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Evolutionary problems with energies with linear growth
Johannes Zimmer

(joint work with Martin Kruž́ık )

We study a rate-independent evolution of problems where the energy W is a
function of the deformation gradient, W = W (Du), and grows linearly at infinity,

(1) c |s| − c2 ≤W (x, s) ≤ C(1 + |s|) for x ∈ Ω̄ ,

with constants 0 < c ≤ C. Here, Ω ⊂ Rn is a bounded domain with smooth
boundary.

The aim of this note is to sketch a framework within which the existence of
a rate-independent process with an energy of type (1) can be proved. Rate-
independent processes are understood here in the energetic formulation, i.e., char-
acterised by stability, energy inequality, and compatibility with initial conditions.
This is made precise below.

Before moving on to the evolutionary process, we should motivate the functional
analytic framework in the static context. The setting needs to be chosen such that
oscillation and concentration effects are taken into account. This can be seen in
the following toy model, where the task is to minimise the functional

min I(u) :=
∫ 1

0

[
(u′(x))2

1 + (u′(x))4 + θ2 |u′(x)|+ (u(x)− x)2

]
dx,

with θ ≥ 0 among u ∈W 1,1(0, 1) with u(0) = 0. The second term is introduced to
make the functional coercive; the third term favours solutions close to the identity.
The decisive term is the first one, which becomes minimal for u′(x) = 0 or in the
limit u′(x) → ±∞. One would thus expect approximative solution (minimising
sequences) to oscillate between gradient 0 and gradients which become arbitrar-
ily large in modulus. A particular point here is that the minimising sequences
thus do not oscillate between finite values for the deformation gradient (as for

the toy model
∫ 1

0

(
(u′(x))2 − 1

)2

dx between ±1), but concentrate mass at ±∞.
Young measures [5, 1, 3, 4] are an appropriate tool to deal with oscillations, while
DiPerna-Majda measures [2] describe the limits of sequences with oscillations and
concentrations.

We use DiPerna-Majda measures to describe the evolution of rate-independent
processes with linear energies. Let u : Ω → Rm denote the deformation, where
Ω ⊂ Rn is a bounded domain with smooth boundary. We write q := (u, η, λ) for
a state; u denotes the deformation, η is the associated DiPerna-Majda measure,
and λ is derived from η. (To be precise, for a suitable compactification βRm×n of
Rm×n and for η ∼= (ν̂, σ) via slicing, we set λ(x) =

∫
βRm×n

Λ
1+|s|νx(ds)dσ(x) with

Λ bounded).
The following definitions are natural in the context of DiPerna-Majda measures

(we write g̃(s) := g(s)
1+|s| and recall that βRm×n is a suitable compactification of
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Rm×n). The applied body force f give rise to

F (q) :=
∫

Ω

f(x, t) · u(x) dx and Ḟ (t, q) =
∫

Ω

∂f(x, t)
∂t

· u(x) dx;

the time-dependent elastic energy E(t, q) is

E(t, q) =
∫

Ω̄×βRm×n

W̃ (x, s)η(dsdx)−
∫

Ω

f(x, t) · u(x) dx.(2)

Γ is the energy augmented by a spatial regularisation,

Γ(t, q) := E(t, q) +
∫

Ω

% |∇λ(x)|2 dx,

with ρ > 0.
The dissipation distance D describes the energetic loss between two states of

the system characterised by η1 and η2. We choose D(q1, q2) =
∫

Ω
‖λ1 − λ2‖dx.

The temporal dissipation is then given by

Diss(q, [t1, t2]) := sup
L∈N

{
L∑
l=1

D (η(τl), η(τl−1))
∣∣ t1 = τ0 < · · · < τL = t2

}
.

For given q0 in the state space Q, the process q : [0, T ]→ Q is a solution if the
following three conditions hold:

(1) Stability: For every t ∈ [0, T ], we have

Γ(t, q(t)) ≤ Γ(t, q̃) +D(q(t), q̃) for every q̃ ∈ Q.

(2) Energy inequality: For every 0 ≤ t1 ≤ t2 ≤ T , we have

Γ(t1, q(t1)) + Diss(q, [t1, t2]) ≤ Γ(t2, q(t2))−
∫ t2

t1

Ḟ (t, q(t))dt.

(3) Initial condition: q(0) = q0 .
In this setting, the existence of a process satisfying the above conditions can be

proved and suitable regularity assumptions for sufficiently small forces.
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