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CONVERGENCE THEORY FOR INEXACT INVERSE ITERATION APPLIED

TO THE GENERALISED NONSYMMETRIC EIGENPROBLEM

MELINA A. FREITAG AND ALASTAIR SPENCE∗

Abstract. In this paper we consider the computation of a finite eigenvalue and corresponding right eigenvector
of a large sparse generalised eigenproblem Ax = λMx using inexact inverse iteration. Our convergence theory is quite
general and requires few assumptions on A and M. In particular, there is no need for M to be symmetric positive
definite or even nonsingular. The theory includes both fixed and variable shift strategies, and the bounds obtained
are improvements on those currently in the literature. In addition, the analysis developed here is used to provide
a convergence theory for a verson of inexact simplified Jacobi-Davidson. Several numerical examples are presented
to illustrate the theory: including applications in nuclear reactor stability, with M singular and nonsymmetric, the
linearised Navier-Stokes equations and the bounded finline dielectric waveguide.
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1. Introduction. Let A ∈ C
n×n and M ∈ C

n×n be large, sparse and complex. We consider
the computation of a simple, finite eigenvalue and corresponding eigenvector of the generalised
eigenvalue problem

Ax = λMx, x 6= 0, (1.1)

using inverse iteration with iterative solves of the resulting linear systems

(A − σM)y = Mx.

Here σ is a complex shift chosen to be close to the desired eigenvalue. We call this method “inexact
inverse iteration”, and consider the case where the linear system is solved to some prescribed
tolerance only. It is well known that, using exact solves, inverse iteration achieves linear convergence
with a fixed shift and quadratic convergence for a Rayleigh quotient shift (see [18] and [17]). For
more information about inverse iteration we refer to the classic articles [7] and [19], and the more
recent survey [11]. In this paper, we shall explore, under minimal assumptions, convergence rates
attained by inexact inverse iteration, illustrate the theory with reference to some physical examples,
and obtain a convergence result for a version of the inexact Jacobi-Davidson method.

The paper by Golub and Ye [8] provided a convergence theory of inexact inverse iteration for a
fixed shift strategy for nonsingular M with M−1A diagonalisable. Linear convergence is proved if a
suitable solve tolerance is chosen to decrease linearly. An early paper, which also considers inexact
inverse iteration applied to a diagonalisable problem is the one by Lai et al. [12]. They provide a
theory for the standard eigenproblem with a fixed shift strategy and obtain linear convergence for
both the eigenvalue and the eigenvector if the solve tolerance decreases depending on a quantity
containing unknown parameters. They also give numerical results on a transformed generalised
eigenvalue problem. In [3] a convergence theory is given for Rayleigh quotient shifts assuming M

is symmetric positive definite. Following [8], the convergence theory in [3] used a decomposition
in terms of the right eigenvectors. One result in [3] is that for a variable shift strategy, the linear
systems need not be solved accurately to obtain a convergent method.
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2 M. A. FREITAG AND A. SPENCE

An alternative approach to the convergence theory of inexact inverse iteration for general A

and M has been presented in [5] where it is shown that inexact inverse iteration is a modified
Newton method if a certain normalisation for the eigenvector and a special update of the shift is
used. The only assumptions are that the desired eigenvalue is simple and finite. It is then shown
that inexact inverse iteration converges linearly for close enough starting values, and that for a
decreasing tolerance quadratic convergence is attained, as would be expected from a theory based
on Newton’s method. The advantage of this approach is that an eigenvector expansion is not used
and so error bounds do not contain a term involving the norm of the inverse of the matrix of
eigenvectors, as appears in [8] and [3]. The disadvantage is that the convergence rate itself depends
on the norm of the inverse of the Jacobian, which is hard to estimate in practice.

In this paper we consider a quite general setting, where A and M are nonsymmetric matrices
with both A and M allowed to be singular, but without a common null vector. We only assume that
the sought eigenpair (λ1,x1) is simple, well-separated and finite. We provide a convergence theory
for inexact inverse iteration applied to this generalised eigenproblem for both fixed and variable
shifts. This theory extends the results of [5], since this new theory holds for any shift, not just
the shift that gives the equivalence of Newton’s method to inverse iteration. Also, the convergence
rate is seen to depend on how close the sought eigenvalue is to the rest of the spectrum, a natural
result that is somewhat hidden in the theory in [5]. We use a decomposition that allows us to
consider nondiagonalisable problems where M may be singular. To be precise, we use a splitting
of the approximate right eigenvector in terms of the exact right eigenvector and a basis of a right
invariant subspace. This is an approach used by Stewart [27] to provide a perturbation theory
of invariant subspaces, and allows us to overcome the theoretical dependence of the allowed solve
tolerance on the basis of eigenvectors, which appeared in [8] and [3]. If a decreasing solve tolerance
is required then we take it to be proportional to the eigenvalue residual, as was done in [3].

Inexact inverse iteration applied to the symmetric standard eigenvalue problem has been con-
sidered by [25] and [2]. Both approaches use a natural orthogonal splitting and consider fixed
and Rayleigh quotient shifts. Linear convergence for the fixed shift and locally cubic convergence
for the Rayleigh quotient shift is obtained if the solve tolerance is chosen to decrease in a certain
way. The approach in [2] is more natural, since the solve tolerance is chosen to decrease in propor-
tion to the eigenvalue residual. Simoncini and Eldén [20] observed that inexact Rayleigh-quotient
iteration is equivalent to a Newton method on a unit sphere and also discuss a reformulation for
efficient iterative solves. Notay [15] considered the computation of the smallest eigenvalue and asso-
ciated eigenvector for a Hermitian positive definite generalised eigenproblem using inexact Rayleigh
quotient iteration. In practice, subspace methods like shift-invert (restarted) Arnoldi and Jacobi-
Davidson are more likely to be used in eigenvalue computations, though inexact inverse iteration
has proved to be a useful tool in improving estimates obtained from inexact shift-invert Arnoldi’s
method with very coarse tolerances, see [9].

It is well-known that there is a close connection between inverse iteration and the Jacobi-
Davidson method, see [24, 22, 21]. We shall use the convergence theory developed here for inexact
inverse iteration applied to (1.1) to provide a convergence theory for a version of inexact simplified
Jacobi-Davidson.

The paper is organised as follows. In Section 2 standard results on the generalised eigenproblem
are summarised and a generalised Rayleigh quotient is discussed. Section 3 provides the main result
of the paper; a new convergence measure is introduced and the main convergence result for inexact
inverse iteration applied to the generalised nonhermitian eigenproblem is stated and proved. Section
4 contains some additional convergence results. In Section 5 we give numerical tests on examples
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arising from modeling of a nuclear reactor and the linearised incompressible Navier-Stokes equations.
Section 6 presents a convergence analysis for the inexact simplified Jacobi-Davidson method and
provides some numerical results to illustrate the theory.

Throughout this paper we use ‖ · ‖ = ‖ · ‖2.

2. Standard results on the generalised eigenproblem. In order to state convergence
results for Algorithm 1 we need some results about the generalised eigenproblem. First recall that
the eigenvalues of (1.1) are given by λ(A,M) := {z ∈ C : det(A − zM) = 0}.

We use the following theorem for a canonical form of (1.1), which is a generalisation of the
Schur Decomposition of the standard eigenproblem.

Theorem 2.1 (Generalised Schur Decomposition). If A ∈ Cn×n and M ∈ Cn×n, then there
exist unitary matrices Q and Z such that QHAZ = T and QHMZ = S are upper triangular. If
for some j, tjj and sjj are both zero, then λ(A,M) = C. If sjj 6= 0 then λ(A,M) = {tjj/sjj},
otherwise, the jth eigenvalue of problem (1.1) is an infinite eigenvalue.

Proof. See [6, page 377].
Using this Theorem, together with the fact that Q and Z can be chosen such that sjj and tjj appear
in any order along the diagonal, we can introduce the following partition of the eigenproblem in
canonical form:

QHAZ =

[

t11 tH
12

0 T22

]

and QHMZ =

[

s11 sH
12

0 S22

]

, (2.1)

where T22 ∈ C(n−1)×(n−1) and S22 ∈ C(n−1)×(n−1). If λ1, the desired eigenvalue, is finite, then
s11 6= 0 and λ1 = t11/s11. The factorisation (2.1) provides a orthogonal similarity transform, but
in order to decompose the problem for the convergence analysis, we make a further transformation
to block diagonalise the problem. To this end we define the linear transformation Φ : C(n−1)×2 →
C2×(n−1) by

Φ(h,g) := (t11h
H − gHT22, s11h

H − gHS22), (2.2)

where g ∈ C(n−1)×1 and h ∈ C(n−1)×1. (This transformation is a simplification of that suggested
by Stewart in [26].)

Lemma 2.1. The operator Φ from (2.2) is nonsingular if and only if λ1 =
t11
s11

6∈ λ(T22,S22).

Proof. See [26, Theorem 4.1].
Hence Φ is nonsingular if and only if λ1 is a simple eigenvalue of (1.1). With Lemma 2.1 we can
prove the following result.

Lemma 2.2. If the operator Φ from (2.2) is nonsingular and G, H are defined by

G =

[

1 gH
12

0 In−1

]

and H =

[

1 hH
12

0 In−1

]

where Φ(h12,g12) = (−tH
12,−sH

12), then, with T and S defined in Theorem 2.1,

G−1TH = diag(t11,T22) and G−1SH = diag(s11,S22).

Furthermore,

‖H‖2=‖H−1‖2= C‖h12‖, C‖h12‖ := (‖h12‖2 +
√

‖h12‖4 +4 ‖h12‖2 + 2)/2, (2.3)
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with similar results for ‖G‖2 and ‖G−1‖2.
Proof. If Φ is nonsingular then the vectors g12 and h12 exist and simple calculation gives

G−1TH = diag(t11,T22) and G−1SH = diag(s11,S22). Result (2.3) follows by direct calculation
of the spectral radius of HHH.
Note that C‖h12‖ and C‖g12‖ measure the conditioning of the eigenvalue λ1, with large values of
C‖h12‖ and C‖g12‖ implying a poorly conditioned problem. We shall see in Section 3 that ‖g12‖ and
‖h12‖ appear in the bounds in the convergence theory.
Combining Theorem 2.1 and Lemma 2.2 gives the following corollary:

Corollary 2.1. Define

U = QG (2.4)

and

X = ZH. (2.5)

Then both U and X are nonsingular and we can block factorise A − λM as

U−1(A − λM)X =

[

t11 0H

0 T22

]

− λ

[

s11 0H

0 S22

]

. (2.6)

For our purposes, decomposition (2.6) has advantages over the Schur factorisation (2.1), since (2.6)
allows the eigenvalue problem Ax = λMx to be split into two problems. The first problem is the
trivial λ t11 = s11. The second problem arising from the (n − 1) × (n − 1) block is that of finding
λ(T22,S22) which contains the (n − 1) eigenvalues excluding λ1. From (2.6) we have

(A − λ1M)x1 = 0 and uH
1 (A − λ1M) = 0, (2.7)

where λ1 =
t11
s11

is an eigenvalue of (1.1), with corresponding right and left eigenvectors, x1 = Xe1

and u1 = U−He1, where e1 is the first canonical vector.

Note that λ1 =
t11
s11

is a finite eigenvalue if and only if

uH
1 Mx1 6= 0, (2.8)

since, by (2.6) and the special structure of G and H in Lemma 2.2, we have

s11 = qH
1 Mz1 = eH

1 QHMZe1 = eH
1 G−1QHMZHe1 = eH

1 U−1MXe1 = uH
1 Mx1.

Next, for x ∈ Cn, with xHMx 6= 0, we define the Rayleigh quotient, by xHAx
xHMx

. Note that

xHMx 6= 0 does not generally hold, unless M is positive definite. Therefore, instead of the Rayleigh
quotient we consider the related generalised Rayleigh quotient

cHAx

cHMx
, (2.9)

where c ∈ Cn is some known vector, such that cHMx 6= 0. In our computations we take c = Mx,
which yields

ρ(x) :=
xHMHAx

xHMHMx
, (2.10)
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and has the desirable minimisation property: for any given x,

‖Ax− ρ(x)Mx‖ = min
z∈C

‖Ax− zMx‖. (2.11)

(This property can be verified using simple least-squares approximation as in [29, page 203].) If we
normalise x such that xHMHMx = 1, then ρ(x) = xHMHAx.

3. Inexact inverse iteration. We assume that the generalised nonsymmetric eigenproblem
(1.1) has a simple, well-separated eigenvalue (λ1 satisfying (2.7) and(2.8)). This section contains
the convergence theory for inexact inverse iteration described by Algorithm 1.

Algorithm 1 Inexact Inverse Iteration

Input: x(0), imax.
for i = 1, . . . , imax do

Choose σ(i) and τ (i),
Find y(i) such that ‖(A − σ(i)M)y(i) − Mx(i)‖ ≤ τ (i),
Set x(i+1) = y(i)/φ(y(i)),
Set λ(i+1) = ρ(x(i+1)),
Evaluate r(i+1) = (A − λ(i+1)M)x(i+1),
Test for convergence.

end for

Output: x(imax).

Note that we choose λ(i+1) = ρ(x(i+1)) to make use of the minimisation property (2.11). Also,
in Algorithm 1 the function φ(y(i)) is a scalar normalisation. Common choices for this normalisation

are φ(y(i)) = z(i)H
y(i), for some z(i) ∈ Cn, or a norm of y(i), such as φ(y(i)) = ‖y(i)‖2 or, if M is

positive definite, φ(y(i)) = ‖y(i)‖M.

We introduce a new convergence measure in Section 3.1, provide a one step bound in Section
3.2 and finally give convergence results for both fixed and variable shifts in Section 3.3. In Section
4 we discuss some properties of the function φ(y).

3.1. The measure of convergence. In order to analyse the convergence of inexact inverse
iteration we use a different approach to the one used in [3],[8] where the splitting was done in
terms of the right eigenvectors of the problem. We split the approximate right eigenvector into two
components: the first is in the direction of the exact right eigenvector, and the second lies in the
right invariant subspace not containing the exact eigenvector. This decomposition is based on that
used by [27] for the perturbation theory of invariant subspaces. However, we introduce a scaling,
namely α(i) as in [3], which turns out to be advantageous in the analysis. Let us decompose x(i),
the vector approximating x1, as

x(i) = α(i)(x1q
(i) + X2p

(i)), (3.1)

where q(i) ∈ C, p(i) ∈ C(n−1)×1 and X2 = XĪn−1, where X is given by (2.5) and

Īn−1 =

[

0H

In−1

]

∈ Cn×(n−1)
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with In−1 being the identity matrix of size (n−1). The scalar α(i) is chosen so that x(i) is normalised
as φ(x(i)) = 1. For the convergence theory we leave the scaling of the eigenvector approximate and
exact right eigenvector x(i) and x1 open, however, in Sections 4 and 5, we will use ‖Mx(i)‖ = 1.

Clearly q(i) and p(i) measure how close the approximate eigenvector x(i) is to the sought
eigenvector x1. As we shall see in the following analysis the advantage of this splitting is that we
need not be concerned about any highly nonnormal behaviour in the matrix pair (T22,S22). This
is in contrast to the approach in [3], where the splitting only existed for positive definite M and
involved a bound on the condition number of the matrix of eigenvectors. Now set

α(i) := ‖U−1Mx(i)‖,

and multiply (3.1) from the left by U−1M. Using

U−1Mx1 = s11e1 and U−1MX2 =
[

e2 . . . en

]

S22 = Īn−1S22, (3.2)

from (2.6), where ei is the ith canonical vector, we have

1 =
‖U−1Mx(i)‖

α(i)
= ‖s11q

(i)e1 + Īn−1S22p
(i)‖

= ((s11q
(i))2 + ‖S22p

(i)‖2)
1

2 . (3.3)

Thus |s11q
(i)| and ‖S22p

(i)‖ can be interpreted as generalisations of the cosine and sine functions
as used in the orthogonal decomposition for the symmetric eigenproblem, [18]. Also, from (3.3),
we have |s11q

(i)| ≤ 1 and ‖S22p
(i)‖ ≤ 1. Note that (3.3) also indicates why α(i) was introduced in

(3.1). This scaling is not used in [27] or [28]. It is now natural to introduce

T (i) :=
‖S22p

(i)‖
|s11q(i)| ,

as our measure for convergence. Equation (3.3) shows that T (i) can be interpreted as a generalised
tangent. Using (3.1) we have, for α(i)q(i) 6= 0,

‖ x(i)

α(i)q(i)
− x1‖ =

‖X2p
(i)‖

|q(i)| ≤ ‖X2‖‖p(i)‖
|q(i)| ≤ ‖X‖‖p(i)‖

|q(i)| ,

and also

‖X2p
(i)‖ =

∥

∥

∥

∥

X

[

0

p(i)

]
∥

∥

∥

∥

≥ ‖p(i)‖
‖X−1‖ .

Using the last two bounds together with (2.5) we obtain

1

‖H−1‖
‖p(i)‖
|q(i)| ≤ ‖ x(i)

α(i)q(i)
− x1‖ ≤ ‖H‖‖p

(i)‖
|q(i)| , (3.4)

with expressions on ‖H‖ and ‖H−1‖ given by (2.3).

Hence (3.4) yields that
‖p(i)‖
|q(i)| → 0 if and only if span{x(i)} → span{x1}. Further we have

T (i) ≤ ‖S22‖‖p(i)‖
|s11||q(i)| ,
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and hence, since s11 and S22 are constant, T (i) → 0 if
‖p(i)‖
|q(i)| → 0, and so the function T (i) measures

the quality of the approximation of x(i) to x1. Note that this measure is only of theoretical interest,
since both S22 and s11 are not available.

The following lemma provides bounds on the absolute error in the eigenvalue approximation
|ρ(x(i)) − λ1| and on the eigenvalue residual, defined by

r(i) := (A − ρ(x(i))M)x(i). (3.5)

Lemma 3.1. The generalised Rayleigh quotient ρ(x(i)) given in (2.10) satisfies

|ρ(x(i)) − λ1| ≤ C‖g12‖‖T22 − λ1S22‖‖p(i)‖, (3.6)

and the eigenvalue residual (3.5) satisfies

‖r(i)‖ ≤ C‖g12‖‖T22 − λ1S22‖‖p(i)‖, (3.7)

where p(i) is given in (3.1) and C‖g12‖ is given in (2.3).

Proof. Since (A − λ1M)x(i) = α(i)(A − λ1M)X2p
(i) using (3.1) we have

|ρ(x(i)) − λ1| =
|x(i)H

MH(A − λ1M)x(i)|
‖Mx(i)‖2

=
|α(i)||x(i)H

MHUU−1(A − λ1M)X2p
(i)|

‖Mx(i)‖2
.

Hence, using (2.6) and the definition of α(i) we get

|ρ(x(i)) − λ1| =
‖U−1Mx(i)‖|x(i)H

MHUĪn−1(T22 − λ1S22)p
(i)‖

‖Mx(i)‖2

≤ ‖U−1‖‖U‖‖(T22 − λ1S22)p
(i)‖. (3.8)

Now we have

‖U‖ = ‖QG‖ = ‖G‖ and ‖U−1‖ = ‖G−1QH‖ = ‖G−1‖,

since Q is unitary. Hence, from equation (3.8), we obtain

|ρ(x(i)) − λ1| ≤ ‖G‖‖G−1‖‖(T22 − λ1S22)p
(i)‖

≤ C‖g12‖‖(T22 − λ1S22)‖‖p(i)‖

as required. The eigenvalue residual can be written as

r(i) = (A − ρ(x(i))M)x(i) = (A − λ1M)x(i) + (λ1 − ρ(x(i)))Mx(i).

and hence, using the same idea as in the first part of the proof we obtain

r(i) = α(i)(A − λ1M)X2p
(i) − α(i)(x(i)H

MH(A − λ1M)X2p
(i))Mx(i)

x(i)H
MHMx(i)

=

(

I− Mx(i)x(i)H
MH

x(i)H
MHMx(i)

)

α(i)(A − λ1M)X2p
(i).
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This yields ‖r(i)‖ ≤ α(i)‖(A − λ1M)X2p
(i)‖ and proceeding as in the first part of the proof gives

the required result
Lemma 3.1 shows that the generalised Rayleigh quotient ρ(x(i)) defined by (2.10) converges linearly
in ‖p(i)‖ to λ1 and the eigenvalue residual r(i) converges linearly in ‖p(i)‖ to zero. This observation
leads to more practical measures of convergence than the generalised tangent T (i), which is only
of theoretical nature. Nonetheless, one must recognise the limitations of this approach: if C‖g12‖

is large then the error in the generalised Rayleigh quotient and the residual may be large, even if
‖p(i)‖ is small.

The Lemma in the following subsection provides a bound on the generalised tangent T (i) after
one step of inexact inverse iteration, and is a generalisation of Lemma 3.1 proved in [3] for a
diagonalisable problem with symmetric positive definite M.

3.2. A one step bound. In this subsection we provide the main lemma used in the con-
vergence theory for inexact inverse iteration. Let the sought eigenvalue λ1 be simple, finite and
well separated. Furthermore let the starting vector x(0) be neither the solution x1 itself, that is,
p(0) 6= 0, nor deficient in the sought eigendirection, that is, q(0) 6= 0. (This is the same as assuming
that 0 < ‖S22p

(i)‖ < 1.) We have the following Lemma.
Lemma 3.2. Let the generalised eigenproblem Ax = λMx have a simple finite eigenpair (λ1,x1)

and let (3.1) hold for the approximate eigenpair. Assume the shift satisfies σ(i) 6∈ λ(T22,S22).
Further let

Mx(i) − (A − σ(i)M)y(i) = d(i)

with ‖d(i)‖ ≤ τ (i)‖Mx(i)‖ in Algorithm 1 and

τ (i) < βα(i) |s11q
(i)|

‖u1‖‖Mx(i)‖ (3.9)

with β ∈ (0, 1) then

T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖d(i)‖

)

(1 − β)|α(i)s11q(i)| . (3.10)

Proof. Using

(A − σ(i)M)y(i) = Mx(i) − d(i) and x(i+1) =
y(i)

φ(y(i))

from Algorithm 1 together with the splitting (3.1) for x(i) and x(i+1) we obtain

φ(y(i))(A − σ(i)M)(α(i+1)x1q
(i+1) + α(i+1)X2p

(i+1)) = M(α(i)x1q
(i) + α(i)X2p

(i)) − d(i). (3.11)

Using (2.6) we get that

U−1(A − σ(i)M)x1 = (t11 − σ(i)s11)e1

U−1(A − σ(i)M)X2 =

[

0

T22 − σ(i)S22

]

= Īn−1(T22 − σ(i)S22),
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where Īn−1 is defined in (3.2). Thus, multiplying (3.11) by U−1 from the left we obtain

φ(y(i))
(

α(i+1)(t11 − σ(i)s11)q
(i+1)e1 + α(i+1)Īn−1(T22 − σ(i)S22)p

(i+1)
)

= α(i)s11q
(i)e1 + α(i)Īn−1S22p

(i) − U−1d(i).
(3.12)

Multiplying (3.12) by eH
1 and ĪH

n−1 from the left we split (3.12) into two equations, namely,

φ(y(i))α(i+1)(t11 − σ(i)s11)q
(i+1) = α(i)s11q

(i) − eH
1 U−1d(i)

in the direction of e1 and

φ(y(i))α(i+1)(T22 − σ(i)S22)p
(i+1) = α(i)S22p

(i) − ĪH
n−1U

−1d(i),

in span{e1}⊥. With the left eigenvector uH
1 = eH

1 U−1 and the left invariant subspace UH
2 :=

[

e2 . . . en

]H
U−1 and assuming that σ(i) is not an eigenvalue of (T22,S22) as well as s11 6= 0

we get

T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖‖(T22 − σ(i)S22)

−1‖
(

‖α(i)S22p
(i)‖ + ‖UH

2 d(i)‖
)

|α(i)s11q(i)| − |uH
1 d(i)| .

Using (3.9) we obtain

T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖UH

2 d(i)‖
)

(1 − β)|α(i)s11q(i)| . (3.13)

Now ‖U2‖ = 1, since, using equation (2.6) we may write

UH
2 = ĪH

n−1U
−1 = ĪH

n−1G
−1QH ,

and with the special form of G (see Lemma 2.2) we obtain

UH
2 = ĪH

n−1U
−1 = ĪH

n−1

[

1 −gH
12

0 In−1

]

QH =
[

0 In−1

]

QH .

Since QH is unitary we have ‖UH
2 ‖ = 1. Hence,

T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖d(i)‖

)

(1 − β)|α(i)s11q(i)| , (3.14)

as required.
This bound is a significant improvement over the corresponding results in [8, Lemma 2.2] and

[3, Lemma 3.1] which have a bound involving the norm of the unknown eigenvector basis matrix.
This matrix may be arbitrarily ill-conditioned, and hence may result in an unnecessarily severe
restriction on the solve tolerance in the later theory.
Condition (3.9) asks that τ (i) is small enough and bounded in terms of |α(i)s11q

(i)|, which can be
considered as a generalised cosine. In practice this means that if the eigenvector approximation x(i)

is coarse, |s11q
(i)| is close to zero and hence τ (i) has to be chosen small enough.
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Note that in the case of τ (i) = 0 that is, we solve the inner system exactly, we have β = 0 as
well as d(i) = 0 and hence

T (i+1) ≤ |λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

T (i).

As in [28], we introduce the function sep(λ1, (T22,S22)), which measures the separation of the
sought simple eigenvalue λ1 from the eigenvalues λ(T22,S22) as follows

sep(λ1, (T22,S22)) := inf
‖a‖2=1

‖(T22 − λ1S22)a‖2 (3.15)

=

{

‖(T22 − λ1S22)
−1‖−1

2 , λ1 6∈ λ(T22,S22)

0, λ1 ∈ λ(T22,S22)
.

Using this definition we get

sep(σ(i), (T22,S22)) = inf
‖a‖2=1

‖(T22 − σ(i)S22)a‖2

≥ sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖2,

and also

T (i+1) ≤ |λ1 − σ(i)|‖S22‖
sep(σ(i), (T22,S22))

T (i).

for the case of exact solves. Since sep(σ(i), (T22,S22)) is a measure for the separation of the shift
σ(i) from the rest of the spectrum, this means that the convergence rate depends on the ratio
|λ1 − σ(i)|‖S22‖

sep(σ(i), (T22,S22))
. For diagonalisable systems, where T22 is diagonal and S22 = In−1, this ratio

becomes
|λ1 − σ(i)|
|λ2 − σ(i)| , the familiar ratio obtained for inverse iteration. In the next subsection we

give the convergence rate for inexact inverse iteration for certain choices of the shift and the solve
tolerance, using Lemma 3.2.

3.3. Convergence rate for inexact inverse iteration. Assume that the shift σ(i) in Algo-
rithm 1 satisfies

|λ1 − σ(i)| <
sep(λ1, (T22,S22))

2‖S22‖
, (3.16)

that is σ(i) is close to λ1 and certainly closer to λ1 than to any other eigenvalue. Then, using (3.16),
for the first factor on the right hand side of (3.13)

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

≤ |λ1 − σ(i)|‖S22‖
sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖

<
|λ1 − σ(i)|‖S22‖
|λ1 − σ(i)|‖S22‖

= 1

holds. Note that for diagonalisable systems with S22 = In−1 condition (3.16) becomes |λ1 − σ(i)| <
1

2
|λ2−λ1|, where |λ2−λ1| = minj 6=1 |λj −λ1| and hence |λ1−σ(i)| < |λ2−σ(i)|, a familiar condition

for the choice of the shift.
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Using Lemma 3.2 we can prove convergence results for variable and fixed shifts σ(i) and for
different choices of the tolerances τ (i).

Theorem 3.1 (Convergence of Algorithm 1). Let (1.1) be a generalised eigenproblem and
consider the application of Algorithm 1 to find a simple eigenvalue λ1 with corresponding right
eigenvector x1. Let the assumptions of Lemma 3.2 hold and let 0 < ‖S22p

(0)‖ < 1, that is x(0) is
neither the solution itself nor deficient in the sought eigendirection.

1. Assume σ(i) also satisfies

|λ1 − σ(i)| <
sep(λ1, (T22,S22))

2‖S22‖
‖S22p

(i)‖. (3.17)

and ‖d(i)‖ ≤ τ (i)‖Mx(i)‖ where τ (i) <
α(i)

‖Mx(i)‖‖u1‖
β|s11q

(i)| with 0 ≤ 2β < 1−T (0), then

Algorithm 1 converges linearly, that is

T (i+1) ≤
(

T (0) + β

1 − β

)

T (i) ≤
(

T (0) + β

1 − β

)i+1

T (0).

If in addition τ (i) < α(i)η‖S22p
(i)‖/‖Mx(i)‖ for some constant η > 0 then the convergence

is quadratic, that is T (i+1) ≤ qT (i)2 for some q > 0, and for large enough i.
2. If τ (i) < α(i)η‖S22p

(i)‖/‖Mx(i)‖ for some positive constant η and furthermore

|λ1 − σ(i)| <
1 − β

2 − β + η + δ

sep(λ1, (T22,S22))

‖S22‖
, (3.18)

where δ > 0, then Algorithm 1 converges linearly, that is

T (i+1) ≤ qT (i) ≤ qi+1T (0).

for some constant q < 1, and for large enough i.
Proof.
1. If (3.17) holds then

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

<
|λ1 − σ(i)|‖S22‖‖S22p

(i)‖
2|λ1 − σ(i)|‖S22‖ − |λ1 − σ(i)|‖S22‖‖S22p(i)‖ ≤ ‖S22p

(i)‖,

since ‖S22p
(i)‖ < 1. Thus, from (3.14)

T (i+1) ≤ ‖S22p
(i)‖‖α

(i)S22p
(i)‖ + τ (i)‖Mx(i)‖

(1 − β)|α(i)s11q(i)|

≤ ‖S22p
(i)‖ ‖S22p

(i)‖ + β

(1 − β)|s11q(i)| ,

where we have used
τ (i)‖Mx(i)‖

α(i)
≤ β|s11q

(i)|
‖u1‖

≤ β. Now ‖S22p
(i)‖ ≤ T (i) gives

T (i+1) ≤ T (i) T
(i) + β

1 − β
,
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which yields linear convergence by induction, if T (0) < 1 − 2β. Quadratic convergence
follows for large enough i and for τ (i) linearly decreasing in ‖S22p

(i)‖, since

T (i+1) ≤ ‖S22p
(i)‖‖α

(i)S22p
(i)‖ + τ (i)‖Mx(i)‖

(1 − β)|α(i)s11q(i)|

≤ ‖S22p
(i)‖‖S22p

(i)‖ + η‖S22p
(i)‖

(1 − β)|s11q(i)|

=
‖S22p

(i)‖
|s11q(i)|

‖S22p
(i)‖(1 + η)

(1 − β)|s11q(i)| = qT (i)2,

for q = (1 + η)/(1 − β). We have used |s11q
(i)| < 1.

2. If (3.18) holds then

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

≤ |λ1 − σ(i)|‖S22‖
sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖

<
|λ1 − σ(i)|‖S22‖(1 − β)

((2 − β + η + δ) − (1 − β))|λ1 − σ(i)|‖S22‖
=

1 − β

1 + η + δ
< 1.

Further, if τ (i) < α(i)η‖S22p
(i)‖/‖Mx(i)‖ in (3.14) then (with the results from the first

part of the proof)

T (i+1) <
1 − β

1 + η + δ

1 + η

1 − β
T (i) =

1 + η

1 + η + δ
T (i),

and hence T (i+1) ≤ qT (i) holds with q = (1 + η)/(1 + η + δ) < 1.
Thus we have proved Theorem 3.1.
Note that if β is chosen close to zero, that is, more accurate solves are used for the inner iteration
(see (3.9)), then according to Theorem 3.1, which requires β < (1 − T (0))/2, T (0) is allowed to be
close to one, and hence the inital eigenvector approximation is allowed to be coarse. In contrast,
for a larger value of β, which allows the solve tolerance τ (i) to be larger, we require that T (0) is
very small and hence the initial eigenvector approximation x(0) has to be very close to the sought
eigenvector. Also, note that ‖u1‖ = (1 + ‖g12‖), so that if ‖g12‖ is large then ‖u1‖ is large and the
solve tolerance satisfying (3.9) may be small. Note also that condition (3.9) is the same condition
as τ (i) < β|uH

1 Mx(i)|/ ‖u1‖ as in Lemma 3.1 of [3].
Remark 3.1. One way of choosing τ (i) < α(i)η‖S22p

(i)‖/‖Mx(i)‖ is to use

τ (i) = C‖r(i)‖.

where r(i) is the eigenvalue residual which is given by (3.5) and satisfies r(i) := O(‖p(i)‖) and C is
a small enough constant.

Remark 3.2. We point out two shift strategies;
• Fixed shift: With a decreasing tolerance τ (i) = C1‖r(i)‖ for small enough τ (0) and C1 the

second case in Theorem 3.1 arises. If the shift satisfies (3.18), that is the shift is close
enough to the sought eigenvalue then Algorithm 1 exhibits linear convergence.

• Rayleigh quotient shift: A generalised Rayleigh quotient shift σ(i) = ρ(x(i)) chosen as in
(2.9) satisfies (see (3.6)) |σ(i) − λ1| = C2‖p(i)‖ for some constant C2. Hence, for small
enough C2 it will also satisfy (3.17). Therefore, with a decreasing tolerance τ (i) = C1‖r(i)‖
quadratic convergence is achieved for small enough τ (0).
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Finally we would like to discuss the application of Theorem 3.1 to the case of M is positive
definite and M−1Ax = λx is diagonalisable, see [3]. In this case S is the identity matrix, and T

can be represented by a diagonal matrix. Condition (3.17) then becomes

|λ1 − σ(i)| <
|λ1 − λ2|

2
‖p(i)‖,

which is the same condition as used in [3].

4. Further convergence results. This section contains some additional convergence results
including an analysis of the behavior of the normalisation function φ(y) from Algorithm 1 during
inexact inverse iteration.

First we give an extension of Lemma 3.1 which provides a lower bound on the eigenvalue residual
in terms of p(i).

Lemma 4.1. Let the assumptions of Lemma 3.1 be satisfied. Then the following bound holds

‖p(i)‖ ≤ 1

α(i)

1

sep(ρ(x(i)), (T22,S22))
‖r(i)‖ ≤ ‖G‖

sep(ρ(x(i)), (T22,S22))
‖r(i)‖.

Proof. With ‖UH
2 ‖ = 1 (see remarks after Lemma 3.2) and UH

2 = ĪH
n−1G

−1QH we have

‖r(i)‖ ≥ ‖UH
2 r(i)‖ = ‖ĪH

n−1G
−1QH(A − ρ(x(i))M)x(i)‖

= ‖ĪH
n−1G

−1QH(A − ρ(x(i))M)ZZHx(i)‖
= ‖ĪH

n−1G
−1(T − ρ(x(i))S)ZHx(i)‖

= ‖ĪH
n−1G

−1(T − ρ(x(i))S)HH−1ZHx(i)‖

= ‖ĪH
n−1

[

t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

H−1ZHx(i)‖

With H−1ZH = X−1 and using (3.1) as well as the special structure of ĪH
n−1 we then obtain

‖r(i)‖ ≥ ‖α(i)

[

0H

In−1

]H [
t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

X−1(x1q
(i) + X2p

(i))‖

= α(i)‖
[

0H

In−1

]H [
t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

(q(i)e1 + Īn−1p
(i))‖

= α(i)
∥

∥

∥
In−1(T22 − ρ(x(i))S22)p

(i)
∥

∥

∥

The definition of the separation (3.15) yields

‖r(i)‖ ≥ α(i) ‖(T22 − ρ(x(i))S22)p
(i)‖

‖p(i)‖ ‖p(i)‖ ≥ α(i)sep(ρ(x(i)), (T22,S22))‖p(i)‖.

Finally using 1 = ‖UU−1Mx(i)‖ ≤ ‖U‖α(i) and ‖U‖ = ‖G‖ gives the bound on α(i) and the
desired result.
Lemma 4.1 and Lemma 3.1 show that the eigenvalue residual is equivalent to ‖p(i)‖ as a measure
of convergence, provided λ1 is a well-separated eigenvalue, though, of course, in practice, if ‖G‖
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is large then a small residual does not necessarily imply a small error. The following Proposition

gives upper and lower bounds on
1

φ(y(i))
in terms of ‖r(i)‖.

Proposition 4.1. Let (λ(i),x(i)) with ‖Mx(i)‖ = 1 be the current approximation to (λ1,x1).
Assume that y(i) is such that

Mx(i) − (A − σ(i)M)y(i) = d(i), where ‖d(i)‖ ≤ τ (i) < 1.

Then

‖r(i+1)‖ ≤ 1 + τ (i)

φ(y(i))
(4.1)

and

1 − τ (i)

φ(y(i))
≤ ‖r(i+1)‖ + |ρ(x(i+1)) − σ(i)|, (4.2)

where r(i+1) = Ax(i+1) − ρ(x(i+1))Mx(i+1).
Proof. We have

(A − σ(i)M)y(i) = Mx(i) − d(i)

and, since x(i+1) =
y(i)

φ(y(i))
,

Ax(i+1) − σ(i)Mx(i+1) =
1

φ(y(i))
((A − σ(i)M)y(i)).

Hence

‖Ax(i+1) − σ(i)Mx(i+1)‖
‖Mx(i) − d(i)‖ =

1

φ(y(i))
. (4.3)

Finally, ‖Mx(i) − d(i)‖ ≤ 1 + τ (i) together with the minimising property of ρ(x(i+1)) (see (2.11))
yields the first bound (4.1). In order to obtain the second bound, equality (4.3) gives

1

φ(y(i))
≤‖Ax(i+1) − ρ(x(i+1))Mx(i+1)‖ + |ρ(x(i+1)) − σ(i)|‖Mx(i+1)‖

‖Mx(i)‖ − ‖d(i)‖

≤ ‖r(i+1)‖ + |ρ(x(i+1)) − σ(i))|
1 − τ (i)

,

(4.4)

which yields (4.2).
Proposition 4.1 provides the following result. If we chose the shift to be σ(i) := ρ(x(i)) then

1 − τ (i)

φ(y(i))
− |ρ(x(i+1)) − ρ(x(i))| ≤ ‖r(i+1)‖ ≤ 1 + τ (i)

φ(y(i))
.

From Section 3, convergence of inexact inverse iteration yields ‖p(i)‖ → 0. By Lemmas 3.1 and
4.1 convergence of inexact inverse iteration implies ‖r(i)‖ → 0 as well as |ρ(x(i)) − λ1| → 0. The
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last property also yields |ρ(x(i+1)) − ρ(x(i))| → 0, if inexact inverse iteration converges. Therefore
Proposition 4.1 shows that inexact inverse iteration converges if and only if φ(y(i)) → ∞ as i → ∞.
Note that φ(y(i)) := ‖My(i)‖ in Proposition 4.1.

We end this section with an application of inexact inverse iteration to block structured systems
of the form Ax = λMx, where

A =

[

K C

CH 0

]

and M =

[

M1 0

0 0

]

,

and M1 is symmetric positive definite. Matrices with this block structure arise after a mixed fi-
nite element discretisation of the linearised incompressible Navier-Stokes equations. If the desired
eigenvector is written in terms of the velocity and pressure components x = [xu xp]

H , the incom-
pressibility condition CHxu = 0 holds. If the system (A − σ(i)M)y(i) = Mx(i) is solved inexactly,

we cannot guarantee that CHx
(i)
u = 0, even if the starting guess satisfies CHx

(0)
u = 0: we only

know that ‖CHx
(i)
u ‖ ≤ τ (i). The following Corollary shows that inexact inverse iteration need not

enforce the incompressibility condition at each outer iteration.
Corollary 4.2. Let the assumptions of Proposition 4.1 be satisfied and consider inexact

inverse iteration applied to the block structured system

[

M1x
(i)
u

0

]

−
[

K− ρ(x(i))M1 C

CH 0

]

[

y
(i)
u

y
(i)
p

]

=

[

d
(i)
u

d
(i)
p

]

where ‖d(i)‖ ≤ τ (i).

Then

‖CHx(i)
u ‖ → 0 as i → ∞.

Proof. From Algorithm 1 and Proposition 4.1 we have

‖CHx(i+1)
u ‖ ≤ ‖CHy

(i)
u ‖

φ(y(i))
≤ τ (i)

φ(y(i))
→ 0 as i → ∞.

5. Two numerical examples. Finally, we give two test problems for our theory. We chose
problems Ax = λMx which are not necessarily diagonalisable and with singular M, since problems
with positive definite M (including the standard problem M = I) have been extensively investigated
by other authors (see, for example [2], [3]). Smit and Paardekooper [25] contains examples for
the standard symmetric eigenproblem and Golub and Ye [8] discuss the standard diagonalisable
problem M−1Ax = λx. A nuclear reactor problem similar to the one in the following example
with M singular was considered in [12]. However, in [12] the problem was first transformed into a
standard eigenproblem.

Example 5.1 (Nuclear Reactor Problem). The standard model to describe the neutron balance
in a 2D model of a nuclear reactor is given by the two-group neutron equations

−div(K1∇u1) + (Σa,1 + Σs)u1 =
1

µ1
(Σf,1u1 + Σf,2u2)

−div(K2∇u2) + Σa,2u1 − Σsu2 = 0,
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where u1 and u2 are defined on [0, 1] × [0, 1] and represent the density distributions of fast and
thermal neutrons respectively. K1 and K2 are diffusion coefficients and Σa,1, Σa,2, Σs, Σf,1 and Σf,2

measure interaction probabilities and take different piecewise constant values in different regions of
the reactor, which for this example are given in Figure 5.1 and Table 5.1. The largest µ1 such

Fig. 5.1. Nuclear reactor problem geometry.

Table 5.1
Data for the nuclear reactor problem.

K1 K2 Σa,1 Σa,12 Σs Σf,1 Σf,2

Region 1 2.939e-5 1.306e-5 0.0089 0.109 0.0 0.0 0.0079
Region 2 4.245e-5 1.306e-5 0.0105 0.025 0.0 0.0 0.0222
Region 3 4.359e-5 1.394e-5 0.0092 0.093 0.0066 0.140 0.0156
Region 4 4.395e-5 1.355e-5 0.0091 0.083 0.0057 0.109 0.0159
Region 5 4.398e-5 1.355e-5 0.0097 0.098 0.0066 0.124 0.0151
Region 6 4.415e-5 1.345e-5 0.0093 0.085 0.0057 0.107 0.0157

that 1/µ1 is an eigenvalue of the system equation is a measure for the criticality of a reactor with
µ1 < 1 representing subcriticality and µ1 > 1 representing supercriticality. The aim is to maintain
the reactor in the critical phase with µ1 = 1. The boundary conditions for g = 1, 2 are

ug = 0 if x1 = 0 or x2 = 0,

Kg
∂ug

∂xi
= 0 if xi = 1, for i = 1, 2.

Discretising the problem using a finite difference approximation on a h × h grid, where h = 1/m
we obtain a 2m2 × 2m2 discrete eigenproblem Au = λMu, where A and M are both nonsymmetric
and M is singular. We seek the smallest eigenvalue λ1(= 1/µ1), which determines the criticality of
the reactor. We choose m = 32, which leads to a system of size n = 2048. For initial conditions, we
take x(0) = [1, . . . , 1]H/

√
n. In fact, the exact eigenvalue is given by λ1 = 0.9707 and cos(x1,x

(0)) ≈
0.44.

We used a fixed shift and a variable shift strategy. The vector x(i) is normalised such that

‖Mx(i)‖ = 1, that is φ(y(i)) =

√

y(i)H
MHMy(i) in Algorithm 1. For the inner solver we use
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right-preconditioned GMRES with an incomplete LU -factorisation as preconditioner. We perform
three different numerical experiments.
(a) Inexact inverse iteration using a fixed shift σ(i) = σ = 0.9 and a decreasing solve tolerance τ (i)

for the inner solver which satisfies

τ (i) = min{0.1, ‖r(i)‖}, (5.1)

where r(i) is defined by (3.5). The iteration stops once the eigenvalue residual satisfies ‖r(i)‖ <
10−9.

(b) Inexact inverse iteration using a variable shift given by ρ(x(i)) from (2.10) and a decreasing
solve tolerance τ (i) for the inner solver which satisfies (5.1). The iteration stops once the
eigenvalue residual satisfies ‖r(i)‖ < 10−14.

(c) Inexact inverse iteration using a variable shift given by ρ(x(i)) from (2.10) with a fixed solve
tolerance, which we chose to be τ (i) = τ (0) = 0.4. This iteration also stops once the eigenvalue
residual satisfies ‖r(i)‖ < 10−9.

Figure 5.2 illustrates the convergence history of the eigenvalue residuals for the three different
experiments described in (a), (b) and (c) above. The choice of (5.1) to provide a solve tolerance
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Decreasing tolerance and fixed shift σ = 0.9

Decreasing tolerance and Generalised Rayleigh quotient shift

Fixed tolerance and Generalised Rayleigh quotient shift

225
matrix−vector
products
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4999
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Fig. 5.2. Convergence history of the eigenvalue residuals for Example 5.1 using fixed shift σ = 0.9 and variable
shift and fixed or decreasing tolerances (see tests (a), (b) and (c).

τ (i) is consistent with the discussion in Remark 3.1 and the assumption in Theorem 3.1. We have
used this decreasing tolerance throughout our computations. As proved in Theorem 3.1, case (2),
inexact inverse iteration with a decreasing solve tolerance and with a fixed shift, chosen to be close
enough to the desired eigenvalue, exhibits linear convergence, as show in Figure 5.2, case (a) (see
also the discussion on the fixed shift in Remark 3.2). If we use a generalised Rayleigh quotient as
a shift (where the Rayleigh quotient is close enough to the sought eigenvalue) and a fixed solve
tolerance τ (0) the Algorithm 1 converges linearly (case (c)), whereas for a decreasing tolerance
quadratic convergence is readily observed (case (b)). This covers case (1) in Theorem 3.1, we also
refer to the discussion on the Rayleigh quotient shift in Remark 3.2.
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We would like to note that all three methods have the same initial eigenvalue residual. Both
methods (a) and (c) exhibit linear convergence, but the method with a variable shift and fixed
solve tolerance performs better than the fixed shift method with a decreasing solve tolerance. This
improvement in the behaviour of method (c) over (a) may be explained by close examination of the
asymptotic constants in the expressions for linear convergence in Theorem 3.1. For a good starting
guess (that is a T (0) close to zero) and a small enough β with β < (1−T (0))/2 the constant of linear
convergence for method (c) may be much smaller than one, and hence smaller than the convergence
rate for method (a). In our particular computations the constants for linear convergence are about
0.82 for method (a) and about 0.32 for method (c).

The total amount of work is measured by the number of matrix-vector multiplications given in
Figure 5.2. We can observe that method (b), inexact Rayleigh quotient iteration with a decreasing
solve tolerance, achieves the fastest convergence rate with smallest amount of work.

Example 5.2 (The linearised steady Navier-Stokes equations). For the stability analysis of
the steady state solutions of the Navier-Stokes equations generalised eigenproblems of the form
Ax = λMx arise, where A and M have a special block structure, that is

A =

[

K C

CH 0

]

and M =

[

M1 0

0 0

]

.

Of particular interest for the stability analysis are the leftmost eigenvalues of the system. (The right
half-plane is the stable region in our formulation.) We consider incompressible fluid flow past a
cylinder with Reynolds number equal to 1. Using a mixed finite element discretisation of the Navier-
Stokes equations the above block structured systems arises, where K ∈ 1406×1406 is nonsymmetric,
C ∈ 1406× 232 has full rank and M1 ∈ 1406× 1406 is symmetric positive definite. The system has
1638 degrees of freedom. The leftmost eigenvalues of the problem correct to two decimal places are
given by

λ1/2 = 0.21 ± 0.16i,

and we aim to find the complex eigenvalue λ1 nearest to 0.21 + 0.16i. We normalise x(i) such

that ‖Mx(i)‖ = 1, that is, φ(y(i)) =

√

y(i)H
MHMy(i) as in the first example. The convergence

performance of the three methods considered in the previous example is repeated in this example and

we do not reproduce the results here. Rather, we look at the incompressibility condition CHx
(i)
u = 0

and examine how it behaves under inexact inverse iteration. In particular we ask if there is any
advantage to be gained by imposing the incompressibility condition after each inexact solve. To this
end we carry out inexact inverse iteration using a variable shift given by ρ(x(i)) from (2.10) and a
close enough starting guess. We use a fixed solve tolerance τ (i) = τ (0) = 0.1. The iteration stops
once the eigenvalue residual satisfies ‖r(i)‖ < 10−7. To impose the incompressibility condition after

an inner iteration we replace x
(i)
u by πx

(i)
u where the projection π is defined by

π := I − C(CHC)−1CH .

We compare two methods: the projection π is not applied at the start of each outer iteration i; and
π is applied at the beginning of each outer iteration. In this case, after each inner solve we apply π

to y
(i)
u , such that

CHx(i+1)
u = CH y

(i)
u

φ(y
(i)
u )

= 0.
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For both experiments we take the initial condition such that CHx
(0)
u = 0.

Table 5.2
Incompressibility condition ‖CHx

(i)
u ‖ in the course of inexact inverse iteration without the application of π.

Outer it. i r(i) ‖CHx
(i)
u ‖ ‖CHy

(i)
u ‖

1 3.2970e-01 0 1.2446e-02
2 1.9519e-02 1.3454e-04 4.7833e-03
3 1.1518e-02 2.0178e-04 7.3705e-03
4 7.3977e-03 4.4779e-04 1.6494e-02
5 3.5684e-03 2.8949e-04 1.2807e-02
6 1.0365e-03 1.6762e-04 1.3858e-02
7 1.1658e-04 3.3947e-05 1.1832e-02
8 7.1789e-06 2.8401e-07 3.2990e-03
9 1.3820e-06 1.0094e-07 5.9614e-03
10 5.2651e-07 6.0768e-08 1.0112e-02
11 1.6630e-07 1.6899e-08 8.9196e-03
12 5.3896e-08 3.1178e-09 3.8395e-03

Table 5.3
Incompressibility condition ‖CHx

(i)
u ‖ in the course of inexact inverse iteration with the application of π.

Outer it. i r(i) ‖CHx
(i)
u ‖ ‖CHy

(i)
u ‖

1 3.2970e-01 0 1.2446e-02
2 1.9631e-02 1.3454e-04 4.7833e-03
3 1.2169e-02 2.0592e-04 7.5205e-03
4 1.1431e-02 4.4542e-04 1.6396e-02
5 5.9688e-03 2.9315e-04 1.2954e-02
6 3.0500e-03 1.6095e-04 1.3298e-02
7 4.3488e-04 3.4289e-05 1.2147e-02
8 8.4934e-06 2.8349e-07 3.2432e-03
9 1.7348e-06 1.0312e-07 6.2898e-03
10 7.9410e-07 6.0285e-08 1.0026e-02
11 2.9405e-07 1.6987e-08 8.9189e-03
12 6.4187e-08 3.1543e-09 3.8886e-03

Tables 5.2 and 5.3 show the eigenvalue residual ‖r(i)‖, ‖CHx
(i)
u ‖ and ‖CHy

(i)
u ‖ at each outer

iteration i. The second column of Table 5.3 shows ‖CHx
(i)
u ‖ before projection is applied for the

beginning of the next outer iteration step. We observe that there is almost no difference between
performing inexact inverse iteration with or without projection at the beginning of each outer step.

We also see ‖CHx
(i)
u ‖ → 0 as i increases, as predicted by Corollary 4.2, and hence, the application of

the projection π at every step is not necessary. Also note that in both tables ‖CHy
(i)
u ‖ ≤ τ (0) = 0.1.

6. A convergence theory for inexact simple Jacobi-Davidson method. In this section
we show how the convergence theory obtained in Section 3 may be applied to a simplified version
of the inexact Jacobi-Davidson method. The Jacobi-Davidson method was introduced by Sleijpen
and van der Vorst (see [22] and [24]) for the linear eigenproblem and it has been applied to the
generalised eigenproblem and matrix pencils (see [4] and [21]). A survey has been given in [10]
(see also [1]). A convergence theory for Jacobi-Davidson applied to the Hermitian eigenproblem
has been given in [30] and for a special inner solver in [14]. The relationship between a simplified
version of Jacobi-Davidson method and Newton’s method for exact solves has been established in
several papers, see for example [22], [24], [23] and [15]. Here we provide a convergence theory for
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a version of an inexact simplified Jacobi-Davidson method for the generalised eigenvalue problem
(1.1), and also present some numerical results to illustrate our theory.

6.1. A simplified Jacobi-Davidson method. First, we briefly describe one possible version
of a simplified Jacobi-Davidson algorithm for the generalised eigenvalue problem (1.1) (see [14,
Algorithm 2.1] and [30, Algorithm 3.1] for similar algorithms for standard Hermitian eigenproblems).

Assume (ρ(x(i)),x(i)) approximates (λ1,x1), and introduce the orthogonal projections

P(i) = I− Mx(i)x(i)H
MH

x(i)H
MHMx(i)

and Q(i) = I − x(i)x(i)H
MHM

x(i)H
MHMx(i)

.

With r(i) defined by (3.5) solve the correction equation

P(i)(A − ρ(x(i))M)Q(i)s(i) = −r(i), where s(i) ⊥ MHMx(i), (6.1)

for s(i). An improved guess for the eigenvector is given by a suitably normalised x(i) + s(i). For
other choices of projections and discussions on the correction equation (6.1) we refer to [21]. The
motivation behind the Jacobi-Davidson algorithm is that for large systems which are solved iter-
atively, the form of the correction equation (6.1) is more amenable to efficient solution than the
corresponding system for inverse iteration. Also, in practice, a subspace version of Jacobi-Davidson
is used with each new direction being added to increase the dimension of a search space, but we
do not consider this version here. Algorithm 2 provides a precise description of the method we
discuss in this paper. The function φ is a normalisation, which for both practical computations

Algorithm 2 Simplified Jacobi-Davidson (Jacobi-Davidson without subspace acceleration)

Input: x(0), imax.
for i = 1, . . . , imax do

Choose τ (i),
r(i) = (A − ρ(x(i))M)x(i),
Find s(i) such that ‖P(i)(A− ρ(x(i))M)Q(i)s(i) + r(i)‖ ≤ τ (i)‖r(i)‖ for s(i) ⊥ MHMx(i),
Set x(i+1) = (x(i) + s(i))/φ(x(i) + s(i)),
Test for convergence.

end for

Output: x(imax).

and theoretical comparisons between Rayleigh quotient iteration and Jacobi-Davidson, is taken to
be the same as in Algorithm 1.

In this section we shall provide a convergence theory for the inexact simplified Jacobi-Davidson
method given in Algorithm 2. To do this we shall first show the close connection of inexact simplified
Jacobi-Davidson with inexact Rayleigh-quotient iteration and then apply the convergence theory
in Section 3. Though simplified Jacobi-Davidson is not used in practice its convergence may be
considered as a worst-case scenario for the more usual subspace Jacobi-Davidson procedure, and
the convergence results here can be similarly interpreted.

First, we point out the following well-known equivalence between the simplified Jacobi-Davidson
method and Rayleigh quotient iteration for exact system solves, which has been proved in [24], [14],
[16] and in [21] for the generalised eigenproblem.
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Lemma 6.1. Suppose the correction equation in Algorithm 2 has a unique solution s(i). Then

the Jacobi-Davidson solution x
(i+1)
JD = x(i) + s(i) satisfies

(A − ρ(x(i))M)z(i+1) = Mx(i),

where

z(i+1) =
1

γ(i)
x

(i+1)
JD with γ(i) =

x(i)H
MHMx(i)

x(i)H
MHM(A − ρ(x(i))M)−1Mx(i)

, (6.2)

From Lemma 6.1 it is clear that for exact solves one step of simplified Jacobi-Davidson produces
an improved approximation to the desired eigenvector that has the same direction as that given
by one step of Rayleigh quotient iteration. Hence, as observed in [24], if the correction equation is
solved exactly, the method converges as fast as Rayleigh quotient iteration (that is quadratically
for nonsymmetric systems). The next section shows how we can find a similar equivalence between
inexact Rayleigh quotient iteration and the inexact Jacobi-Davidson method.

6.2. Inexact Jacobi-Davidson and Rayleigh quotient iterations. Assume we have an
eigenvector approximation x(i). We compare one step of inexact Rayleigh quotient iteration, that
is,

(A − ρ(x(i))M)y(i) = Mx(i) − d
(i)
I , where ‖d(i)

I ‖ ≤ τ
(i)
I ‖Mx(i)‖, with τ

(i)
I < 1, (6.3)

with one step of inexact Jacobi-Davidson method, that is,

P(i)(A − ρ(x(i))M)Q(i)s(i) = −r(i) + d
(i)
JD, for s(i) ⊥ MHMx(i), (6.4)

where ‖d(i)
JD‖ ≤ τ

(i)
JD‖r(i)‖, and τ

(i)
JD < 1.

First, we transform (6.4) into a system of the form (6.3), as follows. Since Qs(i) = s(i) and
r(i) = P(i)r(i) = P(i)(A − ρ(x(i))M)x(i), we can write (6.4) as

P(i)(A − ρ(x(i))M)(x(i) + s(i)) = d
(i)
JD, s(i) ⊥ MHMx(i)

or

(A − ρ(x(i))M)(x(i) + s(i)) = γ(i)Mx(i) + d
(i)
JD,

where γ(i) is chosen such that s(i) ⊥ MHMx(i). Finally we obtain

(A − ρ(x(i))M)
x(i) + s(i)

γ(i)
= Mx(i) +

d
(i)
JD

γ(i)
. (6.5)

where (see (6.2))

γ(i) =
x(i)H

MHMx(i) − x(i)H
MHM(A − ρ(x(i))M)−1d

(i)
JD

x(i)H
MHM(A − ρ(x(i))M)−1Mx(i)

.
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The linear system (6.5) is of the form (6.3), and under the assumption that
‖d(i)

JD‖
|γ(i)| ≤ τ

(i)
I ‖Mx(i)‖

we can apply the theory in Section 3. Thus, we obtain the following Corollary from Theorem 3.1.
Corollary 6.1. Let the assumptions and definitions of Theorem 3.1 hold and let

τ
(i)
I := τ

(i)
JD

‖r(i)‖
|γ(i)| . (6.6)

Then Algorithm 2 converges

• linearly, if τ
(i)
I <

α(i)

‖Mx(i)‖‖u1‖
β|s11q

(i)| with 0 ≤ 2β < 1 − T (0) and

• quadratically, if in addition τ
(i)
I < α(i)η‖S22p

(i)‖/‖Mx(i)‖ for some constant η > 0.
Proof. Note that

‖d(i)
JD‖

|γ(i)| ≤ τ
(i)
JD

‖r(i)‖
|γ(i)| := τ

(i)
I ‖Mx(i)‖ (6.7)

and using τ (i) := τ
(i)
I in Theorem 3.1 gives the result.

Example 6.1 (Bounded Finline Dielectric Waveguide). Consider the generalised eigenproblem
Ax = λMx, where A and M are given by bfw782a.mtx and bfw782b.mtx in the Matrix Market
library [13]. These are matrices of size 782, where A is real nonsymmetric and has 7514 non-
zero entries, M is real symmetric indefinite and has 5982 non-zero entries. We seek the smallest
eigenvalue in magnitude which is given by λ1 = 564.6. Our only interest in this paper is the outer
convergence rate, (though, for information we use GMRES for the inner solves in Algorithm 2).
We use a variable shift given by the generalised Rayleigh quotient ρ(x(i)), and either a decreasing
tolerance which is given by τ (i) = min{0.05, 0.05 r(i)} or a fixed tolerance given by τ = 0.05.
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Fig. 6.1. Convergence history of the eigenvalue
residuals for Example 6.1 using Rayleigh quotient
shift and inexact solves with fixed tolerance.
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Fig. 6.2. Convergence history of the eigenvalue
residuals for Example 6.1 using Rayleigh quotient
shift and inexact solves with decreasing tolerance.

Figures 6.1 and 6.2 illustrate the convergence history for inexact Rayleigh quotient iteration and
simple Jacobi-Davidson. We observe that a decreasing solve tolerance in the simple Jacobi-Davidson
method with generalised Rayleigh quotient shift leads to quadratic convergence (Figure 6.2) whereas
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with a fixed solve tolerance only linear convergence may be achieved with a small enough tolerance
(Figure 6.1). For comparison we have also plotted the results for inexact inverse iteration with
a generalised Rayleigh quotient shift, where both the same decreasing tolerance τ (i) and fixed
tolerance τ were used as for the simple inexact Jacobi-Davidson method.
Since, in this paper, we are only concerned about the outer convergence rate, from (6.7) we note
that in theory the quantity ‖r(i)‖/|γ(i)| is crucial for the comparison of the performance of the two
methods. We note the following:

• If ‖r(i)‖/|γ(i)| < 1 then there is the potential that one step of the simple inexact Jacobi-
Davidson method will perform better than one step of inexact Rayleigh quotient iteration.

• If ‖r(i)‖/|γ(i)| > 1 then there is the potential that one step of the inexact Rayleigh quotient
iteration will perform better than one step of inexact simple Jacobi-Davidson method.

The following Example illustrates this further.
Example 6.2. We construct two simple test examples, one for which the quantity ‖r(i)‖/|γ(i)|

turns out to be greater than one, and one for which this quantity is less than one. We use a standard
eigenproblem Ax = λx with A = diag(1, 2, . . . , 500) and set either A(1, 2 : 300) = 1 (case (a)) or
A(1, 2 : 300) = 10 (case (b)). Clearly, in the second problem the nonnormality has been increased.
We seek the smallest eigenvalue λ1 = 1 and use GMRES for the inner solves. Further we use
a variable shift given by the generalised Rayleigh quotient ρ(x(i)) and a fixed tolerance given by
τ = 0.1. We compare inexact Rayleigh quotient iteration and inexact simple Jacobi-Davidson. Both
methods have linear convergence and stop once the eigenvalue residual satisfies ‖r(i)‖ < 10−10.
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Fig. 6.3. Convergence history of the eigenvalue
residuals for Example 6.2 where ‖r(i)‖/|γ(i)| > 1
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Fig. 6.4. Convergence history of the eigenvalue
residuals for Example 6.2 where ‖r(i)‖/|γ(i)| < 1

Table 6.1
Values for ‖r(i)‖/|γ(i)| in Figures 6.3 and 6.4 for fixed tolerance solves

It. 1 2 3 4 5 6 7 8 9 10
Figure 6.3 27.4226 8.5952 4.0588 1.7692 1.3867 7.6525 1.2368 13.5016 1.2238 12.0983
Figure 6.4 3.0399 0.7159 0.3132 0.1470 0.1706 0.4316 0.1368 0.7833 0.1401

Figure 6.3 illustrates the convergence history of the eigenvalue residuals for the two methods dis-
cussed above for case (a), the mildly nonnormal case. The corresponding values of ‖r(i)‖/|γ(i)| are
listed in the second row of Table 6.2 and turn out to be greater than one. As expected in this
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case, the convergence rate of inexact Rayleigh quotient iteration is better than the convergence
rate of inexact simple Jacobi-Davidson with Rayleigh quotient shift. On the other hand, Figure
6.4 shows the convergence history of the eigenvalue residuals for case (b), there the nonnormality
of the problem is larger. The corresponding values of ‖r(i)‖/|γ(i)| are listed in the third row of
Table 6.2 and are found to be less than one after the first iteration. As predicted, the convergence
rate of inexact simple Jacobi-Davidson with Rayleigh quotient shift is better than inexact Rayleigh
quotient iteration in this case.

Finally, we note that for Example 6.1 the quantity ‖r(i)‖/|γ(i)| was greater than one throughout
the computations, leading to a faster convergence rate for inexact Rayleigh quotient iteration.
Further investigation onto this quantity is future research.
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