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Abstract

The phenomenon of school competition for middle-class children has been widely
publicised as causing social inequity, as the more successful schools are led to exclude
working-class children, who are not as profitable as their middle-class peers (Jordan,
1996). Room and Britton (2006b) constructed a mathematical model of this process,
investigating the “catastrophic downward trajectories” taken by schools failing to attract
middle-class children. However, the limitations of equation-based modelling meant they
were restricted to considering only two competing schools, and to including only the most
basic factors of school choice. This project moved from their initial macro-level view of
the problem domain to a micro-analysis of the individual behaviours leading to the
inequitable outcome. The introduction of a production rule system for each agent caused
severe performance problems and limited the number of simulations that could be run.
Nonetheless, the agent-based approach gave us new insights into the area that enabled us
to suggest an amendment to the original model. We were also able to replicate Room and
Britton’s original results, and discovered that the fundamental factors they use determine
an intrinsic social inequity that cannot be overcome by external influences.

il
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1 Introduction

Room and Britton (2006b) created a mathematical model to investigate competition
between secondary schools for middle-class children. This is widely known to lead to
social inequity, with the more successful schools excluding working-class children
(Davies, 1999). Due to the complexities of equation-based modelling, Room and Britton
were restricted to considering only two competing schools, and to including only the
basic factors of school admissions policies and parental preferences for successful
schools. These preferences are argued to be stronger for middle-class parents, which
serves to reinforce the social exclusion effect. However, in real life, many more factors
come into play that we would now like to consider. We are also interested in moving from
their initial macro-level view of the problem domain to a micro-analysis of the individual
behaviours leading to the inequitable outcome. This would allow us to see how small
changes in behaviour and in policy could trickle through to affect the macro outcome, and
to deepen our understanding of the system in the process.

A multi-agent model seems ideally suited to this purpose. We believe that it will be
relatively straightforward to convert Room and Britton’s model into an agent-based
version that is easily extended to incorporate new behaviours and factors of interest. In
the process, we hope to gain new insights into the underlying processes of social
exclusion.

1.1 Aim

The aim of this project was to develop and analyse a multi-agent simulation of the
dynamics of social exclusion in the domain of school choice, initially equivalent to Room
and Britton’s equation-based model, and subsequently incorporating some extensions to
demonstrate the advantages of agent-based modelling.

1.2 Objectives

1. Produce an agent-based model that is equivalent to Room and Britton’s model, in
that it produces the same two equilibrium states under the same conditions

2. Evaluate the suitability of the technology used for the initial prototype, and
choose another framework for a more flexible model iteration if necessary

3. Develop a second, more flexible model (if necessary) and experiment with
possible refinements or extensions, including agent heterogeneity.

4. Analyse sets of simulation runs using appropriate statistical techniques. Analysis
should focus on the dynamics of the system, i.e. the underlying behaviours and
processes.

5. Reflect on the advantages of agent-based modelling compared to the original
model.
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2 Literature Review

2.1 Socio-political background

The Baker school reforms of the 1980s, beginning with the 1988 Education Reform Act,
have been widely criticised (e.g. Davies (1999); Karsten et al. (2001); West and Pennell
(2002)). The reforms radically transformed the British education system, transferring
control over which school a child would attend from the education authorities to parents,
and making school performance data publicly available, allowing the media to rank
schools in ‘league tables’. Parents relied on these rankings heavily when choosing a
school for their child (Davies, 1999). In addition, budgets have been delegated down to
individual schools, making each school responsible for managing its own resources.

The effect of these policy changes was to create a market-based system of “competitive
assortative mating” (Room and Britton, 2006a). This describes a reciprocal form of
competition where parents wish to send their children to the best-rated schools, while
schools attempt to attract those pupils who bring with them the best net profit. Schools
are encouraged to recruit children whose contribution in terms of state funding meets, at a
minimum, the expense of educating them. These are the middle-class children, who tend
to perform better at school (thereby boosting the school’s league table ranking) and are
less likely to be expensive ‘problem children’ (Jordan, 1996) who bring with them no
more funding than other children. This social divide is aggravated by the greater ability of
middle-class families to move to a better school’s catchment area. “All parents could
choose, but some could choose more than others” (Davies, 1999). In addition, working-
class parents are thought by Room and Britton to target these high-rated schools to a
lesser degree than middle-class parents, perhaps because of placing a lower priority on
quality of education, or out of a concern that the child would feel out of place surrounded
by middle-class peers.

This overall effect of class polarisation is commonly referred to as ‘social exclusion’.
Perhaps because it refers to such a politically fraught issue, this term has no single
standard definition. The Oxford Dictionary of Sociology (Scott and Marshall, 2005)
identifies three main meanings; in this context, it shall be used in the sense of Room
(1999), who talks of community-wide disadvantage in areas of social participation and
integration, as opposed to focusing on a narrow income-based equivalent to the old
concept of ‘poverty’, considering each household separately. This is closest in meaning to
Scott and Marshall’s concept of “social rights and [..] the barriers or processes by which
people are prevented from exercising these”, the social right in question being the right to
a good education, in this instance.

2.2 Existing research

Previous work by Room and Britton (2006a) has investigated this market-based system
by considering the interactions between institutional and household strategies. They take
a quantitative system dynamics approach to the problem by modelling “runaway loops”
in the system using differential equations. This involves identifying all influences
amongst the system’s attributes, and finding those subsystems where the direction of
influence feeds back on itself in a self-reinforcing loop. These are the areas of interest to
them. Their model shows how an initial equity state of two schools with equal numbers of
pupils can easily be unbalanced if one school is perceived to be better than the other,
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leading inexorably to an “inequity state” where the better school excels at the expense of
the other one, and a class polarisation emerges.

Room and Britton adapt Schelling’s (1978) classic racial segregation model of “tolerance
schedules” that describe willingness to live in an area depending on the ratio of black to
white neighbours, to “preference schedules” that indicate parents’ preference for schools
with a particular fraction of middle-class children. This preference is taken to be more
pronounced in middle-class families for a variety of possible reasons, as discussed in
section 2.1.

The study considered two types of school strategy: either the school allocates places on a
social class-blind basis, or it gives preference to middle-class children. The latter is the
strategy believed to be encouraged by the Baker reforms. Room and Britton found that it
tended to produce the class polarisation effect more rapidly and pronouncedly.

Parental strategies were also two-fold in the study. This took the form of varying the
strength of parents’ preference for middle-class schools (for parents from both classes).
The model’s key finding concerns the interaction of these two strategies: those of the
schools and those of the parents. When both parental preference for middle-class schools,
and school preference for middle-class parents were strong, as in the current socio-
political climate, only a small increase or decrease in a school’s reputation led to the
polarised inequity state with great likelihood and stability. If, however, only one of those
conditions held, the other had to be very pronounced in order to achieve even a partial
polarisation. A way of interpreting these results is to view the development of these
strategies as a co-evolutionary process; to understand this, we must first visit the domain
of complex systems.

2.3 Complex systems

Flake (1998) considers a system to be ‘complex’ if it consists of individual components
whose interactions give rise to new, ‘emergent’ properties of the system as a whole that
cannot be ascribed to the components themselves. Could the market-based school system
be a complex system? Room and Britton (2006a) do not explicitly argue that it is as they
do not use this terminology, but present some strong arguments in their paper that support
this hypothesis. The class polarisation effect that can be observed in the system is
presented as an emergent property: despite the simplicity inherent in the parents’ and
schools’ actions, the cumulative effect of their interactions would “hardly have been
possible” to foresee. In a complex system, it is impossible to make global inferences
based purely on data about local choices (Albin, 1998).

But more than this, Room and Briton investigate an attribute often ascribed to complex
systems: self-organisation. A self-organising system is one whose elements can
“spontaneously” organise themselves into new patterns and behaviours that were not
designed by any individual (Mitleton-Kelly, 1997). They hypothesise that class
polarisation was already present in the system to some degree before the Baker reforms,
but that the reforms then acted as the necessary trigger for self-organisation to exacerbate
it, drawing a parallel to “control variables” in a complex system that determine whether
self-organisation can occur.

Finally, the mathematical model they construct is a non-linear set of equations for
modelling system dynamics. Nonlinear dynamics form the foundation of complex
systems, and especially complex adaptive systems (Albin, 1998), which we shall examine
next.

Complex adaptive systems (CAS hereafter) are complex systems whose components, or
actors, are reactive: they can adapt to a changing environment (Albin, 1998). We could
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say that our system is a CAS in which each actor, for example head teachers as the
representatives of schools, and parents as the representatives of their households, adapts
to an environment that consists of current legislation and government policies regarding
school choice, as well as the responses of all the other actors.

All the actors’ strategies could be said to be ‘co-evolving’ with each other. Here complex
systems borrow a term from biology that some biologists feel is over-used even in the
field of biology itself (e.g. Janzen, 1980), having become a synonym for ‘interaction’ and
‘symbiosis’. It seems appropriate because there is a true evolutionary response in one
population (e.g. head teachers) to a trait of the other (parents), followed by a response by
the parents of adapting their own strategy again, and so on, rather than a mere adaptation
of actors to their environment. (‘Evolutionary’ is used here to refer to an evolving
strategy, much like in the field of genetic algorithms). Again, Room and Britton (2006a)
do not explicitly use the term ‘co-evolution’, but explain that, as well as institutions
(schools) shaping the fate of households through social exclusion, “households
themselves pursue strategies vis-a-vis these various institutions: shaping them, resisting
them, bypassing them, extracting benefit from their operations.”

2.3.1 Complex systems in sociology

The status of the market system as a CAS can, however, be contested, depending on
which definition of a CAS one uses. Vidgen and Wang (2004) view non-linearity as
involving a series of positive feedbacks that can potentially push the system far along a
trajectory. So far, their definition is in correspondence with our system moving towards
class polarisation. However, the trajectory they mean is one that moves away from
equilibrium, whereas Room and Britton’s model is clearly pushed towards an
equilibrium; that of the ‘inequity state’. They draw on literature that emphasises
complexity as taking place on “the edge of chaos”, a region in which the long-term
trajectory of the system is fundamentally unpredictable. However, we have satisfactorily
established that the school market system meets a definition of a CAS, even if it does not
match everyone’s.

Other researchers question whether it is appropriate to use the generic concept of CAS in
a social system, as the social sciences may differ considerably from ‘hard’ sciences like
physics. Vidgen and Wang (2004) warn that the application of terminology should be
done in the sense of making a metaphor or an analogy, rather than assuming that proofs
from mathematics and physics translate directly. Mitleton-Kelly (1997) agrees, suggesting
that generic CAS theory is a useful starting point for the study of complex social systems,
but that it will need to be adapted. Albin (1998) believes that it is acceptable to view a
social system as a CAS, provided the researcher is aware that the interactions are taking
place between conscious beings. The nature of human consciousness is outside the scope
of this project, but it is worth bearing in mind that it may affect the validity of parallels
drawn with generic CAS.

Perhaps a more important question than whether a social system is a CAS is whether it is
useful to categorise it as a complex system.

Mclntyre (1998) questions the validity of the entire concept of complex systems. He
proposes that what we perceive as complexity is not truly due to the real nature of the
system, but rather stems from our own inability to comprehend the world around us at a
deeper level. It cannot be denied that there are limits to human knowledge and
understanding. But if complex systems really are just an artefact of these limits, then
perhaps they are just as useful a concept to us as if they were a ‘real’ phenomenon,
because we can still use them as a way of furthering our understanding. They could be
viewed as a ‘crutch’ on our path to understanding this new level of existence, much like
the manner in which children are presented with simplified theories of physics at school.



- Multi-agent simulation of the dynamics of social exclusion in school choice -

Albin (1998), however, is concerned about the opposite possibility: that we might not be
able to perceive the complexity inherent in social and economic systems, and will
therefore assume that it is not present. He emphasises the importance of modelling such
systems through a less complex “surrogate” system, in order to build our understanding
of what we cannot represent directly. Similarly, although arguing from a different starting
point, McIntyre suggests that the usefulness in labelling a system as ‘complex’ is to
recognise that our explanation of it is lacking, and so to attempt to find a simpler one,
which is just as valid.

Vicsek (2002) sees the importance of complexity theory as our realisation that “the laws
of the whole cannot be deduced by digging into the details”. We shall return to this point
later when we consider the motivation for an agent-based model of the system, which will
simulate this emergence of properties of the whole from the interactions of its parts
without using deduction to derive them. Gilbert (2004) suggests that nearly all interesting
features of human societies may be emergent, due to the many non-linear interactions
people engage in.

2.4 Social simulations

Now that we have decided to view the market-based school system as a complex system,
the motivation for this project becomes clear: to develop a more sophisticated model than
the original differential equations, and to use it to investigate the underlying processes of
emergence and co-evolution in the system. A computer simulation seems ideally suited to
this purpose. It can be executed under various conditions of interest, producing results not
only on the eventual outcome but also concerning the internal processes and trajectories.
In contrast, Room and Britton’s earlier model was analysed structurally in order to draw
conclusions about its equilibria.

Most social simulation researchers adopt Ostrom’s suggestion (1988) that computer
simulation is a “third way” of doing research, supplementing the existing techniques of
verbal argumentation and formal representation through equations (e.g. Gilbert and Terna,
2000). This new “symbol system” is more tractable than mathematical modelling, and
more rigorous, albeit less refined, than natural language. Hypotheses about processes can
be examined experimentally, and emergence can be observed directly (Brenner and
Werker, 2006). This is especially useful when natural or even laboratory experiments
cannot be carried out, such as in matters of social policy,

To model a “target” system, an abstraction of it must be obtained, preferably motivated by
theory (Gilbert and Terna, 2000), although a valid use of simulation is also as a “thought
experiment” that explores a particular abstraction. We shall use Room and Britton’s
model (2006a; 2006b) and related theories as a basis for our abstraction. Any reasonably
complicated system probably has an infinite number of possible models, but some are
more appropriate than others, depending on the research aim (Gulyas, 2005; Gilbert and
Doran, 1994). Since our goal is to build on their work, aiming foremost towards greater
understanding but perhaps also towards prediction, their model is the best starting point
for ours. This model also has the advantage of being very simple, so that we need only
add complicating features if they are genuinely needed, rather than inadvertently
designing a model with unnecessary components from the beginning.

We should consider that prediction may be too high an aim. Gilbert (1995) argues that the
assumption that the best test of a theory is that it predicts successfully is not appropriate
for non-linear systems, because even once their behaviour is understood, it is still
impossible to predict. Batten (2000, p.259) does not see prediction as the primary purpose
of simulation; he says that “inability to predict can be soothed by a growing ability to
adapt and coevolve harmoniously — just like we find in nature”. There is also concern
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stemming from the debate of whether sociology is a science; if it is not, then it may be
asserted that it should not attempt prediction (Henshel, 1982). Henshel also references the
long-standing position that social forecasting is “immoral” because it removes people’s
motivation to try to control their own destiny. However, Room and Britton (2006a) hold
that it would not have been possible to predict the effects of the Baker reforms without
modelling the processes, and social policy is clearly an important area in which accurate
predictions can lead towards better decisions.

It is commonly thought that the aim of a social simulation model should be either towards
prediction, or towards understanding (e.g. Gilbert and Troitzsch, 1999, p.4). There is
some methodological conflict in aiming towards both; Gulyas (2005) argues that
predictive models require as much detail as possible to increase accuracy, while models
aiming towards understanding, so-called “thought experiments”, might try to be more
general. In addition, prediction requires a high degree of quantitative validation against
empirical data, while thought experiments allow for qualitative validation. However, we
could argue that the model will be more thoroughly validated if both forms of validation
are used, so there is no real conflict. It might also be useful to have the rigour demanded
by prediction imposed on us, to encourage precision of thought (Henshel, 1982).

Social simulations are a comparatively new field of interest, compared to, for example,
simulations in economics or the natural sciences. When simulation technology was first
developed in the 1950s, it was not sophisticated enough to model realistic human
societies. Instead, the power of computers was simply harnessed directly to solve
mathematical models (Conte et al., 1998). Interest from social scientists faded and the
field was quiet for around 25 years (Mosler, 2000). Recent developments in distributed
artificial intelligence now overcome this barrier, introducing the concept of intelligent
‘agents’ who can stand in for humans in simulations (Gilbert and Doran, 1994, p. vii).
Gilbert and Terna (2000) suggest that this need for especially realistic models is due to
the main value of simulation for social scientists lying in theory development, rather than
prediction, so the underlying mechanics are often more important than the eventual
outcome.

2.4.1 Macrosimulation

The most basic type of social simulation is macrosimulation, which was developed in the
‘60s. It typically uses sets of differential equations to predict demographic variables based
on feedback processes (Macy and Willer, 2002). This is essentially what Room and
Britton’s systems dynamics model does. As a top-down approach, macrosimulation is
useful for gaining an appreciation of the overall principles at work, but to gain a deeper
understanding, it is useful to examine the smaller units behind the macro effects using a
bottom-up approach such as microsimulation.

2.4.2 Microsimulation and Markov processes

Microsimulation was developed in the ‘70s for analysing the possible effects of social
policy changes on a society (Gilbert, 1995). In other words, it is aimed towards
prediction, which ties in with Gilbert and Terna’s theory that prediction is all that was
feasible in early simulations. A microsimulation starts with a snapshot of sample
population data from a certain point in time, and then iteratively simulates the effect of
one year passing, examining each individual in turn. Demographic probabilities are used,
e.g. the likelihood of a man aged 70-80 dying in any given year.

Although a population-wide effect (for example, increased demand on state pension
funds) is built up from individual circumstances, this effect should not be termed
emergence, because it simply consists of aggregate data, and its origin can therefore be
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deduced logically (e.g. if pensioners live longer, more people will be drawing on the state
pension fund). In fact, microsimulation does not represent a very significant advance on
macrosimulation as it is still oriented towards forecasting macro effects, although it does
allow policies to be considered that are aimed at altering individual behaviour (Macy and
Willer, 2002). Gulyas (2005) calls microsimulation the “middle step” between
macrosimulation and agent-based simulation.

He also identifies another type of model, Markov processes, which work on the macro
level but incorporate stochastic elements like microsimulation does, and are therefore also
closer to agent-based modelling than macrosimulation. However, they are only practical
for systems with low complexity, and are therefore not suitable for representing the
school market system; furthermore, we wish to examine the micro-macro link, as
discussed later (see section 2.5.2).

The major drawback of the microsimulation approach, aside from its simplicity (which
could also be considered a virtue, as discussed later) is that it considers each individual in
complete isolation, without interaction; nor, like macrosimulation, does it allow for
adaptation. This means that it can give no insight into the underlying processes that
generated the data. Because of this, microsimulation tends to be used only for prediction,
not for improving our understanding of a social phenomenon (Gilbert, 1995).

2.4.3 Cellular automata (CA)

Simulations based on CA address our criticism of microsimulation by modelling
interactions between individuals. Schelling’s racial segregation model (1978) is the
canonical CA model. The other prominent model is Latané’s much more recent model of
social impact, which investigates the effects of social influence on attitude changes in a
society (e.g. Latané, 1996).

A CA model consists of a grid whose cells each contain an automaton. This grid might be
a rectangle or, if no edges are desired, a torus; the size and shape of the grid selected can
influence the results substantially, for example encouraging clustering in a corner. Each
automaton has a state: a race and a “racial tolerance” in the case of Schelling’s model. It
changes state in discrete time based on very simple, homogeneous rules concerning the
states of neighbouring cells and its own previous state (Hegselmann and Flache, 1998).
E.g. if 70% or more of my neighbours are of another race, I want to move.

This idea of local interactions producing a macro effect approaches our idea of complex
systems. Hegselmann and Flache (1998) outline the main advantages of using CA: they
model the essential aspects of many real life social processes, especially unintended
macro consequences of individual actions and choices, such as Schelling’s segregation or
our class polarisation effect. They allow for quantitative explanations and predictions, as
with traditional types of analysis, but crucially they also enable qualitative analysis. CA
can even reveal flaws in a theory’s underlying assumptions, by showing the unanticipated
consequences through the micro-macro relationship.

Macy and Willer (2002) consider CA to be too rigid for many applications, as no two
nodes can share the same group of contacts, yet there is no reason that could not occur in
real life. Similarly, each node must have the same homogeneous pattern of relations,
although it is possible to adapt CA to use irregular grids that overcome this constraint.
Cederman (2005) notes that if, for example, a friendship network is being studied, then a
static grid is too restrictive as well: it should be possible to dynamically alter the structure
of the grid.

The primary criticism Gilbert (1995) makes of CA is that they model individual people as
over-simplistic units. Whilst acknowledging that they can provide valuable insights into
processes, he feels that it “requires a lot of theoretical imagination to move from patterns
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of cells on a grid to conclusions about societies”. A richer approach is found in multi-
agent simulations, which endow the automata with cognitive capabilities.

2.5 Multi-agent simulations (MAS)

MAS have only been in use for a short time: they were developed in the ‘90s (Sawyer,
2003). They retain the bottom-up approach of treating the unit of observation as the
individual, like CA and microsimulation, but model the individual (now termed ‘agent’)
as a much more sophisticated entity. MAS evolved out of CA modelling, so earlier
models tended to take place on a CA-like grid with local interactions only: they were
essentially CA with more intelligent automata. Later models were more likely to break
away from CA tradition, not necessarily even involving a grid at all (Gulyas, 2005).
Object-oriented programming was another major influence on the development of MAS,
providing the concept of self-contained objects with a natural correspondence to real-
world entities. Artificial Intelligence provided the next essential ‘ingredient’ of endowing
each object with intelligence, but instead of the focus being on each individual’s
intelligence, MAS is interested in the interactions between intelligent agents (Sawyer,
2003). An intermediate field, Distributed Artificial Intelligence, incorporated this shift
towards interactions, but the final step towards MAS was to decentralise control and give
each agent autonomy (ibid). Decentralised control is linked to the idea of self-organising
complex systems. Autonomy means that the agent can refuse to perform tasks requested
of it (or negotiate the conditions). This is the main characteristic that differentiates agents
from objects, which must carry out any task asked of them.

2.5.1 What are MAS?

Not every multi-agent system is a simulation, but a survey of multi-agents systems as a
whole, which cover applications as broad as industrial process control, combinatorial
auctions and network routing (Sawyer, 2003) is out of the scope of this review. Other
types of multi-agent system tend to have producing the system as a goal, whereas MAS
wish to analyse the system. MAS themselves cover a large range of application domains,
not just social simulation: economies, biological populations, computer or road traffic
networks and games, for example (Luck et al., 2004).

Historically, there has been much disagreement on what exactly constitutes an ‘agent’;
each paper presents its own list of necessary characteristics. Davidsson (2000) captures
the fundamental problem when he talks of a “continuum” of agents; what Gulyas (2005)
says “ranges from ordinary object tokens to full-fledged Al-type agents”. Bonabeau
(2002) takes the extreme view of labelling even differential equations as agents because
each describes “the dynamics of one of the system’s constituent units”, but this definition
seems to cover so many things that it is no longer useful. For the purposes of this project,
we shall define agents as objects, situated in some environment they are able to sense,
that exhibit adaptive, autonomous, goal-directed behaviour and can communicate with
other agents through some predefined communication language. They may or may not be
mobile entities that are assigned a specific location in the environment, as long as they are
situated somewhere in an environment, rather than being a ‘disembodied intelligence’ like
an expert system (Jennings et al., 1998). ‘Mobility’ refers here to moving around in space
within the simulated environment, rather than on a physical network like the Internet.

Goal-directed behaviour (often termed ‘proactive’) refers to agents taking the initiative to
satisfy their design objectives. This could be a head teacher starting a marketing
campaign, or a household deciding to move to another catchment area. To be effectively
goal-directed, an agent must also be reactive and adaptive; it cannot rely on
environmental conditions remaining static, allowing it to blindly follow a single plan
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(Wooldridge, 2002, p.25). Wooldridge also warns that an agent should not be too reactive,
or it will dither back and forth between plans as minor changes come and go in the
environment, never accomplishing anything. This will not be as difficult a problem for
our system as it is for ones with more continuous environments, as changes are expected
to happen infrequently: for example, new data about school rankings will only be
provided once a year. Finally, he notes that communication between agents should not
simply take the form of exchanging data. There should be a social element to it, such as
cooperation or negotiation. Our model will probably not extend very far in this direction,
as the agents are not striving to complete tasks, so the need for interaction is less than in
many MAS. The model may, however, consider social influence, which would certainly
require social communication.

This definition puts us somewhere in the middle of the continuum of agents; while purely
reactive objects would be too simplistic, we must avoid Gilbert and Doran’s “trap of
verisimilitude” (2005, p.12) whereby unnecessary sophistication is added to the model
purely because it seems plausible, rather than being required. Most simulation researchers
are in agreement that it is vital to give a model exactly the level of complexity required,
and no more (e.g. Brenner and Werker, 20065 Macy and Willer, 2002) as superfluous
detail (by definition) does not help, and may confuse. (Gulyas notes that a minority of
researchers only consider simplicity necessary because better MAS tools have not yet
been developed; whatever the reason, simplicity is seen as desirable at present.) It seems
unnecessary to give our agents advanced Al planning capabilities; the lengthiest plan our
model would consider is that a household might choose to relocate in order to change
catchment area, but we will simply represent this as a choice, followed by a probability
that the action is carried out successfully. However, it is also important not to over-
simplify the agents, invalidating the modelled dynamics’ realism, although Macy and
Willer (2002) call on researchers to resist pressure to build realistic models if they would
become as difficult to interpret as the target system itself.

In modelling these agents, a paradigm must be chosen for encoding their intelligence. The
paradigm chosen should depend on the complexity of the agent. Purely reactive agents
tend to use production rule systems with rules of the form ‘if <condition> then <action>’,
which fire upon receiving the necessary environmental input (Gilbert and Terna, 2000).
This may be the most common type of agent used in the social sciences (Cederman,
2005). At the opposite end of the continuum, ‘cognitive’ agents use more advanced forms
of intelligence. They contain an internal representation of the environment, which they
use to construct plans of how to achieve their goals (Sawyer, 2003). This is commonly
done via the BDI (belief-desire-intention) architecture. Such complexity is not necessary
for this project — since the desires of the agents are one-dimensional; we do not need to
model cognition itself realistically; and long plans of action are not appropriate for a
simple school choice — rather, it is the dynamic interactions of choices that need to be
concentrated on. This could be represented adequately by a production system.
Alternative possibilities for internal agent representations are considered in section 2.5.6.

2.5.2 Why use MAS?

MAS excels in models in which many heterogeneous agents interact, each perhaps
behaving somewhat differently, creating dynamic, emergent system-wide effects. This
makes it ideally suited to social sciences research (Davidsson, 2000). It suits the recently
popular view that human societies are complex systems, non-linear and self-organising,
much like flocks of birds, as it may be more useful to model such dynamics bottom-up
through local interactions (Tesfatsion, 2003; Vicsek, 2002). Agents can adapt both at the
individual and at the population level. The population level adaptation is evolutionary,
through selection, social influence and so forth (Macy and Willer, 2002). MAS is also the
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simulation technique in the best position to make use of the wealth of qualitative studies
of social processes in the social sciences, namely when designing individual agent
behaviour (Moss and Edmonds, 2005a).

Many MAS researchers are interested in the potential of MAS for investigating the two-
way micro-macro link in emergence. It comes into play when simulating human societies,
because unlike, for example, ants, humans can recognise and reason about institutions,
and this “second-order emergence” may be crucial in understanding human societies
(Gilbert and Troitzsch, 1999, p.11). For example, a human being’s attitudes and beliefs
might be affected by an emergent norm (Gilbert and Conte, 1995, p.11). Earlier forms of
simulation were only able to investigate one-way emergence such as “vertical”
emergence where, for example, microbehaviour generated macrophenomena. Similarly,
“horizontal” emergence refers to spontaneous changes on the same level of scale in a
model, what we might term co-evolution in the context of CAS. However, to study
emergence comprehensively, “circular” emergence that cycles between micro and macro
levels must be considered (Conte et al., 2001).

In economics, there exists the notion of the ‘representative agent’, which is a single entity
that stands for every individual in the economy; the idea is that individual differences are
averaged out in a large dataset anyway. This notion is used in the systems dynamics
approach taken by Room and Britton and works well for forecasting aggregate data, but
can only facilitate limited understanding of the underlying processes. Albin (1998, p.22)
sees two possible routes to take: either introduce several heterogeneous agents, or create
several homogeneous agents that are copies of the representative agent, but do not give
them all the same data. Heterogeneity and bounded rationality (limiting agents’
knowledge) are both central tenets of MAS.

Heterogeneity allows the distribution of behaviour to be analysed, rather than working
immediately with the averaged data (Gilbert and Troitzsch, 1999). Equation-based models
can take this aggregate data to great detail, for example assigning a distribution of values
for a property to the representative agent (Sawyer, 2003), but it is nonetheless aggregate
data that does not allow individual behaviour to be analysed. This makes methodologies
like MAS that support heterogeneity especially valuable for social simulations; physical
systems tend to have more homogeneous components (Gilbert, 2004).

The problem with perfect rationality, which is traditionally used in the social sciences, is
two-fold, as first challenged by Herbert Simon. It is unrealistic to assume every agent will
have all available knowledge, just as it is unrealistic to assume it has infinite time and
resources at hand to find the mathematically optimal solution from the information it has
(Albin, 1998, p.23).

Bounded rationality addresses these problems by limiting each agent’s knowledge and
processing capability so that the agent seeks only an approximately optimal solution. This
is more realistic, at least in social domains, because people are often more interested in
finding merely an acceptable solution rather than expending a lot of effort on finding the
optimal one (Albin, 1998, p. 67; Bowe et al., 1994). If a person does try to be ‘rational’
and find the optimal solution, they are unlikely to truly possess all the pertinent
information or necessary foresight (Axelrod, 1997; Fowler and Smirnov, 2005). While
bounded rationality may sometimes underestimate the abilities of agents in the target
system, it is likely to be a closer fit than perfect rationality, argues Makowsky (2006),
although he adds that the real test lies in whether the model can be validated by empirical
data. Validation is especially important for boundedly rational models because there are
typically many possible ways of being less rational, but only one way of being perfectly
rational (Gulyas, 2005).

Some researchers say that perfect rationality can cope with exponentially difficult
computations, while bounded rationality can go no higher than computations of
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polynomial complexity (Axtell, 1999). The justification for this seemingly arbitrary
partitioning is, however, questionable — Board (1994) explains it is due to the common
definition of tractable algorithms in computer science as being bounded by polynomial
time, but does not examine how this applies to human brains. However, agent-based
models are easily able to enforce this constraint, as they directly implement the decision-
making algorithm (Gulyas, 2005).

Axelrod (1997) does not believe that anyone thinks that perfect rationality is realistic; he
thinks that its main value lies in allowing agents to use deduction. He considers the main
alternative to perfect rationality to be adaptive strategies, rather than aiming for
optimisation. Adaptation in this sense could involve individual learning or take place at
the macro level through ‘survival of the fittest’, like genetic algorithms (see section
2.5.6). The outcome of these interactive processes of adaptation is difficult to deduce
formally, and so simulation is used.

Researchers often incorporate bounded rationality into their models by limiting agents’
interactions locally, like CA do. There are many variations on this concept to make it
more representative of real social interactions. For example, Mosler (2004) constructed a
social influence simulation to examine the spread of environmentally responsible
behaviour in a society; to incorporate realism, he limited interactions between agents to a
set number of friends and a single stranger in each time step. In a perfectly rational
model, the agents would have been fully connected and therefore able to consider the
distribution of opinions throughout the population before deciding whether it was worth
their while to conserve environmental resources. Mark (1998, cited in Macy and Willer,
2002) instead limited interactions by giving a higher probability to social interactions
between agents with greater cultural similarity. Our model could simplify cultural
similarity to be class-based, as it is likely that people of the same social class would mix
outside their immediate pool of neighbours but nevertheless more often with people in the
same circumstances. We could reduce the probability of interaction with distance as well,
to take account of different catchment areas being dominated by different classes, so if a
working-class family were in a middle-class area, their interactions would be more likely
to cross class boundaries. Limiting agents’ information like this causes each to develop a
“subjective reality” as they assume that the sample of data made available to them is
representative of the whole (Makowsky, 2006). This effect is especially suited to
Makowsky’s simulation of urban crime, but may well apply on a more general level to
societies as well.

Another approach limits agents’ knowledge more directly by placing a limit on their
memory, varying it between agents to create heterogeneity as well (Tesfatsion, 2003).
Fowler and Smirnov (2005) use a memory parameter in their simulation of elections to
determine how new information is interpreted depending on past information on voter
preferences and turnout.

Herbert Simon also suggested limiting computational accuracy, not just ability
(Makowsky, 2006), but this does not seem appropriate for our model, in which the
calculations performed by agents are not especially difficult, and so they would not be
expected to make mistakes in real life.

Moss and Edmonds (2005a) identify a further advantage of MAS: it represents a
compromise for sociologists who are critical of generalising from case studies, as varying
the initial conditions of the simulation can generate a large amount of different data, and
yet qualitative analysis is still possible, through examining the behaviour of individual
agents.

Mosler (2004) admits that there is a large gap between a MAS and its target systems, but
argues that there is no other alternative. If we want improve our understanding of
fundamental social processes, we must build simplified, bottom-up models of them, and
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MAS possesses the greatest realism out of all the techniques available to social scientists.
Starting from a world that closely resembles the target world, MAS directly “grows” the
simulated phenomenon, showing that we know how it was generated (Epstein and Axtell,
1996). It provides a “bridge” between the micro and the macro levels (Macy and Willer,
2002).

2.5.3 MAS vs Equation-Based Modelling (EBM)

The differences between MAS and EBM are of particular interest to this project, since we
are proposing to improve upon an EBM with a MAS. Both support the exploration of
system dynamics, but MAS allow the mechanics of the micro-macro relationship to be
studied, as well as the trajectories taken towards equilibira, not just the equilibria
themselves (Batten, 2000, p.21). MAS are the more intuitive tool: “many social scientists
find [equations] either impenetrable or incredible as descriptions of social reality”
(Tesfatsion, 2003).

Parunak et al. (1998) compare these two types of model. They argue that often, an agent-
based model of policy implications can seem more natural, and even a simple MAS can
exhibit surprisingly illuminating behaviour. They consider the main differences between
agents and equations to be two-fold.

Firstly, a set of equations is focused on modelling relationships between observables,
while an agent-based model explicitly models behaviour, so that any relationships
between observables that emerge are the output of the model, not its input. This means
that if we can build agents with behaviours that generate the same end effect as Room and
Britton’s model, we can examine how the dynamics of the interacting behaviours work to
produce the cumulative effect, such as a trajectory towards equilibrium. It is easier to run
direct ‘what-if> experiments by manipulating the agents’ behaviour directly, and
consequently easier to draw policy implications from the results of the experiments, as
the causal behaviour will be known. (A drawback of this is that the modelling of
behaviour is more complex, and therefore more error-prone.)

Secondly, equations tend to work with system-level observables rather than individual
attributes. A multi-agent model would allow for boundedly rational heterogeneous agents
with different attributes, strategies, and information, which is not possible in a set of
mathematical equations (Axtell, 1999). Although it could be argued that individual
differences are effectively averaged out when the outcome is analysed, it would be
interesting to be able to examine the behaviour of individual agents in order to gain a
deeper understanding of the process behind the social exclusion effect.

Parunak et al. also point out that MAS are capable of expressing much more complex
situations than EBM. This could be said to be a question of scalability: it is easy to inject
another agent into a simulation — no new code need be written — but adding another
variable to an equation increases the analytic tractability, and decreases transparency. The
same principle applies to adding new behaviours (Gilbert and Conte, 1995). Room and
Britton had to constrain their model to only consider two schools because of this, and so
one use of a MAS implementation would be to examine the consequences of involving
additional schools. Having multiple schools could allow us to consider multiple
catchment areas, and would allow the option parents hold of moving house to another
catchment area, currently included as one of the contributing factors to middle-class
parents’ higher preference for the middle-class oriented schools, to be included explicitly
as a behaviour that middle-class parents are more likely to carry out. Not being confined
to easily manipulated symbols widens the options considerably. Axtell (1999) adds that
physical or social networks, such as might be needed to represent catchment areas and
social influence in our model, are difficult to incorporate into an EBM.

12
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On the other hand, the greater elaboration of MAS means that drawing conclusions is
more technically demanding, as rigorous statistical tests must be applied (Gilbert and
Doran, 1994, p.3). Equations also have the advantage of allowing provable mathematical
conclusions to be derived about, for example, the stability of the equilibria (Room and
Britton, 2006a). Gilbert also notes that since MAS typically have a larger number of
parameters and underlying assumptions than EBM, difficulties can be encountered in
finding empirical data to justify them, as well as in the computational load of performing
a sweep of the entire parameter space (see section 2.6). Of course, once these assumptions
have been justified, the theory may be better understood as a result. A related risk is that
verification and validation can be a lengthy process, as they must proceed experimentally
rather than constructing a mathematical proof, as for an EBM.

Gilbert and Troitzsch (1999) address some other practical issues. MAS can be designed in
a modular fashion, so that differing theories can easily be compared by changing one part
of the model without needing to modify the others. These subsystems also provide an
intuitive way of dealing with concurrent processes. Bonabeau (2002) adds that MAS
enable a more sophisticated form of stochasticity, while an equation must content itself
with the addition of a “noise term”.

Edwards et al. (2003) compare a MAS and an EBM implementation of a particular
theory, concluding that the greater power of MAS is not always necessary. If the global
behaviour is the same as with the aggregate EBM, then the shorter computation times,
and the useful insights offered merely by examining the structure of an equation before it
has even been run on data, indicate that EBM should be used. This is arguable (although
it is true that the value of EBM should not be minimised) because the understanding
gained from seeing how micro-behaviour generates macro effects can be valuable. MAS
is “the canonical approach to modeling emergent phenomena” (Bonabeau, 2002). One
could also say that it is actually desirable for a MAS to generate the same macro effects
as an EBM because that is a form of model-to-model validation (see section 2.6).

Batten (2000, p.249) puts forward that “economic development depends critically on
path-dependent principles of self-organisation and coevolution, unfamiliar processes that
have remained largely untouched by traditional analytical tools”. This is precisely the
motivation for re-implementing Room and Britton’s EBM as a MAS.

2.5.4 Issues in using MAS

One issue to address is how to represent the target environment in the simulation. It does
not necessarily need to be spatial, giving each agent a location, although in our case we
will need, at a minimum, a crude spatial division according to catchment area. The
environment will need to be given an extent to accomplish this, specifying its size,
boundaries and perhaps its shape (Odell et al., 2003). Each square in the grid could be
related to others through a direction (e.g. ‘diagonal’) rather than an absolute address; this
kind of relationship is useful if agent interactions are based on proximity (Odell et al.,
2003). An alternative to a spatial network of agents is a social network that specifies
possible interaction partners independent of location (Gilbert, 2004). This network may
have relational rather than absolute links, so that one agent is related to another agent,
which in turn is related to several others — these links could be followed for a set depth.
Our model could use both a physical and a social network if social influence or other
relationship-dependent forms of interaction are to be modelled.

In a deterministic environment, the next state of the environment is uniquely determined
by the current state and the actions selected by the agents (Odell et al., 2003). This
model’s environment will be non-deterministic because of the stochastic elements it will
contain. But even if the environment were deterministic, it would still not be predictable
or controllable by any one agent, because the agents have no control over, or
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foreknowledge of each other’s actions (including whether their own actions will have the
desired effect).

The environment is often modelled as another object with attributes like time and other
global data, and possibly a buffer for messages (e.g. Gilbert, 2004; Odell et al., 2003)
although if a MAS framework were used, it would handle message-passing. However it is
represented, it should be modelled explicitly, even though agents are not external to it:
they are “embodied” in it (Helleboogh et al, 2007). Forcing agents to communicate via an
abstraction like the environment (for example, by requesting a list of neighbours, or by
posting messages on a shared noticeboard) rather than directly simplifies the design
(Gilbert, 2004). The simulated target environment should always be decoupled from the
simulation environment (i.e. the infrastructure running the simulation) as another
principle of good design (Helleboogh et al, 2007).

An interesting question is whether to have a single centralised environment, or an
environment for each region (here, catchment area) that oversees all the environmental
processing that takes place within its bounds (Odell et al., 2003). The centralised
environmental design is probably more suited to our model because there will be
significant communication and movement between boundaries.

As well as the representation of the environment, the representation of emergence should
be considered. Conte et al. (2001) present a symposium where a number of modellers
argue their case. Moss’ position is that only dynamic system properties should be
modelled indirectly through emergence; static properties should be explicitly built in. He
also argues that if the purpose of the model is to show interaction with norms or other
global properties, as opposed to showing how such properties are generated in the first
place, then a top-down approach of specifying these global properties explicitly is most
suitable. Sawyer argues more strongly that the top-down approach is often necessary, not
just most appropriate, by drawing on sociological theory which suggests that the
assumption that macrosocial entities do not truly exist in their own right has limited
explanatory power. Regardless of whether they do exist, it can be useful to ‘pretend’ that
they do. Edmonds disagrees, saying that it is “more profitable” to take a bottom-up
approach when first building understanding, and that top-down models can then follow
once it is clearer what they should be modelling. This is what Sawyer denounces
elsewhere (2003) as not modelling true emergence but rather only partial, horizontal
emergence. Conte prefers an approach that mirrors real life, where an emergent
phenomenon first appears naturally, and must then be modelled explicitly in order to
investigate the two-way interactions between it and the micro-level. Sawyer (2003) later
proposes the same idea, explaining that the model would need to be capable of
dynamically restructuring itself at run-time in order to represent the newly emerged
macro phenomena. Such a simulation platform has not yet been developed, and could
pose significant difficulties. Modelling second-order emergence convincingly is generally
held to be an unsolved problem in MAS (e.g. Sawyer, 2003; Gilbert, 1995).

Less controversial is the idea that macro phenomena can affect individual agents even if
they have no internal representation of them, as long as they are context-aware (Sawyer,
2003). However, some researchers (e.g. Cederman, 2005) do disagree, and see this as an
outstanding issue in the MAS community: that richer cognitive models need to be
developed for agents.

2.5.5 Event scheduling

MAS shares similarities with discrete event simulation (DES). In DES, a list of scheduled
events advance the state of the system, depending on its previous state. An event may
modify the event list itself. A DES may be time-driven in discrete steps, or alternatively,
if the simulation is not to be monitored in real-time by humans, it can be event-driven,
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which effectively ‘fast-forwards’ to the next scheduled event on the basis that we know
nothing will happen in between (Davidsson, 2000). The hybrid approach combines
continuous and discrete phases (Helleboogh et al, 2007). It seems that a school
admissions simulation could benefit from a discrete or hybrid approach, as it would be
inefficient to simulate every time step when most — perhaps all — of the activity will be
concentrated around the time when applications for places are submitted. Hegselmann
and Flache (1998) warn that discretisation can produce modelling artefacts if the target
environment is continuous, but this does not seem to be a danger for our model.

Davidsson expresses scepticism that MAS is particularly suited to event-based
simulation, arguing that there would need to be a central coordinator to keep track of
events, which he sees as being contrary to the design principles of MAS; or highly
synchronised agents, which would impose performance penalties. However, it seems that
MAS toolkits may provide an acceptable solution, as they provide advanced capabilities
like parallel discrete event scheduling. In another application domain, with more highly
autonomous agents, Davidsson’s argument would appear more relevant, but in this case,
the idea that parents must submit applications for school places at a certain time of year,
and that head teachers will then process these applications upon receipt, will already
require a degree of central coordination. There is a direct parallel to this in real life, as the
Council might send all parents a letter reminding them to apply for a school place.
However, it could be that having designed an initial prototype simulation for this project,
Davidsson’s view will need to be revisited if unanticipated problems are encountered with
event-based simulation.

While it may be useful to borrow the concept of event-based scheduling from DES, the
MAS approach still has the advantage over DES for our purposes. It is much more
scalable than DES, as new agents can easily be added, even dynamically (Davidsson,
2000). Additionally, a DES modeller is forced to place restrictions on the choices entities
can make in order to fit them smoothly into the DES framework, although this can be
overcome by ‘hacks’. It would, therefore, not support the simulation of co-evolving
strategies well. More generally, it also does not use the agent metaphor that facilitates
communication with non-programmers. Dubiel and Tsimhoni (2005) show how these
limitations can be overcome (to a certain degree) by incorporating an agent module into a
DES. However, their main motivation for this seems to be to allow them to build on
existing DES models, so it does not provide this project with any reason to pick DES or a
merging of the two over MAS.

2.5.6 Other adaptive simulation techniques

Evolutionary algorithms, such as genetic algorithms (GA), are a natural technique to
consider for modelling co-evolutionary processes. GA assigns a ‘degree of fitness’ to each
individual in a society according to some metric. Each individual is represented by a
string of code that forms a strategy, according to some encoding scheme of possible
behaviours (Macy and Willer, 2002). In Room and Britton’s model, the parents whose
children attended the highest-rated schools, and those schools’ head teachers, would be
the ‘fittest’ individuals, so they would be ‘interbred’ with others of their kind to produce
new combinations of strategy that might improve on the original ones. In addition,
random ‘copying errors’ are introduced to provide heterogeneity. Over several
generations, the overall fitness of the population would increase as it adapted to the new
socio-political environment (Gilbert and Terna, 2000). This co-evolution of parental
strategies on the one hand, and head teachers’ on the other, could be expected to lead to
the same class polarisation indicated by Room and Britton’s model.

GA are typically used to search for either optimal or likely solutions. If we were
interested in finding a social policy to optimise social welfare, a global approach could be
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used where each strategy is aware of every other strategy, and ‘mates’ with them with
equal probability. This project is instead aimed at understanding the likely (rather than
optimal) effects of the situation, so it would limit each string’s knowledge and
interactions locally by placing them in a spatial network, like CA (Macy and Willer,
2002).

Another type of adaptive simulation is a neural network, which was used by a recent
social mobility and inequality simulation (Meraviglia, 1996). This technique, like GA, is
well suited if strategies need to adapt to changing circumstances.

Neural network simulations use the metaphor of connections between neurons in the
brain. They contain many simple neurons that are linked by weighted connections, and
work together towards the simulation goal in interconnected layers that process the input
according to their weighting, and then pass it on (Gilbert and Terna, 2000). The neurons
are capable of adaptive behaviour by means of changing these weightings through the
application of a “learning rule” (Meraviglia, 1996). This may, for example, take the form
of “training” the network towards some pre-defined outcome, if the exact process leading
to an outcome — such as class polarisation — is unknown. However, the process identified
by the neural network cannot be expected to correspond to the real-world causes.

While Meraviglia’s findings agree with those obtained through more traditional
techniques being applied to the data, showing that neural network simulations can work
for sociological questions, breaking down the school system to networked variables does
not seem like a very intuitive method to further our understanding of the underlying
processes. It seems that a MAS, with self-contained agents following rules
understandable on a high level, is a better match for our purposes. Gilbert and Terna
(2000) also point out that for both GA and neural networks, a particular level of interest
has to be set at which to work, for example individual children, households, regions and
so on, as a single neural network could represent any one of those. If an entire society is
modelled, then it becomes difficult to give each individual in the society the
sophistication that an agent in MAS can have.

Instead, a MAS could provide the scalable agents infrastructure, but not fix the agents’
decision module implementation. GA and neural network libraries are available for MAS
that could be ‘plugged into’ a decision module. This would still not provide a good high-
level view of the strategy being followed like traditional production rules would, but it
might nevertheless be an elegant solution. However, Moss and Edmonds (2005a) point
out that not having an intuitive correspondence from the agent implementation to the real
life equivalents they represent brings a more serious problem with it than losing the
benefit of intuitive understanding: it also makes it very difficult to validate the model
qualitatively, as individual behaviour cannot be analysed. Since our model is geared
towards furthering our understanding of the underlying processes, not just prediction,
qualitative analysis will be an essential tool towards that end, and so we must look for
alternatives to GA and neural networks for the agents in this model.

2.6 Validation and verification of MAS

Validation and verification are important for any software product, but they are especially
crucial for simulations in order for their output to be regarded with any seriousness, and it
is in their output that their usefulness lies (Gulyas, 2005). This is because of the inherent
difficulty of distinguishing unexpected results from software faults, so the effects of a bug
could easily be misinterpreted as an emergent phenomenon (David et al., 2002).

Moss and Edmonds (2005b) allege that “in the social sciences there is typically little or
no attempt to validate theory”. If this is true, then one purpose of simulation could simply
be to validate a theory, although Moss and Edmonds point out that if a simulation relies
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upon a previously unvalidated social theory, it cannot be viewed as validated itself — a
difficult condition to satisfy if their earlier allegation is correct.

In the cross-disciplinary field of social simulation, it is important to define what
‘verification” and ‘validation’ mean, as computer science and the social sciences attribute
different meanings to the terms (David et al., 2005). Program verification in the social
sciences often takes the form of persuasive verbal argumentation (ibid), but we would
like something more rigorous to vouch for the correctness of our simulation according to
its specification. At the same time, validation of a social simulation must incorporate the
interpretative approach of the social sciences to judge how well the simulation represents
reality (ibid).

David et al. (2002) divide validation and verification of simulations into static and
dynamic activities, while most other modellers, e.g. Balci (2003) and Bryson et al.
(2006), consider only a subset of them, as they do not distinguish between checking the
simulation against the conceptual model and against the target system.

1. Static validation is concerned with validating the underlying theories and
assumptions of the model; Graham Room’s research and that of other sociologists
covers this. We will simply take note that if the theory is wrong, then our model may
simply confirm the error (Gilbert and Doran, 1994, p.4), and that the possibility that
another theory could explain the results equally well, or even better, can never be
fully eliminated.

2. Static verification entails checking that the simulation is an accurate representation of
the conceptual model (which in our case corresponds to the model described by
Room and Britton); this is akin to checking that an ordinary computer program meets
its specification in standard software engineering, and to what Balci calls
“transformational accuracy”.

3. Dynamic verification checks the simulation outputs against those of the conceptual
model.

4. Finally, dynamic validation aims to determine that the simulation outputs are correct
according to the target system, like Balci’s test of “behavioural or representational
accuracy”.

Both the dynamic techniques correspond to testing in software engineering. David et al.
note that successful validation hinges on successful verification, i.e. if there are severe
enough errors in the code, the validity of the model must be questioned even if validation
tests succeed.

Like David et al., Kiippers and Lenhard (2005) think that the three levels involved in
simulation — the target system, the conceptual model and the simulation itself — have an
impact on the way simulations should be validated. They identify a common view that
since simulations are equivalent to theories, they should be validated the same way
theories are in the social sciences. They disagree, saying that simulations, rather than
being models, are “models of models” that mediate between theory and reality, and as
such should be treated differently: as an attempt at imitation of the underlying dynamics
of the conceptual model. This attempt should be carried out with a “quasi-empirical”
evolutionary programming approach of refining the model to better fit empirical data:
since simulations are not direct numerical solutions of theories, they cannot be validated
by showing that they can be derived from theory. Rather, empirical data must be drawn
upon.

Unfortunately, judging the goodness of fit against empirical data is complicated if the
model contains stochastic elements, although methods of statistical analysis can
overcome this (Karlsson, 1969). Comparing simulation results with empirical data also
requires a greater degree of rigour when specifying parameters: rather than only the signs
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and relative magnitudes of parameter values being important, when “calibrating” the
model to fit empirical data, the parameter values must be tuned exactly to correspond
with historical data (Makowsky, 2006). Finding such exact parameter values may be too
demanding a task for this project; they would perhaps require specific field data to be
gathered.

Zeigler (1975, cited in Kiippers and Lenhard, 2005) identifies a stronger form of validity:
structural validity, which applies when a model’s basic interactions mirror the way in
which the target system generates the behaviour. Clearly, MAS is currently the most
suitable method for achieving structural validity, as agents can be designed to make
decisions analogously to the way human beings do, but even so a MAS will require
simplifications to be made to avoid building a system that is just as complicated as the
target system. Kiippers and Lenhard (2005) acknowledge that social simulations cannot
achieve Zeigler’s strict definition of validation.

Dynamic validation and verification are closely related to actually running the simulation
to gain data for analysis. In both cases, a “parameter sweep” must be undertaken,
examining the effects of varying each parameter over their ranges, including the
interaction effects between parameters; in the case of validation, this will be to conduct a
sensitivity analysis. Conducting a comprehensive parameter sweep requires non-viably
high computational resources if the simulation is non-trivial, especially if non-linear
parameter relationships are involved, as these are difficult to detect if parameters are only
modified in isolation (Miller, 1998). This is further exacerbated by stochastic models, as
the random seed should be varied for each parameter set as well, for example using the
Monte Carlo technique. A more tractable approach must either manually identify which
parameter regions are “interesting”, and which are most likely to “break” the model,
which risks missing out important areas (although well designed hypotheses and null
hypotheses should help with this); or use another program to identify the regions of
interest automatically, according to some fitness function. Brueckner and Parunak (2003)
took the second route with an adaptive multi-agent program designed just for this
purpose. Similarly, Miller (1998) constructed a search algorithm to find parameter
combinations that “break” a model’s implications by trying to maximise the deviation
from the expected results. Unfortunately, such advanced techniques are beyond this
project.

A model can never be guaranteed to be free of bugs, and so the possibility that the results
of the simulation are merely artefacts of bugs must always be considered. Rather than
saying a model is “validated”, one should say it is “better-validated” the more tests it
passes (Bryson et al., 2006). MAS may be more susceptible to undetected bugs than other
computer programs because of their distributed, self-organising nature, and the fact that a
small anomaly in an individual’s action may not have a significant impact on the macro
phenomenon (Gilbert and Terna, 2000; Axtell, 1999). Herein lies the value of a sensitivity
analysis: to highlight anomalous behaviour arising when non-critical parameters are
varied. However, Gilbert and Terna stress that models of complex systems may be
inherently sensitive to initial conditions, and so high sensitivity might actually be
desirable.

Another validation technique, model-to-model analysis, has recently gained strong
support in social simulations (Kiippers and Lenhard, 2005). Edmonds and Hales (2003)
report that model alignment is “very difficult, but very revealing”. They found it exposed
a number of bugs when they re-implemented an arbitrarily selected model that had
already been published, and was generally accepted as valid, and expect that the same
would apply to most published models (this is backed up by Axelrod (1997) who
replicated eight different models). These bugs might not change the overall “statistical
signature” of the simulation results, but the original verification process could still be said
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to be lacking. Edmonds and Hales do not consider this surprising because they see
verification as being of limited use when emergent phenomena are being studied, as it is
questionable to specify them in advance as requirements that can be verified. David et al.
(2002) argue that such emergent phenomena must be identified in retrospect and then
verified anyway, it seems referring only to their concept of dynamic verification (defined
above), which does not rely on a specification as static verification does, instead checking
only outputs. Edmonds and Hales also found that model-to-model analysis had the ability
to expose “hidden parameters” that had been unwittingly missed out from one of the
models, when output was compared. Merely attempting to re-implement the model also
revealed that the original model specification was ambiguous.

Our model has the advantage that there is already a model in existence that could be
“aligned” with it using model-to-model analysis, to increase confidence in its validity.
Equally, Room and Britton’s model could enjoy greater validity if it agrees with another
implementation of the theory, although it could be argued that their model is merely
acting as the specification for our model, and so of course the results will agree. However,
Hales et al. (2003) report unanimous agreement in a recent MAS workshop that aligning
top-down models like EBM with bottom-up models like MAS is useful, with the cases
where the models do not agree being of especial interest.

Edmonds and Hales recommend that a re-implementation of a simulation should use
different types of programming language, and preferably be programmed by different
people, to avoid simply repeating unfounded assumptions and mistakes. We go one step
further and use an entirely different methodology as well, although the fact that one
model (in Ostrom’s terminology) uses an entirely different symbol system may make it
more difficult to align them. However, it may be that due to limitations of the
programming environment chosen for the initial prototype, a different framework must be
chosen for a second implementation, in which case these issues will become more
relevant.

Balci (2003) also suggests that a simulation should be certified by an independent expert
to increase confidence in its credibility. While not independent, Graham Room, who has
undertaken joint supervision of this project, may be able to fulfil this role to an extent,
although, as with all stakeholders in a project, confirmation bias is a risk. Mosler (2000)
considers such expert opinions to be especially important if sufficient empirical data is
not available to validate against.

MAS offers an additional level of validation over more traditional simulation techniques,
and also over more advanced techniques that do not try to imitate real individual
behaviour, such as neural networks. Every type of model can be validated at the system
level, by comparing the output against the expected output (perhaps empirical data), but
agent-based models also allow local observations of agent behaviour to be validated,
perhaps against qualitative accounts of target behaviour, preferably by domain experts
(Parunak et al., 1998). Moss and Edmonds (2005a) call these techniques
“macrovalidation” and “microvalidation”, respectively, and declare a model that has been
validated in both ways “cross-validated”. A cross-validated model is more likely to
display genuine emergence, rather than the ‘emergent’ properties being somehow built in,
although Moss and Edmonds caution that the individual behaviour still only provides one
possible explanation for the macro effect. This is of course a problem common to all
scientific explanations, not just simulations.

Gilbert (2004) differentiates between qualitative macrovalidation, in which the general
pattern of data is in agreement with the expected results, and the stronger measure of
quantitative macrovalidation which requires the data to be in agreement according to tests
of statistical significance. The latter measure will not be feasible if it is not possible to
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obtain detailed empirical data for comparison. He also suggests running cross-sectional
and longitudinal analyses as part of microvalidation.

2.7 Related simulations

School choice simulations have been run for a long time, although none that are multi-
agent based, that the author is aware of. Hoyle and Robinson (2003) constructed a
mathematical simulation in which they investigate the effects of school league tables on
schools’ performance and social class composition, and unlike us, the accuracy of the
league tables in reflecting school performance. They do not, however, examine the two-
way ‘competitive assortative mating’ effect where schools cherry-pick students: they only
consider parental choice. Their model is more complex than Room and Britton’s, in that it
actually constructs league tables from pupils’ exam results, but it is nevertheless
fundamentally a mathematical model, and so does not bring the insights into the co-
evolutionary process that it is hoped our MAS model will.

Manski (1992) constructed another mathematical simulation of school choice that is
closer to our aims in nature, as it views schools as competitive firms and uses the market
metaphor. Interestingly, Manski considers bounded rationality: he is concerned that “ill-
educated” parents might lack the ability to properly interpret information on school
choices. Many sociologists share his concern (e.g. Lauder and Hughes, 1999, p.43;
Karsten et al., 2001). However, the restrictions of equations do not enable him to model
the issue, as we hope to using MAS.

An even earlier mathematical simulation by Birdsall and Meesook (1986) on Brazilian
educational and income inequalities similarly regrets the low degree of heterogeneity it is
able to express among families. Yair (1996) takes a “network analysis” approach to the
Israeli education market, which appears to be a form of microsimulation, but his study too
suffers from the limitations of the methodology. The need for a school choice simulation
that addresses these issues using a more powerful technique is apparent.

Fowler and Smirnov (2005) present an example of how this might be done with their
MAS of political parties and voters, analogous to our schools and parents. The political
parties even adopt niches based on the current climate, as schools can (Plank and Sykes,
1999). They limit the voters’ information about population preferences to that of their
local neighbours’, embedding them in a social network. Social network considerations
may be highly relevant in the domain of school choice as well (Lauder and Hughes, 1999,
p-44).

2.8 MAS architectures and toolkits

Having established that MAS is the methodology most suited to extending Room and
Britton’s work, the question of what supporting framework to use remains. There are a
wide range of MAS toolkits and libraries freely available, although many are still in the
early stages of development (Luck et al., 2004), and so commercial products will not be
considered. Since there are such a large number of platforms that support simulation in
particular, more general multi-agent frameworks such as JADE will not be explored.

There are some fundamental requirements that the agent architecture must meet. It must
provide an environment into which the agents can be injected, and given a physical
location, as well as supporting more abstract social networks. It must also provide a
communication infrastructure, and scheduling of events. It would also be useful for the
analysis if the framework automated functions such as running multiple simulations with
varied parameters; inserting “probes” to examine the internal states of agents, and the
dynamics of agent interactions; as well as various logging and statistical analysis
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techniques, but such analysis can be supplemented by “add-on” programs if necessary
(Brueckner and Parunak, 2003).

Swarm' is the best-established agent simulation tool, and has the advantage that a Swarm
simulation is more easily replicable by other researchers, who will be familiar with the
development paradigm (Gilbert and Terna, 2000). It supports MAS written in either
Objective C or Java; these are both object-oriented programming languages, which are
the natural choice for a MAS due to the close correspondence of agents with objects.
MAML is a high-level macro-language for Swarm designed for users without strong
programming skills (Gulyas, 2005). However, Swarm is a general-purpose artificial
intelligence simulation package (Tobias and Hofmann, 2004), and since Repast and
MASON (below) are essentially based on Swarm but oriented towards the social
sciences, they seem more suitable than Swarm, and therefore MAML, for our purposes.

Repast’ appears to be the most suitable candidate for an initial prototype, as it is
specialised towards our application area, relatively mature with a well-developed user
base, and is easy to use (Tobias and Hofmann, 2004). Several researchers view it as “the
most suitable package for modelling complex social systems” (Gulyas, 2005, p.155). If,
having evaluated the initial prototype, it appears that Repast does not provide sufficient
flexibility for further refinement of the model, a more open and extendible framework
such as AgentScape’ could be considered for a second iteration. AgentScape is not being
used initially because it does not provide any of the built-in data graphing and logging
tools that Repast does; its immaturity also poses a greater risk with lack of documentation
and probable bugs. Nor is it specific to social simulations. Both Repast and AgentScape
require agents to be implemented in Java, again an object-oriented programming
language.

The agent’s decision-making ability could be implemented using a logic programming
add-on to Java such as JBoss Rules' (formerly known as ‘Drools’). This production
system would allow for a more natural representation of their reasoning.

Another toolkit that was considered is MASON®, which is modelled after Repast (Tobias
and Hofmann, 2004), or the extension BOD MASON®, but they are geared towards
reactive artificial intelligence and visualisation of mobile agents, and so Repast seems a
better choice. Experience at this University with Repast on similar projects makes it a
favoured candidate as well. SymBioSys’ (McFadzean and Tesfatsion, 1999) is a C++
library for evolutionary simulations, but supports genetic concepts too explicitly for our
purposes; we prefer to use them as a metaphor for more general behaviour.

Many researchers advocate using a new software development model, “agent-oriented
software engineering” when developing multi-agent systems (e.g. Zambonelli and
Omicini, 2004; Wooldridge et al., 2000). Since we are not creating cognitive planning
agents with complicated communication protocols and so forth, it seems that a more
standard evolutionary programming approach will suffice for this project.

! Available from http://www.swarm.org (accessed 23 April 2007)

? Available from http:/repast.sourceforge.net/index.html (accessed 23 April 2007)

3 Available from http://www.iids.org/research/aos (accessed 23 April 2007)

* Available from http:/www.jboss.com/products/rules (accessed 23 April 2007)

* Available from http://cs.gmu.edu/~eclab/projects/mason/ (accessed 23 April 2007)

® Available from http://www.cs.bath.ac.uk/~jjb/web/BOD/BOD-MASON.html (accessed 23 April 2007)
7 Available from http://www.kumo.com/~david/SimBioSys/ (accessed 23 April 2007)
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2.9 Conclusion

We have seen that there is significant interest from sociologists in the mechanisms and
dynamics of social exclusion that come into play during school choice, but that existing
mathematical models are unable to provide them with sufficient insight into these
dynamics, as well as issues such as population heterogeneity and bounded rationality.
Given that the market-based school system can be classified as a complex system with
co-evolving, self-organising strategies, it is time to harness the recently discovered power
of MAS and analyse these processes from the bottom up, rather than contenting ourselves
with a “black box” whose inputs and outputs we can examine.

The addition of this new level of elaboration will make it harder to analyse the data, to
justify the new assumptions that will need to be made, and to validate the model to any
degree of confidence. It is hoped that even if the model cannot achieve the rigour of
validity required for successful prediction, that it will nevertheless aid our understanding
of how the strategies of parents and schools interact to produce the class polarisation
effect that is characteristic of the Baker reforms.
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3 Software development

3.1

Requirements

Due to the exploratory nature of the project, precise requirements could not be specified
in advance. However, the following key requirements describe some constraints upon the
envisioned simulation. Use of the term “shall” indicates a mandatory requirement, while
requirements denoted by “may” are desirable but optional.

3.1.1 Required functionality

1.

A multi-agent simulation model shall be developed which is functionally equivalent
to the equation-based model described by Room and Britton (2006b).

The simulation model shall use two main types of actor: head teachers, who pick a
particular allocation policy; and middle-class or working-class parents, who choose
which school to send their child to.

The agents shall be heterogeneous; that is to say, different head teacher agents may
choose a different allocation strategy, and parents differ in the strength of their
preferences, and in their reasoning.

The model may introduce extensions such as new parameters and new options, in
order to evaluate their possible effect. It should be designed with extendibility in
mind. Possible extensions include:

a. Considering more than two schools, perhaps in different catchment areas
b. Allowing parents to move from one catchment area to another

c. Explicit representation of ‘aggregate parameters’ whose effect was previously
only cumulatively considered, such as parental investment and teacher
morale

d. Investigating the effect of siblings already attending a candidate school

Influence of a social network of neighbours on school choice, for example if
neighbours wish to car-share

The model shall encourage experimentation through straightforward manipulation of
parameters.

Analysis of the model shall consider explanations for the system-level patterns that
emerge from agent behaviour.

The model may also be used for predictive purposes, depending on time constraints.

The model shall be verified and validated using appropriate simulation and agent-
based programming techniques. Its predictive capabilities may also be measured
against real life data, depending on availability.

3.1.2 Configuration requirements

1.

The simulation shall initially be developed in an environment that encourages rapid
prototyping. The second phase of the simulation may necessitate switching to a more
flexible, open framework.

The development tools chosen shall be compatible with Eclipse if possible, assuming
the use of Java as the primary development language. Since Eclipse is the dominant
Java IDE (Geer, 2005), its use should make it simpler to change tools during the
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development process if necessary, as we cannot establish in advance which tools will
be needed.

3. Version control software shall be used, to facilitate the experimental development of
extensions to the project

3.1.3 Functionality that is outside the scope of this study

1. The agents shall employ some form of learning so that the model is not too simplistic,
but this may be closer to the concept of, for example, utility functions than complex
machine learning models, as adding such functionality is too large a task for a project of
this scale.

3.2 Design

The project was divided into two phases: first, building a model equivalent to Room and
Britton’s; and second, refining and exploring the model by incorporating new parameters
and decision processes. The initial model may be built using a different technology
platform than the second, as explained in the configuration requirements (section 3.1.2).

3.2.1 Initial prototype

The main purpose of the initial prototype was as a proof of concept, and for gaining some
experience with agent-based simulation, so that more suitable technology could be chosen
for the more refined model if necessary. It was therefore developed in a rapid prototyping
environment, using incremental, evolutionary techniques. An agent toolkit with a large
library of common functions, and a simple, easy to use framework for running
simulations, was essential for rapid prototyping. The literature review already identified
the social simulation framework Repast as a suitable candidate for this task (see section
2.8).

No production rule system was used at this stage, because a simple procedural translation
of Room and Britton’s equations seemed more straightforward. The agents’ decision
procedures could be rewritten as rules once it had been established that the basic concept
worked as an agent-based model.

Adapting the macro equations for agent-level decisions

The original equations consider only two types of entity: parents and schools. Middle-
class parents’ preferences are described collectively by a function m giving the fraction
m(x) of middle-class parents who prefer to send their child to the school where the
fraction of middle-class students is x, as opposed to sending it to the other school®:

m(x) =%+a(x—9)

Equation 3.1 - fraction of middle-class parents choosing school with middle-class fraction x

where 0 stands for the fraction of middle-class children in the population as a whole, and
is assumed constant. Working-class parents’ choices are represented similarly by the
function I:

1(x) :%er(x— 0)

Equation 3.2 - fraction of working-class parents choosing school with middle-class fraction x

¥ Where the fraction of middle class children is 6 — x.
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where a and b are the strength of preference coefficients such that a, b > 0. It is also
assumed that a > b, since middle-class parents are likely to favour a middle-class
dominated school more strongly than working-class parents (Room and Britton, 2006b).

Thus, equations are used to describe population-level parental choices.

Only a single equation is necessary to describe the system-level behaviour of how many
children of each class are allocated to each school. If a school has too many applicants, it
must choose between them; too few, and it is forced to take them all, as well as the
children rejected from its rival school. The system-level equation incorporates both the
parental choices described above, and the schools’ allocation policies, describing what
fraction of middle-class children end up in each school as a result. Both schools are
assumed to share the same policy: either class blind, where they choose students
irrespective of social class; or class sensitive, where each school accepts as many middle-
class children as possible, accepting working-class children only when no more middle-
class children are left. The interested reader can find the formula in Room and Britton
(2006D).

However, this model could not use the system-level equation, because it was intended to
generate that outcome bottom-up out of choices made by individual schools and parents.
It could, however, use the parental choice equations, and the informally stated ‘allocate
places at random’ vs. ‘accept all middle-class children first’ school strategies. Its decision
procedures are therefore much simpler than the equations presented in the original model,
since they need only deal with local choices made by a single entity.

The parental choice formulae could not be used in their original macro-level form, of
course: they required adaptation. Room and Britton’s equations give the fraction of
parents making a choice, but we wished to translate this summary of events into a
decision procedure that each individual parent agent could apply. The simplest way of
doing this was to turn the concept of a fraction of parents making a certain choice into the
probability that each individual parent will make that choice. Approximately the same
result should be obtained, albeit with added ‘random noise’ stemming from the particular
sequence of random numbers used.

Schools were assumed to contain six year groups, so that the fraction x of middle-class
children in a school is effectively the mean middle-class intake over the past six years.

Actors

Instead of using parent and school actors, the simulation used children and schools. This
is essentially equivalent, but has a nicer semantic feel to it when a school is considering a
child’s attributes on application, rather than examining a ‘parent’ object for suitability. An
alternative would have been to include both parent and child objects, forming a family
unit, but the details of sow a decision is arrived at, such as whether one parent has more
say than the other, or if the child has any influence, is only of tangential concern to us.
Rather, we are primarily interested in what decision they arrive at, and why. It is therefore
more appropriate to abstract the family unit into the single concept of a ‘child’.

Schools have the attribute league table rating instead of exposing a school’s fraction of
middle-class students directly, as Room and Britton’s model does. The design allows for
future expansion, but at present it is merely an average of the school’s fraction of middle-
class students over the past four years, since school league tables in the UK tend to
include recent historic data as well. In reality, school league tables are of course based on
exam results, but the school’s social make-up is considered to be a rough approximation
of this, since middle-class children tend to perform better in exams; additionally, their
peers’ results are positively influenced by a high percentage of middle-class children in
their class (Lauder and Hughes, 1999).
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The only attribute of interest held by children in the initial prototype is their social class.
This has only two possible values: working-class or middle-class. A finer-grained model
of social classes such as the eight-, five- or three-class versions suggested by the Office
for National Statistics (2004) was considered, but not implemented, because other
extensions seemed of greater potential interest. It could also have been challenging to
correctly define the expected behaviour and preferences of the different classes, since
only the eight-class version can be interpreted as hierarchical tiers — the other models
would not naturally lend themselves to a decreasing preference function, for example.

Structure of the model

Repast provides not only a simulation backbone, but also simulation templates for
common model types that require minimal adaptation. If these templates are to be used —
which suits a prototype very well — there is a choice of subclassing either the Java class
SimpleModel, Or SimModelTImpl. (Alternatively, a model could implement the SimModel
interface directly, providing all of the basic functionality itself, but this is unnecessary.)
Each is built around the basic concept used in Repast (and other simulations) of
scheduling events at certain time steps, or perhaps on every step. Repast manages the
scheduled events and progresses the time step automatically.

Each run of the simulation begins with a setup stage, followed by the progression of time
steps, and the events associated with them. For this model, a time step was taken to
represent the passing of an academic year; so on each step, a new set of children would
apply for school places.

SimpleModel provides basic functionality, based around the core methods prestep, step
and poststep, which are executed before, during and after each step, respectively.
Alternatively, ‘auto-step’ mode can be used, in which each agent implements the
Steppable interface, providing its own versions of the above methods that are
automatically invoked on each time step.

However, since more advanced functionality, such as batch runs to explore the parameter
space was required, the more advanced simModelImpl was subclassed instead. This also
allowed for a less restrictive scheduling mechanism, as it requires the model to construct
its own schedule. Since the same set of actions are carried out on each time step, all that
was necessary was to provide a single method to run on every step. This first cycled
through all the children, asking each to apply for a school place, and then iterated through
all the schools, asking them to accept as many children as they could from those who
applied, and to reject the rest. These rejected children then had to begin the process again,
until each had found a place. It was guaranteed that each child would eventually find a
school place, since the schools are assumed to each have an equal number of places,
determined by the number of children needing to be placed each year. In the worst case, a
child would need to make as many applications as there were schools, but this would only
usually be expected to occur for a minority of children on each step’.

The initial model class, SchoolChoiceModel, was soon refactored to have two subclasses,
SchoolChoiceInteractive and SchoolChoiceBatch, to more clearly separate out the
code that pertained only to the batch model. It was also somewhat more efficient than
checking whether the model is in batch mode before executing any operation relating to
an on-screen graph.

Both interactive GUI mode and batch mode were set up to log data about the fraction of
middle-class children in each school at each time step. As well as taking screen shots of

The most extreme example of this would be if all children applied to the same school: then half of them could not be
given a place and so they would need to apply to the second school as well. However, this is only expected to happen in the
strictest class polarisation experiments, when all children strictly prefer the leading school.
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the graphs created using Repast library classes, custom data analysis was possible through
importing the standard format comma-separated text file into, say, Microsoft Excel.

Parameters

Repast supports parameter setting in batch mode through parameter files, and in
interactive mode through a basic GUI that is created for every simulation. If the model
class, in this case schoolChoiceModel, uses the Accessor design pattern for methods, so
that (for example) the numsteps parameter has associated methods int getNumSteps ()
and setNumSteps (int), then those parameters are automatically made available to the
user in the Repast GUI, if they are also included in the model’s list of modifiable
parameters.

The parameters chosen to be modifiable in the initial prototype were:
1. FractionMiddleClassPopulation — this corresponds to 0 in the equations above;

2. MiddleClassPreference — this corresponds to a¢ in the middle-class parental choice
equation: the coefficient for how much they prefer a middle-class oriented school;

3. WorkingClassPreference — the same preference coefficient for working-class parents,
which corresponds to b in the working-class parental choice equation;

4. NumChildren — the overall number of school applicants per year;

5. NumSchools — the number of schools to choose from; this was initially left at 2 in the
simple replication of Room and Britton’s model;

6. NumSteps — how many time steps to execute before halting;
7. SchoolStrategy — a binary parameter: either ‘class blind’ or ‘class sensitive’.

Zeigler (1976, cited in Kleijnen, 1995) distinguishes between input variables and
parameters to a simulation, where a variable is an attribute that can be directly observed,
such as the number of schools, but a parameter cannot, so its value must be drawn from
observations. An example of a parameter in Zeigler’s sense would be the preference for
middle-class-oriented schools held by parents. Kleijnen (1995) adds to this the concept of
a module that can be varied between runs, giving different behaviours: for example, the
module determining school strategy. However, we will use the umbrella term ‘parameter’
for each of these types of input to the simulation, since this is in keeping with Repast
terminology.

It is in our case perhaps more useful to distinguish between parameters that are expected
to significantly affect an experiment’s outcome if varied, and ones that are present more
out of convenience than necessity. The numChildren and numSteps parameters could be
viewed as such ‘convenience’ parameters, since the larger the values, the more certain we
can feel about our results, as the size of the sample will have increased. However, they
need not be treated as rigorously as the other parameters in a parameter sweep used to
investigate the model.

3.2.2 The full model

Once the initial prototype had been established to replicate Room and Britton’s model
satisfactorily, the technology and techniques used were assessed for suitability for the
development of the full model. Despite some issues with the use of Repast library classes
breaking the replicability of experiments (see section 3.3.2), which were soon overcome
once identified, Repast seemed well suited not only to the development of the initial
prototype, but also to the full, extendible model of the second phase of this project.
Repast imposes certain restrictions on the main model class (such as having to use the
Accessor design pattern, and scheduling events against time steps), but apart from that,
arbitrary Java code can be used, which results in great flexibility. The agents can
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implement the steppable interface that structures their actions into pre-, during, and
post-step phases, but this is not mandatory. The minimal restrictions that Repast does
impose are therefore fully reconcilable with this project’s requirements. It would also be
compatible with the use of a production rule system.

Since the initial prototype did not expose any real weaknesses in the technology used,
rather than starting from scratch, evolutionary development continued directly on the
prototype.

3.2.3 More than two schools

The first extension to be added to the model was the ability to cope with more than two
schools competing for children.

Equation 3.1 (p. 24) must be adapted to:
1
m(x)=—+a(x—09)
n

Equation 3.3 - fraction of middle-class parents who prefer the school with fraction middle-class
x over all other schools

where n is the number of schools (previously 2), and 3 is no longer the fraction of middle-
class children in the population, but the fraction in the population among those schools
who have not yet rejected this child. The reason the schools that have already rejected the
child must be ignored is that if there is one excellent school A and two atrocious schools
B and C, the child is likely to give m(xg) <= 0 and m(x.) <= 0. Then, if it is rejected from
the only school it has any interest in attending, A, it has no way of choosing between
schools B and C since it does not want to attend either of them to any degree (having
assigned a negative preference to each). But if B and C are only compared to each other
once A is out of the running, then at least one of them will be given a positive
fraction/probability of choice; this is important if one is performing less badly than the
other.

The children’s decision procedure therefore needs to be consulted after every rejection to
determine the new probabilities for choosing amongst the remaining schools. This
increases the complexity of the algorithm by a factor of n.

When more than two schools can be considered, the translation of m(x) and 1(x) into
probabilities is also less straightforward. In the simple case of two schools using Equation
3.1, m(x) and I(x) can easily be truncated to fall between 0 and 1, giving a natural
correspondence to probabilities. For example, if m(x,) = 4.5 and m(xp) = -3.5'°, it can be
truncated to school A being picked with probability 1, and B with probability 0 without
any loss of information. m(x,) + m(xg) = 1 in every case, if truncation is used (Room and
Britton, 2006b). But this only holds for the two-school case, where the middle-class
admissions of one school are the mirror image of admissions to the other school — a child
must attend either one school or the other.

g if0=0.5a=20,x,=0.7, xg=0.3
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——— School 0 —— School 1

Fraction middle class intake

0 20 40 60 80 100

Time

Figure 3.1 - Example of two schools necessarily 'mirroring' each others' middle-class intake
fractions along y =0 =0.5.

If, however, a third school C becomes involved, values > 1 are suddenly distinguishable
in Equation 3.3 since more than one can occur at once. (Any values < 0 are, however, still
considered equally undesirable and are all set to 0.) For example, m(x,) = 2.33, m(xg) =
2.4 and m(xc) = -3.67"" cannot be truncated to 1, 1 and 0. But this problem is easily
solved by converting these weightings into probabilities in the interval [0,1].

Multiple schools bring another factor into play: they necessitate the use of synchronised
application rounds. When only two schools are considered, this is unnecessary, because
all children rejected from one school are guaranteed to be accepted by the other: the order
of applications is irrelevant. If, however, there are (say) three schools — one leading
school, one middle-ground school and one failing school — then it would be unfair to give
children applying to the middle-ground school only because they were rejected from the
leading school the same consideration given to applicants who made the middle-ground
school their first choice. Furthermore, this introduces an unwanted element of
randomness where the order in which schools consider applications now has a noticeable
effect on the outcome: if a school processes its applications after one or more other
schools, it may also be considering some applicants rejected from those schools alongside
its initial applicants. The solution is to introduce application rounds, where second-round
applicants can only be considered once all schools have completed their first-round
admissions process. Then, in the second round, each school gives equal precedence to
each child who made that school its second choice, and so on. Unfortunately, the author
only realised this late into the project, and so this change was only made to the Drools
model, due to time constraints. Running multiple-school simulations in the Java model
therefore still produces results that suffer from the effect described above.

3.2.4 Stochastic shocks

It would be interesting to investigate the effect of ‘stochastic shocks’ on the stability of
schools’ positions — both whether such a shock could trigger schools into a stable state

Yeg if0=05a=20,x%x,=0.6,x3=0.6,xc=0.3
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they would not otherwise have reached, and whether they could be permanently knocked
out of a stable state.

A stochastic shock is an additional bonus or penalty to a school’s league table rating on
top of the rating calculated from the school’s middle-class population. A positive shock
might be due to a new headmaster with a good reputation arriving, or a winning school
football team, while a negative shock could be due to news coverage of an undesirable
incident at the school, or a poor OFSTED report.

Three new parameters were added to the model: NumStochasticShocks, MinShock and
MaxShock. MinShock and MaxShock are constraints on the minimum and maximum
possible stochastic shocks, and may be positive or negative. Typically, MinShock =
MaxShock in an experiment, for greater control over the effect. It is randomly decided
when the shock happens, and for each school whether it is affected by the shock — a more
refined model would allow full control over this as well, but for current purposes, it
sufficed. Of course, reusing a random seed will replicate the sequence of events exactly,
as always.

A stochastic shock could only really be expected to have an effect when the schools are in
a non-polarised state: if one school normally has a 100% middle-class intake and the
other receives none, a modest shock should not make much of a difference. Therefore, the
schools would need to use a class-blind strategy, and the families would need to have a
sufficiently high preference to result in an inequity between the schools. However, it was
instead proposed to give the schools a variable preference for middle-class children,
rather than the simple binary ‘yes/no’ preference used previously. Varying this alone
should allow a degree of control over the inequity between schools. Making the schools’
strategies more fine-grained improves the potential for drawing social policy conclusions
from the experiments, since schools’ preferences can be controlled through policy, but
families’ cannot (or perhaps they can be influenced, but to a lesser degree).

3.2.5 Decision rules

The most significant change made to the initial prototype was to redesign it to use
decision rules instead of the more procedural approach previously adopted. This was
suggested for two main reasons:

1. The model had become difficult to read, as pieces of logic were encoded in each
object, so that they needed to be analysed carefully in order to discern their
interactions with each other. Additionally, this logic was intertwined to an extent with
less important code relating only to simulation mechanisms. Rules would make the
logic more readable, especially to a non-technical domain expert.

2. Having the decision rules in a central location would make the model much more
flexible and extensible — both in future, and for the continued evolutionary
development during this project, which required continual refactoring.

Additionally, rules would make it easier to understand why a certain outcome was
reached, as the trace of rules that were applied can be followed. This could prove
invaluable in the analysis of micro-level behaviour that this project aims for.

A production rule system evokes a declarative, fact- and rule-based programming style.
The fundamental concept is that ‘facts’ (Java objects, in this case) are ‘asserted’ into a
processing area called ‘working memory’. The condition-action rules forming the
program are continually checked against the facts in working memory, and if there is a
match with the rule’s condition, the rule ‘fires’, which means that its action is run.
Actions typically involve a combination of modifying facts in working memory, and
running small chunks of procedural-style code (often written in Java for Java-compatible
frameworks; but some extend this to integrate other languages, most commonly Lisp).
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At its core, a production rule system simply consists of many rules of the form
if <condition> then <action>.

If multiple rule conditions match at once, a conflict resolution strategy must be applied.
This could be as simple as following textual ordering in the file.

Initially, the suggestion was to use JBoss Rules (‘Drools”) as the obvious choice due to
existing familiarity on the project, but some alternatives were considered in case a more
suitable choice existed.

The primary constraints on the choice of rule package were that it should be:
1. Freely available software;
2. Compatible with Java;
3. Stable and reliable.
Secondary constraints were that it should be:
4. Integrated with Eclipse, this project’s existing IDE;

5. Compatible with Java 1.5, to avoid having to refactor the program to make it
backwards-compatible with an older version of Java;

Relatively fast to learn;

Reasonably efficient (for a rule-based language, which is necessarily slower than
Java alone);

8. Open source software, for flexibility of future extension, and ease of debugging.
The options considered were as follows (excluding the most unsuitable ones):
1. JBoss Rules'” (hereafter known as Drools, its more familiar name)

Drools uses an object-oriented version of the Rete pattern-matching algorithm. This
works by caching partial rule matches so they do not need to be re-evaluated unless
object attributes change (Codehaus Foundation, 2006). This means that more memory
is used, but computation is performed faster. An experimental Leaps algorithm is also
supported which can identify rules to fire without evaluating the entire condition
network, but it is not considered reliable yet, so it was not considered for this project.

Drools has the following advantages:

e It uses intuitive, minimalist syntax that can be redefined by the user to a
specific domain;

e [t is established, open-source software with a large following;
e It is exceptionally well-integrated with Eclipse;
e [tis designed for speed and scalability;
e It supports SQL-like queries for returning data in a loop, unlike JESS;
e The author was already acquainted with an earlier incarnation.
2. JESS”

JESS, the Java Expert System Shell, also uses an adapted version of the Rete
algorithm, but it looks very different to Drools as it uses a Lisp-like syntax. It is an
extended version of CLIPS, a popular expert system. It has an established support
base, and the project is still in active development, again like Drools. JESS is not
open-source software.

'2 Available from http:/labs.jboss.com/portal/jbossrules/ (accessed 22 April 2007)
13 Available from http://herzberg.ca.sandia.gov/jess/ (accessed 22 April 2007)
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3. Mandarax"

Mandarax is an open-source backwards-chaining system that uses less memory than
forward-chaining frameworks like JBoss Rules and JESS, but is slower as a result.
Backwards-chaining is better suited to query-driven than event-driven applications
(Dietrich (2003); Proctor et al. (2006) section 1.1.1). This project will only rarely
need to query the working memory for facts, or work towards a goal; more usually it
will need to respond to incoming events, so Mandarax does not seem like an ideal
match.

Prova'® was recently built on the Mandarax engine to include Prolog-like syntax, but
it is still a relatively untested technology

4. JLisa'®

Jlisa is again based on the popular Rete algorithm. JLisa is very similar to JESS; both
are based on CLIPS. But while JESS provides Lisp-like syntax, JLisa makes all
features of Common Lisp available. Furthermore, unlike JESS, JLisa has an open-
source license. A major drawback is that there is no apparent documentation; it is a
relatively recent project (begun late 2003) with only ‘pre-version 1’ releases.

5. OpenRules'’

The OpenRules system is integrated with Eclipse, and works alongside Microsoft
Excel. Whilst Excel is available to this project, and used for data analysis, it would be
preferable not to use proprietary software in the code itself for the sake of
replicability and reuse by other researchers. OpenRules itself, however, is open
source.

OpenRules was also designed with scalability and performance in mind, but it only
has a small userbase at present.

6. Algernon'®

Algernon, an open-source plug-in for the ontology editor Protégé, again exposes Lisp
functionality, and has a complex syntax. It is flexible, supporting both forward- and
backward-chaining, but again has only a small userbase.

7. SweetRules"’

SweetRules supports the OWL standard for semantic Web ontologies; it is oriented
towards integrating semantic web rules and ontologies, which is not really a concern
for this project. It is interoperable with JESS (although unlike JESS, it is open-
source); and like Algernon, supports both forward- and backward inferencing, adding
flexibility on both counts. As with most of the systems considered, probably because
they are all relatively new technologies, it has a small userbase.

Only Drools and JESS satisfy all three primary criteria. Drools was chosen over JESS
because the existing familiarity presented a strong advantage due to tight time constraints;
its open source license was also attractive, although JESS is freely available for academic
purposes. It is also exceptionally well integrated with Eclipse, the project’s development
environment, allowing interactive parsing and syntax correction of the rules as they are
written, thus speeding up development. The only potential concern was that there might
not be enough RAM to cope with very large numbers of agents. However, this risk
applies equally to JESS, as it uses the same fundamental algorithm.

'* Available from http://mandarax.sourceforge.net/ (accessed 22 April 2007)

'3 Available from http://www.prova.ws/ (accessed 22 April 2007)

'® Available from http://jlisa.sourceforge.net/ (accessed 22 April 2007)

'7 Available from http://openrules.com/ (accessed 22 April 2007)

'8 Available at http://algernon-j.sourceforge.net/ (accessed 22 April 2007)

! Available at http:/sweetrules.projects.semwebcentral.org/ (accessed 22 April 2007)
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Structure of the rule-based simulation

An initial attempt at converting the simulation to use Drools involved creating a single
rule base and a shared working memory, but this was soon revealed to be unsatisfactory.
Instead, each agent was treated as a small expert system with its own rules and an
independent working memory. This meant that the rules could be rewritten more
succinctly, as interference from other agents’ activities no longer needed to be considered.
In particular, objects could be removed from working memory when no longer needed,
rather than having to be shared between agents, which had required the introduction of
‘link’ ontology objects like SchoolRating to indicate that a particular Child was still
considering a given School as a possible destination. The drawback was the overhead of
having as many working memories as agents, but this was outweighed by the many
advantages.

The rules were initially split into separate school and child rule collections, reusing the
same rule set for each school or child respectively; but it would be easy to specify several
different versions of a rule set for children or school agents, thereby introducing a more
sophisticated type of heterogeneity among agents. Additional simulation parameters could
specify what fraction of the agent population should use a particular rule set. It is also
possible for more specialised agents to reuse this base rule set and add custom rules to it,
as the ‘co-evolutionary’ versions of the agents do (see section 3.2.6).

The use of rules allowed the simulation’s schedule to be simplified to remove all
knowledge of how the agents interact with each other, except that children must act
before schools (the old version is shown in Appendix B, section 10.1). Instead, only the
following sequence was executed by the model on every step:
SimUtilities.shuffle(childList);
for (Child child : childList) { // Prepare for step

child.preStep();

}
for (School school : schoolList) {
school.preStep() ;

for (Child child : childList) { // Do step
child.step ()

}

for (School school : schoolList) {

school.step();

for (School school : schoollList) { // Clean up after step
school.postStep () ;
}
Environment.getInstance () .advanceYear () ;
It would have been neater to include a call to postStep for the children as well, but it was
left out for efficiency reasons, since that method is currently empty.

The children’s prestep method initialises a new child, since chi1d objects are reused on
every step rather than creating new objects each time, purely for the much-needed
performance gain. A school’s prestep populates its working memory with all the new
applicants that might potentially apply, and its poststep method clears any from working
memory that remain at the end of the step (children who are no longer under
consideration are removed from working memory during processing). Each agent’s step
method simply contains a call to its working memory’s fireAllRules method, which
initially appears very elegant.

Unfortunately, it is not quite this simple: Drools’ fireal1Rules method fires all rules that
have been activated by the current state of the agent, as desired, but once these have all
fired, activity ceases. Rules that are activated while fireallRules is still running are
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added to its schedule, but those activated afterwards are not. This leads to the following
kind of problem:

1) 150 children apply to school A and 250 apply to school B

2) School A calls fireallRules and accepts the 150 children, leaving 50 places free
3) School B calls fireallrules, accepting 200 children and rejecting 50

4) Those 50 children now apply to school A

5) School A’s fireallRules has already completed, and so it takes no action.

This means that additional calls to fireal1RrRules need to be inserted in the code. It is not
inelegant to insert a call to fireAllRules in each agent’s receiveMessage method, so
that it inserts the message into working memory and then checks if any action need be
taken. However, it is perhaps less obvious why in the Environment class, every time a
school informs the environment that its current application round has ended, all schools
have to be cycled through, calling fireallrules on each. The reason is that a school
might not be able to process a message immediately upon receiving it, if it is for a later
application round than the current one. This mechanism could be removed if Drools
supported a mode where all rules were continually executed as they were activated, which
could be enabled in step, and disabled in poststep. However, it would no doubt reduce
Drools’ performance significantly, and so the current design seems preferable. Before the
introduction of application rounds, the calls to fireallRules had to be inserted in the
children’s rules; but the current solution at least places all such mechanisms in a single,
meaningful place.

Again in the interest of performance, Drools does not continually poll the objects in its
memory for changes; rather, it relies on the user program to inform it when something
relevant has changed. This can be done either by capturing Drools’ reference to the
object, called a FactHandle, and passing this to Drools in a call to its modify method; or
by following the Java bean-style PropertyChangeListener design pattern. This means
that the object allows Drools to subscribe to its property change events, and is responsible
for telling Drools whenever properties it deems to be of potential interest to observers
change. The latter design is much more in keeping with the object-oriented program
paradigm, placing the responsibility related to an object’s attributes within the object
itself, rather than scattering calls to modi £y throughout the program, and so it was chosen.
The fact that objects monitored by Drools in this fashion must use Java bean-style ‘getter’
and ‘setter’ methods for their properties is not problematic, given that Repast already
requires the use of this programming style for the main simulation model’s parameters.

The objects monitored by Drools for the two types of agent are shown below:
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Figure 3.2 — Working memories used in the rule-based system. The top memories belong to the
two schools, and the bottom one represents one of the n children in the simulation. Each working
memory needs to know about the agent it is monitoring, as well as agents it interacts with directly.
They also all have a reference to the Environment singleton, so the environment can be monitored

for changes.

As shown in Figure 3.2, Drools has to externally monitor the agent for which it acts as an
expert system, rather than being privately embedded within it in some way. This has an
unfortunate side effect: any methods Drools needs to access in the object whose ‘brain’ it
is need to have public visibility, so they are also accessible to any other object. Even
though rule files can share the same package name as a Java class, this only has the effect
of automatically importing all classes from that package; it does not give the rules
package-level access to the classes. Thus, a fundamental principle of multi-agent systems
is violated: the agents do not have control over whether they wish to carry out an action.
To give over control to their ‘expert system’, they must also expose the functionality to
any other object in the system. So, for example, there is nothing to stop a child agent from
bypassing the application process and just telling the school to accept it directly. This was
not a real problem in this system, because the agents are not competing with rival agents
belonging to a different, perhaps malicious ‘owner’ who might try to ‘cheat the system’,
so the author was easily able to avoid abusing the public visibility of the methods; but it
is nevertheless a fundamental design flaw.

The rules

The rules used in the initial, model are described briefly below. The full source code is in
Appendix C, sections 11.1 and 11.3. To communicate with other Drools agents, message
types defined in the package uk.ac.bath.cs.schoolchoice.ontology are used.

1. Child rules
a. “Research school place application”

This rule fires when the child is in a position to apply for a school place, but
has not yet made a decision. It tells the child to ‘research’ the schools, i.e.
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calculate its preference levels for each, and then set up a probability
distribution for selection.

b. “Make application for school place”

This rule fires next. The school selected by probability above is sent an
‘application’ message.

c. “Process rejection of school place application”

The child has received a rejection message from the school it applied to, so
we must re-initialise the child so it can make a new application.

d. “Process acceptance of school place application”

The child has received a message from the school it last applied to, allocating
it a place at the school. Therefore, put the child into a dormant state — it need
take no more actions.

e. “Clean up schools once child has a place”

Drools can automatically tidy up its working memory by removing any
remaining schools that were asserted at the beginning of the year, in readiness
for the next academic year.

f.  “Catch messages that were not understood”

Print an error message if the child was sent a message (ontology item) by
another agent that is not caught by any other rule.

2. School rules
a. “Research school place application”

The equivalent of the child rule of the same name — all children who have
applied to the school are ‘researched’ to determine their suitability, and a
probability map is created from this.

b. “Accept school place application”

Send the applicant who was just selected by probability an acceptance
message, and get ready to pick the next applicant.

c. “Reject applicants for whom we have no space”
Once the school is full, every application is sent a rejection message.

The schools could not be given equivalent rules for the children’s clean-up rules 1.e and
1.f because their rules are repeatedly fired by external sources; messages or data that are
not currently needed may be required at a later point. This necessitates a clean-up
operation in School’s postStep method.

3.2.6 Co-evolutionary behaviour

Co-evolutionary behaviour was defined in section 2.3 as a response in, say, the child
population to a particular trait of schools, followed by the schools consequently adapting
their own strategy again, and so on, rather than a simple adaptation of agents to their
environment. So far, no adaptation has taken place at all by either agent type, even to the
environment, we now attempt to model very basic adaptation that could perhaps be
termed ‘co-evolutionary’. However, since the only strategies available to any agent are
predetermined by those encoded in its decision rules, it could be argued that we are
merely modelling adaptation at this stage, rather than true co-evolution. A more truly co-
evolutionary model might employ a genetic algorithm-like technique of evolving entirely
new strategies, or imitating the most successful strategies of its competitors.
Nevertheless, this project will refer to such behaviours as ‘co-evolutionary’, since the
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agent populations are continually adapting to each other, as well as the school agents
adapting to their competitors.

Class blind preference

The first co-evolutionary behaviour that was added was to broaden the range of school
attributes that interest families. As described by Lauder and Hughes (1999), schools that
are less successful in the league tables might diversify, taking on a niche position in the
market. A possible niche position for a less high-performing school would be promoting
an inclusive atmosphere, i.e. their class blind admissions policy.

To simplify the co-evolutionary design, school strategies were reverted to their original
restriction: they can be either class blind or class sensitive, not somewhere on the
spectrum between the two. This seemed to make more sense than saying prefer a
‘somewhat’ inclusive school over a ‘slightly’ inclusive school — either way, the school is
ultimately not being properly inclusive. The exact degree of discrimination is surely
irrelevant to families; only its presence or absence matters.

An alternative would have been for children to look directly at the social make-up of the
school, rather than indirectly at the school’s strategy. However, this would have placed
the two factors of an inclusive atmosphere and league table position in direct opposition,
since both would have effectively been measured by the same criterion — the school’s
middle-class intake — with their ideal values for this criterion in direct conflict. It would
also have meant that a low-performing school would not gain any advantage from a class-
blind policy, as its social class make-up would be skewed to favour working-class
applicants; it would rate poorly on both factors. A school adopting a class blind policy is
announcing its intention to foster an inclusive atmosphere, and those who agree with this
intention can join it, thereby enabling it to achieve its objective. If the middle-class
applicants were to wait to apply until the school had already achieved a representative
social mix, this mix could never come about since there would be few middle-class
applicants.

To include multiple attributes in a decision, the model was refactored to use ‘factors’; all
factors considered by a child must implement the schoolFactor Java interface. Each
such factor provides a method that, for a given school, calculates the child’s preference
level for that school based solely on the factor in question. An equivalent design could be
used for schools’ consideration of applicants, but this was not included in the current
design since children were given no attributes other than that of social class which a
school might wish to take into consideration.

Using multiple factors meant that each had to be given a weighting. Rather than
arbitrarily assuming each family assigns a weighting of, say, 5 to whether a school is
class blind, and % to its league table performance, a normal distribution was used to
create agent heterogeneity and add a touch of realism. The normal distribution’s mean
and standard deviation are configurable simulation parameters. As well as the weighting
given to the factors, the numerical preference assigned by families to a class blind school
was also designed as a configurable normal distribution, since no empirical data was
readily available to suggest suitable values. (It would of course have been extremely
difficult to extrapolate a numerical value from such a dataset, even if it had been
available).

Having added this basic preference of families for class blind schools, rules were added to
allow the agents to adapt their strategies dynamically. It seemed logical that families
would be more drawn to class blind schools if the available schools were highly polarised
in social class intake, and conversely that they would not care as much about the school’s
policy if all schools had a very similar intake, and so rules to accomplish this preference
adjustment were inserted.
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Schools were first given the obvious rule of a class sensitive school adopting a class blind
niche if it is not performing well in the league tables. It would not necessarily want to
become class blind otherwise, even if that would increase its rating with families, because
it would then lose the ability to improve its league table performance above the
population average. This strategy is a defence mechanism against total polarisation: a
school might be able to retain some fraction of its middle-class intake if it switches to a
class-blind strategy before falling too far in the league tables.

The ‘mirror’ rule of a class blind school becoming sufficiently highly rated in the league
tables that it could afford to adopt a class sensitive strategy without losing its popularity
then followed naturally. This could allow it to approach total polarisation more closely
than if it remained class blind.

Finally, a rule was added for schools to try to break out of the scenario where every single
schools is class blind, and none is able to distinguish itself sufficiently well to gain a
permanent advantage. This is of course not morally admirable, but as discussed in section
2.1, schools aim to maximise their middle-class intake. We theorised that a possible
solution was for a single school to bravely become class sensitive, in the hope that it
could grasp a small initial advantage and turn it into a higher league table rating quickly
enough before its poor ‘inclusiveness’ rating caused it to fall below the rest. However,
this could easily backfire and nominate that school as everyone’s least preferred school if
it happened to do badly in terms of league table ratings that year, instead handing its
competitors an indirect advantage through its failure.

School specialisms

School strategies and league table ratings already provide a number of interesting
strategic interactions, but we wanted to include another type of school attribute that was
completely independent from school league tables to investigate a fuller spectrum of
multi-attribute choices. The problem with the existing two school choice factors is that
they are not independent: a class blind school will have a lower league table rating than a
(successful) class sensitive one. A school can either have an exceptionally high league
table rating, or employ a class blind strategy, but both at once are impossible™.

Therefore, a third factor was added to the mix that was entirely independent of the other
two factors: school specialisms were introduced. This is similar to the Specialist Schools
Programme in the UK (DfES, 2003a), except that questions of raising funding from the
private sector were not addressed at all (this might yet be an interesting avenue to
explore, since presumably more successful schools would find it easier to attract
funding). It was assumed that any school can simply adopt any one of a list of possible
specialisms as it pleased, but that it could only change this choice once every ten years, as
continual switching would most likely be counter-productive, merely wasting resources.
The UK DfES defines ten distinct specialisms which schools can apply for. The number
of possible specialisms was made a configurable parameter in the simulation, since it
might be interesting to see how the possible diversity (or lack of it) affects the outcome.

Each child was given an interest level for each of these specialisms according (as usual)
to a normal distribution, with specialisms first ranked in a random order, and then given
an interest level approximately proportional to the ranking assigned to it. This then
determines how highly the child rates a school with that particular specialism. Section
3.3.7 uses the example of adding the school specialism factors to show how the model
can be extended in detail.

2 Unless of course working-class children were to suddenly prefer class sensitive schools over class blind ones, while
middle-class children continued to favour high-performing class blind schools as expected, but that would make no sense,
so it was not explored.
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Section 102 of the School Standards and Framework Act 1998 declares that any specialist
school may select up to 10% of its intake based on the applicant’s aptitude in the school’s
specialism (DfES, 2003b). This would add an extra twist to the simulation, giving child
agents more than one attribute of interest to schools. Unfortunately there was no time to
add this to the simulation, but childractors could easily be introduced that worked
analogously to the existing schoolFactors. The DfES also states that a school whose
performance is declining is unlikely to gain approval for its application for specialist
status; this could have provided some interesting interactions with other factors, had there
been time to incorporate this extra condition.

The rules added to the system for schools to decide upon their specialism were twofold.
Firstly, if a school has a more successful competitor who has chosen the same specialism,
it will switch to another type if possible, since that might open up a new corner of the
market, and it is not gaining any advantage from its current specialism. Secondly, a
ruthless rule was added for successful schools: they can choose the same specialism as a
less successful competitor in order to steal that school’s niche. This would leave the other
school with the same poor league table performance as previously, but bereft of the
unique offering it had. All children who previously preferred that school because of their
personal interests will now join the other children who preferred the leading school
precisely because it was so successful. All the children who would have chosen the
leading school because they were interested in its old specialism will now rate the leading
school less highly; but the specialism attribute has effectively been eliminated from the
equation (being equal for both schools), so it does not matter. The interactions between
more than two schools would be more complex; it remains to be seen whether the rule
still pays off in that scenario.

Since the children change every year, and therefore the applicants’ favoured specialisms
do as well, there is no advantage in schools trying to cater to specialisms they perceive as
being popular. It might be more realistic (and more interesting) if trends were added to
children’s interest levels, where perhaps their older siblings and other members of the
community could conceivably influence their interest levels to positively correlate with
the existing interests in that area. However, this would be most useful if data could be
found on how high such correlations are. Again, the basic problem of quantifying such a
subjective issue as ‘interest’ in a subject would be a major issue, even if the ideal dataset
were available. As it is, the children’s linear decrease in preference among the ranked
specialisms is no doubt inaccurate; but it seemed preferable to use an easily
comprehensible preference assignment than to guess at a more complex function that
would inevitably also be wrong.

Structure of working memory

After adding the co-evolutionary behaviour, the agents’ working memories needed to
consider more facts, as shown below:
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Figure 3.3 — Working memory contents of the co-evolutionary model. This expands upon
Figure 3.2. The children’s working memory remains unchanged, but each school now needs to
know about its competitor(s), as well as the domain knowledge of what specialisms it could
potentially adopt. Note that the children are much less sophisticated than schools: they do not
reason about their competitors. Schools, however, need to take account of their competitors’
strategies and specialisms.

The rules

The ruleset added to the basic rules outlined in the previous section are summarised
below (continuing the previous numbering to give each rule a unique number, used in the
experiments). The rules’ source code can be found in Appendix C, sections 11.2 and 11.4.

3. Co-evolutionary child rules
a. “Increase preference for class blind schools due to polarisation”

Since the schools the child is considering are severely polarised by social
class (the leading school must have a middle-class intake of 170% or more of
the population average), the child is told to inflate its natural preference for
class blind schools since the situation is more extreme than usual.

b. “Decrease preference for class blind schools due to typical distribution”

The differentiation between schools is not very significant — each school has
a middle-class intake that is within 15% of the population average — so the
child is asked to lower its natural preference for class blind schools, since
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even class sensitive schools are currently well-balanced. This rule is the
complement to the previous one.

“Remove class blind factor if all other schools are class blind”
“Remove class blind factor if no schools are class blind”

These two rules tell the child to remove its class blind preference factor from
consideration, since it would make no difference: all schools would be
equally preferred according to this factor. The weighting previously given to
this factor can now be redistributed among the other factors, giving more
significance to the differences between the schools.

“Remove specialism factor if all schools have the same specialism”

This rule is in the same spirit as the two previous ones: if there is no
difference between schools’ specialisms, the child should not take its interest
levels into account when evaluating the schools. This could also occur if the
schools had no specialisms.

4. Co-evolutionary school rules

a.

“Adopt class blind niche”

If the school is not doing very well in the league tables (10% or more below
the population average), and its successful competitors are mostly using class
sensitive strategies, it should switch to a class blind strategy to adopt a niche
market. Children may overlook its poor league table rating in light of its
inclusive admissions policy.

“Popular enough to become class sensitive”

This is the converse of the previous rule — if a class blind school is doing well
in the league tables (10% or more above the population average), it should
gamble that children’s class blind preferences are not extremely high, and
switch to a class sensitive strategy to allow it to climb even higher.

“Everyone else is class blind and we are all doing roughly the same”

This rule was added to break schools out of the stable state in which all
schools are class blind, and no leader can emerge since parental preferences
are too low. One school takes the risk of becoming class sensitive so it can
concentrate on accepting as many middle-class applicants as possible. This
rule could backfire if the children’s preference for class blind schools is too
high, but it also opens up the opportunity for the school to excel where it
could otherwise only have remained average.

“Change specialism to gain edge over leading school”

If the school has a competitor who is rated higher in the league tables, and
shares the same specialism, it should switch to a different specialism in the
hope of attracting a niche market for that specialist subject instead.
Otherwise, any children with a high interest in the subject would apply to the
higher-rated school.

“Change specialism to that of lesser school to take away its edge”

This is again the converse of the previous rule; a ‘sabotage’ strategy. If the
school has an unsuccessful competitor with a different specialism, it should
switch to that specialism as well in order to destroy the school’s specialist
niche. All children who would previously have favoured that school now
apply to this school instead since it is higher-rated. The school can take the
risk of losing its own specialist niche market since it already caters to
performance-oriented children anyway.
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3.3 Implementation

3.3.1 Parameters

The following parameters are present in the final model:

1. Fundamental parameters

a.
b.

C.

NumSteps — how many years the simulation should run for.
NumSchools — the total number of schools used in the simulation.

NumChildren — the total number of children applying for school places every
year. The number of school places will be determined from this number,
giving an equal number of places to each school. If the number of children
does not divide evenly by the number of schools, the number of places in
each school is rounded up, so a school could be left with up to numSchools -
1 unfilled places every year.

MiddleClassPreference — the preference coefficient given by middle-class
children to high-performing schools. This is equivalent to ¢ in Room and
Britton’s model.

WorkingClassPreference — the preference coefficient given by working-class
children to high-performing schools. This is equivalent to b in Room and
Britton’s model.

SchoolPreferenceForMiddleClass — how much schools prefer middle-class
children. A preference of 1.0 is equivalent to a class-blind strategy, while the
maximum integer value (shown in the screenshot) is equivalent to a fully
class-sensitive policy.

2. Basic extensions

a.

Initial TwoSchoollnequity — the initial league table inequity two schools begin
with at the start of the simulation. This only takes effect if only two schools
are involved.

NumStochasticShocks — how many stochastic shocks should be injected.
They will occur in a random year, and hit random school(s) within that year.

MinShock — the minimum value stochastic shocks can take.

MaxShock — the maximum value stochastic shocks can take. Like 2c), only
valid if NumStochasticShocks > 0.

3. Co-evolutionary behaviour

a.

NumSchoolsClassBlind — the number of schools out of NumSchools that use
class blind allocation strategies. For these schools,
SchoolPreferenceForMiddleClass will not be used. This provides a crude
mechanism for initialising schools with different strategies.

ClassBlindPreferenceMean — the mean used in the normal distribution from
which a child’s preference for class blind schools is picked. This is only valid
if co-evolutionary behaviour is activated.

ClassBlindPreferenceStdDeviation — the standard deviation used for the same
purpose as 3b).

LeagueTableWeightingMean — the mean used in the normal distribution used
to generate the weighting given by a child to schools’ league table positions.
The remaining weighting from 1.0 is divided equally between the other
factors.
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e. LeagueTableWeightingStdDeviation — the standard deviation used for the
same purpose as 3d).

f.  NumSpecialisms — the distinct number of specialisms between which schools
can choose.

Appendix B, section 10.1 gives an example of a batch parameter file, and instructions for
running the simulation.

3.3.2 Replicability of experiments

Replicability is a vital attribute of any experiment. The results of an experiment cannot be
trusted unless they can be replicated under the same conditions. For a computer
simulation, this means that any stochastic elements must be deterministic. Repast allows
this to be accomplished through its encapsulation of various functions from the Colt*'
pseudo-random number library. A pseudo-random number generator will always generate
the same sequence of ‘random’ numbers if passed the same ‘random seed’ for initial
configuration.

In addition to the custom parameters detailed above, Repast automatically makes the
RandomSeed parameter available to the user. This should be controlled carefully in
experiments.

Replicability is violated if any randomness that does not depend on the random seed is
introduced, such as use of standard Java’s java.util.Random class. That is easy to avoid,
but randomness introduced by an unordered data structure, like a hash table, whose
contents are iterated through sequentially, is harder to detect. Such an ordering will not
necessarily stay constant from one run to the next. Strangely, the Repast libraries
themselves make use of this coding practice on occasion, and so those particular library
classes could not be used. For this model, only uchicago.src.sim.network.Uniform-
Reinforcement had to be replaced by a custom class, DeterministicProbabilityRule.
This did have the advantage that the project code was simplified, since only the basic
functionality of UniformReinforcement was needed, and so ‘dummy’ arguments to the
method calls could be removed.

The fact that Repast library code cannot be relied upon to act deterministically, despite
the developers’ obvious recognition of the need for repeatable results (evidenced by the
provision of the RandomSeed parameter, and remarks in their tutorials™), is
disappointing. It appears to break the concept of encapsulation that Repast library classes
cannot safely be used without first reading the source code to check for violations of
determinism.

3.3.3 Ordering within the rule body

Another problem encountered was that the ordering of multiple actions within a rule body
(or ‘consequence’) was very sensitive. One might naively assume that in a declarative
environment like a production rule system this would not be the case, but the problem lies
in the fact that one rule firing may trigger another — and this can occur before the original
rule has finished executing. So if a rule body contains two actions, each of which
modifies a property of an object, another rule may fire as soon as the first property was
changed, even though the second property modification would have suppressed it again.
The problem with this is that the side effects of an action are not always immediately

2! «a set of Open Source Libraries for High Performance Scientific and Technical Computing in Java” — available from

http://dsd.Ibl.gov/~hoschek/colt/index.html (accessed 11 March 2007)
2 The definitive random numbers tutorial for Repast is available at http://repast.sourceforge.net/how-to/random.html
(accessed 23 April 2007)
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apparent, especially when one of a cohesive group is considered in isolation. A
synchronisation mechanism such as that used in database transactions would have been of
help here. Fortunately, while this was an issue during evolutionary development,
refactoring simplified the final version of the simulation so that it was no longer a
problem. Nonetheless, future extensions of the simulation could complicate the design to
a point where it became an issue again.

It should be noted that this would not be an issue if the property change listener design
pattern was not used to notify Drools of changes to agents’ properties (see section 3.2.5).
If this were replaced by a Drools call to modify (agent) at the end of each rule’s body,
the ordering within the rule body would no longer matter. However, additional calls to
modify would need to be scattered throughout the Java code, which we wished to avoid.

3.3.4 Memory leaks

Running many simulations back-to-back in batch mode, sometimes for days on end,
meant that even a small memory leak, which might ordinarily go undetected, was
catastrophic. A large portion of the debugging effort was therefore spent on this type of
bug, despite Java’s provision of garbage-collection (these bugs were typically due to
static references, which cannot be garbage-collected). One in particular was noteworthy;
it appeared when the Java prototype was converted to use Drools. Drools supports the use
of a PropertyChangeListener helper class, which informs the working memory when
any Java bean-style property thought to be of potential interest has changed (see section
3.2.,5). This is a common design pattern, and so an implementation of
PropertyChangeListener 18 provided in the standard Java library code
(java.peans.PropertyChangeSupport). This class was found to not be garbage-
collectable. Fortunately, an open source alternative was available™ since the problem had
been encountered by others before. However, the trade-off for obtaining a memory-safe
class is that it is no longer serializable. This issue would need to be addressed if the
model were to be developed into distributed software.

3.3.5 Performance

The performance of Drools programs can vary widely depending on whether the rules are
written with efficiency concerns in mind (Proctor et al., 2006, section 7). Caching the
compiled rule packages removes much of the initialisation overhead of using one working
memory per agent. However, it was the performance of the agents during the simulation
run that proved a serious issue for this project. While the Java model took 1 minute and
24 seconds to run a basic two-school scenario for 200 years™, the Drools model took 38
minutes, or 53 minutes if all co-evolutionary behaviour was enabled. The use of Drools
clearly adds huge overheads to the simulation: a working memory needs to be set up for
each of 402 agents, each of which maintains references to many of the other agents and
objects, and handles its own sophisticated rule-firing mechanism. The co-evolutionary
behaviour causes an additional drop in performance because its rules have greater
complexity than the standard ones. Drools cannot cache some of these more sophisticated
conditions; this has a big impact on efficiency.

The class blind niche adoption rule is the worst culprit: it includes a Drools function call
in the rule’s condition, for checking whether ‘most’ of the school’s competitors are class
sensitive. The woolly concept of ‘most’ is not one that can be expressed using Drools

2 Under IBM’s Common Public License; available from Simmons(2004).

? These three tests were each run on alis.cs.bath.ac.uk, a Linux machine with four 2.66GHz CPUs and approximately
1.5GB of RAM. Approximately 34% of alis’ memory was used in the most demanding test, and one of the CPUs was used
at around 99% capacity throughout, to the best of the author’s knowledge. A distributed program would have been able to
take advantage of alis’ multiple CPUs, which would have led to a large performance improvement.
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primitives, and so a Drools function must be used to enable the condition to be defined
through arbitrary Java code. Naturally, the result of this function call cannot be cached by
Drools, since it has no way of knowing what data is referenced, and therefore when the
return value might change. It might, however, be possible to express a ‘most’ relationship
using the new Drools conditional element ‘accumulate’, which can be used for set
operations (JBoss, 2007).

The other major factor in the simulation’s poor performance is that the addition of co-
evolutionary behaviour required schools’ working memories to hold references to the
school’s competitors, as well as to the school itself. To identify the school agent for whom
the working memory is acting, a global variable ‘myID’ is used, which is matched to the
schools’ ID property. Use of ‘myID’ would require a check like this in every rule:

school : School( placesLeft > 0, ID == myID).

Unfortunately, Drools does not currently support the use of global variables in this
manner. There is no apparent technical reason why this cannot be done. The rule engine
already assumes that global variables remain constant throughout execution, so it cannot
be a question of how Drools could tell that the variable had been modified; it seems that it
has simply not been implemented yet. Instead, the check must be wrapped in a call to
eval:

school : School( placesLeft > 0, ID == myID)
eval (school.getID() == myID).

Drools cannot cache anything inside an eval statement, so this places a huge run-time
overhead on the rule engine.

This burden was propagated to the basic school rules, which, being sometimes used by
co-evolutionary schools, needed to be able to cope with several different schools being
present in working memory. Fortunately, the check could be bypassed in many cases:
namely, where the school was considering a child’s application. The application message
is only sent to the school it is being made to, which it references directly in a property, so
arule containing e.g.

school : School( placesLeft > 0)
Application (appRound : applicationRound, schoolInvolved == school)

does not require an additional check against myID, since the only school in working
memory matching the constraint of being referenced by the application will be the school
which the rules are operating on.

The negative impact of rule conditions that cannot be cached can be lessened by placing
them last in the list of rule conditions; then they will not be evaluated unless all other
conditions match. More generally, rule conditions should always be ordered so that the
condition least likely to match is listed first; this will save unnecessary evaluation of the
other conditions whenever it does not match. When the rules were refactored in order to
improve performance, significant gains were found here.

The Drools manual (Proctor et al., 2006, section 7) suggests that disabling the indexing
done automatically can help performance in some cases, although the savings are
generally seen in memory usage rather than in speed. However, typically indexing should
be left enabled, as it is of course designed to improve performance in most systems. Left-
and right-indexing of node matches can be enabled and disabled independently. We found
that disabling left-indexing brought no performance gain; and unexpectedly, disabling
right-indexing caused the system to no longer function correctly! The less favoured
school was not filling all its places, leaving some children unallocated; this indicates that
its application acceptance rule was not firing in the second round of applications. This
could mean that the rules inadvertently rely on some aspect of right-indexing that they
should not, strictly speaking. To determine whether this was the case would require an in-
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depth investigation of Drools’ indexing mechanism, but this discovery was only made at
the end of the project. However, the Drools development team does not believe this is
possible®. In any case, the effect of disabling indexing various enormously from rule set
to rule set, as it is only a ‘tweak’ for unusual rule combinations, so it would be of little use
in a project where the rule set itself is an experimental parameter, and keeps changing.

Were this project to be continued on a larger scale, the simulation’s poor performance
would need to be addressed more seriously. The forthcoming release of Drools does claim
that it is “much faster than before, and uses less memory”; however, it is currently
“unstable” and was therefore not tested (JBoss, 2007).

3.3.6 Tracing and logging

Any non-trivial simulation will soon become so complex that a detailed analysis of its
output must examine exactly which behaviours or rules were fired when; to guess using
intuition is insufficient, because it is easy to overlook an interaction between rules. The
next version of Drools will offer debugging facilities for examining working memory and
the activation stack directly; this would be useful, but it is not sufficient. Since the
experiments take so long to run, each should have an associated log of which key rules
were used, and at what time.

Drools offers an ‘audit’ facility that produces a log of which rules were fired; it monitors
one working memory at a time. The volume of data this produces is immense, although
filters can be set up; what is perhaps more problematic is that a log is created for each
working memory in isolation, whereas we are also interested in which agent acts first, and
how their actions affect each other. For example, if one school changes its strategy, a
competitor may also change its strategy, in response. The output is also not especially
human-readable (a small selection is shown in Appendix B, section 10.3).

Instead, we used our own basic logger that writes both to the console and to one single
file per run. A print statement can be put inside any rule in which the researcher is
interested; like any print statement, it can of course also reference other variables if
desired. This allows the exact order of events to be tracked, and to be separated by
academic year. It was sufficient to understand the underlying behaviour in the
experiments undertaken in this project. This approach was also more efficient than giving
each agent its own logger that has to constantly monitor working memory.

3.3.7 Extendibility

The Java model is not especially extendible, but the Drools model supports evolutionary
development very well: it is generally very straightforward to add new functionality. If
the system is simply to behave in a different way using existing data, it is likely that only
the Drools rules will need to be modified. Since the rules are re-compiled every time the
simulation is run, the rules files can be edited as plain text without even needing to
recompile the Java application, making it suitable even for non-programmers.

Adding new functionality does, of course, require modifications to be made to the Java
model as well. By way of example, here is a description of the steps taken to add a new
attribute to schools that children take into account during school choice: school
specialisms, to be matched against children’s interests.

1. Add a new parameter to the simulation: the number of possible specialisms schools
can adopt. This merely requires adding a variable to the main model class,
SchoolChoiceModel, with Java bean-style getter and setter methods, and adding the

» See the ongoing support discussion at http://www.nabble.com/Disabling-indexing-causes-error-
tf3668001.html#a10254888 (accessed 30 April 2007)
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name of the parameter to the list of parameters in the get InitParams method. Repast
now automatically adds the parameter to its list of configurable values, both in the
user interface and via parameter files.

2. We must now give each school a specialism. We decide that specialisms are a type of
co-evolutionary behaviour, and so we add this to school’s subclass Evolutionary-
School, rather than to school itself. A third alternative would be to create an entirely
new subclass of school, with its own ‘add-on’ rule file that extends the base set of
rules like the co-evolutionary rules do. Since we may later wish to expand upon the
concept of a specialism, we create a Specialism class rather than just using an
integer identifier, which would suffice at present.

EvolutionaryChild is assigned an interest level in each specialism, according to a
normal distribution centred on decreasing values for each specialism in the list. To
increase heterogeneity among the agents, we must randomise the list of specialisms
before assigning preference values. Since interest levels are assumed to be different
for each child, we reset them every year in the child’s prestep method (remembering
that the chi1d objects are reused every year for efficiency, but represent a new child
each time).

3. Give EvolutionaryChild the ability to consider a school’s specialism, by creating a
new subclass of schoolFactor, SpecialismFactor, with a simple decision
procedure of querying the child for its interest level in a given specialism. This new
factor is now added to the weighted list of factors in EvolutionaryChild’s
setupSchoolChoice-Factors, It seems that the league table performance is probably
still the most important factor of the three, but the exact importance is arguable, so
the parameters for its normal distribution (mean and standard deviation) are added as
simulation parameters as in step 1). For now, the remainder of the weighting is
divided equally between a preference for class blind schools, and the school’s
specialism.

4. Optionally, new rules can be added to work with the new data. Here, rules were added
for schools to change specialism under certain circumstances, and for children to
reassign the weighting they gave specialisms if all schools have the same specialism.
In order for Drools to know about data in the model, it must be ‘asserted’ into the
appropriate working memory; agents have the convenience methods assertConstant
and assertvariable for this purpose. assertConstant should be used for efficiency
purposes if the data is immutable or any change is irrelevant; if assertvariable is to
be used, the data class must support property listeners as described in section 3.2.5.

3.4 Testing

As for any simulation, the primary form of testing was through validation of experimental
output. The fundamental aspects of the model could be validated against Room and
Britton’s original model, as detailed in chapter 5, but the extensions could not be tested as
thoroughly, having only the author’s predictions and common-sense reasoning to be
compared against. All features of the model were subject to a sensitivity
analysis/parameter sweep as discussed in chapter 4, in the hope of uncovering anomalous
behaviour, but due to the vast parameter space, only a small subset of possible parameter
combinations could be tested. The model can therefore certainly not be said to be
‘correct’; only that it conforms to those tests that were chosen. However, any non-trivial
simulation suffers from this criticism to an extent.

Since the model was constantly evolving during the project, regression tests were used
throughout to verify that the addition of a feature had not compromised previously
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working functionality. Due to the nature of the model, which contains many stochastic
components, these tests could not be automated by test harnesses such as JUnit which
check against expected results, such as might be used in conventional software
development. Even a minor change to the program generally caused the output to change,
even using the same random seed, because the pseudo-random numbers were used
slightly differently in the two versions. The overall pattern of the output therefore had to
be manually checked, which limited how often such tests could be performed, especially
given the system’s long running times. The most comprehensive set of tests of this kind
were run when the system was converted from the initial Java prototype to the Drools
version, as detailed in section 9.3. These were re-run many times throughout the
development of the Drools model, and then detailed in this report for the final version of
the program. The fact that the definitive set of regression tests could only be run once all
development had finished, yet the program was designed to progress incrementally, meant
that the parameter space could not be covered as thoroughly as it should. Instead, the
most representative tests were chosen.
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4 Design of Experiments

4.1 Experimental variables

Independent variables

For the initial prototype, the only direct parameters (defined in section 3.2) thought to be
significant to the experimental results were:

1. FractionMiddleClassPopulation;
2. MiddleClassPreference;

3. WorkingClassPreference;

4. SchoolStrategy

For the full model, the following additional parameters (defined in section 3.3.1) were
viewed as significant:

ClassBlindPreferenceMean
ClassBlindPreferenceStdDeviation

1. SchoolPreferenceForMiddleClass — this replaces the SchoolStrategy parameter
2. NumSchools

3. InitialTwoSchoollnequity

4. NumStochasticShocks

5. MinShock and MaxShock

6. NumSchoolsClassBlind

7.

8.

9

. LeagueTableWeightingMean
10. LeagueTableWeightingStdDeviation
11. NumSpecialisms

Program behaviour — specifically, the presence or absence of Drools rules — presented
another kind of parameter that could be manipulated.

Dependent variables
In the class blind case, the dependent variables were:

1. Whether schools take on stable, differentiated positions with regard to the
fraction of middle-class intake;

2. If so, how soon this occurs; and
3. How large the inequity is (z* in Room and Britton’s paper).
In the class sensitive case, the dependent variables were:

1. Whether the schools take on completely polarised roles where the leading school
accepts as many middle-class children as exist and it has places for, and the
‘second-rate’ school receives only those middle-class children for whom there is
no space in the leading school;

2. If so, how soon this occurs.

However, in each experiment other aspects of the output could take on significance, such
as patterns observed in some cases but not others. This type of qualitative analysis could
not be predicted in advance, especially for a model of a complex system.
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Confounding variables

The choice of random seed introduces ‘noise’, so several runs of an experiment should be
run in order to gain confidence that the results obtained are not dependent on the
particular sequence of random numbers used. Comparison of these runs involved looking
at overall patterns and trends rather than local ‘random noise’ that would be impossible to
replicate with a different random seed. An achievable number of repeat runs in a project
of this scale was set at 100, although of course more repeat runs would increase the
reliability of the results. It was initially set at 10 with the intention of repeating most
experiments 10 times, but this was found to be unworkable, both due to the large number
of experiments with long running times, and the large variability that was often found
within only 10 runs. Instead, it seemed preferable to choose some representative runs and
repeat them 100 times to ascertain more accurately the variability present for each distinct
type of experiment. The same random seed, 1171139146239, was used in every other
experiment unless stated otherwise.

The number of children could act as a confounding variable if there are too few agents to
form a representative sample. Similarly, the number of ‘steps’ or years the simulation
runs for could conceal interesting or anomalous behaviour if set too low. These issues are
addressed in the next section.

There was also a risk of even minor program changes acting as a confounding variable.
This is because when adding, removing, or even just reordering uses of the random
number generator, different results should be expected. The results would not be expected
to differ to any degree greater than that of using a different random seed, of course.
Nevertheless, it was important to be aware of this source of extraneous randomness, and
to eliminate it where possible by keeping the program constant. Since the project
progressed in an evolutionary manner, with experiments being run in parallel with
development throughout, it would have taken too long to repeat every single experiment
right at the end of development to ensure they all used the same program. A workable
compromise was to run all experiments up to 6.1 (inclusive) against the final version of
the Java model, and all results dependent on the Drools extensions against the final
version of the Drools model, allowing the first set of experiments to run while
development progressed on later extensions. A thorough validation of the Drools model
against the Java model was also performed in experiment 6.2, to give an indication of the
level of agreement between the two sets of experiments.

4.2 Sensitivity analysis

The first set of experiments to be conducted should be a form of sensitivity analysis, to
give confidence in the model: in other words, to confirm that it is not unreasonably
affected by minor alterations in parameters. The caveat that it is modelling a complex
system, so entirely predictable results would also be a cause for concern, should however
be borne in mind.

It is unfeasible to investigate the full parameter space of any nontrivial model. At least the
digital nature of the simulation means that we cannot consider the infinite domain of real
numbers (only those that can be represented by the computer); but even so, an intractable
number of different combinations would result if every possible parameter value were
combined with every other.

Instead, the experimenter should rank the parameters in order of expected significance,
and initially undertake a relatively comprehensive investigation of the most important
parameter’s space. Other parameters should be set to values felt to be representative or
‘sensible’ based both on intuition, the existing analytical study of Room and Britton’s
model, and a little informal experimentation with our model. This should reveal
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‘sensitive’ areas where that particular parameter has a significant effect on the simulation.
It could be, for example, that a parameter has the same impact for all values >= 10. This
would allow us to prune the parameter space search tree of all branches on which that
particular parameter is greater than 10, leaving us with a representative test where it is
equal to 10.

Next, the parameter assessed as being second in importance should be varied alongside
the first parameter, keeping the first parameter within the ‘sensitive’ set of values
identified for it previously. Next the third parameter will be varied alongside the first and
second, and so forth.

This approach has drawbacks: the ranking of parameters is subjective and prone to
expectation bias. More significantly, our assumption that parameters producing the same
experimental result can be compressed into a single parameter, representative of that
result, ignores the fact that in a complex system, unexpected interactions may occur
between parameters. However, time constraints prevent a more thorough method being
used, such as the automated parameter search techniques described in section 2.6.

The question of how fine-grained the parameter increments should be remains. A simple
linear increase by a small, constant value would be one option; or alternatively, a
logarithmic scale could be used. Logarithmic variations suit two types of parameter
especially well:

1. A parameter whose domain starts at a constant value (say 0) and increases into
infinity, since the larger the parameter becomes, the less variation between intervals
one would expect;

2. A parameter that is defined by a strict upper and lower limit (say 0 and 1), but has a
particular value of interest, around which interesting results are expected to cluster.

Those types of parameter appear in this model among the significant set: parental
preference (of either class) for middle-class schools is of type 1, and the fraction of
middle-class children in the population is of type 2, with the most polarised behaviour
expected to take place at 0.5 according to the analysis of Room and Britton’s model.
Therefore, an efficient set of values for analysing this type 2 parameter was the series

0.18 0.34 0.42 0.46 0.48 0.49 0.5 0.51 0.52 0.54 0.58 0.66 0.82
that centres logarithmically around 0.5, the most interesting value.

Alongside SchoolStrategy, which is a simple binary value in the initial prototype, those
three parameters form the set of significant parameters in the model. In the more
advanced model, SchoolStrategy was converted into a type 1 parameter,
SchoolPreferenceForMiddleClass, which was expected to produce similar behaviour to
the parental preferences, so logarithmic parameter adjustment seemed appropriate in all
cases.

The SchoolStrategy parameter alters the significance ranking of the remaining
parameters, so the two cases ‘class blind” and ‘class sensitive’ were considered entirely
separately. The ranking of the remaining three parameters felt to be most appropriate was
as follows:

1. In the class blind case:
1. Middle-class parental preference for schools
e Set working-class preference = /2 middle-class preference
e Set fraction middle-class population = 0.5
2. Working-class parental preference for schools

e Set fraction middle-class population = 0.5
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3. Fraction middle-class population
1. In the class sensitive case:
1. Middle-class parental preference for schools
e Set working-class preference = 42 middle-class preference
e Set fraction middle-class population = 0.5

2. Working-class parental preference for schools (predicted by Room and
Britton’s model to be irrelevant in this case)

3. Fraction middle-class population

Even though the fraction of the population that was middle-class was held to be more
important than the working-class parental preference, it was considered preferable to
eliminate the need to consider the working-class preference parameter as early on as
possible, which is why it was investigated earlier. In retrospect, this was probably a
mistake, and the order of the last two parameters should have been reversed. Although
informal tests (as well as common sense reasoning) had indicated that the working-class
parameter also had no impact on unusual values of the middle-class fraction, this was not
investigated formally as it should have been.

The greater the number of children used, the more accurate the experimental outcome; or
rather, the closer it would be expected to lie to the results of the mathematical model,
since statistical anomalies would be averaged out in a larger dataset. However, large
numbers of children would require more computing power, and not be as realistic. In fact,
statistical anomalies do occur in real life; therein lies some of the interest of empirical
experimentation. It seemed from discussions and experimentation that 200 children per
school, per year was a reasonable number. An experiment investigated the effect of
varying this number.

The number of steps required varied from experiment to experiment — in the class blind
case, 500 steps were initially chosen to ensure that no unexpected behaviour emerging
later on in the simulation was being overlooked. However, the rapid emergence of the
final pattern, and its obvious stability, soon led to this being reduced to 200 steps; even
this seemed ‘generous’. In the class sensitive case, the most appropriate number of steps
was less clear, since in the most borderline of cases, we might wait indefinitely for
polarisation to occur. The somewhat arbitrary cut-off point of 1500 years was chosen,
since most activity of interest seemed to occur within 1500 years even in the borderline
cases. A few experiments required this number to be increased; this was judged on a case-
by-case basis after initially using 1500 years. Of course, no social policy would even
contemplate the adoption of such a long-term view, but we nevertheless investigated the
model to this depth to enable us to better understand its behaviour.
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5 Experimental Results: Replicating the original model

The initial Java-based prototype must first be shown to replicate Room and Britton’s
findings, as a basic form of validation. This was accomplished, although section 5.1.1
details a discrepancy that we argue necessitates an adjustment to Room and Britton’s
model. All of the experiments involve only two schools, as in the original model.

Throughout this chapter and the next, “middle-class preference” is used to refer to the
preference of middle-class families for schools rated highly in the league tables (a in
Room and Britton’s model), and “working-class preference” equivalently (b).

5.1 Class blind case

5.1.1 Sweep of middle-class — working-class preferences for successful schools

As explained in section 4.2, middle-class families’ preference for high-performing
schools is taken to be the most significant parameter. Experimentation showed that
logarithmically increasing values of 0.01, 0.02, 0.04, 0.08, 0.16, 0.32 and 0.64 all
produced essentially the same effect, being too low to produce any significant
differentiation. Values from 1.28 onwards produced increasingly greater differentiation.
Therefore, the middle-class preferences chosen for this experiment were 0.64, 1.28, 2.56,
5.12, 10.24, and 20.48. Each was paired against the working-class preferences 0.01, 0.02,
0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, and 20.48.

Room and Britton assume that the working-class preference is always less than the
middle-class preference, so pairings that do not satisfy this constraint cannot be validated
against their model (they are also not realistic, as Room and Britton argue, but
nevertheless interesting to consider briefly).

As was also discussed in section 4.2, the fraction of middle-class children in the
population was kept constant at 0.5; each school was given 200 places; and the simulation
was run for 500 years. The experiment produced three kinds of result:

a) If the preference values were too low, or identical, no differentiation occurred:

School 0 School 1

1
0.9
0.8
0.7
0.6
0.5 X0k
0.4
0.3
0.2
0.1

0

Fraction middle class intake

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time

Figure 5.1 — Class blind schools with middle-class preference 0.64, working-class preference
0.01. These preferences are too weak to produce differentiation
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b) If the middle-class preference was suitably high, and the difference between it and the
working-class preference large enough, the two schools divided into a leading and
‘second-rate’ role:

Fraction middle class intake

‘—School 0 —— School 1 ‘

0.8
0.6 <
0.4

0.2

0 50 100 150 200 250 300 350 400 450 500

Time

Figure 5.2 - Middle-class preference 5.12 and working-class preference 0.01 for middle-class
schools produces a marked differentiation between the schools’ middle-class intake

¢) In the speculative case where working-class preference exceeded middle-class
preference, an odd pattern emerged:

Fraction middle class intake

—— School 0 —— School 1
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Figure 5.3 - Middle-class preference of 2.56 with a much larger working-class preference of
20.48, causing continual switching of school league table positions

The effect in c) is due to any slight increase in either school’s middle-class intake making
it vastly more attractive to working-class families, but only mildly more attractive to
middle-class families. This school therefore experiences a boom in working-class
applications; this however brings its middle-class intake down again, since any middle-
class family choosing this school will be competing against an unusually large pool of
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applicants. The rejected middle-class applicants therefore re-apply to the other school,
joining the ones who already chose the ‘second-rate’ school in the first round. The
schools therefore switch roles continually. The small lag between switching roles is
because league table ratings are an average of the middle-class intake over the past four
years, so differences in the school’s composition take a little while to have a strong effect.
This effect was observed in all cases where the working-class preference exceeded the
middle-class preference, provided the working-class preference is high enough to produce
significant (temporary) differentiation. Since this seems logical, we will view this as
further informal evidence that the model is functioning correctly. But this phenomenon
does not seem to warrant further attention, since it lacks realism.

Case b), in which differentiation between schools emerges, can be validated more
thoroughly with regard to Room and Britton’s model. Their Mathematical Annex (Room
and Britton, 2006b) includes a calculation

_20(1-0)a-b)-1
G+ (1-0)b

Equation 5.1 - Predicted inequity z* for class blind schools

sk

b

where, as before, 0 is the fraction of the population that is middle-class (currently fixed at
0.5), a is the middle-class preference for middle-class schools, and b is the equivalent
working-class preference. This gives the expected ‘gap’ or inequity between two class
blind schools.

If their model does not predict any significant differentiation between schools, the
formula produces a negative value, which has here been truncated to 0, to allow
comparison with simulation results.

z* was calculated for each of the simulation runs in this test, producing the following
prediction:

0.01 | 0.02 | 0.04 | 0.08 | 0.16 | 0.32 | 0.64 | 1.28 512 | 102 | 205

0.64 |0.0000/0.0000]0.0000/0.00000.0000|0.0000/0.0000/0.0000/0.0000|0.00000.0000/0.0000
m1.28 |0.0000]0.0000/0.0000]0.00000.0000/0.0000|0.0000/0.0000]0.0000|0.0000,0.0000|0.0000
2.56 |0.2140/0.2093(0.2000/0.1818 0.1470|0.0833/0.0000|0.0000/0.0000|0.00000.0000/ 0.0000
[5.12 |0.60620.6031/0.5968|0.5846 0.5606|0.5147|0.4305|0.2875|0.0729|0.0000,0.0000| 0.0000
10.24 |0.8029/0.8011]0.7976|0.7906 0.7769/0.7500|0.6985|0.6041]0.4437| 0.2031/0.0000|0.0000

il
il
]
L

Difference in middle class intake between schools

Figure 5.4 - Inequity between class blind schools, as predicted by Room and Britton’s model.
The vertical axis shows the predicted inequity between the schools’ fraction of middle-class
pupils. The bars are grouped by working-class preference running along the horizontal axis (0.01-
20.48), with each shade of bar representing a different middle-class preference (0.64-20.48). The
actual data values are shown below to draw attention to all the 0 values.
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Their model predicts no inequity will occur with middle-class preference 1.28 or lower;
and if the working-class preference is > middle-class preference. Next, the actual
inequities obtained in the simulation runs were measured:

1.00

0.80

001 002 0.04 0.0 0.16 | 0.32 | 0.64 1.28 2.56 | 5.12 10.2- 20.5

0.64 |0.0024/0.0016/0.0027/0.00020.0037|0.0027|0.0045/0.0012/0.0008/0.0007/0.0012/0.0029
£11.28 |0.0053|0.0010|0.0051(0.00360.0012/0.0050|0.0014|0.0007|0.0004({0.0013 0.0009|0.0015
®2.56 |0.1766|0.1925|0.1462(0.12690.1148/0.0155|0.0248|0.0032/0.0016|0.0006 0.0015|0.0019
[E5.12 |0.3296/0.3277/0.3172/0.3174,0.3087|0.2923/0.2600/0.2168| 0.0855|0.0000 0.0009|0.0025
10.24 [0.32780.3309|0.3273|0.3206/0.3113/0.2921|0.2620|0.2177|0.1673/0.1086 0.0022|0.0042

Difference in middle class intake between schools

Figure 5.5 - Actual inequity observed between class blind schools, following the same format
as Figure 5.4.

These were much lower than expected for high middle-class preferences, but relatively
accurate for low values of middle-class preference. None of the cases show a difference
of exactly 0, but that is to be expected, due to the effects of randomness. Figure 5.6 shows
the differences between the expected and actual values:

1.00

H0.64 01.28 @256 @5.12 E10.24 E20.48

0.80 ~

0.60

0.40

Difference between expected and measured z*

0.01 002 0.04 008 016 032 064 128 25 512 1024 2048

-0.20 -

Figure 5.6 — Differences between the predicted values of Figure 5.4 and the actual values of
Figure 5.5. It follows the same format as they do, so that the horizontal axis represents categories
of working-class preference, while each bar shade stands for a different middle-class preference.
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It is clear that our model does not correspond well to the equations’ prediction with high
values of middle-class preference. A second experiment takes a closer look at its
correspondence with lower, less extreme middle-class preferences, ranging from 1.25 to
2.45 (and using only a subset of working-class preferences, 0.01, 0.08, 0.16, 0.32, 0.64
and 1.28):

Middle class preference
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Figure 5.7 — Differences between predicated and simulated school inequity, focusing on
‘normal’, non-extreme middle-class preferences. The model corresponds much more closely to
expectation within this range, with a mean difference magnitude of only 0.0130. (Note that the

scale of this figure is 10x that of Figure 5.6).

Based on this evidence, we can conclude that the model performs according to
expectation with normal values of middle-class preference, but that it does not produce as
high a differentiation with extreme values as Room and Britton’s model predicts. Either
this model is not reliable with very high values of middle-class preference, or Room and
Britton did not intend such high values to be described by their model, perhaps deeming
them unrealistic.

The only restrictions Room and Britton placed on their model’s middle and working-class
preferences a and b are that @ > b and a, b > 0. However, it is suggested here that the only
reason they placed no upper bound on the preferences was perhaps that an arbitrary value
would have to be picked. For high enough preference values, their predictions become
inaccurate, evidenced as follows:

Firstly, according to Room and Britton (2006b), referring to the class blind case, “The
model does not predict that one school will monopolise all of the middle-class students.
Rather, the size of the ultimate inequity is z*” (see Equation 5.1). Yet, for sufficiently
high a and low b, we get z*~1, i.e. complete polarisation. E.g. a=100, »=0.01 gives
z*=0.98. This seems at odds with their intentions.

Secondly, working through the mechanics of school admissions, it seems clear that for the
above example, z*=0.98 cannot be the case. Suppose we have two schools, A and B. A is
in the lead, and because the middle-class preference is extreme, every single middle-class
family selects A. So far all is well. However, even though working-class families have
only a very slight preference for school A, they do not disfavour it either; and so
approximately half of them select school A, choosing between A and B almost arbitrarily.
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Since school A is class blind, it selects among its applicants completely randomly.
Suppose there are 400 children in total; then school A will have exactly 200 middle-class
applicants, and approximately 100 working-class applicants, with fluctuations year-on-
year due to randomness. Then school A will select randomly from its pool of 300
applicants, resulting in a roughly 2/3 middle-class school population. There is no reason,
apart from an unusual sequence of pseudo random numbers, that any school should ever
be more than 2/3 or less than 1/3 middle-class in this scenario. In other words, z* = 1/3
using a typical sequence of random numbers.

The above version of events supports the results obtained in this experiment fully. Thus,
assuming no error has been made, it seems that the simulation has already been of use in
exposing a hidden assumption in Room and Britton’s model: that it only predicts
accurately for non-extreme preferences. However, it seems useless to pick a number x
based on experimentation and say it defines the boundary between extreme and non-
extreme preferences, since x + 0.01 would probably produce little difference to x’s result.

Room and Britton define z*=x;*-x,*, where x;* and x,* describe the middle-class
composition of the schools 1 and 2 respectively. Suppose school 1 has the advantage.
Then, based on the reasoning described above, we can say that

XI* < ﬁ’
20N +(1-0)N
Equation 5.2 — maximal middle-class fraction a class blind school can contain, assuming N is

large enough to average out local random number spikes

where N is the number of places in available in each school, i.e. x;* could never exceed
numMiddleClassApplicants/numTotal Applicants®®. (The higher the difference between
middle and working-class preference, the bigger x;*.) Room and Britton already state that
X2 *=20-x 1 *,

Room and Britton’s z* equation (Equation 5.1) could easily be adapted to accommodate
this extra consideration we have discovered if it were truncated so that

z* = min{z*,2 max(x.*) — 26},
Equation 5.3 - adapted definition for z* that supports extreme preferences as well as ‘normal’
ones

using the ‘max’ function to refer to the maximal value x;* can take on, as newly defined
in Equation 5.2. The right-hand component is simply a reordering of existing equations,
since

z¥=x;*-x*¥=x,%-(20-x,%) =2x,%-20

The use of the min function to truncate z* serves to enforce our observation that x;* has a
. 2
maximal value®’.

From here onwards, the calculation of z* can be assumed to incorporate this truncation.

226N corresponds to the total number of middle class children in this district, 2 * 0.5 * 200 = 200 in this case, which
is the maximum number who could apply; (1-0)N corresponds to half the total number of working class children, which is
the minimum who could apply, assuming typical random numbers and the lowest working class preference possible (i.e. 0).
(1-0)N = 0.5 * 200 = 100 in this case, giving us x;* < 2/3 as desired.

" Continuing the earlier example, we have already calculated x;* < 2/3; now we can calculate that z¥=2%2/3 -
2*0.5=1/3, as desired.
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5.1.2 Sweep of middle-class fraction of the population

Next, the original model’s prediction that the closer the middle-class fraction of the
population is to 0.5, the larger the inequity between schools z* shall be tested.

The case middle-class preference = 2.56, working-class preference = 0.01 was chosen, so
that z* would be relatively high, and not fall away too rapidly as we move away from 0.5.
The results are shown in Appendix A (Figure 9.1). They show an average error of 0.016;
this seems reasonable, given that the values could range from 0 to 0.66. Therefore, having
established that the results are relatively trustworthy, let us look at the actual inequity
measured in the simulation run:

Fraction middle class population

H0.18 (10.34 @ 0.42 [ 0.46 E0.48 E0.49 @ 0.5 @ 0.51 [ 0.52 §0.54 M0.58 @0.66 =0.82

0.22
0.2
0.18
0.16
0.14 -
0.12
0.1
0.08
0.06
0.04
0.02
0

Measured Inequity between the two
schools (z¥)

Figure 5.8 - Inequity between the two schools' fraction of middle-class intake, while varying
the fraction of middle-class population. (Note that the intervals between bars are logarithmic,
centred on 0.5, rather than being evenly spaced.)

Interestingly, Room and Britton’s claim that the inequity will be larger the closer the
fraction middle-class population is to 0.5 seems to hold for values > 0.5, but not for
values < 0.5 (apart from for fraction 0.18, which exhibits no inequity). Upon examining
their predictions in more detail (see Appendix A, Figure 9.2), it seems that their equations
do not support their statement that a value of 0.5 will produce the greatest inequity;
rather, a small peak is predicted around 0.46, which falls off to either side, but far more
steeply in the < 0.5 direction. The simulation’s output seems to therefore be validated by
Room and Britton’s more formal prediction.

The simulation was repeated with an extreme middle-class preference of 20.48 to see
what would happen, and to further test our amendment to their original z* formula. The
working-class preference was kept at 0.01 to increase the ‘extreme conditions’. This
resulted in a very close match of the expected with the actual data, with an average error
of only 0.0017. Without the adjustment to their formula suggested here, the error would
have been 0.58.

5.1.3 Class blind variation found using different random seeds

For all the simulation runs so far, a constant random seed has been used, to enable fair
comparison between them. However, the results have little reliability if it cannot be
demonstrated that using a different random seed would not have produced a substantially
different result. Therefore, three representative cases were run with 100 different random
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seeds each. The simulations were run for 500 years to minimise variation due to initial
conditions.

No differentiation between schools

First, the case where no differentiation between schools appears was examined. Ignoring
random effects, one would expect each school to have a mean middle-class intake of 0.5
exactly, assuming the fraction of middle-class children in the population is 0.5. The more
children and time steps that are used, the closer the mean should approach this value.

100 simulation runs were performed using middle-class preference 0.32 and working-
class preference 0.01; the mean middle-class intake ranged from 0.496 to 0.504, i.e. it
was very closely centered on 0.5 as expected. The standard deviation between the twenty
schools’ mean middle-class intakes was very low at 0.0008, further supporting the
conclusion that the runs all followed the same essential pattern.

Having established that the schools all followed the same broad pattern, we turn towards
local comparisons. As Figure 5.1 illustrated, local spikes can be relatively high, even
though the intake averages out at roughly 0.5 overall.

The minimum middle-class intake during any single year in any of the 200 schools was
0.385. The standard deviation between each school’s overall minimum middle-class
intake was still very low, at 0.0096. Naturally, the statistics for the maximum intake in
any year mirror this.

Mild differentiation between schools

Next, the case where differentiation between schools is found was considered, using
middle-class preference 2.56 and working-class preference 0.08.

The schools can no longer all be compared against each other; instead, each top school
should only be compared to the other nine top schools, and the same for each of the ten
lower-rated schools.

Here, more variation was to be found, with the smallest minimum middle-class intake
during any one year among the ten bottom schools being 0.29, and the highest minimum
intake being 0.35. This resulted in a larger standard deviation than before between these
minima of 0.012, and similarly for the local maxima. While these standard deviations are
higher than in the previous case, the spread between results that they imply is still
acceptably low to allow us to pick any one of these ten runs and call it a ‘representative
sample’, as we have been doing so far. Furthermore, the standard deviation between the
top schools’ mean intakes was also low at 0.011, indicating that they differ only in local
spikes. (The standard deviation for the bottom schools’ intakes was identical, since each
top school is the mirror image of each bottom school — see Figure 3.1.)

Pronounced differentiation between schools

Finally, the ‘extreme’ case having a middle-class preference of 20.48 and a working-class
preference of 0.01 was considered. This resulted in a 0.0099 standard deviation between
the local minima and maxima of each school type (leading or ‘second-rate’), and a
standard deviation of 0.0013 between their respective mean middle-class intakes. This
exceptionally low spread between the results of different runs is probably because the
middle-class preference is so strong that every middle-class child applies to the leading
school, whereas in the less pronounced cases the number of middle-class children
applying year on year fluctuates slightly due to randomness.

5.2 Class sensitive case

We now consider the second of the two cases addressed by Room and Britton, in which
schools unconditionally choose middle-class applicants over working-class applicants.
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5.2.1 Sweep of the middle-class preference for middle-class schools parameter

This preference parameter was clearly identified by Room and Britton as the decisive one
in the class sensitive case. If sufficiently high, complete polarisation is expected to
emerge between the two schools, with one accepting every single middle-class child,
leaving the other with none. Stronger preferences are expected to lead towards this
inequity state sooner.

Room and Britton clearly identify the exact conditions under which this polarisation is
expected to occur, centred on the critical value of a® = 2 (as before, a refers to the
middle-class preference for middle-class schools, and 0 is the fraction of the population
that is middle-class). If aB < !5, they predict that any inequity between schools will reduce
over time (see experiment 6.4.10); if a® > ', it will grow over time, (the larger a is, the
faster the growth).

As discussed in section 4.2, working-class preference will be set to %2 of the middle-class
preference for middle-class schools in these tests. In this experiment, we shall also fix 6 =
0.5 as usual. This means that the critical value cut-off point a6 = 2 occurs at a = 1. We
shall therefore sweep both logarithmically increasing and logarithmically decreasing,
starting at a = 1. This resulted in the sequence a = 0.36, 0.63, 0.84, 0.92, 0.96, 0.98, 0.99,
1,1.01, 1.02, 1.04, 1.08, 1.16, 1.32, 1.64, 2.28, 3.56, 6.12 and 11.24 being tested.

The number of years the simulation was run for needed to be increased from 500 to 1500,
since patterns took much longer to emerge than in the class blind case.

The results reflected the prediction very precisely: polarisation was only encountered
from a = 1 onwards; a = 0.99 was not sufficient. The time taken to reach total polarisation
(and stay there) followed a pattern of exponential decay with increasing middle-class
preference. Each time step was also simulated in Excel according to the formulae of
Room and Britton’s model, and the results mapped against those of our simulation:
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Figure 5.9 - Exponential decay of the number of years taken for complete class polarisation to
be reached, as the middle-class preference for middle-class schools increases. Note that the
predicted data series lacks the first (top) point in the simulated data series, because it predicts no
polarisation for a = 1.

These calculations clarified the fact that ¢ = 1 is in fact not supposed to produce
polarisation, only a@ > 1, so the simulation’s output was not completely accurate after all.
More seriously, in every case the simulation took longer than predicted to reach
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polarisation, although the overall pattern of exponential decay matches (multiplying the
predicted values by e.g. 2.7 produces a much closer correspondence). Examining an
individual simulation run provides some insight into why this difference occurs:

— Simulated

Predicted ‘

Fraction middle class intake

0 50 100 150 200 250 300 350 400 450 500

Time

Figure 5.10 - The path predicted by Room and Britton's model for middle-class preference
1.02, and the path taken during the simulation run.

Stochastic effects appear to produce local instabilities where the trajectory temporarily
proceeds downwards. This was to be expected to some extent, but it was not expected by
the author that would occur to this degree. However, the higher the middle-class
preference, the smaller the difference between the predicted and the simulated paths,
because there is less room for random effects in a 95% likelihood than in a 70%
likelihood.

With a sufficiently low preference (e.g. 0.84), the output resembles that of an
undifferentiated class blind scenario very closely. The borderline case preference of 0.99
exhibits an interesting effect:
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Figure 5.11 - Middle-class preference of 0.99 is not quite sufficient to produce total
polarisation.
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The preference is not quite high enough to produce total polarisation: local peaks can be
observed, but no stable state can be reached. The state predicted by Room and Britton’s
model is a stable 0.5/0.5 equality; this would in theory be equivalent to the class blind
case, but we are seeing more extensive local peaks than we do in the class blind scenario.

If the middle-class preference is increased to the critical value of 1, polarisation occurs,
but it takes an extremely long time, and follows some failed, unstable attempts:

— School 0 —— School 1 ‘

Fraction middle class intake

0 200 400 600 800 1000 1200 1400

Time

Figure 5.12 - Polarisation emerging with the critical value of middle-class preference = 1.

In fact, if the simulation is only run for, say, 500 years, it appears as though polarisation is
impossible, as Room and Britton’s model suggests.

In contrast, a higher preference produces much more rapid polarisation, as predicted (see
Appendix A, Figure 9.3). The highest middle-class preference, 11.24, produced total
polarisation in the fifth year. The minimum number of years it could take is intuitively
three: in the first year, the schools are initialised with no differentiation. Consequently, in
the second year, everyone chooses randomly; in the third year, every single middle-class
family chooses whichever school emerged as a slight leader in the previous year, due to
the Matthew effect described by Room and Britton (2006b). In fact, it could conceivably
take only two years, if coincidentally every middle-class family picked the same school in
the second year, but that would only be an artefact of randomness which would not occur
in real life, which is made less likely the more children are used.

In summary, the test of varying the middle-class parameter in the class sensitive case was
relatively successful; the results all followed the pattern predicted by Room and Britton.
The unpredictable and variable nature of the results is probably inherent to stochastic
simulations, and it could be argued to approach reality more closely than the equations. In
real life, patterns are not mathematically perfect, especially where choices made by such
complex systems as human beings are involved. For example, a family might wish their
child to attend a school close to another relative’s house for childcare arrangements.

5.2.2 Determining variance due to different random seeds

Especially the case @ = 0.99 is intuitively suspicious in the previous experiment, in that
one suspects that the potential for polarisation might yet be there, were it only to run a
little longer.

The experiment was therefore re-run under two conditions:
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a) Giving it more time — yet even after 5000 years, no polarisation occurred. Nor was
either school able to retain a leading role permanently: they switched roles eight times.

b) Using 100 different random seeds, over 500 years. None of these additional runs
exhibited polarisation — however, some approached it more so than others. In some cases,
on average, a clear inequity between the two schools was present (0.28 in the most severe
case); in others, the average middle-class intake fraction was 0.5 for both schools. The
average inequity among the 100 runs was 0.11, with a standard deviation of 0.07.
Examining the individual cases in more detail reveals that the cases with little average
inequity tend to have several smaller ‘pockets’ of inequity instead, with the leading
school varying from pocket to pocket, thereby cancelling out the local inequities.
However, all runs had a similar maximum height of local spikes in the middle-class
intake of a school, ranging from 0.64 to 0.70, indicating that the same local patterns were
followed in each case.

Despite the variability in inequity, all 100 runs produced the same overall result of no
polarisation occurring. While Room and Britton’s model does not predict polarisation in
this case, it does not say that inequity cannot nevertheless occur to a less marked degree;
and indeed this intuitively seems to be logical. It therefore seems that the simulation is
performing to expectation in exhibiting this volatile inequity under these borderline
conditions.

A middle-class preference of 3.56 was also chosen to be rerun 100 times with different
random seeds, to see how sensitive the amount of time taken to achieve polarisation was
to initial conditions. On average, it took 12 steps to reach polarisation, with a standard
deviation of 3. This shows that the variability is still present even in a non-borderline
case. It is, however, much more prevalent near the critical value of 1.0, as is to be
expected. Runs using a middle-class preference of 1.01 were also rerun 100 times; in
seven of the cases, polarisation was not even reached within 1500 years. In the remaining
cases, it was reached on average after 820 years, but with a huge standard deviation of
276 years. Results ranged from 369 to 1449 years. This indicates that for these borderline
cases, there simply is no ‘representative run’.

5.2.3 Verify that working-class parental preference has no significant impact

Room and Britton predict that the working-class preference is irrelevant in determining
the eventual outcome of class sensitive school admissions. This makes intuitive sense
because a middle-class child is essentially guaranteed a place at its first choice school,
unless the school has more middle-class applicants than there are places. The working-
class children simply fill up whatever spaces remain, regardless of their choices.

The difficulty in this test lies in the fact that varying the working-class parental
preference is nevertheless expected to have a basic effect of changing which random
numbers are used for what purpose in the simulation (using the same stream of pseudo-
random numbers), which will inevitably introduce a certain amount of random noise
variation. However, it should still be possible to ascertain whether the overall pattern is
the same, in the same way that runs of the same parameters using different random seeds
were compared in experiment 5.2.2.

The range of interesting values of a (the middle-class preference) was identified
previously as ranging from 1.0 upwards, and so the representative parameters 0.84, 0.99,
1, 1.64 and 11.24 were chosen. Regardless of which working-class parameters they are
paired with, the same pattern as found in experiment 5.2.1 should be found. This ranges
from conditions where no polarisation is expected, over the boundary condition of the
first value of a in which polarisation is tentatively expected, to values of a in which
polarisation is most certainly expected. In each case, the usual logarithmically increasing
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working-class preferences were used, from 0.01 to 10.24 (including cases where it
exceeded the middle-class preference).

As expected, much more variation was found in the borderline cases 0.99 and 1 than in
the others. When a = 0.84, none of the eleven working-class preferences caused
polarisation to emerge, as predicted for a value of a that lies well below the critical value.
In each run, the schools’ average fraction of middle-class intake was clustered around 0.5
with a low standard deviation of 0.0030, showing that little differentiation emerged. From
these statistics alone, one could easily imagine a repeat of the class blind case in which
only very brief, local spikes were seen, but in fact the spikes here could last around 100
years. However, the inequity is averaged out over the 1500 years we examined.

When a = 0.99, again no polarisation was found, as predicted. However, both the inequity
between schools and the variability in trajectories between runs was much more volatile
than in the previous case. In all but two of the eleven runs, a marked inequity was
observed between the two schools on average (although still subject to switches in roles,
as before). The mean inequity was 0.12, very close to the 0.11 observed from 100
different random seeds earlier, although twice the standard deviation was found (perhaps
excused by the significantly smaller sample used). This could give us some cause for
concern that the working-class preference has an effect on the outcome after all, but there
is no discernible relationship between it and the mean inequity (see Appendix A, Figure
9.4).

Therefore, even though somewhat more variability was seen between runs than when
merely varying the random seed, we can still say with confidence that the test passes,
especially since this case covers a borderline test where a lot of variability is expected.

Next, the case a = 1 was investigated. This case had already caused problems earlier
when it exhibited polarisation after an extremely long time, even though none was
predicted, lying as it does precisely on the boundary between polarisation and non-
polarisation. In two of the eleven cases, total polarisation occurred; however, another
showed signs that it could have reached polarisation, given more time, and the same may
hold for the others. One run was particularly interesting:

School 0 School 1

Fraction middle class intake
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Time

Figure 5.13 Interesting run of middle-class preference 1 with working-class preference 0.08,
where it appears there is a tendency towards total polarisation, but this completely subsides again.
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It illustrates nicely that it can appear as though total polarisation is being worked towards,
but in this borderline case, a stable polarisation is not assured until it has been fully
reached.

The next test involved a = 1.64, in which polarisation is definitely predicted to occur. The
dependent variable here is the number of years this takes. This is again represented as a
scatterplot in Figure 9.5, Appendix A. As before, there is no discernible relationship, and
so we can conclude that the working-class preference plays no role in the outcome of the
simulation. However, clearly the variability between runs was still relatively high: the
mean number of years was 40.5, with a standard deviation of 9.6. By way of comparison,
the working-class preference 0.01 case was chosen to be re-run with 11 different random
seeds, producing a mean of 32.4 years with a standard deviation of 11. Taking into
account the small sample size, it seems that the variability obtained from varying the
random seed and that obtained from varying the working-class is approximately the same,
i.e. the working-class preference has no significant impact.

Finally, the extreme case a = 11.24 was run. Being far from the borderline case, very little
variance was exhibited, as expected. In fact, polarisation occurred in the same year, year
5, for every working-class preference used. As one might expect, the trajectory taken still
differed between runs, but only very weakly: studying the first five years only, a low
standard deviation of 0.0049 was found between the mean intake of the leading schools,
based around a mean of 0.691.

In summary, the experiments run indicated that the working-class preference does indeed
have no significant impact on the simulation’s results. However, repeating more of the
experiments, and widening the parameter space investigated, would lend greater
confidence to the finding.

5.2.4 Varying the fraction of the population that is middle-class

For the class sensitive scenario, Room and Britton make no prediction about a specific
value of 0 (the fraction of the population that is middle-class), as they did for the class
blind scenario; rather, their predictions regarding 6 are embodied in the concept of the
‘critical value’ of a® = 2 at which polarisation begins to occur. We previously
investigated varying only a (the middle-class preference) in experiment 5.2.1; we now
vary 0 for certain representative values of a. For 8 = 0.5, these representative values were
chosen as 0.84, 0.99, 1, 1.64 and 11.24 since the critical value was 1; more generally, we
now use 1/(20) — 0.16, 1/(20) — 0.01, 1/(26), 1/(20) + 0.64 and 1/(20) + 10.24 as our
representative values of a.

Having demonstrated that the working-class preference has no significant impact on
results, it was set at 0.01 for simplicity™. Since no special importance is attached to any
particular value of 0, it was varied linearly from 0.1 to 0.9 in increments of 0.1.

* Calculating it at % the middle class preference requires multiple parameter file specifications to be used for a single
experiment, since Repast does not support the description of one parameter in terms of another (unless a custom parameter
file reader were to be written). See section 8.3.6.
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Theta| 1/(2*theta) - 0.16 1/(2*theta) - 0.01 1/(2*theta) 1/(2*theta) + 0.64 | 1/(2*theta) + 10.24

Simulated| Predicted | Simulated| Predicted | Simulated| Predicted | Simulated | Predicted | Simulated| Predicted
0.1 / / / / 1038 / 105 27 19 5
0.2 / / / / 1358 / 77 16 7 4
0.3 / / / / 527 / 92 10 5 4
0.4 / / / / unstable / 30 13 10 4
0.5 / / / / / / 43 9 5 4
0.6 / / / / unstable / 23 7 4 3
0.7 / / / / / / 15 5 3 3
0.8 / / / / unstable / 15 4 3 3
0.9 / / / / unstable / 9 (blips) 3 3 3

Table 5.1 — Years taken for total polarisation to be reached. Rows show values of 6 (middle-
class fraction of population) being varied; the double-columns represent increasing values of
middle-class preference, calculated from 6. The left-hand side of each double-column gives the
simulated number of years, while the right gives the number predicted by Room and Britton’s
model. ‘Unstable’ means that polarisation was approximately reached, perhaps with many little
jittery blips; and that it was then left again. ‘Polarisation’ was defined as four or more successive
years where the leading school has a 100% middle-class intake, since a league table spans four
years in the simulation.

It should first be noted that the prediction based on Room and Britton’s equations never
predicts an unstable state. When initialised with the random choices made by families in
year 1, it either decreases steadily towards a fixpoint of precisely 6 if no polarisation is
predicted, or it increases steadily towards a fixpoint of precisely 20 (or towards 1 if 6 >
0.5, since of course a school cannot contain more than 100% middle-class pupils).

Examining the case of 6 = 0.9, middle-class preference = 1/(26) + 0.64, shown below,
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Figure 5.14 — Polarisation when fraction middle-class = 0.9, middle-class preference = 1/(20) +
0.64 = 1.2. The ‘blips’ mentioned in Table 5.1 are enclosed by rectangles. This is a previously
unseen phenomenon.

it is clear why, even with such a high middle-class preference, having such a large value
of 0 means that the schools are not differentiated enough to prevent the occasional ‘blip’
where the leading school cannot quite achieve a 100% middle-class intake. It is because
even when the school has a full league table history of a 100% middle-class intake, the
other school is nevertheless also an excellent candidate with a 90% middle-class intake.
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Thus, with the given middle-class preference, only a 62% probability can be allocated to
families preferring the leading school. In the mathematical model, this is more than
enough to produce total polarisation — exactly 62% of the 360 middle-class pupils will
apply to the leading school (assuming 400 children in total as usual), which results in 223
middle-class applications; plenty to fill its 200 places. However, in the simulation,
theoretically every single family could happen to fall into the 38% likelihood category
that the other school will be chosen, since their choices are independent of other families’
choices in that year, unlike in the macro model. Of course that is extremely unlikely®’;
what is more probable, and indeed what occurred in the simulation run, was that
occasionally less than 200 middle-class parents would choose the leading school,
resulting in the so-called ‘blips’. If only 199 applications were made to the leading school
in a given year, then the 62% probability would have been played out as 55%, which is
not unreasonable as an occasional occurrence. Experiment 5.3.1 shows how using a larger
number of children results in less such random noise.

It is unsurprising that the greatest discrepancies between the simulated and the predicted
results occurred during the borderline case. Unfortunately, apart from the random
fluctuations already explained, the simulations are also subject to floating point
inaccuracies. Room and Britton’s predictions themselves show how sensitive the outcome
is to the exact value used; for 6 = 0.9, 1/(26) = 5/9 which does not predict any
polarisation since leads directly to a fixpoint, but if this is rounded to a finite
approximation, polarisation is mistakenly predicted (the more accurate the approximation,
the slower the move towards polarisation).

The remaining cases were as expected, given that we have already established that the
simulation takes a proportionally longer time to reach polarisation than the mathematical
model. It can therefore be concluded that the simulation operates as well with varying
values of 0 as it does for 6 = 0.5.

5.3 Confounding variables

5.3.1 How many children are used

Finally, an experiment was undertaken to confirm that the number of children used in the
simulation was not too low to act as a representative sample, and therefore acting as a
confounding variable by distorting the results.

An average class blind case of middle-class preference 5.12, working-class preference
1.28 was chosen, since the difference when varying the number of children was most
obvious in this type of case, where a clear inequity, but not total polarisation emerges.

Usually, 200 children per school were used in the experiments. We tested the effect of
using 10, 100, 500, 1000, 2000 and 5000 children per school instead. 10 children were
clearly too few, and no stable state could be achieved. The run using 100 children did
experience differentiation between schools, but this was lower than the other runs’, at
only 0.18 compared to their mean inequity of 0.21. Among the other runs, the variability
among their mean inequities was very low, with a standard deviation of only 0.00092.

Nonetheless, using more children did make a difference:

» The statistical likelihood is 0.38%*, where 1 is absolute certainty and 0 represents an impossibility.
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Figure 5.15 — Two class blind runs are superimposed here; in dotted black, the original 200
school places run, and in red, the same experiment using 5000 places per school. The middle-class
preference is 5.12, and the working-class preference is 1.28.

As seen above, using more children smoothes the schools’ trajectories noticeably. This is
because a larger sample size causes statistical abnormalities to be averaged out to a
greater degree. Room and Britton’s mathematical model predicted a completely static
inequity from one year to the next; the simulation should in theory also attain this result if
an infinite number of children could be used. However, the local spikes caused by using a
low sample size of only 200 children per school is in fact a benefit of simulation, not a
flaw. Real schools also only have a similarly ‘small’ capacity, and consequently the
statistical abnormalities seen in our simulation no doubt also occur in the real world,
which is not as statistically perfect as an equation. Thus, the model approaches the
dynamics of real life trajectories more closely than the mathematical model, which takes
a much more global view.

5.3.2 Using an odd number of children

It was postulated that using an odd number of children could potentially cause problems,
since one school would have an empty place every year (if 401 children are used, each
school is allocated 201 places). However, this was not found to be the case: when schools
were not significantly differentiated, the empty place sometimes lay in one school, and
sometimes in the other; otherwise, the less popular school would always have the lesser
number of applicants. Having 201 middle-class applicants against 200 working-class
applicants did not noticeably affect the results either.
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6 Experimental Results: Extensions

Having validated the basic Java prototype, and found it to correspond acceptably well to
Room and Britton’s model, the prototype was extended using evolutionary development,
to allow various scenarios of interest to be researched. Since these additions cannot be
validated against the original model, they must instead be validated against experimental
predictions where possible, and examined empirically in their low-level agent behaviour
to see if the underlying processes are as expected. However, this reduced level of validity
remains; and for the simulation to be viewed as more reliable, avenues such as
comparisons against real field data should be explored.

Stochastic shocks, using many schools and the introduction of children’s preference for
class blind schools produced useful results, but the school specialisms did not appear to
have a significant effect, on the whole.

6.1 Stochastic shocks

The first extension to be explored was the possibility of a ‘stochastic shock’ being applied
to one or both schools, representing, say, a favourable news report. Questions of interest
were: how strong such an effect would need to be to cause differentiation to emerge
between schools where it would otherwise not appear; and how much differentiation
could be present between schools before the stochastic shock would fail to switch their
roles.

6.1.1 Non-binary school strategies

Class sensitive schools were not considered, because it would be exceptionally rare in
real life to encounter a sufficiently stochastic shock to switch the 100%/0% middle-class
roles of the schools. Instead, scenarios with only partial differentiation between schools
were used. Rather than controlling the degree of inequity through the difference between
the middle- and working-class preferences as previously in the class blind case, this was
achieved through the introduction of a preference schools have for middle-class children.
This replaced the previous binary class blind/class sensitive school strategies. A value of
1 means that the school prefers middle-class children no more than working-class
children, i.e. that it is class blind; a value of x > 1 means it prefers them x times as much.
The maximum value Java allows for an integer (2147483647) was found to replicate the
class sensitive behaviour exactly. Figure 9.6 in Appendix A shows the resultant
exponential increase in inequity with increasing school preference for middle-class
applicants.

6.1.2  Stochastic shocks triggering differentiation

Four cases were investigated to see whether a stochastic shock could trigger
differentiation between schools, or exacerbate it. These were:

a) No intrinsic inequity (school preference for middle-class of 1.08)

b) Minimal, unstable intrinsic inequity (school preference of 1.16)

¢) Minimal but stable intrinsic inequity (school preference of 1.32)

d) Clear intrinsic inequity of around 0.16 (school preference of 1.64)
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Each of these cases was tested with a positive stochastic shock to the bottom school
during a 500-year run, with the values 0.5, 0.4, 0.3, 0.2, 0.1 and 0.05°°. (This is the
temporary ‘bonus’ to the school’s league table rating; its effect decays over time.)
Negative shocks to the leading school (representing e.g. bad press) were not considered in
detail, since they were found to just be the mirror image of a positive shock to the bottom
school.

The results showed that a stochastic shock is not able to produce differentiation where
none is naturally possible: none of the stochastic shocks were able to effect more than an
almost undetectable increase in the affected school’s rating in case a). Even when the
shock was increased to the unrealistic maximum possible value of 1, nothing happened.

In case b), all shocks except 0.05 succeeded in switching the schools’ roles, but only
temporarily; this must be due to the intrinsic instability of the system. In case c), again all
shocks except the smallest succeeded in reversing the schools’ roles, but this time the
resultant state was stable. Case d) is identical except that only shocks > 0.3 are able to
overcome the significant existing inequity. The crucial finding for experiments b, ¢ and d
was that the stochastic shock is at most able to produce a change in the schools’ roles; it
cannot alter the degree of inequity between the schools. The inequity appears to be built
in to the system defined by these preference parameters. One might have imagined that in
a ‘weak differentiation’ case, given a sufficient head start, a school might be able to cling
to the artificial advantage it was given; but this is evidently not the case.

6.1.3 Stochastic shocks switching the roles of schools

The second experiment undertaken on stochastic shocks was to determine the
combinations of shock strength and existing inequity (set by the school preference
parameter) under which the switch of school roles already seen in the previous
experiment takes place. If the shock is too weak, or the inequity is too high, the transition
will not occur.

The following values of stochastic shock were investigated: 0.3, 0.2, 0.1, 0.025, 0.005,
0.001, and 0.0005. Values > 0.3 were not considered of interest since it is hard to imagine
any realistic event having such a profound effect on a school’s reputation.

Each of these stochastic shocks was applied to scenarios with school preferences for
middle-class applicants of 1.0 to 2.6, in increments of 0.05. The upper limit of 2.6 was
decided upon through informal experimentation: no change was observed for higher
values. The experiment was initially performed over 500 years, but having noted that it
makes no difference, subsequent re-runs used 200 years instead.

The results were as expected: higher stochastic shocks were more likely to cause the
schools to switch roles, as was a lower degree of inequity. However, the inequity also had
to be high enough to allow differentiation to emerge between schools, so no effect was
seen for school preferences from 1.0 to 1.10.

The range of school preferences in which a stochastic shock of 0.3 caused the role
reversal was 1.15 to 2.15, with an ‘uncertain zone’ from roughly 2.20 to 2.40, since the
role reversal occurred unexpectedly at 2.25 and again at 2.35. The reason for this can be
seen in the diagram for 2.25:

%% Good fortune meant that our usual random seed used in all the experiments happened to hit only the bottom school,
in the middle of the run — the perfect scenario, but not guaranteed since which school(s) are affected, and when, is random
— so we did not need to compromise comparability between experiments by using a different random seed (see section
8.3.6).
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Figure 6.1 — Stochastic shock of 0.3 applied to school 1 during year 84, when the schools’
preference for middle-class applicants is 2.25.

Unlike in the simulations with lower school preferences (i.e. lower inequity between the
schools), the shock does not cause an instant role reversal: there is a period where it could
go ecither way. At the top end of school preferences, it is therefore impossible to predict
whether this size of shock will cause a role reversal or not.

A less powerful shock of 0.2 has a smaller ‘sensitive zone’ of role reversals when school
preferences range from 1.15 to 1.55, with an ‘uncertain zone’ where the reversal might
occur from 1.6 to 2.15, approximately. However, the upper limit of this zone is difficult to
identify, because unexpectedly, we cannot even predict with certainty whether a local
spike will occur or not. For example, the school preference of 2 aberrantly produces such
a spike (similar to that of Figure 6.1, but with each school returning to its original
position), despite the shock not having any perceptible impact on the run using a
preference of 1.9. The lack of local spikes in those few instances such as 1.9 seemed
suspicious, and so the agents’ behaviour was examined more closely in those cases. This
showed that the numerous cases in which either no spike, or only a minor one occurs, are
in fact due to slight statistical abnormalities. Even though the bottom school should
suddenly have been preferred more than previously, the random choices made by
applicants happened not to turn out that way in the year of the stochastic shock. Since the
stochastic shock’s effect wears off over time, if it does not gain momentum in the year in
which it occurs, it is even less likely to do so in the following year. Such abnormalities
are more likely to occur when the increase in preference is slighter; this is why the
phenomenon was not observed for the larger stochastic shock of 0.3.

The next smallest shock, 0.1, again exhibited similar behaviour, with the school switch
occurring for preferences of 1.15 to 1.25, as well as 1.35. The same explanation as above
applies for the lack of a rigid cut-off point.

The subsequent shock of 0.05 was not able to achieve a role reversal; all it accomplishes
is temporary confusion, as shown below:
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Figure 6.2 — Stochastic shock of 0.05 applied to school 1 in year 84 only causes local
confusion; it cannot switch the schools’ roles permanently. Coincidentally, school 1 later emerges
as the leading school around year 180 anyway, due to the instability of the system.

However, the next two shocks of 0.025 and 0.005 are able to switch the schools’ roles
again after all (although only for a school preference of 1.15), so some additional
experiments were run using even smaller stochastic shocks to establish how large a shock
must be to have an effect. Shocks of 0.000 5, 0.000 05 and 0.000 005 were still able to
effect a role reversal, albeit only a temporary one, due to the unstable nature of the system
when the school preference is so low. However, shocks of 0.000 000 5, 0.000 000 05 and
0.000 000 005 could not achieve a lasting effect, although surprisingly they were still able
to cause a small surge. These small surges were, however, smaller than others, routinely
seen, that are due simply to randomness in this scenario.

In summary, it is possible to identify zones of interest for a given strength of stochastic
shock where, based on schools’ strategies (preferences), they are either immune to its
effect, or in a ‘danger zone’ of being affected by it. Rather than taking a school preference
scenario and seeing what shocks might affect it, we have taken a given shock and seen
what scenarios it can affect, since the school preference is potentially under policy-
makers’ control, but stochastic shocks and their strength are in general not. This would
allow an analysis to take a potential risk such as a high-profile crime at a school, and see
under which school-level policies the stability of the system would remain unaffected.

The analysis could easily be reversed to allow policy-makers to plan their own ‘stochastic
shock’, e.g. a campaign spotlighting the positive qualities of a failing school, to tell them
how powerful an effect they would need to generate in order to upset the balance of the
system. Of course, this would only be of use when coupled with other strategies designed
to reduce the intrinsic inequity of the system, such as those explored in the co-
evolutionary behaviour section (6.4); a simple role reversal would solve nothing.

6.2 Rewriting the model to use decision rules

Once the model had been rewritten to use production rules rather than only ordinary Java
code, it had to be validated against the original Java model to ensure that it was
equivalent. A summary of these tests is given in Appendix A, section 9.3. These tests
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established that the models produce similar enough results to allow us to reasonably
contrast experiments run in one model with those run in the other. Ideally, all of the
preceding experiments should have been re-run in the Drools model and used above
instead, to allow more accurate comparison when looking at the results of the extensions,
but due to time constraints, this was not possible.

All experiments described from this point onwards were run in the Drools model.

6.3 More than two schools

Note that as described in section 3.2.2, the Java model does not use application rounds, so
the random order in which schools consider their applications can affect the results. This
is because later schools will give equal precedence to first-round applicants and those
who were rejected by earlier schools, and therefore just picked this school as their second
choice. This can have a substantial impact on the results, most noticeably in the Java
model’s version of the four-school class sensitive scenario:
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Figure 6.3 — Java model’s version of four class-sensitive schools. It is incorrect because it does
not use application rounds to order application precedence.

This should be contrasted with Figure 6.5, the correct version. Due to this bug, all multi-
school experiments were run in the Drools model.

Room and Britton’s model can be extended to cover any number of schools, as explained
in section 3.2.2. Unfortunately, this alteration of the parental preference equations
invalidates the use of their various predictive equations — Room and Britton restricted
their model to only two schools for the very reason that the equations become
unmanageable with arbitrary numbers of schools.

We must therefore apply commonsense reasoning to validate the results. We first consider
the class sensitive case, with a very high middle-class preference, to make it easier to
make predictions. With three schools, it is obvious what is likely to occur: a three-tiered
system where all the middle-class families first apply to the leading school; those who are
rejected apply to the middle ground school; and those who remain, if any, must go to the
bottom-rated school. Based on this reasoning, we could naively predict the following in
the n school class sensitive case:
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Top school: min{On, 1} =F,
Second-highest school: min{6n — F, 1} =F,,
Third-highest school: min{0n — F; — F,, 1} =F;,

and so on, where F, refers to the middle-class fraction of the intake of the school in
leading position x. However, this is too simplistic: the working-class parental preference,
which had no significant effect in the two-school model, now affects the results as well.
This is because working-class applicants applying in round 1 are given precedence over
middle-class applicants applying in round 2. If some working-class pupils apply to the
second-best school in round 1, there may not be sufficient places left for all the middle-
class applicants who were rejected from the top school in round 1 due to lack of space.
This would only be prevented from occurring in a situation where the top school was
preferred with 100% likelihood by both social classes. This would force a kind of
repeated two-school scenario between the top school with places left and the rest, all
massed together with a 0% likelihood of being chosen by either social class unless the
child was rejected by the top school, when the next ‘top school” would emerge from the
mass.

It also seems possible that the more schools are in play, the greater deviation from these
predictions could be, since there will be less differentiation between schools, not just a
100%/0% polarisation, and therefore the parental preferences will have less of an
influence. This is predicted to be similar to the two-school cases with weak parental
preferences, such as that shown in Figure 5.11.

The multi-school experiments were only run for 200 years, because running 200n agents
in the Drools model takes such a long time (see section 3.3.5). Each school was allocated
200 places as before.

6.3.1 Three class sensitive schools

This experiment proceeded exactly according to our predictions:
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Figure 6.4 — Three schools, class sensitive, with a middle-class and working-class preference
0f20.48, and a 0.5 fraction middle-class population.

Figure 6.4 shows the result of using a working-class preference identical to the middle-
class preference. This scenario is simple enough to correspond to our naive equations
exactly. If instead the working-class preference is set very low, to 0.01, the overall pattern
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remains the same, but the middle school no longer receives an intake of precisely 0.5.
Rather, on average, the intake is 0.49, falling as low as 0.4 in one particular year. This is
because roughly 1/3 of working-class families now apply to the middle school in the first
round (having little preference), which guarantees them a place there, since all middle-
class families apply instead to the leading school in the first round. When slightly more
than 1/3 of working-class parents pick the middle school, due to chance, less than 100
places will remain for the 100 second round middle-class applicants, and so some must
attend the bottom school.

Thus, our prediction that the working-class preference would have an interfering effect
holds in the three-school case.

6.3.2 Four class sensitive schools

If the naive formulae were correct, we would expect to see a pattern of two schools of
100% middle-class, and two schools of 0% middle-class. However, as already
established, this is too simplistic; and it already falls down when we move from three to
four schools.
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Figure 6.5 — Four schools, class sensitive, with a middle-class and working-class preference of
20.48, and a 0.5 fraction middle-class population.

Examining the choices made by agents at run-time explains how this result is
generated:

e Round 1: During a typical year, only around 85% of families will choose school 3,
the top school, as their first choice school, since there are other attractive options.
However, the remaining 15% will all pick school 0, the second best school; it is as
though the other two schools do not exist, like an ordinary two-school scenario. This
still easily allows school 3 a 100% middle-class intake, since there are 400 middle-
class students in total, and 200 places per school. Around 60 parents of each social
class apply instead to school 0, and so it fills circa 120 places.

e Round 2: The only families remaining are now those who were rejected by school 3.
This will be approximately 140 middle-class and 340 working-class families. With
school 3 removed from consideration, a two-school scenario is again played out, this
time between school 0 and school 2, with school 0 favoured by approximately 70% of
applicants. The differentiation is less than that in the first round, because the two
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schools are separated by less. School 0 receives around 98 middle-class applications;
it can therefore fill its remaining 80 places with middle-class applicants, gaining a
70% middle-class intake. School 2 receives around 42 middle-class applications, and
around 102 working-class ones, so it fills 144 places.

e Round 3: The 18 middle-class applicants who were rejected by school 0 in the last
round remain, as well as 238 working-class applicants. We are again in a two-school
scenario between the only remaining schools: school 2, favoured by 100% of
applicants; and school 1, chosen by none. School 2 is able to accept all 18 middle-
class applicants, resulting in a middle-class intake of around 30%.

e Round 4: School 1 receives all children who were rejected from the other three
schools; they are all working-class.

The most interesting thing to note from this walk-through of the agents’ decision process
is that the problem has been reduced to an iterated two-school scenario; this is not readily
apparent from merely looking at Figure 6.5.

Using a working-class preference of 0.01 instead of one equal to the middle-class
preference introduces more randomness into the outcome:
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Figure 6.6 — Four class sensitive schools. Using a working-class preference of 0.01 with a
middle-class preference of 20.48 results in more ‘randomness’ as more working-class families take
up less desirable, yet not totally undesirable places in the first round, leaving some middle-class
families who missed out on the most desirable places only the least desirable options.

6.3.3 Five class sensitive schools

Running a five-school simulation with both parental preferences set to 20.48 as before led
to the same pattern as the three-school scenario, with two schools at 1, two schools at 0,
and one school in the middle at 0.5. The only difference is that every so often, the middle
school would obtain somewhat less than a 0.5 middle-class intake (0.44 in the most
extreme case), and one or both of the two bottom schools would receive the ‘missing’
middle-class applicants.

Delving into the details of agents’ decisions shows that they no longer reduce it to an
iterated two-school scenario. In the first round, around 99% choose one of the two
leading schools, but 1% picks the middle school. In the second round, 82% of those who
were rejected from either of the leading schools will apply instead to the other leading
school (a guaranteed rejection since it has no places left; the agents are not sophisticated
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enough to reason that such a popular school is not a wise second choice). The other 18%
apply instead to the middle school, and are all accepted — both middle- and working-class
applicants, since there are sufficient places left. In the third round, those middle-class
applicants who could not find a place in either of the leading schools all apply to the
middle school, leaving it to fill the remaining places with working-class applicants. In
round four, the remaining working-class applicants choose between either bottom school
arbitrarily.

The anomalous years where the bottom schools receive one or more middle-class pupils
occur when an unusual number of working-class students pick the middle school in the
first or second round, causing it to fill up earlier than usual. All this leaves the middle-
class applicants who could not get into either of the leading schools is one of the bottom
schools. The reason we did not see this phenomenon in the equivalent three-school
scenario (with equal working- and middle-class preferences) is that the leading school is
preferred by every single agent in the first round; there is no room for statistical spikes in
a 0% probability.

Setting the working-class preference very low (0.01) causes the distinction between the
middle school and the bottom two schools to blur to a much greater degree, even
generating an extra level of differentiation where one of the ‘bottom’ schools is ranked
higher than the other. This is due to the middle school’s intake being significantly
‘diluted’ by working-class applicants in the first and second round every year, rather than
just occasionally as above. Figure 9.16 and Figure 9.17 in Appendix A provide a visual
comparison.

6.3.4 Six or more class sensitive schools

Scenarios with six to ten schools are depicted in Appendix A, Figure 9.18 to Figure 9.22.
It is not the case that the ten-school scenario, for example, is the same as two five-school
scenarios combined, but the general pattern remains the same, with a distinction found
between odd and even numbers of schools. Of course, having, say, five or more schools in
a single catchment area is probably generally unrealistic, save in a large metropolis.
Nevertheless, it is interesting to consider the potential interactions.

6.3.5 Three class blind schools

We now consider multiple class blind schools. To make the diagrams easier to read, we
focus on the most acute differentiation, where the middle-class preference is very high
and the working-class preference is very low (20.48 and 0.01 respectively, as before).

The situation here is much simpler, because only the choices of the agents representing
the families need be considered. Each school simply accepts as many applicants as it has
remaining places in every round, without preference.

This results in the following three tiers:
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Figure 6.7 — Three class blind schools, with a middle-class preference of 20.48 and a working-
class preference of 0.01.

which are essentially a less pronounced version of the three-school class sensitive
scenario.

This outcome is readily explained by walking through the application process of a typical
year:

e Round 1: 98% of middle-class applicants apply to the top school, school 1, alongside
34% of working-class applicants. School 1 therefore fills all its places in round 1,
picking among its applicants at random, resulting in a middle-class intake of
approximately 74%. The remaining 2% of middle-class applicants apply instead to the
middle school, school 0, alongside 33% of working-class applicants, and are all
accepted. School 2 accepts the remaining 33% of working-class pupils.

e Round 2: All of the approximately 144 middle-class pupils who were rejected by
school 1 now apply to their second choice, school 0, alongside 25 working-class
applicants (50% of those who still seek a place). School 1 has only around 93 places
left, so it can only accept around 75% of this round’s middle-class applicants. It now
has a total middle-class intake of 43%.

e Round 3: All those who were rejected from both other schools now apply to school 2,
including 65 middle-class children. This gives school 2 a middle-class intake of 33%.

Equivalently to the class sensitive case, this three-school scenario has been reduced to an
iterated two-school scenario for the middle-class families. As always with such a low
preference, the working-class families consider all schools at once. This is an advantage
for them in the class sensitive case, since they would only be rejected from the leading
school(s) anyway, so it makes more sense to aim straight for the second-best choice
(although the agents are not as intelligent as this — they only avoid favouring any one
school, rather than avoiding a school entirely). However, if they make the same choices
as the middle-class applicants here, all inequity vanishes, just as in the two-school
experiment 5.1.1.

6.3.6 Four or more class blind schools

Increasing the number of class blind schools does not reveal any new behaviour, and so
those results are shown in Appendix A, Figure 9.23 to Figure 9.25. They lack even the

79



- Multi-agent simulation of the dynamics of social exclusion in school choice -

distinction between an odd and an even number of schools shown in the class sensitive
case.

6.4 Co-evolutionary behaviour

The co-evolutionary behaviour, as described in section 3.2.6, was examined next. These
were the most interesting experiments: each one built cumulatively on the results of the
next, since the rules of the previous experiment were added to, not replaced. This led to
interesting interactions.

6.4.1 Preference for class blind schools

Rules: none.

The newly introduced preference of families for class blind schools, now competing with
their preference for high-performing schools, was first tested without the addition of any
‘co-evolutionary’ rules. The experiment looked at varying values of class blind preference
mean: the logarithmically increasing sequence 0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32 and
0.64, as well as the maximum possible value of 1. Each preference mean was tested with
standard deviations of 0 and 0.2. One class blind and one class sensitive school were
used, to force children to choose between a class blind and a well-performing school (a
class sensitive school will always dominate a class blind school in the absence of other
factors, and assuming sufficiently high parental preferences). The weighting used for a
school’s league table rating was set high to 0.8 (with a standard deviation of 0.2), since it
was felt that this would still be the most significant parameter. This left a weighting of 0.2
on average for class blind preferences.

The predicted effect of this competing school attribute was to curtail the leading school’s
trajectory to the top, preventing it from reaching a 100% middle-class intake. A larger
class blind preference should result in a smaller mean inequity between the schools.
Without the class blind preference, an inequity of 1.0 would usually result; it should
equivalently be found now with a class blind preference of 0 and a standard deviation of
0. The effect was as predicted, as seen below, where the result of not using the class blind
factor is overlaid onto the outcome of using a class blind preference of 0.32:

Using class blind factor - school 0 = = = =No class blind factor - school 0
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Figure 6.8 — Two runs overlaid: In dotted red, the standard result of using one class blind and
one class sensitive school with a high middle-class preference of 20.48, and a low working-class
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preference of 0.01. In black, the same scenario using class blind preferences generated from a
normal distribution with a mean of 0.32 and a standard deviation of 0.2.

Whether a standard deviation of 0 or 0.2 was used did not make a significant difference to
the stable state settled upon (measured by mean inequity between the schools):
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Figure 6.9 Scatterplot showing how an increasing class blind preference mean parameter
causes the average inequity to fall when using one class blind and one class sensitive school.

What standard deviation was used for calculating each child’s class blind preference only
had a significant impact when the class blind preference mean was close to 0. This is
logical, since when the class blind preference is close to 0, very little impact would be
seen; using a standard deviation of 0.2 would make many more parents care about class
blind schools than sticking to a preference of 0, 0.01 or 0.02 exactly. Since all preferences
< 0 are truncated to 0, this effect is not averaged out by values falling below the mean, as
in the cases with a large class blind mean.

The experiment was also run with four schools, two of which were class blind, and two
class sensitive. For low class blind preferences (up to 0.32), the top class blind school
assumed a leading position with a middle-class intake of around 75%, with one class
sensitive school rated marginally above the two remaining schools. For higher class blind
preferences, the two class blind schools both led with a middle-class intake of around
65%, while the two class sensitive schools assumed differentiated positions of around
45% and 25%. The class sensitive schools’ strategies were disapproved of too much to be
preferred by children, and yet their league table positions still had an effect when given
the choice of only those two.

6.4.2 Children aiming to reduce polarisation

Rules: section 3.2.6 rules 3.a and 3.b are introduced here.

The first rules to be tested were the ones used by children to attempt to curb a tendency
towards total polarisation between schools. This was motivated by the reasoning that
interest in a class blind school would be rather low when all schools were approximately
equal in social class intake anyway, and that conversely it would be exaggerated if it was
felt that social inequity was a severe problem in the community.

The expected effect of the first rule, which decreases the children’s class blind preference
by 20%, was to diminish the initial difficulty in beginning the trajectory towards
polarisation compared to the previous experiment. This was exactly the case, as shown

81



- Multi-agent simulation of the dynamics of social exclusion in school choice -

below where we again see the class blind preference mean of 0.32 as in Figure 6.8,
overlaid onto the result of using the child rules:

Using child rules - school 0 - - - - - - - No rules - school 0
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Figure 6.10 - Two runs overlaid: In dotted red, the result of using one class blind and one class
sensitive school with a high middle-class preference of 20.48 with a low working-class preference
0f 0.01, and a class blind preference mean of 0.32 (0.2 standard deviation). In black, the same
scenario using the child rules to adjust the class blind preference depending on the environment.

The experiment used the same combinations of class blind preference mean and standard
deviation as the previous one. One class blind and one class sensitive school were also
used as in the previous experiment.

As before, the inequity was diminished with increasing preference for class blind schools,
and whether a standard deviation of 0 or 0.2 was used did not make a significant
difference.

Just as in the previous case, the second rule was also expected to freeze the polarisation
trajectory once the threshold for the increased preference for class blind schools was
passed. This was defined in the rule as a school having 170% of the population average as
a middle-class intake. How low the inequity is capped should depend on the strength of
families’ preferences for class blind schools. However, the inequity was expected to be
somewhat reduced compared to the previous experiment, because the children perceive
the near-polarisation and work against it"’ by altering their preferences, increasing them
by 20%. The difference was found to be less than intuitively expected (although of course
no concrete value could be predicted); in Figure 6.10, the difference in mean inequity is
only 0.01. On average, the mean difference in inequity between the two sets of runs was
0.02. Tt therefore seems that the child rules did not succeed very well in their aim of
reducing the inequity between schools; in fact, they accelerated the trajectory towards that
stable state! Nevertheless, the rules were left in for the remainder of the experiments, in
case any interesting interactions were found, and because it could still make sense for an
individual household to reason in this way.

6.4.3 Unsuccessful school adopts class blind niche

Rules: section 3.2.6 rules 3.a and 3.b as before; 4.a is introduced here.

*! Their individual motivation is not really to counteract the polarisation effect — rather, they do not wish to attend a
completely polarised school, so they become more interested in other, more suitable schools — but as a strategy held by all
children, it could still be said to be a collective ‘unconscious’ motivation.
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Next, the rule that allows a class sensitive school performing poorly in the league tables
to enter a class blind niche position to win middle-class applicants was added. This was
tested with two class sensitive schools, again using the extreme 20.48 middle-class and
0.01 working-class preferences to magnify the effects. Due to the Matthew effect (Room
and Britton, 2006b), the school that gained an initial small advantage quickly moved up
the league table rankings. Once the other school’s league table rating had fallen past the
threshold of 90% of the population average, it would give up trying to compete with the
other school in the league table, and instead change its strategy to class blind. The results
were very similar to those of the previous experiment; a comparison is shown below:
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Figure 6.11 — Comparison of the mean inequity measured between a class blind and a class
sensitive school, and between a run starting with two class sensitive schools with the ‘failing’
school switching to a class blind strategy during year 3.

Only the results for a standard deviation of 0.2 are shown, since a standard deviation of 0
showed the same pattern. The mean inequity measured between the two schools was
higher using the class blind niche rule than without it for high class blind preferences.
Comparing the two runs reveals a very simple explanation for this:
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Figure 6.12 — Two runs using a class blind preference of 0.64 are superimposed here; the solid
black one uses the niche rule, and the dotted red does not (it is a result from experiment 6.4.2).
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Because the middle-class preference for high-performing schools is so high (20.48), the
downwards spiral experienced by the failing school happens so rapidly that the switch to
a class blind strategy in year 3 cannot prevent a year in which total polarisation occurs.
This initial spike before stabilisation causes the increase in measured inequity when using
the class blind niche rule. It is not as noticeable with high values of inequity.

6.4.4 Popular class blind school becomes class sensitive

Rules: section 3.2.6 rules 3.a, 3.b and 4.a as before; 4.b is introduced here.

We now examine the rule that reasoned that a sufficiently high-performing class blind
school could become class sensitive, thereby removing the cap on its league table rating
as calculated in section 5.1 for class blind schools. This is effectively the other side of the
coin from the previous rule we investigated. However, while no harm can be seen in the
previous rule — if the school did nothing, the worst case scenario of 0% middle-class
intake would be reached in any case, so adopting a class blind niche could only improve
matters or at worst leave them the same — this rule could potentially backfire if the
population preferred class blind schools so much that the school became unpopular.

As before, an extreme middle-class preference of 20.48 and a working-class preference of
0.01 were used, to ‘exaggerate’ the interactions, allowing easier identification of patterns.
This time, two class blind schools were used to begin with, since this is the scenario
where the rule would be applied. The same set of class blind preferences were used to
initialise the normal distribution as previously.

‘Backfiring’ of the strategy was only seen in the most extreme case, with a maximal class
blind preference mean (1.0). Here, the same ‘game’ was played over and over again, with
the schools switching roles each time: the popular school switches to a class sensitive
strategy, but this makes it so unpopular that it loses favour and the other school becomes
more popular instead. Eventually, it becomes so popular that it becomes class sensitive as
well, whereupon the original leader immediate adopts a class blind niche, which allows it
to ascend into popularity again, and so on. Below we see a graph of this, overlaid onto the
result of not using the class sensitive rule:

Switch to class sensitive - school 0 - - - - - - Without the rule - school 0

Switch to class sensitive - school 1 ----- - Without the rule - school 1
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Figure 6.13 — Two runs overlaid: In dotted red, the run using a middle-class preference of
20.48 with a working-class preference of 0.01 and a class blind preference mean of 1.0 (standard
deviation 0.2). In black and blue, the same parameters were used with the class sensitive rule. Note
that the two runs follow the same trajectories until the end of year 5, when the leading school
becomes class sensitive due to its popularity.
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However, in every other case, the strategy switch was advantageous for the leading
school, indicating that it is a sound rule to follow (since a class blind preference of the
maximum value, 1.0, is probably not realistic). It resulted in a greater inequity between
schools, as shown below:
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Figure 6.14 — Two runs overlaid: In dotted red, the run using middle-class preference 20.48,
working-class preference 0.01 and a class blind preference mean of 0.64 (standard deviation 0.2).
In black, the same parameters were used with the class sensitive rule. As in Figure 6.13, the
leading school switched to a class sensitive strategy at the end of year 5.

The experiments were also run with three and four schools, again assigning all schools
the class blind strategy at the start.

For three schools, a clear leader immediately emerged, became class sensitive and
maintained a 100% middle-class intake except for blips for a mean class blind preference
of 0.64, and significant troughs for a mean preference of 1.0. The other two schools
remained class blind and formed a local two-school class blind scenario for the remaining
applicants. The inequity between those two lessened and then disappeared with increasing
class blind preference means, because the league table position of a school became less
important. An example is shown in Appendix A, Figure 9.27.

In the four-school scenario, each parameter combination produced a similar result: the
popular class sensitive school achieved 100% middle-class intake throughout, leaving the
remaining three class-blind schools to share an equal intake of around ' middle-class.
However, the cases where the class blind preference was very low allowed a slight leader
to emerge among those remaining three schools. This differentiation no longer occurred
for class blind means of 0.32 and higher, for the same reason as in the three-school case.

6.4.5 School becomes class sensitive to break out of stable, undifferentiated state

Rules: section 3.2.6 rules 3.a, 3.b, 4.a and 4.b as before; 4.c is introduced here.

The final rule concerned with schools changing their strategy was one designed to upset
the stable class blind state where the parental preference is insufficiently high to produce
differentiation between schools. A middle-class preference of 1.28 with a working-class
preference of 0.01 was used; this is not sufficient to generate differentiation between
schools by itself. The simulation was initialised with two class blind schools, and then a
random race condition determined which school took the risk of becoming class sensitive.
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The rule only fires when no school’s middle-class intake is further than 10% away from
the population average.

As usual, the simulation was run with a logarithmically increasing class blind mean, from
0 to 1. The rule fired at the end of year 1 in every case, as expected, but it only had an
effect in the first case, with a class blind preference mean of 0. Even then, it took a while
to take effect:
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Figure 6.15 — School 0 applies the ‘risky’ rule in year 1, allowing it to ascend to near-
polarisation, but only after a relatively long time. The class blind preference mean is 0.

This long delay before the change could take effect — since the class sensitive school first
needed to be ‘lucky’ to build up a sufficiently large advantage to differentiate itself
permanently — could explain why the other cases did not exhibit this outcome; the
stronger class blind preference prevented the class sensitive school from gaining in
popularity. In fact, with a mean preference of 0.64 and 1, the class sensitive school sees
such a decline in popularity because of its strategy switch that it is forced to revert to a
class blind strategy to save itself. However, the other school is no more aware of the
children’s strong preferences than it is, and so it then falls into the same trap: its gain in
popularity causes it to boldly become class sensitive, after which it is disfavoured in turn,
and so on. A more intelligent set of rules would allow schools to recognise this extreme
scenario and avoid using this strategy as it is obviously counter-productive in this case.
With the somewhat lower class blind preferences 0.16 and 0.32, the class sensitive school
merely takes on a slightly less popular role for the duration of the run.

The range 0.01 — 0.08 therefore seemed like a grey area — would polarisation occur after
all, if we waited long enough? The 0.01 case was re-run ten times with different random
seeds, and the polarisation effect emerged at varying intervals in four cases, which
supports this theory. The 0.04, 0.08 and 0.32 cases were also re-run ten times each in
order to verify that no differentiation was emerge; this was confirmed.

6.4.6  School specialisms

Rules: section 3.2.6 rules 3.a, 3.b, 4.a, 4.b and 4.c as before; no new rules are introduced
in this experiment.

Adding a third attribute to schools, their specialist subject, adds much potential for
interference between rules, so the effect of using specialisms was first investigated
without the use of any additional rules. School specialisms are detailed in section 3.2.6,
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but the key points are that each school may hold at most one specialism, and it cannot
change specialism more than once every ten years.

The case of schools having the same specialism was not examined in detail, since it does
not do anything other than slightly weaken the effect of other differences, just as the
addition of a class blind preference lessened the impact of school league table ratings.
Therefore, each school was given a distinct specialism, and the only variable parameter
was the number of class blind schools (0, 1 or 2). A class blind preference mean of 0.32
was used, having been previously established as a non-extreme value, with the usual
standard deviation of 0.2. As before, a league table weighting mean of 0.8 was used, also
with a standard deviation of 0.2. The remaining weighting was divided equally between a
school’s specialism and its strategy (class blind or not), which is somewhat arbitrary, but
any division would merely be a guess in the absence of field data, The middle- and
working-class preferences were left at 20.48 and 0.01 respectively.

We would expect the effect of a high class blind preference to be lessened from now on,
since it is now given a lower weighting. Apart from that, no difference is expected in this
experiment from those found with the same rules, i.e. those of experiment 6.4.5. This is
because children are not biased towards any particular specialism in the simulation (on
average), so no specialism is really any better in the long term, even if it is significantly
preferred by a particular year group due to a statistical anomaly.

The results were as expected. In the 0-, 1- and 2- class blind school cases, the mean
inequity was 0.0349, 0.0299 and 0.0295 less respectively than when school specialisms
were not used. Additionally, when two class blind schools were used, the initial plunge
towards polarisation that is later corrected became a gentler ascension when specialisms
were introduced (see Appendix A, Figure 9.26). This explains the greater difference
between the mean inequities in this scenario. It was not predicted by the experimenter,
who failed to consider every condition, but this again illustrates the value of simulation,
especially when so many behaviours are interacting and interfering with each other that
prediction becomes demanding.

6.4.7 School specialism rule to avoid duplicate specialisms

Rules: section 3.2.6 rules 3.a, 3.b, 4.a, 4.b and 4.c as before; 4.d is introduced here.

Next, a rule was added to encode the behaviour that a school should switch to another
specialism if possible if another, higher-performing school shares the same one.
Otherwise, it would not gain any advantage from its specialism: all the children who were
interested in it would still favour the higher-performing school (unless perhaps it had a
less preferred admissions strategy).

The schools were both initialised with the same specialism to test the effects of the rule.
As in the previous experiment, a class blind preference mean of 0.32 was used, with a 0.2
standard deviation; the middle-class preference was 20.48 and the working-class
preference was 0.01. Runs were performed with both two and three specialisms to choose
from, and with 0, 1 and 2 class blind schools on initialisation. Three specialisms were not
expected to produce a different effect from only two, since the schools do not give much
thought to which specialism to switch to, only that it is not already taken.

The simulation does not provide a way of specifying exactly which schools should have
which specialisms (see section 8.3.6), but fortunately, the usual random seed produced the
desired set-up in the two-specialism case. However, for three specialisms, a different
random seed had to be used (3). Fortunately, whether two or three specialisms were used
had no significant effect (as predicted), and so those results were not required to be
compared against any other experiment’s.
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The rule fired at the same point in each case (at the first available opportunity, i.e. in year
11 since 10 years are required as a minimum duration for a specialism’s adoption).

Surprisingly, no significant difference was found for the two-specialism runs when
compared to simulations run with the same parameters but without this new rule. This
indicates that the impact of giving each child linearly decreasing interest levels in the
specialisms, so that year on year 50% of children preferred specialism 1 approximately to
degree ‘1°, and the other 50% preferred it to degree 0.5, coupled with the small ~10%
weighting given to specialisms, is to produce an even smaller end effect than previously
assumed. However, the alternative explanation of there being an error in the program
cannot be ruled out either, even though no individual behaviour observed during the
simulation could be identified as anomalous.

6.4.8 School specialism rule to sabotage competitors with duplicate specialisms

Rules: section 3.2.6 rules 3.a, 3.b, 4.a, 4.b, 4.c and 4.d as before; 4.e is introduced here.

Finally, the rule was added in which high-performing schools try to inflate their
advantage even further by sabotaging their less well-performing competitors’ niche
positions. They do not want to take away a class blind advantage because that would cap
their maximum league table rating, but there is no real disadvantage to changing different
specialism. Since the other school that shares the specialism has an inferior league table
rating, the vast majority of children who previously would have chosen the specialist
niche school due to their academic interests will now turn to the high-performing school
instead.

Again, two and three specialisms were examined, and 0-, 1- and 2-class blind school
scenarios, with middle- and working-class preferences of 20.48 and 0.01 respectively.

As in the previous experiment, the number of specialisms used had no significant effect:
every 11 years the ‘failing’ school would switch specialism to try to adopt a niche as
before, but the leading school now immediately followed suit, preventing it from gaining
any advantage. Whether one or the other ‘unused’ specialism was used for this in the
three-specialism case obviously made no difference.

Compared to runs where the rule was not used, the ‘act of sabotage’ had only a very mild
effect: an increase in inequity of 0.0013 on average. This was less than expected, but on
further investigation, it seemed reasonable for school specialisms not to have a very
strong effect: they only receive a weighting of 10% on average, and each child does not
only foster a single interest: it has a linearly decreasing range of interests. Nevertheless, it
is difficult to put a value on the expected difference in inequity, and accordingly difficult
to say whether this experiment conforms to expectation or not. The strongest statement
that can be confidently made is that the reasoning made by the schools and the children
can be followed.

6.4.9 Children excluding irrelevant factors

Rules: section 3.2.6 rules 3.a, 3.b, 4.a, 4.b, 4.c, 4.d and 4.¢ as before; 3.c, 3.d, and 3.e are
introduced here.

The last rules added were for children to exclude factors from consideration that were
irrelevant, such as the class blind preference if all schools shared the same strategy, or
their academic interests if all schools had the same specialist subject.

This is arguably an implementation issue, but the effect on the results is so profound that
it was included as an experiment. The new rules increased the ‘rush’ towards a stable,
inequitable state even more so than the children’s rules for adjusting their league table
preference (introduced in 6.4.2) alone. The experiment was run with 0, 1 and 2 class blind
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schools to begin with; the effect was most pronounced in the O-class blind school case,
when the popular school switches to a class sensitive strategy:

With child rules - school O - - - - - -- No child rules - school 0
With child rules - school 1 - - - -- - No child rules - school 1
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Figure 6.16 — Two runs superimposed: In dotted red, two (initially) class blind schools, with
two specialisms to choose between, and middle- and working-class preferences of 20.48 and 0.01
respectively, alongside the usual 0.32 mean class blind preference, using all rules bar the child
factor elimination ones. In black, the same experiment with the child rules to ignore irrelevant
school choice factors.

The significant increase in mean inequity seen above was also seen in the other
simulation runs.

In the three-school case, run with the usual increasing class blind preferences, the
accelerated move towards the stable state was also very pronounced (compare Figure 9.27
to Figure 9.29 in Appendix A). The acceleration was less obvious in the four-school
scenario, because it already happened so quickly before (compare Figure 9.28 to Figure
9.30 in Appendix A).

6.4.10 Reducing initial inequity

Having analysed our set of ‘co-evolutionary’ rules, we would like to see whether they
help (or possibly even hinder) a reduction of initial inequity in a simulation.

Using all the rules introduced here, an experiment was run using an initial inequity of 0.8,
and one of 0.1 (the usual initial inequity is of course 0 — the schools begin as equals). This
was tested with two class blind schools and a middle-class preference of 5.12, paired with
working-class preferences of 0.01, 0.04, 0.08, 0.16 and 0.32 to produce varying degrees
of intrinsic inequity. The league table rating was weighted at 0.8 with a standard deviation
of 0.2 as usual; both the class blind preference mean and its standard deviation were set to
0.2; and two possible specialisms were used.

The same experiment was also run without using any rules or co-evolutionary behaviour
at all. The results are shown below for the example case of a working-class preference of
0.32; they were equivalent for the other working-class preferences:
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Figure 6.17 — This figure shows four runs in total. The dotted lines are runs beginning with
initial inequity 0.1, while the solid ones represent runs with an initial inequity of 0.8. The
uppermost two and the corresponding lower two schools are the two runs that used co-
evolutionary behaviour. The four schools (i.e. two runs) in the middle are those that did not use
any co-evolutionary rules.

What Figure 6.17 clearly shows is that the initial inequity used is irrelevant; the system
tends inexorably towards the stable state of its intrinsic inequity, described by the school
strategies and parental preferences used. This is in line with Room and Britton’s
predictions for the basic model; it is interesting that they hold for the more advanced
model as well.

Of course, this does not imply that the agents cannot alter the intrinsic inequity of the
system: the main reason the co-evolutionary rules produce much greater differentiation
between schools is that one school becomes class sensitive, enabling it to climb higher in
the league tables. Instead, it indicates that the initial environmental conditions of a
simulation are inconsequential.
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7 Discussion of Results

7.1 Validity of results

In chapter 5, we showed that the simulation was essentially able to replicate Room and
Britton’s results (2006b), if allowances are made for stochastic effects which would also
be present in the real world. The simulation is perhaps a truer replica of the real life
domain than the mathematical model is, since the equations only capture the macro-level
effects, missing the fine detail such as local spikes in school league table ratings. We have
noted that this type of local statistical anomaly, while probably occurring commonly in
the small sample sizes found in the real world in a given catchment area’s population, can
have a long-term impact on the macro effect, slowing the trajectory towards the
inequitable state. However, the eventual stable state remains the same.

Yet it is important to note that there is no proof that the micro-behaviour of the model is
at all representative of the real world. We can say that it is probably similar to the type of
behaviour that would be seen, but the exact details are undoubtedly incorrect. Of course,
this was never a major aim of the project; rather, it focused on simulating the underlying
mechanisms and trajectories, thereby improving understanding of the problem domain
and of this type of system in general. The correspondence (or lack of it) to the real world
system was outside the scope of this project. Without the necessary empirical data, it
would be counter-productive to try to introduce additional parameters with the sole aim of
adding ‘realism’: the experimenter would be forced to guess at appropriate values,
thereby creating further room for error in the results. For example, how would one
quantify the preference parents might have for sending all their children to the same
school? A full parameter sweep of these new factors would be necessary, which would
soon lead to a combinatorial explosion in the parameter space to be explored — and to no
real gain.

Of course, adding unnecessary complexity to the model would also make it much more
difficult to understand, and require even more computing power. Even at its current
modest level of complexity, it is no longer possible to look only at a graph of the league
table ratings to infer what behaviours occurred when. Moreover, the model would risk
becoming overspecialised: the intention was to look at general co-evolutionary
mechanisms that are common to many domains.

It could nevertheless be a valuable exercise to validate the model against empirical data.
This should expose any fundamental flaws in the model’s behaviours, and would provide
insight into how well the agents mimicked their real life counterparts. However,
‘docking’ a model containing stochastic elements to empirical data is complicated, as
discussed in section 2.6.

Although the model’s basic features could be validated against Room and Britton’s
model, the extensions investigated in chapter 6 could not really be validated at all, apart
from against the predictions of the experimenter. The experimenter was biased both as the
author of the code, and from having seen informal experiments while testing that would
have created preconceptions.

On a more fundamental level, the project also suffered a lack of repeated experiments:
ideally, every single experimental case would have been run 100 times with different
random seeds. Time and computing power constraints did not allow this, but it would be
essential for a more ambitious project.

91



- Multi-agent simulation of the dynamics of social exclusion in school choice -

It would also have been preferable to check every experiment for replicability, just in case
the model was perfectly replicable in all but a small number of aberrant cases; instead
only approximately 10% were checked. This however brings with it again the problem of
deciding when enough simulations have been run: a program might produce the same
result 9 times out of 10 but deviate on the 10" run, for example. For greater confidence,
several different types of computer should be used for these tests, to ensure that the
effects of uncontrolled factors, such as the order the JVM iterates through an unordered
list, are not being masked by the particular system being used. This was already checked
to some degree in this project by using seven different Windows machines, and a
powerful Linux server. However, it is impossible to establish replicability with full
certainty since we cannot run an infinite number of experiments.

The parameter space could also have been explored more fully; this is especially true of
the later, co-evolutionary experiments, when time was running out. It would have been
interesting to run more multiple-school experiments with variants of the co-evolutionary
behaviour. Stochastic shocks were not investigated for multiple schools at all either.
These experiments would have been run, had time permitted.

A finer point is that certain parameters were hard-coded into the model. Specifically,
these were a) all ‘threshold’ values in rules, e.g. specifying that the rule should fire if the
school’s league table rating rose 10% or more above the average; b) what value children
should increase or decrease their class blind preference by, when the appropriate rules
fired; and c) the half-life of a stochastic shock, allowing its decay rate to be specified.
There was insufficient time to explore the parameter space of these variables, but the fact
that this was not done further weakens the validity of the model’s results. We cannot
claim that the model’s behaviour would not have differed significantly if any of these
parameters had been different, since it was not tested.

A policy-maker, upon seeing the experimental results, might find the hundreds,
sometimes thousands of years simulated to be ridiculous. Firstly, of course schools as we
currently know them can hardly be expected to exist in a thousand years’ time, or even in
a hundred year’s time, due to local and national politics; and secondly, prediction of more
than a few years or decades into the future is doomed to failure, as any error in the
simulation is multiplied on every successive step.

However, the experimental results are not really intended for prediction — rather, they
were meant to aid understanding of the fundamental processes at work in the domain.
Upon seeing a school’s rising trend in the league tables, it is of interest to know whether
this will be capped at a certain point, or if it would in theory continue indefinitely, until it
had reached a 100% middle-class intake. This helps us to understand the underlying
mechanisms. Of course, with extreme parental preferences, such total polarisation can
indeed be reached after only a few years, and no doubt, such schools do exist in the UK;
but more commonly, the polarisation found in real life, and in the simulation after a
‘realistic’ number of years, is only partial.

7.2 Key findings

The overarching finding of all the experiments run is that the school choice system
always tends towards its intrinsic inequity. This is defined by the schools’ strategies and
the children’s preferences — although these can be changed dynamically when co-
evolutionary behaviour is enabled. However, any initial inequity at the beginning of the
simulation run is irrelevant; it cannot be sustained if the preferences and strategies do not
support it naturally. Even the stochastic shocks could not alter the inequity present in a
system; they could only switch the school’s roles.
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The addition of rules to allow schools to change strategy made a huge difference: a school
doing poorly on the league tables could ‘save’ itself by adopting a class blind niche,
maintaining a certain level of middle-class intake that would otherwise have gradually
disappeared. Conversely, a popular class blind school could now ‘abuse’ its position and
change to a class sensitive admissions policy, allowing it to move from a relatively high
to a 100% middle-class intake, completely excluding working-class applicants. On the
whole, the co-evolutionary rules used tended to aid the leading school, increasing the
inequity in the system: while they did provide a tool for a less successful school to form a
niche, often this niche was only necessary because another school had ‘defected’ and
become class sensitive, taking a huge lead. The general tendency of all the co-
evolutionary rules interacting together, in the two-school case, was for there to be one
very successful class sensitive school, and one fairly (but not fully) unsuccessful class
blind school. Admittedly, this is not as inequitable as the basic case of two class sensitive
schools. However, it could be argued that different rules would have produced an entirely
different effect, although the adoption of niche positions was at least observed in the field
by Lauder and Hughes (1999).

In contrast, specialisms were a disappointing extension. Being given a weighting of, on
average, only 10%, and dividing the child’s interest levels between several specialisms,
meant that the effect of a school’s specialism was much diluted. It seemed too weak to
have any real effect of significance on the schools’ trajectories. It would perhaps have
been preferable to give each child only a single subject of interest, just as each school can
only have a single specialism. The specialism rules were not especially intelligent in any
case: it would have been more advantageous for a school to consider all possible matches
and take the most potentially profitable one, rather than being satisfied with the first one
meeting the basic criteria. For example, an ethically questionable school could perhaps
have sabotaged two of its competitors at once rather than just one. However, there was
insufficient time to investigate many multi-school scenarios involving specialisms, which
is where this would have come into play, since this was the last extension added to the
simulation. Nor was there much time to investigate the effects of using varying numbers
of specialisms; but initial results showed that their number was of little consequence,
perhaps again due to the weak influence of specialisms in general.

Another criticism that could be made of the school specialism rules is that it is unrealistic
for schools to be happy to switch specialism every ten years. The rules should include
some concept of the huge overhead involved in such a change: specialist equipment might
become obsolete, and major staffing changes could be necessary. It is true that the
Specialist Schools Programme devised by the DfES (2003a) requires a school’s
specialism to be renewed every four years, but the school is expected to retain the old
specialism. A second unrealistic aspect of the model is that in real life, the DfES might
well reject a specialism proposal that was seen as an act of sabotage towards other
schools, or that failed to add value to the community, being already well provided for by
another school.

It might also have been more interesting if negative levels of interest in a specialism were
possible in a minority of cases. For example, a poor linguist or a dyslexic child might not
wish to attend a specialist language school for fear their grades would suffer, having
greater emphasis on languages.
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8 Conclusion

8.1 Evaluation of the project

The overall aim of this project was to produce an agent-based model equivalent to Room
and Britton’s equations (2006b), and then to build upon it to deepen understanding of the
underlying processes, and to demonstrate the advantages of agent-based simulation. In
this, the project was a success.

The simulation was able to replicate all essential aspects of Room and Britton’s model;
and moreover in doing so, it is claimed that it exposed an oversight in the original model.
This was only detected after the initial prototype had been written, which gave the author
a much deeper understanding of the trajectories and mechanisms in play than the original
equations or textual descriptions had been able to. Thus, it was possible to identify the
mechanism that Room and Britton’s model did not appear to account for. It would have
been much more difficult to spot this by analysing only the equations, since the equations
deal with macro effects and the adjustment suggested to the equations in section 5.1.1
relates to the behaviour of individual agents, which then impacts the macro-level
outcome.

This finding demonstrates the value of the understanding gained merely by writing an
agent-based model, let alone running it. It was also revealing to see that the simple
introduction of more than two schools caused the working-class preference to suddenly
take on significance in the class sensitive case (see section 6.3); in the two-school model
investigated by Room and Britton, it has no effect. Thus, our understanding of the
system’s dynamics was deepened further.

Running the model also generated some interesting results; the key one being, as
discussed in section 7.2, that the system has a built-in inequity defined by the school’s
strategies and the children’s preferences, which cannot be permanently influenced without
changing these intrinsic parameters.

The expectation that it would be relatively easy to build a model that would generate rich
results was confirmed; and it would not be difficult to add extensions to it that would
produce more fruitful output yet. In contrast, describing the interactions seen here in
equations would be almost impossible, and would certainly be a very difficult and error-
prone task.

However, the project suffered under the model’s poor performance, which caused the
entire schedule to be shifted forward to await the results of the final experiments. It was
impossible to predict at the planning stage how long an experiment would take to run; and
in analysing the results, additional experiments were often discovered to be of interest,
and were therefore added to the list, further increasing the delay. However, it would
perhaps have been better to add a greater ‘buffer’ to the project plan to account for this
type of unpredictable delay. Nevertheless, the project’s evolutionary approach of
developing the model and running experiments in parallel served it well; if a more
traditional methodology had been chosen, it would have been impossible to run sufficient
experiments in time. Moreover, the experiments served as tests of the model, and would
have had to be run to some degree during development in any case.
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8.2 Choice of technology

Overall, it seems that appropriate technology was chosen for the project, despite the
performance issues introduced by Drools. Once the new version of Drools is released, it
should be possible to improve on the simulation’s performance significantly.
Alternatively, the rules could be converted to JESS and profiling undertaken to see if a
performance gain could be seen; but it seems most sensible to first assess the performance
benefits brought by the new version of Drools.

Repast was a very ‘friendly’ platform to use: there was plenty of documentation available
online, and most problems encountered had already been discussed on the mailing list. It
was also very stable; no Repast bugs were encountered. The only drawback was, as
discussed in section 3.3.2, that the library classes could not be trusted to preserve
replicability of experiments without first reading their source code. Repast was indeed
very flexible as anticipated, and all of the extensions discussed below should be easy to
implement in Repast. It is, however, unknown how suitable it would be for a distributed
system, although no obvious problems are yet apparent. The design of using one Drools
working memory per agent certainly lends itself very well to a distributed model; indeed,
this was in part the motivation for adopting the design.

8.3 Further work

8.3.1 Catchment areas

The idea of catchment areas follows on naturally from the consideration of more than two
schools in a simulation. Children living in a particular school’s catchment area would be
given precedence over children living outside the area. This would lead to house prices
rising in the area surrounding a popular school, pricing working-class parents out of the
market in this more ‘desirable’ area, thus giving schools an indirect mechanism to cherry-
pick middle-class students.

This effect is, however, already one of the motivations for assigning middle-class parents
a higher preference for high-performing schools than working-class parents. This
‘preference’ is in part characteristic of middle-class parents’ greater willingness, but also
their greater ability to move to the most popular catchment areas. (While the term
‘preference’ is perhaps not quite the correct term, it is convenient to use in this context.)

Catchment areas were not implemented in this model, because they are so domain-
specific. Even though the model does aim to capture the essence of the dynamics of the
school admissions process, it was also important not to fall into Gilbert and Doran’s “trap
of verisimilitude” (2005, p.12). It was felt that implementing something as domain-
specific as catchment areas would be straying too far from the project’s motivation of
exploring the usefulness of agent-based modelling techniques applied to this type of
complex system, compared to the original equation-based model. This could make it
more difficult to adapt the basic model to other, similar domains, and would arguably not
enable new types of insight into the value of the model. If the model were to be further
specialised in the domain of school choice, catchment areas would certainly be a useful
addition, but otherwise, they might only add unnecessary complexity. The same argument
can be applied to the suggestion of families moving house during the academic year, and
being compelled to join whichever school happens to have a free place.

95



- Multi-agent simulation of the dynamics of social exclusion in school choice -

8.3.2  Successful schools expanding, ‘failing’ schools closing down

Another feature that could be added to the simulation would be to re-distribute places
from a failing school to a more successful one. This eventuality is already provided for by
the Java code; it would only require rules to be added to increase or decrease the number
of places in a school. Inside a school’s own expert system is perhaps not the best place for
such rules, since a failing school would hardly be expected to offer to gradually close
down, but adding a ‘central authority’ responsible for imposing such punishments and
rewards could be seen as adding unnecessary overheads. It could be argued that it is not
inappropriate to place such rules inside a school’s expert system after all since they
represent a constraint on its behaviour that a school would be aware of; and certainly, it
would be a very cheap way to investigate this new aspect of the model.

It would be interesting to see whether a successful school expanding would actually
negatively affects its success, since it might need to accept more working-class applicants
to fill those new places.

8.3.3 More intelligent agents

The child agents in particular are very primitive, and would benefit from increased
intelligence. For example, a social influence mechanism could be added to pass on
interest in the specialist subjects in a local community. For example, an area could be
especially sports-oriented if it boasted a well-equipped sports centre, or sought after by
linguists if there is a specialist language primary school in the vicinity. This would also
allow the school specialisms/child interests levels to become more truly co-evolutionary:
at the moment, the schools have no motivation to adapt to any skew in the children’s
interest levels since they will be reset (without using any historic trends) in the next
academic year. The schools therefore base their choice of specialism purely on the
specialisms of the other schools. The children do not evolve at all — although they do
shape their environment (the schools) for their successors. Since each child only has a
one-year lifetime, it seems that the only way they could properly be said to co-evolve is if
they also influenced their successors more directly. Their lifespan of interest could also be
increased, giving them social influence throughout their time at school; perhaps their own
preferences would also be affected dynamically by the dominant interests of their
classmates during this time, and by the specialism of the school.

On a more basic level, the child rules could also be adapted to include some of the
strategies the author thought of while analysing the experimental results. If working-class
children knew that they were undesirable to a class sensitive school, they could assume in
a multi-school scenario that they would not be accepted to their first-choice school and
instead apply directly to their second-choice school in the first application round. All of
the middle-class children would probably have applied to the leading school in the first
round, so there would be little competition for the second-best school, even if it was
excellent. However, middle-class children might anticipate this, and, say, 15% of them,
the most risk-averse ones, would apply to the second-best school in the second
application round, to avoid the risk of being left only with the third-rated school due to
insufficient places in the others.

This would mean using different rule sets for working- and middle-class children.

Similarly, rules might be added for children to anticipate which schools are so popular
that they would be wasted as a second choice. If there are only two excellent schools, it
makes sense to list one as a first choice, and perhaps the third-best school as a second
choice, since both excellent schools can be expected to fill up in the first application
round. The child should not waste its second choice on a school that it knows will not
have any places left.
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Children might also differentiate between two schools having an equal league table
position, with one holding a stable position and the other being perceived as ‘on the
slide’. Perhaps a highly rated school that was declining might even be passed over in
favour of a less well-rated school that was improving, since the children will be attending
the school for six years.

The school agents could also benefit from increased intelligence: for example, when
choosing a new specialism, they simply pick the first one which meets their basic criteria,
rather than evaluating all possible options and ranking them by suitability. The (unethical)
‘act of sabotage’ rule in which a school adopts a new specialism to destroy the niche
position of a competitor, for example, could be made more effective by preferring a new
specialism that destroyed the joint niche of two competitors at once.

More significantly, the school agents could also learn from their mistakes by monitoring
the effects of a strategy change. For example, if a school considers itself popular enough
to become class sensitive but the children’s class blind preferences turn out to be so high
that this move backfires and it starts slipping down the league tables, it could recognise
the situation and revert to its previous strategy, remembering not to make the same error
again. This would make the rules much more complex, but it would also stop ‘stupid’
runs from occurring where the schools take turns using the same bad strategy and
switching roles, when any human could recognise the pattern and advise them to stop
(e.g. Figure 6.13). An even more intelligent school could even learn from its competitors’
mistakes in this manner.

8.3.4 Increased heterogeneity among agents

Currently, there are only three distinct types of agent within a given simulation run:
working-class children, middle-class children, and schools. It is true that these groups act
differently when co-evolutionary behaviour is enabled, but even then, each group’s
members follow homogeneous rules. They only differ in their attributes. Arguably, the
middle- and working-class children differ only in attributes as well, so there are only two
types of agent. However, this still produces heterogeneous behaviour, since different
attributes lead to different rules being triggered.

It would, however, be more interesting to sub-divide these groups, allocating, say, 10% of
school agents a more aggressively competitive set of rules, and giving the remainder a
more cooperative rule set. This could easily be done in Repast by defining a new subclass
of school, in the same way that EvolutionarySchool was created and given its own rule
set, and adding a simulation parameter that specified what percentage of agents should be
of this type. This is already done via the FractionMiddleClassPopulation parameter for
creating that percentage of middle-class child agents, making the remainder working-
class.

8.3.5 More sophisticated league table calculations

The league table ratings used in this project were kept relatively abstract throughout: they
only consisted of a four-year moving average of the school’s middle-class composition. It
could be interesting to examine more sophisticated league table mechanisms, such as the
value-added tables used in real life (DfES, 2007). This could be calculated by allocating
each child an ‘exam score’ on school entry that was on average lower for working-class
children. Upon leaving the school, they would be given a ‘value-added’ exam score that
was dependent both on their original exam score and on the social make-up of the school,
since a child’s exam results are likely to be positively affected by a high percentage of
middle-class children in its class (Lauder and Hughes, 1999).
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An alternative view of league tables would be to abstract them even further, and instead
of using raw ratings, to provide parents with only ranking information. This would
probably significantly influence the simulation’s outcome, perhaps preventing any one
school from gaining a fully polarised intake since its rising degree of success would be
masked from view. Middle-class parents should view the difference between the top and
second-highest ranked schools as larger than working-class parents do, analogous to
middle-class parents’ current increased preference for high league table ratings.

8.3.6 More flexible model parameters

A trade-off has been present throughout the project between not wishing to over-
complicate the model’s parameters, and allowing for sufficient flexibility. Currently, some
of the necessary flexibility requires the user to use a different random seed on occasion to
obtain the precise starting configuration desired. This would clearly be unacceptable in a
more rigorous research project, since it would compromise the validity of comparing
simulation runs against each other directly. A useful extension would therefore be to write
a custom parameter file reader that would overcome the constraints on expressiveness
imposed by Repast.

The constraints encountered by this project all followed the same format: we had a
parameter describing a variable number of objects or events, such as the number of
possible school specialisms, or the number of stochastic shocks; we then wished to
further parameterise each of these objects, one by one. Repast does not allow a variable
number of parameters, the number of which depends on another parameter. This could,
however, easily be overcome by writing a custom parameter file, since Repast allows the
desired reader to be specified within a parameter file; but this would have the
disadvantage of no longer being compatible with Repast’s parameter GUI, so Repast
could no longer be used to generate real-time graphs in its interactive mode.

Since Repast is open-source, existing functionality could easily be adapted for the
parameter file reader, and only this particular extra feature would need to be written. It
was not implemented on this project due to time constraints, and because it only became a
necessity at the end of the project, when using school specialisms; until then, we had been
lucky and had not needed to use an alternative random seed. We were, however, not able
to reliably compare the three-specialism cases in those experiments against the rest of the
experiments.

Another implementation adjustment that would be useful would be to turn the rule files
used into parameters to the program. This would allow the simulation itself to be
packaged as a JAR file, along with an appropriate script to run it, and the rules could be
kept separately as text files. This would allow non-technical social scientists to edit the
Drools rules, which are very human-readable (see Appendix C, sections 11.1-11.4),
without having to compile or even see any Java code. It would also allow long batch runs
to be created that used different rules for different runs. In this project, in order to run
experiments on several different rule sets, such batch runs were separated into several
sub-runs, one per set of rules.

8.4 Predictive abilities

The model does of course not even approach the level of realism required to make a
prediction about the system it simulates with confidence. In fact, the system it models is
arguably really that described by Room and Britton’s equations, rather than the real
world. We have aimed more towards a “thought experiment” type of model than one
aimed towards prediction: as noted in section 2.4, the two may be mutually exclusive.
And even if it were a validated replica of the real world school admission domain,
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prediction in the social sciences is notoriously poor, as discussed in section 2.4. However,
it could nonetheless be used to make a generalised, abstract prediction about a real world
scenario, with the caveat that its reliability is unknown.

Brighton’s school admissions process has recently received much media attention (e.g.
BBC News, 2007; The Observer, 2007). They are replacing the old system, which was
based on the distance of a child’s home to the school, by a “lottery” system of random
allocation that is equivalent to our ‘class blind’ school strategy. The changes are
motivated by new government guidelines designed to reduce social exclusion by
preventing wealthy families moving into the most popular catchment areas, pricing
working-class families out of the market.

We do not model catchment areas explicitly, but this is one of the factors that supports the
higher preference for high-performing schools held by middle-class children, compared to
working-class children. Our scenario of two class sensitive schools leading towards social
polarisation of school composition therefore corresponds approximately to the original
Brighton configuration.

Our model does not enable us to force schools to change strategy at a particular point in
time — the schools decide themselves if and when they wish to do so — but we can specify
an initial configuration involving inequity. We could therefore ‘fast-forward’ to the
current point in time and run a simulation with an inequity of, say, 80% between two
schools™ and tell the schools to use class blind allocation policies. If co-evolutionary
behaviour is disabled, then they are forced to remain in the Brighton scenario. In fact, we
have already run this simulation, in experiment 6.4.10. It predicts that the inequity will
decrease until it reaches the intrinsic inequity defined by the new school strategies. The
magnitude of this new inequity cannot be predicted, since we lack the empirical data to
decide upon appropriate middle- and working-class preferences for high-performing
schools.

In short, we predict that the inequity between the schools will be lessened, but only up to
a point, after which it will stabilise at the level built in to the new scenario. The
government will only succeed partially in its aim to reduce social exclusion, since it can
only fully redefine the schools’ behaviour through social policy; it only has indirect
influence on families’ preferences. However, it could be that middle-class parental
preferences are also reduced because of the policy changes, since they lose their
advantage of being able to move to a popular catchment area. This would reduce the
resultant inequity further yet. But their preferences would still not be reduced to the level
of working-class parents’ preferences, eliminating the inequity entirely, since there are
many other factors that shape their preferences (Room and Britton, 2006a).

As long as the class system exists in its current form, there will be social inequity; the
government can only act to minimise the social exclusion as far as possible.

32 Unfortunately the model does not allow initial inequity to be specified between more than two schools.
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9 Appendix A

9.1 Validation of initial prototype against Room and Britton’s model
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Figure 9.1 — Difference between z* (the inequity between the schools’ middle-class intakes)
predicted by Room and Britton’s model, and that measured using the simulation, for varying
middle-class fractions of the population. The differences appear to be acceptably low; we can
conclude the model performs as expected. The runs used a middle-class preference of 2.56 and a
working-class preference of 0.01.
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Figure 9.2 — Predicted inequity produced by varying the fraction of the population that is
middle-class, according to Room and Britton’s model. As previously, the intervals between bars
are logarithmically spaced, centred around 0.5. The runs used a middle-class preference of 2.56

and a working-class preference of 0.01.
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Figure 9.3 — Two class sensitive schools: polarisation is observed much sooner with a
relatively high middle-class preference of 1.64 (the working-class preference is 0.82). Note that
this figure uses a smaller scale than its predecessors.
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Figure 9.4 — Scatterplot of working-class preference against the mean inequity between the two
schools, for middle-class preference 0.99. No relationship between the variables is found, as
expected.
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Figure 9.5 — Scatterplot of working-class preference versus number of years taken to reach
total polarisation. No relationship can be identified.

9.2 Stochastic shocks
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Figure 9.6 — The average inequity between schools increases exponentially with the schools’
preference for middle-class applicants. Each run used an equally high middle- and working-class
preference for middle-class schools of 20.48, and ran for 200 years using the same random seed.

The first 5 years were excluded to allow the system to stabilise first.

9.3 Validating the Drools model

A number of tests were undertaken to validate the Drools model against the original Java
model, to establish that it produces the same behaviour under the same conditions. The
two models are far too different to be able compare two runs with the same parameters
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and random seed and expect an identical result from each model, but the similarity
between runs with the same parameters should be approximately that experienced when
varying the random seed within the original prototype.

Unfortunately, since the Drools model takes much longer to run than the Java model (see
section 3.3.5), it was not possible to run every single test run on the Java model in the
Drools model as well. Additionally, the evolutionary nature of the project meant that
development was ongoing up until the end, and the regression tests had to be re-run every
time the Drools model changed. Instead, a cross-section of representative experiments
had to be chosen for replication. These are summarised here. It should, however, be noted
that the lack of complete tests means that potentially, there could be a section of the
parameter space left untouched which exhibits anomalous behaviour.

9.3.1 Class blind schools

Middle-class and working-class preference parameter sweep

Due to time constraints, each run was only simulated for 200 years rather than the 500 the
Java model used, so the Java model’s results had to be recalculated using only 200 years
to allow for an accurate comparison. We now show the differences between the Java
model's and the Drools model's average inequity for each run:
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g
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Difference between Java and Drools models' z*

0.01 002 0.04 008 016 032 064 128 256 512 10.24 20.48

Figure 9.7 — Differences in average inequity (z*) between the Java and the Drools models’
results for a parameter sweep of the middle- and working-class preferences. As in previous
diagrams of this type, each column shading represents a different category of middle-class

preference as detailed in the legend, while the categories of working-class preference are shown
along the horizontal axis.

Figure 9.7 shows a close agreement in results, except for a middle-class preference of
2.56. Examining the individual runs soon revealed why this was the case — the one with
the most severe difference is shown below for both models:
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Figure 9.8 — Class blind schools with a middle-class parental preference of 2.56 and a working-
class preference of 0.08, run in the Java model.
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Figure 9.9 — Drools model version of Figure 9.8.

These figures indicate that the overall pattern is still the same, but coincidentally in this
case the Java model experienced a role swap during the first 200 years, while the Drools
model did not. The same thing happened in the other severe discrepancy, when the
working-class preference is 0.04. In other runs of the Drools model using different
random seeds, a crossover like that of Figure 9.8 was seen — it is a random occurrence. It
seems that when the systems are this unstable, it is preferable to compare the overall
pattern rather than try to produce an ‘average inequity’ where the direction of inequity is
not fixed. With that perspective, it seems that the Drools model successfully replicates the
Java model in this experiment.

To increase confidence in the Drools model, the Java model’s in-depth experiment on
middle-class preferences ranging from 1.25 to 2.45 was repeated as well, as shown
below:
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Middle class preference

0.06 }1.25 O14m15501.7 @1.85 M2 @2.15 @2.3 @245

Difference between Java & Drools z*

0.01 0.08 0.16 0.32 0.64 1.28
Working class preference categories

Figure 9.10 — Difference in the inequity between the two schools for the Java and the Drools
models, under various combinations of middle- and working-class preferences. Each shade of bar
represents a different middle-class preference (see legend), while the horizontal axis describes
categories of working-class preference. (Note the different scale to Figure 9.7.)

A mean difference of 0.013 seems to be satisfactory, given that the standard deviation of a
similar statistic between runs using different random seeds in the Java model was 0.011
for a middle-class preference of 2.56 (with a working-class preference of 0.08; see 5.1.3).

Sweep of middle-class fraction of the population

This was varied using a middle-class preference of 20.48, and a working-class preference
of 0.01, since this case had previously produced very little variance in the Java model,
meaning it should be easier to compare results.

Fraction middle class population

0.18 [10.34 @ 0.42 [0.46 E0.48 @0.49 [ 0.5 E0.51 F0.52 §0.54 WM 0.58 F0.66 =0.82

0.006
0.004

0.002

0

-0.002 -
-0.004

-0.006 -

Difference between Java & Drools z*

-0.008

Figure 9.11 — Differences in inequity in the Java and the Drools models, for varying values of
the fraction of the population that is middle-class, each of which is represented by a differently
shaded bar. (Note that the intervals between bars are logarithmic, centred on 0.5, rather than being
evenly spaced.)

The differences found here were very small compared to the inequities actually found
(see Figure 5.8), and are much smaller than the differences between the Java model and
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Room and Britton’s model (see Figure 9.1) and so we can conclude that the models’
behaviour coincides.

9.3.2 Class sensitive schools

Middle-class preference sweep

The same middle-class parameter as examined in the Java model was explored:
preferences centred on the critical value of 1.0, increasing and decreasing logarithmically
to get the sequence 0.84, 0.92, 0.96, 0.98, 0.99, 1, 1.01, 1.02, 1.04, 1.08, 1.16, 1.32, 1.64,
2.28, 3.56, 6.12 and 11.24. This resulted in a close match to the Java model’s results:

—i— Java model —A— Drools model
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Middle class preference

Figure 9.12 — Comparison between the Java and the Drools model of number of years until
total polarisation occurred.

However, the Drools model is missing the first data point, for a middle-class preference
of 1.0, since polarisation did not occur within the 1500 years tested with the usual random
seed. Given that polarisation only occurred in year 1459 in the Java model, it is easy to
imagine that polarisation could have been just around the corner in the Drools model — if
it were not for the fact that the slow polarisation process began in the Java model around
the year 600 (see Figure 5.12), and in the Drools model it subsides again:
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Figure 9.13 — Drools model: two class sensitive schools with a middle-class preference of 1.0,
the critical value for a middle-class population of 50%. This simulation case was re-run to see if
the point of polarisation could be identified, but we were forced to give up after 7000 years, due to
lack of time. While the potential for polarisation is there, we could continue indefinitely and never
hit it.

Nevertheless, it appears as though the potential for polarisation is still there in Figure
9.13, but in a very unstable sense. This is consistent with our assumption that we cannot
predict whether polarisation will occur at the critical value, and so the discrepancy
between the two models does not seem very serious.

What is more serious is that in the early cases immediately following the critical value,
with a middle-class preference of 1.01 and 1.02, the Drools model reaches polarisation
significantly sooner than the Java model. However, this concern is lessened in the light of
the huge variation found within the Java model for a middle-class preference of 1.01,
where results ranged from 369 to 1449 years (see section 5.2.2). No ‘representative run’
can be identified for the Java model in these borderline cases, and so these individual runs
here cannot really be compared either. If the Drools model were also run with 100
different random seeds for a middle-class preference of 100, for 1500 years each, then a
more reasonable comparison would be possible; unfortunately, there was no time for this
in this project. All this experiment can tell us is that the results here are within the range
covered by the Java model; it could, however, be that the Drools’ models range overlaps
with that of the Java model, but is not identical to it.

Middle-class/working-class preference sweep

The purpose of these tests was to confirm that, as before, the working-class preference
has no significant impact on class sensitive results.

a) Middle-class preference of 0.99

As in the Java model, no polarisation between the schools' middle-class intakes occurred,
yet very volatile behaviour was exhibited. In the Java model, a marked inequity between
the schools was observed in 9/11 of the cases; the same ratio was found in the Drools
model, but not in the same cases.

Again, no relationship was found between the working-class preference and the mean
inequity between schools:
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Figure 9.14 — Scatterplot illustrating the lack of relationship in the Drools model between the
working-class preference and the mean inequity between the schools’ middle-class intake, for two
class sensitive schools and a middle-class preference of 0.99.

Since no relationship is expected between the two variables, one would not expect any
relationship between the Java and the Drools model either, except that polarisation does
not occur. The fact that this is the case is further support for the claim that the working-
class has no impact on any aspect of the outcome (rather than it having a complex effect
that is not easily apparent). However, it is a concern that the inequities found were overall
lower than in the Java model, which reached 0.43 and 0.32 in two cases (see Figure 9.4).

b) Middle-class preference of 1.64

This preference was identified in the Java model as one that is guaranteed to produce
polarisation. The Java model coupled this middle-class preference with the working-class
preferences 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12 and 10.24, and found
no significant relationship between the working-class preference and the years taken to
reach total polarisation. The Drools test replicated these findings fully. The Java model
found that polarisation was reached on average after 40.5 years, with a high standard
deviation of 9.6. Repeating one of the test cases while varying the random seed 11 times
instead of the working-class preference resulted in a mean of 32.4 years, with a standard
deviation of 11. The Drools result was extremely similar to this latter result: it found a
mean of 32.8, with a standard deviation of 11. Therefore, the Drools behaviour appears to
be correct in this experiment, and to have a very similar level of variability as previously.

¢) Middle-class preference of 11.24

Finally, the extreme case of 11.24 was re-run. Being very far from the borderline case,
very little variance was exhibited, as expected. As before, total polarisation occurred
during year 5 in every case. Again, the trajectory differed only slightly in the first five
years: a low standard deviation of 0.0023 was found among the mean intakes of the
leading schools, centred on a mean of 0.727. This exhibits an almost identically low
variability as the Java model does, which has a standard deviation of 0.0049; however,
the mean is somewhat higher than the Java model’s mean of 0.691, which is significant
given the very low variance from the means within each model’s runs. Thus, the test was
not entirely successful: while the time taken to polarise was approximately the same, the
Drools model took a slightly steeper trajectory to get to this state. However, this slightly
steeper path cannot be very significant, since it only made itself noticeable in this
borderline test: if it were a serious problem, then one would expect the more ‘normal’ test
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cases to have exhibited polarisation occurring sooner than in the Java model, but this was
not found.

Sweep of the middle-class fraction of the population

The same parameter space was investigated as originally in the Java model in experiment
5.2.1, varying the fraction of the population that is middle-class. This allowed a direct
comparison between results:

Theta 1/(2*theta) - 0.16 1/(2*theta) - 0.01 1/(2*theta) 1/(2*theta) + 0.64 1/(2*theta) + 10.24

Java Drools Java Drools Java Drools Java Drools Java Drools
0.1 / / / / 1038 / 105 / 19 10
0.2 / / / / 1358 1181 77 53 7 7
0.3 / / / / 527 / 92 35 5 4
0.4 / / / / unstable / 30 26 10 5
0.5 / / / / / / 43 37 5 5
0.6 / / / / unstable / 23 23 4 4
0.7 / / / / / / 15 14 3 3
0.8 / / / / unstable | unstable 15 20 3 4
0.9 / / / unstable | unstable | unstable | 9 (blips) | 14 (blips) 3 4

Table 9.1 — Comparison of the number of years taken to polarisation in the Java model, and in
the Drools model. Each row represents a different fraction of the population that is middle-class
(0); while the column pairs show the middle-class preference, where 1/(20) is the critical value as
described in section 5.2.1. ‘/ means that no polarisation occurred, and ‘unstable’ means that
polarisation was reached for at least four consecutive years, but was then lost again. Table 5.1
compares the Java model’s results against the results predicted by Room and Britton.

In the middle column pair, where the middle-class preference for high-performing schools
is equal to the critical value, the predicted behaviour is essentially undefined, so it seems
acceptable to find this type of discrepancy there, especially when the outcome is so varied
within the Java model alone. The unstable polarisation reached for the middle-class
population fraction of 0.9 for a middle-class preference of the critical value - 0.01 is,
however, more of a cause for concern. A plot of the run itself sheds some light on the
cause:

School 0

School 1 ‘

Fraction middle class intake

0 200 400 600 800 1000 1200 1400

Time

Figure 9.15 — Drools model run of a middle-class preference of the critical value - 0.01, using a
middle-class fraction of the population of 0.9. “‘Unstable polarisation’ was reached in two
instances: years 780-784, and years 787-790. Also note that from year 609 to year 610, there is a
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complete role reversal, with the top school going from a value of 1.0 to the bottom fraction of 0.8
from one year to the next, showing how unstable the system is.

Because our definition of what counts as an unstable polarisation (at least four
consecutive polarised time steps) is relatively lenient, this is relatively likely to occur in
this type of situation, where the 1.0 mark is much more easily reached than in other cases,
simply because there is such a small bracket, 0.8-1.0, in which to move. It seems that this
extreme type of situation requires a different definition; perhaps it would be better to
define different measures depending on the context, for future experiments.

Since it seems there is not much difference between this case of unstable ‘polarisation’
and the Java model’s lack of polarisation, it is argued that this discrepancy is not evidence
that the Drools model fails to replicate the Java model sufficiently well. The Drools
model appears to be stricter about avoiding polarisation when the middle-class preference
is exactly the critical value, but with such a small sample, the results are inconclusive.
Certainly, the models appear to agree closely with the two higher values of middle-class
preference.

9.4 Multiple schools

The following figures show a comparison of multiple-school scenarios ranging from five
to ten schools.

Class sensitive schools

Most cases are depicted once with a working-class preference equal to the middle-class
preference, and then with a minimal working-class preference of 0.01, to illustrate the
additional complexity added by the low preference.
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Figure 9.16 — Five class sensitive schools, with an equal middle- and working-class preference
for middle-class schools of 20.48
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Figure 9.17 — Five class sensitive schools, with a middle-class preference for middle-class
schools of 20.48, and a working-class preference of 0.01

The five-school scenario is discussed in section 6.2.
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Figure 9.18 — Six class sensitive schools, with an equal middle- and working-class preference

for middle-class schools of 20.48. This is essentially a more complicated version of the four-
school scenario, as discussed in section 6.2.
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School 3 School 0
School 4 School 5

School 1 School 2

Fraction middle class intake
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Figure 9.19 - Six class sensitive schools, with a middle-class preference of 20.48, and a
working-class preference of 0.01. The additional randomness resulting from the more or less
arbitrary choices by working-class families makes it more difficult for the non-leading schools to
distinguish themselves above the rest of the pack than in Figure 9.18.
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Figure 9.20 - Seven class sensitive schools, with an equal middle- and working-class
preference for middle-class schools of 20.48. School 3’s fall from popularity (along with related
fluctuations in other schools) is worth noting; this is the greatest instability we have observed so

far in these multi-school scenarios. It is, however, not surprising, given how little separated it from
other schools to begin with.

Eight schools are not shown because the pattern is so similar to that of six schools;
similarly, nine schools are of little interest because they follow the seven-school pattern
shown above. The ten-school scenario also adds nothing new, but is shown below for
completeness. Twenty schools are again similar, with six schools in the 1.0 position,
rather than the ten-school scenario’s four leading schools. This is interesting because the
pattern is clearly not simply the ten-school scenario ‘doubled’.
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Figure 9.21 — Ten class sensitive schools, with both middle-class and working-class
preferences set to 20.48. Four schools are superimposed on the 1.0 line.
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Figure 9.22 - Ten class sensitive schools, with a middle-class preference of 20.48, but a
working-class preference of 0.01. Four schools are again superimposed on the 1.0 line, but the
remainder of schools have had so much ‘randomness’ introduced by the working-class families’
arbitrary choices that no differentiation can emerge.

Class blind schools

Increasing numbers of class blind schools are shown below, each with a middle-class
preference of 20.48 and a working-class preference of 0.01, in order to maximise the
differentiation between schools.
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Figure 9.23 — Four class blind schools, with a middle-class preference of 20.48 and a working-
class preference of 0.01
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Figure 9.24 — Five class blind schools, with a middle-class preference of 20.48 and a working-
class preference of 0.01
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School 0 School 1 School 2 School 3 School 4 School 5
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Figure 9.25 - Six class blind schools, with a middle-class preference of 20.48 and a working-
class preference of 0.01

9.5 Co-evolutionary behaviour

With specialisms - school O - - - - - -- No specialisms - school 0

With specialisms - school 1 ------- No specialisms - school 1

Fraction middle class intake

0 20 40 60 80 100 120 140 160 180 200

Time

Figure 9.26 — Two runs superimposed. The simulation is initialised with two class blind
schools, and a mean class blind preference of 0.32 (standard deviation 0.2). In dotted red, the only
rules are the ones introduced up to experiment 6.4.5, i.e. all rules relating to schools changing their
admissions strategy. In black, these rules are used as well, but school specialisms have been added

to the mix as well. This softens the effect of school strategy and league table position.
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Figure 9.27 — Three schools run using the rules of experiment 6.4.4. Initially the three schools
are class blind, and middle- and working-class preferences are 20.48 and 0.01 respectively. The
mean class blind preference is 0.16, with a standard deviation of 0.2.

‘— School 0 —— School 1 —— School 2 —— School 2

|
0.7

]
ol

/IA |
Do,

\

AN

A
Vi) Tk
AN

Fraction middle class intake

0 20 40 60 80 100 120 140 160 180 200

Figure 9.28 - Four schools run using the rules of experiment 6.4.4. Initially all schools are class
blind, and middle- and working-class preferences are 20.48 and 0.01 respectively. The mean class
blind preference is 0.32 (unlike Figure 9.27), with a standard deviation of 0.2.
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Figure 9.29 — Three schools run using the rules of experiment 6.4.9, i.e. all rules, and the
parameters of Figure 9.27.
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Figure 9.30 — Four schools run using the rules of experiment 6.4.9, i.e. all rules, and the
parameters of Figure 9.28.
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10 Appendix B

10.1 How to run the model

The model requires the Java 1.5 run-time environment to be installed.

Assuming that a JAR file named schoolChoice.jar has been generated from the source
code, the following directory structure should be used:

drools-lib™

drools-compiler-3.0.5.jar

drools-core-3.0.5.jar

drools-decisiontables-3.0.5.jar

drools-jsr94-3.0.5.jar

lib
antlr-2.7.6.jar
antlr-3.0ea8.jar
commons-collections-3.1.jar
commons-io-1.1.jar
commons-jci-core-1.0-406301 jar
commons-jci-eclipse-3.2.0.666.jar
commons-jci-janino-2.4.3.jar
commons-lang-2.1.jar
commons-logging-api-1.0.4.jar
core-3.2.0.666.jar
janino-2.4.3 jar
jsr94-1.1 jar
junit-3.8.1 jar
jx1-2.4.2 jar
stringtemplate-2.3b6.jar
xml-apis-1.0.b2.jar
xpp3-1.1.3.4.0 jar
xstream-1.1.3.jar

lib*

asm.jar

beanbowl.jar

coltjar

commons-collections.jar

commons-logging.jar

geotools_repast.jar

ibis.jar

jakarta-poi.jar

jep-2.24 jar

jgap.jar

jhjar

jmfjar

jode-1.1.2-prel jar

joone.jar

33 Drools library files — download from http://labs.jboss.com/jbossrules/downloads (accessed 30 April 2007)
** Repast] library files — download from http://repast.sourceforge.net/download.html (accessed 30 April 2007)
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JTS jar

junit.jar

log4j-1.2.8.jar

OpenForecast-0.4.0.jar

openmap.jar

plot.jar

ProActive.jar

trove.jar

violinstrings-1.0.2.jar
repast. jar”
schoolChoice.jar (the model)
SchoolChoiceParams.txt (Repast parameter file — only necessary for batch mode)
Then, the mammoth command
java -cp schoolChoice.jar;repast.jar;drools-lib\drools-jsr94-3.0.5.jar;drools-lib\drools-
compiler-3.0.5 jar;drools-lib\drools-core-3.0.5 jar;drools-lib\drools-decisiontables-
3.0.5.jar;drools-lib\lib\antlr-2.7.6.jar;drools-lib\lib\antlr-3.0ea8.jar;drools-
lib\lib\commons-collections-3.1.jar;drools-lib\lib\commons-io-1.1.jar;drools-
lib\lib\commons-jci-core-1.0-406301 jar;drools-lib\lib\commons-jci-eclipse-
3.2.0.666.jar;drools-lib\lib\commons-jci-janino-2.4.3 jar;drools-lib\lib\commons-lang-
2.1.jar;drools-lib\lib\commons-logging-api-1.0.4.jar;drools-lib\lib\core-
3.2.0.666.jar;drools-1ib\lib\janino-2.4.3.jar;drools-1ib\lib\jsr94-1.1.jar;drools-1ib\lib\junit-
3.8.1.jar;drools-lib\lib\jx1-2.4.2.jar;drools-lib\lib\stringtemplate-2.3b6.jar;drools-
lib\lib\xml-apis-1.0.b2.jar;drools-lib\lib\xpp3-1.1.3.4.0.jar;drools-lib\lib\xstream-1.1.3 jar
uk.ac.bath.cs.schoolchoice.SchoolChoiceModelBatch

runs the batch model using the parameter file, and replacing
‘uk.ac.bath.cs.schoolchoice.SchoolChoiceModelBatch’ with
‘uk.ac.bath.cs.schoolchoice.SchoolChoiceModellnteractive’ runs the model in interactive
GUI mode.

Drools requires every library JAR file to be specified on the classpath, but Repast expects
to find its library classes in the /ib subdirectory so this is not necessary.

The old Java model can be run in an identical manner, or the drools-/ib subdirectory can
be left out and the command shortened to

java -cp schoolChoice.jar;repast.jar uk.ac.bath.cs.schoolchoice.SchoolChoiceModelBatch
or to run the GUI model,

java -cp schoolChoice.jar;repast.jar
uk.ac.bath.cs.schoolchoice.SchoolChoiceModellnteractive as before.

An example parameter file is shown below. It iterates through the six combinations:
NumSpecialisms: 2

1. NumSchoolsClassBlind: 0

2. NumSchoolClassBlind: 1

3. NumSchoolsClassBlind: 2
NumSpecialisms 3

4. NumSchoolsClassBlind: 0

5. NumSchoolClassBlind: 1

6. NumSchoolsClassBlind: 2

3% RepastJ framework itself — download from http://repast.sourceforge.net/download.html (accessed 30 April 2007)
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while the other parameters remain fixed. The Repast parameter tutorial
(http://repast.sourceforge.net/how-to/params.html) gives more detail on parameter file
formats.

runs: 1
NumSpecialisms {
set list: 2 3
{
runs: 1
NumSchoolsClassBlind {
set list: 0 1 2
}
}
}
ClassBlindPreferenceMean {
set: 0.32
}
ClassBlindPreferenceStdDeviation {
set: 0.2
}
MiddleClassPreference {
set: 20.48
}
FractionMiddleClassPopulation {
set: 0.5
}
WorkingClassPreference ({
set: 0.01
}
RngSeed {
set: 1171139146239
}
NumChildren {
set: 400
}
NumSchools {

set: 2

}

NumSteps {
set: 200

}

NumStochasticShocks {
set: 0

}

Coevolutionary {
set boolean: true

}
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- Multi-agent simulation of the dynamics of social exclusion in school choice -

10.2 Java model’s actions on each step

shuffleChildren () ;

for (int i = 0; i < childList.size(); i++) {
Child child = childList.get (i);
shuffleSchools () ;

child.applyForPlace (schoolList) ;
}
/*
* Later schools' rejections can add applications back into the
* queues of earlier schools

*/
while (existPendingApplications()) {
for (int i = 0; 1 < schoollList.size(); 1i++) {
School school = schoolList.get(i);
school.processApplications () ;
}
}
/*

* Only advance the year once all applications have been
* resolved
*/
for (int i = 0; i < schoolList.size(); i++) {
School school = schoollist.get(i);
school.advanceYear () ;

10.3 Drools audit logging

A snippet of the output produced by the Drools working memory logger is shown below,
to illustrate that it is not very human-readable:

<object-stream>
<list>
<org.drools.audit.event.ActivationLogEvent>
<activationId>Decrease preference for class blind schools due to
typical distribution [2, 1]</activationId>
<rule>Decrease preference for class blind schools due to typical
distribution</rule>
<declarations>fracMiddleClass=0.5(1);
applicant=uk.ac.bath.cs.schoolchoice.child.EvolutionaryChild@1458dcb (2) ;
env=uk.ac.bath.cs.schoolchoice.Environment@116318b(1)</declarations>
<type>4</type>
</org.drools.audit.event.ActivationLogEvent>
<org.drools.audit.event.ActivationLogEvent>
<activationId>Remove class blind factor if no schools are class
blind [0, 2]</activationId>
<rule>Remove class blind factor if no schools are class
blind</rule>
<declarations>applicant=uk.ac.bath.cs.schoolchoice.child.EvolutionaryChil
d@1458dcb (2) </declarations>
<type>4</type>
</org.drools.audit.event.ActivationLogEvent>
<org.drools.audit.event.ActivationLogEvent>
<activationId>Research school place application [2]</activationId>
<rule>Research school place application</rule>
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11 Appendix C

The following pages give a selection of program code for the final, Drools-based model.
The program is split into packages containing classes and rule files as follows (subclasses

are indented below their superclasses where possible):

uk.ac.bath.cs.schoolchoice
SchoolChoiceModel. java

SchoolChoiceModelBatch.java
SchoolChoiceModellInteractive. java

Agent.java
Environment.java
StochasticShock.java
YearGroup.java
SocioEconomicStatus.java
Output.java

uk.ac.bath.cs.schoolchoice.child

Child.java (subclass of Agent)

child.drl
EvolutionaryChild.java
evolutionaryChild.drl

SchoolFactor.java
LeagueTableFactor.java
SchoolStrategyFactor.java
SpecialismFactor.java

uk.ac.bath.cs.schoolchoice.school
School.java (subclass of Agent)
school.drl
EvolutionarySchool.java
evolutionarySchool.drl
Specialism.java

uk.ac.bath.cs.schoolchoice.ontology
Message.java
Application.java
SchoolPlaceAcceptance. java
SchoolPlaceRejection. java

uk.ac.bath.cs.schoolchoice.deterministic
DeterministicProbabilityRule.java

The four Drools .drl files, and Agent.java, School.java and EvolutionarySchool.java are
shown on the following pages; the remaining Java code can be found on the CD enclosed

with this submission.
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