects

7.5.4 Example

Type combination and resolution mapping collection is demonstrated in terms of composition of sub-

jects Performance and FireController shown in Figure 7-24. The output subject, SafePerformance,

is created using mergeByName semantics.

The type combinator is applied to determine the types of corresponding instance variables sc

and props. It is activated after grouping activity completes, creating the following clauses in U : Ct

is applied to integrate the types of corresponding instance variables:

SafePerformance.cls.Stage.sc : instvar of type Ct(

〈Performance.cls.SafetyCurtain〈1〉,

FireController .cls.SafetyCurtain 〈sc owner〉〉)

SafePerformance.cls.Stage.props : instvar of type Ct(

〈Performance.imp.Vector 〈0, 2〉,

FireController .imp.Vector 〈0, pr owner〉〉)

Next Rinst is invoked as follows:

Rinst (SafePerformance.cls.Stage.sc , 〈Performance.cls.SafetyCurtain 〈1〉,

FireController .cls.SafetyCurtain 〈sc owner〉〉)

Rinst (SafePerformance.cls.Stage.props , 〈Performance.imp.Vector 〈0, 2〉,

FireController .imp.Vector 〈0, pr owner〉〉)

Rinst creates resolution which are added to clause universe as the attribute of the pertinent class
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label. The clause universe will contain the following clauses:

SafePerformance.cls.Stage.sc : instvar of type SafePerformance.cls.SafetyCurtain 〈1〉

SafePerformance.cls.Stage.props : instvar of type SafePerformance.imp.Vector 〈0, 2〉

SafePerformance.cls.Stage : resolution mapping {sc owner 7→ 1, pr owner 7→ 2}

To resolve unkarr owner , operations arrangeProps must be composed using the type sequence

combinator Cg. Cg invokes Ct once in a benign way to combine the corresponding void types of

return values. The second invocation combines the parameter types. At this point Rops is invoked

in order obtain the resolutions from this signature combination:

Rops(SafePerformance.ops.arrangeProps , 〈〈void(),Performance.cls.Prop〈1, 2〉〉,

〈void(),FireController .cls.Prop〈arr owner , pr owner〉〉〉)

After these activities the clause universe contains the following clauses:

SafePerformance.ops.arrangeProps : operation with signature 〈void〈〉,

SafePerformance.cls.Prop〈1, 2〉〉

SafePerformance.ops.arrangeProps : partial resolution mapping {arr owner 7→ 1, pr owner 7→ 2}

mergeByName creates a correspondence clause for the realisation set representing Stage.ar-

rangeProps(..). Combination of realisation sets provides an opportunity to complete the partial

resolution. Resolutions in operation arrangeProps occur inside class Stage. The resolution mapping

of class Stage is updated with the partial resolutions from operation arrangeProps, giving:

SafePerformance.cls.Stage : resolution mapping

{sc owner 7→ 1, arr owner 7→ 1, pr owner 7→ 2}

7.6 Resolution Validation

Resolution validation checks that unks resolve to exps in all classes where they appear and that

resolutions satisfy resolution constraints. For each unk in the output subject we construct a graph.

Its vertices are classes and edges are established by the definitions and behaviour in the output

classes.

We will present a resolution propagation algorithm which attempts to determine an exp value

for each vertex of each graph. Resolution propagation starts when the graphs are seeded by direct

resolutions from type combinations. In the present work, failure to determine the exp for all vertices

indicates an invalid subject composition. The value of partial resolution is discussed in Future Work

on page 215. Before presenting the algorithm we explain the preparation stages which include unk,

resolution constraint and inter-class relationship collection.

7.6.1 Preparation

Resolution validation requires access to the following:

• The set of unks that appear in the types of composition components. The unks pertaining to

each class are a union of unks in the composition subelement of the class.

• The set of resolution constraints that apply to the unk set. These are used to check that unks

resolve correctly in each class.
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S .cls .c.v : instvar of type t
S .ops .o : operation with signature 〈t0, t1 . . . tn〉
S .map.o.c.r : realisation types {t1 . . . tm}
S .cls .c : unks to resolve {u1 . . . up}

S .cls .c.v : resolution constraints 〈e.g. 1 <= k, m <= n, p <= 2〉
S .ops .o : resolution constraints 〈. . .〉
S .map.o.c.r : resolution constraints 〈. . .〉
S .cls .c : resolution constraints 〈. . .〉

S .map.o.c.r : association set {〈d, n, k〉}∗

S .cls .A1 .v : with classes {A2 . . . An}

Figure 7-25: Labels used for resolution validation.

• The resolutions mappings from type combinations for seeding the resolution propagation al-

gorithm.

• Relationships between classes by which a resolved value can be propagated from class to class.

All this information is collected during subject type checking. The system of labels conveys the

resolution data to the resolution propagation algorithm.

unk Collection

The set of all unks in a class is determined from the types of composition components defined or

used in that class. The top three labels in Figure 7-25 show that this information is obtained from:

• The declared types in operation signatures, instance and local variables.

• The types of expressions in realisations.

An unk resolves to one exp per class, so the next task is to collect all unks pertaining to each output

class. The “unks to resolve” attribute of class labels holds this set. Suppose that an output class

S.C is created by composing S1.C1 . . . Sn.Cn, then the attribute value is given by unksToResolve:

unksToResolve(S .cls.C )
def
= {get-unks(v$type) | v ∈ match(Si .cls.Ci . ) ∧ i ∈ [1, n]} ∪

{get-unks(o$sig) | o = match(Si .ops.x ) ∧

x ∈ match(Si .map. .Ci ) ∧ i ∈ [1, n]} ∪

{get-unks(r$unks) | r ∈ match(S .map. .C . )}

where, for some type t or set of types T , get-unks is defined as:

get-unks(T )
def
=

⋃

t∈T

get-unks(t)

get-unks(t)
def
= {c | c is an unk in t}

Resolution Constraint Collection

Composition changes the make-up of a class, introducing new members and overriding operation

implementations. Consequently, the resolution constraints of an output class must be gathered
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from its subcomponents. In the system of labels only instance variables, operation signatures and

realisations are associated with types. Figure 7-25 shows that in the system of labels, this information

is available as attributes of instvar, operation, and realisation clauses. The constraints pertaining

to each output class S.C composed from S1.C1 . . . Sn.Cn are collected together using collectUcircs

and set as an attribute of S.C:

collectUcircs(S .cls .C )
def
= {v$rc | v ∈ match(Si .cls .Ci . ) ∧ i ∈ [1, n]} ∪

{o$rc | o = match(Si .ops .x ) ∧

x ∈ match(Si .map. .Ci) ∧ i ∈ [1, n]} ∪

{r$rc | r ∈ match(S .map. .C . )}

The penultimate step is to reduce the resolution constraints to a canonical form using the following

rewrite rules. n, n′ denote exps and u, v, w denote unks.

{(u ≤ n), (u ≤ n′)} ⊆ RC
redex
=⇒ {u ≤ min(n, n′)} ∪ [RC − {(u ≤ n), (u ≤ n′)}]

{(n ≤ u), (n′ ≤ u)} ⊆ RC
redex
=⇒ {u ≤ max(n, n′)} ∪ [RC − {(n ≤ u), (n′ ≤ u)}

{(u ≤ v), (v ≤ w)} ⊆ RC ∧ (u ≤ w) /∈ RC
redex
=⇒ {u ≤ w} ∪ RC

The resolution sets of unks may not be empty. No input subject’s resolution set was empty before

composition, so an empty resolution set at this point indicates an invalid composition. unk cycles

lead to singleton resolution sets. Singleton resolution sets are acceptable during composition because

they still make valid resolution possible.

Example

To demonstrate resolution constraint collection consider the example in Figure 7-26. The example

shows a mergeByName composition of subjects S1, S2 and S3 into the output subject S. For output

classes A and T, two unks are defined: unkk and unkm. Resolution constraints are collected from

all instance variables types, operation signatures and method implementations that contribute to

classes A and T. mergeByName semantics ensure that all input elements contribute to the output,

so we can equally well observe the constraints collection from Figure 7-26:

• For class A:

line 4: k ≤ 1

line 6: k ≤ 1

line 14: k ≤ m

line 16: 1 ≤ k, 1 ≤ m

• For class T:

line 20: k ≤ m

line 26: 1 ≤ m
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1 subject S1 {

2 unk k;

3 class A where k <= 1 {

4 Vector<k,1> v;

5 void foo(S<1> s) {

6 v.add(s);

7 }

8 }

9 }

10 subject S2 {

11 unk k, m;

12 ucirc k <= m;

13 class A where 1 <= k, 1 <= m {

14 Vector<k,m> v;

15 void bar(T<1> t) {

16 t.v = v;

17 }

18 }

19 class T where 1 <= k, 1 <= m {

20 Vector<k,m> v;

21 }

22 }

23 subject S3 {

24 unk m;

25 class T where 1 <= m {

26 Vector<1,m> v;

27 }

28 }

29 compose S1, S2, S3 into S;

30 mergeByName;

Figure 7-26: Resolution validation example
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Figure 7-27: unk resolution propagation rules

This composition creates the following labels in the clause universe:

S .cls .A : unks to resolve {k, m}

S .cls .T : unks to resolve {k, m}

S .cls .A : resolution constraints {(k ≤ 1), (k ≤ m), (1 ≤ k), (1 ≤ m)}

S .cls .T : resolution constraints {(k ≤ m), (1 ≤ m)}

The composition in Figure 7-26 has created resolutions that are represented in U as attributes of

class nodes:

Correspondence of lines 4 and 14 S .cls .A : resolution mapping {m 7→ 1}

Correspondence of lines 20 and 26 S .cls .T : resolution mapping {k 7→ 1}

Resolution Propagation Between Classes

Indirect resolution uses association and inheritance for propagation. The principles of context iden-

tifier arithmetic presented in Section 6.2.2 on page 107 create the association links. Propagations

can pass both up and down the inheritance hierarchy using the types of class members to create

links.

We can represent both kinds of propagation pictorially in class graphs. Figure 7-27 shows reso-

lution propagation for unkk. In each diagram, unkk is already resolved in class A, and the aim is to

resolve it in B. There are two kinds of edges between classes:

• Association is represented by open ended edges. Associations denote resolution propagation

due to behaviour, such as due to method calls, field access and update expressions. The

identifier on the edge denotes the owner context of the receiver expression.
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• Inheritance is represented by solid triangular ended edges. Here, inheritance denotes resolu-

tion propagation due to the declared inheritance relationships.

From the top down in Figure 7-27, an association edge from A to B indicates that A contains an

expression that passes an object whose type contains unkk to an n-owned instance of class B. The

expression in B denotes the value of unkk, calculated from the value of unkk in A and the value on

the edge. Similarly, for the second picture from the top, the value of unkk is known in A and not

known in B. The arrow direction denotes that the expression connecting these classes is defined in

B. n can be an unk or an exp. When n is an unk, it must be resolved at the class from where the

arrow emanates before proceeding to resolve unkk in B.

For inheritance, the directed end points to the superclass. If A is a subclass of B, unkk should

resolve to the same value in B only if B also has types that utilise unkk. If A is B’s superclass and B

has types that utilise unkk, then unkk should resolve to the same value in B as in its superclass.

7.6.2 Clausal Representation of Association and Inheritance

In the clause universe the association relationships in subjects are represented as attributes of re-

alisations. These labels are constructed during subject typechecking. Figure 7-25 shows that the

association set attribute of realisations is a set of tuples where d is the datatype of the receiver

expression, n is the owner context (explicit or unknown) in the type of the receiver expression and k

is an unk in the type of the actual parameter or the field update expression. For example, consider

the following code and the label it generates:

1 class C {

2 D<0> d;

3 E<k> e;

4 F<p, q> f;

5 void foo() {

6 d.bar(e);

7 e.f = f;

8 }

9 }

Suppose the body of method foo() is represented by label S .map.foo.C .r . The expressions in

the realisations produce the following association tuples:

Line 6: 〈D, 0, k〉

Line 7: 〈E, k, p〉; 〈E, k, q〉

Note that line 7 produces two tuples: one for each unk in the type of the expression on the right

hand side of the assignment. The complete label is:

S .map.foo.C .r : association set {〈D, 0, k〉, 〈E, k, p〉, 〈E, k, q〉}

Inheritance between classes is not represented explicitly in the system of labels but is inferred

from realisation set, realisation and instance variable labels:

• For realisation set-based propagation, suppose that unkk resolves in class C of subject S and

there exist the following labels in the clause universe:

S .map.foo.C : realisation set returning . . .

S .ops .foo : operation with signature 〈. . . , t〈. . . , k, . . .〉, . . .〉
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Then all other classes in S that also define operation foo(..) have the same resolution for

unkk. This notion is formalised by RSBP which takes subject S and operation foo, and returns

the labels of classes that share this operation. The set of classes affected by this resolution is

given by:

RSBP(S, foo)
def
= {c | c ∈ match(S .map.foo. )}

• For realisation-based propagation, suppose that unkk resolves in class C, realisation r has unkk

in its realisation types attribute and the clause universe has the following labels:

S .map.foo.C .r : realisation

S .map.bar .D .r : realisation

S .map.foo.E .r : realisation

That is, three realisation sets share the same realisation r. Classes D and E must also have

the same resolution. Hence, when unkk resolves in class C, it resolves in all classes in this set.

In the general case, for realisation r′, the set of classes in subjects S that have r′ in one or

more realisation sets is given by RBP(S, r′):

RBP(S, r′)
def
= {match(S .cls .x) | x ∈ {extract .map. .?(rs) | rs ∈ match(S .map. . .r ′)}

• Finally, in instance variable-based propagation instance variables propagate resolutions up and

down the class hierarchy. Suppose unkk resolves in class C and there exist the following labels

in the clause universe:

S .cls .C .v : instvar of type t〈. . . , k, . . .〉

Then, all classes that define the same instance variable will also resolve unkk. The following

does not specify all affected classes because unrelated classes may define an instance variable

with the same name:

{c | c ∈ match(S .cls . .v)}

Instead, all classes that define or inherit the same instance variable are given as values of the

with classes attribute of an instance variable label (also shown in Figure 7-25 on page 171:

S .cls .A1 .v : with classes {A2 . . . An}

Upon seeing this label we can conclude that there exist n − 1 other labels:

S .cls .Ai .v : with classes {A1 . . . An} \ {Ai} i ∈ [2, n]

Supposing unkk resolves in class C of subject S, for each instance variable v whose contexts

include unkk, the set of classes affected by this resolution is given by IVBP:

IVBP(S, C, v)
def
= {match(S .cls .x ) | x ∈ S .cls .C .v$wc}

where notation p$wc denotes the values associated with the with classes attribute of label p.
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7.6.3 Graph Representation for Resolution

Resolution propagation is most easily understood in terms of a class graph representation. For

each unkk in the output subject S, we construct graph Gk by obtaining values from the clause

universe. Each Gk = 〈V, A, H〉 is made up of three elements: V is the set of vertices; A is the set

of association edges connecting the the elements of V such that v
n

−→ v′ ∈ Gk if 〈v, n, v′〉 ∈ A; H

is the set of (bi-directed) inheritance edges connecting the elements of V such that v ↔ v′ ∈ Gk if

〈v, v′〉 ∨ 〈v′, v〉 ∈ H . The edges are bi-directional to indicate that the same rule is used to propagate

resolutions both ways. The set of all graphs is G = {Gk1
. . . Gkm

}. For each Gk ∈ G the sets V, A, H

are constructed as follows:

• The set of vertices in Gk is given by:

{c | c ∈ match(S .cls . ) ∧ k ∈ c$utr}

where c$utr is the value associated with the unks to resolve attribute of class c.

• The association edges are drawn based on association set attributes of realisation labels.

Each such attribute has class C as a component of its compound name. The attribute value

is a set of tuples of the form 〈C′, n, u〉. Gk has an edge labelled n from C to C′ if and only if

k = u.

• The inheritance edges are drawn based on the propagation rules defined in the preceding

Section. In Gk, we draw an edge between C and its superclass C′ if and only if C inherits from

C′ a method or an instance variable, either directly or transitively, that has unkk in its type

or signature, or if any methods of C (realisation sets) share code (a realisation) with class C′

that contains an expression or sub-expression whose type features unkk.

With each vertex v in Gk we associate its resolved value. In addition, the following functions are

defined:

• lookupk(v) is the resolved value of unkk at vertex v in Gk (class v), or error if unkk is not

resolved.

• updatek(v, n) sets the resolution for unkk in class v to n, i.e. the value at vertex v in Gk is

set to n.

Class labels’ resolution constraints attributes are not added to graphs. For each class C

they are placed verbatim into resolution constraints environments RCC . Let notation RCC [k/n]

denote the environment created by substituting n for unkk in RCC . When unkk resolves to n in

class C, we perform the substitution in the environment. If the constraints are satisfied, RCC is

reduced by eliminating tautologies, i.e. inter-exp expressions. Otherwise the resolution is invalid

and composition aborts.

Propagation starts by applying the resolution mapping on to the graph set. For each vertex of

each graph we apply the resolution if one exists and also reduce the appropriate resolution constraints
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environment.

∀Gk = 〈{v1 . . . vm}, , 〉 ∈ G

∀vi, i ∈ [1, m]

let Frm = [match(S .cls .vi)]$rm in

updatek(vi, Frm(k)) ∧RCvi [k/Frm(k)] if k ∈ dom(Frm)

where c$rm is the value of the resolution mapping attribute of class c

At this stage we can test for termination and, if not finished, apply the resolution propagation

algorithm (presented in Section 7.6.4 on page 179). The composition is valid when all vertices in

all graphs in G have a value within the specified constraints. In order to exemplify the resolution

theory presented thus far and to motivate the propagation algorithm we present an example.

Example

This example turns attention towards the way resolutions are propagated in the program in Figure

7-26 on page 173. From the clause universe we observe that the output subject has two unks: unkk

and unkm. Two graphs are constructed, G = {Gk, Gm}:

Gk = 〈{A, T }, {〈A, 1, T 〉}, ∅〉

Gm = 〈{A, T }, {〈A, 1, T 〉}, ∅〉

The graphs are identical because a single expression (line 16 in Figure 7-26) propagates the resolu-

tions for unkk and unkm. The ucircs are given by:

RCA = {(k ≤ 1), (k ≤ m), (1 ≤ k), (1 ≤ m)}

RCT = {(k ≤ m), (1 ≤ k), (1 ≤ m)}

The resolution mapping is collected from the clause universe and applied to the graphs:

• m 7→ 1 in A:

1. updatem(A, 1) sets the value at vertex A in Gm to 1.

2. Substituting 1 for m in RCA leads to RCA = {(k ≤ 1), (1 ≤ k)}.

• k 7→ 1 in T:

1. updatek(T, 1) sets the value at vertex T in Gk to 1.

2. Substituting 1 for k in RCT leads to RCT = {(1 ≤ m)}.

At this point, the value of unkk is known in T but not in A. Likewise, the value of unkm is known in

A but not in T. Propagation of resolutions occurs as follows:

1. By lookupk(T ) = 1 and association edge 〈A, 1, T 〉 in Gk, we conclude that unkk resolves to 1

in vertex A. The association edge was followed in the direction opposite to its arrow.

2. Substituting 1 for k in RCA leads to RCA = ∅.
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Figure 7-28: Resolution propagation example

3. By lookupm(A) = 1 and association edge 〈A, 1, T 〉 in Gm, we conclude that unkm resolves to

1 in vertex T . This time, the association edge was followed in the same direction as the arrow.

4. Substituting 1 for m in RCT leads to RCT = ∅.

Now all unks have resolved correctly in all nodes in G. The composition in Figure 7-26 is valid.

7.6.4 Propagation Algorithm

The algorithm for resolution propagation, based on the graph representation described in preceding

Section and used in the above example, consists of two parts. Per-graph propagation resolves one unk

at a time, using resolutions on other unks where possible. Top-level propagation applies per-graph

propagation until either all vertices in all graphs are resolved or there remain unresolved vertices

with no further resolutions possible. This indicates an invalid composition.

The terminating condition is resolution of all vertices in all graphs. It is defined as:

Term(G)
def
= ∀Gki

= 〈{v1 . . . vm}, , }〉 ∈ G
∧

j∈[1,m]

lookupki
(vj) ∈ N

Resolution may also abort prematurely if ucircs are not satisfied, or if a collection of direct resolutions

and propagations resolve an unk to different values for one class.

Per-graph propagation differentiates between two kinds of resolution due to association. Consider

the graph Gk given in Figure 7-28. Suppose unkk resolves to exp0 directly in A. We can immediately

resolve unkk to exp1 in B. However, resolving unkk in C is predicated on the resolution of unkm in C.

Suppose unkm resolves to exp2 in C. Now we can resolve unkk, giving exp2 in C. These two forms of

resolution propagation give rise to the following definitions:

• A simple association is one where the context on the edge is an exp. Simple propagation

occurs immediately following the resolution on one end of the edge.

• An unk-predicated association is one where the context on the edge is an unk. An unk-

predicated propagation occurs only after the value at the edge is resolved.

All inheritance based propagations occur immediately because there is no condition on resolution.

Simple and unk-predicated propagations depend on two functions which were described graph-

ically in the top two diagrams of Figure 7-27 on page 174. The context at the vertex is given by

m and on the edge by n. Function ∆1 describes propagation along the arrow and ∆2 describes

propagation in the opposite direction. These were presented in Section 6.2.2 on page 107.
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Per-Graph Propagation Algorithm

The Per-Graph Propagation Algorithm (PGPA), shown in Figure 7-29, is applied on to each

graph in G. It proceeds by doing simple, unk-predicated, and inheritance-based propagations. When

no more propagation can be done, either because all vertices are resolved or an unk-predicated

propagation requires the unk to be resolved, per-graph propagation stalls, and we move on to the

next graph. PGPA returns the number of successful propagations or aborts. Abortions indicate

invalid compositions and can occur due to the following reasons:

• The resolution does not satisfy the resolution constraints.

• At each resolved vertex, PGPA rechecks the values at the other end of each edge. There are

often multiple propagation paths and all should produce the same resolutions. We abort if the

value calculated for a node is different from a value previously calculated via a different path.

PGPA is called recursively if the unk resolved at least at one vertex in the outer call.

Top-Level Propagation Algorithm

The Top-Level Propagation Algorithm (TLPA), shown in Figure 7-30, proceeds by doing per-

graph propagations. These return a count of succesful new resolutions. If, after visiting all graphs,

the termination condition is satisfied, the composition is successful and we halt. Otherwise, if any

per-graph propagation has a non-zero count, the top-level propagation is restarted. When the count

is zero from all per-graph propagations and the termination condition is not satisfied, we conclude

that composition failed to resolve all unks subject-wide and the composition is invalid.

To create the output subject, all unks in all classes are replaced by their resolved values in G.

7.7 Conclusion

This Chapter has presented extensions to Subject-Oriented Programming necessary for composing

subjects annotated with Subjective Ownership Types. The extensions integrate seamlessly with

the subject composition model. Composition of elements is described in terms of the system of

labels which represent each subject’s composable elements. Composition is based on the concept of

correspondence: corresponding labels from different subjects are unified into a single result label.

The code for the output subject is created by linking based on the result label.

In order for corresponding elements to be combined, they must define equivalent types. Type

equivalence is based on both datatype and context equivalence. The type must derive either from

the same uncomposable class or from corresponding composable classes. Context equivalence allows

for explicit-explicit and explicit-unknown context combinations. Explicit and unknown context

combinations produce resolution mappings which describe the value to which an unk resolves in a

particular class.

We require all unks used in all input subjects to be resolved by composition. Thus, subjects

featuring unks have the missing information filled in through application to other subjects where

contextual information is explicit. Composition rules used in the composition specification are

defined in terms of groupers, combinators and resolution mapping functions. Groupers define the

elements which should correspond, combinators perform the integration, and resolution mappings

are used to eliminate all unks in the output subject. Composition alone is often insufficient to
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Definition: (Per-Graph Propagation Algorithm) The following conventions
are used in the definitions:

G = {Gk1
. . .Gkm

}
Gki

= 〈V, A, H〉 i ∈ [1, m]
V = {vj j ∈ [1, n]}
A = {〈vp, E, vq〉 p, q ∈ [1, n]}∗

H = {〈vp, vq〉 p, q ∈ [1, n]}∗

PGPA uses two global variables: total is a count of propagations for each iteration
of simple/unk-predicated/inheritance-based propagations; propagations is a count
of propagations for each call to PGPA.

var propagations = 0, total = 0

PGPA(G, i) =
propagations = 0
foreach vj j ∈ [1, n] ∧ lookupki

(vj) ∈ N
let rj = lookupki

(vj) in
foreach 〈vj , E, vq〉 ∈ A where E ∈ N

let rq = ∆1(rj , E) in target-update(G, i, vq, rq)
foreach 〈vq, E, vj〉 ∈ A where E ∈ N

let rq = ∆2(rj , E) in target-update(G, i, vq, rq)
foreach 〈vj , E, vq〉 ∈ A where E /∈ N

let Eval = lookupE(vj) in
continue if Eval = error
let rq = ∆1(rj , Eval ) in target-update(G, i, vq, rq)

foreach 〈vq, E, vj〉 ∈ A where E /∈ N
let Eval = lookupE(vq) in

continue if Eval = error
let rq = ∆2(rj , Eval ) in target-update(G, i, vq, rq)

foreach 〈vj , vq〉 ∈ H
let rq = rj in target-update(G, i, vq, rq)

foreach 〈vq, vj〉 ∈ H
let rq = rj in target-update(G, i, vq, rq)

total = total + resolutions
PGPA(G, i) if resolutions > 0
total

Function target-update modifies the graph with resolutions, reducing the resolu-
tion constraints set, or aborts PGPA if the value at target is not as expected.

target-update(G, i, vq, rq) =
updateki

(vq, rq) ∧RCvq [ki/rq]
∧propagations = propagations + 1 if lookupki

(vq) = error
abort if lookupki

(vq) 6= rq

Figure 7-29: Per-Graph Propagation Algorithm



CHAPTER 7. SAPS – SUBJECT COMPOSITION 182

Definition: (Top-Level Propagation Algorithm) The following convention is
used in the definition:

G = {Gk1
. . .Gkm

}

TLPA(G) =
let count = 0 in

foreach i ∈ [1, m] count = count + PGPA(G, i)
halt if Term(G)
TLPA(G) if count > 0
abort

Figure 7-30: Top-Level Propagation Algorithm

resolve unks in all classes where they are used. We presented a resolution validation algorithm for

propagating resolutions subject-wide based on direct resolutions from correspondences.



Chapter 8

Evaluation

In this Chapter we evaluate the Subjective Alias Protection System in order to show that SAPS has

addressed the problems that have motivated it. SAPS was motivated first by reuse and secondly by

interaction problems. We will show how our proposal improves on Subject-Oriented Programming

in both of those areas.

Subject-Oriented Programming is more than an enhancement to Object-Oriented Programming.

It represents a a new way of addressing design challenges. SAPS was designed to work in the context

of SOP; so it is important to show the range of ways in which SAPS is useful to the subject-oriented

developer. We will demonstrate the utility of SAPS to the subject-oriented programmer through a

presentation of design cases where reuse and interaction problems play a part.

Evaluation takes place through a range of examples. The examples have been carefully cho-

sen based on a range of applications of SOP, an application of Alias Protection Systems, and to

demonstrate a SAPS strongpoint. Limitation of SAPS are discussed also.

Section 8.1 evaluates the contribution of SAPS with respect to the motivation factors for this

thesis. SOP enables decomposition of systems by feature. Decomposition by feature can be applied

to the development of applications and large grained black-box components. Section 8.2 shows

the way to construct components by combining SOT-annotated feature subjects. With SAPS, for

all feature combinations, it can be shown that the component, i.e. the output subject, hides its

representation from component clients. Section 8.3 shows the modularisation of a cross-cutting

concern using SAPS. This example evaluates the flexibility of SAPS when adapting to the different

ways the cross-cutting concern may be implemented. In Section 8.4 we show the modularisation of a

security concern with SAPS. Uncomposable classes may be used to hide an algorithm implementation

that would otherwise be accessible to another subject through join point interaction. SOP has no

concept of composable or uncomposable classes, thus there is no way of specifying the places that

subjects should not interact. This example shows that SAPS addresses a concern that could not

be addressed in SOP without SAPS. In Section 8.5 we show the way explicit contexts may be

used to restrict composition in order to steer clear of anomalous interactions. Finally, Section 8.6

demonstrates the known weaknesses of our approach.

183
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8.1 Interaction Problems and Reuse

Our position on reuse means that SAPS is required to play two different roles. In the first role,

SAPS has to be useful to the subject’s original developer. As part of a design process a system is

decomposed into subjects with the intention of developing subjects modularly. In its second role,

SAPS has to be useful to the subject composer, the reuser. SAPS annotates the way subjects use

objects. During composition, Subjective Ownership Types help the reuser to understand the subject

and to gain insight into the consequences of interaction and detect anomalies.

The theme that ties these two roles of SAPS is modularity: the issue of modular construction

of subjects and the reuse of subjects as modules. Before descussing interaction problems and reuse,

this Section evaluates how SAPS impacts modular software construction with SOP. But first, we

present the Library Management System as a running example.

8.1.1 The Library Management System

The Library Management System (LMS) was first introduced by Clarke in her work on Subject-

Oriented Design [24]. The LMS manages the resources within a library, and the activities relating to

those resources. The full set of features of this system is beyond our scope, but the subset in which

we are interested concerns the management of books and periodicals, their ordering and physical

location within the library.

A library’s resources are multiple copies of books and, optionally, periodicals. Librarians and

borrowers are library users but only librarians interact with the system. There are a number of

requirements on the system, including:

• Add library resource. The librarian may add to the catalogue new books, in some instances

new periodicals, or new copies of existing titles. The librarian supplies information on book

related details such as author or title. Location information is generated by the system.

• Remove library resource. All copies of a given resource may be removed from the LMS

once they have been returned to the library by the borrowers.

• Order library resource. Order information may be kept in the LMS. Once the order arrives,

the system is updated with new resources.

• Search for library resource. All users may search for physical locations of copies of a

particular title.

• Borrow library resource. The borrowing of resources depends on the library where the

LMS will be used. In some libraries only books may be borrowed, while in others periodicals

may also be borrowed. The number of books that can be borrowed depends on who is doing

the borrowing and the application. For example, in a university application, postgraduates

may be allowed to borrow 10 books compared to 6 books for undergraduate students.

• Return library resource. When a resource is returned late, a fine is issued to the borrower

which he must pay before borrowing any more books. The length of time a resource can be

borrowed depends on the library and the type of borrower. For instance, librarians may be

allowed to borrow books for longer than members of the public.
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The LMS is a multi-user application. While searches can be performed concurrently, exclusive access

is required in order to add or remove resources.

To enable the traceability of requirements in code, each requirement above can be considered a

feature of the LMS. Subjects can be used either to implement these features directly or each feature

can be decomposed further into subconcerns with one subject implementing each subconcern. In the

experience of Lai and Murphy [71] two people working independently may identify different features

of importance in the same piece of software. As our starting point, a system is already decomposed

into subjects based on the features the development manager has identified as important.

8.1.2 Modular Development of Subjects

Software is decomposed into modules because it is believed that tackling one module at a time is

easier than tackling the whole problem at once. However, the scattering of object representation

across subjects in certain subject-oriented decompositions inhibits the modular development of con-

cerns. One of the factors that inspired decomposition by feature was the productivity improvement

which may be gained through concurrent development of features by separate teams (see Section

3.1.3 on page 27). The purpose of this Section is to explain what improvements SAPS has made in

this respect.

In her thesis on Subject-Oriented Design, Clarke [24] writes that designers can work on subjects

representing different parts of the system with little need for communication. It is true that subject-

oriented decomposition allows partially overlapping views of a domain to be specified modularly.

Two designers can work on the design of one class simultaneously. However, as in any system where

modules interact, communication between design teams is required in order to establish the details

of the interaction. SOP requires advance planning in order that subjects may be composed together.

For example, consider the subconcern of Add library resource for adding a new book to the

library catalogue. This subconcern is realised in terms of a subject called AddNewBook. The librarian

supplies the author, the title and the number of copies. The system adds the new resource to the

catalogue and determines a suitable location for the resource from author details. Based on this

informal description, the subject designer can (modularly) identify the main objects as viewed from

the perspective of this feature:

• The system used by the librarian is represented by a ResourceManager object.

• A Book is a kind of Resource.

• One or more Copies of a Book are created.

• The librarian supplies Author, Title and NumberOfCopies to the ResourceManager.

• The ResourceManager object assigns a Location to each Resource.

Furthermore, the librarian is the actor who interfaces with a ResourceManager. The external

properties supplied by the actor include the book details and number of copies being introduced.

All other objects including Book, Copy and Location are part of this concern’s implementation.

However, as the following demonstrates, no further meaningful modular activity is possible at

this stage. In AddNewBook, a unique integer identifier is associated with each copy of a new book.

No other information needs to be recorded. For this subject it is sufficient to use an int array

to store the identifiers. However, from the Borrow library resource requirement we are aware
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Figure 8-1: Sketches of an object graph (left) and ownership tree (right) for the AddNewBook concern

that borrower related information will be associated with copies. Thus in view of composition, the

subject author instead should use objects of class Copy to store the integer identifier. Thus, modular

development of subjects is possible, but subject developers must collaborate in order to ensure that

their subject can be composed without further changes.

In SOP the subject developers must collaborate on many aspects of interaction, not least of which

is the issue of desirable interaction. In exchange for greater certainty in interaction correctness, SAPS

formally delays the point at which modular development commences until a mutually compatible

ownership structure is established. When subjects are developed in concert, the establishment of

ownership structures should be done before independent work on subjects begins. Ownership trees,

first presented in Section 6.2 in page 103, are a useful way of communicating the ownership structure.

To create an ownership tree, it is necessary to understand the intended ownership structure,

which in turn is understood from a sketch of the object graph for a subject. For example, a sketch

of the collaboration implemented by subject AddNewBook is represented by an object graph shown

in the left diagram of Figure 8-1. To create an ownership tree, one separates the external objects

from the internal ones: title and author are properties of books that are supplied by the librarian;

the number of copies is also an externally determined property. For the internal objects, each book

is associated with a location for storage and a location may store many different books; books and

locations must have the same owner in order to enable them to reference each other. A book is

responsible for keeping track of all copies of that book, making each book the conceptual owner of

its copies.

The key elements of the ownership structure are represented by an ownership tree sketch in the

right diagram of Figure 8-1. The sketch elides the details of data structures used in the implemen-

tation. The purpose of the diagram is to convey the main ownership properties.

This ownership tree can be used to aid subject implementation. Figure 8-2 shows an imple-

mentation for subject AddNewBook. The ResourceManager.addNewBook(..) collaboration takes

two String type parameters denoting the new book, and a single int type parameter represent-

ing the number of copies to be added. Note that the String class is immutable. Objects of type

String are treated as elements of value type and require no context identifiers. Immutable objects



CHAPTER 8. EVALUATION 187

subject AddNewBook {

class ResourceManager {

Vector<0, 0> resource;

void addNewBook(String title, String author, int noCopies) {

Book<0> book = new Book<0>(title, author, noCopies);

book.location = new Location<0>(author);

resource.add(book);

}

}

abstract class Resource {

Vector<0, 0> copies;

String title;

Location<1> location;

Resource(int noCopies) {

while((noCopies--) > 0) {

int id = ID.newID();

Copy<0> copy = new Copy<0>(id);

copies.add(copy);

}

}

}

class Book extends Resource {

String author;

Book(String title, String author, int noCopies) {

super(noCopies);

this.title = title;

this.author = author;

}

}

class Copy {

int id;

Copy(int id) {

this.id = id;

}

}

class Location {

Location(String author) { /* determines location based on bibliographic details */ }

}

}

Figure 8-2: The AddNewBook subject in the Library Management System
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Figure 8-3: A sketch of the ownership tree for the Union set of concerns

have global ownership; the owner is implicitly world. The books and locations are owned by the

ResourceManager object as indicated by exp0. Copies are created in the scope of a Book instance

which also owns them.

Sketches of ownership trees for different subjects should be similar. For instance, other subjects

in the LMS that manipulate books, locations and copies should have the same ownership structure

for those objects.

We do not prove that the length of time spent on development is less with SAPS than without

SAPS. To do so requires timing different teams of similar experience and with similar familiarity with

the application domain. However, by making ownership information explicit in types, we believe

that SAPS leads to productivity improvements. First, by eliminating certain interaction problems,

and secondly, by helping to pinpoint the cause of other interaction problems as explained in the

following.

8.1.3 Interaction Problems

Section 4.4 on page 59 has shown that the scattering of data concerns can lead to interaction

problems. SAPS was partly motivated by interaction problems that required invasive subject mod-

ifications. With SAPS, in order to be composable, corresponding elements must define compatible

types including compatible context identifiers. Now, interaction problems are anomalies that occur

despite corresponding elements having compatible types. Even then, SAPS remains useful because

the owner represents a boundary within which object state may be changed. This is an improvement

over SOP programs without SAPS which do not define a boundary on aliasing.

Revisiting the Union example in Section 4.4 on page 59, recall that the composition of subjects

JoinUnion, Dismiss and Retire manifested an interaction problem. The problem was caused by

uncontrolled aliasing of union representative objects, such that a link between union representatives

and members which was previously assumed to be invariant became broken when the Retire subject

was introduced.

With SAPS, one approach is to develop these subjects independently from each other, using SOT

to do conceptual modelling as described in Section 5.2.4 on page 87. These subjects have different

ownership structures which translate to incompatible Subjective Ownership Types at join points.

Consequently, subjects cannot be composed using the composition rules we defined in Chapter 7.

A better approach is to use the strongest mode in view of composition. These subjects are

intended to be composed together, so it makes sense to identify the common ownership structure
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and then define the subjects in relation to it. A sketch of such a structure is shown in Figure 8-3.

All objects in the diagram except the union representatives are world owned. Figure 8-4 shows the

main details of these subjects. SAPS has eliminated the original interaction problem by making

aliasing an explicit concern and by creating a well structured subject-oriented program based on the

SOT model of alias protection.

Interaction problems in SOP can occur in spite of compatible Subjective Ownership Types at the

join points. In such cases SAPS helps to detect interaction problems because it constrains object

aliasing. For example, consider the ownership tree in Figure 8-5 which depicts the main objects in a

Lift system created using SAPS. Suppose that during testing a problem is discovered with the soft-

ware controlling the opening and closing of lift doors. From the ownership structure it is clear that

only objects inside the ownership context of doors can directly affect the state of the doors object.

SOT direct the maintainer to analysing code in all subjects which can affect doors. Specifically,

this includes code which contributes to the state and behaviour of lift, floor selection button,

stop button, door open button, motor and doors. Any code which contributes exclusively to the

state and behaviour of building, floors and buttons cannot change the state of the doors object.

8.1.4 Reuse and Reusability

Our position on reuse stated that improving opportunities on reuse depends on ideas that are of

value to the original developer as well as the reuser. In the conclusion to Chapter 4 on page 68 we

stated our belief that Alias Protection Systems will be useful to subject developers. APSs already

help object-oriented programmers to create well structured object-oriented programs that control

alias exposure. The construction of subjects is essentially an object-oriented activity, so there is also

a benefit the subject developer.

Reuse in SOP is most commonly associated with composition; however, it is also possible to sub-

class individual classes from an existing subject when creating a new subject. For instance, to create

the AddNewPeriodical subject, it is necessary to introduce a new operation into ResourceManager

and to define class Periodical. In LMS, periodicals differ from books in having only a single copy

and an additional field denoting the category. Instead of composition, the subject author may choose

to use inheritance or delegation to define Periodical.

Intentional construction of reusable abstractions is supported in SAPS in two ways. The subject

author may define uncomposable classes. For the most part, the decision to create uncomposable

classes is made using the heuristic specified in Section 6.4.1 on page 122. There is a notable exception:

in Section 8.4 on page 199 uncomposable classes are used for security. In the LMS, no classes

identified during requirements analysis require parameterisation with respect to their ownership

properties. Consequently all are composable.

Reusability is also supported through unknown context identifiers. An unk represents a choice of

exps so a subject that employs unks can adapt to a number of different ownership structures that can

be represented using exps. For example, Section 5.4 on page 92 described the reusability requirement

on the Composite design pattern. unks can be used to create a reusable definition for this pattern.

Figure 8-6 shows the pattern implementation annotated with Subjective Ownership Types. Two

unks are used: unkk denotes the owner of the children objects with respect to the composite object;

unkm denotes the owner of object returned by the collaboration realised by the composite structure.

With slight modifications, subjects CADdraw (Figure 5-14 on page 94) and FileSystemSize (Figure

5-15 on page 95) can be composed with subject Composite.
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subject JoinUnion {

class MembershipSecretary {

Union<world> theUnion;

Employee<world> employee;

void joinUnion() { theUnion.join(employee); }

}

class Employee {

}

class UnionRep {

String repName;

}

class Union {

Hashtable<0, world, 0> member2rep;

Vector<0, 0> reps;

join(Employee<world> e) { /* assign a rep to an employee */ }

}

}

subject Dismiss {

class Company {

Vector<0, world> employees;

void dismiss() { ... e.appeal(); ... }

}

class Employee {

Union<world> theUnion;

String appeal() { return theUnion.getRepName(this); }

}

class UnionRep {

}

}

subject Retire {

class UnionRep {

Union<2> theUnion;

void retire() { theUnion.retire(this); }

}

class Union {

Hashtable<0, world, 0> member2rep;

Vector<0, 0> reps;

void retire(Member<0> m) { ... }

}

class Member { }

}

Figure 8-4: JoinUnion, Dismiss and Retire subjects annotated with SOT
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Figure 8-5: A sketch of the ownership tree for a Lift system

subject Composite {

unk k, m;

abstract class Component {

abstract Object<m> doAction();

}

abstract class Composite extends Component {

Vector<0, k> children;

Object<m> doAction() {

Iterator<0, k> it = children.iterator();

while(it.hasNext()) {

Component<k> c = (Component<k>)it.next();

perChild(c);

}

return null;

}

abstract void perChild(Component<k> c);

}

}

Figure 8-6: Composite design pattern as a subject annotated with SOT
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8.2 Feature-Oriented Development

One strength of Subject-Oriented Programming is the ability to mix-and-match features for on-

demand remodularisation. The subject composer, in the role of a component vendor, can supply

software containing precisely those features that are required by the client. The supplied software

takes the form of a traditional black-box component that will be used by the client in his application

development.

The exact environment in which the component will be used is not known by the vendor, but

the component developed with SOP may inter-operate with client software that maliciously or ac-

cidentally subverts its state through representation exposure. It is important that the vendor has

complete confidence in the encapsulation of the component’s mutable state for all combinations of

features, such that the only way the state can be changed is through interface operations. Further-

more, the component may be used in an environment where the client is possibly unaware of either

SOP or SAPS.

SAPS extends the benefits of alias protection to component development with SOP. Each feature

is developed as a subject. In order to compose features successfully the subject designers must

agree on the way corresponding classes use objects: representation object in one subject is also a

representation object in all other subjects. Any features introduced as enhancements at a later date

must also conform to this model of encapsulation. SAPS is downwardly restrictive; that is, clients

using a component developed with SAPS need not be aware of Subjective Ownership Types used in

its development.

The composition rules defined in the preceding Chapter have a monotonic effect: composition

can introduce new behaviour to objects but composition does not change the object owner. With

respect to feature F , composing F with other features does not change the ownership context of any

objects created or referenced within the behaviour specified by F . This is precisely the property

required to safely mix-and-match features.

Before a set of collaborating subjects can be implemented, the development teams must agree on

the ownership properties of the common objects manipulated by features. For the LMS requirements

in Section 8.1.1 on page 184 these properties can be summarised as follows:

• Resources (book and periodicals) are owned by the resource manager. Any external referencing

to these resources should be done using value identifiers.

• The copies of a resource are owned by the resource.

• Borrowers are external to the resource manager. Consequently, external references to copies

is done through value identifiers.

• Fines are owned by borrowers that collect them.

Figure 8-7 depicts a sketch of the ownership structure common to these features. Having pre-

sented the AddNewBook subject in Figure 8-2, attention now turns to the ownership details of the

other features that make up the LMS.

The RemoveResource subject deletes a resource from the library catalogue. The item to be

removed can be any valid subtype of Resource. The concrete type of the item is not relevant to the

present concern, so only class Resource is declared. This subject manipulates the same objects and

has the same SOT declarations as AddNewBook:
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ment System

subject RemoveResource {

class ResourceManager {

Vector<0, 0> resource;

void removeResource(String title, String author) { ... }

...

}

class Resource {

Vector<0, 0> copies;

...

}

...

}

The ordering of resources is the responsibility of the OrderBook and OrderPeriodical subjects.

For books, this subject is similar in design to AddNewBook except that no shelf location is associated

with the resource until the order arrives. The resource is still added to the catalogue but a special flag

indicates that the item is not yet available for browsing or borrowing. The search for library resources

is implemented by the SearchByTitle subject. Given the title of a resource, the collaboration

implemented by this subject returns the location of this resource.

Subject BorrowBook associates a book copy with a borrower. The copy can reference the borrower

because the borrower’s owner context is external to that of the Copy object. The borrower stores

the int identifier denoting the copy.

subject BorrowBook {

class Book {

Vector<0, 0> copies;

void borrow(Borrower<world> b, int copyId) { ... }

...

}

class Copy {

Borrower<world> b;

...

}

abstract class Borrower { ... }

class UndergraduateBorrower extends Borrower { ... }

class PostgraduateBorrower extends Borrower { ... }

}

When returning a book late, a fine is issued. The ReturnBook subject creates Fine objects inside

Borrower objects. In SOT, only an object inside Borrower can create objects whose owner is this

Borrower. It is expected that methods Book.return(..) and Book.borrow(..) will be activated

at runtime using a barcode scanner object that is owned by the ResourceManager:
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subject ReturnBook {

class Book {

void return(int copyId) { ... }

...

}

class Copy {

Borrower<world> b;

...

}

class Borrower {

Vector<0, 0> fine;

...

}

class LibrarianBorrower extends Borrower { ... }

class PublicBorrower extends Borrower { ... }

class Fine { ... }

}

subject Scanner {

abstract class ResourceManager {

Scanner<0> s;

abstract void borrow(int copyId);

abstract void return(int copyId);

...

}

class Scanner implements Runnable { ... }

}

The requirement for concurrency has been identified as necessary to facilitate multi-user access

to the Library Management System. Updating of the library records requires a write lock to exclude

all readers. Concerns such as AddNewBook and RemoveResource require a write lock. Each activation

of searching behaviour increments the count of readers. This behaviour is implemented by subject

Synch:

subject Synch {

abstract class SynchClass {

int activeReaders, activeWriters;

synchronized void waitWriterReaders() { ... }

synchronized void waitReaders() { ... }

void decrementWriters() { activeWriters--; }

void decrementReaders() { activeReaders--; }

...

}

}

The mixing and matching of features occurs within the composition specification. For ex-

ample to supply a component that contains features AddNewBook, RemoveResource, OrderBook,

SearchByTitle, BorrowBook, ReturnBook and Synch, the composition specification is given by:

compose AddNewBook, RemoveResource, OrderBook, SearchByTitle, BorrowBook, ReturnBook, Synch

into LMS;

mergeByName;

bracket ResourceManager.addNewBook with before Synch.SynchClass.waitWriterReaders

after Synch.SynchClass.decrementWriters;

bracket ResourceManager.removeResource with before Synch.SynchClass.waitWriterReaders;

after Synch.SynchClass.decrementWriters;

bracket ResourceManager.orderBook with before Synch.SynchClass.waitWriterReaders;

after Synch.SynchClass.decrementWriters;

bracket Book.borrow with before Synch.SynchClass.waitWriterReaders;
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after Synch.SynchClass.decrementWriters;

bracket Book.return with before Synch.SynchClass.waitWriterReaders;

after Synch.SynchClass.decrementWriters;

bracket ResourceManager.search with before Synch.SynchClass.waitReaders;

after Synch.SynchClass.decrementReaders;

The output subject contains the ResourceManager class. This class is the interface to the LMS

component. This component can be used in applications requiring LMS functionality. The interface

does not to expose any representation objects used in the implementation while still making it

possible for the LMS component developers to reap the benefits of feature-based decomposition. To

a client who is unaware of Subjective Ownership Types, the functional interface is given by:

class ResourceManager {

void addNewBook(String title, String author, int noCopies) { ... }

void removeResource(String title, String author) { ... }

void orderBook(String title, String author, int noCopies) { ... }

String searchByTitle(String title) { ... }

}

Borrowing and returning of resources is not a part of the LMS functional interface. This func-

tionality is part of the implementation of the ResourceManager.

8.3 System Integration: A Cross-Cutting Concern

Subject-Oriented Programming is a technology that enables Multi-Dimensional Separation of Con-

cerns. In addition to the modularisation of concerns in the feature dimension, SOP can also modu-

larise cross-cutting concerns in other dimensions. The preceding Section showed the utility of SAPS

in feature-oriented development. In order for SAPS to be useful to the subject-oriented developer,

SAPS must be able to express the different representation containment requirements demanded by

a range of SOP applications. In this Section, we demonstrate the utility of SAPS with respect to

a cross-cutting concern; it has been shown that system integration is a cross-cutting concern in

object-oriented software [117, 118].

Suppose one constructs a system that integrates the behaviour of several binary digits. Each Bit

is defined as:

subject JustABit {

class Bit {

boolean value;

void set() { value = true; }

void clear() { value = false; }

boolean get() { return value; }

}

}

The integration concern is to synchronise the states of particular Bit pairs. Associations (rela-

tions) between pairs of bits are created dynamically. There are two kinds of association: Equality

and Trigger. Figure 8-8 shows three Bit objects connected by Equality relations. Equality prop-

agates set() and clear() calls from the left to the right side and vice versa. Trigger propagates

them in one direction only.

When trying to map these design structures into object-oriented programs, one finds that integra-

tion issues become tangled in the implementation of class Bit. In a purely object-oriented solution

the Bit class stores references to ends of relations; the code for set() and clear() also implements
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Figure 8-8: Integration of Bits

the propagation of effects to related Bits. Looking at the Equality association, we see that the lack

of an abstract implementation for Equality makes the concern hard to understand. The Bit and

the Equality have been hardwired together and are difficult to separate. Design patterns improve

the designs a little but fail to achieve clear separation because the pattern code is still tangled with

the Bit class definition [116].

The SOP designs for the Equality association improve on object-oriented solutions. Subject

Equality cleanly disentangles this concern from subject JustABit. However, code created through

system integration seldom runs in isolation. More likely, it is a subsystem that inter-operates with

other subsystems, possibly also created by integration. For example, a collection of Bits may be

aggregated into a binary instruction to perform a bit shift operation or Bits may be organised into

temporary groups based state patterns. Suppose that the Bit integration scenarios for the Equality

relation translate into design variants for the Equality subject. The differences can be distilled

into different ownership structures created by combinations of bits and Equality associations. We

observe three variants:

1. The Association object is co-owned by the Bits that are connected by it.

2. The Association is split into two parts, with each Bit owning an Association object that

refers to the other Bit.

3. The Association is owned either by the same object as the Bits or another object outside

the Bit owner.

The first solution is the best case for Equality associations that the integrator wishes to hide

inside the Bits. Once created, only the Bit objects in the association would be able to modify

associations directly. SAPS cannot implement this model because every object must have exactly

one owner.

The second solution is well-suited to Trigger associations. Trigger propagates one way, so only

the object at the source needs to maintain the association. For Equality, two Association objects

are created with each referencing the Bit at the end opposite. Like the first proposal, this approach

hides the Association object in the representation of the Bit. There may be many associations

between pairs of Bits and associations may be added or removed dynamically. In order to prevent

representation exposure, the corresponding associations have an int id field. The ids of the two

ends of an association have the same value. This solution is shown in Figure 8-9.

The third model allows the integrator to decide on the owner of the Associations and the Bits.

In Figure 8-10, example client code creates Bits and Associations whose owner is given by exp0.

Associations reference Bits and vice versa. Consequently, Association and Bit should always

have the same ownership context. In this model, the Association can be directly accessed and

modified by the Bit client.

These designs demonstrate the flexibility and the limitations of SAPS for adapting to different

ownership structures demanded by a cross-cutting concern. SAPS can model two out of three
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subject Equality {

class Bit {

Vector<0,0> assoc = new Vector<0,0>();

boolean busy; // used to prevent infinite loops

void associate(Bit<1> b) {

Association<0> a = new Association<0>(b);

assoc.add(a);

b.assoc_back(this, a.id);

}

void assoc_back(Bit<1> b, int id) {

Association<0> a = new Association<0>(b, id);

assoc.add(a);

}

void set() {

for(Iterator<0,0> it = assoc.iterator(); it.hasNext(); ) {

Association<0> a = (Association<0>)it.next();

if(!busy) {

busy = true;

a.b.set();

busy = false;

}

}

}

// code for clear() elided

}

class Association {

int id; // unique key identifying this association

Bit<2> b;

Association(Bit<2> b) { ... }

Association(Bit<2> b, int id) { ... }

}

}

// composition specification used

compose JustABit, Equality into Integration;

mergeByName;

order Equality.Bit.set after JustABit.Bit.set;

// example client code

Bit<0> b1 = new Bit<0>();

Bit<0> b2 = new Bit<0>();

Bit<0> b3 = new Bit<0>();

b1.associate(b2);

b2.associate(b3);

Figure 8-9: Equality subject with encapsulated associations
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subject Equality {

class Bit {

boolean busy; // used to prevent infinite loops

Relation<1> rel;

void clear() {

for(Iterator<1,1> it = rel.r.iterator(); it.hasNext(); ) {

Association<1> a = (Association<1>)it.next();

if(!busy) {

busy = true;

if(a.l == this) a.r.clear();

if(a.r == this) a.l.clear();

busy = false;

}

}

}

// code for set() elided

}

class Association {

Bit<1> l, r;

Association (Bit<1> l, Bit<1> r, Relation<1> rel) {

this.l = l;

this.r = r;

l.rel = rel;

r.rel = rel;

rel.add(this);

}

}

class Relation {

Vector<1,1> r = new Vector<1,1>();

void add(Association<1> a) { r.add(a); }

}

}

// composition specification

compose JustABit, Equality into Integration;

mergeByName;

order Equality.Bit.clear after JustABit.Bit.clear;

// example client code;

Relation<0> r = new Relation<0>();

Bit<0> b1 = new Bit<0>();

Bit<0> b2 = new Bit<0>();

Bit<0> b3 = new Bit<0>();

Association<0> a1 = new Association<0>(b1, b2, r);

Association<0> a2 = new Association<0>(b2, b3, r);

Figure 8-10: Equality subject with exposed associations
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ownership structures presented here. However, SOT are not intended for co-ownership of the kind

described in the first case. Co-ownership is discussed as part of future work in Section 9.2 on page

215.

8.4 Using Uncomposable Classes for Security

Public key cryptography is one of a number of security tools in distributed systems. The implemen-

tation of public key cryptography should therefore be secure. Specifically, the random numbers used

in the generation of public and private keys should not be accessible outside the RSA algorithm [107].

The implementation of RSA should be reusable in a number of different settings. In any appli-

cation of RSA, the objects that represent private keys should be confined to their application and

under no circumstances should an external client gain access to the private key.

Subject-oriented programming achieves the goal of making the public key cryptography algo-

rithm modular by definining all pertinent functionality within the RSA subject (shown in Figure

8-11). Within SOP, making random numbers secure is due to Subjective Ownership Types. The

functionality associated with generating random numbers used in keys is associated with method

KeyFactory.genKeyPair(..). We have implemented KeyFactory as an uncomposable class. Had

we made KeyFactory composable it would have been open to attack through advanced SOP com-

position rules. For instance, bracket relationships on method call sites could be used to intercept

method calls to private random number generators (line 17). Uncomposable classes never have

internal join points, making this method of implementation secure for future extensions.

Class Key contains the algorithm for RSA encryption. Class Key is composable, making it

possible to introduce a more efficient encryption algorithm by subject composition at any time in

the future. In order to make the encryption facilities of RSA reusable in different settings, the

owner of the message to encrypt is given by unkk. The encrypted message owner is given by unkm.

The encrypted message can be seen where its decrypted counterpart cannot be: giving rise to ucirc

k ≤ m. Fields Key.mod and Key.exp are owned by the owner of their Key object. The components

making up a key should be accessible to the key’s owner but never outside.

Besides being uncomposable, class KeyFactory has priv key owner as the ownership parameter

binding to the owner of the private key it receives as argument. Field KeyFactory.rnd is owned by

this instance of KeyFactory. No object outside any KeyFactory instance can change the state of

the object referenced by KeyFactory.rnd. This privilege is granted only to this KeyFactory and

other objects inside this KeyFactory that have been given a permission to do so.

Subject SecureTerminal (Figure 8-12) implements secure transmission of messages. As in all

subject-oriented programs, there is no explicit connection to other subjects other than in the com-

position specification. In principle, SecureTerminal need not be composed with RSA but with

any subject(s) implementing the undefined functionality. The final application would be expected

to involve other subjects, such as for doing I/O and so on. However, the presented subjects are

composed on the basis of the following composition specification:

compose RSA, SecureTerminal into RSATerminal;

mergeByName;

In class SecureTerminal.Key, messages to encrypt have this Key as owner, given by exp1. The

encrypted messages can be aliased globally, given by world. During composition, unkk – the owner of

decrypted messages – resolves to exp1 in class Key; unkm – the owner of encrypted messages – resolves



CHAPTER 8. EVALUATION 200

1 subject RSA {

2 unk k, m;

3 ucirc k <= m;

4 class Key {

5 BigDecimal<1> mod;

6 BigDecimal<1> exp;

7 String<m> encrypt(String<k> msg) {

8 // encrypt using mod and exp.

9 }

10 String<k> decrypt(String<m> msg) {

11 // decrypt using mod and exp.

12 }

13 }

14 class KeyFactory<priv_key_owner> {

15 Random<0> rnd = new Random(System.currentTimeMillis());

16 void genKeyPair(Key<world> pub, Key<priv_key_owner> priv) {

17 double d = rnd.nextDouble();

18 // use the random value to compute and set the key components.

19 }

20 }

21 }

Figure 8-11: Subject containing RSA algorithm

to world. The resolution satisfies the subject-level ucirc in subject RSA. SecureTerminal.KeyFactory

is defined as an uncomposable class. It is included for declarative completeness: in order to enable

each subject to typecheck correctly.

The Terminal class owns the decrypted messages. privateKey is confined to the Terminal ob-

ject as required, but not to the SecureTerminal subject. Other subjects’ classes composed with

Terminal can see and change privateKey. This is precisely the effect we require: any additional

functionality introduced explicitly through composition should be able to manipulate privateKey;

other subjects must specify the same owner for privateKey, making the effect of composition pre-

dictable.

In line 12, keyFactory is also owned by this Terminal instance. The second parameter binds the

priv key owner parameter. This must be exp0 in order for the method call in line 14 to typecheck

correctly. Operations send(..) and receive(..) respectively dispatch the outgoing message and

accept incoming messages.

The SAPS solution is superior both to a pure subject-oriented solution and to an object-oriented

solution created with the aid of Confined Types [127]. Compared to SOP, by making KeyFactory

uncomposable, SAPS ensures that secrecy is afforded to the algorithm for generating keys. In the

case of subject RSA, SAPS restricts the set of objects that can observe the private keys and, in the

case of the SecureTerminal application, guarantees that no object other than the Terminal object

(and objects owned by the Terminal) can view or modify the private key.

Compared to Confined Types, the RSA subject is much more compact than the RSA package in

Java with Confined Types. Confined Types require the programmer to declare and use anonymous

methods (see Section 5.1.3). Anonymous methods may require additional classes to be introduced

which would not be there if Confined Types were not used [127]. The SecureTerminal subject has

no syntactic dependencies on the RSA subject. SOT also allow a number of different ownership

structures to be defined for use in conjunction with RSA instead of the binary confined/unconfined
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1 subject SecureTerminal {

2 abstract class Key {

3 abstract String<world> encrypt(String<1> msg);

4 abstract String<1> decrypt(String<world> msg);

5 }

6 abstract class KeyFactory<priv_key_owner> {

7 abstract void genKeyPair(Key<world> pub, Key<priv_key_owner> priv);

8 }

9 class Terminal {

10 String<0> msg_in, msg_out;

11 Key<0> privateKey;

12 KeyFactory<0,0> keyFactory;

13 Terminal(Key<world> publicKey) {

14 keyFactory.genKeyPair(publicKey, privateKey);

15 }

16 String<world> send(Key<world> publicKey) {

17 return publicKey.encrypt(msg_out);

18 }

19 void receive(String<world> msg) {

20 msg_in = privateKey.decrypt(msg);

21 }

22 }

23 }

Figure 8-12: Subject implementing a secure terminal application

modes of Confined Types.

An intriguing solution to object containment has been demonstrated within Object Teams [55].

Extension of RSA with SecureTerminal functionality is achieved with family polymorphism, or team

inheritance. This solution carries all the benefits of subtyping which are presently lacking in subject

composition. The Object Teams solution is based on the Confined Types model: confined roles are

encapsulated within their enclosing team instance.

8.5 Using exps for Composition Restriction

Examples in Chapter 6 and in this Chapter have shown that unknown context identifiers can be used

to delegate design decisions on contexts to another subject. Explicit contexts can do the opposite:

they can constrain subjects to particular compositions in order to ensure that only functionally valid

compositions are specified.

Consider a strategy game where one or more human players compete against one or more com-

puter opponents. Each player (human or computer) controls an army of droids that can be arbitrarily

organised into squads. The game objective is to capture the oppositions’ flags. To achieve the aim,

players split armies into squads and deploy some strategy. Each squad then plays a role in the strat-

egy. The role involves reaching some destination waypoint as defined by the strategy. For example

the Surround strategy involves positioning squads at points on the circle circumference defined by

the target at the centre of the circle. Within each squad the droids are put into a formation. Each

formation has different fighting characteristics. For example, the Square formation is good for de-

fending a position from multi-directional attacks. The artificial intelligence engine is able to select

both the strategy and the formation at each stage in the game but a strong (human) player should

be able to win by making better strategic and, occasionally, formation decisions.
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subject Game {

class Player {

Vector<0,0> droids;

Vector<0,0> squads;

}

class Squad {

Droid<1> commander;

Vector<0,1> droids;

}

class Droid { }

}

Figure 8-13: Strategy game composition interface

What makes this game different from its competitors is the facility for specifying new strategies

and formations. These can be uploaded by players and added to the set of control options. Strategies

and formations are defined as SOT-annotated subjects. These subjects are integrated into the game

using subject-oriented composition rules.

The game architects require that no user specified strategy or formation lets one player take

control of droids in another player’s army. This is enforced by restricting the composition interface

to the design given in Figure 8-13.

The players would like to ensure that subjects for new strategies and formations are deployed

correctly. That is, the composition is restricted to particular correspondences such that the composed

subject functions as intended. The aim is to restrict composition in order to eliminate compositions

that are known to lead to anomalies. For example, one anomalous interaction is identified in the

combination of subjects for the flanking maneuvre strategy and the keep distance formation:

• The flanking maneuvre (subject FM in Figure 8-14) is a well-known military strategy. It involves

splitting one’s army into two squads. A smaller squad is left to resist the attacking force and

a bigger squad goes around and attacks the opponent from behind.

• The keep distance formation unbunches droids, putting each droid the same distance from its

neighbours. Two subjects can be created here: in Figure 8-14, KD1 uses unks to denote Droid

owner and KD2 uses exps. The unks in the definition of KD1 make this subject more reusable.

Composition of FM with either KD1 or KD2 is desirable because the keep distance formation gives

the smaller squad an appearance of being bigger than it is in reality in order to mislead the enemy.

Two composition specifications can be created for integrating subjects Game, FM and KD1 based on

two resolutions of unkk:

1. unkk resolves to exp0 in KD1.Aggregation: classes Game.Player.droids<0,0>, FM.Flanking-

Maneuvre.droid<0,0> and KD1.Aggregation.droids<0,k> correspond.

2. unkk resolves to exp1 in KD1.Aggregation: classes Game.Squad.droids<0,1> and KD1.Aggre-

gation.droids<0,k> correspond. unkk resolves to exp2 in KD1.Droid by resolution propaga-

tion.

The first composition contains an anomaly that causes droids of the smaller squad to keep

distance with droids of the bigger squad, creating one long chain instead of cleanly splitting into

two squads. The second composition produces the intended result. To ensure correct deployment of
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subject FM {

class FlankingManeuvre {

Position<1> target2attack;

Vector<0,0> droids;

Vector<0,0> squads;

void do_FM() {

Squad<0> front = ...

Squad<0> flank = ...

squads = new Vector<0,0>(front, flank);

front.attackDirect(target2attack);

flank.round(target2attack);

}

}

...

}

subject KD1 { // using unks

unk k;

class Aggregation {

Vector<0,k> droids;

void do_KD() {

for(Iterator<0,k> it = droids.iterator(); it.hasNext(); ) {

Droid<k> d = (Droid<k>)it.next();

d.neighbour_left = findNeighbour();

d.neighbour_right = findNeighbour();

...

}

}

...

}

class Droid where 1 <= k {

Droid<k> neighbour_left;

Droid<k> neighbour_right;

}

...

}

subject KD2 { // using exps

class Aggregation {

Vector<0,1> droids;

void do_KD() {

for(Iterator<0,1> it = droids.iterator(); it.hasNext(); ) {

Droid<1> d = (Droid<1>)it.next();

d.neighbour_left = findNeighbour();

d.neighbour_right = findNeighbour();

...

}

}

...

}

class Droid {

Droid<2> neighbour_left;

Droid<2> neighbour_right;

}

...

}

Figure 8-14: Subject FM and 2 versions of subjects KD using unks and exps
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the keep distance concern, we replace KD1 by KD2 which uses exps instead of unkk. Now the second

composition is the only valid option.

The alternative of using ucircs with KD1 does not work. For example, one may try to specify:

class Aggregation where 1 <= k {...}

All definitions inside class Aggregation satisfy this definition. But the resolution constraints of the

output class are not based on the declared ucircs but on the behaviour defined within the composed

class. Thus k = 0 will still be in the resolution set of unkk in the class to which Aggregation for-

wards. ucircs are intended to prevent representation exposure in the input subject. For composition

constraints, exps should be used to convey a particular ownership structure.

8.6 Limitations

This Section describes the known limitations of SAPS. It is important to isolate the issues which are

specific to the decisions taken in the creation of SAPS from the limitations of SOP as a paradigm.

The latter was reviewed in Chapter 3 on page 22 where SOP was compared to other technology

for advanced separation of concerns. SOT as an APS has limitations: for instance, it does not

support dynamic aliases which are necessary to support subject design with respect to certain

object-oriented idioms. The challenges in providing support for dynamic aliases and other aliasing

modes are discussed in future work on page 215.

The following two Subsections deal with two fundamental limitations of SAPS. When concerns

to be composed have incompatible views of a domain, the differences may translate to incompatible

ownership structures. Incompatible domain views may force changes to the subject structure in

order to accommodate the SAPS model of composition. The second problem concerns the selection

between composable and uncomposable classes. The system of explicit contexts is more rigid than

ownership parameterisation. The rigidity enables desirable restrictions on subject composition as

seen in Section 8.5 on page 201 but may prove too restrictive during evolution.

8.6.1 Incompatible Domain Views

This limitation of SAPS concerns domain modelling. To enable clean separation of concerns a

subject defines only those abstractions which pertain to addressing its concern. A problem can

occur if domain views with inherently incompatible ownership structures need to be composed. For

example, consider the development of a graphics suite. The system is decomposed into subjects

such that one subject designer can implement each algorithm. The following two algorithms are

identified:

• A blurring algorithm recalculates the colour at each pixel from the values of its immediate

neighbouring pixels.

• A magnification algorithm computes the colour at the current pixel based on the values in its

region. A region is an array of neighbouring pixels.

These two algorithms are implemented as subjects Blur and Magnify shown in Figure 8-15.

Subject Blur defines classes Picture and Pixel only. Blurring is performed per pixel. The pixels

are owned by the picture that they represent. The neighbouring pixels are obtained dynamically by
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subject Blur {

class Picture {

Pixel<0,0,0>[][] p;

Pixel<0> getLeftNeighbour(Pixel<0> px) { ... }

Pixel<0> getRightNeighbour(Pixel<0> px) { ... }

...

}

class Pixel {

Picture<2> inPic;

void blur() {

Pixel<1> leftP = inPic.getLeftNeighbour(this);

Pixel<1> rightP = inPic.getRightNeighbour(this);

...

}

}

}

subject Magnify {

class Picture {

float magFactor;

Region<0,0,0>[][] r;

...

}

class Region {

Pixel<0,0,0>[][] p;

Region<1> magnify() { /* magnify this region */ }

...

}

class Pixel {

int blue, red, green;

Region<2> inRegion;

Picture<3> inPic;

void calcValue() {

/* calculate new blue, red, green for this pixel based on

values in inRegion and the magnification factor in inPic */

}

}

Figure 8-15: Subjects Blur and Magnify
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sending a message to inPic. For efficiency, subject Magnify performs magnification one region at a

time. A picture owns the region and the region owns the pixels. A call to Region.magnify() creates

a new region whose pixel values are determined from the current region based on the magnification

factor stored in Picture.magFactor.

Across these two subjects classes Picture and Pixel represent the same concept. Composition

of subjects Blur and Magnify creates an efficient implementation where magnification and blurring

can be applied on the same picture. However, the additional concept of region in subject Magnify

introduces an additional layer of abstraction which affects the exps used in the definition. Observe

that in Blur.Pixel variable inPic has type Picture<2> whereas in Magnify.Pixel this variable

has type Picture<3>. Consequently, these two subjects cannot be composed.

We may attempt to use unks in subject Blur in order to enable variability between the contexts of

a picture and its pixels. However, this is futile because in Magnify the pixels are in the representation

context of Region and in Blur they are in the representation context of Picture. To make it possible

to compose these subjects it is necessary to harmonise the context identifiers of corresponding

elements either by adding the region concept to Blur or by flattening the ownership structure in

Magnify. Either way, separation of concerns is affected: one subject has to be modified in order to

ensure composability with another subject. This is an endemic problem of the subject composition

model we have adopted. More flexible alias annotation systems may be better able to cope with

incompatible domain views expressed by subjects.

8.6.2 Defining Composable and Uncomposable Classes

This limitation of SAPS concerns the definition of new classes. The choice is between composable

and uncomposable classes. If for some reason it becomes necessary to modify a definition from

composable to uncomposable or vice versa, there will be expensive repercussions. Section 6.4.1

on page 122 defined a heuristic for helping developers select what kind of class to define. In our

experience the heuristic serves well and drastic changes are rare. However, an exception to the

heuristic may occur when a new concern is added to an existing concern set.

Continuing with the example of the graphics suite, the drawing of a picture is performed one

region at a time in relation to a colour map. A colour map is a function from the pixel value to the

real colour of that pixel. The colour map for a picture is a property owned by the picture library.

New picture creation and the drawing functionality is associated with subject Base shown in Figure

8-16. In an alternative implementation, these concerns may be developed as separate subjects but

the current decomposition is sufficient to illustrate our point.

Later, copy and paste features are added. The proposed solution uses a Region object as a

buffer for storing the copied fragment. The copy operation uses PictureLibrary.buffer to alias a

clone of the marked-up region. The paste operation applies the buffer to the target image. Figure

CopyPaste shows the subject that we would like to create.

A problem becomes apparent when we try to compose instance variables Region.cm. These

fields correspond because they clearly represent the same object. The types are ColourMap<2> and

ColourMap<1> in subjects Base and CopyPaste respectively. In Base the colour map is owned by

the owner of the current region which gives rise to exp2. In CopyPaste the colour map is owned

by the picture library which also owns the current region, giving rise to exp1. The system of exps

cannot cope with dynamic hierarchy changes; it requires all objects referred to by context identifiers

(both explicit and unknown) to have the same relative positions for all instances of a class.
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subject Base {

class PictureLibrary {

ColourMap<0> cm;

Picture<0> p1, p2;

void newPic() {

p1 = new Picture<0>(cm);

}

}

class Picture {

ColourMap<1> cm;

Region<0,0,0>[][] r;

Picture(ColourMap<1> cm) { this.cm = cm; }

void draw() /* draw each region */ }

}

class Region {

ColourMap<2> cm;

void draw() { /* draw this region in relation to cm */ }

}

class ColourMap { ... }

}

Figure 8-16: Subject Base in the graphics suite

subject CopyPaste {

class PictureLibrary {

ColourMap<0> cm;

Picture<0> p1, p2;

Region<0> buffer;

void copy() { buffer = p1.copy(); }

void paste() { p2.paste(buffer); }

}

class Picture {

Region<0,0,0>[][] r;

Dims<0> markup;

Region<1> copy() { /* create region based on markup */ }

void paste(Region<1> buffer) { ... }

}

class Region {

ColourMap<1> cm;

}

class ColourMap { ... }

class Dims { /* specifies the dimensions of the area of interest */ }

}

Figure 8-17: Subject CopyPaste in the graphics suite
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1 class PictureLibrary {

2 ColourMap<0> cm;

3 Picture<0> p1, p2;

4 Region<0,0> buffer;

5 void newPic() { p1 = new Picture<0>(cm); }

6 }

7 class Picture {

8 Region<0,0,<0,0>>[][] r;

9 ColourMap<1> cm;

10 Picture(ColourMap<1> cm) {

11 this.cm = cm;

12 /* for each region with indices i,j */

13 r[i][j].setCM(cm);

14 }

15 class Region<cm_owner> {

16 void setCM(ColourMap<cm_owner> cm) { ... }

17 }

Figure 8-18: Code fragment showing Region as an uncomposable class

To provide the required flexibility, class Region should be made uncomposable with the owner of

the colour map passed to the region as an ownership parameter. Figure 8-18 shows a fragment of code

where Region has been declared as an uncomposable class. The type of PictureLibrary.buffer in

line 4 is Region<0,0> and of r[i][j] in line 13 is Region<0,1>. The ownership parameter cm owner

of uncomposable class Region binds differently in each case.

This example has shown that additional requirements can put a strain on the usability of a

composable class, necessitating a change to an uncomposable class. The system of explicit context

naming is more rigid (or less flexible) than the system of ownership parameterisation. Having made

Region uncomposable it is no longer possible to extend this class by subject composition which

tends to limit future adaptability. Earlier examples have shown that the rigidity of explicit contexts

is also a strength of SAPS. In our experience rigidity is a compromise that works well in most cases.

8.7 Conclusion

Through a range of examples we have presented an evaluation of SAPS. The evaluation has assessed

SAPS with respect to the factors that have motivated it. We have presented a range of subject-

oriented development scenarios in which SAPS is an aid to subject design or reuse and demonstrated

the limitations of our approach.

SAPS satisfies our reuse position by being of value to the subject developer and the reuser. We

have shown that SAPS addresses the interaction problems which motivated it in Chapter 4 on page

44. SAPS is a useful tool in subject-oriented software development. This Chapter has demonstrated

the following:

• Black-box components can be internally decomposed by feature while keeping the representa-

tion of the black-box hidden from its external clients.

• SOT can adapt to a variety of ownership structures when subjects are used to modularise

cross-cutting concerns.

• Uncomposable classes may be used to hide implementation details from interception at join
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points.

• Unknown context identifiers support the a priori construction of reusable subjects.

• Deliberate use of explicit context identifiers can constrain composition to achieve the intended

interaction.



Chapter 9

Conclusions and Future Work

This thesis was motivated by our interest in the factors affecting reuse. The conventional approach to

reuse involves the construction of reusable software. The original developer needs to invest upfront

in order to reap the benefits later. The initial investment can be recouped by marketing the software.

Component frameworks support the customisation and integration of prebuilt components for the

purpose of constructing new systems. However, most software built today is not intended for reuse

but is constructed to meet some functional requirements. Reuse and evolution issues are secondary

to functionality. Upfront investment in reusability will waste time that should be spent on meeting

the deadline for the current iteration. Consequently, a question arose concerning how to build more

reusable software in cases where future reusability is not in the initial requirements. We believe that

to successfully tackle this issue, a technological solution must be of value to the original developers

as well as the reuser. The original developer will be more interested in a reuse technology if that

technology addresses certain problems during software construction.

In search of a solution, we looked at the way software is engineered. It is generally acknowledged

that separation of concerns is an important reuse factor. Developers require technology that helps to

separate all concerns that they believe to be important. For functional concerns, modularity is the

key. Faced with a design problem, developers should be able to modularise the functional concerns.

Traceability between the artifacts of importance in the requirements and code better supports the

reuse, maintenance and evolution of those artifacts.

Object-oriented programming technology has failed to provide all the reuse benefits it was sup-

posed to offer. Many functional concerns can be represented as object collaborations. In mainstream

object-oriented programming languages object collaborations are not modular. Also, there exist as-

pects of systems – the concerns that cross-cut multiple object – which are scattered and tangled

with the main functionality defined by abstractions. The scattering and the tangling makes both

the abstractions and the aspects less reusable. Design patterns either cannot cleanly separate the

concerns or the flexibility they provide becomes required after the program is written. Applying

patterns during evolution is invasive, often requiring significant changes to program structure. Even

concerns which are cleanly modularised by classes often cannot be extended in the way the reuser

wants. Interfaces intended for defining the boundary between the client and abstraction implemen-

tation impede non-invasive evolution. In mainstream object-oriented languages there is a fuzzy line

between subclassing for implementation reuse and subtyping for type substitutability. A subclass

that is intended to be used in another application is required to conform to the interface(s) of its

210
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superclass(es) even when substitutability is not required.

9.1 The Subjective Alias Protection System

Of all the recent proposals for addressing separation of concerns we have argued that Subject-

Oriented Programming (SOP) [49] best meets our reuse objectives. SOP introduces subjects as

a new kind of module. Subjects are packages of classes and each subject defines a concern from

its own perspective using a familiar object-oriented language. In many cases, subjects are suitable

vehicles for modularising object collaborations and aspects. Subject interaction is specified in the

composition specification using a special composition language. Unlike traditional paradigms, where

interaction takes the form of procedure calls of one kind or another, subjects interact at join points.

Join points are defined by language constructs such as classes and their members. Whereas functional

interfaces are defined explicitly, join point interfaces ‘simply exist’; there are no predefined extension

or evolution points. One subject can be created as an extension to another and applied without

changes to the extended subject. There is no substitutability defined between subjects, but internally

each subject retains the benefits of inheritance for creating families of type substitutable abstractions.

9.1.1 An Understanding of Interaction Problems

In moving from classes to subjects as the main unit of reuse we encountered interaction problems.

Understanding the interaction inevitably becomes more difficult as the number of subjects increases.

Interaction problems are caused in part by the absence of composition interfaces. In our investigation

we categorised interaction problems by their severity, that is, by effort required to overcome or

eliminate the anomaly. In increasing order of magnitude they are:

• Change the composition specification.

• Extend the composition language with a new composition rule.

• Either modify the input subjects or create a patch subject.

The need for a powerful composition language was understood by SOP’s creators from the start.

The composition language is defined on top of an extensible framework that allows many rules to

be specified. However, invasive changes to subjects or patching are a significant drawback to SOP

as both a design and a reuse medium.

Independent development of modules is an important part of any paradigm. After a system is

decomposed into subjects, it should be possible to assign each team the task of implementing each

subject. In order for the composition of independently implemented or reused subjects to satisfy the

requirements, the interface of subject interaction must be identified in advance. The problem is that

the reuser must have a deep understanding of the subject. For many compositions, it is not enough

to know what the subject does from the behaviour observed at the functional interfaces of its classes.

It is necessary to know how those classes are implemented. The types of elements at join points

provide little insight into the effects of subject interaction. Interaction problems requiring invasive

changes or patching can be due to unanticipated state changes, e.g. when behaviour specified in one

subject breaks an implicit condition in another subject, but the types of elements at join points

provide little insight into the effects of subject interaction.
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In an early attempt at a solution we considered introducing formal composition interfaces. These

are attractive because they enable modular reasoning and delineate public join points from the

private implementation. However, a formal composition interface is incompatible with our view on

reuse: a subject should be reusable and extensible in ways not anticipated by its developers.

9.1.2 SAPS

The alternative that we propose, SAPS, improves the understandability of subject interaction with-

out introducing formal composition interfaces. Like SOP, SAPS is not tied to any one language but

is intended to be used in conjunction with today’s mainstream programming technology. The SAPS

proposal was inspired by a number of important observations:

• SOP cannot improve the basic design of abstract data types.

• SOP may be used to create new components.

• Object aliasing is a cross-cutting concern in SOP.

For SAPS we split classes into two hierarchies called composable and uncomposable. Uncompos-

able classes are common abstract data types and other container abstractions. Uncomposable classes

have no internal join points. Method calls to their instances may be bracketed using SOP compo-

sition rules and they can be extended using conventional means but subject composition cannot be

used to modify class definitions. The full range of composition rules may be applied on composable

classes.

Composable and uncomposable classes are annotated using Subjective Ownership Types (SOT).

These extend the familiar data types with ownership contexts. For every object in a subject-oriented

program SOT define an owner. The owner forms a boundary. The object may have multiple

references (aliases) inside the boundary, any of which may mutate its state, so long as no references

are exposed outside the boundary. The ownership contexts themselves are objects and from the

perspective of each object there are objects that it owns, known as the representation context. SOT

ensure that objects never expose objects in their representation context.

The system is very flexible: an object is not required to reference objects in its representation

context, yet it can also reference objects it does not own. Two totally different mechanisms make

flexibility possible. For uncomposable classes we adapted the system used by Ownership Types [23].

At instantiation, an object is parameterised by the contexts it needs to reference. An ownership

capability is passed in the form of an ownership parameter. Parameterisation is required for un-

composable classes because the subject developer may require two instances of the same container

class with different ownership properties. For composable classes a totally new system of context

identification was invented. The nesting between ownership contexts inspired explicit context iden-

tifiers or exps. Instead of passing ownership capabilities using parameters, each context is numbered

in relation to the current representation context. exps and ownership parameters enforce very simi-

lar representation containment properties. The main difference is that ownership parameters grant

permission and exps do not require permission to be granted.

Ownership parameters were unsuitable for composable classes because each subject may assign

responsibilities to a class and subjects have partially overlapping views of abstractions. Thus, in

each subject a class defines the ownership parameters it requires. In a subject-oriented program

any subject may create objects resulting in other subjects’ ownership parameters not binding. The
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system of exps avoids this problem by requiring only a single ownership parameter for composable

classes – the object owner. This is bound no matter which subject performs the instantiation.

During requirements capture for SAPS we identified the need for a special kind of ownership

parameterisation. Subjects may be used to describe concerns which apply in different contexts. The

system of exps is too rigid to describe the variety. So, we introduced unknown context identifiers or

unks for context identifiers which get bound by subject composition (resolved in our terminology).

unks can refer to contexts that are external to the collaboration implemented by a subject or simply

to those contexts which are part of another subject’s design. To ensure correct resolution, unks are

accompanied by resolution constraints or ucircs.

In order to compose subjects, the corresponding elements must define compatible types. Com-

patibility is based on type equivalence. In addition to subject-oriented composition requirements,

SAPS requires that elements define equivalent context identifiers. In the case of exp and unk com-

bination, resolutions are produced which must satisfy the resolution constraints. We have argued

that, under certain composition rules, representation objects as defined in each input subject remain

protected and the types in the output subject are well-formed.

9.1.3 Contributions

Together, Subjective Ownership Types and extensions to subject composition rules form the Sub-

jective Alias Protection System. SAPS contributes to solving interaction problems, to making SOP

a viable paradigm of software construction, and to improving opportunities for reuse.

SAPS for Addressing Interaction Problems

Subject interaction problems lie on the critical path that leads to SAPS. Therefore, it is important

to explain how SAPS helps to solve interaction problems.

The success of SOP as a paradigm for software development and, in parallel, as a concern

reuse technology depends on the developers’ ability to implement subjects independently and reuse

subjects off-the-shelf. Interaction problems in part stem from composers’ inability to foresee all

consequences of interaction on state. We have shown that for stateful (de)compositions the effect

of subjects on state can be understood by studying the details of implementation but not from join

point interfaces alone. We believe that the level of granularity for understanding subject interaction

is too low, which makes independent development impractical and reuse of subjects uneconomical.

As an Alias Protection System, SAPS directly helps to solve interaction problems caused by

unconstrained aliasing in SOP. Modular development commences after a mutually compatible own-

ership structure has been agreed by subject developers, otherwise the subjects may not be compos-

able. We have shown that by having to agree on an ownership structure some interaction problems

can be eliminated entirely. SAPS partially addresses the problem of granularity. It constrains ob-

ject aliasing in subject-oriented programs, making it easier to understand the effect of subjects on

scattered state. The Subjective Ownership Types at join points help to determine those objects

that can directly affect state, although it remains necessary to study method implementations to

understand state mutation in detail. The annotational properties of SAPS make it easier for the

subject composers/reusers to understand the interaction and detect anomalies.
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SAPS for Subject-Oriented Design

Subject composition is associated both with design and reuse. This dissertation has demonstrated

the strengths and the limitations of SAPS as a tool for supporting subject-oriented software con-

struction.

Uncomposable classes can be used to hide class implementations. Defining a class as uncom-

posable is equivalent to ‘do not compose here’. Thus it is possible, where necessary, to restrict

composition to particular classes. However, we believe that this should be done with care; uncom-

posable classes should not in general be used to define the composition interface, but, rather, to hide

the implementations of those abstractions which should not be accessible.

By making common abstract data types uncomposable we acknowledge that open class develop-

ment with SOP cannot improve the core design of these abstractions. However, it should be possible

to apply aspects to abstract data types with SOP. For example, a client may require persistent Queue

objects. SAPS allows instances of uncomposable classes to participate in open class compositions

but never their classes. SAPS bracket relationship can create a persistent Queue object. Inheri-

tance or delegation should be used if a persistent Queue class is required. To create new container

abstractions with parameterisable ownership properties developers must use uncomposable classes.

Whether this is a significant design impediment in practice remains to be seen.

Many examples of SOP demonstrate a single composition that ties together input subjects to

produce the output application. No further compositions are considered. We have looked into

the next dimension of composition, at the ownership properties associated with output subjects.

By making ownership properties explicit it has become possible to communicate and enforce the

ownership properties required for the output subject. In this way SAPS supports the construction

of systems using black-box components created using SOP.

SAPS on Reuse

This thesis is motivated by software reuse. SOP provides the essential platform for reuse and most

reuse benefits derive from using subjects as reuse artifacts. Compatibility with existing platforms

makes SOP useful to reusers. SOP can synthesise new programs from existing software created

without awareness of SOP. We believe that there are four ways in which SAPS supports or improves

reuse opportunities:

• Compatibility with existing practices. With SAPS we have improved SOP while at-

tempting to minimise the impact on software which exists already. The checking of Subjective

Ownership Types is static both for input subjects and for compositions. For instance, the

SAPS implementation for Java should run on a standard virtual machine. SOT are down-

wardly restrictive which means that SOT-annotated subjects (created either by programmer

or by composition) place no constraints on the way the client code is implemented.

• Encapsulation of representation. It can be said that component reusability is improved if

the developer is certain of its correctness. Representation encapsulation impacts correctness.

SOP can be used to create components by mixing and matching features. SAPS extends the

benefits of an Alias Protection System to SOP. It helps to ensure that all combinations of

features keep representation objects hidden inside the component.
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• Correct subject deployment. Compared to ownership parameterisation, the system of

explicit context naming does a good job of conveying the ownership structure. This property

is useful during subject composition. We have shown that, when alternative and seemingly

valid compositions exist, by using exps we can ensure that subjects are composed correctly.

• Unknown context identifiers. Through unks, SAPS supports the realisation of concerns

where precise ownership structure is determined by composition. For example, the Composite

design pattern [43] should be reusable with a number of different ownership structures. unks

support the development of subjects where reuse is in the requirements.

Finally, SAPS satisfies our reuse position by being of value to the original subject developers.

Subjects are object-oriented and aliasing is a concern in object-oriented programming. Some invest-

ment is required by subject developers in order to apply Subjective Ownership Types to subjects.

However, SOT are a fully-fledged Alias Protection System that helps the developer to create well

structured subjects.

9.2 Future Work

There are three avenues of research that are relevant to the work in this thesis:

• Software reuse is and, we believe, will remain a research topic so long as software engineers

pursue ways to drive down software development costs. The success of a reuse technology

depends on many factors, one of which is the motivation for the original developer whose

efforts may or may not be reused in the future. All proposals that seek to improve reuse

should address this issue.

• Interaction problems in the presence of shared object state were presented and tackled in this

thesis. However, interaction problems in Aspect-Oriented Software Development is still an

open research issue.

• In this thesis we have not discussed the subject-oriented design process: how concerns that

become subjects are identified and analysed. A process of subject-oriented design is an open

research issue. Consequently, it is too early to assess the impact of SAPS on the analysis,

design and testing stages.

The above are important issues in the long term. We dedicate this Section to topics which are

of more immediate concern. We discuss implementation, formalisation, and extensions to SAPS in

order to improve its concern modelling potential.

9.2.1 Implementation Issues

SOP concepts are realised within the programming language Hyper/J. In this language the subjects

are implemented in Java. At the time of writing, not all functionality specified in the documen-

tation [121] is implemented in the language. Also, the relationship between composition rules and

access modifiers is not fully developed in either SOP or Hyper/J.

We have constructed a simple SOT compiler and a Subject Composer for a toy language based

on Java. The development of a SOT compiler for all of Java and the integration of SAPS concepts

into Hyper/J is future work. Although the major theoretical issues are specified in this dissertation,
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before a compiler for a production language can be specified, the relationship between SAPS and

advanced language features should be considered, e.g. inner classes and exception handling.

9.2.2 Formalisation

The approach used in this work has been predominantly an informal one. Firstly, our aim was to

improve opportunities for reuse and, secondly, to help solve interaction problems. We have not only

made progress on both issues but also demonstrated SAPS as an invaluable tool for subject-oriented

design. A specification of static and dynamic semantics of Subjective Ownership Types, and a proof

of soundness is future work. The ownership concepts at subject level may be modelled using Clarke’s

extensions [22] to the imperative variant of Abadi and Cardelli’s object calculi [1]. We believe that

the containment properties of subjective ownership concepts can be shown to map on to the core

model.

In [128], the authors define the semantics of MinAML, an idealised aspect-oriented programming

language that distills the essence of AspectJ and the bracketing functionality of Hyper/J. The core

aspect calculus on which it is based features explicitly labelled join points and a single piece of

advice that applies at the label. The MinAML language is inspired more by AspectJ than Hyper/J

in that it is based on an assymmetric model [50]. The base programs cannot manipulate advice in

any significant way. In the core aspect language the labelled join points are defined independently of

other constructs and hence can be reused in other computational settings with little change. Walker

et al [128] show how constructs from Abadi and Cardelli’s first order object calculus inter-operate

with the aspect calculus. A possible avenue of investigation would be the inter-relation between

subjective ownership concepts expressed using object calculi and the aspect calculus.

9.2.3 More Powerful Aliasing Systems

Dynamic Aliases

The original work on Ownership Types [23] that inspired Subjective Ownership Types lacked support

for dynamic aliases. Dynamic aliases were added to Ownership Types in [21]. In Section 5.1.1 on

page 72 we showed the utility of dynamic aliases for supporting object-oriented idioms such as

iterators. Dynamic aliases are still required for uncomposable classes for the same reason as in

object-oriented programs: to enable efficient access to data stored in containers. In subject design

their other uses include the definition of friendly functions and initialisation of object representation

with externally created objects to which there are no external aliases [32]. Friendly functions are

permitted access into another object’s private representation. A number of important issues remain

outstanding at this point:

• How is a mode describing dynamic aliases useful to the subject composer? A dynamic mode

describes an additional alias usage policy which may prove useful for constraining composition

to ensure correct subject deployment.

• How to incorporate a dynamic model into SAPS? Clearly, a mode describing dynamic access

may never appear in the type of an instance variable. But such a mode may appear in the

types of operation signatures, local variables and expressions.

• Composing two elements when both have a dynamic mode yields an output element with the
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1 subject Base {

2 class Byte {

3 Bit<0,0>[8] bit;

4 void set(int index) {

5 bit[index] = true;

6 }

7 int value() { /* return int value of byte */ }

8 ...

9 }

10 class Bit {

11 boolean value;

12 void set() { value = true; }

13 }

14 }

Figure 9-1: Subject Base

same mode. What is the meaning of composing an exp annotated element with an element

whose owner is specified by a dynamic mode?

Co-ownership

During evaluation we identified a concern that would benefit from a different form of object ownership

to that offered by SAPS: it was necessary to associate state with more than one representation

context. The need for shared ownership of this kind has not been considered by APS researchers

whose work is reviewed in this thesis. This is probably because in many traditional applications

of object-oriented technology, the flexibility provided by single owner systems proves sufficient.

However, advanced separation of concerns advocated by MDSOC and supported by SOP may benefit

from a more powerful system.

We believe that there are two forms of co-ownership that would improve the modelling potential

of SAPS:

• Systems where co-ownership is required by a fixed number of objects identified in advance.

• Systems where co-ownership is a concern that emerges during subject composition.

When discussing co-ownership of an object we presume that the owners are not ordered and

that existing ownership structures are insufficient to express the required relationship. For example,

consider the program in Figure 9-1. At present SAPS disallows a Bit to be owned by two or more

different Byte objects.

But suppose that such an ownership structure was necessary. How would the owners be specified

and how can we ensure that only the owners and other trusted object access the co-owned object?

The problem is that in order to get into the representation of its owners, an object has to pass

through an untrusted context. Thus we require some form of representation exposure.

Ways of constraining external references include uniqueness, dynamic aliases, read-only interfaces

and reference-only access. We prefer to steer clear of uniqueness for it requires either programming

language support for linear types [89] or the programmer to adopt an unconventional programming

style [5]. Read-only references are upwardly restrictive and operations which are read-only may

become read-write operations after composition. Dynamic aliases still allow objects other than the

owners to change object state.
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aByte

bits

anotherByte

aPersistentStore

connectors

Figure 9-2: Co-ownership Tree

We shall discuss two candidate schemes for co-ownership. Co-ownership with a fixed number of

pre-specified owners is represented by a sequence of context identifiers that follow the class name.

Co-ownership as an emergent concern requires a form of context polymorphism that is not easily

represented using either unks or ownership parameters. Figure 9-2 shows an object graph and

ownership relations for two concerns that would benefit from these schemes. Solid edges indicate

inter-object references and dashed edges relate objects to their owners. Connector objects associate

exactly two Bits that also own the Connector. Only the owner Bits (and objects inside) should

be allowed access to the shared Connector. A PersistentStore object saves the state of Bits

belonging to potentially different Bytes. The PersistentStore object should be allowed access in

addition to the explicitly specified Bit owner.

Co-ownership: Fixed Owner List

For a fixed number of pre-identified owners the code in Figure 9-3 shows a subject with annotations

we propose. It is composed with subject Base specified in Figure 9-1. This example shows the

component integration concern from Section 8.3 on page 195 where the associations are co-owned

by the pertinent Bits. An array of Connector objects is declared in line 4 and initialised in lines

6–7. The array is owned by the encapsulating Byte. The Connectors are co-owned by the Bits they

connect. We use $ instead of angle brackets to indicate a family of owners.

Explicit contexts and variable identifiers in scope can be specified as owners. The co-owned

object can be passed based on existing SAPS rules so long as all co-owners are in scope. That is,

each owner can be referred to using either an exp or a variable. When the object type contains only

variable names, a e.g. line 4 in Figure 9-3, the client may only initialise and pass the reference; it

is not allowed to access the object’s inteface. This system ensures, first, that external clients have

no state dependencies on objects exposed outside their owners and, secondly, that state changes to

exposed objects are avoided. Variables in the type are indicative of external owners that cannot be

specified with an exp. In fact, the type of a co-owned object may contain at most one exp, otherwise

there exists a redundant co-owner in the definition.

The following code fragment shows a reference being passed to a U instance. Object myT is co-

owned by the current representation context and by myV. myT’s reference can be passed to myU only

if its co-owners remain accessible either using exps or using a variable name:

U<0> myU;

V<1> myV;

T$myV, 0$ myT;
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1 subject Equality {

2 class Byte {

3 Bit<0,0>[8] bit;

4 Connector<0, $bit[i],bit[i+1]$>[7] c;

5 void makeEquality() {

6 for(int i = 0; i < 7; i++)

7 c[i] = new Connector$bit[i],bit[i+1]$(bit[i],bit[i+1]);

8 }

9 }

10 abstract class Bit {

11 abstract void set();

12 }

13
14 class Connector {

15 boolean busy;

16 Bit<2> left, right;

17 Connector(Bit<2> left, Bit<2> right) {

18 this.left = left;

19 this.right = right;

20 }

21 void after_set(Bit<2> target) {

22 if(target == left) {

23 if(!busy) {

24 busy = true;

25 right.set();

26 busy = false;

27 }

28 }

29 // same for right

30 }

31 }

32 }

33
34 // composition specification

35 compose Base, Equality into BE;

36 mergeByName;

37 bracket ‘‘Bit’’.‘‘set’’ with after Equality.Connector<$Receiver>.after_set($Receiver);

Figure 9-3: Subject Equality and composition specification for integration with subject Base
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myU.setMyT(myT, myV);

class U {

void setMyT(T$someV, 1$ someT, V<2> someV) { ... }

}

The composition specification connecting subjects Base and Equality (lines 35–37 in Figure

9-3) is conventional except for the last statement. The normal effect of the bracket relationship on

execute sites is to introduce the body of class Connector into class Bit, so the state of a single

Connector object is associated with a single Bit object. However, this is not the effect we require.

We need to associate the state of two Bits with the right Connector. This is indicated in the

composition specification by Connector<$Receiver>where $Receiver is a meta-parameter binding

to the identity of the receiver object matched by the pattern. This notation means exactly “the

Connector with a co-owner given by $Receiver”. Finally, notation after set($Receiver) passes

the receiver object to the wrapper method as the sole argument.

To implement this system, changes are required both to the SOT compiler and the Subject

Composer. The dynamic association between two Bit objects to one Connector object should be

hidden from the composition author by the implementation of the Subject Composer. In related

work, Sakurai et al [109] showed the way stateful aspects like those implemented by the Equality

subject can be implemented in AspectJ. The authors define Association aspects which associate

the state of one aspect instance with a number of objects, selected dynamically using AspectJ’s

join point mechanism. While our proposal predefines the co-owners, it also aims to enforce object

containment in a multi-owner environment.

Co-ownership: Emergent Owners

When the set of co-owners is not known in advance, it should be possible to parameterise an object

by its other owners. SAPS has two forms of parameterisation: ownership parameters are bound

during object instantiation and unks are resolved by subject composition. In addition we propose a

form of context polymorphism that we will call ω-contexts. The purpose of ω-contexts is to refer to

multiple owners dynamically.

To motivate ω-contexts consider the Persistence concern. The Persistence concern is diffi-

cult to implement with SAPS presently because state is associated with just one owner. The

PersistentStore is a separate object with a separate representation context. In order to save

the objects in the representation contexts of a Byte object, it is necessary to expose the Bit objects

from the representation of Byte and pass them to the PersistentStore object. The above system

of pre-specified co-ownership is not suitable here: Bits from many Bytes may be associated with the

PersistentStore. The PersistentStore needs to know about the elements it stores but not about

Bytes or about the way Byte objects are organised. Thus co-ownership is a cross-cutting concern

that emerges when subjects Base and Persistence are composed.

Figure 9-4 shows the Persistence subject annotated with ω-contexts. The $-punctuated identifier

in line 2 refers to the ω-context bound dynamically during inter-subject interaction. According

to the composition specification (line 15), the world-owned PersistentStore object’s save set(..)

method is called with the object of the bracketed method as argument. The exp0 in save set(..)

shows that the PersistentStore co-owns the Bit parameter with the object bound to bit owner. The

bit owner ω-context binds to multiple Byte objects, thus allowing one PersistentStore object to

store Bits from the representation of a limitless number of Bytes.
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1 subject Persistence {

2 class PersistentStore with $bit_owner$ {

3 Hashtable<0,$0,bit_owner$,world> h;

4 void save_set(Bit$0,bit_owner$ b) { h.put(b,true); }

5 boolean retrieve(Bit$0,bit_owner$ b) { h.get(b); }

6 ...

7 }

8 class Bit { }

9 }

10
11 // composition specification

12 compose Base, Equality, Persistence into BP;

13 mergeByName;

14 bracket ‘‘Bit’’.‘‘set’’ with after Equality.Connector<$Receiver>.after_set($Receiver);

15 bracket ‘‘Bit’’.‘‘set’’ with after Persistence.PersistentStore<world>.save_set($Receiver);

Figure 9-4: Persistence subject demonstrating co-ownership as a concern that emerges during
composition

In conclusion, in some cases, in order to support separation of concerns we require a more

advanced alias protection system than SAPS. The two schemes that we have presented allow multiple

objects to co-own an object while still protecting it from external access. We believe that the schemes

we propose are feasible but further work is required in order to fully develop the two forms of co-

ownership and to assess their impact on Subject-Oriented Programming.

9.2.4 Support for Layered Designs

In Chapter 5 on page 70 we discussed the construction of new components by subject composition.

Chapter 8 on page 183 has shown that SAPS helps to ensure that the representation of such compo-

nents stays hidden behind the functional interface. One extension concerns the use of components

constructed by subject composition with SAPS-aware clients.

Imagine a Spreadsheet component which has been created by subject composition. Spreadsheet

is created without reference to any one particular application. Consequently, contexts other than

exp1 and world in the functional interface are not meaningful. Furthermore, as proposed in Chapter

5, the client should be able to parameterise Spreadsheet instances with respect to their ownership

properties.

To meet the demand for new components which are constructed by subject composition, we

propose an extension for transforming the output subject into an uncomposable class with ownership

parameters. The uncomposable class can then be reused as a black-box in the design of larger-grained

subject-oriented programs. The transformation is a mapping from a subject with unresolved unks

to a class or classes where unks become ownership parameters.

Up to now we required that composition resolves all unks. In order to have ownership parameters

some unks should not be resolved by composition. Subjects contain class and subject-level ucircs.

Class level ucircs for the unresolved unks remain. Subject-level ucircs where only one of two unks

resolves become class-level ucircs that get appended to each class. Subject-level ucircs where neither

unk resolves are put into the uncomposable classes’ where clauses. For each class nominated as

a component interface, the resolution set should not be constrained although it may exclude the

representation context exp0.

To illustrate the transformation we use a small example. The Queue concern may be decomposed
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subject Put {

unk k;

class Queue {

Link<0> head = null;

Link<0> tail = null;

void put(Object<k> o) {

Link<0> l = new Link<0>(o);

if(head == null) {

head = tail = l;

} else {

tail.next = l;

tail = l;

}

}

}

class Link {

Object<k> o;

Link<1> next;

Link(Object<k> o) { this.o = o; }

}

}

Figure 9-5: Subject Put implementing the Put feature in the Queue concern

into two ‘features’ for putting elements into the Queue and getting elements out of the Queue1. We

may use SOP to implement each feature as a subject: subjects Put and Get are shown in Figures

9-5 and 9-6 respectively.

The subjects are merged in the usual way but unkk, denoting the data owner, is unresolved.

Nominating class Queue as the interface, unkk is turned into an ownership parameter, creating an

uncomposable class with the following externally accessible interface:

class Queue<k> {

Object<k> get() { ... }

void put(Object<k> o) { ... }

}

This example shows that the proposed extension helps to hide feature concerns of a component

while, at the same time, making the component reusable within a variety of contexts. With this

extension SAPS will be better suited to support software development where components are or-

ganised in layers. To realise this extension, further work is required in the area of unknown context

resolution.

9.3 A Final Word

The Subjective Alias Protection System developed in this dissertation has brought together subjec-

tivity and ownership in response to our perspective on reuse. We believe that to construct reusable

software when reuse is not in the requirements demands technology that is of value to the orig-

inal developer. Our approach is characterised by feature-based decomposition, using subjects to

modularise concerns identified in the requirements. Where state was involved, anomalies in subject

1Note that we do not advocate that Queue be implemented this way.
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subject Get {

unk k;

class Queue {

Link<0> head = null;

Link<0> tail = null;

Object<k> get() {

if(head == null) return null;

Object<k> o = head.o;

if(head == tail) {

head = tail = null;

} else {

head = head.next;

}

return o;

}

}

class Link {

Object<k> o;

Link<1> next;

}

}

Figure 9-6: Subject Get implementing the Get feature in the Queue concern

interaction were deemed to make independent development unlikely and subject reuse improbable.

The ownership concepts we introduce into subject-oriented development raise the level of abstrac-

tion, improving the developers’ and reusers’ ability to understand subject interaction, while at the

same time adding value to the subject creator for whom future reuse is generally not a prominent

concern.

Recently, Jacobson [60] wrote about the important difference that Aspect-Oriented Software

Development will make to the way software is constructed. He drew the link between Use Cases in

UML and aspects (in the general sense that includes subjects). The design process that Jacobson

envisages for the future involves the following stages:

1. Find and specify the use case to describe the system requirements.

2. Design and code each use case.

3. Compose the use case slices (e.g. code in the form of subjects implementing each use case).

4. Test each use case.

For the third step, Jacobson writes “I expect that this activity will be reduced through tooling and

through collaboration between the concerned use case designers”. We believe that SAPS has made

a contribution in this respect.
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Aspect-oriented programming. In Mehmet Akşit and Satoshi Matsuoka, editors, ECOOP’97—

Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–

242. Springer, 1997.

[67] K. Kimbler. Comprehensive approach to service interaction handling. Computer Networks and

ISDN Systems, 1998.

[68] K. Kimbler and H. Velthuijsen. Feature interaction benchmark. In Discussion paper for the

panel on Benchmarking at Feature Interaction Workshop, 1995.

[69] H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck. Aspect composition applying the design

by contract principle. Lecture Notes in Computer Science, 2177:57–69, 2001.

[70] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, June 1992.

[71] A. Lai and G. C. Murphy. The structure of features in java code: An exploratory investigation.

In OOPSLA Companion’99, 1999.

[72] W. LaLonde and J. Pugh. Subclassing 6= subtyping 6= is-a. Journal of Object-Oriented Pro-

gramming, pages 57–60, January 1991.

[73] K. J. Lieberherr, I. Silva-Lepe, and C. Xaio. Adaptive object-oriented programming using

graph-based customizations. Communications of the ACM, 37(5):94–101, May 1994.

[74] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on

Programming Languages and Systems, 16(6):1811–1841, November 1994.

[75] C. Lopes and W. Hursch. Separation of concerns. Technical report, College of Computer

Science, Northeastern University, February 1995.

[76] C. V. Lopes. Aspect-Oriented Software Development, chapter AOP: An Historical Perspective.

Addison-Wesley, 2004.

[77] C. V. Lopes, P. Dourish, D. H. Lorenz, and K. Lieberherr. Beyond AOP: toward naturalistic

programming. SIGPLAN Notices, 38(12):34–43, 2003.

[78] C. V. Lopes and G. Kiczales. D: A language framework for distributed programming. Technical

Report SPL97-010, P9710047, Xerox Palo Alto Research Center, Palo Alto , CA , USA,

February 1997.

[79] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of the 15th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 47–57.

ACM Press, 1988.

[80] A. Lynex and P. J. Layzell. Organisational considerations for software reuse. Annals of

Software Engineering, 5:105–124, 1998.



BIBLIOGRAPHY 229

[81] J. D. McGregor and T. Corson. Supporting dimensions of classification in object-oriented

design. Journal of Object-Oriented Programming, 5(9):25–30, 1993.

[82] M. D. McIlroy. Mass produced software components. In P. Naur and B. Randell, editors,

Report on a conference by the NATO Science Committee, pages 138–150. NATO Scientific

Affairs Division, 1968.

[83] B. Meyer. Genericity versus inheritance. In OOPSLA ’86, pages 391–405, September 1986.

[84] B. Meyer. Eiffel: The Language. Prentice Hall, 1991.

[85] B. Meyer. Applying design by contract. IEEE Computer, 1992.

[86] B. Meyer. Object-Oriented Software Construction, 2nd Ed. Prentice-Hall, Englewood Cliffs,

NJ 07632, USA, second edition, 1997.

[87] B. Meyer. Component and object technology: On to components. Computer, 32(1):139–140,

January 1999.

[88] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In International Conference

on Aspect-Oriented Software Development (AOSD ’03), Boston, USA, 2003.

[89] N. H. Minsky. Towards alias-free pointers. Lecture Notes in Computer Science, 1098:189–209,

1996.

[90] Tzilla Elrad (moderator) Mehmet Aksit Gregor Kiczales Karl Lieberherr Harold Ossher (pan-

elists). Discussing aspects of AOP. Communications of the ACM, 44(10):33–38, October

2001.

[91] P. Müller and A. Poetzsch-Heffter. Universes: A type system for conrolling representation

exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming Languages and Funda-

mentals of Programming. Fernuniversität Hagen, 1999.

[92] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. Lecture Notes in Computer Science,

1445:158–185, 1998.

[93] W. F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of Illinois,

1992.

[94] H. Ossher, M. Kaplan, W. Harrison, and A. Katz. Subject-oriented composition rules. ACM

SIGPLAN Notices, 30(10):235–250, October 1995.

[95] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject-oriented

composition. Theory and Practice of Object Systems, 2(3):179–202, 1996.

[96] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons, 1994.

[97] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications

of the ACM 15(12), 1972.

[98] R. Pawlak. Interactional Aspect Oriented Programming to Construct Multiple Concerns Appli-

cations. PhD thesis, CEDRIC Computer Science Laboratory of CNAM, Paris, France, 2002.



BIBLIOGRAPHY 230

[99] S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice-Hall, Upper Saddle River,

NJ, 1998.

[100] M. Plath and M. Ryan. Feature Interactions in Telecommunications and Software Systems,

volume V, chapter Plug-and-Play Features, pages 150–164. IOS Press, 1998.

[101] Harry H. Porter. Separating the subtype hierarchy from the inheritance of implementation.

Journal of Object-Oriented Programming, 4(9):20–21,24–29, February 1992.

[102] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects. In Australian Software

Engineering Conference, Adelaide, Australia, November 1998. IEEE Press.

[103] J. S. Poulin. Measuring Software Reuse: principles practices, and economic models. Addison-

Wesley Longman Inc., 1997.

[104] C. V. Ramamoorthy, V. Garg, and A. Prakash. Support for reusability in Genesis. IEEE

Transactions on Software Engineering, 14(8):1145–1154, August 1988. Special Section on

COMPSAC ’86.

[105] T. Ravichandran and M. A. Rothenberger. Software reuse strategies and component markets.

Communications of the ACM, 46(8):109–114, August 2003.

[106] J. C. Reynolds. Syntactic control of interference. In Proceedings of the Fifth Annual ACM

Symposium on Principles of Programming Languages, pages 39–46, January 1978.

[107] R. Rivest, A. Shamir, and L. Aldeman. A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM, 21(1), 1978.

[108] D. Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft Press, 1997.

[109] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya. Association aspects.

In Proceedings of the 3rd international conference on Aspect-oriented software development,

pages 16–25. ACM Press, 2004.

[110] D. C. Schmidt. Why software reuse has failed and how to make it work for you. C++ Report,

January 1999.

[111] I. Smaragdakis. Implementing large-scale object-oriented components. PhD thesis, University

of Texas at Austin, 1999.

[112] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In Eric Jul,

editor, ECOOP’98 – Object-Oriented Programming, volume 1445 of Lecture Notes in Computer

Science, pages 550–570. Springer, 1998.

[113] M. Sparling. Lessons learned: through six years of component-based development. Commu-

nications of the ACM, 43(10):47–53, October 2000.

[114] R. Van Der Straeten and J. Brichau. Features and feature interactions in software engineering

using logic. ECOOP’01 Workshop Reader, 2001.

[115] B. Stroustrup. The C++ programming language (2nd edition). Addison Wesley, ISBN 0-201-

53992-6, June 1991.



BIBLIOGRAPHY 231

[116] K. Sullivan, L. Gu, and Y. Cai. Non-modularity in aspect-oriented languages: Integration as

a crosscutting concern for aspectj. In AOSD 2002 Conference Proceedings, pages 19–27, 2002.

[117] K. J. Sullivan. Easing the Design and Evolution of Integrated Systems. PhD thesis, University

of Washington, 1994.

[118] K. J. Sullivan and D. Notkin. Reconciling environment integration and software evolution.

ACM Transactions on Software Engineering and Methodology 1, pages 229–268, 1992.

[119] Sun Microsystems. JavaBeans Specification 1.0, July 1997.

[120] S. Sutton and I. Rouvellou. Modeling of software concerns in Cosmos. In Gregor Kiczales,

editor, AOSD2002, pages 127–133. ACM, 2002.

[121] P. Tarr and H Ossher. Hyper/J user and installation manual. Available from

http://www.research.ibm.com/hyperspace, 2000.

[122] P. Tarr, H. L. Ossher, W. H. Harrison, and S. M. Sutton, Jr. N degrees of separation: Multi-

dimentional separation of concerns. In Proceedings of the 21st International Conference on

Software Engineering, May 1999.

[123] B. Tekinerdogan, L. Bergmans, M. Glandrup, and M. Aksit. On composing separated concerns:

Composability composition anomalies. October 2000.

[124] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. In 14th IEEE

International Conference on Automated Software Engineering, pages 174–182. IEEE Computer

Society Press, 1999.

[125] M. VanHilst and D. Notkin. Using C++ templates to implement role-based designs. Lecture

Notes in Computer Science, 1049:22–37, 1996.

[126] M. VanHilst and D. Notkin. Using role components to implement collaboration-based designs.

ACM SIGPLAN Notices, 31(10):359–369, October 1996.

[127] J. Vitek and B. Bokowski. Confined types. ACM SIGPLAN Notices, 34(10):82–96, October

1999.

[128] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming (ICFP ’03), ACM SIGPLAN

Notices. ACM, August 2003.

[129] R. J. Walker. Eliminating cycles in composed class hierarchies. Technical Report TR-2000-07,

Department of Computer Science, University of British Columbia, July 2000.

[130] M. J. Wooldridge. An Introduction to MultiAgent Systems. Chichester: Wiley, 2002.


