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Abstract 

We summarise Fiore et al’s paper on variable substitution and binding, then axiomatise it. Generalising 
their use of the category F of finite sets to model untyped cartesian contexts, we let S be an arbitrary pseudo­
monad on Cat and consider (S1)op: this generality includes linear contexts, affine contexts, and contexts for 
the Logic of Bunched Implications. Given a pseudo-distributive law of S over the (partial) pseudo-monad 
Tcoc − = [(−)op, Set] for free cocompletions, one can define a canonical substitution monoidal structure on 
the category [(S1)op, Set], generalising Fiore et al’s substitution monoidal structure for cartesian contexts: 
this provides a natural substitution structure for the above examples. We give a concrete description of 
this substitution monoidal structure in full generality. We then give an axiomatic definition of a binding 
signature, then state and prove an initial algebra semantics theorem for binding signatures in full generality, 
once again extending the definitions and theorem of Fiore et al. A delicate extension of the research includes 
the category Pb(Injop, Set) studied by Gabbay and Pitts in their quite different analysis of binders, which 
we compare and contrast with that of Fiore et al. 

Keywords: Substitution, binding signature, initial algebra semantics, pseudo-distributive law. 

1 Introduction 

It is an honour and a pleasure for me to give the plenary lecture associated with 

the MFPS special session celebrating Gordon Plotkin’s 60th birthday. In honour of 

the occasion, I shall address what I regard as one of his most interesting papers, 

Abstract Syntax and Variable Binding, co-authored by two of his proteges, Marcelo 

Fiore and Daniele Turi [4], and later axiomatised by me and his former student, 

Miki Tanaka [22,23,26,27,28,29]. 

In my view, the title of Fiore et al’s paper is a misnomer: the paper is not 

primarily about variable binding, but rather about variable substitution. That is 

seen most clearly perhaps by comparing it with another paper, also ostensibly about 

variable binding, that appeared at the same conference, LICS 99, the other paper 

being Gabbay and Pitts’ A New Approach to Syntax Involving Binders [6]. 

1 This work has been done with the support of EPSRC grant GR/586372/01, A Theory of Effects for 
Programming Languages and on a visit to AIST, Senri-Chuo, Japan. 
2 Email: ajp@inf.ed.ac.uk 
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Fiore et al’s paper is convoluted, but one can readily thread a path through it 

as follows. The authors first define the category F to be a skeleton of the category 

of finite sets and all functions. They then consider the functor category [F,Set ] 

and define a substitution monoidal structure • on it. Having done that, and using 

both the finite product structure and the substitution monoidal structure of [F,Set ], 

they define the notions of binding signature Σ and Σ-monoid, with the monoid part 

of the definition of Σ-monoid inherently using •. Finally, they state and prove an 

initial algebra semantics theorem, the statement of the theorem again inherently 

involving •. The heart of their paper is therefore a description and analysis of the 

substitution monoidal structure • on the category [F,Set ]. We summarise their 

paper in more detail in Section 2. 

Contrast that with Gabbay and Pitts’ paper. From a category-theoretic per­

spective, their paper is also convoluted but for somewhat different reasons. They 

have since modified their exposition in a way that is more convenient for us, so that 

is the formulation I shall use here [7,19]. Rather than study [F,Set ], they study 

a category equivalent to Pb(Inj,Set), where Inj is a skeleton of the category of 

finite sets and all injections, and Pb(Inj,Set) is the full subcategory of [Inj,Set ] 

determined by those functors that preserve pullbacks. This is sometimes called the 

Schanuel topos, and it corresponds to the category of Fraenkel-Mostowski sets [7] 

and to the category Nom of nominal sets [19]. Gabbay and Pitts do not give any 

consideration whatsoever to a substitution monoidal structure on the category, and 

such a structure plays no role in their analysis. In contrast, the focus of their anal­

ysis is on the invariance of bound terms under renaming and upon the possibility of 

introducing a fresh name. Their analysis of binding per se is more subtle than that 

of Fiore et al, as the preservation of pullbacks allows them to give a sensible notion 

of the support of a bound term, a concept that cannot similarly be investigated in 

Fiore et al’s setting. So Fiore et al’s paper was fundamentally about substitution 

while Gabbay and Pitts’ paper was not. 

The research in both papers has undergone substantial development over the 

years since they were written. But that development has almost entirely been 

separate. Notable developments of Gabbay and Pitts’ research have been applica­

tion to the π-calculus [2] and the developments of nominal logic [19] (see [20] for 

a good recent introduction), FreshML [25], and a nominal datatype package for 

Isabelle/HOL [17,20,30] that provides effective access to the nominal research for 

the theorem-proving community. Meanwhile, Miki Tanaka and I have axiomatised 

Fiore et al’s paper, extending it from variable substitution and binding to axiomati­

cally defined substitution and binding [23,27,28,29], including examples such as lin­

ear substitution and binders [26], the mixed substitution and binders of the Logic 

of Bunched Implications [18,24], infinitary contexts [1], and typed substitution and 

binders, either cartesian [3,16] or otherwise. 

The axiomatisation works as follows. One first chooses a pseudo-monad S on 

Cat to generate contexts. For example, Fiore et al’s choice of cartesian contexts 

corresponds to the pseudo-monad Tfp on Cat for which the category Ps-Tfp -Alg 

of pseudo-algebras is the category of small categories with finite products. One 

then observes that the construction sending a small category C to the presheaf 

category [Cop,Set ] may be characterised as the free colimit completion of C. So, 
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except for size, it amounts to giving another pseudo-monad Tcoc on Cat , a pseudo­

monad for cocomplete categories. Applying Tfp to the category 1, then applying 

Tcoc , yields [F, Set] as studied by Fiore et al. Axiomatically, all the structure 

used by Fiore et al follows from their choice of the pseudo-monad S = Tfp on 

Cat together with the canonical pseudo-distributive law, modulo size, of S over 

Tcoc [28,29]: such structure suffices to yield a pseudo-monad structure on Tcoc S 

and hence a substitution monoidal structure on Tcoc S(1), with the definitions of 

binding signature Σ and Σ-monoid and the statement and proof of an initial algebra 

semantics theorem axiomatising that of Fiore et al flowing from there. The analysis 

can also be enriched and extended to incorporate types [23]. We summarise the 

axiomatisation in Section 3. 

The work of Max Kelly on clubs deserves a mention here [11,12]. In the late 

1960’s, Kelly, in a concerted attempt to provide unified category-theoretic coherence 

results, developed a notion he called a club. The idea was to give a category-theoretic 

account of substitution. In that regard, he did not go as far as Fiore et al did, in 

the precise sense that he did not formulate or prove an initial algebra semantics 

theorem. But their general setting is a variant of his: where they considered [F,Set ], 

or equivalently the category of discrete fibrations over Fop, he considered Cat/F
op: 

the former is a full subcategory of the latter, and Kelly’s substitution monoidal 

structure restricts to Fiore et al’s substitution monoidal structure. But, as remarked 

above, Fiore et al developed their account further. 

A priori, it is not clear how to compare Fiore et al’s approach to variable substi­

tution with Gabbay and Pitt’s study of invariance of bound terms under renaming. 

The two groups used different categories. And a canonical substitution monoidal 

structure was central to the first while not being studied at all by the second. But 

we can do the following: take the axiomatisation of substitution as above, modify it 

to allow for preservation of pullbacks of monomorphisms, and consider the special 

case where S is the pseudo-monad Tsm1 for small symmetric monoidal categories 

for which the unit is the terminal object [28,29]. It follows that (S1)op is Inj, and, 

replacing Tcoc by the (partial) pseudo-monad Tpoecoc for free cocompletions that re­

spect pushouts of epimorphisms, Tpoecoc S(1) is Pb(Inj,Set) as studied by Gabbay 

and Pitts. 

Thus we have a canonical substitution monoidal structure on Gabbay and Pitts’ 

category of nominal sets, allowing Fiore et al’s analysis to carry over. The condition 

asserting preservation of pullbacks of monomorphisms also makes sense in Fiore et 

al’s setting, allowing them in principle to develop Gabbay and Pitts’ notion of 

support. Our hope is that this new axiomatisation will provide a mathematical 

foundation on which one can make precise comparisons between the two approaches 

to abstract syntax. We outline this new axiomatisation in Section 4. 

We should finally mention that although Gabbay and Pitts’ initial research on 

the category of nominal sets did not include the substitution structures it might sup­

port, there has been subsequent relevant non-category-theoretic research by Gabbay 

and colleagues [5,8] that may relate to the ideas here. 

3 
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An Overview of Fiore et al’s Account of Variable Sub­

stitution and Binding 

In this section, we briefly overview the main thread of argument in Fiore et al’s 

paper [4]. 

Let F denote a skeleton of the category of finite sets and all functions between 

them. Fiore et al considered the functor category [F,Set ]. The idea was that for 

any object X of [F,Set ], the set X(n) is to be understood as a set of terms, modulo 

α-conversion, containing at most n variables. Fiore et al then, by fiat, described a 

substitution monoidal structure on [F,Set ] as follows. 

Theorem 2.1 Given X and Y in [F,Set ], and given m in F, define (X • Y )m to 

be the coequaliser 

(X • Y )m = (
�

Xn × (Y m)n)/∼ 
n∈N 

where the equivalence relation ∼ is induced by (t;u1, . . . , un) ∼ (t ′ ;u1
′ , . . . , u n 

′ 
′ ) if 

and only if there exists an arrow ρ : n → n ′ such that X(ρ)(t) = t ′ and ui = uρi
′ . 

Then, the family of sets (X • Y )m extends canonically via the universality of its 

definition to give a monoidal structure on the category [F,Set ]. 

Having described a substitution monoidal structure, Fiore et al defined a notion 

of binding signature. In the absence of binders, a signature would consist of a set 

of operations O together with a function ar : O −→ N sending each operation to 

an arity given by a natural number. But if one wants to allow for binders, one 

needs more sophistication in the arities as one wants not only a natural number but 

an account of the number of variables to be bound in each argument. So an arity 

should consist of a finite sequence of natural numbers. Fiore et al accordingly made 

the following definition. 

Definition 2.2 A binding signature consists of a set O of operations together with 

a function ar : O −→ N ∗ . 

Example 2.3 Consider the untyped λ-calculus 

M ::= x | λx.M | MM 

It has two operators, one for lambda and one for application, with arities 〈1〉, and 

〈0, 0〉 respectively: λ-abstraction has one argument and binds one variable, and 

application has two arguments and binds no variables. 

Given a binding signature Σ, Fiore et al generated what they called a signature 

endofunctor on [F,Set ] as follows. 

Definition 2.4 Given a binding signature Σ, the signature endofunctor generated 

by Σ sends an object X of [F,Set ] to 

(δn1 X) × · · · × (δnkX) 

{oǫO|ar(o)=(ni)1≤i≤k} 

where δX is defined to be X(1 + −). 
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Example 2.3 shows how this is to be understood in practice: δX = X(1 + −) 

gives a mathematical formulation of the idea of binding over one variable. More 

generally, the composite δnX, which is therefore X(n + −), allows the formulation 

of the idea of binding over n variables. In order to construct λ-terms, λ-abstraction 

is a unary operation that requires the use of one additional variable, hence its arity 

being 〈1〉, while application is a binary operation, with neither argument requiring 

any additional variables, hence its arity being 〈0, 0〉. 

Fiore et al’s central and motivating theorem was a characterisation of TΣ(1), 

where TΣ is the free monad on [F,Set ] generated by the binding signature Σ. They 

called the theorem the initial algebra semantics theorem as TΣ(1) describes the 

terms generated by Σ. The supporting results and definitions for the initial algebra 

semantics theorem, modulo a tiny correction, may be expressed as follows. 

Theorem 2.5 For any binding signature Σ, there is a canonical strength of the 

induced endofunctor, also denoted by Σ, over • 

ΣX • Y −→ Σ(X • Y ) 

for pointed objects Y . 

Corollary 2.6 For any binding signature Σ, if TΣ is the free monad generated by 

Σ on [F,Set ], it follows that TΣ has a canonical strength over pointed objects with 

respect to •. 

Recall that a strength over pointed objects for any monad on a monoidal closed 

category yields a canonical monoid structure on the free algebra on 1 [27]. Thus we 

immediately have the following. 

Corollary 2.7 For any binding signature Σ, the object TΣ(1) of [F,Set ] has a 

canonical monoid structure on it with respect to the substitution monoidal struc­

ture •. 

Fiore et al inevitably needed a coherence condition to relate the monoid structure 

of TΣ(1) to its Σ-structure. That motivated the following definition. 

Definition 2.8 Let F be a strong (over pointed objects) endofunctor on a monoidal 
closed category (C, ·, I). An F -monoid (X,µ, ι, h) consists of a monoid (X,µ, ι) in 
C and an F -algebra (X,h) such that the diagram 

tX,X Fµ
F (X) · X � F (X · X) � FX 

h · X h 

� � 
X · X � X 

µ 

commutes. 

F -monoids form a category with maps given by maps in C that preserve both 

the F -algebra structure and the monoid structure. 

Theorem 2.9 (Initial Algebra Semantics) For any binding signature Σ, the 

object TΣ(1) of the category [F,Set ] together with its canonical Σ-algebra structure 

and monoid structure with respect to •, form the initial Σ-monoid. 
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Proof. By Corollaries 2.6 and 2.7, the object TΣ(1) necessarily exists and has 

a canonical monoid structure on it. For general reasons that apply by virtue of 

freeness, the Σ-algebra and monoid structures on TΣ(1) form a Σ-monoid. The fact 

that TΣ(1) is the free Σ-algebra on 1 together with the fact that a monoid map 

must preserve the unit of a monoid, determine a unique map from TΣ(1) to any Σ­

monoid. The assertion that it is a monoid map is then equivalent to the coherence 

condition in the definition of Σ-monoid. � 

This is one of the two equivalent versions of the central and final result of Fiore 

et al’s paper, exhibiting initial algebra semantics for a binding signature. 

An Analysis of Fiore et al’s Account of Variable Sub­

stitution and Binding 

In Section 2, we summarised the main line of development of Fiore et al’s paper. In 

this section, we summarise the work of Miki Tanaka and myself axiomatising Fiore 

et al’s paper, extending the ideas from cartesian contexts to axiomatically defined 

contexts, including linear contexts, affine contexts, and the contexts of the Logic 

of Bunched Implications. The work has been published, notably in [28,29], so we 

do not spell out the further examples here, but merely explain how the axiomatic 

development extends that of Fiore et al. 

For precise definitions of pseudo-monad, pseudo-algebra, etcetera, see [27]. The 

concepts are a little more complicated than those associated with 2-monads, which 

in turn are a little more complicated than those associated with ordinary monads, 

but only a little. Our two leading examples are as follows. 

Example 3.1 Let Tfp denote the pseudo-monad on Cat for small categories with 

finite products. The 2-category Ps-Tfp -Alg has objects given by small categories 

with finite products, maps given by functors that preserve finite products in the 

usual sense, i.e., up to coherent isomorphism, and 2-cells given by all natural trans­

formations. So Ps-Tfp-Alg is the 2-category FP and the category Tfp (C) is the free 

category with finite products on C. Taking C = 1, the category Tfp (C) is given, up 

to equivalence, by Fop. 

Example 3.2 For size reasons, there is no interesting pseudo-monad on Cat for 

cocomplete categories: small cocomplete categories are necessarily preorders, and 

the free large cocomplete category on a small category does not lie in Cat . But 

there are well-studied techniques to deal with that concern [27], allowing us safely 

to ignore it here. Assuming we do that, there is a pseudo-monad Tcoc for cocomplete 

categories. For any small category C, the category Tcoc (C) is given by the presheaf 

category [Cop,Set ]. 

For a precise definition of a pseudo-distributive law between pseudo-monads, 

see [27]. Again, they are a little more complicated than ordinary distributive laws, 

but only a little, the only substantial complexity residing in coherence detail, i.e., a 

statement of exactly which two-dimensional diagrams must agree with each other. 

Brushing that aside, our leading example is as follows [27,28,29]. 
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Example 3.3 There is a canonical pseudo-distributive law of Tfp over Tcoc . Ob­

serve that Tcoc Tfp (1) is equivalent to [F,Set ]. 

An immediate consequence of the definition of pseudo-distributive law is the 

following [27,28,29]. 

Theorem 3.4 Given a pseudo-distributive law δ : ST −→ TS of pseudo-monads on 

Cat , the pseudo-functor TS supports a canonical pseudo-monad structure and the 

category TS(1) has both canonical pseudo-S-algebra and pseudo-T -algebra structures 

on it. 

For an arbitrary pseudo-monad T on Cat , let tC,D be the unCurrying of the 

composite 

T 
D � [C,C × D] � [TC, T (C × D)] 

We call t the pseudo-strength induced by the pseudo-monad T . 

Theorem 3.5 Given a pseudo-monad T on Cat, the category T1 has a canoni­
cal monoidal structure with multiplication • defined by using the pseudo-strength 
induced by T as follows: 

∼t1,T1 = 
• : T1 × T1 � T (1 × T1) � T 21 

µ1 
� T1 

and with unit given by 

η1 : 1 � T1 

The associativity and unit isomorphisms are generated by those for the multipli­
cation and unit of T together with those of the pseudo-strength. Moreover, the 
multiplication • : T1× T1 → T1 is a pseudo-map of T -algebras in its first variable, 
i.e., there is a coherent isomorphism 

T 21 × T1 
tT1,T1

T (T1 × T1) 
T• 

T 21 

µ × id ∼ µ= 

T1 × T1 � T1 
• 

Example 3.6 Consider the pseudo-monad Tcoc Tfp on Cat . By Example 3.3, the 

category Tcoc Tfp (1) is equivalent to [F,Set ]. So, by Theorem 3.5, [F,Set ] acquires a 

canonical monoidal structure. By the last line of the theorem, for every object Y of 

[F,Set ], the functor −• Y : [F,Set ] −→ [F,Set ] is a pseudo-map of Tcoc Tfp -algebras, 

and so preserves both colimits and finite products. Since every functor X : F −→ 

Set is a colimit of representables, and every object of Fop is a finite product of copies 

of the generating object 1, which in turn is the unit of the tensor •, it follows that 

we can calculate X • Y as a canonical coequaliser of the form 

(X • Y )m = (
�

Xn × (Y m)n)/∼ 
n∈N 

yielding exactly Fiore et al’s construction of a substitution monoidal structure. 
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With a little care, the argument in Example 3.6 can be extended to full axiomatic 

generality as follows [28,29]. 

For any pseudo-monad S on Cat , if (A, a) is (part of) an arbitrary pseudo-S­

algebra, e.g., S1 or [(S1)op,Set ], and α is an object of the category Sk for any 

small category k, in particular for any natural number, we may define a functor 

αA : A
k → A as follows: 

S×α evα a 
Ak ∼ Ak � (SA)Sk � A= × 1 × Sk � SA 

This construction is a routine extension of the idea that every algebra for a (finitary) 

monad on Set supports a semantics for every operation of the Lawvere theory 

corresponding to the monad, which is exploited in the modelling of computational 

effects in [21]. 

Theorem 3.7 Given a pseudo-monad S on Cat and a pseudo-distributive law of 

S over Tcoc , and given X,Y in [(S1)op,Set ], one can calculate the value of X • Y 

at c ∈ S1 as 
c ′ ∈S1 

′ (X • Y )c = 

� 
Xc ′ × (c [(S1)op,Set](Y ))c (1) 

We now turn from substitution to binding. An arity (n1, · · · , nk) in Fiore et al’s 

definition of binding signature, Definition 2.2, yields two pieces of data: for each i, 

each ni tells you how many times to apply X(1+−), and k tells you how many such 

X(ni +−) need to be multiplied. But in more complex settings, more specificity is 

needed as a finite sequence of natural numbers does not specify which sort of binder 

is to be used, and in what combination are the binders to be used: Fiore et al used 

cartesian binders and took a product; Tanaka used linear binders and took a tensor 

product; but in Bunched Implications, one has a choice of binders and a choice of 

product or tensor. These considerations lead to the following general definition: 

Definition 3.8 For a pseudo-monad S on Cat, a binding signature Σ = (O, a) 

is a set of operations O together with an arity function a : O → ArS where an 

element (k, α, (ni, βi)1≤i≤k) of ArS consists of a natural number k, an object α of 

the category Sk, and, for 1 ≤ i ≤ k, a natural number ni and an object βi of the 

category S(ni + 1). 

The k and the ni’s here agree with those of both Fiore et al, while the α and 

βi’s tell us which sorts of binders are to be used and how they are to be combined. 

With the definition of binding signature in hand, we can induce a signature 

endofunctor, as Fiore et al did, then speak of algebras for the endofunctor. We 

shall overload the use of 1: it will refer to the unique object 1 of the category 1, 

and also to its image in S1 via the unit of S. When we write 1, we shall mean 

a list 1, . . . , 1 of length determined by the context in which we write. We further 

abbreviate an expression of the form f(x1, . . . , xn) to f(x) and one of the form 

f(x1, . . . , xn,−) to f(x,−). Using these notational abbreviations, we define the 

induced signature endofunctor as follows. 

Definition 3.9 Given a binding signature Σ, the signature endofunctor on [(S1)op,Set ] 
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sends X to 

ΣX = 
�

α[(S1)op,Set ](X(β1S1(1,−)), . . . ,X(βkS1(1,−))) 
o∈O


a(o)=(k,α,(ni,βi))


The functor constructed in Definition 3.9 agrees with the Fiore et al’s Defi­

nition 2.4 as we shall show in Example 3.10. Following Fiore et al, we overload 

notation by denoting both the signature and the functor it generates by Σ. 

Example 3.10 Let S be Tfp , i.e., consider Fiore et al’s cartesian binders. Our k 

is their k. Our α is the object 1 of Tfp k, which generates the functor 

[F,Set ]k −→ [F,Set ] 

defining the k-fold product. Our ni is their ni. And our βi is the object 1 of 

Tfp (ni + 1), which generates the functor 

βiF : F
ni+1 −→ F 

that sends (a1, · · · , ani
, b) to a1 + . . . + ani 

+ b. So every one of Fiore et al’s binding 

signatures generates one of our binding signatures, and the endofunctor we define 

on [F,Set ] agrees, when restricted to one of their binding signatures, with their 

construction. 

For a specific example, recall Example 2.3, that of the untyped λ-calculus 

M ::= x | λx.M | app(M,M) 

with its two operators λ and app, with arities, in Fiore et al’s terms, given by 〈1〉, 

and 〈0, 0〉, respectively. Let 2 be defined to have elements x and y. Then, in our 

terms, for the first operator λ, the arity is given by k = 1, α ∈ Tfp (1) is 1, n1 is 

1, and β1 is the element x × y of Tfp (2). And for the application app, k = 2, α is 

the element x × y of Tfp (2), n0 = n1 = 0, and both βi’s are given by 1 seen as an 

element of Tfp (1). 

We should mention that not only are our binding signatures a priori more general 

than those of Fiore et al, but there seems to be one of our binding signatures for 

which there is none of Fiore et al’s signatures with an equivalent category of algebras. 

Example 3.11 Consider the signature in our sense consisting of one arity, with 

k = 1, with α being the generating object 1 of Tfp 1, and with β1 given by the pair 

y × y in the notation of Example 3.10. An algebra would consist of a presheaf X 

together with a natural transformation 

X(2 ×−) −→ X(−) 

which does not appear to be constructable as an algebra for any signature in the 

sense of Fiore et al: note that y × y generates X(2 ×−) rather than X(2 + −). 

The signature in Example 3.11 does not seem to have computational significance. 

That does not unduly perturb us: our main theorem about signatures is a positive 
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one, asserting that any signature yields initial algebra semantics, so including un­

interesting examples within that result does not bother us. 

From this point, one can verbatim extend Fiore et al’s sequence of definitions and 

results leading to their initial algebra semantics theorem, with the sole exception of 

the need to replace F by (S1)op. In generalising the proofs, the only difficult point 

is in generalising the proof of Theorem 2.5, i..e, the construction of the strength of 

Σ over • with respect to pointed objects: a proof appears in [29]. Summarising, we 

have the following. 

Theorem 3.12 (Initial Algebra Semantics) Given any pseudo-monad S on Cat 

together with a pseudo-distributive law of S over the (partial) pseudo-monad Tcoc − = 

[(−)op,Set ], and given any binding signature Σ, the object TΣ(1) of the category 

[(S1)op,Set ] together with its canonical Σ-algebra structure and monoid structure 

with respect to •, form the initial Σ-monoid. 

Examples include Fiore et al’s Theorem 2.9 and examples for linear contexts [26] 

and for affine contexts and the contexts of Bunched Implications [29]. Moreover, 

the analysis extends to include both types and enrichment, thereby allowing for 

recursion [23]. 

Extending to Include Gabbay and Pitts 

As mentioned in the introduction, Gabbay and Pitts, in [6,7], studied the invari­

ance of bound terms under renaming rather than studying substitution, with their 

account of binding being more subtle than that of Fiore et al. Specifically, their 

restriction from [Inj,Set ] to the full subcategory of those functors that preserve 

pullbacks allowed them to speak sensibly of the support of a bound term. One can 

analyse the idea in terms of the axiomatisation of Section 3. 

Example 4.1 Let S = Tsym1 be the pseudo-monad on Cat for small symmetric 

monoidal categories with a terminal object. So (S1)op = Inj. It is shown in [29] that 

there is a canonical pseudo-distributive law of Tsym1 over Tcoc , and so Theorem 3.12 

applies. So, given any binding signature Σ, one can consider the functor TΣ(1) 

from Inj to Set . Observe that this functor preserves pullbacks: an element of 

TΣ(1)n amounts to a term in an at most n variables, and the pullback condition 

asserts that to give terms s with variables among x1, · · · , xn, y1, · · · , ym and t with 

variables among y1, · · · , ym, z1, · · · , zk, with the x’s and z’s distinct, such that s 

and t agree when seen as terms with variables among the union, is to give a term 

with variables among y1, · · · ym. The pullback condition therefore allows Gabbay 

and Pitts axiomatically to speak of the support of a term, this amounting to the 

smallest set of variables that are required to express the term. 

Example 4.1 suggests that it might be possible to find a common mathematical 

foundation for Fiore et al and Gabbay and Pitts’ ideas if one could modify the 

axiomatisation of Section 3 in a way that replaces [(S1)op,Set ] by Pb((S1)op, Set) 

for those examples in which the small category S1 has pushouts. Such a modification 

does seem possible. But there is a problem as follows: 

10 



Power 

Example 4.2 Let S = Tfp , i.e., consider Fiore et al’s setting. Given a binding 

signature Σ, it is generally not the case that TΣ(1) preserves pullbacks. For the 

category F has a terminal object 1, and the pullback of the map from 2 to 1 along 

itself in F is 4. Preservation of that pullback would imply that to give a term with 

at most four variables is to give a pair of terms each with at most two variables 

subject to a coherence condition, which is false even in very simple examples. 

The difficulty is that F has too many pullbacks, so asking for preservation of all 

pullbacks of F precludes essentially all interesting examples of binding signatures. 

So one needs to consider some pullbacks but not all pullbacks. A natural solution 

is to demand the preservation of pullbacks of pairs of monomorphisms: that agrees 

with Gabbay and Pitts, as all maps in Inj are monomorphisms, and in [F,Set ], it 

is true of Fiore et al’s TΣ. In [P,Set ], i.e., for Tanaka’s study of linearity in [26], it 

yields all functors, which is fine because, in linear λ-calculus for example, there is 

no relation between the set of terms that use one free variable precisely once and 

the set of terms that use two free variables precisely once each. The situation for 

bunches is more complex but similar. 

So we propose to modify the analysis of Section 3 as follows. 

Definition 4.3 Let POe denote the 2-category of small categories with pushouts 

of epimorphisms and functors that preserve such pushouts, hence preserving all 

epimorphisms. Given an object C of POe, let Pbm(Cop,Set) denote the full subcat­

egory of [Cop,Set ] determined by those functors that preserve pullbacks of monomor­

phisms. 

Proposition 4.4 The 2-category POe is a cartesian pseudo-closed 2-category [10] 

and thus supports a notion of POe-enriched category, cf [23]. 

Proposition 4.5 One can lift the various pseudo-monads for contexts of [28,29], 

notably Tfp , from Cat to POe, and the liftings have canonical POe-enrichments or 

equivalently pseudo-strengths. 

Observe that the construction Tpoecoc sending a small category C with pushouts 

of epimorphisms to the free cocompletion that respects the pushouts of epimor­

phisms in C, namely Pbm(C,Set) [14], extends canonically to a POe-enriched pseudo­

monad on POe. 

Theorem 4.6 The category Tpoecoc S(1) with pushouts of epimorphisms has a canon­

ical substitution monoidal structure on it satisfying the coherence condition of The­

orem 3.5. 

Theorem 4.7 The definitions of binding signature Σ and Σ-monoid, and the state­

ment and proof of Theorem 3.12, i.e., the initial algebra semantics theorem, extend 

to the setting of POe. 

The details of the above rely upon somewhat delicate but straightforward 2­

categorical definitions that are not yet in the literature. For explicit descriptions of 

the various constructs, sums and filtered colimits are pointwise in Pbm(C,Set) for 

any small category C with pushouts of epimorphisms, which is quite special to the 

particular class of limits under consideration. So explicit descriptions of the above 

11




5 

Power 

constructs are not difficult. The results now put us in a position to make precise 

comparison between Fiore et al’s account of substitution and Gabbay and Pitts’ 

account of invariance of binding under renaming. Such comparison may or may not 

relate to the recent non-category theoretic research on substitution of Gabbay and 

colleagues [5,8]. 

Further Work 

The most obvious item of further work has been the focus of the paper, so I shall 

not repeat it here. 

But beyond that, this paper has been directed specifically towards giving a 

category theoretic account of substitution and binding. Although the notions of 

substitution and binder are syntactic, in this paper, we have not addressed the 

question of giving a general syntax at all. So an obvious issue for further work 

is to provide such a syntax that includes Fiore et al’s cartesian binders, Tanaka’s 

linear binders, and the mixed variable binders of the Logic of Bunched Implication, 

preferably consistently with the developments of Gabbay and Pitts’ work. It seems 

most unlikely that there is a natural syntax to be found that corresponds to the 

full generality of this paper. Nevertheless, a general syntax surely should exist 

with category theoretic models given herein. The notion of a pseudo-commutative 

monad [10] may be relevant. 

Hofmann also studied logical principles on binding structures in [9], which was 

a third paper about binding presented at LICS 99. Accordingly, one would hope 

to incorporate logical principles such as induction over higher-order terms into the 

axiomatics here. 
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