
        

Citation for published version:
Cliffe, E 2007, Reflections on the number of field sieve. Computer Science Technical Reports, no. CSBU-2007-
03, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2007

Link to publication

©The Author June 2007

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/reflections-on-the-number-of-field-sieve(ccb50ddf-7c1b-4e50-8186-3137a51396ea).html


Department of
Computer Science

Technical Report

PhD. Dissertation: Reflections on the Number of Field Sieve

Emma Hazel Cliffe

Technical Report 2007-03 June 2007
ISSN 1740-9497



Copyright c©June 2007 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497



REFLECTIONS ON THE NUMBER

FIELD SIEVE

Submitted by Emma Hazel Cliffe

for the degree of

Doctor of Philosophy

of the University of Bath

2007

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and no

information derived from it may be published without the prior written consent

of the author.

This thesis may be made available for consultation within the University library

and may be photocopied or lent to other libraries for the purposes of consultation.



Summary

The number field sieve is currently the asymptotically fastest factoring algorithm

and is fastest in practice for integers greater than approximately 110 decimal

digits.

We develop one of the existing estimation techniques for the quantity of data

produced by the classical sieve, we draw attention to a possible underlying cause

for the severe underestimate that has previously been recorded. We suggest a

method for improving the estimates and give supportive evidence that reasonable

estimates can be produced in this way.

We consider the special cases, where good parameters for the number field sieve

were selected by hand, in the context of innovations made in polynomial selection

in the general case. We note characteristics that are shared by a variety of special

cases including the possibility of subfield structure.

We demonstrate how the general case polynomial selection methods are capable

of isolating some sorts of special cases without guidance as to the structure of the

number to be factored. We note that this blurs the previously sharp distinction

between special cases, as defined by a set of unusual shared and convenient char-

acteristics, and general cases. We pose some open questions regarding this and

the possibility of repudiation or opportunistic attacks on the RSA cryptosystem.

Noting that this could raise the importance of advances in the algorithm that

are applicable only in the special cases, we investigate the possibility of utilising

the subfield structure. While there are promising facets of the natural method

of utilising this structure it is shown not to be a practical method. We support

this result using the estimation techniques mentioned above.

i



Acknowledgements

There are many people that have helped and supported me in my work. In

particular I would like to mention James Davenport, my supervisor, for all his

support and the many interesting and challenging discussions over the years.

Andrew Holt, a fellow student, I must acknowledge for providing a sounding

board throughout my studies and for the two and a half years of almost daily

discussions regarding our work which were of an immense help to me. I would

also like to thank John Fitch for keeping me going at the end and agreeing to

sort out any scary forms that came his way.

I would like to thank all those people with whom I have shared an office for the

interesting debates, proof reading, help with code debugging, skill at backgam-

mon, intriguing ideas for wasting time and perhaps most importantly for all the

cups of coffee.

I must acknowledge my parents Lorraine and Alan Jones and my brother Neil

for their never ending patience regarding all efforts at communicating with me in

the last 3 years and more generally for caring about my research because I do,

without knowing that much about it.

My friends, I would like to thank for listening to my various ramblings about

work, I can’t mention you all but the most staunch allies have been Michael

Stephenson, Richard Dzien, Jamie Stone and Jim Grimmett. Many apologies for

boring you all!

Finally, I would like to thank Owen for all the love and support, I know I could

not have finished this without you.

ii



Contents

Summary i

Acknowledgements ii

1 Introduction 1

1.1 Integer factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Integers with known special form . . . . . . . . . . . . . . 2

1.1.2 General integers . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A family of algorithms . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Factorisation by the congruent squares method . . . . . . 6

1.2.2 A framework for algorithms of this form . . . . . . . . . . 8

1.3 The number field sieve . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background: The number field sieve 16

2.1 The general number field sieve . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Polynomial selection . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



2.1.3 Filtering and linear algebra . . . . . . . . . . . . . . . . . 30

2.1.4 Extraction of square roots . . . . . . . . . . . . . . . . . . 32

2.1.5 Summary of the status of the main steps . . . . . . . . . . 33

2.2 Smooth integers and heuristic runtime analysis . . . . . . . . . . . 33

2.3 Large prime variants . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Up to one large prime on each side . . . . . . . . . . . . . 37

2.3.2 Additional large primes . . . . . . . . . . . . . . . . . . . . 38

2.4 Multiple polynomial number field sieve . . . . . . . . . . . . . . . 38

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Background: Yield and polynomial selection 40

3.1 Smooth and semismooth integers . . . . . . . . . . . . . . . . . . 41

3.2 Properties that affect polynomial yield . . . . . . . . . . . . . . . 44

3.3 Estimating yield over a sieve region . . . . . . . . . . . . . . . . . 49

3.4 Polynomial selection for general integers . . . . . . . . . . . . . . 50

3.4.1 Finding good polynomial pairs . . . . . . . . . . . . . . . . 51

3.4.2 Selecting better polynomial pairs from a set . . . . . . . . 55

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Estimating yield 58

4.1 Cavallar’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Towards an explanation of the underestimate . . . . . . . . . . . . 62

4.3 The linear side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



4.3.2 Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 The non-linear side (intervals) . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Splitting the sieve interval . . . . . . . . . . . . . . . . . . 70

4.4.2 Improved methods for splitting the interval . . . . . . . . . 73

4.5 Splitting the sieve region . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Characteristics of special number field sieve factorisations 85

5.1 Polynomial selection methods for special
cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Size properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Root properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 The Galois group in special cases . . . . . . . . . . . . . . 91

5.3.2 Factor base structure . . . . . . . . . . . . . . . . . . . . . 93

5.3.3 The factor base structure when f is a randomly selected
polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.4 Factor base structure in special cases . . . . . . . . . . . . 97

5.3.5 Root properties, α(F ) and E(F ) . . . . . . . . . . . . . . . 99

5.4 Subfield structure in special cases . . . . . . . . . . . . . . . . . . 101

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Using subfield structure 109

6.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

v



6.3 Theoretical expectations . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Practical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 Some example factorisations . . . . . . . . . . . . . . . . . 122

6.4.2 Sieving tests . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.3 Estimating yield . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Polynomial selection: special versus general 128

7.1 Some open questions . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Polynomial selection in the general case . . . . . . . . . . . . . . . 130

7.3 Special case variants . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Producing special case variants using Murphy’s schema . . . . . . 136

7.4.1 In practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5 Polynomial selection and RSA . . . . . . . . . . . . . . . . . . . . 142

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Summary 149

8.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A SNFS factorisations 152

References 155

vi



Chapter 1

Introduction

The integer factorisation problem is: given a positive integer n find the prime

factorisation n = pe1
1 pe2

2 . . . pek

k where the pi, i = 1, . . . , k are pairwise distinct

primes and the ei ≥ 1. It is sufficient to split n into two non-trivial factors which

can then be tested for primality since we may repeat the process until we obtain

the prime factorisation of n.

Asymptotically, the fastest known factoring algorithm for splitting integers is the

number field sieve, it is also the fastest known algorithm in practice for factoring

integers with greater than approximately 110 digits [9].

1.1 Integer factorisation

There are two principal reasons for factoring integers and we will consider both.

The first class of integers is those that are in themselves interesting or special

in some way such that finding the prime decomposition is desirable. The second

class of integers is those that are used in cryptography.

1



1.1.1 Integers with known special form

Usually, for a number or a set of numbers to hold some special interest (not re-

sulting from a real world application) we would expect to have some information

regarding the properties or form of the numbers. There are many examples but

there are some numbers with a special form or property that we are interested

in factoring for historical reasons, pure curiosity or other non-cryptographically

motivated reasons. These include, but are not limited to, Fermat and Cunning-

ham numbers, Mersenne numbers, Cullen and Woodall numbers, repunits and

cyclotomic numbers. There are many ongoing projects devoted to such computa-

tions, utilising both general and specialist factorisation algorithms, a great many

of these are listed by the World Integer Factorisation Center [69].

Prior to the advent of public-key cryptography (which increased the importance

of research into factoring general integers) the vast majority of numbers we wished

to factor would be considered to have some special form. We might have practical

reasons that drive the desire to factor a number or in other cases the factorisation

of specific examples simply adds to the body of knowledge about numbers of the

type concerned. The desire to factor these numbers provided the main impetus

for research into improved and new factoring algorithms. Algorithms were tested

or show cased using numbers generally regarded as being “harder” to factor and in

particular the Fermat and Cunningham numbers fulfilled a key role. Eventually

it was the special form of these numbers that triggered the discovery of what is

now the fastest general factoring algorithm — the number field sieve (NFS).

The original paper on the number field sieve [62] described a special form —

which is asymptotically faster than the later general case — for numbers of a

specific known special structure. This special case encompassed both Fermat

and Cunningham numbers. In these cases and later for other special forms we

are able to select particularly good parameters by hand for NFS and these cases

have become collectively known as the special number field sieve (SNFS).

By the time the number field sieve was invented there was a more pressing reason

to attempt to improve factoring algorithms: it appeared that behind one of the

foundations of secure communication lay the question “What are the current lim-

its of what we can factor?”. Numbers with known special form should not be used

in cryptography but the factorisation of these numbers is still of interest, since

2



they may provide insights that lead to advances in general factoring methods.

The special form of Fermat and Cunningham numbers was partially responsible

for the advent of the number field sieve. Fermat Numbers were first considered

in 1640 by, and are named for, Pierre de Fermat. Fermat noted that a number

of the form 2k + 1, k ∈ Z, k > 0 can only be prime if k is a power of 2. The

Fermat numbers are defined to be numbers Fk = 22k

+ 1, k ∈ Z, k ≥ 0 and a

Fermat prime is any number of this form which is prime. Fermat believed that all

Fermat numbers were prime and indeed F0, . . . , F4 are, however no other Fermat

prime is currently known and it is now considered likely that there is only a finite

quantity of Fermat primes.

In 1732 Euler [43] produced the first factorisation of a Fermat number, F5, but

gave no information regarding how this result was obtained (although later pub-

lications might suggest a possible method). F9 was the first important factori-

sation result obtained using the number field sieve [62], the factorisation being

used to showcase the new algorithm and to demonstrate its power when applied

to numbers of this form.

During the nineteenth century many mathematicians became interested in the

factorisation of Fermat numbers and numbers of the more generalised form 2k±1

and this interest was extended to what is now referred to as the class of Cun-

ningham numbers. These numbers are named for Lt. A. J. Cunningham who

factored many of them during his lifetime. More importantly, he and Woodall

collected together the first tables [31] of factorisations of numbers of the form

bk±1, b small, k large. The interest in factoring numbers of this form is retained

to this day and The Cunningham Project [90] is thought to be the longest run-

ning computation in the world. The original tables compiled by Cunningham

and Woodall have been updated several times in book form [11] and additional

updates can be found on the Cunningham project website [90]. The project has

expanded to take in larger values of b as detailed in [10].

The number field sieve plays a key role in the continued production of these tables

not least because it is asymptotically faster on Fermat numbers, Cunningham

numbers and others with similar special form. Additionally, a more general form

of the number field sieve is sometimes required to factor composite cofactors of

Cunningham numbers for which no special form can be used.

3



While we are interested in factoring special numbers both to drive forward re-

search, to add to the current body of knowledge and occasionally because the

number is important in another branch of mathematics, the main driving force

behind research into factoring algorithms is the importance of public-key cryp-

tography to the modern electronic world.

1.1.2 General integers

The advent of public-key cryptography solved some fundamental problems faced

when attempting to communicate securely. The first publication (parts of public-

key cryptography appear to have been known previously in government circles) in

the area came in 1976 when Diffie and Hellman [35] gave an abstract way of pro-

viding secure communication between two people who had not met or exchanged

securely a secret key. This would effectively solve the key distribution problem.

A practical public-key and signature cryptosystem came in 1978 due to Rivest,

Shamir and Adleman [84] who published the algorithm that would become known

as RSA.

The Basic Principles of the Original RSA Algorithm:

Let n = pq where p and q are two primes of approximately the same size (though

not too close together) and sufficiently large as to prohibit factorisation of n in a

realistic time (except by luck!). Let e and d be integers such that ed ≡ 1 mod φ(n)

where φ(n) = (p− 1)(q− 1) is Euler’s function. Then n is referred to as the RSA

modulus, e as the encryption exponent and d as the decryption exponent. The

pair (n, e) is referred to as the public key and the pair (n, d) as the private key.

Let m be a block of plaintext and gcd(m, n) = 1. We encrypt m thus:

c ≡ me mod n,

and decrypt c:

m ≡ cd mod n.

This results in the recovery of the plaintext. The details are not included as we

are primarily interested in the question of how factoring the modulus results in

4



a complete break of the algorithm. The original paper [84] may be consulted for

the details.

If we have access to p and q (by, for instance, factoring the modulus) then it is a

simple matter to produce φ(n) = (p−1)(q−1). Since we also have e (as it forms

part of the public key) we are then able to compute d with relative ease, as

d = e−1 mod φ(n)

and therefore gain access to the private key. Thus factoring is sufficient to break

RSA. It is also the case that given d and the public key (n, e) we may efficiently

factor n. The details of this and various other attacks are contained in a summary

of attacks on RSA given by Boneh [8]. It is not known whether it is necessary to

factor the modulus n to efficiently compute eth roots modulo n and so gain access

to the plaintext. It is sometimes possible to recover plaintext without finding d

(for details see Crouch and Davenport [30]).

Large integers became important cryptographically with the advent of public-key

cryptography. RSA and its variants made knowledge of what size of integer we

may factor, given a specific set of resources, particularly important. Hence, in

order to aid us in selecting appropriately sized parameters for RSA we continue

to conduct research into general factoring algorithms.

1.2 A family of algorithms

One family of factoring algorithms relies on the same intrinsic idea and the num-

ber field sieve is currently the asymptotically fastest of this group. The idea is

that of factorisation by congruent squares and has its roots in a method of fac-

toring used by Fermat. Fermat looked for x and y such that x2 − y2 = n. If such

x and y could be found then this guarantees that we may produce a non-trivial

factor of n by calculating gcd(x − y, n). However, finding such x and y by trial

and error is not generally an easy task. As noted by Pomerance [83], Gauss and

Seelhoff also used this idea to factor integers and expanded on it.

5



1.2.1 Factorisation by the congruent squares method

In the 1920s Kraitchik [82, 83] noted that we may relax the condition that x2 −
y2 = n and instead look for two squares which are only congruent modulo n. This

no longer guarantees a non-trivial factor but makes it far easier to find values of

x and y.

Suppose for n not a prime power, we construct several pairs x, y such that

x2 ≡ y2 mod n.

If in addition we have x 6≡ ±y mod n we then find

x2 ≡ y2 mod n ⇒ n | (x− y)(x + y),

x 6≡ ±y mod n ⇒ n ∤ (x− y), n ∤ (x + y),

thus gcd(n, x− y) and gcd(n, x + y) are non-trivial factors of n.

We may exploit this method by attempting to construct random or pseudo-

random pairs x mod n, y mod n. It can be shown that if n is divisible by at

least two distinct odd primes then at least half of such pairs (x, y) will produce

a non-trivial factorisation of n.

This change is important as it provides a better method of producing the pairs x

and y. As summarised by Pomerance [83], Kraitchik considered the polynomial

Q(a) = a2−n, and for a set of integers ai, where each a2
i is close to n, calculated

Qi = Q(ai). He then attempted to factor each Qi in the hope that a subset of

the Qi could be produced that, when multiplied together, produced a square, say

y2. Let the product a1 . . . ak be denoted x. Then we have

x2 = a2
1 . . . a2

k ≡ (a2
1 − n) . . . (a2

k − n)

≡ Q1 . . . Qk

≡ y2 mod n

It is then hoped that x 6≡ ±y mod n; if not then further pairs would have to

found.

6



Later, Lehmer and Powers (1931) used a similar method that utilised continued

fractions to produce different (and generally smaller) numbers Qi that are con-

gruent modulo n to squares. This method was abandoned due to the fact that

large amounts of hand computation would often lead only to failure [11, 74].

In fact, both of these methods had two significant downsides:

1. We need to factor the “auxiliary” numbers Qi in order to produce the

required squares. This in itself is time consuming and it is difficult to

decide when to abort attempts to factor a number in order to reduce the

cost of this step.

2. There was no systematic approach by which to isolate a subset of the Qi

so that we may produce the required squares.

The problem of the cost of factoring the auxiliary numbers was addressed sub-

sequently in a manner which had its roots in far earlier sieving methods, this

will be discussed presently. In the interim we make a detour and consider a re-

duction of the first problem and the solution of the second problem. This was

addressed prior to the rise of the modern sieving methods with the introduction

of a non-sieving algorithm, the continued fraction method (CFRAC).

The Continued Fraction method, CFRAC

It was Morrison and Brillhart in 1970 [74] who developed Lehmer and Powers’

earlier method into the first of what we might consider to be the modern factoring

algorithms based on the congruent squares method. They addressed both the

problem of when to abort attempts to factor the auxiliary numbers and produced

a systematic approach by which the required subsets could be constructed. This

was achieved by the introduction of two important components: firstly they used

a “factor base”, a set of prime numbers below a certain bound B and considered

only integers with a similar function to the Qi that factored entirely over this

factor base; secondly they gave a method by which linear algebra could be used

to find the required set.

Morrison and Brillhart demonstrated the power of the continued fraction method

7



by factoring the seventh Fermat number (F7) which was at the time one of the

most wanted factorisations in the Cunningham project. The continued fraction

method was not a sieving method, and in fact it would see the end of the use of

older sieving methods for factorisation until 1982 with the advent of the quadratic

sieve, the immediate forerunner of the number field sieve.

1.2.2 A framework for algorithms of this form

Definition 1 An integer x is said to be B-smooth if every prime factor of x is

at most B.

A general factoring algorithm from the family of congruent squares methods has

three parts (with acknowledgements to [62, page 326]):

• Select the factor base: Select a finite set, called a factor base, of primes

pi ≤ B. We assume that the elements of the factor base have multiplicative

inverses modulo n else we immediately find a non-trivial factorisation of n.

• Collect relations between elements of the factor base: We collect relations

between the pi, that is we find squares x2
j that are B-smooth:

x2
j ≡

∏

i∈I

p
vij

i mod n.

We require the set of relations of this type to have slightly more ele-

ments then the factor base. We write each relation as a vector vj =

(v1j , . . . , vij, . . . ) of the exponents.

• Finding dependencies: For each vector vj we find vj by reducing each of

the coordinates modulo 2. We then form a matrix M by taking the vj

as columns. Since there are more relations than factor base elements the

columns of the matrix are linearly dependent and we wish to find depen-

dencies modulo 2. This is equivalent to finding a vector in the nullspace of

the matrix.

The vector will define a subset S of the relations such that
∑

vj∈S vj = 0,

that is, each coordinate of v =
∑

vj∈S vj = (v1, . . . , vi, . . .) will be even and

8



hence

∏

xj∈S

x2
j ≡

∏

i∈I

pvi

i

≡ y2 mod n

Since we have two squares congruent modulo n the two square method above

will lead to a non-trivial factorisation of n with probability just over one half.

Ten such dependencies will produce a non-trivial factorisation of n with high

probability.

CFRAC was a significant step forward as it introduced both the factor base

and linear algebra in the above scheme and it is this that allows us to produce

algorithms utilising the two squares method since it provides a general approach

by which the congruent squares may be produced.

The quadratic sieve:

The quadratic sieve took parts of CFRAC, Kraitchik’s method and older sieving

methods in order to produce a sophisticated algorithm. Pomerance first became

interested in this amalgamation of ideas when he noticed that the theoretical

runtime of such an algorithm was more favourable than CFRAC, and described

the algorithm in [82]. We give a basic description:

We consider the polynomial Q(a) = (⌊√n⌋+ a)
2 − n. Clearly Q(a) ≡ x2 mod n

for x = (⌊√n⌋+ a).

The factor base will consist of prime numbers below B ∈ N, the factor base

bound. We need not include all the primes p below B, indeed if p is odd p can

only divide Q(a) if the Legendre symbol (n
p
) = 1.

We wish to find values of a for which Q(a) is B-smooth — i.e. Q(a) factors

completely over the factor base. However, trial factoring these over the factor base

would be costly and many would not factor. Instead, since Q(a) is a polynomial

with integer coefficients we use a sieve. This is the major difference between

CFRAC and the quadratic sieve.

9



Sieving dates back to the sieve of Eratosthenos (a way of finding the prime num-

bers in an interval). The quadratic sieve is based on the following idea: if we

have some m ∈ Z and we know that m|Q(a) then we can immediately deduce

that m|Q(a + km), ∀k ∈ Z. Hence once we have an a such that m|Q(a) we can

cheaply identify others.

For each prime p in the factor base (excepting p = 2 which is a special case) we

find two roots of Q(a) ≡ 0 mod p and call these r1, r2. To isolate the B-smooth

Q(a) for some a interval we find the first sieve locations a for which a ≡ ri mod p

and then we divide each Q(a + kp) by p. After we have processed all p in the

factor base those values of Q(a), across the interval, which have been reduced

to 1 are B-smooth (this will not find all the B-smooth numbers, for instance it

will fail for any number divisible by 22 so the actual process is somewhat more

complicated).

Replacing Q(a) in Q(a) ≡ x2 mod n by the prime factorisations, we see that

each a gives rise to a multiplicative relation (modulo n) between elements of the

factor base. As described above these may then be written as relations viewed

as vectors of exponents.

We continue sieving until there are slightly more relations than elements in the

factor base. We may then use linear algebra as described in the general framework

above to produce dependencies and hence squares x2 and y2 congruent modulo

n.

Choosing a good smoothness bound is of great importance in the above algorithm.

If the bound B is too small we may never find enough Q(a) that factor over the

factor base. If the bound B is too large then the factor base is also large and

we will have to find a great many relations and hence this may produce a matrix

that is too large to handle in final step.

The quadratic sieve was quickly found to be practical and then easily outper-

formed CFRAC not least due to methods that allowed multiple polynomials to

be used [82, 86]. Indeed the multiple polynomial quadratic sieve (MPQS) remains

a practical algorithm for numbers up to approximately 110 digits [9] (where the

crossover point to NFS occurs) that are not more suited to other factoring algo-

rithms such as the elliptic curve method [47].

10



The quadratic sieve is an immediate precursor to the number field sieve which

was first introduced as a special case — a generalisation of the quadratic sieve

that appeared only to be relevant for Fermat and Cunningham numbers. The

process of producing a viable algorithm for general integers was not a simple

one and will be detailed below. However, as we will see, the resulting algorithm

proved to be significantly more powerful than MPQS.

For further information on the history of factoring algorithms based on the con-

gruence of two squares see [11, 74, 82, 83]. For a survey on modern factoring

algorithms see [9].

Complexity

If F(B) is our factor base then an algorithm of the general form above requires

us to find approximately |F(B)| B-smooth numbers. If the numbers that we

test for smoothness were randomly selected positive integers up to x then each

one is B-smooth with probability Ψ(x, B)/x, where Ψ(x, B) is the quantity of

B-smooth numbers in the interval [1, x]. In this case we would expect to need to

test x|F(B)|/Ψ(x, B) numbers in order to find the required quantity of relations.

If we were to use trial division, as we do in CFRAC, in order to verify that a

number was B-smooth it would take about |F(B)| steps hence we would ex-

pect to take x|F(B)|2/Ψ(x, B) steps in all. In CFRAC the numbers we test for

smoothness are positive integers of size up to O(n1/2+ǫ).

In the quadratic sieve the numbers that we test for smoothness are also of size up

to O(n1/2+ǫ), however, we do not trial divide but use a sieving process in order to

verify that numbers are B-smooth. As described above, a sieving process allows

us to cheaply identify a set of integers divisible by some integer m, for instance,

once we have identified one integer divisible by m. This in turn permits us to

check sets of numbers for B-smoothness without trial dividing every number by

all primes below B. This takes about log log B steps on average for each number

in the set and it is this that is responsible for the quadratic sieve outperforming

CFRAC.

For some factoring algorithms an argument along these lines may be used as a

11



route to a rigorous complexity analysis, however, for others we must make various

heuristic assumptions. In particular we often need to make an assumption that

the numbers we test for smoothness are as likely to be smooth as random integers

of the same size.

1.3 The number field sieve

The number field sieve (NFS) is an algorithm that follows the general pattern

given above. It is currently the fastest factoring algorithm for numbers greater

than approximately 110 digits and it is also asymptotically fastest. The idea

behind the special number field sieve (SNFS) was first introduced by Pollard [80].

The original special number field sieve, as described fully in [63], is a factoring

algorithm for numbers with a specific form:

n = re − s

or small integer multiples thereof, where r, |s| ∈ N are small and e is large.

Examples of numbers of this form include Fermat numbers and Cunningham

numbers. The first significant example of factoring using SNFS is the factorisation

of the ninth Fermat number in [62]. In this case the algorithm is in its simplest

case due to the properties of that particular number.

SNFS cannot be used to factor numbers that are generally used in cryptography.

The algorithm was generalised in [12], although certain practical issues were not

resolved and no factorisations were completed at this point. It took the work of

many others to address a myriad of practical concerns and there are still areas

where significant improvements need to be made. This algorithm is now known

as the general number field sieve (GNFS). In this thesis where no distinction

between SNFS and GNFS is necessary, they will be referred to jointly as the

number field sieve (NFS).

A brief description of the algorithm

For necessary background we refer readers to [21, 33, 59, 88].

12



Suppose we select two irreducible polynomials over the integers f1(X) and f2(X)

of degree d1 and d2 respectively, for which there exists a common root m mod n.

Let α1, α2 ∈ C be such that fi(αi) = 0, i = 1, 2 and define two number fields

Ki = Q(αi), i = 1, 2. We produce a square in each number field and define two

homomorphisms Z[αi] → Z/nZ by sending each αi to m, by which means we

may then produce x, y ∈ Z such that x2 ≡ y2 mod n as required.

The squares are produced by considering the values of the homogeneous polyno-

mials Fi(X, Y ) = Y difi(X/Y ). We find pairs (a, b) such that a, b are coprime

and the auxiliary numbers F1(a, b), F2(a, b) are B1 and B2 smooth respectively,

that is, they factor over the primes below some user defined factor base bound

Bi. These pairs are the relations in the number field sieve and they are found

using a sieving process.

Once a sufficient quantity of relations have been found they are filtered, if re-

quired, to reduce the quantity of raw data, and a matrix is formed. Finding

the required squares is then a case of establishing linear dependencies among the

columns of the matrix.

Having produced the squares in the number fields we then require the images

of their square roots in Z/nZ. This is not without difficulty. Each dependency

produces one pair of such integers and for each pair the probability of producing

a non-trivial split of n is at least one half.

The number field sieve can be split into four distinct steps:

1. Selection of polynomials.

2. Sieving for relations.

3. Filtering raw data and linear algebra.

4. Finding the square roots in the number fields.

Great advances have been made in all of these steps although in the general case

the first and third steps are less well developed.

The number field sieve outperforms the quadratic sieve as the numbers that we

13



wish to test for smoothness are significantly smaller than O(n1/2+ǫ). In fact

x will be bounded by an expression of the form exp((log n)2/3(log log n)1/3).

This ensures that the number field sieve has asymptotic runtime of the form

exp((c+o(1))(log n)1/3(log log n)2/3), c constant, while that of the quadratic sieve

is exp((1+o(1))(log n)1/2(log log n)1/2). It is the combination, in the number field

sieve, of significantly smaller auxiliary numbers and the use of sieving to deter-

mine whether they are smooth which results in an far more advanced and powerful

algorithm.

1.4 Contribution of this thesis

We consider a method of estimating the quantity of relations produced by the

number field sieve worked on by Boender, Murphy and Cavallar. We examine

methods by which we may produce a more dependable estimate for the quantity

of relations produced by the full algorithm and provide empirical evidence to

support this. Such estimation methods are not only of use when attempting to

select parameters for the number field sieve but also when comparing variants of

the algorithm. We use this estimation method to aid our analysis of a variant of

the (special) number field sieve in a later chapter.

We note a collection of characteristics of the special cases of the number field

sieve and in particular the presence of subfield structure in some of the number

fields utilised in these cases.

We consider the (human selected) special cases of the number field sieve in the

light of certain advances made in the general case. In particular we work with a

collection of polynomial selection methods produced by Murphy which have been

shown to produce substantially improved results in general, and we find that

using these we are able to reproduce certain aspects of the special cases without

reference to “specialness”. We note a loss of distinction between the special and

general cases of the number field sieve and consider the implications that this

has, posing some open questions. In particular we examine the possibility of a

new repudiation attack on RSA. This work suggests that we need to consider

variants of the special number field sieve with more care, as it is possible for

automated methods to identify some special cases (without knowledge of any

14



special structure present) that may not have been recognised as such by a human

and may have been used for cryptographic purposes. The density of integers

which may be automatically found to be special cases for the number field sieve

cannot be easily quantified — although we might suppose that they are rare in

some sense or perhaps that there is a continuum of NFS “hardness”; this is an

open question.

We consider a method of utilising the subfield structure found in various special

cases. With the aid of theory, sieving tests and estimation of the quantity of data

produced we show that while implementation of this method is possible it is not

of any immediate practical benefit.

1.5 Outline of this thesis

In chapter 2 we give an exposition of the number field sieve. In chapter 3 we cover

necessary theoretical background. We will refer to this material throughout the

subsequent chapters.

Chapter 4 focuses on improvements to the estimation of the yield of the sieving

step, which we use in chapter 6. In chapter 5 we provide an in depth survey of the

characteristics of the known special cases of the number field sieve, comparing

and contrasting these with the general case. In chapter 6 we consider a natural

variant of the number field sieve that uses subfield structure and provide strong

evidence that this variant is unlikely to prove useful in its current form. In chapter

7 we consider the polynomial selection methods that are currently used in the

general case and seek to place the special cases of chapter 5 in context.

Chapter 8 contains a summary and suggestions for further work.

15



Chapter 2

Background: The number field

sieve

2.1 The general number field sieve

The general number field sieve was described in great detail by Buhler, H. Lenstra

and Pomerance [12]. A more modern description due to Huizing et al. can be

found in [18, 39]. We outline the algorithm below.

We choose two irreducible polynomials over the integers, f1(X) and f2(X) of

degree d1 and d2 respectively, for which there exists an integer m such that

f1(m) ≡ f2(m) ≡ 0 mod n.

To simplify the explanation we will assume that the fi are monic, a restriction

which will later be lifted. Let αi ∈ C, i = 1, 2 be such that fi(αi) = 0 and define

two number fields Ki = Q(αi). We may now define two ring homomorphisms:

ϕi : Z[αi] → Z/nZ

ϕi(αi) ≡ m mod n

ϕi

(

di−1
∑

j=0

ajα
j
i

)

≡
di−1
∑

j=0

ajm
j mod n.

16



We wish to construct a set S of integer pairs (a, b) with, a coprime to b for which

∏

(a,b)∈S

(a− bα1) = β2
1 ∈ Z[α1]

and
∏

(a,b)∈S

(a− bα2) = β2
2 ∈ Z[α2]

Since ring homomorphisms preserve multiplication, that is

ϕ(θ1θ2) = ϕ(θ1)ϕ(θ2), ∀ θ1, θ2 ∈ Z[α]

we have

ϕ1(β1)
2 ≡ ϕ1(β

2
1)

≡
∏

(a,b)∈S

ϕ1(a− bα1)

≡
∏

(a,b)∈S

(a− bm)

≡
∏

(a,b)∈S

ϕ2(a− bα2)

≡ ϕ2(β
2
2) ≡ ϕ2(β2)

2 mod n.

Thus we produce two squares congruent modulo n as required. We may then

calculate gcd(n, ϕ1(β1)−ϕ2(β2)) which, assuming that n has at least two distinct,

odd prime divisors, will produce a non-trivial factor of n in at least half the cases.

In order to find such a set S we work in a similar manner to that described in

the preceding chapter. However, in this case we are interested in finding pairs

(a, b) such that the a − bαi ∈ Z[αi] are smooth in some sense. In order to do

this we need both an idea of smoothness in Z[αi] and a method of finding those

elements that are smooth. We will define smoothness in terms of the norm of an

algebraic integer, for background and more general definitions we refer the reader

to [21, 59, 88]:

Definition 2 An algebraic integer β ∈ Z[α] is said to be B-smooth if the absolute

value of its norm, |N(β)| is B-smooth in the usual sense.

17



The norm of an algebraic number β ∈ Q(α) is defined to be

N(β) =
d
∏

i=1

σi(β)

for Q(α) and f both of degree d, where σi are the embeddings of Q(α) into the

complex numbers. However, we do not need to consider a general definition of

the norm as the specific case that we are working in provides us with a more

accessible definition. We associate with each fi a homogeneous polynomial

Fi(X, Y ) = Y difi(X/Y ).

Recalling that the fi are monic we have, from [49] for example, that

N(a− bαi) = Fi(a, b).

We find coprime pairs (a, b) such that both F1(a, b) and F2(a, b) are smooth.

Utilising these we wish to produce a product of the form
∏

(a,b)∈S(a− bαi) which

we know to be a square in Z[αi]. It is necessary for the norm
∏

(a,b)∈S Fi(a, b) =

N(
∏

(a,b)∈S(a − bαi)) to be a square in Z to ensure that
∏

(a,b)∈S(a − bαi) is a

square in Z[αi] but it is not sufficient: we need to pay more attention to the type

of prime that can divide the norm.

We work identically on both sides and hence, dropping subscripts for the moment,

suppose we have f of degree d, f(α) = 0 and K = Q(α). We will assume that

Z[α] is equal to the ring of integers O, this is a strong assumption that will

not usually hold, but later we will be able to relax the assumption. Under this

assumption we are working in a Dedekind domain and have unique factorisation

into ideals, we recall the following necessary facts:

• The norm of the ideal generated by β, written N〈β〉 is equal to the norm

N(β).

• For every non-trivial prime ideal p of O, Np = pk, some k ∈ N. k is said to

be the degree of the ideal.

• For ideals generated by rational primes we may write 〈p〉 =
∏

pei

i where

the exponents are positive integers.

18



We are interested in algebraic integers of a special form a− bα. Let ep(a− bα) =

ordp N(a− bα) be the number of times that p divides the norm N(a− bα). We

may write

F (a, b) = N(a− bα) =
∏

p

pep(a−bα)

N〈a− bα〉 = N

(

∏

p

pvp(a−bα)

)

where vp(a−bα) is the p-adic valuation of a−bα. Finally we have that N(a−bα) =

N〈a− bα〉. We are concerned with the situation where
∏

p pep(a−bα) is known to

be a square. Since we are working in a Dedekind domain,
∏

p
pvp(a−bα) is a square

if and only if all the vp(a− bα) are even. Hence it is necessary for the ep(a− bα)

to be even for
∏

p
pvp(a−bα) to be a square but not sufficient — there are two ways

in which the ep could all be even while the vp are not all even:

• Np = pk for some k > 1,

• p ∈ Z, p prime is contained in two or more distinct prime ideals.

The first issue will not arise due to the special form of our algebraic integers.

However the second issue requires us to consider more carefully what type of p

divide the norm.

More specifically, the first issue will not occur due to the following lemma which

is proved in [62]:

Lemma 1 Let a, b ∈ Z with gcd(a, b) = 1. Then every prime ideal p that occurs

in a− bα is a first degree prime ideal.

To overcome the second issue, we must heed what kind of p divide the F (a, b).

For each prime p below the smoothness bound B we define the set

R(p) = {r ∈ Z/pZ | F (r, 1) ≡ 0 mod p}.

As we shall see we then have for coprime a and b that F (a, b) is divisible by p if

19



and only if a ≡ br mod p for r ∈ R(p) hence we consider our factor base to be

F(B) = {(p, r) | p prime, p < B, r ∈ R(p)}.

In fact we note a lemma [12, 63]:

Lemma 2 If p ∈ Z, p prime and R(p) as above then there is a one to one

correspondence between pairs (p, r) with r ∈ R(p) and the first degree prime

ideals p of O (= Z[α]).

There may be more than one r for each p.

Thus if p corresponds to (p, r) we have Np = p and the map Z[α] → Z[α]/p ∼=
Z/pZ maps α to r mod p. p is generated by p and r − α. We may use this map

to test if an element of Z[α] is contained in p:

d−1
∑

j=0

ajα
j ∈ p ⇐⇒

d−1
∑

j=0

ajr
j ≡ 0 mod p.

For the elements that we wish to work with we now have

a− bα ∈ p ⇐⇒ a− br ≡ 0 mod p.

This implies that we will require that each e(p,r)(a− bα) be even instead of just

each ep(a− bα). We now have an exact correspondence:

F (a, b) = N(a− bα) = N

(

∏

p

pvp(a−bα)

)

=
∏

p

pe(p,r)(a−bα)

and vp(a− bα) = e(p,r)(a− bα).

We can now construct a set S:

• The factor bases F(B1),F(B2) consist of all the first degree prime ideals of

Z[α1] with norm at most B1 and of Z[α2] with norm at most B2 respectively.

These are in one to one correspondence with the pairs (p, r)i, i = 1, 2. As

Bi →∞ the size of the factor base is approximately π(Bi), the number of

primes below Bi, by the Chebotarev density theorem [58, section VIII,4].

20



• We collect pairs (a, b) such that a− bα1 and a− bα2 are smooth by sieving

over the values F1(a, b) and F2(a, b) respectively. We check that a, b are

coprime, a − br ≡ 0 mod p, for (p, r)i, i = 1, 2. Each smooth pair forms a

relation. We collect slightly more relations than there are elements in the

factor base.

• In addition to the sieved data we have the so called free relations (which are

valid prior to applying the ring homomorphisms and can be found essen-

tially for free when computing the factor base). One free relation is found

for each p ≤ min(B1, B2) for which both f1 and f2 factor completely into

distinct linear factors modulo p.

If Gal(f1f2) is the Galois group of f1f2 then approximately 1/|Gal(f1f2)|
of the set of primes will produce a free relation as Bi → ∞ (excepting

those that are not squarefree). Thus we would like to use fi that minimise

Gal(f1f2) if possible [39].

• We use linear algebra over GF(2) to find a set S of (a, b) such that

∑

(a,b)∈S

e(p,r)i
(a− bαi) ≡ 0 mod 2,

for all primes in the factor bases.

However this is not strong enough to ensure that the set S satisfies

∏

(a,b)∈S

(a− bα) ∈ Z[α] is a square.

Before closing this gap we will show that we can retain the correspondence be-

tween the factorisation of F (a, b) and factorisation of ideals of orders other than

O.

Relaxing our assumptions:

Working identically for i = 1, 2 we drop the subscripts. We relax the assumption

that the order in which we work is the ring of integers of Q(α). We need to

connect the ideal structure of the order in which we must work, A, with the

known structure of the maximal order O and hence retain the correspondence

21



between the norm factorisation of F (a, b) and the ideal factorisation in A. If f is

monic we work in A = Z[α].

We have a result from [12] which introduces homomorphisms lp; if A = O then

lp(β) is the exponent of the power of p dividing the ideal βO. It is possible

to think of the following as a generalisation of p-adic valuations to the order

A = Z[α] 6= O.

Proposition 1 There exists for each prime p of Z[α] a group homomorphism

lp : K∗ → Z

such that the following hold:

1. lp(β) ≥ 0, ∀ β ∈ Z[α], β 6= 0.

2. If β ∈ Z[α], β 6= 0 then lp(β) > 0 if and only if β ∈ p.

3. ∀ β ∈ K∗, lp(β) = 0 for all but finitely many p and

∏

p

(Np)lp(β) = |N(β)|

where the p range over the set of all primes of Z[α].

When β = a− bα we have a corollary [12]:

Corollary 1 Let a,b be coprime integers and let p be a prime of Z[α]. If p is not

a first degree prime then lp(a− bα) = 0. If p is a first degree prime corresponding

to the pair (p, r) then lp(a− bα) = e(p,r)(a− bα).

We now have an exact correspondence between integer factorisation of the norm

Fi(a, b) = N(a− bα) and ideal factorisation of 〈a− bα〉 and hence can find a set

S of coprime pairs (a, b) such that
∑

(a,b)∈S e(p,r)(a − bα) ≡ 0 mod 2 as above.

However, there remain four obstructions [12] to ensuring that
∏

(a,b)∈S(a− bα) is

a square in Z[α]:

22



1. The ideal
∏

(a,b)∈S(a− bα)O of O may not be a square of an ideal since we

work with primes of Z[α] rather than of O.

2. Even if
∏

(a,b)∈S(a − bα)O = a2 for some ideal a ∈ O the ideal a need not

be principal.

3. Even if
∏

(a,b)∈S(a − bα)O = γ2O for some γ ∈ O it is not necessarily the

case that
∏

(a,b)∈S(a− bα) = γ2.

4. Even if
∏

(a,b)∈S(a− bα) = γ2 for some γ ∈ O we need not have γ ∈ Z[α].

In summary [12] notes that: if Z[α] = O, as assumed above, then obstructions

1 and 4 cannot occur. If O also has class number 1 and is therefore a principal

ideal domain then obstruction 2 cannot occur. Finally, if O is a principal ideal

domain and we have an explicit basis for the unit group of O then obstruction 3

can be handled by including a system of generating units in the factor base.

In general we are not able to make these assumptions. We are often able to

make some or even all of these assumptions in SNFS. In particular, many early

SNFS factorisations not only had O = Z[α] or could recover to this situation

in some manner but it was possible to work with the generators of the ideals

and those of the basis for the unit group. However, the method by which the

above obstructions are countered is so successful that it is unusual to distinguish

between the special and general cases in this part of the algorithm.

The fourth obstruction is easily countered as noted in [12]. If
∏

(a,b)∈S(a− bα) =

γ2, γ ∈ K then γ ∈ O; and we have γf ′(α) ∈ Z[α] and thus f ′(α)2
∏

(a,b)∈S(a−bα)

is the square of an element of Z[α].

Quadratic characters:

To overcome the other three obstructions we use quadratic characters. This was

first suggested by Adleman [1]. Other methods of circumventing these problems

were attempted but these solutions require the linear algebra step to work over

Z instead of over GF(2); this would substantially increase the cost of the linear

algebra step. Using quadratic characters allows us to continue working over

GF(2). From [12] we have:

23



Proposition 2 Let S be a finite set of coprime integer pairs (a, b) such that

∏

(a,b)∈S

(a− bα) is the square of an element of K = Q(α).

Let q be an odd prime number and s ∈ R(q) (as previously defined) such that

a− bs 6≡ 0 mod q, ∀(a, b) ∈ S

f ′(s) 6≡ 0 mod q.

Then we have
∏

(a,b)∈S

(

a− bs

q

)

= 1

where
(

x
y

)

denotes the Legendre symbol.

We are really interested in the converse of the above proposition and the converse

does hold, as pointed out in [12]:

If β ∈ Z[α]\{0} satisfies χq(β) =
(

β
q

)

= 1 for all first degree primes q, q = Nq,

with 2β 6∈ q (or even for all such q with finitely many exceptions) then β is a

square in K.

We use the above technology as follows: for each polynomial fi we take several

large prime ideals which are not in the factor base; that is, q odd, q prime, q > Bi,

s ∈ Ri(q), with (q, s)i not in the factor base. We append to our relation vector

0 in the character column corresponding to (q, s)i if χq(a − bαi) =
(

a−bs
q

)

= 1

and 1 if χq(a− bαi) =
(

a−bs
q

)

= −1. Now we complete the linear algebra step as

usual to produce a linear dependency amongst the relations. We then have

χq





∏

(a,b)∈S

(a− bαi)



 =
∏

(a,b)∈S

(

a− bs

q

)

= 1

for all of the test primes q. If there are sufficiently many q per polynomial (in [49]

32 per polynomial was deemed sufficient) then it is now almost certain that

24



∏

(a,b)∈S(a− bα1) ∈ Z[α1] is a square

and
∏

(a,b)∈S(a− bα2) ∈ Z[α2] is a square.

as required.

Having constructed the squares in Z[α1] and Z[α2] we must now take square roots

of algebraic integers (with large coefficients) in the number field. We will consider

this step and the others in more detail after disposing of one final assumption.

Throughout this section we have assumed that the fi and the Fi are monic. This

is not necessary though it simplifies explanations. Although the first methods

for finding NFS polynomials produced monic polynomials, this is fairly restric-

tive. For instance, allowing non-monic fi can lead to the other coefficients being

smaller. It will also mean that we have the choice between using polynomials

with “skewed” coefficient size and those with all the coefficients of similar size.

Allowing this greater freedom only requires some minor changes.

Dropping subscripts, let f(X) =
∑d

i aiX
i and define F (X, Y ) = Y df(X/Y ),

f(α) = 0 and K = Q(α). Choosing f monic ensures that α ∈ O, if we allow

ad 6= ±1 then this is no longer the case. The reason we require α ∈ O is so

that Z[α] is an order. However, if we have ad 6= ±1 we are able to show that

A = Z[α] ∩ Z[α−1] is an order [12] and we may work with A as follows:

Let ω be a zero of F (X, ad). If α = ω/ad then

F (ω, ad) = 0 =⇒ F (α, 1) = f(α) = 0

since F is homogeneous. Now Z[ω] is an order, ω ∈ O and ad(a− bα) = ada− bω.

Also

F (a, b) = N(ada− bω) = adN(a− bα)

c.f. F (a, b) = N(a− bα) in the monic case.

25



In the monic case the first degree primes of Z[α] are in correspondence with pairs

(p, r), r ∈ R(p). Now we identify r with r1/r2 whenever r2 6= 0 and we define

R′(p) = {(r1, r2) ∈ (Z/pZ)2 | F (r1, r2) ≡ 0 mod p} ∪ {∞}.

If r2 = 0 identify r ∈ R(p) with ∞ ∈ R′(p). Now let e(p,r)(a − bα) as before,

denote the exponent in F (a, b) = N(a − bα) corresponding to the ideal (p, r),

then we retain the homomorphisms lp across ideals of A, and

e(p,r)(a− bα) =

{

lp(a− bα) if r 6= ∞
lp(a− bα) + ordp ad if r = ∞

So we may sieve again.

Now we have described the basic algorithm we need to look at how to achieve

the different parts in more detail. Each of these problems have been solved to

varying degrees since the advent of NFS and we will briefly describe the current

situation in each.

2.1.1 Polynomial selection

There are two general methods for selecting the polynomials f1, f2 and various

ad hoc methods of producing polynomials for the special number field sieve. In

the general case there are more recent methods for compiling a set of candidate

polynomials for a factorisation and then selecting “good” polynomials from that

set.

For now we will describe only the original general polynomial construction method.

The current situation of this problem will be considered in more depth in the suc-

ceeding chapters once appropriate theory has been introduced. This is one of the

least developed parts of the number field sieve.

The original method for finding a general number field sieve polynomial is pro-

vided in [12]. In GNFS we know only the value n and have no knowledge of

any special structure that may help us. This method is known as the “base-m”

method.

26



1. Select a small positive integer d1 > 1, n > 2d2
1 and set d2 = 1. Optimally

we have [12]

d1 =

(

(3 + o(1)) logn

log log n

)1/3

as n →∞.

2. Set m = ⌊n1/d1⌋ and write n to the base m:

n = ad1m
d1 + ad1−1m

d1−1 + · · ·+ a0

0 ≤ aj < m.

3. Then f1(X) := ad1X
d1 + ad1−1X

d1−1 + · · · + a0 and f2(X) := X − m. In

both cases f(m) = n.

We then define our number fields in the usual manner. In [12] it is noted that this

method will always result in a monic polynomial f1 with coefficient ad1−1 ≤ d1.

An argument in section 12 of the same paper argues that in a weak asymptotic

sense the base-m algorithm cannot be improved on, though it is likely that for

practical purposes there is still room for improvement. Later it became more

usual to substitute m ≈ n1/(d1+1) in step two. This will produce a non-monic

polynomial which, as we have just seen, is not a problem. The advantage of this

change is that in general the polynomial coefficients are smaller. We may also

adjust the standard base-m representation so that the coefficients have smaller

absolute value but may be negative, that is, −m/2 ≤ aj ≤ m/2 which can again

result in a non-monic polynomial.

Murphy [76, section 3] provides a table of relevant d1 for size of n. For numbers

n of size between 80 and 300 digits we will use d1 = 4, 5, or 6 so we are presently

only interested in degree pairs (4, 1), (5, 1) or (6, 1).

Various authors have suggested attempting to find polynomials with degree pair

(d1, d2) with d1 6= 1 and d2 6= 1. However there is no apparent way of selecting

such polynomials except in the case d1 = d2 = 2. A method for finding two

quadratic polynomials was provided by Montgomery and is described in [49].

Further work on this method is found in [77].

From [76] we have that polynomials with degree pair (2, 2) may only be expected

to compete with base-m polynomials with degree pair (3, 1). For n of size beyond

27



approximately 110 decimal digits variants of the base-m method are still the

method of choice. The factorisations of both RSA-140 [17] and RSA-155 [18]

utilised the degree pair (5, 1). To compete with this we may expect to need a

degree pair such as (3, 3) or (2, 4). Theoretically it may be possible [76] to extend

the quadratics method to higher degrees but there are practical difficulties and

there are no known methods for finding degree pairs such as (2, 4) at the time of

writing.

2.1.2 Sieving

Relations are found using a sieving process. There are three types of sieve:

classical, lattice and line. Of these, classical sieving is rarely used as it is less

efficient. Both lattice and line sieving techniques are in general use, and for a

single factorisation more than one method may be employed.

We will have good reason to need to use the classical sieve later and so we include

a description here.

Fix b, we define a range [amin, amax] which is determined empirically. There are

two sieves, one for each number field. We test the Fi(a, b), a ∈ [amin, amax] for

Bi-smoothness by a sieve over the a interval using the fact that a−bαi ∈ p ⇔ a ≡
br mod p, where (p, r) corresponds to the first degree prime ideal p. The pairs

that pass these tests are likely to be those we are looking for, and are subjected

to gcd and trial division tests.

For each consecutive b and each number field we complete the following steps:

1. Initialise the sieve locations Sa to an approximation to log |Fi(a, b)| for

amin ≤ a ≤ amax.

2. For each first degree prime ideal (p, r) in the factor base for which we have

a ≡ br mod p we subtract a low precision approximation to log p from the

sieve location Sa. If, in addition, p divides both the leading coefficient of

Fi and b we subtract a low precision approximation to log p from the sieve

location.

28



3. For each number field and each a we check whether Sa is close to 0 in which

case we have a report. Finally, if gcd (a, b) = 1 we have a report. If we have

three positive reports, that is, both Fi(a, b) are thought to be smooth and

gcd(a, b) = 1, then we trial divide the Fi(a, b), to ensure that both numbers

are smooth.

We note that if the current b is even it is less time consuming to simply ignore

the even a values [85]. It is also usual not to sieve over the small primes; instead

replacing them with small powers. In practice we will initialise the sieve locations

in such a way so as to take into account the use of small prime powers and

approximated logarithms.

The lattice sieve [81] is as follows. We fix a set PS of special prime ideals of K1,

such that for each (q, s)1 ∈ PS, s ∈ R1(q) (f1 has at least one root modulo q).

For each prime ideal (q, s)1 we find pairs (a, b) for which F1(a, b)/q and F2(a, b)

are smooth.

1. Choose a region R of the (a, b)-plane to be sieved.

2. Choose a prime ideal (q, s)1 ∈ PS and sieve only those pairs (a, b) ∈ R for

which a ≡ bs mod q.

3. We then sieve the numbers F1(a, b) with prime ideals (p, r)1, r ∈ R1(p)

with p < q only. We sieve the numbers F2(a, b) with the whole factor base

F(B2).

If a prime ideal (q, s)1 does not have norm q too small a prime, then knowing

q|F1(a, b) renders it more likely that F1(a, b) is smooth. We miss some smooth

values of F1(a, b) that don’t have divisor q, but gain in efficiency because it is quick

to identify the pairs (a, b) for which a ≡ bs mod q. The pairs form a lattice in the

(a, b)-plane and hence by using a reduced lattice basis can be readily identified.

Sieving in step three above can be achieved in two different ways: by rows or by

vectors. Let (g, h) the coordinate system with respect to the reduced basis.

• Sieving by rows: Fix h. Sieve over the factor base elements (p, r), p < q

in a similar manner to the classical sieve. This can be inefficient for larger

primes.

29



• Sieving by vectors: We use the fact that the points to be sieved over form a

lattice in the (g, h)-plane: a reduced basis can be formed, then the lattice

generated. However such a basis may not be well-defined, in which case we

are unable to sieve by vectors.

Line sieving is similar to lattice sieving by rows, but with a fixed b. We fix

(q, s) ∈ PS then fix b; we then lattice sieve on all (a, b) for which a ≡ bs mod q;

then we increment b. Incrementing b is expensive and so the number of times it

is incremented is minimised.

The lattice sieve is the most advanced sieving method but it is often used in

conjunction with a line siever when using a variety of different computers in

parallel to sieve. It is thought that this is more efficient than using a single

sieving technique. Using both techniques will lead to many duplicate relations;

however, the lattice sieve alone produces duplicates, so we must filter the relations

regardless.

The lattice sieve deteriorates as q increases and the line sieve as b increases. We

wish to make full use of the most fertile ranges in both sieves. More practically,

we wish to use both techniques as lattice sievers may be run on smaller machines

but produce duplicates, while line sievers require more memory and produce no

duplicates. Since we will typically sieve in parallel on a variety of machines, we

can make the best use of the available resources by using both sieves.

2.1.3 Filtering and linear algebra

The aim of filtering is to reduce the amount of raw data. The linear algebra step

is the practical bottleneck in NFS; the system is huge and sparse and finding a

solution is a costly procedure that cannot be efficiently distributed. Therefore we

wish to minimise the size and density of the final matrix while maximising the

amount of information contained in the system. We note three particular parts

of filtering:

1. The lattice sieve produces duplicate relations, and when used together with

the line sieve a significant percentage of relations collected can be duplicates.

30



These relations add greatly to the size of the system and provide no new

information. We remove all duplicate relations.

2. Where some prime ideal occurs exactly once for one polynomial we remove

the relation that contains that prime ideal and do not add in any free

relations that involve that prime ideal. Such relations can never be part of

any solution set.

3. There are various ways of merging relations. The aim is to reduce the size

of the matrix by combining relations. This comes at the price of increasing

the density of the matrix. We wish to merge in such a way that we minimise

the amount of fill in. Such methods are described and analysed in [13].

Each relation vector reduced modulo 2 forms one column of the large and sparse

matrix. There are many choices for how to proceed in finding the dependencies

within the system.

Algorithms for solving systems of linear equations include standard Gaussian

elimination, structured Gaussian elimination [5], Lanzcos based methods [57]

and Wiedemann based methods [52].

Gaussian elimination on a sparse matrix will lead to rapid fill-in as those positions

that were originally zero become non-zero. Ideally we would like the matrix to

remain as sparse as possible, since matrices that arise from integer factorisation

are usually huge and storing them in some sparse representation is the only

possibility. Structured Gaussian elimination uses certain structures which are

found in matrices that arise from integer factorisation to avoid rapid fill-in. The

matrix has known heavier regions as these correspond to the first degree prime

ideals of small norm.

The other methods preserve the sparsity of the matrix and also utilise the fact

that sparse matrices may be multiplied by vectors much faster than is usually

the case. However they are still inefficient when used over GF(2) as they work

with single bits. In addition, it is not possible to apply the standard Lanzcos

method when working over GF(2) as approximately half the time the method

will terminate with a failure condition. This can be solved by working in GF(2r)

as explained in [24].

31



Coppersmith presented the first block Lanzcos algorithm [27] which was seen as

highly complicated and hard to program [24]. This was followed shortly after by

a block Wiedemann algorithm [28]. Montgomery produced his own block Lanzcos

method [71] and this was used to solve some matrices produced by the number

field sieve including the examples in [49].

Coppersmith’s block Wiedemann [28] and Montgomery’s [71] block Lanzcos meth-

ods are compared by Penninga [79] and the block Lanzcos algorithm was found

to perform better. It is also the algorithm used to solve most modern large fac-

torisation matrices. A speed up of Coppersmith’s block Wiedemann algorithm

(presented in [89]) is thought not to be useful when working modulo two.

2.1.4 Extraction of square roots

We need to find the square root of an algebraic integer with large coefficients. The

numbers involved are of a huge size and this stage would threaten to dominate

the running time of GNFS. Various methods have been presented including one

in the original GNFS paper [12]. A more practical method that works only in

the case d odd is found by Couveignes [29]. More recently we have a method of

Montgomery, which is described and implemented in [49] with a more in depth

exposition in a technical report [73]. Further work has been done on this method

by Nguyen [78].

Montgomery’s algorithm takes a square β2 ∈ Z[α] with a known factorisation

into prime ideals such that each prime ideal has an even exponent and calculates

β using an iterative process which utilises our knowledge of the prime ideal fac-

torisations. The algorithm has proven to be both practical and efficient. Just as

important is the fact that we are able to remove the requirement that the degree

of the number field be odd. It is possible to view this problem as essentially

solved.

32



2.1.5 Summary of the status of the main steps

Two of the four steps involved in the number field sieve are currently more easily

achieved. While sieving is the asymptotic bottleneck it is eminently distributable;

also the methods for sieving have been well researched. Due to Montgomery we

are also able to extract square roots. The true practical bottleneck of the number

field sieve is now the matrix step. Improving both the linear algebra methods

available to us and the filtering of relations prior to that is necessary if we are to

reduce both the computing time and space required by this step.

The choice of polynomials in the first step of the algorithm has been shown to be

extremely important and is perhaps the least well understood problem. In the

next chapter we will see how recent research has shown that alterations in the

method of polynomial selection can improve the runtime of the whole algorithm

and reduce the size of matrix we must deal with in the linear algebra step.

2.2 Smooth integers and heuristic runtime anal-

ysis

An analysis of the general number field sieve was presented in [12] and we guide

the reader through this.

Definition 3

• For x ≥ 1, B ≥ 1 let Ψ(x, B) denote the number of B-smooth positive

integers up to x.

• Lx[u, v] := exp (v(log x)u(log log x)1−u) where x, u, v ∈ R and x > e. This

function will be used to express the conjectured runtime. It is usual to

abbreviate Lx[u, v + o(1)] to Lx[u, v] and note that the o(1) is for x →∞.

In chapter 1 we introduced the expression Ψ(x, B)/x — the probability that a

randomly selected positive integer up to x is B-smooth. If we wished to find B

B-smooth numbers we would therefore expect to test xB/Ψ(x, B) numbers. We

33



will work with a similar expression to this and aim to find a value of B that

minimises the expectation. The expression that we will work with is slightly

more general. The following theorem is the basis of the analysis of a variety of

factoring algorithms and it provides a route to finding a value of B that minimises

a measure of the expected number of draws to choose B numbers that are B-

smooth and not greater than x. The theorem is proved in [12] for instance.

Theorem 1 Suppose g is a function defined for all B ≥ 2 that satisfies g(B) ≥ 1

and g(B) = B1+o(1) for B →∞. Then as x →∞

xg(B)

Ψ(x, B)
≥ Lx[1/2,

√
2 + o(1)]

uniformly for all B ≥ 2. In addition,

xg(B)

Ψ(x, B)
= Lx[1/2,

√
2 + o(1)]

for x →∞ if and only if B = Lx[1/2,
√

2/2 + o(1)] for x →∞.

Now, following [12], suppose that a factoring algorithm factoring n produces

“auxiliary” numbers (e.g. the Fi(a, b) in NFS) which are bounded by x = x(n)

and that we need to find B(1+o(1)) of these numbers which are B-smooth, for

n → ∞. If we assume that the auxiliary numbers are just as likely to be B-

smooth as random integers up to x then, like above, we would expect to test

xB(1+o(1))/Ψ(x, B) numbers for B-smoothness. If we further assume that the

time to test one of the numbers for B-smoothness is Bo(1) we obtain an expected

runtime of
xB(1+o(1))

Ψ(x, B)

to find the required B-smooth numbers. We are then able to utilise the above

theorem to minimise the runtime of this stage producing B(2+o(1)) = Lx[1/2,
√

2+

o(1)]. If all other steps in our given algorithm take at most this runtime then

that is the complete runtime of the algorithm.

In order to complete the analysis we need to estimate the size of the auxiliary

numbers that are encountered in the factoring algorithm — that is, we require

an estimate of the size of the numbers that we wish to be smooth in terms of the

size of the number we are factoring, n.

34



We noted in the introduction that in the quadratic sieve the numbers we test

for smoothness are of size approximately x = O(n1/2), hence we have a heuristic

asymptotic runtime for the quadratic sieve of:

Lx[1/2,
√

2] ≈ exp ((
√

2 + o(1))(log n1/2)
1/2

(log log n1/2)
1−1/2

)

≈ exp ((1 + o(1))(log n)1/2(log log n)1/2)

= Ln[1/2, 1]

For some factoring algorithms this argument can give a rigorous complexity analy-

sis, however for others we must make various heuristic assumptions. In particular

we have assumed that the auxiliary numbers are just as likely to be B-smooth

as random integers of the same size — matters are in fact not that simplistic (as

will we see in subsequent chapters).

As previously noted it is the small size of the numbers we test for smoothness

that gives the number field sieve an advantage over other algorithms in its family.

In fact the number field sieve is the first factoring algorithm to have the size of

x bounded by a term that is subexponential in the size of n and hence the first

that can achieve better than u = 1/2 in Ln[u, v].

Runtime of GNFS

Following [12] we must bound the auxiliary numbers; that is, those numbers

generated in the sieving step that we wish to test for smoothness. We assume

that the sieve parameters |a| and b are bounded by u, that we have one linear

polynomial and one non-linear polynomial of degree d, the latter having being

produced by the base-m method. At each sieve location we assess the integer

F1(a, b)F2(a, b) which has absolute bound:

|F1(a, b)F2(a, b)| ≤ (d + 1)m2ud+1

≤ 2dm2ud+1

≤ 2dn2/dud+1

The coefficients of F1 are bounded by m and we have m ≤ n1/d. Hence the

number x = 2dn2/dud+1 is a bound on the numbers that we test for smoothness.

35



Under the assumption that the values are as likely to be smooth as randomly

selected integers of the same size, using the above bound and the theorem of

the latter section it is shown in [12] that with optimal choices of B and u the

asymptotic runtime is

exp

(

(1 + o(1))

(

d log d +

√

(d log d)2 + 4 log n1/d log log n1/d

))

with a bound on x of Ln[2/3, (64/3)1/3].

Further to this it is noted that the minimum value must occur when (d log d)2

and (log n1/d log log n1/d) are of the same magnitude. That is,

(d log d)2 = O
(

log n1/d log log n1/d
)

.

In [12] it is noted that this occurs when d = C(log n)1/3(log log n)−1/3 and that

optimising produces C = (31/3 + o(1)) for n → ∞. This value of d, will then

produce the heuristic asymptotic runtime of

Ln[1/3, (64/9)1/3].

This runtime is achieved because the parameter choices for u and d can force the

numbers that we test for smoothness to have subexponential size when compared

with n.

2.3 Large prime variants

The key idea of the large prime variants is that we relax the requirement for

the algebraic numbers a − bαi to be Bi-smooth and instead allow up to ji large

primes. Hence we find relations by finding pairs (a, b), a coprime to b, such that

a − bαi is divisible only by primes in the factor base and up to ji primes with

norm greater than the factor base bound but smaller than a large prime bound.

We call such a relation a j1, j2-partial relation (and refer to relations with ji = 0 as

full relations). Current factorisations use j1, j2 ≤ 3 and even this is still unusual,

more usually one of the ji would be capped at 2.

36



The collection of possible large prime variants cannot really be separated from

the main algorithm. In fact even the original special case factorisations used one

large prime. However the inclusion of large primes in the main description would

have confused matters unnecessarily.

We need to explain the required alterations to the algorithm and also underline

why this variation is so important in practice. This is simpler in the 1, 1-partial

case so we will consider that first.

2.3.1 Up to one large prime on each side

These relations are found by making a simple alteration to the sieving process. In

addition, they require very little extra processing to be useful and can be found in

large quantities. Despite the fact that using these large prime relations provides

no asymptotic speed up it is invaluable in practice.

As explained earlier, after sieving we receive reports if the sieve location is “close”

to 0. If we allow a greater tolerance when checking “closeness” we get more

reports. Then when trial dividing in order to confirm or deny B-smoothness, we

can also keep any relation that (after trial division by the factor base primes)

leaves a remainder less than B2
i which must be prime.

We produce a set of full relations and partial relations with one large prime on

either or both sides. During filtering, any relations that contain a prime not

found in any other relation (large or otherwise) are removed; hence any large

prime that can never be contained in the set S creates very little overhead.

The main negative side effect is that the increase in size of the factor base neces-

sitates an increase in the number of relations required to form a useful matrix.

In the past, the partial relations would have been specifically merged with each

other in order to remove all the large primes; however this creates a denser ma-

trix. Advances in merging and filtering have led to a more subtle approach where

relations are merged in such a way as to attempt to minimise growth in matrix

density. This will not necessarily absorb all of the large primes — as other primes

are removed in their place if this is more advantageous.

37



2.3.2 Additional large primes

Large prime relations with two or more large primes on either side (or both

sides) are not so easily distinguished. In this case, given an auxiliary number has

triggered a report, the remainder after dividing out all the factor base elements

needs to be factored to find the large primes — this increases the overhead. In

addition, if a reported pair (a, b) expected to have say, two large primes in fact

has only one this prime is usually too large and it is highly unlikely to turn up in

a second relation. Hence, despite the fact that this method can produce an even

larger quantity of relations for a reasonable overhead, we must be aware of the

trade off — especially as we increase the quantity of large primes permitted. In

addition, the fact that the relations involve more large primes means that they

will lead to either a larger matrix or a denser matrix than would otherwise have

been the case. It is for these reasons that the number of large primes generally

used is two on each side or two on one side and three on the other.

For a more in depth description of the issues and discussion of the trade off

Cavallar [14, 20] compares using three large primes on each side with two. Other

authors [38, 64] provide additional background in this area.

2.4 Multiple polynomial number field sieve

Another possibility is that of using more than two polynomials. This was first

suggested by Coppersmith [26]. A more practical algorithm is given by Huiz-

ing [40, 41] where the quadratics method is used to create multiple quadratic

polynomials.

Huizing’s method

Take k polynomials fi(X) =
∑di

j=0 ai,jX
j ∈ Z[X], i = 1, . . . , k such that

1. f1(m) ≡ f2(m) ≡ . . . ≡ fk(m) ≡ 0 mod n.

2. The fi are irreducible ∀ i = 1, . . . , k.

38



3. cont(fi) = 1, ∀ i = 1, . . . , k.

4. fi 6= fj , ∀ i 6= j.

Let αi ∈ C be such that fi(αi) = 0. Let Qn be the ring of rational numbers with

denominator coprime to n and note the natural homomorphisms ϕi : Qn → Z/nZ

determined by ϕi(αi) ≡ m mod n.

We sieve in a similar manner to usual but we say that a coprime pair (a, b) is

a (j1, j2)-relation if 1 ≤ j1 < j2 ≤ k and both integers Fj1(a, b) and Fj2(a, b)

are smooth. We will write this (a, b)j1,j2
. Note that for a pair (a, b) with t ≥ 2

smooth integers Fj1(a, b) . . . Fjt
(a, b) we can make t− 1 relations.

The matrix is formed as usual with one column for each relation and a row for

each factor base element, however we have k factor bases. This results in a matrix

that has a differing structure.

Huizing implemented this method using multiple degree 2 polynomials since the

method for choosing two degree 2 polynomials is easily extended. It is not known

how one would go about producing multiple polynomials of other degrees.

Huizing concluded that despite a speed up in classical sieving there was no posi-

tive effect on line sieving and as a result this method is not currently considered

to be practical.

2.5 Summary

We have described the general number field sieve, excepting the most modern

polynomial selection methods which will be considered in the succeeding chapter.

We have outlined the asymptotic complexity argument that provides us with a

heuristic runtime.

Finally we have described the large prime variants which are of huge practical

importance and noted the main idea behind the multiple polynomial sieve variants

which have yet to be proved useful.

39



Chapter 3

Background: Yield and

polynomial selection

Steps have been made which increase our understanding of the yield of the number

field sieve and which are vital to improving the practical performance of the

algorithm. In particular we are interested in estimating and maximising the

quantity of relations produced by the sieving step.

Used alongside sieving experiments estimates of sieving yield can be beneficial

in selecting appropriate parameters — of particular concern when the sieving

process is to be a lengthy one or when outside participants are being asked to

provide processor time. In addition, the method of estimating can be used to

consider possible variants of the number field sieve that will not impact on the

asymptotic behaviour but which may produce a practical speed up. Cavallar

used estimates alongside sieve tests when considering the viability of the three

large prime variant of NFS and this may also prove useful when considering NFS

variants which employ multiple number fields.

In the area of polynomial selection knowledge of the main criteria that affect yield

and how yield can be estimated has led to impressive improvements. Murphy [75,

76] has used methods that rank a selection of polynomials (without performing

sieve tests) based on a raw estimate of the quantity of relations likely to be

produced with certain parametrisations. This can then be used to select better

polynomials and associated parameters for the general number field sieve. These

40



methods have been further improved by Gower [46].

Key to the estimation of yield is an understanding of the quantity of smooth

integers below a bound x or in an interval [x1, x2]. There are a number of par-

ticularly pertinent results which we will summarise before considering how these

have been used in the case of the number field sieve.

3.1 Smooth and semismooth integers

De Bruijn’s [34] function Ψ(x, y), introduced earlier, denotes the number of pos-

itive integers up to x that are y-smooth. A widely accepted method of approx-

imating this function makes use of the Dickman rho function, for x ∈ R, x ≥ 0

Dickman’s ρ function is defined by:

ρ(x) = 1 for 0 ≤ x ≤ 1

xρ′(x) + ρ(x− 1) = 0 for x ≥ 1

This function is piecewise analytic and agrees with the analytic function ρk on

the interval [k − 1, k], k ≥ 1 where for 0 ≤ ξ ≤ 1

ρk(k − ξ) =

∞
∑

i=0

c
(k)
i ξk for k = 1, 2, . . . .

Bach and Peralta [4] give an efficient method of calculating the coefficients (the

method is that of Patterson and Rumsey) they give

c
(1)
0 = 1, c

(2)
0 = 1− log 2,

c
(1)
i = 0, c

(2)
i = 1/(i2i) for i ≥ 1,

c
(k)
i =

i−1
∑

j=0

c
(k−1)
j

(iki−j)
, c

(k)
0 =

1

(k − 1)

∞
∑

j=1

c
(k)
j

(j + 1)
for k > 2.

It is noted that to compute ρ to IEEE standard double precision 55 coefficients

should be calculated. There are more suitable methods for approximating ρ to

very high precision but these are not necessary in this circumstance.

41



Another method which requires greater precision is due to Marsaglia, Zaman and

Marsaglia [67]; Cavallar [20] successfully combines both methods to reduce the

time required and increase the working precision.

Dickman found the earliest approximation for Ψ(x, y), if we set α = (log y)/(log x)

then we have

Ψ(x, xα) ≈ xρ

(

1

α

)

.

De Bruijn improved on this and Bach and Peralta [4] note that his results imply

that for 0 < γ ≤ α < 1, xγ ≥ 2

Ψ(x, xα) = xρ

(

1

α

)

+ O

(

x

γ log x

)

.

and hence we define the first function we will use in finding estimates of the yield

of full relations:

G0(α) := lim
x→∞

Ψ(x, xα)

x
= ρ

(

1

α

)

.

Since we would also like to estimate the large prime relation yield we must go

further and produce approximations for the quantity of i-semismooth integers.

Bach and Peralta extended De Bruijn’s function to Ψ(x, y, z) which denotes the

number of positive integers up to x which are z-smooth possibly excepting one

prime divisor which is less than y, z < y. We will instead work with the slightly

different Ψ1(x, y, z). For reasons that will become clear we will define Ψi(x, y, z)

to be the number of positive integers up to x which are z-smooth except for

exactly i prime divisors greater than z but less than y.

Setting β = (log z)/(log x) Bach and Peralta proved for 0 < α < β < 1

G1(α, β) := lim
x→∞

Ψ1(x, xβ , xα)

x
=

∫ β

α

ρ

(

1− λ

α

)

dλ

λ

which is needed to form an approximation for the yield of one large prime rela-

tions. Lambert [56] continued this work proving for 0 < α < β < 1/2

G2(α, β) := lim
x→∞

Ψ2(x, xβ , xα)

x
=

1

2

∫ β

α

∫ β

α

ρ

(

1− λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2
.

as required in the case of two large primes. Cavallar [14, 20] and Zhang [91]

42



(independently) completed the generalisation proving for 0 < α < β < 1/i

Gi(α, β) := lim
x→∞

Ψi(x, xβ , xα)

x

=
1

i!

∫ β

α

∫ β

α

· · ·
∫ β

α

ρ

(

1− λ1 − λ2 − · · · − λi

α

)

dλ1

λ1

dλ2

λ2
· · · dλi

λi
.

It is by use of the functions Gi, i = 0, 1, 2, . . . that we are able to estimate the

yield of the number field sieve and other similar algorithms. Cavallar provides, in

section 2.6 of [20], an analysis of how well the Gi approximate the Ψi(x, xβ, xα)/x

under the assumption that ρ(1/α) is a good approximation for Ψ(x, xα)/x. Hunter

and Sorenson consider the latter question in [51, Table 2].

The Gi variations are based on the lower estimate xρ(1/α) and these are not the

most sophisticated variations, instead of using G0 we can instead use the function

H0(x, y) := ρ

(

log x

log y

)

+
1− γ

log x
ρ

(

log x

log y
− 1

)

.

Corresponding approximations can be defined for i > 0 (see [20] for details).

These more sophisticated approximations were utilised by Boender [7] and Mur-

phy [76]; more specifically they used an interval form of the latter function to

estimate the quantity of full relations found on an interval [x1, x2] rather than

simply less than x. In order to do this they used a formula due to Hildeband

and Tennenbaum [48]. However, the equivalent calculations for the semismooth

integers are extremely time consuming and there is no obvious way to generalise

such a formula to a sieve region with b > 1.

Approximations of the quantity of smooth numbers up to x or in an interval are

not immediately useful in the case of the number field sieve since we are consid-

ering polynomial values taken over a sieve region. Murphy did use knowledge of

the above approximations to produce a ranking within a set of polynomial pairs

and for this the methods used were suitable.

All of the above apply only to random numbers — not to the integral values take

on a polynomial F (X, Y ) over a region R = [a1, a2]× [1, b). The introduction of

a measure of how much the probability of the polynomial values being smooth

differs from the probability of random integers of the same size being smooth

43



allows us to utilise the estimates.

In the next section we will talk about a function α(F ), described in detail by

Murphy [76] which captures this key measure. Hence we see the polynomial values

x as having the same probability of smoothness as randomly selected integers of

size xeα(F ).

3.2 Properties that affect polynomial yield

We require polynomials that will produce many smooth values. More specifi-

cally [40, 49, 76]:

1. The maximum values of |Fi(a, b)| should be small to increase the likelihood

that the values taken by F1 and F2 will be smooth over the primes below

B1 and B2 respectively.

2. Polynomials with a real root close to max(|a|)
max(|b|) are a good choice since this

will also increase the likelihood of values being smooth.

3. Polynomials which have many roots modulo small primes have a higher

probability of taking values that are small after dividing by these small

primes. This again increases the likelihood of finding smooth values.

4. Polynomials with small Galois group size are preferable as this maximises

the density of free relations.

These can be separated into size and root properties.

The effect of size on the yield is clear, and the probability of a randomly selected

number x of a fixed size being smooth is well understood. Stated simply, given n

to be factored and the degree d of the non-linear polynomial we must select a pair

of polynomials F1, F2 which have small size over the sieving region. However, d is

the first parameter that must be chosen. As described in the preceding chapter,

we have a way of selecting d that minimises the asymptotic runtime as d → ∞
however, d grows very slowly with n and hence in practice we may need to take

other factors into consideration. Murphy presents a table of best d values for

44



general integers in the current range of interest [76, section 3]. At the current

time we would expect to use d = 5, 6 for most factorisations undertaken.

The effect of the root properties is perhaps less clear. The key idea is that the

numbers that we wish to be smooth are not in fact randomly selected integers

but are numbers of a specific form. Montgomery proposed a way to compare the

smoothness probabilities of numbers of this form with smoothness probabilities of

random numbers. This was originally suggested in connection with the quadratic

sieve and was used to select parameters that increased the likelihood that values

of the quadratic polynomial would be smooth [7]. Later, similar ideas were used

to great effect by Murphy to improve estimates of polynomial yield and hence

polynomial selection in the general number field sieve.

Let v be some value in our sieve region. If we were working with a perfect sieve

then the full contribution of each prime in the factor base would be removed from

each value v we sieve over. In fact we start with the logarithm of the value v and

subtract a low precision approximation to the logarithm of each contribution.

Following Murphy [76] we summarise the derivation of the alpha function α(F ).

Derivation of α(F )

Definition 4 Denote by ordp(v) the exponent of the largest prime power of p

dividing v. Then contp(v) is the expected value of ordp(v) as v ranges across

some sample R.

So after sieving we would have

log v −
∑

p≤B

contp(v) log p.

We are interested in the difference between this value when v = F (a, b) and when

v is a randomly selected integer of the same size.

We will compute the expected contribution of a prime p < B to F (a, b). That

is, we calculate the average exponent of p in the factorisation of F (a, b), this

is denoted contp(F ). In addition we compute the equivalent value for random

45



numbers and denote this contp(r).

For a random value r we expect that powers pk for an integer k > 1 may also

divide r. Therefore we expect that the average contribution of p to r is

contp(r) =
1

p
+

1

p2
+ · · · = 1

p− 1
.

We now consider polynomial values of the form F (a, b) with gcd(a, b) = 1.

For p an unramified prime (and hence a prime which does not divide the dis-

criminant of f [21]) the contribution of p to f is from a single root of f mod p.

Such primes were termed well behaved by Murphy. If a prime is not well behaved

we cannot use the following method but must either compute the prime decom-

position of 〈p〉 or, if factoring the discriminant is too expensive, use a sampling

method to estimate the correct value for all small primes (which have a greater

impact on the yield).

Let p be a well behaved prime. We will first consider values of the form f(a) =

F (a, 1) since this is easier than the general case (and will be of interest when

line sieving). Let qp be the number of distinct roots of f(X) mod p. By Hensel

lifting each root corresponds to a distinct root modulo pk, k > 1 and for each

root modulo p we have a distinct probability of being divisible by p hence for

each root we have the contribution 1/(p− 1) producing

contp(f) =
qp

p− 1
.

Matters are somewhat more complicated when we work with polynomial values

of the form F (a, b), a, b coprime as we no longer have a unique correspondence

between the roots of f modulo p and the roots modulo pk for k > 1. We also

have the possibility that p|b, since F (X, Y ) = Y df(X/Y ) if p also divides the

leading term of f we have p|F (a, b). Murphy termed such roots projective roots.

Let qp now be the number of roots modulo p of F (X, Y ), this set would include

both the roots of f mod p and any projective roots.

46



The full contribution of p to the value F (a, b) with a, b coprime is given by

contp(F ) =
qpp

p2 − 1
.

Following an argument of Murphy [76, section 3.2.2] we see this by considering

the probability that pk divides F (a, b), a, b coprime and then summing over k.

Since F is a homogeneous polynomial we may view the coprime pairs (a, b) as

points on the projective line. We consider a root X/Y mod pk of F , there are 3

cases:

1. X/Y ≡ s mod pk, s 6≡ 0 mod p, for some s ∈ Z/pkZ. There are φ(pk)

possible such s and for each such s given an X ∈ Z/pkZ, X 6≡ 0 mod p, Y

is uniquely determined. There are φ(pk) possible such X and hence φ(pk)

possible pairs (X, Y ) for each s.

2. X/Y ≡ s mod pk, s ≡ 0 mod p. Clearly there are only pk−1 such s. Setting

X ≡ 0 mod p we see that there are then φ(pk) possible invertible Y ∈ Z/pkZ

and hence φ(pk) possible pairs (X, Y ) for each s.

3. Y/X ≡ s mod pk, s ≡ 0 mod p. In this case we write X/Y = ∞ and refer

to these as the projective roots. We are in a similar situation to case 2

(exchange values of X and Y ).

Finally we note that φ(pk) = pk−1(p− 1) and that there are

φ(pk) + 2pk−1 = pk−1(p− 1 + 2) = pk−1(p + 1)

possible classes. Hence a coprime pair (X, Y ) ∈ Z/pkZ×Z/pkZ selected uniformly

at random will be in any one of the 3 cases with probability 1/pk−1(p + 1). We

know that we have qp distinct roots of F (X, Y ) modulo p so the probability that

pk contributes to any pair is qp/p
k−1(p + 1), then 1/p of these would be counted

a second time when we consider pk+1 so the contribution from pk is thus:

qp

pk−1(p + 1)

(

1− 1

p

)

.

47



Logarithmically pk contributes k appearances of p and hence:

contp(F ) =
∞
∑

k=1

kqp

pk−1(p + 1)

(

1− 1

p

)

=
qp

p + 1

(

1− 1

p

) ∞
∑

k=1

k

pk−1

=

(

1− 1

p

)−1
qp

p + 1

=
qpp

p2 − 1
.

Murphy provides computational support for these heuristics.

Our aim was to summarise the technology required to enable the comparison

of the probability of smoothness of the auxiliary numbers arising in NFS and

random integers. As noted above after sieving we would obtain

log v −
∑

p≤B

contp(v) log p.

For random values r this produces

log r −
∑

p≤B

1

p− 1
log p,

now setting either v = f(X) or v = F (X, Y ) and taking the difference we define

α(v) =
∑

p≤B

(

1

p− 1
− contp(v)

)

log p

with the appropriate value of contp(v) from above. Hence we have log v = log r+

α(v) and we proceed with the assumption that the auxiliary numbers F (a, b)

we test for smoothness in the number field sieve behave like randomly selected

integers of size F (a, b)eα(F ). Clearly we would prefer to work with polynomials

F for which α(F ) < 0.

Finally, we note that the value of α(F ) is extremely sensitive to changes in the

value of qp when p is small. This can be seen immediately from the form of α(v):

the value of p dominates the calculation as p grows. To force α(F ) to be more

negative we would need to ensure that F has many roots modulo small primes.

48



3.3 Estimating yield over a sieve region

We will assume we have one linear polynomial and one of higher degree although

other variants have been used [40, 77]. We will assume that d2 = 1 in particular.

A number is said to be (j, B, L)-smooth if it has exactly j prime factors greater

than B and less than or equal to L and all the remaining prime factors are less

than or equal to B.

The sieving step then consists of finding pairs (a, b) such that a and b are coprime,

F1(a, b) is (j1, B1, L1)-smooth and F2(a, b) is (j2, B2, L2)-smooth. We recall that

such pairs are called j1, j2-partial relations and that if j1 = j2 = 0 the relation is

referred to as a full relation. It is usual for j1, j2 ≤ 2 and we will assume that this

is the case (although we note that Cavallar has produced initial data regarding

the use of j1 = 3 [14]).

Following Cavallar [20] we will assume that the sieve region is R = [−a, a] ×
[1, b] ∩ Z × Z. Although other sieve regions can be used the advantages and

disadvantages of using other more complex regions are less well understood.

We assume that Ψ(x, B)/x is the portion of B-smooth numbers among the num-

bers from 1 to x. The average size of these numbers is (1 + x)/2 which we note

is approximately x̄ = x/2. In contrast, the average size of F (X, Y ) over the

continuous region Rc = [−a, a]× [1, b] is

F̄ =

∫∫

Rc
|F (X, Y )|dXdY
∫∫

Rc
dXdY

.

This implies that we may be able to treat the values F (a, b) like random values

of average size x̄′ = F̄ eα(F ) that is, we would use Ψ(x′, B)/x′ with x′ = 2x̄′ to

approximate the portion of B-smooth polynomial values among the (a, b) pairs

from R with gcd(a, b) = 1.

In the sieving region we have approximately Z = 6/π2
∫∫

Rc
dXdY pairs such

that gcd(a, b) = 1 [54, section 4.5.2]. Hence we expect Z Ψ(x′,B)
x′

B-smooth norms

among them.

49



Cavallar then used Z
Ψj(x′,L,B)

x′
as an approximation for the number of (j, L, B)-

smooth norms in the sieving region. Further to this it was assumed that the

smoothness of F1(a, b) is not related to the smoothness of F2(a, b) and hence that

we could calculate

Z
Ψj1(x

′
1, L1, B1)

x′1

Ψj2(x
′
2, L2, B2)

x′2

as an approximation of the number of j1, j2-partial relations.

Hence for i = 1, 2, with number fields Ki, defined by polynomials Fi, with factor

base bounds Bi and large prime bounds Li we let x′i = 2F̄ie
α(Fi), αi = logx′

i
Bi,

βi = logx′

i
Li we calculate

ZGj1(α1, β1)Gj2(α2, β2)

(and ZHj1(x
′
1, B1, L1)Hj2(x

′
2, B2, L2) should we wish) using the high precision

approximations to ρ(x) mentioned above in order to estimate the quantity of

relations produced by the sieving process.

3.4 Polynomial selection for general integers

Two problems were looked at by Murphy: that of generating large samples of

polynomials which are small and have good root properties, and that of selecting

the best polynomials from these samples, with the base-m method being the

underlying method of generating polynomials. The two quadratics method is not

used.

Two forms of polynomial can be produced: non-skewed, in which all coefficients

are as small as possible and skewed in which only some coefficients (usually ad,

ad−1, ad−2) are small and the coefficient size generally increases in absolute value

from ad to a0. In conjunction with these distinct forms of non-linear polynomial

different sieving regions are used. In the case of the non-skewed polynomial a

standard sieving region with parameters −u ≤ a ≤ u, 1 ≤ b ≤ u for some u ∈ Z

is used. In the case of the skewed polynomials we use a rectangle whose length

(a direction) to width ratio is greater than 1. The ratio is chosen based on the

individual polynomial.

50



Using Murphy’s ideas it is possible to generate polynomial pairs, in particular,

pairs with highly skewed non-linear polynomials with excellent root properties.

Both the RSA-140 and RSA-155 factorisations [17, 18] use polynomials produced

in this way. In both factorisations the amount of time spent isolating a good

polynomial was only a fraction of the total sieving time (the full yield is compared

with a skewed pair of polynomials with average yield, data from [17, 18]):

Poly. selection Sieving Full yield

RSA-140 60 MIPS years 2000 MIPS years 8 times average yield

RSA-155 100 MIPS years 8360 MIPS years 13.5 times average yield

RSA-140 took roughly half the expected time to factor if the expected time is

extrapolated from the time taken to factor RSA-130 however, the search for a

good polynomial was truncated due to practical reasons. RSA-155 took roughly

a quarter of the time expected on extrapolation from RSA-130 and about a

half of the time expected on extrapolation from RSA-140. It appears that such

polynomials have yields 10 − 15 times greater than the average selection [76,

section 6]. This is significant in that it vastly reduces the number of machines

required in the sieving step.

3.4.1 Finding good polynomial pairs

The base-m method of generating polynomials described in the previous chapter

underlies the generation of large sets of good prospective polynomials. For fixed d

we seek m ≈ n1/(d+1) such that f(m) ≡ 0 mod n, f of degree d. We start with the

standard f produced by the base-m method and adjust it so that the coefficients

lie between −m/2 and m/2. Heuristically this is sensible as the coefficients will

be smaller in absolute value, for a given m we will call this adjusted polynomial

fm.

Murphy provides a way to choose m and fm with good combinations of size and

root properties. In addition, when considering skewed polynomials variants of f

other than just fm are sought.

51



Definition 5 An adjusted base-m polynomial fm will be called χ-small when

|ai|/m ≤ χ, ∀ i = 1, . . . , d. If the value of χ is unimportant such a polyno-

mial will be referred to as small.

Non-skewed polynomials

Firstly, for the polynomial to be small it is necessary for ad and ad−1 to be small;

the former can be achieved by choosing m appropriately, if we also want ad−1 to

be small we need to choose values of m close to where the value of ad changes.

Secondly we would like to force fm to have better than average root properties.

This is done by forcing Fm(X, Y ) = Y dfm(X/Y ) to have good projective roots

modulo small primes. Non-projective roots are not controlled in any fashion.

Hence Murphy produces the method [76, procedure 5.1.4]:

1. Select suitable bounds χ1, χ2, χ1 ≤ |ad|/m ≤ χ2 that ensure |ad| is signifi-

cantly smaller than m. This will give us a range of ad values:

exp

(

d log χ1 + log n

d + 1

)

≤ |ad| ≤ exp

(

d log χ2 + log n

d + 1

)

and a range of m values:

exp

(

log n + log χ2

d + 1

)

≤ m ≤ exp

(

log n + log χ1

d + 1

)

.

2. Choose a cofactor c of ad to be a product of many small pk, p prime, k ≥ 1.

For each ad with cofactor c in the range, retain the values of m for which

|ad−1|/m ≤ χ for some χ ≥ χ2.

3. For each m remaining calculate the other coefficients of fm and, if these are

small, an approximation of α(F ). Retain those fm for which all quantities

are sufficiently small. Repeat from step 2 with varying values for c.

52



Skewed polynomials

The aim in this case is the same — to produce polynomials with unusually good

characteristics, however, we relax the restrictions on size on the lower coeffi-

cients and attempt to find highly skewed polynomials with exceptionally good

root properties. In order to compensate for relaxing the size restrictions on the

lower order coefficients we also skew the sieve region. In this way we produce a

polynomial and a sieve region that when used together ensure small polynomial

values with an increased probability of being smooth.

Starting with adjusted base-m polynomials fm there are two operations that are

applied successively in order to achieve this.

1. Translation by t: fmt
(X) = fm(X − t), t ∈ Z, mt = m + t.

2. Rotation by P : fmP
(X) = fm(X) + P (X)(X − m), P ∈ Z[X] with the

degree of P smaller than that of fm.

Translation by an integer will not affect the root properties of the polynomial

but can improve the size of the coefficients. It is also used to ensure that the

resulting polynomials are central on the X-axis.

Rotation by a polynomial P is the key operation and it can alter both the size

and root properties. Murphy uses only linear P however Gower [46] makes the

necessary adjustments to enable us to utilise P of higher degree. Two different

kinds of rotation are used with different aims, firstly rotations are used to produce

polynomials that take particularly small values over the sieving region (the skew

of the sieve region is altered each time we rotate), the second is used to produce

polynomials with good root properties. The procedure is far more involved than

that of the previous section [76, procedure 5.1.6]:

1. Construct ad divisible by many small pk, p prime, k ≥ 1, calculate m =

⌊(n/ad)
1/d⌋. Compute the integral and non-integral parts of

n− adm

md−1
= ad−1 +

ad−2

m
+ O(m−2)

53



retain those (ad, m) for which ad−1 and ad−2 are sufficiently small (compared

to m).

2. We now adjust fm with the view to skewing it further and reducing its

size over a skewed region. Let S be a rectangular region defined by |X| <√
s, |Y | < 1/

√
s and define

P (X) = c1X − c0

fmP,t
(X) = fm(X − t) + P (X − t)(X − t−m)

FmP,t
(X, Y ) = Y dfmP,t

(X/Y )

Apply a multi-variable minimisation to minimise

∫∫

S

F 2(X, Y )dXdY

with respect to the variables s, c0, c1, t (treated as real variables). Round

the outcomes for c0, c1, t to the nearest integer and recompute s. Finally

estimate the average logarithmic size over the region:

I(F, S) = log

(
√

∫∫

S

F 2(X, Y )dXdY

)

and retain polynomials for which this is sufficiently small.

3. Having produced small, highly skewed polynomials we now search among

polynomials of these sizes, using rotations, for those with good root prop-

erties. We use a sieve-like process to identify j0, j1 ∈ Z (typically with

|j1| << |j0|) for which

fj1,j0(X) = fmP,t
(X) + (j1X − j0)(X −m).

Fix j1, p
k, k ≥ 1, p a small prime. Use a finite difference method to rapidly

compute fj1,j0(l) mod pk, l = 0, . . . , pk−1. For each l solve a linear congru-

ence to find j0 ∈ Z/pkZ for which fj1,j0(l) ≡ 0 mod pk and then estimate

contpk(Fj1,j0) recording it in an array of length pk in the position corre-

sponding to j0. Record contpk(Fj1,j0) at any projective roots. Once we have

completed this modulo pk replicate the array throughout the space. Repeat

for all small p and j1. This will result in a (j1, j0)-array where each position

approximates the value of α(Fj1,j0) (using the primes considered).

54



4. The average size I(Fj1,j0) ≈ I(FmP,t
) so we give each Fj1,j0 a rating of

I(Fj1,j0) + α(Fj1,j0),

if this is sufficiently small then the coefficients of Fj1,j0, the translation of m

and the optimal value for s can all be calculated in order to decide whether

to retain the polynomial.

3.4.2 Selecting better polynomial pairs from a set

Once we have used one of the procedures described above to produce a set of

polynomial pairs with attractive properties we need a way to choose the most

appropriate polynomial pair from that set. Generally the procedures produce

far too many polynomials to conduct sieving experiments on and so some other

ranking system must be provided.

In order to do this Murphy made use of α(F ); we require a fairly good estimate of

α(F ) at this stage and since the small primes can have such a large effect on the

value of α(F ) we must take care with the those small primes which are not well

behaved. Murphy computes contp(F ) for these primes by counting appearances

of pk, k ≥ 1 in a sample of F values. We then take the mean. For the larger

primes contp(F ) is just estimated as usual. Murphy considers the small primes

to be those below 100 and in addition computes estimates for 100 < p < 2000.

The key idea is that the set of polynomials is ranked based on a raw estimate of the

differences in yield. The ranking is considered to be independent of variations in

B, the smoothness bound, but cannot be used to compare polynomials of differing

degrees (or pairs of polynomials whose degree sum differs).

Again we must separate the discussion into non-skewed and skewed, we follow

Murphy’s descriptions.

55



Non-Skewed

In this case the ranking is determined in the most part by the non-linear poly-

nomial F1 as the plausible m values are of a similar size. Let us consider a way

of ranking a single homogeneous polynomial Fi(X, Y ) = Y dfi(X/Y ). In polar

coordinates we have

Fi(X, Y ) = rdFi(cos θ, sin θ)

thus if we fix θ any two polynomials of the same degree d grow as the d th power

of r along θ. Hence the values Fi(cos θ, sin θ) are the most relevant for ranking

the yield.

We recall that the function ρ(1/β), β = log B/ log x can be used to gain a rough

approximation of the number of B-smooth integers up to x. For j = 1, . . . , k,

θj = π/k(j − 1/2) we calculate

βFi
(θj) =

log Bi

log |Fi(cos θj , sin θj)|+ α(Fi)

where the θj are the mean values of k equally sized sub-intervals of [0, π] and

then the polynomial Fi is given the rating

E(Fi) =

k
∑

j=1

ρ(1/βFi
(θj)).

The polynomials in the set are ranked in descending order. The value of k is said

not to be crucial, Murphy uses k = 1000.

Of course we need to take both polynomials into account so the rating that is

actually used is

E(F1, F2) =
k
∑

j=1

ρ(1/βF1(θj))ρ(1/βF2(θj)).

Skewed

When working with a skewed non-linear polynomial we use a skewed sieve region

with length to width ratio given by s. In addition to this we must always work

56



with both polynomials as the m-values can differ significantly. A generalisation

of E(F1, F2) works with a skewed sieve region, in fact we work with an ellipse

with major and minor axes in ratio s defined by X =
√

s cos θ, Y = 1/
√

s sin θ,

θ ∈ [0, π]. Dividing the interval into k equally sized sub-intervals and working

with θj , the mean of each interval we define

βFi
(θj) =

log Bi

log |Fi(
√

s cos θj ,
1√
s
sin θj)|+ α(Fi)

and take

E(F1, F2) =
k
∑

j=1

ρ(1/βF1(θj))ρ(1/βF2(θj)).

We again rank the polynomial pairs in descending order of E(F1, F2) ratings.

In both the skewed and non-skewed cases we would then choose subsets of pairs

F1, F2 with high ranking; to make the ultimate selection sieve tests may now be

used.

3.5 Summary

We have summarised the standard methods of estimating the quantity of smooth

integers below a bound and we have considered the key criteria that affect yield

in the case of the number field sieve. Further to this we have seen how the

probability of smoothness of a number encountered in the sieving step can be

tied to the probability of smoothness of a random number of the same size. We

have seen how these ideas have been used to:

1. Estimate the total yield in order to compare two variants of the number

field sieve.

2. Provide the basis for methods to select improved general number field sieve

polynomials.

These are key ideas that we will return to at various points in the remainder of

this thesis.

57



Chapter 4

Estimating yield

As briefly introduced in the preceding chapter, Cavallar [14, 20] suggested a

method of estimating yield over the whole sieve region — including the large

prime relations. However, Cavallar’s method produces a significant underestimate

on the non-linear side: we investigate the reasons for this with a view to improving

the method.

The driving force behind this work is the desire for a more robust method of

evaluating possible variants of the number field sieve; in particular we will re-

quire a method to estimate the quantity of relations produced in various SNFS

factorisations. It is hoped that a more reliable method of estimating the yield

in this case, alongside sieving tests and theoretical predictions, will support the

assessment of a proposed SNFS variant in chapter 6 of this thesis.

4.1 Cavallar’s method

Cavallar used the approximations Gi, Hi introduced in the previous chapter to

estimate the quantity of full and partial (1, 2 or 3 large primes on each side)

relations produced by various factorisations with a view to assessing the three

large primes variant of the number field sieve.

Let Ψ(x, y) and Ψi(x, y, z) be as previously defined. Recall the assumption that

58



the polynomial values F (a, b) are B-smooth with the same probability as ran-

domly selected integers r with logarithmic norm log F (a, b) + α(F ) where

α(F ) =
∑

p≤B

(contp(r)− contp(F )) log p.

We join Cavallar in making the following assumptions some of which we will

discuss further presently:

1. We use the classical sieve. There is no clear way to produce estimates of this

type for the lattice sieve, however as we wish to use this as a mechanism to

compare variants of the number field sieve and not to estimate the outcome

of particular parametrisations this assumption is not too confining.

2. The sieving region is usually Rc = [−a, a]× [1, b], the set of auxiliary num-

bers to be tested for smoothness is therefore R = Rc ∩ Z×N.

3. Ψ(x, y)/x is the proportion of y-smooth numbers amongst the numbers from

1 to x. The average size of these numbers is (1 + x)/2 which we note is

approximately x̄ = x/2.

4. The mean size of F (X, Y ) over the continuous Rc is

F̄ =

∫∫

Rc
|F (X, Y )|dXdY
∫∫

Rc
dXdY

.

This implies that we may treat the values |F (a, b)| like random values of

mean size x̄′ = F̄ eα(F ) that is, we would use Ψ(x′, B)/x′ with x′ = 2x̄′ to

approximate the portion of B-smooth polynomial values among the pairs

(a, b) from R.

5. In the sieving region we have approximately Z = 6/π2
∫∫

Rc
dXdY pairs such

that gcd(a, b) = 1 [54, section 4.5.2]. Hence we expect Z Ψ(x′,B)
x′

B-smooth

norms amongst them and Z
Ψj(x′,L,B)

x′
(j, L, B)-smooth norms.

6. We assume the polynomials are independent — that is, we assume the

probability of smoothness of F1(a, b) is independent of the smoothness of

F2(a, b), in fact this is not the case as there are minor effects for primes

dividing the resultant of the two polynomials. We will follow Cavallar in

59



ignoring these effects and hence assume that we may use

Z
Ψj1(x

′
1, L1, B1)

x′1

Ψj2(x
′
2, L2, B2)

x′2

as an approximation of the number of j1, j2-partial relations.

7. The single large prime bound L is less than or equal to B2 (this assumption

allows us to recognise single large prime relations essentially for free in the

sieve). The double large prime bound is greater than B2 but less than or

equal to B3 (integers between these bounds will have a maximum of two

primes larger than B in the prime decomposition).

We recall the introduction in the previous chapter of the functions Gi, i ∈ Z,

i ≥ 0. For 0 < α < 1:

G0(α) := lim
x−→∞

Ψ(x, xα)

x
= ρ

(

1

α

)

.

More generally we had that if 0 < α < β < 1/i then

Gi(α, β) := lim
x−→∞

Ψi(x, xβ , xα)

x

=
1

i!

∫ β

α

. . .

∫ β

α

ρ

(

1− (λ1 + · · ·+ λi)

α

)

dλ1

λ1

. . .
dλi

λi

Based on the above assumptions and formula Cavallar estimated the quantity of

full and partial relations in the following manner:

For i = 1, 2, with number fields Ki, defined by polynomials Fi, with factor base

bounds Bi and large prime bounds Li we let x′i = 2F̄ie
α(Fi), αi = logx′

i
Bi, βi =

logx′

i
Li and calculate

ZGj1(α1, β1)Gj2(α2, β2)

to estimate the quantity of j1, j2-partial relations.

In order to accomplish this the Dickman function ρ must be calculated to high

precision. This is accomplished as described in chapter 3.

We might ask what we are able to discern when α and β are not in the bounds

60



described above. If B is our smoothness bound and we consider the interval [1, x]

then we have the following:

If α ≥ 1 then

α =
log B

log x
≥ 1 ⇒ log B ≥ log x ⇒ B ≥ x

and in this situation it is clear that all integers in the interval [1, x] are B-smooth.

If α < 1, β ≥ 1, β = (log L/ log x) where L is the large prime bound then we can

deduce by the same argument that all integers in [1, x] are L-smooth and may

use the function G0 to estimate the quantity of these that are full relations.

If α ≥ 1/2 then

α =
log B

log x
≥ 1

2
⇒ log B ≥ 1

2
log x ⇒ B ≥ x1/2 ⇒ B2 ≥ x

since all single large prime partial relations must have the large prime below B2

we can deduce that all integers in the interval are single large prime relations

or full relations. We may use G0 to estimate the quantity of these that are full

relations. By a similar argument we may deduce that all integers in the interval

must be at least two-partials if β ≥ 1/2. These small results allow us to work with

intervals or regions in which α, β > 1/2 which will be necessary if we encounter

quite small regions that contain, for one reason or another, small polynomial

values.

Cavallar found that the estimates were between 44% and 74% of the actual quan-

tity produced. More interestingly the data for the number 2773 + 1 showed that

the approximation was radically better on the linear side than on the non-linear

side. In this extended example the linear and non-linear sides were estimated

separately so we are better able to see how the underestimate is produced. On

the linear side the estimates produced were extremely good: those made using

x′ were within 1% using the Gi defined above (based on the lower estimate of

Ψ(x, y)) and within 7% using the equations Hi based on the less simplistic es-

timation of Ψ(x, y) mentioned in the preceding chapter. On the other hand the

approximations on the non-linear side were up to 66% off.

61



Cavallar notes that the linear polynomial is near constant over the region while

the degree 6 polynomial increases from 2 · 1036 to 5 · 1044. It would appear that

the single average taken on the non-linear side cannot adequately represent the

wide range of values. Cavallar suggested that it is likely that you could improve

these estimates by splitting the sieving region into smaller parts and calculating

the estimates over these.

We intend to test this hypothesis. The most immediate question regards how

we should split the sieving region in order to achieve an improved estimate. It

is not immediately obvious whether the estimate produced will be dependent on

the method as we have not established the exact nature of this underestimate.

4.2 Towards an explanation of the underesti-

mate

If we accept the assumption that ρ(1/α) is a good approximation for Ψ(x, xα)

as analysed in [51] and hence that the Gi, i > 0 are good approximations for

Ψi(x, xβ , xα)/x as analysed in [20, section 2.6] and, in addition, believe the

method of calculating high precision approximations for ρ(1/α) is sound then

we must look elsewhere in Cavallar’s technique in order to isolate the cause of

the underestimate.

It is certainly possible that the source of the underestimate is in fact the under-

lying approximation for Ψ(x, xα). However, it seems reasonable to accept these

assumptions given the analysis and that, with α(F ) defined as above, they have

led to adequate estimations of yield in the case of intervals and the quadratic

sieve. We will work on the basis that these assumptions are acceptable and leave

further analysis of whether they are sound to others.

The assumption that the polynomials are independent is unlikely to be implicated

as the effect is seen when considering estimations involving only one polynomial.

Boender [7] and Murphy [75, 76] both used the interval method of approximating

the quantity of full relations in the situation where b = 1. There is no obvious

counterpart to this method for regions [−a, a]× [1, b], b > 1. Cavallar’s method is

62



actually estimating the proportion of integers between 1 and x′ which are smooth

where x′ = 2F̄ eα(F ) and F̄ is the assumed to be an appropriate approximation

of the mean of the integral values taken by |F (X, Y )| on Rc. Clearly we require

not only that F̄ is fairly representative of the integral values actually taken over

the sieve region but that other descriptive statistics suggest that the smoothness

properties of integers in the set R can be adequately assessed by consideration

of the smoothness properties of integers in the interval [1, x′]. There are various

concerns:

1. F̄ is not equal, in general, to the mean or median of the integral points on

|F |: as degree of F increases or region size decreases it is possible that this

may be significant.

2. If the values of |F | have a large range then the ability of any average to

represent the data is more likely to be impaired (though the range can be

sensitive to extreme values so this may not be the case).

3. The distribution of integral values taken by |F | may be particularly skewed.

In this case the mean can be significantly different from the median. Since

this is not the case in the interval [1, x′] this could be a cause for concern.

The method could be further compromised by the assumption that we may simply

multiply by Z = 6/π2
∫∫

Rc
dXdY in order to find the estimate only for pairs (a, b)

such that gcd(a, b) = 1.

We aim to improve the estimates. A method suggested by Cavallar is to split the

sieve region into smaller subregions, make the estimate in each case and then sum

over these. Unfortunately the success of such a method could rely substantially

on the method of splitting chosen.

In the case of intervals, Boender and Murphy split the interval in the following

manner:

The interval is split into segments within which the function f has no roots or

turning points hence, |f | is increasing or decreasing on each segment. Let fi be the

continuous function on the ith segment. As we work identically on each segment,

let us consider only the kth segment. Define S1 = min(fk), S2 = max(fk), cut

63



the segment into K subintervals by taking

h =
log S2 − log S1

K

and set yj = S1e
jh, j = 0, . . . , K − 1. We then define the subintervals to be

[xj , xj+1] for which fk(xj) = yj, f(xj+1) = yj+1. Hence we split the function into

subintervals on which the values taken by the function are of similar size.

It is not clear how such a method could be generalised to regions in an efficient

manner and this would appear to be an open question.

Before suggesting a more appropriate method of splitting the region we must

clarify which assumption is responsible for the underestimation. We will assess

the linear and non-linear sides separately to aid us in this.

4.3 The linear side

Prior to considering the more complex case of a region [−a, a] × [1, b] we will

consider Cavallar’s method with b = 1; in this case we remove one assumption as

we do not need to multiply by Z (since gcd(a, 1) = 1 ∀a). This will allow us a

direct comparison with the approach taken by Murphy and Boender and it may

also allow us to quantify what is most important in producing reliable estimates.

4.3.1 Intervals

The first experiment is based on that carried out by Boender [7]. We will use

Cavallar’s method to estimate the yield when sieving the numbers in an interval.

This would never arise from use of the number field sieve but it should allow us

to deduce the impact of using an interval [1, 2x̄] to represent an interval [x, x+∆]

with continuous mean x̄.

Boender tested the interval estimation technique on the intervals [x, x + ∆] with

smoothness bound y as defined below and we use Cavallar’s method to produce

estimates for the same parameters. Boender’s interval estimation function utilises

64



a more sophisticated approximation than the Gi functions — the Hi functions

mentioned in the previous chapter. So we will also consider Cavallar’s method

using the function H0.

Boender’s Cavallar’s G0

Estimate [7] Method

x y ∆ Actual Est. Quo. Est. Quo.

1027 5× 104 108 + 2× 105 3521 3606 1.024 3473 0.99

1035 3× 105 108 + 2× 105 529 527 0.996 505 0.96

1040 8× 105 108 + 2× 105 149 159 1.067 152 1.02

1045 6.5× 105 1011 + 2× 106 6818 6771 0.993 6483 0.951

1050 8.5× 105 1011 + 2× 106 666 646 0.970 619 0.929

1050 106 1011 + 2× 106 928 912 0.983 873 0.941

Considering that the estimate is produced using only the mean of the values in

the interval the results are surprisingly good. Taking the H estimates instead of

the G estimates we find that we tend to overestimate but produce comparable

results:

Boender’s Cavallar’s H0

Estimate [7] Method

x y ∆ Actual Est. Quo. Est. Quo.

1027 5× 104 108 + 2× 105 3521 3606 1.024 3876 1.100

1035 3× 105 108 + 2× 105 529 527 0.996 558 1.055

1040 8× 105 108 + 2× 105 149 159 1.067 167 1.12

1045 6.5× 105 1011 + 2× 106 6818 6771 0.993 7169 1.051

1050 8.5× 105 1011 + 2× 106 666 646 0.970 685 1.029

1050 106 1011 + 2× 106 928 912 0.983 965 1.04

In the interval linear case the mean is equal to the median of the data, the range

is as small as can be; there are no extreme values and no skew.

However, we also need to consider linear polynomials, such as a1X − a0, of the

form we might reasonably expect to encounter in the number field sieve. We will

first consider the case where b = 1 and then proceed to extend our results to the

region R.

65



G H

f(X) α(f) B a Actual Est. Quo. Est. Quo.

X − 243 0.0 3572 4800 99 91 0.919 103 1.04

X − 290 0.0 8.1 · 105 3.5 · 105 681 668 0.981 724 1.063

355X − 1 0.57 4.4 · 106 1.68 · 106 1545 1469 0.951 1581 1.026

As can be seen in the table above the results are extremely good in these sit-

uations. It appears that at least on the linear side this method of estimating

yield may require little improvement. We will note various descriptive statistics

regarding these test cases in order to throw more light on the results.

In each linear case considered above the continuous mean, the discrete mean and

the median are equal. This is due both to the linear nature of the polynomials

involved and to the size of the single large coefficient in the linear polynomial. In

NFS this linear coefficient will be of the size n
1

d+1 . As long as this dominates the

polynomial (and the range) the skew will be 0. We put forward the hypothesis

that it is the equality between the mean and the median (or, equivalently, the lack

of skew) that allows the method of estimation to produce such a good estimate

in the linear case.

4.3.2 Regions

We continue this section by extending these observations to the case of regions

of the type R before going on to investigate the non-linear side in the next

section where we will produce further evidence that the error in our estimations

is correlated with the skew.

In the following all α(F ) values are 0.570, X ranges in the interval [−a, a] and Y

in [b1, b2]; B is our smoothness bound.

F (X, Y ) B a [b1, b2] Actual Est. Quo.

X − 243Y 3572 4800 [1, 2000] 12847 10962 0.853

X − 290Y 8.1 · 105 7000 [1, 2000] 3943 3589 0.910

X − 2129Y 2 · 107 28875000 [106 + 1, 106 + 100] 36214 36220 1.000

66



Since the range is so much larger in these cases we might expect that the con-

tinuous mean would be less able to provide for a useful estimate; however the

estimates are still reasonably good. This provides further evidence for our hy-

pothesis — that it is not only the range of values that is of importance but their

distribution.

Certainly, on the linear side Cavallar’s method appears to produce reasonable

estimates and hence there is little evidence to suggest that we need to split the

sieve region in order to improve the estimates. On the other hand if we do need

to split the sieve region in order to adequately estimate the non-linear side we will

eventually need to use the same splitting method on the linear side (since in reality

we do not treat the polynomials separately). In addition we would be interested

to see if there is likely to be any beneficial effects on results that are already

good. In fact, splitting the sieve region into equal sized subregions does have

some effect as we see in figure 4.1 particularly if the polynomial values involved

are not particularly large. However it is by no means worrying, the results are in

fact quite favourable in the examples given and other linear polynomials behave

in a similar manner. One question that immediately arises at this point and

which will remain with us throughout the rest of this chapter is the issue of how

far to split the region. If the method used to split the region does not produce a

bounded result or does not naturally terminate in some way then how can we be

certain that the method can be put to good use? In the linear cases the method

appears to reach a conclusion.

Splitting the a and b intervals into K subintervals (and hence splitting the re-

gion into K ×K equally sized rectangular regions) we find that we achieve very

commendable results with a reasonably small values K and that the estimates

produced appear to be bounded by the actual yield.

In the case of the polynomial X − 2129Y all the splits produced the quantity

of relations 36220 as an estimate for the actual quantity 36214; hence this tiny

overestimate appeared to be stable.

However, it seems possible that splitting the sieve region equally will not function

as well in the non-linear case where we cannot assume that the skew is low enough

for the means in equally split regions to be useful. To illustrate the effect of skew

on the estimates produced we will return to the interval case.

67



Figure 4.1: Two examples of estimates, using equal splits of the sieve region
into K ×K subregions, approaching the actual quantity of sieved relations as K
increases.

0

2000

4000

6000

8000

10000

12000

14000

es
tim

at
e

20 40 60 80 100

K

X − 243Y , B = 3572, |a| ≤ 4800, 1 ≤ b ≤ 2000

0

1000

2000

3000

4000

es
tim

at
e

20 40 60 80 100

K

X − 290Y , B = 8.1 · 105, |a| ≤ 7000, 1 ≤ b ≤ 2000

4.4 The non-linear side (intervals)

We will consider a unique situation that will help us to quantify the precise

problem in Cavallar’s method. Let f5(X) = X5−3, f4(X) = 108X4−3, f3(X) =

1016X3−3 and f2(X) = 1024X2−3 and sieve over the interval [0, 108]. Over this

interval the four polynomials take values that lie in the range [−3, 1040 − 3] but

otherwise are very different. We will use the same prime bound of 2× 106.

We are interested in assessing the ability of the average to act as a representative

of the data in situations that are not akin to those found in the linear case and

the effect that this has on the estimate.

We work as Cavallar does to approximate the values of α(f) (except we work with

the formula for α(f), not α(F )). That is, we use random sampling and calculation

to estimate contp(f) for p|Disc(f). For all the other primes we factor f mod p,

count the roots and divide by p − 1 to get contp(f). We allow sampling across

[0, 108] and use a factor base bound of 10000 (smaller factors almost entirely

control the value of α(f)). The random sampling needed to find contp(f) means

that we can experience a small range of reported α values, (we average 5 reports).

68



f(X) α(f) mean Act. G Est. G Quo. H Est. H Quo.

X5 − 3 0.661 1/6 · 1040 − 3 5059 747 0.148 814 0.161

108X4 − 3 1.677 1/5 · 1040 − 3 1713 580 0.339 633 0.370

1016X3 − 3 0.635 1/4 · 1040 − 3 1322 689 0.521 751 0.568

1024X2 − 3 1.638 1/3 · 1040 − 3 666 523 0.785 571 0.857

As we can see, it is fairly easy to produce a situation with b = 1, in which

Cavallar’s method is highly misleading. Let us consider why the method is so poor

in this case. The range in each case is equal (although this is due to extreme values

in three of the four cases). The first difference is the mean, the worst estimates

occurring when the mean is smallest. However the means are all numbers of

approximately the same size. If this is in fact the cause then it does not seem likely

that we will be able to improve the estimates. There is one other key difference

between the four examples however and that is the discrepancies between the

continuous mean used to calculate the estimates, the discrete mean of the integral

polynomial values over the interval and the median polynomial value. If we

consider the first example, the continuous mean used is 1/6 · 1040 − 3 while the

discrete mean is in fact

1

6
· 1040 +

1

2
· 1032 +

5

12
· 1024 − 1

12
· 108 − 3/108,

and the median is 1
32
· 1040 − 3. This latter is far more significant — the median

is actually an order of magnitude smaller than both the discrete and continuous

means, suggesting that this is a set of polynomial values with a skewed distribu-

tion. The effect becomes less and less drastic as we move down the table. This

supports the theory that the main fault in the method is the inability of the mean

to adequately represent the data due to either a larger range (ignoring extreme

values) or a dataset with a skewed distribution.

Clearly we need to split the sieve interval/region in the non-linear case to produce

realistic estimates but it seems increasingly likely that splitting into equal inter-

vals/regions will not be the most appropriate method to deal with the problem at

hand. We will continue to accumulate evidence that no mean can effectively rep-

resent the data due to inherent skew by trying to split the sieve interval equally

in the next section. We aim to provide additional evidence that we need to split

the interval in such a way that the skew is minimised.

69



4.4.1 Splitting the sieve interval

There are some issues with splitting up the sieve interval in order to improve the

estimate of which we should be aware:

• As the estimate for each subinterval would be subject to error, we could be

increasing the size of the error by splitting up the interval.

• If the process does not tend toward some bound we would have no idea how

many intervals we need to work with. We require a method that reaches

a natural conclusion in some manner. In addition, if we must choose, it is

better to produce what we reliably know to be an underestimate than to

produce an overestimate that we do not know to be bounded.

• The estimate may be sensitive to how the interval is split up.

• It appears that the linear side does not require splitting (but can benefit

from it). Depending on how we split up the intervals we may have to split

the intervals in this way for all of the polynomials involved. This would

also impact on the usefulness of the method for assessing variants such as

the multi-polynomial number field sieve.

We will compare three methods of splitting the sieve interval as it is not imme-

diately clear that the results achieved will not be heavily reliant on the method

used. We will also use only methods that can be reliably generalised to the region

case.

Let us consider different ways in which we could split the interval in order to

produce a less misleading estimate. The first and obvious method to try is simply

to split the interval into K equal parts. The key advantage of this method is that

it will translate simplistically to the region case. The disadvantage is clear —

we are not dealing with the root cause of the problem. If the size of the range

is the issue then those intervals further from a = 0, where the polynomial values

are larger, will be worse affected. If it is the size of the range with respect to the

the size of the polynomial values we would expect the method to work equally

well across all of the intervals. In the case that it is the skew that is causing

the problem we would expect the worst effects to be in those intervals closest to

a = 0 since the smaller size of the polynomial values will amplify the effect.

70



However we will first attempt to improve matters by equal splitting, and after

noting any problems with this technique we will consider ways we might adapt

splitting to the particular polynomial or interval.

f5(X) = X5 − 3:

As we can see from figure 4.2 the estimates for f5(X) = X5 − 3 are excellent in

all subintervals except the first.

Figure 4.2: Actual quantity of relations followed by estimated quantity in each
subinterval for K = 5, 10, 20, 40 highlighting problems in the first subinterval.

0

1000

2000

3000

4000

re
la

tio
ns

1 2 3 4 5

subinterval
0

1000

2000

3000

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10

subinterval

0

500

1000

1500

2000

2500

3000

3500

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subinterval
0

500

1000

1500

2000

2500

3000

re
la

tio
ns

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

subinterval

Let us consider the values that f5 takes over the first subinterval in each case:

K: 5 10 20 40

range: 32 · 1035 1035 3125 · 1030 2551025

cts mean: 32
6
1035 − 3 1

6
1035 − 3 3125

6
1030 − 3 255

6
1025 − 3

median: 1035 − 3 1
32

1035 − 3 3125
32

1030 − 3 255

32
1025 − 3

While the range shrinks substantially as K grows the ratio between the continuous

mean used in our calculations and the median of the integer values taken on the

71



polynomial remains equal to 32/6 in the first interval. Thus we are in danger

of overestimating the size of the polynomial values, this would in turn cause

an underestimate of the probability of the values taken on the interval being

B-smooth.

In the subsequent intervals this effect is not nearly so severe. If we consider the

second interval in the case K = 5 then we have a range of 992 · 1035, which is in

fact larger than in the first interval. We use the continuous mean 336 · 1035 − 3

and the median is 243 · 1035−3 giving us a ratio of 1.38. The remaining intervals

have larger range again but the average used to calculate the results approaches

the median suggesting that the polynomial values are less skewed.

We might suggest that this effect is due to the extremely small size of the poly-

nomial values near to 0. However, we see precisely the same effect (though less

pronounced) when working with the polynomial f4(X) = 108X4 − 3.

f4(X) = 108X5 − 3:

If we now turn to figure 4.3 we see that we have a similar state of affairs again:

the subintervals worst affected are those closer to 0, however in this case the

polynomial values taken in this interval do not have extremely small size. The

discrepancy between the mean used and the median is less severe (a ratio of 3.2

in the first interval).

This provides further evidence that the inability of the continuous mean used to

adequately represent the polynomial values taken in the interval or region is the

cause of the significant underestimate. In addition it appears to suggest that it

is not the range of values taken that is the chief cause as the range is actually

smallest on the worst affected intervals. Worryingly the significant underestimate

is most likely to occur close to a = 0 and this is also one area of the sieve

interval that we would expect to produce a large yield. This could cause problems

with estimation, particularly in the special cases which have polynomials with

extremely small coefficients — and hence are particularly productive close to

a = 0.

72



Figure 4.3: Actual quantity of relations followed by estimated quantity in each
subinterval for K = 5, 10, 20, 40 highlighting problems in the first subinterval.

0

200

400

600

800

1000

1200

re
la

tio
ns

1 2 3 4 5

subinterval
0

200

400

600

800

1000

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10

subinterval

0

200

400

600

800

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subinterval
0

100

200

300

400

500

600

700

re
la

tio
ns

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

subinterval

4.4.2 Improved methods for splitting the interval

When we split the linear polynomial |F | over the sieve region the estimate was

reasonably good. This is regardless of the size of numbers involved or the range of

number involved. If we split the non-linear side into equal subparts we find that

we produce a significant underestimate in some of the intervals. This effect seems

to be intimately connected with the ability of the continuous mean to represent

the data and in particular, when the median and the mean differ significantly we

produce extremely poor results.

Ideally we would like a method for splitting the interval or region that natu-

rally addresses this difficulty. It is clear that we cannot place a large amount of

confidence in the results produced so far.

The most natural approach is a method that adapts the split into subregions

based on the properties of the polynomial, perhaps taking smaller subregions

where the polynomial is changing most rapidly for instance. This approach is

similar in nature to numerical integration. However, splitting the sieve region in

this way is quite complex and it would not be possible to choose to split the region

73



in to a precise quantity of subregions — making it harder to draw comparisons

between results if we could not also produce error bounds on the estimates. It is

possible that we would be able to achieve this eventually but without a substantial

collection of full sets of sieved data it becomes difficult to assess such a method.

Eventually an approach which echos known adaptive quadrature methods may

be the most appropriate and we will return to this question when considering

further work. We aim now to test a more general idea: that we may improve the

estimates by reducing the effect of the skew. We will use the more unsophisticated

approach of taking smaller intervals where the difference between the continuous

mean and the median is likely to be most significant. Since in general we will not

be able to calculate the actual median over a region and hence cannot be sure

of the actual skew over the sieve area we must work at a high level of generality.

That is, we note that this effect is likely to be strongest in areas near to the

origin. By creating smaller intervals in these areas we may be able to manage

the effect and hence produce a more stable estimate.

We consider two possible methods in the interval case. In both we take the

smallest intervals close to 0, where the change in size of polynomial values is most

significant. As we are not splitting the interval into equally sized subintervals we

are more likely to have subintervals that consist only of integers below the various

smoothness bounds. In this case we will may not be able to use all the estimates

Gi but rather can calculate more directly the probability of the polynomial values

being B-smooth.

Method 1:

1. If the interval crosses a = 0 and we require an even number of intervals then

split the interval into two at a = 0 and then work on the two subintervals. If

K is odd, allow a small interval about 0 which we will not split any further

and then continue to work on what is left separately.

2. We may now assume that the a values are strictly increasing or strictly

decreasing in any interval we wish to split. Assume the former; we are

working in an interval defined by [amin, amax], amin, amax ≥ 0.

3. If amin 6= 0 then let start = log(amin) otherwise set start = 0. Let stop =

log(amax), set w = (stop− start)/K and define our intervals by ai = amin +

74



exp(iw), [ai, ai+1], 0 ≤ i ≤ K − 1.

Clearly this simplistic method can be utilised in the case of regions; we only

need to split into rectangular regions by working in the same manner along the

b interval and the a interval.

This method is reminiscent of that used by Boender and Murphy however in

their case they split the Y -interval and not the X-interval, on the assumption

that the size of the polynomial values was of importance. While this appears

to be a correct assumption this method has no obvious counterpart in the case

of regions — only with great difficulty can we isolate regions over which F has

no zero valued points and no maxima or minima and hence we are unable to

guarantee a split into a certain quantity of regions.

While our suggested method is rather simplistic in nature we hope to show that

it produces improved results. We consider intervals first.

f5(X) = X5 − 3:

In figure 4.4 we return to an earlier example but calculate the estimates for each

subinterval using method 1.

In this case the method requires a fairly large value of K in order to produce

a good estimate in every subinterval. Computationally we would prefer to split

the interval into as few regions as possible. The method does have some fairly

attractive properties — as illustrated in figure 4.4 with a large enough value of K

the estimates are significantly better than in the equal split; the method reaches

a conclusion, that is, a maximal value of K (of a reasonable size) exists beyond

which the method produces new intervals of zero length. However, for smaller

values of K the method is far worse than splitting the interval equally. This is

due to the way the split changes as we increase K.

We would ideally prefer a method that displays the positive qualities of the equal

split — a fast convergence towards the result, improvements seen as K grows for

small K and the positive qualities of method 1 — a maximal value of K and

good estimates in all the subintervals. We suggest such a method.

75



Figure 4.4: Actual quantity of relations followed by estimated quantity in each
subinterval for K = 5, 10, 20, 40 using method 1.

0

200

400

600

800

1000

1200

1400

1600

1800

re
la

tio
ns

1 2 3 4 5

subinterval
0

200

400

600

800

1000

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10

subinterval

0

100

200

300

400

500

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subinterval
0

50

100

150

200

250

re
la

tio
ns

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

subinterval

Method 2:

We split the interval I = [amin, amax) as follows:

1. If 0 lies in this interval and is not an endpoint then split the interval at 0.

We will work instead with the subintervals [amin, 0) and [0, amax) calling the

method separately on each.

2. At this point all integers in I are either < 0 or ≥ 0; assume the latter. Split

the interval at the points

ai := (amax − amin)/2i, i = 1, 2, . . .K − 1

so we have the intervals [amin, a1), [a1, a2), . . . [aK−1, amax].

The purpose of this method is to combine the ideas behind splitting the interval

equally — where we quickly improve the estimate except in the intervals close to

0 and method 1 above. In method 2 we focus on splitting into smaller intervals

only those portions of the sieve interval that are most likely to cause a problem.

76



This method also has a maximal value for K, which is of a reasonable size, such

that any larger value of K will produce intervals of zero length. In addition this

method is likely to produce better results than method 1 for smaller values of K.

f5(X) = X5 − 3:

In figure 4.5 we return again to our example but calculate the estimates for each

subinterval using method 2.

Figure 4.5: Actual quantity of relations followed by estimated quantity in each
subinterval for K = 5, 10, 20, 40 using method 2.

0

500

1000

1500

2000

2500

3000

3500

re
la

tio
ns

1 2 3 4 5

subinterval
0

200

400

600

800

1000

1200

1400

1600

1800

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10

subinterval

0

100

200

300

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subinterval
0

100

200

300

re
la

tio
ns

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 17 181920 2122 2324 25

subinterval

This method is somewhat better on small values of K than the equal split method

(note that for K = 1, 2 the methods are the same), due to the split the subinterval

worst affected decreases in size far more quickly. We can also see that this method

reaches an almost identical conclusion with larger K as method 1 but that it

reaches this point for a smaller value of K (in fact the method has a smaller

maximum K).

If we compare the actual estimates found in each case for f5(X) = X5 − 3 we

find that both method 1 and method 2 produce reasonable estimates. The total

yield is 5059, equal splitting with K = 40 gives the estimate 2742; method 1

77



with K = 40 produces the estimate 4942 and method 2, at the near maximal

K = 25 gives 4712. The small size of the numbers involved means that we cannot

conclude anything about the merits of method 1 over method 2 from this single

result although the dismal performance of estimates produced by splitting the

interval equally is noted.

Method 2 appears to display the positive qualities of the other methods as hoped,

the smaller maximal value of K leads to less computational effort and we see

better interim results for smaller K. We will see further support for this argument

in the subsequent section where we work with sieve regions. Since there exist far

better estimation methods in the case of intervals we will not pursue the matter

further but move directly to the case of regions.

4.5 Splitting the sieve region

We will first compare the three methods for one factorisation in the hope that

we can gain insight into whether splitting the region can produce an improved

estimate.

We work in Maple and use the Maple code included in Lambert’s thesis [56] as

a starting point for the functions Gi. We note that a minor correction is needed

to the output of G2 which is in fact twice what it should be (this appears to be

due to an incorrect change of variables in section 4.4 of Lambert’s thesis).

Since we need to integrate the piecewise smooth functions |F (X, Y )| which we

typically work with we have also written Maple code to achieve this.

Comparison of the three methods

We compare the three methods which were investigated in the interval case. The

factorisation used for the comparison was used by Cavallar [14, 20] and factored

by Montgomery. The number is an Aurifeuillian factor of the form 3h + 3
h+1
2 + 1

with h = 331. The parametrisation of the factorisation is found in 4.7 and 4.8

where the number is referred to as 3, 993M .

78



We have computed estimates of the quantity of j1, j2-relations for 0 ≤ j1, j2 ≤ 2

using our three different methods. The graphs can be seen in figure 4.6. In each

graph we have four curves, one for each of the methods and a horizontal line

which marks the actual quantity of j1, j2-relations found by sieving. In each case,

the curve that stops short is that of method 2, the other dotted black curve is

that of method 1 and the lighter curve is the result obtained by splitting the

region into equal parts.

In the case of equal splitting of the region we use K ≤ 38, however, due to the

nature of the method there is no means of deciding at which point it may be

sensible to stop (the value of K at which we produce zero sized intervals is not

only very large but implies that we take each interval to have a single point in it

at the maximal value of K, this is not useful). In the case of the other methods,

at the point at which one of the subregions has zero area we stop. Therefore for

the first method we used up to K = 38 and for the second method up to K = 20.

The equal splitting method produced an overestimate as K grows, although for

small K the results are not unreasonable. Other examples in which we computed

similar data for the equal splitting method showed the same overestimate. As the

maximum value of K in this case is also extremely large there is no immediate

way of either deciding what value of K to utilise or whether it is likely to have

produced an overestimate of the type seen in the graphs below. It is noted that

this overestimate may be the effect of accumulating error in the approximation

or it may suggest that we are approximating a function that itself overestimates

the yield in the range of interest.

Method 1 not only produces an overestimate for large values of K but in addition

shows poor results for small K. Since there is no obvious manner in which to select

the “right” value of K we turn to method 2. Method 2 looks the most promising

of the three ways in which to split the sieve region. We will investigate this further

by using the method to produce estimates for some additional factorisations.

4.5.1 Results

We calculate estimates using method 2 for factorisations which Cavallar tested

the original method on in [14, 20]. In each case we use a maximal value of K,

79



F
igu

re
4.6:

3,993M
:

C
om

p
arison

of
estim

ates
com

p
u
ted

w
ith

th
e

th
ree

m
eth

o
d
s

3,993M: estimates of 0,0 relations

0

50000

100000

150000

200000

250000

300000

350000

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 0,1 relations

0

100000

200000

300000

400000

500000

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 0,2 relations

0

50000

100000

150000

200000

250000

300000

es
tim

at
e

5 10 15 20 25 30 35 40

K
3,993M: estimates of 1,0 relations

0

200000

400000

600000

800000

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 1,1 relations

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 1,2 relations

0

200000

400000

600000

800000

es
tim

at
e

5 10 15 20 25 30 35 40

K
3,993M: estimates of 2,0 relations

0

100000

200000

300000

400000

500000

600000

700000

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 2,1 relations

0

200000

400000

600000

800000

1e+06

1.2e+06

es
tim

at
e

5 10 15 20 25 30 35 40

K

3,993M: estimates of 2,2 relations

0

100000

200000

300000

400000

500000

600000

es
tim

at
e

5 10 15 20 25 30 35 40

K

80



that is, the largest (even) value of K for which the interval [1, b] splits into K

subintervals of non-zero size. We present the results in a manner reminiscent of

that of Cavallar to aid comparison. The factorisation names are those given by

Cavallar, x, y+ denotes xy+1, 2, 2hM denotes the Aurifeuillian factor 2h+2
h+1

2 +1,

3, 3hM denotes 3h +3
h+1
2 +1, 3, 3hL denotes 3h− 3

h+1
2 +1 and Fx are Fibonacci

numbers. We recall factorisations presented by Cavallar in figure 4.7.

Figure 4.7: Polynomials used in factorisations

Number f1(X) f2(X)

3, 993M 355X − 1 X6 + 3X3 + 3
3, 999L 355X − 1 X6 − 9X3 + 27
3, 413+ X − 359 X6 −X5 + X4 −X3 + X2 −X + 1
3, 427+ X − 361 X6 −X5 + X4 −X3 + X2 −X + 1
3, 516+ 357 − 1 X6 + 3X3 + 9
3, 407+ 337X − 374 − 1 X5 −X4 − 4X3 + 3X2 + 3X − 1
F857 F171X − F172 X5 + 5X4 + 10X2 − 5X + 2

2, 2130M f1(X) = X − 5310903123331135610192
f2(X) = 6590263680X5

−71058983292296X4

+10126751094225398X3

+349867764197537945X2

−5404582433335517396810X
+2581409262310033997312415

We present results from our estimation technique in figures 4.8 and 4.9. The

estimates are all within 12% of the actual results. In fact if we discount the

factorisation 2, 2130M the results are within 7% and usually closer. The factori-

sation 2, 2130M required us to use a smaller value for K than suggested by the

size of the a interval as the b interval was much smaller. It is possible that this

has had an effect on the results — we might wish to use different values of K

for the a interval and b interval in future work to determine if this is the cause.

However, the results are much improved on the method with no splitting. The

bounded value of K means we are able to select this parameter in a manner likely

to enable us to produce good estimates and finally the method does not lead to

any significant overestimates (as the equal splitting tends to) as K grows.

Finally we note that there is an increased computational cost attached to any

method of splitting the region. If we split the region into K2 subregions and then

produce estimates for each of these we expect this to cost about K2 times the

81



F
igu

re
4.8:

D
egree

6
factorisation

an
d

estim
ation

d
ata

name 3, 993M 3, 999L 3, 413+ 3, 427+ 3, 516+
degree f1 1 1 1 1 1
degree f2 6 6 6 6 6
A 1680000 2520000 3360000 4200000 3900000
B 1560000 1250000 2400000 3200000 1600000
B1 4400000 8500000 11000000 14500000 8500000
B2 11000000 10000000 13000000 17000000 10000000
L 60000000 80000000 100000000 100000000 90000000
α(F1, B1) 0.569915 0.569915 0.569915 0.569915 0.569915
α(F2, B2) 1.468072 1.429203 2.378699 2.377064 1.193893
K 20 20 20 22 20
full 297961/0.99 412555/0.97 502027/1.00 684987/0.99 408537/0.98
0, 1-partials 481365/0.98 873553/0.96 1047129/0.98 1205720/0.98 935790/0.97
0, 2-partials 268380/1.00 633695/0.97 759311/0.99 741788/0.99 742778/0.98
1, 0-partials 769170/0.99 806649/0.96 1008690/1.00 1194986/0.99 889398/0.97
1, 1-partials 1248973/0.98 1711506/0.95 2116479/0.98 2107447/0.98 2049612/0.96
1, 2-partials 694993/0.99 1245009/0.97 1532260/0.99 1299863/0.99 1628450/0.98
2, 0-partials 627188/1.02 500656/0.98 655488/1.03 686676/1.02 623474/1.00
2, 1-partials 1018741/1.01 1065195/0.97 1374882/1.01 1217910/1.01 1441725/0.99
2, 2-partials 568849/1.03 780025/0.99 1003843/1.02 752013/1.02 1148798/1.00

82



Figure 4.9: Degree 5 factorisation and estimation data

name 3, 407+ F857 2, 2130M
degree f1 1 1 1
degree f2 5 5 5
A 3600000 6000000 97200000
B 3000000 3050000 135000
B1 13000000 11000000 4200000
B2 10000000 13000000 16777215
L 100000000 100000000 100000000
α(F1, B1) 0.569915 0.569915 0.569915
α(F2, B2) 2.319329 1.002230 −5.915719
K 20 20 16
full 387672/0.93 393668/0.97 364736/0.92
0, 1-partials 737783/0.93 652752/0.96 812613/0.96
0, 2-partials 446398/0.94 336153/1.01 621128/1.12
1, 0-partials 944266/0.93 1095953/0.97 865394/0.91
1, 1-partials 1799413/0.93 1817042/0.96 1930024/0.95
1, 2-partials 1085377/0.94 937005/1.01 1471358/1.11
2, 0-partials 819125/0.95 1071958/1.01 574197/0.90
2, 1-partials 1565368/0.95 1779998/1.00 1279510/0.95
2, 2-partials 946628/0.96 916616/1.05 972034/1.12

cost of Cavallar’s original method.

Further work

This investigation has illustrated that splitting the region can produce better

estimates of yield however there are two overriding issues:

1. The method of splitting the region has a large impact on the results obtained

and so we would prefer to take the polynomial values into account when

splitting the region — as we can in the case of intervals.

2. We can provide no error estimates for the approximation.

As noted earlier it would be more natural to use a method that adapts the split

into subregions to the particular polynomial and thus a method reminiscent of

numerical quadrature would be an obvious direction for further work.

83



4.6 Summary

We have investigated improvements on the estimation technique due to Cavallar

for estimating the quantity of full and partial relations that a classical sieve will

produce.

We considered the reasons behind the significant underestimate on the non-linear

side in the original method and following the suggestion of Cavallar we attempt to

improve the estimate by splitting the sieve region. However we find that splitting

the region into equal subregions, while improving the estimate does not solve

the underlying problem and in fact results in an overestimate in the cases we

considered in a process for which K can plausibly be taken to be very large.

We suggest a different method of splitting the sieve region — it is also quite sim-

plistic but has certain attractive qualities: firstly, the estimates with increasing K

appear to converge quite quickly toward the actual value; secondly, the method

has a conclusion that is reached far more quickly than in the equal splitting case,

that is, there is a reasonably small maximal value of K and finally the method

easily out-performs estimates found without splitting the region in all cases we

have tested though at an increased computational cost. However, due to the

nature of the estimate it is not possible to confirm that the method will always

produce a good estimate. Instead we provide evidence to support our claim.

We intend to use this method only to compare possible variants of the number

field sieve, alongside other data and not to compare different parametrisations so

we do not seek to verify the stability of the estimate with respect to variations

in parametrisations of a single factorisation but leave this to further work. It is

not suggested that this method should be used as a sole mechanism for exam-

ining a factorisation parametrisation or number field sieve variant without first

establishing the precise abilities of the method either theoretically, which does

not appear immediately possible, or through large scale tests for which we do not

have the resources.

Finally we note a less näıve approach which would seem to be particularly suited

to the problem at hand, this is left for further work.

84



Chapter 5

Characteristics of special number

field sieve factorisations

The common thread running through all of the special cases is that the polyno-

mials are chosen by hand using knowledge of some structure in the number to be

factored. The polynomials chosen tend to have extremely small coefficients and

hence the runtime of the algorithm is significantly reduced. In all cases we use a

linear polynomial and a non-linear polynomial of small degree.

The original base-m general polynomial selection methods produce polynomials

that one might argue are randomly selected. The coefficients are typically large in

size, the Galois group, with probability approaching 1 will be the full symmetric

group hence we have the minimum density of free relations. The root properties

are generally poor.

When the polynomials are chosen by hand they often have certain characteristics

that we would not usually expect to see in the general case. The most obvious

characteristic is the extremely small size of the non-linear polynomial coefficients.

We also do not immediately assume that the Galois group of the polynomial is the

full symmetric group — in fact the small size of the Galois group in various cases

has been noted previously, by Huizing, for instance [49] since this guarantees us

a more favourable density of free relations. We take this line of enquiry further

and note that when d1 is composite it is possible for the selected number field to

85



have a proper subfield.

We shall see that many of the special cases show different factor base structure

on average than we might expect in the general case.

While we could encounter any number of specialist methods for selecting polyno-

mials there are several that tend to be used on a regular basis and that produce

polynomials of a specific form.

5.1 Polynomial selection methods for special

cases

The original number field sieve [63] was designed to factor n ∈ Z where n or a

small multiple of n is of the form re − s, r > 1, |s| small positive integers, e

large. Examples of numbers of this form include both Fermat and Cunningham

numbers. We construct the number fields as follows: Choose d1 > 1, let k =

⌈e/d1⌉, m = rk then we have

f1(X) = Xd1 − srkd1−e

f2(X) = X −m.

The most appropriate value for d1 tends to infinity very slowly with the size

of the number to be factored. At the time of writing it can be assumed that

d1 ∈ {4, 5, 6, 7}. The case d1 = 4 is equivalent in general to MPQS but is

occasionally better in special cases.

Other authors [72], alter this slightly by taking k to be the nearest multiple to e

of d1 and write n = c1(r
k)

d1 + c2 possibly by multiplying n by a small power of r.

Huizing and others [42, 49] note that we can use similar ideas when attempting to

factor n of the form n = c1r
e1+c2s

e2, with r, s small positive integers, e1 ≈ e2, |c1|,
|c2| small and finally, gcd(c1r, c2s) = 1. Choose d1 as before and set k1 = ⌊e1/d1⌋,

86



k2 = ⌊e2/d1⌋, m = sk2r−k1 mod n then we have

f1(X) = c2s
e2−d1k2Xd1 + c1r

e1−d1k1 ,

f2(X) = rk1X − sk2.

If we have a number of the form n = (re − 1)/(rk − 1) we could use one of the

above methods to produce small polynomials with which to use SNFS to factor

(re − 1) however this number could be significantly larger than n and require

more sieving. It is also undesirable to use the general method on n since the

polynomial would be significantly larger in this case. In some cases we are able

to use the following method instead.

This method is particularly relevant when e/k = 11 or 13. Set m = rk and rewrite

n = (me/k − 1)/(m − 1) = g1(m) where g1(X) =
∑e/k−1

i=0 X i. The polynomials

g1(X) and g2(X) = X − m fulfil our criteria if the degree of g1 is not large. If

the degree of g1 is too large and (e/k − 1)/2 is of a better size we can express

g1(X)/X(e/k−1)/2 as a polynomial in X + X−1. If e/k = 11 or 13 this will give us

a polynomial f1(X) of degree 5 or 6 respectively. The same method will produce

a reducible polynomial when e/k = 9. The polynomials that may be produced

by this method are given in the table:

Degree f1(X)
5 X5 + X4 − 4X3 − 3X2 + 3X + 1
6 X6 + X5 − 5X4 − 4X3 + 6X2 + 3X − 1

Table 5.1: Polynomials produced by this method.

We set m = rk + r−k mod n. Examples of factorisations using such polynomials

can be found in [42].

Other methods of producing extremely small polynomials exist, algebraic and

Aurifeuillian factorisations can often suggest useful polynomials that have small

coefficients for instance see [11]. It is possible that any known structure in a

number may allow us to select a “special” polynomial.

It is not possible to consider every method that may be conceived of for finding

special polynomials. In the remainder we will focus on the above widely accepted

87



methods that lead to a polynomial f1 of a specific form. Since we are discussing

only the non-linear polynomial we will drop the subscripts.

5.2 Size properties

The first characteristic that we note is the overwhelmingly small size of the coef-

ficients of the non-linear polynomials produced by these methods. In this respect

these pairs represent an extreme. In fact this is why these polynomial pairs were

originally seen as “good” — the difference in coefficient size is enough to produce

a smaller asymptotic complexity.

Runtime of the original special case

If we consider the original method for producing polynomial pairs for integers

of the form n = re − s then we immediately see that the polynomial produced

will always be monic with all other coefficients equal to 0 except for the constant

term. The constant term itself is also bounded as follows:

|t| = |srkd−e| = |s|rkd−e < |s|rd

since r > 1 and

kd− e ≥ d =⇒ k ≥ e

d
+ 1

but k = ⌈ e
d
⌉ < e

d
+ 1.

Since r, |s| are assumed to be small and 2 ≤ d < 8 (at the time of writing) we

can assume that |t| is also reasonably small (in comparison to the expected size

of coefficients in the general case).

The coefficients of the linear polynomial are not as small, however the polynomial

is also usually chosen to be monic. The constant term will be of size ≈ n1/d.

When we are able to select extremely good polynomials by hand we see this

reflected in the asymptotic runtime. If we consider the original special number

field sieve then we will be examining numbers of the form |(a− bm)N(a− bα)| =

88



|(a− bm)(ad − tbd)| for smoothness. In this case the upper bound will be (if we

assume amax = −amin and bmax ≤ amax):

|(a− bm)(ad − bdt)| ≤ (amax + bmaxm)(ad
max + bd

max|t|)
≤ ad+1

max + ad+1
max|t|+ ad+1

maxm + ad+1
maxm|t|

< 2|t|mad+1
max

≈ 2|t|n1/dad+1
max

As noted in [63] we need only follow this change through the analysis of the general

case. In this case the typical size of numbers that we test for B-smoothness

becomes [63]

exp

(

(1/2 + o(1))

(

d2 log d + 2 log n1/d + d

√

(d log d)2 + 2 log n1/d log log n1/d

))

.

In SNFS we then have the runtime

exp

(

(1 + o(1))

(

d log d +

√

(d log d)2 + 2 log n1/d log log n1/d

))

.

It remains to note the optimal choice for d in the SNFS case:

d =

(

(3 + o(1)) log n

2 log log n

)1/3

for e → ∞ uniformly for r, s in a finite set. With this choice of d we find

that the typical size of the numbers that we test for B-smoothness is then

Ln[2/3, (16/3)1/3]; which is no(1) and the runtime is

Ln[1/3, (32/9)1/3].

Other special forms

In the case of the method for integers of the form n = c1r
e1 + c2s

e2 we have a

polynomial of the form f(X) = c2s
e2−dk2Xd + c1r

e1−dk1 and we will find that the

coefficients are bounded by the same argument as above.

89



The non-linear polynomial in the final method detailed above clearly has ex-

tremely small height (this can be seen by examination of the specific polynomi-

als).

While there are examples of special cases where several different polynomial pairs

have been produced and the decision of which to use was based on other properties

it is often the case that the smallest polynomial is used. A key question is whether

this is the correct course of action. The algorithms produced by Murphy for

polynomial selection in the general case, that have had such positive results take

into account both size and root properties however he assumes that the underlying

basic method of finding polynomials will effectively produce polynomials that

have been selected at random. What other properties do SNFS polynomials

have?

5.3 Root properties

In chapter 3 we outlined the function α(F ) which aimed to capture the difference

in probability between a polynomial value F (a, b) and a random number, of the

same size, being smooth. Ideally we would prefer that the F values acted like

random integers a great deal smaller and hence we would like this value to be as

negative as possible.

We note that α(F ) > 0 would correspond to the values F (X, Y ) being less likely

to be smooth over the primes p ≤ B than random integers of the same size. This

situation can occur when we have very few first degree prime ideals of small norm

but also when, for a high proportion of the primes p ≤ B, we have no first degree

prime ideals of norm p.

In order to consider the root properties in the special cases, the possibly of finding

subfield structure and the density of free relations we look at the Galois group of

the polynomials produced for many of the SNFS factorisations.

90



5.3.1 The Galois group in special cases

In the general case it is assumed that the Galois group will be Sd, the full sym-

metric group, the set of permutations of d elements with size d!. In this case

we have the minimum quantity of free relations and cannot have subfields. It

is already known that special case polynomials may have smaller groups and we

would like to investigate this in more detail.

We would be interested to know the Galois group of these fields so that we may

estimate the density of free relations. This can also be useful when determining

information on any subfields. Since f is irreducible we know that Gal(f) the

Galois group of the splitting field of f is a transitive permutation group.

The transitive permutation groups of degree up to 15 are summarised in [25,

section 2.2 but see also 1.2] and I use the naming system of that paper below.

In the original polynomial construction method we will always produce a monic

non-linear binomial. The variations of this method will produce a non-linear

binomial which may not be monic hence we will work with f(X) = cXd − t,

c, t ∈ Z, c, t 6= 0. We may assume that f is irreducible over Q. In this case we

are able to say a great deal about the possible Galois groups.

Let α be a root of f , and define K = Q(α). The minimum polynomial of α will

be f̂(X) = Xd − t/c ∈ Q[X] with t/c ∈ Q, t/c 6= 0. Let S be the splitting

field of f̂ (and hence of f) and ζ be any primitive dth root of unity, then the

other roots of f̂ have the form ζ iα for 1 ≤ i ≤ d− 1. Hence the splitting field is

S = K(ζ) = Q(α, ζ) and S = K if and only if ζ ∈ K. Now we have three cases:

1. If S = K then we have [S : Q] = d and hence the size of the Galois group

is d.

2. If S = K(ζ) = Q(α, ζ) and the dth cyclotomic polynomial is irreducible

over K then the minimum polynomial of ζ is the dth cyclotomic polynomial

which has degree φ(d) where φ is Euler’s phi (or totient) function. Then

we have [Q(α) : Q] = d and [Q(α, ζ) : Q(α)] = φ(d) and so [Q(α, ζ) : Q] =

[Q(α, ζ) : Q(α)][Q(α) : Q] = φ(d)d.

3. If the dth cyclotomic polynomial factors over K but we are not in case 1 (it

91



does not factor completely) then roots are discussed in Lang [59, theorem

9.4 and remarks], (when d ∈ {4, 6} this case cannot occur as the polynomial

in question is a quadratic).

The elements of the Galois group are found by considering the distinct Q-

automorphisms of S. Any Q-automorphism of S permutes roots of the defin-

ing minimum polynomials, that is, we consider all distinct combinations of

ςi : α 7→ αζ i, ςi : ζ 7→ ζ, 0 ≤ i ≤ d− 1,

τj : ζ 7→ ζj, τj : α 7→ α, 1 ≤ j ≤ d− 1, gcd(j, d) = 1.

We are primarily interested in f of degrees < 7:

• d = 2: There is only one possible Galois group, the full symmetric group

S2.

• d = 3: The above results give |Gal(f̂)| = 3 or |Gal(f̂)| = 6.

A 3rd primitive root of 1 is in C and not in R. However, a function of the

form X3− t/c will always have a real root and hence a real embedding. We

can immediately deduce that we have no primitive 3rd primitive root of 1

in K and hence the only possibility is Gal(f̂) = S3.

• d = 4: i is a primitive 4th root of 1, if i 6∈ K then the Galois group has

order 8 and is the dihedral group D(4).

If i ∈ K then the Galois group has order 4 and there are two possibilities:

C(4) and E(4). If we consider the elements of the Galois group itself, we

find that the group is generated by α 7→ −α and i 7→ −i and hence we

must have Gal(f̂) = E(4).

• d = 5: The Galois group is of order 5 or 20. The only possible Galois group

of 5 elements is C(5) and the only possible Galois group of 20 elements is

F (20).

By a similar argument to that given in the case d = 3 above there can be no

primitive 5th root of 1 in K and we can immediately deduce Gal(f̂) = F (20).

• d = 6: Gal(f̂) is of order 6 or 12. If there is no primitive 6th root of 1

in K then Gal(f̂) = D(6) or Gal(f̂) = A4(6). If we consider the form of

92



the Galois group given above we can immediately conclude that it is of the

form S(3)× C(2) and hence is the group D(6).

If there is a primitive 6th root of 1, say ζ , in K then either Gal(f̂) = C(6)

or Gal(f̂) = D6(6). The Galois group is generated by ς2
1 , and τ5 and hence

we must have Gal(f̂) = D6(6).

We could continue in this way noting the specific groups. In general we note only

that the size of the Galois group must be less than or equal to dφ(d) and hence for

d > 3 the Galois group is always strictly smaller than the full symmetric group

in all cases.

The final method given above that is used to produce polynomials can give rise

either to a polynomial of the form f(X) =
∑d

i=0 X i (which we may use if d = 4, 6)

or, if d = 12, we can produce the polynomial of degree 6 given in table 5.1. In

all of these cases the Galois group of the polynomial will be C(d) (this may be

checked using, for instance, KASH [32]). In the case where f(X) =
∑d

i=0 X i,

d = 4, 6 we can see this since the polynomial is a cyclotomic polynomial. In both

cases the roots of unity will be present in K.

Other “special” polynomials that have been used in SNFS factorisations also

have small Galois group in all cases which we encountered (see appendix A for

the more prominent examples). In the most part the groups are C(4), E(4),

D(4), C(5), F (20), C(6), D6(6) or D(6) although in the case of d = 6 we have

also encountered the group F18(6).

5.3.2 Factor base structure

Another characteristic that sets special cases apart is the structure of the factor

base, where there are some properties that differ from the general case.

Since special case polynomials are not chosen with particular regard to the root

properties present we would be interested to know something of the average root

properties that they have. This is difficult to quantify for general d or even for

non-monic polynomials so we will consider the most pertinent degrees 4, 5 and 6

in detail. For this section we will assume that f is a monic polynomial. If f is not

93



monic then the primes that divide the leading coefficient will not be encompassed

by the theory discussed below, however this will be a finite set of primes. If

these are small primes then the effect may be significant — as demonstrated by

Murphy’s schema, however, when selecting SNFS polynomials we do not have an

immediate method of forcing a large quantity of small projective roots and so

cannot control this effect to our advantage.

In the general case the degrees 4, 5 and 6 do produce slightly different general

factor base structures but these are not significant and Murphy discounts them.

However, his argument is based on the assumption that the polynomial used

is selected at random (and hence will have Galois group Sd with probability

approaching 1) and that his aim is to select polynomials with better than average

properties.

Neither of these assumptions are valid in the main special cases of the number

field sieve so we will reconsider the implications. We will compare the factor base

structure in the two cases and then consider whether the values of α(F ) and E(F )

are still relevant when comparing special case polynomials.

In [76, chapter 3] Murphy considers whether the choice of d will influence the

root properties to any significant extent. We revisit this, contrasting the special

and general cases.

5.3.3 The factor base structure when f is a randomly se-

lected polynomial

Theorem 2 [45] Let f(X) = Xd + cd−1X
d−1 + · · · + c0 ∈ Z[X] be a monic

polynomial of degree d with Galois group Gal(f) a subgroup of Sd. Let Nd(h) be the

number of such polynomials with max(|cd−1|, . . . , |c0|) ≤ h for which Gal(f) < Sd.

Then

Nd(h) << hd−1/2 log1−ǫ h

where ǫ > 0 is dependent on d.

Informally this result states that most (asymptotically density 1, independent of

d) monic polynomials f(X) ∈ Z[X] of degree d have Galois group isomorphic

94



to the full symmetric group. Thus if we select such a polynomial at random it

has Galois group Gal(f) < Sd with probability approaching 0. While the base-m

method is not random, no attempt is made to select polynomials with strictly

smaller Galois groups. It seems likely that most polynomials produced with this

method will have Gal(f) ∼= Sd and Murphy assumes that this is the case. We

have seen that known methods taking advantage of structure usually produce

polynomials with Galois groups strictly smaller than the full symmetric group.

Definition 6 The cycle shape of a permutation is the multiset of the lengths of

its cycles when the permutation is written as a product of disjoint cycles. We say

that a permutation has k fixed points if it has k disjoint cycles of length 1.

A consequence of the Chebotarev Density Theorem is the following [55]:

Proposition 3 The degrees of the irreducible factors of f modulo p, p prime and

f square free, are the same as the cycle shape of an element of the Galois group

of f over Q. Further, the proportion of p ≤ B giving rise to a certain shape tends

to the proportion of elements of the Galois group having that shape as B →∞.

The formula to calculate the number of permutations of d elements that have k

fixed points is given in [87]

FP (d, k) :=
d!

k!

d−k
∑

i=0

(−1)i

i!
.

We can see that the proportion of the d! possible permutations of d elements with

k fixed points is:

FP (d, k)

d!
=

d!

k!d!

d−k
∑

i=0

(−1)i

i!
=

1

k!

d−k
∑

i=0

(−1)i

i!
.

We will identify the proportion of integer primes below B, as B → ∞, that

do not appear in the algebraic factor base and that can therefore never divide

N(a− bα), this is the case k = 0 and such primes will contribute positive values

to α(F ). We also consider the case k = 1, the proportion that are present only

95



once (which contribute 0 to α(F )), and finally those present multiple times, which

contribute negatively to α(F ). We will state results only for those primes that

do not divide the discriminant of f , since those that do will not follow a general

pattern. Obviously only a finite number of primes can divide the discriminant

(which for an SNFS polynomial will be small).

k = 0:

We identify the proportion of integer primes p < B, as B → ∞, for which we

have no first degree prime ideals of norm p. This is equal to the proportion of

the d! permutations contained in Sd which have no cycle of length one:

1

0!

d−0
∑

i=0

(−1)i

i!
=

d
∑

i=0

(−1)i

i!
=

1

1
− 1

1
+

1

2
− 1

6
+

1

24
− . . . +

(−1)d

d!
.

When d = 2 we have the proportion 1/2, when d = 3 we have the proportion 1/3.

For d > 3 we truncate the sum after the 5th term to produce an upper bound of

3/8 ≈ 0.375 and after the 6th term to produce a lower bound of 11/30 ≈ 0.366

(in fact the well known limit as d →∞ is 1/e).

k = 1:

We now note the proportion of integer primes p < B, as B → ∞, for which we

have one first degree prime ideal of norm p. This is equal to the proportion of

the d! permutations contained in Sd which have exactly one cycle of length one:

1

1!

d−1
∑

i=0

(−1)i

i!
=

d−1
∑

i=0

(−1)i

i!
.

The first few terms of this are the same as in the case k = 0.

When d = 2 we have no cycles of length exactly one, when d = 3 we have the

proportion 1/2. For d > 3 we truncate the sum after the 4th term to find a

lower bound of 1/3 ≈ 0.33 and after the 5th term to find an upper bound of

3/8 ≈ 0.375.

96



k > 1:

Finally we calculate the proportion of integer primes p < B, as B →∞ for which

we have strictly more than one first degree prime ideal of norm p. This is equal

to the proportion of the d! permutations contained in Sd which have more than

one cycle of length one and this is 1 minus the total proportion of permutations

with no cycles or exactly 1 cycle.

When d = 2 we have 1− 1
2

= 1
2
. These will have exactly two cycles of length one.

When d = 3 we have 1− (1
2
+ 1

3
) = 1

6
≈ 0.166 of cycle lengths two or three. When

d > 3 we have an upper bound of 1− (11
30

+ 1
3
) = 3

10
≈ 0.3 and a lower bound of

1− (3
8

+ 3
8
) = 1

4
≈ 0.25.

We conclude, as Murphy did, that in the general case there is little to choose

between various d, d > 3 in terms of the average root properties produced.

5.3.4 Factor base structure in special cases

When working in complete generality, it can be difficult to compare factor bases

obtained for number fields with Galois group the full symmetric group with typ-

ical SNFS factor bases. We consider the three most pertinent degrees.

d = 4

From figure 5.1 we observe that for SNFS factor bases we have a significantly high

proportion of integer primes for which there is no first degree prime of that norm.

In particular, when f is chosen such that the Galois group is the cyclic group

C(4) or the Klein group E(4) these cases are expected to have 3/4 of integer

primes below B, as B →∞, not present in our factor base.

In the case of Galois group S4 we have k > 1 on average 29% of the time, in the

special cases C(4) and E(4) on average 25% of the time. The case of D(4) stands

out with k > 1 on average 38% of the time.

97



However, the percentage of primes that, on average, will not be present in the

factor base at all could be cause for concern, unless the distribution for the

particular polynomial favours the small primes, we may have to work harder to

find smooth polynomial values than we would when working with random integers

of the same size.

d = 5

If we consider figure 5.2 which corresponds to d = 5, we see the situation that

occurred in many of the early factorisations using the special and general number

field sieves (the Galois group F (20) occurs for all polynomials produced by the

original SNFS polynomial selection method with d = 5). In this case 4/5 of the

primes p ≤ B, as B →∞, are present.

However, we have only 5% of the primes with k > 1, on average. This is a

disappointingly low figure — it suggests that while we are less likely to encounter

very positive α(F ) values (since 80% of primes are present at least once) it will also

be difficult to attain particularly negative α(F ) values as such a low proportion

of primes will provide a negative contribution.

d = 6

If we consider figure 5.3, we conclude that in the cases where the Galois group is

of size 6, we will have only 1/6 of the primes p ≤ B present, as B →∞. Unless a

substantial quantity of these are the primes of reasonably small norm, the factor

Figure 5.1: For each group of interest: the quantity of each possible cycle shape
present and the proportion of rational primes less than B which correspond to
0, 1, 2 or 4 first degree primes as B −→∞

2 3
G |G| 14 12 22 1 4
C(4) 4 1 1 2
E(4) 4 1 3
D(4) 8 1 2 3 2
S4 24 1 6 3 8 6

No. first degree primes
4 2 1 0

1/4 0 0 3/4
1/4 0 0 3/4
1/8 1/4 0 5/8
1/24 1/4 1/3 3/8

98



base could be significantly worse than one that we would expect to encounter

when the Galois group of f is Sd. While the situation is improved when we have

the Galois group D(6), we are missing almost 2/3 of the integer primes.

On the positive side all those present are present multiple times and so will

contribute negatively to α(F ) nonetheless, unless many small primes occur 2 or

6 times, we may expect to have to work harder to produce B-smooth values.

5.3.5 Root properties, α(F ) and E(F )

Asymptotically, the average number of pairs (p, r) for a given integer p is 1 if the

smoothness bound is large enough [58]. However the particular structure of the

factor base differs in more subtle ways. While it is possible that a polynomial

leading to a factor base with a low proportion of integer primes is better than a

polynomial with Galois group Sd, it is by no means certain. To improve on such

a polynomial, either more integer primes must be accounted for, or the particular

polynomial must have many roots modulo small primes.

Without aiming to manipulate the root properties of the polynomials used we

may find that we are using polynomials with positive α(F ) values. In fact, of the

SNFS factorisations we have encountered we have found that the vast majority

have positive values of α(F ), details of the characteristics of a collection of the

more prominent SNFS factorisations are contained in appendix A.

Since the polynomials used in special cases come from the structure of the num-

ber to be factored the level of control over the leading coefficient is low and hence

we are less able to manipulate the distribution of the roots to ensure a negative

Figure 5.2: For each group of interest: the quantity of each possible cycle shape
present and the proportion of rational primes less than B which correspond to
0, 1, 2, 3 or 5 first degree primes as B −→∞

2 22 3 3 4
G |G| 15 13 1 12 2 1 5
C(5) 5 1 4
F (20) 20 1 5 10 4
S5 120 1 10 15 20 20 30 24

No. first degree primes
5 3 2 1 0

1/5 0 0 0 4/5
1/20 0 0 3/4 1/5
1/120 1/12 1/6 7/24 11/30

99



Figure 5.3: For each group of interest: the quantity of each possible cycle shape
present and the proportion of rational primes less than B which correspond to
0, 1, 2, 3, 4 or 6 first degree primes as B −→∞

3
2 22 3 2 4 4 5

G |G| 16 14 12 23 13 1 32 12 2 1 6
C(6) 6 1 1 2 2
D6(6) 6 1 3 2
D(6) 12 1 3 4 2 2
S6 720 1 15 45 15 40 120 40 90 90 144 120

No. first degree primes
6 4 3 2 1 0

1/6 0 0 0 0 5/6
1/6 0 0 0 0 5/6
1/12 0 0 1/4 0 2/3
1/720 1/48 1/18 3/16 11/30 53/144

α(F ) value. This means that we are likely to be more dependent on the average

cases which we have just detailed. As we have seen this is highly variable and

dependent not only on the degree but also on the polynomial form (two poly-

nomials which share the same degree but have different Galois groups can have

manifestly different average factor base structures).

We might wish to consider whether we can manipulate the distribution without

destroying other positive properties — such as the extremely small size or bene-

ficial Galois group. We note that this cannot be achieved by translations (which

have no effect on root properties) or rotations (in general these will produce a

different Galois group) as used by Murphy. On the other hand, it is possible to

create isomorphic number fields which have different projective roots.

Nevertheless the options aren’t wide open — we can alter things in a few ways

but we will have less choice and hence the range of possible α(F ) values (for

polynomials for an integer n which share the same degree) is limited.

In addition we must consider that creating a polynomial that has a leading co-

efficient divisible by powers of many small primes will alter the size properties.

We may wish to think before doing so since our reduced asymptotic runtime is

100



based in the extremely small size that the special cases provide.

It would seem that we may be sacrificing good root properties in order to achieve

this small size — and seemingly for good reasons. This leads us to the conclusion

that knowledge of α(F ) values alone are of little or no benefit to us in special cases,

in order to compare these with each other and the general case we must consider

a measure such as E(F ) which takes into account size and root properties.

Hence we are dealing with polynomials with significantly different characteristics

from those that Murphy assumed.

5.4 Subfield structure in special cases

Notation

We will assume that we have polynomials f1, f2 and that f1 is a non-linear

polynomial of composite degree. For this section we will write f = f1. We select

a particular root of f denoted by α and define a number field K = Q(α). We

are interested in the situation where there is some field L = Q(β) such that

K ⊃ L ⊃ Q. Each such field that we define will be described by a polynomial

g(X) ∈ Z[X] with root β and the embedding of β into K. The embedding will

be given by a polynomial h(X) ∈ Q[X] with h(α) = β. We have the following,

for instance from [53],

Lemma 3 A subfield L of K has a representation by a pair (g, h) with g(h) ≡ 0

(mod fZ[X]) and any such pair (g, h) describes a subfield of K.

We note that h is not necessarily integral because Z[α] is in general not a maximal

order.

If the field has prime degree then there are no subfields hence we will only consider

degree 4 and degree 6 (as the only composite degrees of a practical size at the

time of writing). When d = 4, in the cases we are considering there will always be

at least one quadratic subfield (as the Galois groups are of order 4, are 2-groups

101



and hence have an index-2 subgroup). We specify this subfield and check for

other degree 2 subfields. In the second case we may have subfields of both degree

2 and degree 3.

There are a variety of algorithms for determining subfields in the most general

cases however we will have far more information about the main field and the

subfields to require these in the SNFS cases. If we wish to move to more general

cases than the methods examined in [36, 50, 53, 60] will become more important.

Once we know the Galois group of the defining irreducible polynomial we are

then able to find any subfields of the field Q(α). We will look at the cases d = 4

and d = 6.

d = 4

Firstly we will assume that d = 4, f(X) = cX4 − t and the Galois group is D(4)

the dihedral group of 8 elements with generators

ς = ς1, ς(α) = iα, ς(i) = i

τ = τ3, τ(α) = α, τ(i) = −i

subgroup id ς ς2 ς3 τ ςτ ς2τ ς3τ #
Triv. • 1
C(2) • • 2
C(4) • • • • 4
C(2) • • 2
C(2) • • 2
C(2) • • 2
C(2) • • 2

C(2) + C(2) • • • • 4
C(2) + C(2) • • • • 4

D(4) • • • • • • • • 8

Figure 5.4: Degree 4, D(4); subgroups

The subgroup inclusions can be readily produced from the figure 5.4 and under

the Galois correspondence we obtain the intermediate fields. The correspondence

reverses inclusions and so we have figure 5.5.

102



Q(α, i)

Q((1 + i)α) Q((1− i)α) Q(i, α2) Q(α) Q(iα)

Q(iα2) Q(i) Q(α2)

Q

Figure 5.5: Degree 4, D(4); subfields

It can be observed that Q(i), Q(α2) and Q(iα2) are the subfields of Q(α, i) of

degree 2. To find the others we note that any element of the splitting field can

be written as

γ = a0 + a1α + a2α
2 + a3α

3 + a4i + a5iα + a6iα
2 + a7iα

3

and we then consider the action of the non-trivial group element (which should

fix γ). We conclude that in this case we will always have exactly one subfield of

Q(α) of degree 2, the field is Q(α2). We can then see that there are two possible

embeddings h(X) = ±X2. The embedding that is used depends on the particular

roots of f and g that are adjoined to Q.

When d = 4 and K is the splitting field (we have the Galois group E(4)) we

work in a similar manner. We note that the situation can only arise when for

f = cX4 − t, t < 0, |t| = s2
1, c > 0, c = s2

2 and si ∈ Z (this ensures that i ∈ K).

Letting ς and τ be as defined above the subgroups are shown in figure 5.6 and

under the Galois correspondence we have figure 5.7.

We note that there are three subfields in this case with defining polynomials

g1(X) = s2X
2 + 2s1, g2(X) = cX2 − t, g3(X) = s2X

2 − 2s1 with embeddings

h1(X) = ±(s2/s1X
3 + X), h2(X) = ±X2 and h3(X) = ±(−s2/s1X

3 + X)

103



subgroup id ς2 τ ς2τ #
Triv. • 1
C(2) • • 2
C(2) • • 2
C(2) • • 2
E(4) • • • • 4

Figure 5.6: Degree 4, E(4); subgroups

respectively. These can be verified by application of lemma 3.

When d = 4 the Galois group is E(4) or D(4). In both cases we have at least one

quadratic subfield which is defined by (cX2 − t,±X2), the particular embedding

depends on which roots are used. That this is indeed a subfield can be verified

using the lemma above. In the case E(4) there are two other quadratic subfields

which are not isomorphic to this one but have h 6∈ Z[X] and hence we will not

use these. We also mentioned the possibility of using a polynomial with C(4)

as the Galois Group. In this case, we will find that we have one subfield with

integral embedding however, the embedding can be of a more complex nature.

Such cases would need to be considered individually.

Q(α)

Q(i
√

2s1/s2) Q(α2) Q(
√

2s1/s2)

Q

Figure 5.7: Degree 4, E(4); subfields

104



d = 6

Assume f(X) = cX6 − t with Galois group D(6). The subgroups of D(6) can be

found in a similar way to those of D(4) above. Let ς and τ generate the group:

ς = ς1, ς(α) = αζ, ς(ζ) = ζ

τ = τ5, τ(ζ) = ζ5 τ(α) = α

where ζ is the primitive 6th root of 1 and is e2iπ/6 = (1 +
√

3i)/2.

subgroup id ς ς2 ς3 ς4 ς5 τ ςτ ς2τ ς3τ ς4τ ς5τ #
Triv. • 1
C(2) • • 2
C(3) • • • 4
C(6) • • • • • • 6
C(2) • • 2
C(2) • • 2
C(2) • • 2
C(2) • • 2
C(2) • • 2
C(2) • • 2

C(2) + C(2) • • • • 4
C(2) + C(2) • • • • 4
C(2) + C(2) • • • • 4

S3 • • • • • • 6
S3 • • • • • • 6

D(4) • • • • • • • • • • • • 12

Figure 5.8: Degree 6, D(6); subgroups

The inclusions for degree 6 are far more complex and can be readily found using

the figure 5.8. We consider only the inclusions that are interesting, these are

noted in figure 5.9.

In this case we have two fields with defining polynomials g1(X) = cX3 − t and

g2(X) = cX2 − t with embeddings h1(X) = X2 and h2(X) = ±X3 respectively.

When K is the splitting field we note that we are always in the situation where

f(X) = cX6 − t, t < 0, |t| = 3s2
1, c > 0, c = s2

2, and si ∈ Z (this ensures that a

105



Q(α, ζ)

Q(α)

Q(α2) Q(α3)

Q

Figure 5.9: Degree 6, D(6); subfields

primitive 6th root of 1 is in K). Let ς and τ be as defined above and hence we

have the subgroups:

subgroup id ς2 ς4 τ ς2τ ς4τ #
Triv. • 1
C(3) • • • 3
C(2) • • 2
C(2) • • 2
C(2) • • 2
D6(6) • • • • • • 6

Figure 5.10: Degree 6, D6(6); subgroups

The subgroup inclusions can be readily seen from the figure 5.10 and under the

Galois correspondence we have figure 5.11.

In this case the defining polynomials are g1(X) = cX2 − t and gi(X) = cX3 − t

for i ∈ 2, 3, 4. The latter three subfields, Q(α2
i ), i = 2, 3, 4 are isomorphic but not

equal but this can only be seen by noting that the embeddings are h1(X) = ±X3,

h2(X) = X2, h3(X) = − s2

2s1
X5 − 1

2
X2 and h4(X) = s2

2s1
X5 − 1

2
X2 respectively.

For larger values of d working in this way would become extremely complex

106



Q(α)

Q(α3) Q(α2
2) Q(α2

3) Q(α2
4)

Q

Figure 5.11: Degree 6, D6(6); subfields

and unnecessary if all that is required is a subfield equation and embedding.

Algorithms to achieve this for particular fields can be found in [53].

If d = 6 the possible groups are C(6), D6(6) and D6. We will have both a

quadratic and a cubic subfield. In the latter two cases the two obvious subfields

are those in which we are interested. These are defined by (cX2 − t,±X3) and

(cX3− t, X2), again any additional subfields have h 6∈ Z[X]. In the case C(6) we

again have two integral subfields with degree 2 and 3 however the embeddings

are of a more complex nature.

For other forms of special polynomial we must work on a case by case basis,

we are by no means assured subfields in all situations but the possibility arises

frequently enough to be of interest.

5.5 Summary

We have explored various characteristics which are present in special cases of the

number field sieve and have considered some of the possible Galois groups which

may be found noting that these differ from what we might expect in general.

Taking this argument further we have seen that there is subfield structure in

some of the main special cases which use a field of composite degree. The size

and root properties which may be expected have also been considered. Here we

107



see a significant departure from the general case, it is well known that the special

cases are extremely small — in fact it is for this reason that they were originally

selected. However, Murphy and others have deemed root and size properties to be

of importance. We have seen that the situation with respect to the root properties

is more complex in some of the special cases and that we must take care when

comparing polynomials with the same degree but different Galois group.

108



Chapter 6

Using subfield structure

We saw in chapter 5 that in some of the main special cases we have subfield

structure in the algebraic number field used.

We are interested in methods which may speed up the number field sieve in

the special cases for two reasons. Firstly, such a speed up would aid in the

attempts to factor integers with known special structure such as those factored

by the Cunningham project. In addition, in chapter 7 we will see that it is

possible for some numbers with special structure to be isolated in an automated

fashion without guidance as to the structure involved. That is, it is possible for

a special case hitherto unrecognised as such by a human, and possibly used for

cryptographic purposes, to be factored using a non-general set of parameters that

result in a significantly reduced runtime from the general case.

We investigate the most obvious method of utilising the subfield structure avail-

able and then proceed to consider any implications for free relations, use of

quadratic characters, the linear algebra and square root steps.

6.1 The Algorithm

Let n be a number with special structure and assume that we have produced

two irreducible polynomials f1(X), f2(X) ∈ Z[X] by one of the methods seen to

109



produce number field sieve polynomials such that we have one or more subfields

on the algebraic side. Let f1 have either degree 4 or degree 6 (as these are the

only composite degrees in the current range) and f2 be a linear polynomial. In

addition assume f1 and f2 have a common root m mod n. Let α ∈ C be such that

f1(α) = 0 and define a number field K = Q(α). We also have a homomorphism

ϕ(α) ≡ m mod n.

In this chapter we will define g(i,1) to be the non-linear polynomial defining the

ith subfield Li of K and g(i,2) to be the corresponding linear polynomial.

Let K have a quadratic subfield L1 defined by (g(1,1), h1). In the case that d1 = 6

let there be in addition, a cubic subfield L2 defined by (g(2,1), h2). We define

ĥi : Z[βi] → Z[α] the subfield embedding, an injective homomorphism, induced

by βi 7→ hi(α), where hi(X) is the embedding polynomial. In a similar manner

to standard NFS we construct a set S of integer pairs (a, b), a coprime to b and

using each subfield construct sets Si of integer pairs (ai, bi), ai coprime to bi for

which

∏

S

(a− bα)
∏

i

ĥi

(

∏

Si

(ai − biβi)

)

= γ2 ∈ Z[α]

∏

S

(a− bm)
∏

i

(

∏

Si

(ai − bihi(m))

)

= y2 ∈ Z.

We then have

ϕ(γ)2 ≡ ϕ(γ2)

≡ ϕ

(

∏

S

(a− bα)
∏

i

(

∏

Si

(ai − biĥi(βi))

))

≡ ϕ

(

∏

S

(a− bα)

)

ϕ

(

∏

i

(

∏

Si

(ai − bihi(α))

))

≡
∏

S

(a− bm)
∏

i

(

∏

Si

(ai − biϕ(hi(α)))

)

≡
∏

S

(a− bm)
∏

i

(

∏

Si

(ai − bihi(m))

)

≡ y2 mod n

so via the homomorphism we again have ϕ(γ)2 ≡ y2 mod n. We may then calcu-

late gcd(n, ϕ(γ)− y) which will split n non-trivially in at least half the cases.

110



We will use the subfields with integral embeddings highlighted in the special cases

mentioned in chapter 5. The embeddings preserve multiplicative and additive

structure in the subfield hence ideals of the subfield map to ideals of the main

field. In addition, first degree primes in the subfields either map under the subfield

embedding to higher degree primes ideals in the main field or to ideals that factor

in the main field.

However, in standard NFS we actively avoid working with γ ∈ Z[α] divisible by

higher degree primes. We do so as we require the factorisation of the norm, N(γ)

to mirror the factorisation of γ. The obstruction when we allow higher degree

primes in the standard case is that we may have

∏

p

pe = N(γ) = N〈γ〉 =
∏

p

N(pv)

with e even but v odd. This can happen, for instance, if a single p in our product

is a second degree prime.

In the subfield version of NFS we are effectively allowing higher degree primes in

∏

S

(a− bα)
∏

i

ĥi

(

∏

Si

(ai − biβi)

)

.

However, as we know that the primes from the subfield are higher degree primes

in the main field (and to what degree) or factor in a known way in the main field

we can easily sidestep this obstruction.

For instance: if we have a degree 4 main field and a degree 2 subfield we might

have a relation in the subfield that contains a prime that maps to a second degree

prime in the main field. It is treated as a single element that must itself appear

to an even power in any set Si that is produced. If a prime in a subfield factors in

the main field then we effectively still treat that ideal as a single element requiring

that all of the factors (and hence the ideal itself) appear to an even degree in the

product.

We use the special form that was chosen in order that we did not encounter higher

degree primes in standard NFS to retain a separation between those numbers

which have only first degree primes as factors and those that may have higher

degree primes. Thus we have opened up to us factor base elements which we

111



would not have been able to use in the past.

In order to see that this addition to standard NFS is coherent we need to reflect

on some of the details of the algorithm. In the next section we run through the

details of the implementation.

6.2 Implementation

The polynomial selection requires only that we select polynomials that permit

subfield(s) on the algebraic side however this could have implications in some of

the more technical steps of the algorithm. We examine each step in turn.

Sieving

The sieving takes place as in standard NFS in the main field and in a similar

manner in the subfields. The only difference being that detailed above — that

we need to use the subfield embedding to determine the auxiliary values to be

tested for smoothness on the linear side in the subfield.

We construct the sets S, S1 (and possibly S2 if we have a second subfield) working

in a similar way as in the main field. We will describe this for one subfield

L = Q(β) which we will denote (g(1,1), h1). Let g(1,2)(X) be a linear polynomial

with root h1(m) mod n and define the homogeneous polynomials Gi(X, Y ) =

Y dig(1,i)(X/Y ). We select the factor base F(Bi) of first degree prime ideals in

an analogous manner to the main field. By sieving we find pairs (a, b) such that

a, b are coprime and the integers G1(a, b), G2(a, b) factor over the primes in

the subfield factor bases, except for any large primes, in the case of large prime

relations, and call these subfield relations.

The introduction of large primes in the subfields does not pose any additional

problems in terms of the collection of data; we work in the same way as in the

main field. However, since we will have large prime relations from the main and

subfield we may notice the effects of this in the filtering stage. We will discuss

this shortly after introducing some of the technical apparatus that will allow us

112



to relate the main and subfield relations more freely.

Other than the method of obtaining the polynomials Gi with shared root modulo

n we make the usual assumptions in the subfields and thus we are in exactly the

situation described in chapter 2 and thus may sieve without impediment.

Free relations and the bridge

As in the main field we have free relations in the subfield. These relations occur

when an integral prime p factors completely into first degree primes of the subfield.

If we have one linear polynomial and one of degree 2 (respectively 3) approx-

imately 1/2! (respectively 1/3!) of the primes will give rise to free relations in

the subfields. Hence a subfield of degree 2 is theoretically especially valuable.

We would usually add these free relations in during the filtering stage as de-

scribed in [13] if we wished to use them as some large factorisations still do for

instance [18].

We note that when a prime p factors completely into first degree primes in more

than one of the fields we effectively add two relations that allow interaction in the

linear algebra stage between the previously distinct relation sets. We will refer

to any relations that allow this as bridging relations.

We may go further than this. For each first degree prime ideal in a subfield that

when mapped into the main field factors fully into first degree primes of the main

field we have another form of bridging relation that carries extra information

not previously expressed in the free relations. These relations are also effectively

free to compute but they are immensely valuable since they are the only relations

that describe the entire relationship between the main factor base and the subfield

factor base — allowing a greater level of freedom in the linear algebra step. We

will address the impact of these on the linear algebra later in this chapter.

In order to create these relations we need to be able to quickly and cheaply

recognise when a prime from a subfield factors into first degree primes in the

main field and identify the primes involved in the factorisation in the main field.

113



Let us restrict ourselves to monic polynomials (if the polynomials are not monic

then the divisors of the leading terms, of which there is a finite and usually small

number, must be treated specially but in other regards the theory below remains

effectively the same). As we established earlier, in the field K = Q(α) defined by

f there is a one to one correspondence between pairs (p, r) and the first degree

prime ideals, generated by p and r − α. That is, we defined the factor base in

the main field to be:

F(B) = {(p, r) | p prime, p < B, r ∈ R(p)}

where

R(p) = {r ∈ Z/pZ | F (r, 1) ≡ 0 mod p}.

Further we noted that a− bα is contained in 〈p, r− α〉 iff a− br ≡ 0 mod p. We

define the factor base in the subfields in a similar manner.

Under the embeddings into the main field, the first degree primes in the subfield

may either map to higher degree primes or factor in the main field. Let us say

that the field K has degree d and a subfield L of degree dL|d then the first degree

primes in the subfield may either map to d/dL-degree primes in the main field or

factor into d/dL first degree primes in the main field (there are other possibilities

but we treat those as single entities that must themselves appear to an even

degree in any resulting set S since they do not factor completely over the main

field factor base).

Let us assume we have the field K = Q(α) of degree 4 with a subfield L = Q(β) of

degree 2 with embedding ±X2 as produced in chapter 5. The first degree primes

in the subfield map to second degree primes in the main field or factor into two

first degree primes in the main field.

For p ∈ Z, p prime and less than the minimum of the factor base bounds, we

have the following situations:

• If there are two first degree prime ideals corresponding to (p, ri), i = 1, 2

in the subfield and none in the main field then on the embedding into the

main field we will find that both of these are second degree primes and are

generated by p and ri − α2. No relations are added to the bridge.

114



• If there are two prime ideals of norm p in the subfield and two prime ideals

of norm p in the main field then on the embedding into the main field we

will find that one prime of the subfield maps to a second degree prime in

the main field and the other factors into two first degree primes.

We recognise these in the following manner: if the prime ideal 〈p, r − β〉
maps under the embedding X2 to the ideal 〈p, r−α2〉 = 〈p, r1−α〉〈p, r2−α〉
where −(r1r2) mod p = r mod p then the prime corresponding to (p, r) in

the subfield factors into the primes corresponding to (p, r1) and (p, r2) in

the main field. Since we already have the primes below some bound B for

the main field we are able to quickly identify which primes are involved.

We add one relation to the bridge at the cost of one modular multiplication

and some checking.

• If there are two primes in the subfield and four primes in the main field then

on the embedding into the main field we will find that both subfield primes

factor into two first degree primes of the main field. Hence we add two

relations to the bridge. These relations are added instead of the two free

relations we would usually add in this case so we do not increase the size

of the bridge but we do add two new pieces of information (both individual

factorisations as well as the full factorisation).

We use the same method as above to find the factors. This will involve at

most three modular multiplications and some checking.

• A finite number of primes (those that divide the discriminant) will act

slightly differently and should be considered on a case by case basis.

In the case of a degree 6 field with two subfields, one of degree 2 with embedding

±X3 and one of degree 3 with embedding X2, let a triple (a, b, c) describe a

situation in which we have a primes in the degree 6 main field, b primes in the

degree 3 subfield and c primes in the degree 2 subfield.

For p ∈ Z, p prime and below the factor base bounds we can have the following

situations:

• In the cases (0, 0, 2), (0, 1, 0) and (0, 3, 0) the prime ideals of the subfields

do not factor in the main field. In the first case the first degree primes of

the degree two subfield map to degree three primes in the main field. In

115



the latter two cases the first degree primes in the subfield map to second

degree primes in the main field. No relations are added to the bridge.

• In the case (2, 1, 2) the first degree prime in the degree 3 field factors into

the two first degree primes in the main field. The first degree primes in

the degree 2 subfield (which are of degree 3 in the main field) do not factor

completely into first degree primes in the main field (though each one has a

divisor, which we may identify if required, in the main field but we cannot

use that information in the bridge).

Hence we add one relation to the bridge. This requires no computation.

• In the case (6, 3, 2) the first degree primes in the degree 2 subfield factor

into three first degree primes in the main field in a way analogous to the

d = 4 case.

Each of the three first degree primes in the degree 3 subfield split into two

first degree primes in the main field.

These five relations taken together represent the information that would

usually have been added in the free relations corresponding to these primes

in each field (of which there are three). Hence we have added two extra

relations but a finer grade of information regarding the structure of the ring

is apparent.

• We may have different (a, b, c) in some cases where the prime divides the

discriminant of f and we work on a case by case basis.

Quadratic characters

We must show that quadratic characters may still be used to good effect to ensure

that we are able to produce a square of an element in the algebraic number field

K.

As we saw earlier quadratic characters are used to ensure that we have a square

of an element of K = Q(α) with high probability. We still need to use such a

facility. Quadratic characters are defined on all elements of Z[α] and so we need

not extend the character function.

116



We work as in standard NFS with the proviso that we select prime ideals that

are in none of the factor bases and that do not divide any factor base element

(note that some of the elements in the subfields factor when embedded in the

main field so we must take extra care here). We work with ideals of the main

field since we aim to find a square in Q(α).

We generalise proposition 2 to encompass the case in which we are working.

Proposition 4 Assume that we have sets S and Si as above. S is from the main

field and so has only first degree primes as divisors. Si are formed of relations

that come from the subfields and so, under the embedding into the main field, may

have higher degree prime divisors. Due to the presence of the bridging relations

we cannot assume that the individual products:

∏

S

(a− bα),
∏

Si

(ai − bihi(α)),

are themselves squares. We assume only that

f ′(α)
∏

S

(a− bα)
∏

i

∏

Si

(ai − bihi(α))

is the square of an element of K = Q(α).

We select a set of odd prime numbers p such that:

a− br 6≡ 0 mod p, ∀ (a, b) ∈ S,

∀i ai − bihi(r) 6≡ 0 mod p, ∀ (ai, bi) ∈ Si,

we also assume that f ′(r) 6≡ 0 mod p.

Then we have
∏

S

(

a− br

p

)

∏

i

∏

Si

(

ai − bihi(r)

p

)

= 1

Proof:

Let Z[α] → Z/pZ be the ring homomorphism mapping α 7→ r mod p and let p

be the first degree prime corresponding to (p, r).

117



Define the map χp : (Z[α]− p) → {±1} to be the composition of

1. (Z[α]− p) 7→ (Z/pZ− 0) with

2. The Legendre symbol (Z/pZ− 0) → {±1}.

Clearly we have

χp(a− bα) =

(

a− br

p

)

χp(ai − bihi(α)) =

(

ai − bihi(r)

p

)

As we saw earlier we have

f ′(α)
∏

S

(a− bα)
∏

i

∏

Si

(ai − bihi(α)) = δ2

for some δ ∈ Z[α]. The factors on the left are not in p since if we have, for

instance, a1−b1β ∈ Z[β] this maps under the subfield embedding ĥ1 : Z[β] → Z[α]

to a1 − b1h1(α) ∈ Z[α]. Elements of Z[α],
∑

i aiα
i, are members of p if and only

if
∑

i air
i ≡ 0 mod p but we have assumed that a1 − b1h(α) 6≡ 0 mod p and

a2 − b2h2(α) 6≡ 0 mod p. Hence we have δ 6∈ p. Applying χp to the equation

finishes the argument �

As before we are actually interested in the converse of this result. From [12] we

have that if δ ∈ Z[α] − 0 satisfies χp(δ) =
(

δ
p

)

= 1 for all first degree primes p

with 2δ 6∈ p or even for all such p with finitely many exceptions then δ is a square

in K. No assumption is made about the form of δ hence we may use quadratic

characters to achieve the same results except that we must take more care when

selecting the prime ideals.

Filtering and linear algebra

We must assess any effect on the filtering and linear algebra stages including the

use and effect of any free relations.

Once we have collected relations in the main field and any subfields we filter the

data and then we build a matrix. The main and subfields each have an algebraic

factor base and a rational factor base of primes in Z, the matrix contains a row

118



for each factor base element in any of the two (three) algebraic factor bases and

for each rational prime that is in any of the two (three) rational factor bases.

Each column corresponds to a relation as before. A relation from the main field

will only involve primes in the main algebraic factor base and the rational factor

base and similar for the subfield relations.

Thus the matrix has blocks in which there are no non-zero

entries. The bridging relations are an exception, each bridging

relation will contain an entry for one rational prime and entries

corresponding to a mixture of main and subfield primes.

There are a few comments we must make regarding the effects of this matrix

structure in the filtering and linear algebra stages.

We remove duplicate relations in the usual fashion. In the case of singleton

removal we must note that first degree primes of the main field can divide primes

in the subfields. We must take care not to remove relations that contain a prime

present only once in the subfield but whose factors are present multiple times in

the main field. This is accomplished by adding in the bridging relations prior to

this step.

In the merging step of the algorithm the bridge relations have very low density

and so should be treated as such in a similar manner to the treatment of the free

relations in the standard filtering case. We may choose not to allow merges of

relations from a subfield and the main field as this will cause fill in in the blocks of

zeros. More importantly we do not know what other effects such merging would

have on the density of the matrix or the complexity of the algorithm.

If the subfield method is shown to be viable for realistic sized factorisations then

the details of the filtering will become more important and should be investigated.

After the filtering comes the linear algebra stage. If no merging has occurred the

matrix will have blocks of zeros as mentioned above, this may be beneficial in

the linear algebra stage as it is possible that the density of the matrix will be

lower than is usually the case or that we can take advantage of the structure in

some other manner. If there has been merging then there will have been a certain

amount of infill in these blocks. In the linear algebra step we proceed as usual.

119



The only important point to note is that this allows a prime q in the subfield

which factors as p1p2 in the main field to either be found in our output square

ideal to an even power q2 as a single (subfield) entity in its own right or we to

be found as q2p2
1p

2
2 by involving the bridging relation that contains q, p1, p2 (and

the corresponding p to the appropriate power on the linear side). This allows a

prime that occurs only once in a set of subfield relations but factors entirely into

first degree primes in the main field to be involved in the final product. This

method will not allow the situation in which a higher degree prime of the main

field, say degree 2, appears alone in the product. Such a factor base element will

not appear in any of the bridging relations and hence is treated as a single entity

that must itself appear as a square if it is to be of any use.

Square roots

Finally we will need to be able to calculate square roots of algebraic numbers of

a more general form.

The final step in the number field sieve is the square root on the algebraic side.

We now have to square root algebraic elements of the form

∏

S

(a− bα)
∏

i

ĥi

(

∏

Si

(ai − biβi)

)

This is not a barrier since the method due to Montgomery [39, 73] does not

specify a particular form for the algebraic element.

Montgomery’s technical report [73] gives this algorithm in a more general form

— there is no assumption that we have a product of elements of the form a− bα

or that only first degree primes are involved. Montgomery assumes that

1. γ =
∏

i gi(α) is a product which we think is a non-zero square in Q(α).

2. We have the prime ideal factorisation of γ and, in fact, of each 〈gi(α)〉.

3. Each prime ideal has an even exponent in the factorisation of 〈γ〉.

In this situation the algorithm provided by Montgomery will allow us to construct

120



the square root, if it exists, using the ideal factorisations.

As detailed above we are able to use the embeddings to provide us with a prime

ideal factorisation in the main field of each of the 〈gi(α)〉, hence we may use

Montgomery’s method without impediment.

6.3 Theoretical expectations

The size of the numbers we wish to be smooth over the factor base in the main field

is |F1(a, b)F2(a, b)| while in a subfield we are interested in |G1(a, b)G2(a, b)|. If

we consider the particularly common situation where f1(X) = cXd − t, f2(X) =

X − m, d composite with a factor ds such that there is a subfield defined by

(cXds− t, h(X)). Hence in the main field the numbers that we wish to be smooth

are

|(a− bm)(cad − bdt)| ≤ (amax + bmaxm)(|c|ad
max + bd

max|t|)

if we assume amax = −amin. In the subfield we have

|(a− bh(m))(cads − bdst)| ≤ (amax + bmax|h(m)|)(|c|ads

max + bds

max|t|).

On the algebraic side the size of numbers |c|ads
max+bds

max|t| is favourable when com-

pared to the main field and it would suggest that the subfield provides beneficial

structure. However, on the linear side we have amax + bmax|h(m)| where h is the

embedding polynomial which is at least as large as h(X) = X2. We immediately

see the problem: the numbers we wish to be smooth over the rational factor base

will be far too large to have expectations that this algorithm will perform well.

It seems unlikely that we would be able to compensate for this by increasing the

size of the rational factor base and decreasing the sizes of the algebraic parts. We

investigate this in the next section.

On the other hand the algebraic side is smaller and hence more likely to be

smooth. We see further support in the following section that if a method of

utilising the structure were found, this could have a significant effect in practice.

121



We may also consider that the matrix produced may be sparser than usual and

of a differing form. It is possible that this could be utilised during the practical

bottle neck — but this is unlikely to be of use if it is necessary to unduly prolong

the sieving step in order to aid us in the linear algebra step.

We leave for further research the question of whether there is any way to make

use of this advantage on the algebraic side without triggering a similar explosion

in the coefficient on the linear side. Another possibility may be that of working

with two non-linear polynomials. However there is no immediate method for

choosing a pair of non-linear polynomials with a shared root modulo n such that

any subfield structure present can be utilised. We might also consider working in

field extensions, rather than subfields, of the main field.

6.4 Practical results

We provide three sorts of practical support for the theory above. Firstly we

complete an example factorisation to illustrate the issues encountered with the

method. Secondly we consider a number of more realistic size and note the failure

of the method in line with the theory. We then provide additional support for this

by making use of the techniques established in chapter 4 for improved estimation

of the quantity of raw data we might expect to collect.

6.4.1 Some example factorisations

For illustrative purposes we include the following example factorisation, the num-

ber factored is small compared to those usually factored using the number field

sieve but should serve as a starting point for analysis of the method. In fact we

will see immediate support for the fact that this method of using the subfield

structure is unlikely to be of practical use. The number we will illustrate the

method with is n = 2149 − 1. Since we wish to consider the subfield method

we need to use composite degree. In this case we will use degree 4, though the

asymptotics might suggest degree 3 (or in practice MPQS) for this number. We

should bear this in mind since it could mean that the subfield becomes more use-

ful than it would otherwise have been. However we will see that even in this case,

122



main field
f1(X) X4 − 8
f2(X) X − 238

Region |a| ≤ 104

1 ≤ b ≤ 104

B1 104

B2 104

Relations 3417

Figure 6.1: Standard NFS

main field subfield
X4 − 8 X2 − 8
X − 238 X − 274

|a| ≤ 104 |a| ≤ 104

1 ≤ b ≤ 104 1 ≤ b ≤ 104

6362 6272
6204 6204
1293 409

Figure 6.2: Subfield NFS (1/3, 1/3, 1/3)

main field subfield
f1(X) X4 − 8 X2 − 8
f2(X) X − 238 X − 274

Region |a| ≤ 104 |a| ≤ 104

1 ≤ b ≤ 104 1 ≤ b ≤ 104

B1 4520 4568
B2 9804 9804
Relations 1403 340

Figure 6.3: Subfield NFS (1/2, 1/4, 1/4)

where we might reasonably expect the subfield to be of some use, the method

fails to be practical.

Since our objective is merely an illustration of the differences in performance of

the main and subfield sieving over the same sieve region as we alter the factor

base bounds we have used fairly artificial parameters and no large primes. We

have not included the extra bridging relations but have included the usual free

relations. We use a more realistic set of parameters and large primes in the

following experiment.

We compare standard NFS with two different parametrisations of the subfield

method. We keep the total number of factor base elements approximately equal

in all three cases. In the first subfield example we allow 1/3 of the factor base

elements in the rational factor base, 1/3 in main field and 1/3 in the subfield. In

the second case we allow 1/2 of the factor base elements in the rational factor

base and 1/4 each in the others. As we can see the quantity of relations found in

the subfield is extremely small. This leads to us not collecting enough relations

when using subfields.

In fact the situation is worse than it looks since the majority of the relations

123



found in the subfields are in fact free relations (the small size of the Galois group

means that we have more of these than in the main field: this seems beneficial

in general but in fact we may only take advantage of these if we have enough

non-free relations in the subfield).

6.4.2 Sieving tests

Other trial factorisations of n of the size used above produce similar results.

However, we would like to consider whether allowing large primes and a less

unrealistic parametrisation leads to any substantial difference in our conclusions.

Ideally we would attempt a degree 6 factorisation. Unfortunately, lacking the

resources to complete any substantial sieving in a realistic time for a degree 6

field with parameters of an appropriate size we instead consider another degree 4

field. As we shall see, the results are of a definite nature and it would seem that

sieve trials in a degree 6 case would not have added any further insights.

The degree 4 field is one that has previously been selected and used to factor a

cofactor (of 106 digits) of 2543 − 1 [39]. The defining polynomials are f1(X) =

4X4 + 2X2 + 1, f2(X) = X − 290. The degree 4 main field has one subfield

(4X2 + 2X + 1, X2). We sieved the lines b = 1 to b = 10 with an interval

|a| ≤ 3.5 · 105, prime bounds of B1 = B2 = 5 · 105 and large prime bounds of

L1 = L2 = 12 · 106. We used identical parameters in both the main field and

subfield. In the main field a total of 130 relations were collected while in the

subfield we found no relations whatsoever. The small size of the polynomials and

the small b values mean that this should have been the most fertile part of the

sieve region in this case. The size of the numbers on the linear side of the subfield

were simply too large. Hence we ceased any further experimentation regarding

altering the parametrisations as it became clear that the impact of the size of the

linear polynomial corresponding to the subfield was not likely to be overcome by

any moderate change in the prime bounds.

In contrast, sieving just the algebraic sides in the main field and subfield (with

identical parameters to those above) produced 72499 relations in the main field

and 1308476 in the subfield. This amply illustrates the possibilities on the al-

gebraic side which originally inspired us to investigate this method. Unless the

subfield method can be used in a situation where the effect of the explosion in size

124



on the subfield linear side can be suppressed (or the use of a linear side avoided

altogether) it does not appear that this method can be practical.

6.4.3 Estimating yield

The above method of working is favoured by selecting for a given n a value of

d for the main field which is greater than that we would usually select since the

subfield parameters will then be closer to those that the asymptotics suggest for

use with n. We are unable to carry out any significant quantity of sieving for

degree 4 or 6 factorisations due to the resources that are required. To provide

additional support for the above results we will also appeal to estimates of the

quantity of data produced based on the methods discussed in chapter 4.

We examine some factorisations which have been completed with d = 6 and

estimate the quantity of relations which would be found in the subfields had they

been sieved over the same region. As the estimation method employed (that of

chapter 4) may not be used with lattice sieve parameters we work only with the

classical or line sieved component.

We work with the factorisations detailed in figure 6.4, for the first we have sieving

data for which the linear and non-linear sides were sieved separately over a small

part of the sieve region. For the latter two the estimates reflect the entire region.

n Gal(f) Original polynomials Subfields Source
2, 773+ D(6) X − 2129 (X2 + 2, X3) [14, 15, 20]
SNFS-233 X6 + 2 (X3 + 2, X2)
3993M F18(6) 355X − 1 (X2 + 3X + 3, X3) [14, 20]

X6 + 3X3 + 3 —
10, 211− D(6) X − 1035 (10X2 − 1, X3) [16]
SNFS-211 10X6 − 1 (10X3 − 1, X2)

Figure 6.4: Details of factorisations used with estimation tests

In the estimates below all the linear polynomials were considered to have α(F2) =

0.569915. We allowed up to 2 large primes on each side (in the first case we dis-

counted the 3-partials and in the final factorisation it is not clear how many large

primes were permitted during the sieving as they are not reported separately).

Looking at figure 6.5, firstly we note the rather poor estimate on the non-linear

125



name 2, 773+ linear 2, 773+ non-linear 3993M SNFS-211
A 28875000 28875000 168 · 104 6 · 106

B [1000001, 1000100] [1000001, 1000100] 156 · 104 18 · 106

B1 2 · 107 — 44 · 105 224

B2 — 2 · 107 11 · 106 224

L1 109 109 6 · 107 6 · 108

L2 109 109 6 · 107 5 · 108

α(F2) — 1.938592 1.468072 1.331229
α(G1) — 1.119345 1.504661 1.190318
α(G2) — 1.572525 — 1.306183

Total relations:
Main field:
Sieved: 634590 1657934 5975620 23510939
Estimate: 624150 1439679 5969603 20863647
Subfield 1:
Estimate: 0 3475671224 0 0
Subfield 2:
Estimate: 0 488547479 — 2494

Figure 6.5: Estimates of yield in the main and subfields

side of 2, 773+ at only 86% of the actual reported relations. This is almost

certainly a side effect of the very small b interval which allowed us to use a

maximum of K = 8 (64 subregions) in the estimate, it seems likely that this is

another case where we would benefit from splitting the a interval and b interval

using different K values. In SNFS-211, we do not have enough information

regarding the sieving completed to assess why our estimate is 89% of the total

which, while being a reasonable estimate, could clearly be improved. However,

despite this the results in the table show overwhelming support for the conclusion

that the subfield method as described above, while a coherent method that would

appear to take advantage of subfield structure is not practical and that the key

reason for this is the size of the auxiliary numbers on the linear side in the subfield.

6.5 Summary

We considered the most natural extension of the number field sieve to fields with

subfields in an attempt to utilise the structure to our advantage. We gave an

overview of the changes to the algorithm in this case focusing on showing that

this was coherent.

126



Theoretical and experimental evidence suggests that the subfield method dis-

cussed is not practical. We leave to further research the question as to whether

the clear advantage noted on the algebraic side alone can be successfully utilised

in some other fashion to provide a practical advantage.

Since the core method is not practical we do not elaborate on issues such as

large primes or filtering leaving such concerns to be dealt with if a variant of the

method should prove more useful.

127



Chapter 7

Polynomial selection: special

versus general

In this chapter we are interested in whether any form of automatic polynomial

selection can expose a special case. From this point onwards we will cease to

define special cases by the method in which they were produced but instead will

define a “special” case of the number field sieve as one which has the pleasant

characteristics discussed in the chapter 5. That is, any polynomial which is ab-

normally small with respect to the size of n, or abnormally small in the higher

coefficients (accompanied by a skewed region over which to work) and with Ga-

lois group which is strictly smaller than the full symmetric group. Notice that

this encompasses but extends the original meaning of the word “special” and all

of the special number field sieve factorisations in the literature where the poly-

nomial used or a method of obtaining polynomials is reported (see chapter 5

and appendix A). We are particularly interested in the small size of the Galois

group when the degree chosen is composite, in this situation we may also uncover

subfield structure.

However, if we randomly select polynomials we will almost always have Galois

group equal to the full symmetric group. It has been assumed in the past that

methods used to select GNFS polynomials such as the much lauded methods de-

scribed by Murphy [76] produce “random” polynomials and that we may further

assume that the Galois group will be the symmetric group Sd [76, chapter 3].

128



Can Murphy’s methods isolate special case polynomials? Or should integers

be tested in another manner prior to using Murphy’s methods to produce a

polynomial? If methods such as Murphy can do as well or better than a human

with no extra information on any structure in the integer to be factored then

this throws up questions regarding the asymptotics — after all, past special

case factorisations are significantly faster based on a perceived reliance on extra

information provided by a human. If structure is present but we need not rely

on a human to provide this information and hence reduce the time to factor the

number then this brings about questions regarding the accidental or deliberate

use of numbers with special structure, perhaps not easily noted by a human, in

RSA.

7.1 Some open questions

A series of results and conjectures summarised by Malle [66] suggest that while

monic polynomials of degree d with Galois group different from Sd are rare that

it is not rare, in some sense, for a number field of degree d to have Galois group

G 6= Sd. In particular Malle notes the following proposition:

Proposition 5 (Malle) Let K be a number field and d = 2k > 2 or d = 3k > 3.

Then the number of field extensions of K of degree d with Galois group not the

symmetric group grows at least linearly with the absolute value of the discrimi-

nant. In particular, there exists a transitive subgroup G < Sd with Z(K, G; x) ≥
cx for an unbounded set of values of x.

where

Z(K, G; x) :=
∣

∣{L/K | Gal(L/K) = G, | NK/Q(Disc(L/K)) |≤ x}
∣

∣ .

Here Malle uses Gal(L/K) = G where L/K is a field extension such that the

Galois group of the Galois closure L̂/K, viewed as the permutation group on

the set of embeddings of L into L̂, is permutation isomorphic to G. It is known

that the number of extensions of K with norm of the discriminant bounded by

x is finite hence Z(K, G; x) is finite. Further to this Cohen notes the following

proposition [22, Proposition 9.3.4]:

129



Proposition 6 The number of non-isomorphic number fields of fixed degree d

and discriminant in absolute value bounded by x is at most equal to cx(d+2)/4 for

some constant c depending only on d.

It is known that this bound is not the best possible for d = 3. Cohen notes that

it seems unlikely to be the best possible for d = 4 and reports a conjecture which

would sharpen the bound to cx as x −→ ∞ for some constant c dependent on d.

In particular it is known that number fields with Galois group D4 satisfy

Z(Q, D4; x) ∼ c(D4)x

where c(D4) ≈ 0.0523 [23]. If the conjecture holds then number fields with

G = D4 would have positive density.

If d = 4 or d = 6 is taken as the degree of our number field then the above

might be of peculiar interest should we produce a method by which we can make

advantageous use of any subfield structure present. This leads us to note two

open questions:

Question 1 Are polynomials produced by Murphy’s schema “random” i.e. do the

same (as for all polynomials) asymptotics apply?

Question 2 To what extent is Murphy’s schema selecting fields rather than poly-

nomials?

7.2 Polynomial selection in the general case

In chapter 3 we described Murphy’s methods for creating a list of polynomial

pairs with better than average properties. In addition we recounted his method

for selecting better polynomial pairs from such a list (without utilising expensive

sieve tests).

We wish to choose m and fm or some variant which preserves fm(m) ≡ 0 mod n

with good combinations of size and root properties and we are interested in what

130



type of polynomials and number fields these methods can produce. We will

require some definitions.

Recall the original base-m general polynomial selection method from chapter 2;

define the polynomial produced in this manner to be the (primary) base-m rep-

resentation of n, n =
∑d

i=0 a
(m)
i mi, 0 ≤ a

(m)
i < m.

• Many authors note that heuristically it appears to be a good idea to adjust

the a
(m)
i to lie between −m/2 and m/2 (this can reduce the maximum size

of the coefficients). If the a
(m)
i > ⌊m/2⌋ then set a

(m)
i to be a

(m)
i −m and

set a
(m)
i+1 to be a

(m)
i+1 + 1. Let f(X) =

∑d
i=0 aiX

i be the polynomial whose

coefficients are the a
(m)
i reduced in this way working from i = 0, . . . , d

through the coefficients.

We refer to this polynomial as the adjusted base-m representation.

• Murphy defines translations and rotations of (adjusted) base-m polynomi-

als:

– Translation by t: ft(X) = f(X − t), ft(mt) ≡ 0 mod n, mt = m + t.

– Rotation by R(X): fR(X) = f(X) + R(X)(X −m) (same m).

Murphy uses linear R, Gower uses higher degree rotations, with the degree

of R less than the degree of f .

• We define a base-m variant to be any polynomial produced from either

a base-m representation or an adjusted base-m representation by any se-

quence of translations and rotations. We note that a base-m variant will

have the same degree as the primary base-m representation except in the

case that an adjustment process ends with the coefficient a
(m)
d > ⌊m/2⌋

which is a rare occurrence.

• A primary or adjusted (resp. variant) base-m polynomial will be called

χ-small when χ is the largest value of |ai|/m (resp. |ai|/mt where mt is

the appropriate translation of m) for i = 1, . . . , d. If the value of χ is

unimportant we refer to the polynomial as small.

We are interested in whether the special case polynomial pairs selected by hu-

mans (with knowledge of special structure) could be produced as output from

the general case algorithm.

131



In order for a polynomial pair to be selected by Murphy’s skewed or non-skewed

schema it is necessary for the non-linear polynomial to be a base-m variant. In

addition it must be relatively small: in the case of the non-skewed method, χ-

small for χ within the chosen bounds; in the case of the skewed method the

polynomial should have small higher coefficients. Finally, the leading coefficient

should be divisible by powers of many small primes. However, we may see a

compromise in the case of root properties if this favours extremely small size

(it is less likely that size will be compromised for root properties which tend to

have a less marked overall effect but it is possible). In fact, the most obvious

characteristic of special case polynomials is that they are extremely small and it

is more unusual for such polynomials to have a leading coefficient that is of the

required type.

Typical special case polynomials f with root m mod n produced by hand using

knowledge of special structure are not naturally base-m representations for the

particular m.

For instance, let us take a special case n = re−s with polynomial f formed using

the original SNFS method. f is of the form f(X) = Xd − t, with m = rk such

that md − t ≡ 0 mod n and hence md − t = ln some l ∈ N, this situation is a

common occurrence amongst the special forms. The polynomial f is not a base-

m representation unless l = 1 (⇔ d|e and t = s). If l 6= 1 then since t is small

with respect to n (chapter 5) we have md > n (perhaps significantly so) and so

we cannot form a base-m representation of degree d. Even if l = 1 we would still

require that t < 0 (and hence s < 0) otherwise we have that md > md − |t| and

hence that the standard base-m representation would in fact produce a degree

d− 1 polynomial.

For other special f we have similar arguments — although in some cases f is a

base-m representation this was never the intention and is often not the case. In

such cases f also cannot be produced as a rotation or adjustment of a primary

base-m representation since both preserve the value of m and the degree — we

would have to have started with a base-m representation of degree d but we

have already seen that no such thing can exist. This will hamper the production

of such polynomials by any method that starts by producing a primary base-m

representation and then manipulating it.

132



Translations alter not only the polynomial but also the m value and so it is

possible that such polynomials could occur as a translation. Translations are

used alongside rotations in an attempt to skew the polynomial and reduce its

size over the sieve region (while keeping the resulting polynomial central on the

X-axis).

In cases where the special structure polynomial f is a (adjusted) base-m polyno-

mial we are still unlikely to produce f as output unless the leading coefficient is

of the desired type. However there are natural non-monic variants of these SNFS

polynomials that do still betray the special structure inherent in the number.

Instead of attempting to produce the precise pair that a human would select we

instead examine variants which can be produced. We consider whether for num-

bers with some special structure, Murphy’s schema can produce, without access

to that structure, polynomials that have some or all of the special characteris-

tics noted in chapter 5, that is, extremely small polynomials with Galois group

strictly smaller than the full symmetric group.

7.3 Special case variants

Let n = re − s and define

k =
⌈e

d

⌉

, m = rk, f(X) = Xd − srkd−e

k1 =
⌊e

d

⌋

, m1 = rk1, f1(X) = re−k1dXd − s

Note that k = k1 + 1 and that

f1(m1) = re−k1drk1d − s = re − s = n = 0 mod n.

Fix roots of f and f1: f(α) = 0, f1(β) = 0 then K = Q(α), K1 = Q(β)

are isomorphic number fields (and hence have the same Galois group): For K

and K1 to be isomorphic we must be able to write some root, say α of f as

P (β) ∈ Q[X] with P of degree less than d. In other words we require that both

α, 1, β, β2, . . . , βd−1 and β, 1, α, α2, . . . , αd−1 are linearly dependent (for particular

roots α of f and β of f1). Now αd = srkd−e so α is one of the dth roots of srkd−e,

133



βd = s/re−k1d and hence β is one of the dth roots of s/re−k1d. We see that α and

β are themselves linearly dependent by examining α− rβ:

α− rβ = s1/dr(kd−e)/d − rs1/dr−(e−k1d)/d

= s1/dr(kd−e)/d − s1/dr(d−e+k1d)/d and k = k1 + 1

= s1/dr(kd−e)/d − s1/dr(d−e+kd−d)/d

= s1/dr(kd−e)/d − s1/dr(kd−e)/d

= 0 as required.

In fact we can generalise this by taking k = kc + c whereupon we have the

polynomial fc(X) = re−kcdXd − s, mc = rkc such that

fc(mc) = f(rkc) = re−kcdrkcd − s = n = 0 mod n

again this defines an isomorphic number field:

α− rcβ = s1/dr(kd−e)/drcs1/dr−(e−kcd)/d

= s1/dr(kd−e)/d − s1/dr(cd−e+kcd)/d

= s1/dr(kd−e)/d − s1/dr(cd−e+kd−cd)/d

= s1/dr(kd−e)/d − s1/dr(kd−e)/d

= 0 as required.

Since in forming these polynomials we take 1 < kc < k and, more importantly

have that fc(mc) = n we have md = rkcd < re− s (for some kc at least, providing

s is not excessively large, — but also see later). Hence these are often base-m

expansions. We will refer to them as the cth variant of the SNFS original. The

factor base produced by the cth SNFS-variant will be almost identical in terms

of the distribution of primes to that produced by the original SNFS polynomial.

The only difference occurs at primes which divide r.

In addition we may form translations of these variants. Let fvar(X) = re−kvardXd−
s with f(mvar) = 0 mod n be defined as above, then we can define translations

ft(X) := fvar(X − t) = re−kvard(X − t)d − s, t ∈ Z

which will have all of the coefficients except the constant term divisible by re−kvard.

134



Such polynomials will produce isomorphic number fields with the same Galois

group. We can see this immediately: if fvar(α) = 0 and ft(β) = 0 then β = α− t

hence α, β and 1 are linearly dependent and the number fields will be isomorphic.

We are also interested in how large the value of s could grow while still retaining

this structure (that is, retaining the Galois group and the small, special structure

coefficients except in the constant term). Consider n = re + s, s > 0 and assume

that we have some base-m polynomial f(X) =
∑d

i=0 aiX
i, such that f(m) ≡ 0

mod n, for this number. In order to find a base-m polynomial for the integer

n + 1 we must only add 1 to the constant term of this polynomial. We may

continue this way until the constant term reaches the size m at which point we

increment the coefficient a1 by 1 and zero the constant term, we then continue to

increment the constant term. These are all clearly base-m polynomials however

they will not all satisfy our additional criteria. Putting size matters aside for

one moment we are interested to see at what point the Galois group changes. It

is the structure in the higher coefficients that induces the smaller Galois group,

any number that we add that alters any coefficient but the constant term will

result in the Galois group Sd (with probability approaching 1). This provides

us with an interval of s-values of size approximately 2m although in many cases

these values of n will have small prime divisors and in some cases the resulting

polynomial will itself be reducible.

We must now return to the question of size. For polynomials retaining a smaller

Galois group the growth is confined to the constant term — and by skewing the

sieve region the effect of this could be minimised. We should also recall that

we may be able to improve on such a polynomial by performing translations.

Whether it is reasonable to consider the extremes of this method as special cases

may be open to debate however, the small size of the higher coefficients, the small

Galois group and the possibility of useful translations do mark these polynomials

out from the general case in which the skew is most usually far less severe and

the Galois group is Sd.

Further to this we note that while additions to the higher coefficients may alter

the Galois group and the field, the polynomials that result can still be extremely

small.

Similar methods are available in the case of the other special forms. Once we

135



have a variant of the SNFS polynomial that is itself a base-m representation we

are able to utilise translations in order to produce additional polynomials which

define an isomorphic number field.

As we shall see Murphy’s schema is capable of producing polynomials of these

forms. Some simple cases may be noticed by considering n written in various

bases and looking for patterns. For instance the special structure of n = 2r − 1

is immediately exposed when n is written in binary. Hence we are interested

in whether Murphy’s schema can contribute any more than this. The ability to

recognise the less obvious special cases — and perhaps see this as a continuum

rather than a severe split into a handful of pleasant cases and the general case

may enable us to quantify more precisely any threat to cryptographic methods

from the polynomial selection algorithms.

7.4 Producing special case variants using Mur-

phy’s schema

The first step in both Murphy’s skewed and non-skewed schema is to select lead-

ing coefficients which are divisible by the powers of many small primes. In an

implementation we must define what we mean by “small” and we take this to

be defined by choosing a factor base of small primes. We may then consider any

leading coefficients in the range that have a divisor c that is smooth over this

factor base, these divisors can be selected in a randomised manner. In addition

we allow c = 1 to be chosen in this stage.

We then discard any polynomial that has particular coefficients that are not

sufficiently small: in the non-skewed case we require all coefficients to be χ-small

for some user selected bound χ; in the skewed case just the higher coefficients,

usually ad, ad−1, ad−2, must be small. In the special cases we are interested only in

polynomials with small coefficients so this step will not discard any special form

polynomial except due to matters of skew in the non-skewed case. In the non-

skewed algorithm we then approximate α(F ) and retain polynomials for which

this is small. This step is problematic in the special cases since if we are to allow

the selection of a small polynomial with Galois group strictly smaller than the full

symmetric group we have seen that this value may not be completely appropriate

136



— either for comparing such polynomials or for comparing them with polynomials

of a more general form. We must take into account both size and root properties

simultaneously — as occurs in the skewed case where the ratings for the size and

root properties are combined. There are a variety of ways of doing this.

In the skewed case we also calculate rotations and translations with an aim of

minimising the size of the polynomial and forcing good root properties. Again,

we must ensure that the size and root properties are both taken into account

simultaneously.

Once we have compiled a list of “good” polynomials and respective m values we

must compare them. In this case the metric used takes into account both size and

root properties as described in chapter 3. Hence this method should cope well

with the presence of general and special polynomials in the same list. Calculation

of other such measures e.g. E can also be used.

Using our own interpretation of Murphy’s non-skewed schema and Chris Monico’s

interpretation of Murphy’s skewed schema [70] we have been able to produce lists

of “good” polynomials containing SNFS-variant polynomials of the forms out-

lined in the previous section. These small polynomials with Galois group strictly

smaller than the full symmetric group are produced on the input of various known

special structure integers without providing any specific guidance regarding the

known structure. The polynomials produced are not usually those that would be

chosen by a human. It is an open question whether the method will always even-

tually induce this effect when presented with a number with a special structure

that can be defined by a polynomial form.

In the case n = re − s the output of such results appears to be a side effect of

the first step of both of these schema in which we attempt to produce leading

coefficients in the appropriate range which are divisible by many small pa, p

prime. There is nothing to suggest that the methods were explicitly designed to

produce special case polynomials in these situations though it does correlate with

the primary motives which were to find polynomials of small size with good root

properties.

For instance, if n = re−s with s of “reasonable” size (feasibly up to that discussed

above) and r an integer which is smooth over the collection of small primes used in

137



this step then it is possible that the method will hit on an expansion in which the

coefficients (excepting the constant term) are all divisible by ra with a = e−kd for

some k. In addition the leading coefficient can be extremely small with respect

to n (although clearly this depends on the size of r). This occurrence would

produce a number field isomorphic to that produced by a human and hence the

same Galois group to that produced by a human. Further translations or different

values of k may produce “nicer” representations of the number field. If r is not

prime then we do not necessarily require the involvement of all of the prime

factors in the leading coefficient — complicating matters further.

We have also been able to produce translations of the polynomials chosen by

humans in the cases in which we are working with cofactors of Cunningham

numbers (defined by Aurifeuillian factorisations) and integers of various other

forms. We give a variety of specific examples presently. It is difficult, if not

impossible to determine the density of integers that will eventually induce this

effect not least because the selection of leading coefficients is randomised. It is

of course, impossible to say whether Murphy’s schema are capable of isolating

other special cases that have not yet been noted. On the other hand, this does

raise an interesting philosophical question regarding the number field sieve.

The special number field sieve has, to date, been considered to be a collection of

factorisations in which a human selected a polynomial, with reference to known

special structure, in order to produce a favourable runtime based on the small

size of that polynomial. The work of Murphy and others has firmly established

that it is not just the size but also the root properties that are of importance,

further to this we can recognise (subsets of) the current collection of special cases

as having distinct characteristics, as well as small size, that may plausibly allow

an advantage.

The general case relies on automated methods assumed to produce, in some

sense, “random” polynomials although attempts are made to force good size

and root properties. Since it appears that these general methods and other

automated processes can, in certain circumstances, produce the same number

field as a human and in others identify structure of which a human may have

been previously unaware it appears that the divide between special and general

may be somewhat blurred. This brings us to the pertinent question:

Question 3 To what extent is it possible to utilise Murphy’s schema or any other

138



automated search to produce a special case polynomial without reference to any

special structure that might exist? Put another way, can we check automatically

for (some types of) “specialness”?

7.4.1 In practice

We will consider some specific examples of this phenomena and note how the

production of these SNFS variants arises.

If we have a number with structure re−s with r a small integer (either prime or a

product of small prime powers) and |s| < n(1/d) then the first step in the schema

may eventually hit on a leading coefficient ad = re−kd for some k, if this occurs

then the structure is exposed. For instance, in the case of the factorisation of F9

with d = 5 we may produce the polynomial

fauto(X) = 22X5 + (22 · 5)X4 + (23 · 5)X3 + (23 · 5)X2 + (22 · 5)X + 5

of Galois group F (20). This is in fact the polynomial fvar 1(X) = 4X5 + 1 evalu-

ated at X +1 and hence is a translation of the first variant of the SNFS original.

The difference in the coefficient size between the automatically generated polyno-

mial and the (variant of the) SNFS original may not be of any relevance. In the

above example the SNFS original polynomial is f(X) = X5+8 with root m = 2103

modulo F9; fvar has root m/2 modulo F9 and hence fauto has root m/2−1 modulo

F9. Hence, f is 1/m-small, fvar is 8/m-small and fauto is 40/(m/2− 1) ≈ 80/m-

small. These numbers are so small that the difference is irrelevant.

Even if we input a degree other than the one chosen by a human as appropriate

we still expose the structure:

16X4 + 64X3 + 96X2 + 64X + 17, Gal = E(4)

4X6 + 24X5 + 60X4 + 80X3 + 60X2 + 24X + 5, Gal = D(6)

Since these polynomials are again translations of SNFS variants we find that they

exhibit a small Galois group.

We note that this effect is at least possible regardless of the degree chosen (pre-

139



suming that the degree is less than e and that a relevant value of k exists) and

is in no way dependent on using the degree suggested by the SNFS asymptotics

— we will still produce a small polynomial that has structure in the coefficients

leading to a Galois group smaller than the full symmetric group.

This is a fairly simple example — one that could have been noted by preceding

the schema by examining the base-p expansion of n for each prime in our set

of small primes. However, the same method can allow us to use the underlying

structure in a number with a base that is only a product of prime powers in the

factor base. This would have been harder, though not impossible, for a human

to notice. For instance the example 3597 + 1 produces the polynomial

1225X5 + 6125X4 + 12250X3 + 12250X2 + 6125X + 1226

with Galois group F (5). This is a translation of the first SNFS variant.

We can increase the complexity of the base, as long as it remains smooth over the

“small” primes we may be able to disclose it — due to the random nature of the

schema we may of course never hit on any of the values of ad that would produce

a “nice” polynomial. However, once we have just one such polynomial with

recognisable characteristics we can often form a more beneficial representation of

n and the number field by hand.

Some “larger” examples, all of these were produced in just a matter of minutes

search time

1. 185951 + 68

1331X6 + 7986X5 + 19965X4 + 26620X3 + 19965X2 + 7986X + 1399

2. 229949 + 100

2299X6 + 13794X5 + 34485X4 + 45980X3 + 34485X2 + 13794X + 2399

3. 10432933 + 994

X6 + 6X5 + 15X4 + 20X3 + 15X2 + 6X + 995

4. 830343 + 14526

8303X6 + 49818X5 + 124545X4 + 166060X3 + 124545X2

+49818X + 22829

5. 1701737 + 736272

17017X6 + 102102X5 + 255255X4 + 340340X3 + 255255X2

+102102X + 753289

140



For instance in the case of integer 2 an example of a rival polynomial produced

by the method is

1336778170X6 + 1670894748656X5 + 1065661111320404653575X4

−38346684967100920511069649X3− 2837405829825512451841874112X2

+3792924385675458068878876818716X

+564633503274264548088554252184143

and in the case of integer 5:

22048670826X6 + 2854864650807X5 − 31596247306722303875X4

+569714992943959150978643X3 + 5208372344567508916496419X2

−514734607240556345585670256X − 7833081939509611013325135755

both with Galois group S6. We did not experiment with leaving the polynomial

selection code running for longer periods of time and with more difficult examples

but shall leave a more full investigation into the actual capabilities of the method

over time for future work.

For numbers of the form (re + 1)/(rk + 1) the above situation does not occur,

in fact the method appears to settle on ad = 1 in those examples we have run.

Again, the polynomials produced share a Galois group C(6) with the “natural”

polynomial produced by a human with knowledge of the inherent structure. It is

presumably the small size of the polynomial that allows it to be selected (and the

fact that we allow ad = 1 at all — the rotations and translations appear to have

no effect in the cases we have tried). An example of this is (17119 + 1)/(1717 + 1)

for which the polynomial

X6 + 11X5 + 51X4 + 127X3 + 179X2 + 135X + 43

is selected. The natural polynomial produced for this number by a human would

be

X6 −X5 + X4 −X3 + X2 −X + 1.

That produced by Murphy’s schema is a translation (X 7→ X + 2) of this poly-

nomial and hence defines an isomorphic number field.

We can also achieve good results for cofactors of Cunningham numbers that are

141



produced using Aurifeuillian factorisations, the number 3h + 3
h+1
2 + 1, h = 331

(which suggests the polynomial form X6 + 3X3 + 3) produces:

3X6 + 18X5 + 45X4 + 63X3 + 54X2 + 27X + 7

This polynomial is a translation of 3X6 +3X3 +1 which produces an isomorphic

field.

Of course, we could add to the implementation a deterministic check that would

betray the more simplistic examples almost immediately. It is really the examples

where the structure is not immediately clear from a collection of base-p expansions

in which we would be interested.

Question 4 Can we automatically isolate more difficult examples which we can-

not uncover by other means?

7.5 Polynomial selection and RSA

It seems unlikely that a single method can reliably make use of all special structure

that could be present however, the ability to automatically take advantage of

an unknown but present special structure in even a sparsely distributed set of

integers seems to blur the line between special and general. The existence of

a single algorithm — simplistic or no — that can, on occasion, produce such

results could conceivably hold implications for the RSA cryptosystem [84] unless

we take the existence of the algorithm into account and ensure that it cannot

pose a threat.

In the introduction to this thesis we gave a brief outline of the RSA algorithm. As

well as enabling secure communication between two individuals that have not met

or exchanged secret keys some public-key cryptosystems also enable individuals

to produce a digital signature. RSA is one such system, we will briefly explain

how this is accomplished and introduce some other necessary facts about the

system. More information can be found in [8, 68, 84].

A digital signature of a file or message depends on the contents of the message

142



itself and on knowledge of the private key used to “sign” it — in this case the

private part of the RSA key pair. The RSA cryptosystem naturally gives rise

to a signature scheme as the operation of “encryption” is bijective. In simplistic

terms, we can “encrypt” and “decrypt” with either a public key or a private

key. If we encrypt with the someone else’s public key we may then communicate

securely with that person. If, on the other hand, we “encrypt” with our own

private key we are able to form a piece of information or signature that can be

verified as being created by us easily (by “decrypting” with our public key) and,

most importantly, such that (it is believed) no other person could have created

the signature without knowledge of our private key.

We create n = pq, p, q prime, our private key (n, d), our public key (n, e) as in

chapter 1. However, to sign a block of plaintext m we “encrypt” with our private

key (for simplicity we assume the message m < n; m ≥ n complicates notation

but not implementation):

s ≡ md mod n

to obtain s, a signature for the message m.

If someone should wish to verify that we signed the message they “decrypt” with

our public key. We noted in the introduction that access to the factorisation

of n = pq results in a complete break of the cryptosystem — this includes the

signature scheme. There are a myriad of other issues of significant importance

that must be addressed in order to use the ideas above to create a secure signature

scheme, however, most of these will not impact on the subsequent discussion. In

fact we will not talk about the technical details of the algorithm except for how

the primes p and q are selected.

Prime selection for RSA

When selecting primes for RSA we may choose to adhere to some or all of the

following [8, 68]:

• p and q should be approximately the same size (bitlength) and of a size

large enough so as to preclude the possibility of factoring using the elliptic

curve factoring algorithm.

143



• p and q should not be too close together, if they are then p, q ≈ √
n. Such

n are considerably easier to factor than a general number of the same size

as they are immediately susceptible to Fermat’s factorisation method. If

p, q are chosen randomly this problem is side stepped as we would have

p, q ≈ √
n with extremely small probability.

• It is possible that we might choose to use strong primes. Strong primes are

p and q chosen such that:

1. In order to avoid attack by the Pollard p − 1 factoring algorithm we

ensure that p− 1 has a large prime factor, say r.

2. In order to avoid the Pollard p + 1 factoring algorithm we ensure that

p + 1 has a large prime factor.

3. To avoid so called “cycling attacks” r − 1 is chosen to have a large

prime factor.

However, while there is little additional cost to the use of strong primes it

is not certain they add any security. As discussed in [68, note 8.8] if p and q

are sufficiently large, randomly chosen primes then we would expect p± 1,

q±1 to have large prime factors in any case — and a cycling attack to have

only a negligible probability of success. In addition, strong primes offer no

protection against the elliptic curve factoring algorithm (a generalisation of

the p− 1 and p + 1 attacks).

If the above method of prime selection does not preclude the use of a modulus

n with some special form which cannot be easily identified by a human yet can

be isolated as having a special form for the number field sieve by a schema such

as Murphy’s then the ability to automatically isolate special forms may have

implications for RSA.

Discussion

Obviously we require any cryptosystem to be “secure” but there are various mod-

els of security. Computational security measures the amount of computational

effort which would be required to defeat a system using current technology and

methods. Many cryptosystems are only considered to be computationally secure,

for an overview of this and other models of security see [68].

144



RSA is generally considered to be computationally secure if current guidelines

for parameter selection are followed. In particular, guidelines on the length of

n that is currently considered to give short, medium and long term security

are produced based on estimates of the size of number that the fastest general

factoring algorithm will be able to factor given a specific set of resources. These

estimates are based on knowledge of the current record factorisations and on the

assumption that no new, faster, general algorithm will be invented.

Non-repudiation is another commonly required feature of public-key/signature

schemes. It is defined to be any aspect of a system or service that allows us to

prevent the denial of previous commitments or actions [68].

Clearly, public-key systems and digital signatures have no worth if we are able

to successfully claim that we were not involved in an action when we are in

fact responsible. This can be quite a subtle problem and requires various key

management techniques some of which have significant overheads. For a general

overview see [68]. Ideally we would like to avoid or remove as many opportunities

as possible for an individual to successfully repudiate their actions.

The security of RSA lies in the secrecy of the private key (n, d). As noted earlier,

factorisation of n leads to a complete break of the system and thus a weak key

for RSA is any private key for which n can be factored, with current methods, in

polynomial time. The above rules for selecting p and q ensure that such n are very

rare. However, we might consider an RSA key to be a computationally weaker key

if the cost to factor n, while not polynomial, is substantially less than assumed.

For instance, a modulus n might be selected so that it is out of the current range

of GNFS but should n have a special form which allows a parametrisation with

SNFS characteristics we may find that n then falls into the current range for

SNFS. Thus the key would be computationally weaker than intended.

If we assume that an individual had by some circumstance such a computationally

weaker key then the existence of automatic methods which may be able to isolate

the parameters for the special case without prior knowledge of the structure leaves

the individual open to an opportunistic attack. However, the cost of factoring

the modulus would still be very high.

Perhaps of more interest is the possibility of a repudiation attack. If an assailant

145



could produce in some manner a computationally weaker key of this nature that

appeared to obey the usual selection criteria for p and q above they could then

use this to produce electronic signatures with the intention of later repudiating

their actions.

The assailant would not have to produce a factored modulus in order to repudiate

their actions, they would only need to show, by a method which does not use

knowledge of the structure present, that the modulus is weaker than they intended

and within the current range of factorisation. In this case the burden of proof

that the key was created to be weaker would lie with an arbitration authority.

The risk here is not only that there are plausibly weaker keys we may currently

allow to be used but the method by which these particular weaker keys can be

recognised. The concerns are as follows: firstly, we do not have any immediate

way of quantifying the density of keys which have “nice” polynomials nor of

reliably testing for all special forms that could exist; secondly, that keys of this

form could be automatically shown to be weaker than intended without producing

a factored modulus or evidence that such a factorisation has occurred. In fact a

“weaker” modulus n can still be very expensive to factor, it is determined to be

weaker by the fact that, given current technology and a specific monetary input,

it can be factored but general numbers of the same size as n cannot be.

Even supposing that a factorisation of n would show that the assailant had pur-

posely undermined their own RSA key (for instance, if p and q did not fulfil

the usual criteria or could be shown to be selected at random (as a pair) with

very small probability) the cost of factoring n is high and may not prove to be

a cost effective argument for an arbitration authority. In addition, if the form of

the special case is one that has not been well investigated the argument that a

modulus which can be written in this polynomial form will occur with very low

probability may not be valid.

Question 5 Does there exist a method to produce, at will and in a manner which

is difficult to detect, computationally weaker keys of the nature outlined above?

In order to avoid such repudiation and opportunistic attacks on RSA we must

therefore consider the probability of primes leading to any special form being

146



selected at random and used in an RSA key. If the likelihood of this occurring

is high enough, we may consider whether we can check for any “special” cases

currently known in order to ensure that weaker keys are not used. It may be

useful to run Murphy’s scheme on any modulus n the factorisation of which

is just infeasible when considered as a general number but which could lie in

the reach of SNFS. However, Murphy’s scheme for selecting polynomials has a

randomised component so while we can test any modulus n the inability to find

a pleasant polynomial form does not ensure that one does not exist. In addition

to this the goal posts may not be static — it is unclear whether there may be

other special forms of the number field sieve yet to be discovered.

Question 6 Do there exist many special forms of the number field sieve or can

numbers be seen on a continuum with no clear divide between a “difficult” general

class of numbers and a “nice” special class of numbers?

It is difficult, if not impossible, and certainly beyond the scope of this thesis to

quantify all “nice” polynomial forms a schema such as Murphy’s can identify. It

is therefore not possible at this time to give an in depth analysis of the likelihood

of producing a weaker RSA key than was intended though at first glance it would

seem these keys would either be rare or lie on a continuum of NFS “hardness”.

In addition to this any argument would necessarily take into account only the

abilities of published schema for producing polynomials. It seems unlikely that

any one scheme can isolate all special forms that result in a reduced run time in

the number field sieve and of course any number of automated methods could

be formed in future to find specific polynomial forms without knowledge of the

structure of a number. For these reasons it does not seem possible to quantify the

risk of using a weaker key than was intended nor the risk that an individual may

purposely use a weaker key with the intention of later repudiating their actions.

We leave such considerations to further study.

7.6 Summary

We have noted an apparent blurring in the distinction between the special number

field sieve and the general number field sieve. In particular we have seen that

147



a variety of special forms can be recognised by Murphy’s schema without direct

access to the special structure present.

Further to this, we have considered possible implications for RSA noting that

such automated methods of isolating special forms can recognise keys which are

weaker than intended. We hope but cannot conclude that this will occur only in

rare circumstances if we assume randomness but also note the possibility of an

attacker selecting such a key with the intention of later repudiating their actions.

In this case the attacker has choice and the authority the burden of proof that

the key was specifically chosen.

Finally, with regards to any additional method that can be used to speed up cases

of the number field sieve which use special structure we are now in a situation

where we must consider implications for special structure numbers that have not

been recognised as such by a human and may have been used for cryptographic

purposes.

148



Chapter 8

Summary

8.1 Further work

The method to estimate the quantity of relations produced by the classical sieve

cannot be used as a stand alone method for comparing parametrisations of a

factorisation or variants of the number field sieve as we cannot be sure that the

method is stable. In addition the technique is not applicable in the case of the

lattice sieve.

More work could be done to test the technique of splitting the sieve region.

Should the resources be available we may wish to enter into large scale tests

in order to verify the stability of the estimate. This would be all the more

beneficial if the technique or a similar method could be applied to other sieving

mechanisms. We might also consider using the outcome of the investigation into

the underestimate as a starting point to developing a more natural and adaptive

method of estimation.

The open questions posed in chapter 7 provide obvious directions for further

work that is clearly beyond the scope of this thesis. However these questions

are unlikely to be answered with ease. A more prudent course of research would

be to consider what other special forms may be factored with a significantly

reduced runtime in comparison with the general case and derive methods to

automatically isolate these. A more general aim would be to work towards a

149



polynomial selection algorithm that could somehow be used as a judge for the

likely difficulty of factoring the number provided as input.

In the case of the subfield structure we would aim to find other ways of using the

structure that did not involve a linear side and hence that would allow us to tap

into the promising source of relations that the subfields appear to provide. We

may also consider working in extensions of a main field rather than in subfields

of one.

8.2 In summary

We have investigated the source of the under estimates in a method for estimating

the quantity of relations produced by the number field sieve and provided evidence

that this is not in fact due solely to the range of the size of values taken by the

polynomial but an effect generated by the skew of the values. We have considered

splitting methods rooted in this idea and that of splitting the sieve region into

equal sized subregions. We noted some of the negative qualities of the method

of splitting the region equally — most specifically the problem of deciding the

quantity of subregions that would be most applicable to any given problem. We

provide evidence that another method which does not have this flaw can produce

reasonable estimates.

We have established some of the characteristics of the special cases of the number

field sieve so that we might define “specialness” via a set of “nice” properties,

rather than via the idea that the polynomials are created using known special

structure to be particularly small. We have contrasted these with the general

case and found that care should be taken when comparing general and special

cases as the underlying factor base structure is, on average, quite different.

In particular we have noted that in the case that the algebraic number field has

composite degree and a Galois group strictly smaller than the full symmetric

group it is possible that we may have subfield structure. We have seen that in

the case of d = 4 and d = 6 in some of the main special cases produced by humans

subfield structure is present.

150



We considered the most obvious and natural method of utilising the subfield

structure found in the main special cases. We show how the number field sieve can

be adapted to make use of the subfields and find that this can have a significant

effect on the algebraic side. However, the ensuing explosion in size of the auxiliary

numbers that we hope to be smooth on the linear side leads us to the conclusion

that this method is not of practical use.

We have considered the special cases in the context of Murphy’s general polyno-

mial selection schema posing some open questions regarding this. We note that

for certain special cases while Murphy’s schema are not generally able to produce

the polynomials that a human might produce that the schema is capable of pro-

ducing an isomorphic number field, often with a small representation, with no

guidance as to the special structure present. We note that there are other ways to

automatically check for some of the special numbers which might be incorporated

as a first step in the schema.

This would appear to blur the distinction between the special and general cases

of the number field sieve. It is difficult, if not impossible to know the density of

“special” forms that exist or that could be automatically produced without prior

knowledge of any special structure. We might now wish to consider variants

of the number field sieve that are only applicable in the special cases as it is

possible (though we hope unlikely) that a number used for cryptographic purposes

could be recognised automatically as a special case without human intervention.

Finally, the existence of automated methods by which we can isolate some forms

of “specialness” without knowledge of any structure in the number to be factored

raises the question of the possibility of repudiation or opportunistic attacks, which

we assume but cannot conclude are rare, on the RSA cryptosystem.

151



Appendix A

SNFS factorisations

We collect together some example SNFS factorisations from the literature includ-

ing the record breaking factorisations from 1997 onwards. In the most part these

factorisations are here because we have information regarding F the polynomial

used and hence we may calculate the Galois group Gal(F ) and an approximation

to α(F ). In all cases F has small coefficients, a small Galois group and in most

cases a positive value of α(F ). We can also see that the range of α(F ) values is

quite narrow.

In the table x, y+ denotes xy + 1 and x, y− denotes xy − 1. An entry such as

C145 fr. 2, 488+ refers to the cofactor with 145 digits from 2488 + 1.

The approximation to α(F ) is calculated in a similar manner as the calculation

of α(f) as described in chapter 4. We allow random sampling across [−104, 104]×
[0, 104] and use a factor base bound of 104 (smaller factors almost entirely control

the value).

Table A.1: Table of SNFS factorisations from the literature

including Galois group and α(F )

Number Ref. Polynomial f Gal(F ) α(F )

2, 28+ [80] X3 + 2 S3 1.58

2, 512+ [62] X5 + 8 F (20) 0.97

3, 239− [63] X5 − 3 F (20) 1.15

continued on next page

152



Table A.1: continued

Number Ref. Polynomial f Gal(F ) α(F )

2, 373+ X5 + 4 F (20) 1.20

7, 149+ X5 + 7 F (20) 1.03

2, 457+ X5 + 8 F (20) 0.97

C145 fr. 2, 488+ [6] X5 + 4 F (20) 1.20

C151 fr. 2, 503+ 8X5 + 1 F (20) 0.97

2, 523− 8X5 − 1 F (20) 0.98

C123 fr. 2, 511− [39] X6 − 10X4 + 24X2 − 8 C(6) 1.92

C162 fr. 12, 151− [49] 12X5 − 1 F (20) 0.43

C98 fr. 7128 + 6128 X4 + 1 E(4) 2.66

C106 fr. 2, 543− 4X4 + 2X2 + 1 E(4) 1.74

C119 fr. 3, 319− X5 + X4 − 4X3 − 3X2 + 3X + 1 C(5) 2.32

C135 fr. 73, 73+ X5 + 732 F (20) 0.76

6, 199− [42] X5 − 6 F (20) 0.93

10, 158+ 8X5 + 25 F (20) −0.36

C144 fr. 7, 187− X5 + X4 − 4X3 − 3X2 + 3X + 1 C(5) 2.32

C156 fr. 2, 559− X6 + X5 − 5X4 − 4X3 C(6) 3.15

+6X2 + 3X − 1

5, 505− 25X4 + 25X3 + 15X2 + 5X + 1 C(4) 1.44

10, 81+ [85] 10X5 + 1 F (20) 0.35

10, 184+ X5 + 10 F (20) 0.36

10, 91+ 10X5 + 1 F (20) 0.35

10, 194+ X5 + 10 F (20) 0.36

10, 197− X6 − 10 D(6) 1.33

6, 256+ 6X5 + 1 F (20) 0.94

2, 587+ 4X5 + 1 F (20) 1.19

2, 617+ 4X5 + 1 F (20) 1.19

2, 619+ X5 + 2 F (20) 1.43

5, 257+ 25X5 + 1 F (20) 0.53

35, 97+ 1225X5 + 1 F (20) 1.01

97, 73− 6X5 − 9409 F (20) 1.46

12, 167+ 144X5 + 1 F (20) −0.32

4232 + 3232 16X5 + 9 F (20) 0.30

2, 751− [37] 2X6 − 1 D(6) 2.47

668 × 2668 − 1 [65] −4X6 + 167 D(6) 2.05

6, 257− X6 − 6 D(6) 1.91

5, 289+ X6 + 5 D(6) 1.71

continued on next page

153



Table A.1: continued

Number Ref. Polynomial f Gal(F ) α(F )

11, 197+ X6 + 11 D(6) 1.28

2, 673− 2X6 − 1 D(6) 2.47

12, 178+ 4X6 + 9 D(6) 0.58

5, 298+ X6 + 25 D(6) 1.43

12, 197− X6 − 12 D(6) 1.37

10, 227− X6 − 10 D(6) 1.33

2, 713− X6 − 2 D(6) 2.47

2, 757− 2X6 − 1 D(6) 2.47

3, 491+ X6 + 3 D6(6) 2.68

SNFS records

C180 fr. 12, 167+ [72] X5 − 144 F (20) −0.32

(215 − 135), 41− [19] X5 − (215 − 135) F (20) 0.63

C211 fr. 10, 211− [16] 10X6 − 1 D(6) 1.33

2, 773+ [15] X6 + 2 D(6) 1.94

2, 809− [44] Not reported - -

2, 1642M [2] X6 + 2X3 + 2 D(6) 2.23

C274 fr. 6, 353− [3] X6 − 6 D(6) 1.91

154



References

[1] L. M. Adleman. Factoring Numbers using Singular Integers. In Proc. 23rd

Annual ACM Symp. on Theory of Computing (STOC), pages 64–71. ACM

Press, 1991.

[2] K. Aoki, Y. Kida, T. Shimmoyama, Y. Sonoda, and H. Ueda. 248-

digit SNFS factorization. http://www.crypt-world.com/announcements/

SNFS248.txt, 2004. (Aug. 2006).

[3] K. Aoki, Y. Kida, T. Shimoyama, and H. Ueda. 274-digit SNFS factoriza-

tion. http://www.crypto-world.com/announcements/SNFS272.txt, 2006.

(Aug. 2006).

[4] E. Bach and R. Peralta. Asymptotic Semismoothness Probabilities. Mathe-

matics of Computation, 65:1701–1715, 1996.

[5] E. A. Bender and E. R. Canfield. An Approximate Probabilistic Model for

Structured Gaussian Elmination. J. Algorithms, 31:271–290, 1999.

[6] D. J. Bernstein and A. K. Lenstra. A General Number Field Sieve Imple-

mentation, pages 103–126. In Lenstra and Lenstra [61], 1st edition, 1993.

[7] H. Boender. The Number of Relations in the Quadratic Sieve Algorithm.

Technical Report NM-R9622, CWI, Amsterdam, 1996. Chapter 4, Phd The-

sis, University of Leiden, http://ftp.cwi.nl/CWIreports/NW/NM-R9622.

pdf (Aug. 2006).

[8] D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of

the AMS, 46:203–231, 1999.

[9] R. P. Brent. Recent Progress and Prospects for Integer Factorisation Algo-

rithms. In Computing and Combinatorics (Sydney, 2000), volume 1858 of

LNCS, pages 3–22. Springer-Verlag, 2000.

155



[10] R. P. Brent, P. L. Montgomery, and H. J. J. te Riele. Factorizations of

Cunningham numbers with bases 13 to 99: millennium edition. Technical

Report MAS-R0107, CWI, Amsterdam, 2001. Available at http://ftp.

cwi.nl/CWIreports/MAS/MAS-R0107.pdf (Aug. 2006).

[11] J. Brillhart, D. H. Lehmer, L. Selfridge, B. Tuckerman, and S. S. Wagstaff,

Jr. Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to higher powers.

Amer. Math. Soc., Providence, RI, 3rd edition, 2002. Available at http:

//www.ams.org/online bks/conm22/ (Aug. 2006).

[12] J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance. Factoring Integers

with the Number Field Sieve, pages 50–94. In Lenstra and Lenstra [61], 1st

edition, 1993.

[13] S. Cavallar. Strategies in Filtering in the Number Field Sieve. In Algorithmic

Number Theory, ANTS-IV, volume 1838 of LNCS, pages 209–231. Springer-

Verlag, 2000.

[14] S. Cavallar. The Three-Large-Primes Variant of the Number Field Sieve.

Technical Report MAS-R0219, CWI, Amsterdam, 2002. Available at http:

//www.cwi.nl/ftp/CWIreports/MAS/MAS-R0219.pdf (Aug. 2006).

[15] S. Cavallar, B. Dodson, J. Fougeron, J. Gilchrist, A. Lenstra, P. Leyland,

W. Lioen, P. Montgomery, A. Muffett, NFSNET2 (M. Bruestle, S. Contini,

P. Dodson, E. C. Dost, S. Edick, T. Holroyd, J. Klos), and H. te Riele. 233-

digit SNFS factorization. http://ftp.cwi.nl/pub/herman/SNFSrecords/

SNFS-233, 2000. (Aug. 2006).

[16] S. Cavallar, B. Dodson, A. Lenstra, P. Leyland, W. Lioen, P. Montgomery,

H. te Riele, and P. Zimmermann. 211-digit SNFS factorization. http:

//ftp.cwi.nl/herman/SNFSrecords/SNFS-211, 1999. (Aug. 2006).

[17] S. Cavallar, B. Dodson, A. K. Lenstra, P. C. Leyland, W. M. Lioen, P. L.

Montgomery, B. Murphy, H. J. J. te Riele, and P. Zimmermann. Factor-

ization of RSA-140 using the Number Field Sieve. Technical Report MAS-

R9925, CWI, Amesterdam, 1999. Available at http://www.cwi.nl/ftp/

CWIreports/MAS/MAS-R9925.pdf (Aug. 2006).

[18] S. Cavallar, W. M. Lioen, H. J. J. te Riele, B. Dodson, A. K. Lenstra, P. L.

Montgomery, B. Murphy, and et al. Factorization of a 512-bit RSA Modulus.

Technical Report MAS-R0007, CWI, Amsterdam, 2000. Available at http:

//www.cwi.nl/ftp/CWIreports/MAS/MAS-R0007.pdf (Aug. 2006).

156



[19] S. Cavallar, P. Montgomery, and H. te Riele. 186-digit SNFS factor-

ization. http://ftp.cwi.nl/pub/herman/SNFSrecords/SNFS-186, 1998.

(Aug. 2006).

[20] S. H. Cavallar. On the Number Field Sieve Integer Factorisation Algorithm.

PhD thesis, Leiden University, 2002. Available at http://www.cwi.nl/ftp/

herman/theses/Stefania.ps.Z (Aug. 2006).

[21] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-

Verlag, Berlin, Germany, 1st edition, 1993.

[22] H. Cohen. Advanced Topics in Computational Number Theory. Springer-

Verlag, New York, USA, 1st edition, 2000.

[23] H. Cohen, F. Diaz y Diaz, and M. Olivier. Counting Discriminants of Number

Fields of Degree up to Four. In Algorithmic Number Theory, ANTS-IV,

volume 1838 of LNCS, pages 269–283. Springer-Verlag, 2000.

[24] S. Contini. Factoring Integers with the Self Initialising Quadratic Sieve.

Master’s thesis, University of Georgia, 1997. Available at http://www.

crypto-world.com/Contini.html (Aug. 2006).

[25] J. H. Conway, A. Hulpke, and J. McKay. On Transitive Permutation Groups.

LMS J. Comput. Math.(electronic), 1:1–8, 1998.

[26] D. Coppersmith. Modifications to the Number Field Sieve. J. Cryptology,

6:169–180, 1993.

[27] D. Coppersmith. Solving Linear Equations over GF (2): Block Lanzos Algo-

rithm. Linear Algebra and its Applications, 192:33–60, 1993.

[28] D. Coppersmith. Solving Homogeneous Linear Equations over GF (2) via

Block Wiedemann. Mathematics of Computation, 62:333–350, 1994.

[29] J.-M. Coveignes. Computing a Square Root for the Number Field Sieve. In

[61], pages 95–102.

[30] P. A. Crouch and J. H. Davenport. Lattice Attacks on RSA-encrypted IP

and TCP. In Cryptography and Coding 2001, volume 2260 of LNCS, pages

329–338. Springer-Verlag, 2001.

[31] A. J. C. Cunningham and H. J. Woodall. Factorisation of (yn ± 1), y =

2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers (n). Hodgson, London, 1925.

157



[32] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, and K. Wildan-

ger. KANT V4. J. Symbolic Comp., 24:267–283, 1997.

[33] H. Davenport. The Higher Arithmetic. Cambridge University Press, Cam-

bridge, United Kingdom, 7th edition, 1999.

[34] N. G. de Bruijn. On the Number of Positive Integers ≤ x and Free of Prime

Numbers > y. In Nederl. Acad. Wetensch. Proc., volume 54 of Ser. A., pages

50–60, 1951.

[35] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[36] J. Dixon. Computing Subfields in Algebraic Number Fields. J. Austral.

Math. Soc., 49:434–448, 1990.

[37] B. Dodson, J. Franke, A. K. Lenstra, P. Leyland, P. Montgomery, and

H. te Riele. 227-digit SNFS factorization. http://ftp.cwi.nl/pub/

herman/SNFSgiants/SNFS-227, 2002. (Aug. 2006).

[38] B. Dodson and A. K. Lenstra. NFS with Four Large Primes: an Explosive

Experiment. In Advances in Cryptology, CRYPTO ’95, volume 963 of LNCS,

pages 372–385. Springer-Verlag, Berlin, 1995.

[39] M. Elkenbracht-Huizing. An Implementation of the Number Field Sieve.

Experimental Mathematics, 5(3):99–114, 1996.

[40] M. Elkenbracht-Huizing. A Multiple Polynomial General Number Field

Sieve. In Algorithmic Number Theory, ANTS II, volume 1122 of LNCS,

pages 99–114. Springer-Verlag, 1996.

[41] R-M. Elkenbracht-Huizing. Factoring Integers with the Number Field Sieve.

PhD thesis, Leiden University, 1997.

[42] R.-M. Elkenbracht-Huizing, P. L. Montgomery, R. D. Silverman, R. K.

Wackerbarth, and S. S. Wagstaff. The Number Field Sieve on Many Com-

puters. In Number theory, volume 19 of CRM Proc. Lecture Notes, pages

81–85. Amer. Math. Soc., Providence, 1999.

[43] L. Euler. Observationes de Theoremate quodam Fermatiano Aliisque ad

Numeros Primos Spectantibus. Comm. Acad. Sci. Petropol., 6:103–107,

1732/1733 published 1738. Available at http://math.dartmouth.edu/

158



∼euler/docs/originals/E026.pdf (Aug. 2006); Translation available at

http://math.dartmouth.edu/∼euler/pages/E026.html (Aug. 2006).

[44] J. Franke, T. Kleinjung, F. Bahr, and P. Montgomery. 244-digit SNFS

factorization. http://www.crypto-world.com/announcements/m809.txt,

2003. (Aug. 2006).

[45] P. X. Gallagher. The Large Sieve and Probabilistic Galois Theory. In Ana-

lytic Number Theory, volume 24 of Proc. Symp. in Pure Math., pages 91–101.

AMS, Providence, 1973.

[46] J. E. Gower. Rotations and Translations of Number Field Sieve Polynomials.

In Advances in Cryptology, Asiacrypt 03, volume 2894 of LNCS, pages 302–

310. Springer-Verlag, 2003.

[47] H. W. Lenstra Jr. Factoring Integers with Elliptic Curves. Ann. of Math.,

126:649–673, 1987.

[48] A. Hildebrand and G. Tenenbaum. On Integers Free of Large Prime Factors.

Transactions of the American Mathematical Society, 296:265–290, 1986.

[49] R. M. Huizing. An Implementation of the Number Field Sieve. Technical

Report NM-R9511, CWI, Amsterdam, 1995. Available at http://www.cwi.

nl/ftp/CWIreports/NW/NM-R9511.pdf (Aug. 2006).

[50] A. Hulpke. Block Systems of a Galois Group. Experimental Mathematics,

4:1–9, 1995.

[51] S. Hunter and J. Sorenson. Approximating the Number of Integers Free of

Large Prime Factors. Mathematics of Computation, 66:1729–1741, 1997.

[52] E. Kaltofen. On Wiedemann’s Method of Solving Sparse Linear Systems. In

Proc. AAECC 9, volume 539 of LNCS, pages 29–38. Springer, 1991.

[53] J. Klüners and M. Pohst. On Computing Subfields. J. Symbolic Computa-

tion, 24:385–397, 1997.

[54] D. E. Knuth. The Art of Programming: Semi-Numerical Algorithms.

Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.

[55] J. C. Lagarias and A. M. Odlyzko. Effective Versions of the Chebotarev Den-

sity Theorem. In Algebraic number fields: L-functions and Galois properties,

Proc. Sympos., Univ. Durham, pages 409–464. Academic Press, London,

1977.

159



[56] R. Lambert. Computational Aspects of Discrete Logarithms. PhD thesis,

University of Waterloo, 1996.

[57] C. Lanczos. Solution of Systems of Linear Equations by Minimized Itera-

tions. J. Res. Nat. Bureau Standards, 49:33–53, 1952.

[58] S. Lang. Algebraic Number Theory. Springer-Verlag, 1st edition, 1986.

[59] S. Lang. Algebra. Addison-Wesley Publishing Company, USA, 3rd edition,

1993.

[60] D. Lazard and A. Valibouze. Computing Subfields: Reverse of the Primi-

tive Element Problem. In Computational algebraic geometry (Nice, 1992),

volume 109 of Progress in Mathematics, pages 163–176. Birkhäuser Boston,

675 Mass. Ave., Cambridge MA, 1993.

[61] A. K. Lenstra and H.W. Lenstra, editors. The Development of the Number

Field Sieve. LNM. Springer-Verlag, London, UK, 1st edition, 1993.

[62] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The

Factorization of the Ninth Fermat Number. Math. Comp., 61:319–349, 1993.

[63] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The

Number Field Sieve, pages 11–41. In Lenstra and Lenstra [61], 1st edition,

1993.

[64] A. K. Lenstra and M. S. Manasse. Factoring with Two Large Primes. Math.

Comp., 63:785–798, 1994.

[65] P. Leyland, D. Leclair, R. Wackerbarth, and J. Gilchrist. NFSNET: Large-

scale distributed factoring. http://www.nfsnet.org/announcements.html.

(Aug. 2006).

[66] G. Malle. On the Distribution of Galois Groups. Journal of Number Theory,

92:315–329, 2002.

[67] G. Marsaglia, A. Zaman, and J. C. W. Marsaglia. Numerical Solution of some

Classical Differential-Difference Equations. Mathematics of Computation,

53:191–201, 1989.

[68] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC press, 1997.

160



[69] H. Mishima. World Integer Factorisation Center. http://www.asahi-net.

or.jp/∼KC2H-MSM/mathland/matha1/ (Aug. 2006).

[70] C. Monico. GGNFS — A Number Field Sieve Implementation. Available at

http://www.math.ttu.edu/∼cmonico/software/ggnfs/ (Aug. 2006).

[71] P. Montgomery. A Block Lanzcos Algorithm for finding Dependencies over

GF (2). In Proc. EuroCrypt ’95, volume 921 of LNCS, pages 106–120.

Springer-Verlag, 1995.

[72] P. Montgomery, S. Cavallar, and H. te Riele. A New World Record for

the Special Number Field Sieve Factoring Method. Technical report, CWI,

Amsterdam, 1997.

[73] P. L. Montgomery. Square Roots of Products of Algebraic Numbers, draft of

1997. Available at http://ftp.cwi.nl/pmontgom/sqrt.ps.gz (Aug. 2006).

[74] M. A. Morrison and J. Brillhart. A Method of Factoring and the Factorisa-

tion of F7. Math. Comp., 29:183–205, 1975.

[75] B. Murphy. Modelling the Yield of Number Field Sieve Polynomials. In

Algorithmic Number Theory, ANTSIII, volume 1423 of LNCS, pages 137–

151. Springer-Verlag, 1998.

[76] B. Murphy. Polynomial Selection for the Number Field Sieve Integer Fac-

torisation Algorithm. PhD thesis, The Australian National University,

1999. Available at http://web.comlab.ox.ac.uk/oucl/work/richard.

brent/ftp/Murphy-thesis.ps.gz (Aug. 2006).

[77] B. Murphy and R. Brent. On Quadratic Polynomials for the Number Field

Sieve. In Computing theory ’98 (Perth), volume 20.3 of Aust. Comput. Sci.

Commun., pages 199–213. Springer, Singapore, 1998.

[78] P. Nguyen. A Montgomery-like Square Root for the Number Field Sieve.

In Algorithmic Number Theory, ANTS III, volume 1443 of LNCS, pages

151–168. Springer-Verlag, 1998.

[79] O. Penninga. Finding Column Dependencies in Sparse Matrices over F2 by

Block Wiedemann. Master’s thesis, Leiden University, 1998.

[80] J. Pollard. Factoring with Cubic Integers, pages 4–10. In Lenstra and Lenstra

[61], 1st edition, 1993.

161



[81] J. Pollard. The Lattice Sieve, pages 43–49. In Lenstra and Lenstra [61], 1st

edition, 1993.

[82] C. Pomerance. The Quadratic Sieve Factoring Algorithm. In Advances in

cryptology (Paris, 1984), volume 209 of Lecture Notes in Comput. Sci., pages

169–182. Springer, Berlin, 1985.

[83] C. Pomerance. A Tale of Two Sieves. Notices Amer. Math. Soc., 43:1473–

1485, 1996.

[84] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for obtaining

Signatures and Public-key Cryptosystems. Communications of the ACM,

21:120–126, 1978.

[85] R. D. Silverman. Optimal Parameterization of SNFS. Available at http:

//citeseer.ist.psu.edu/silverman03optimal.html. (Aug. 2006).

[86] R. D. Silverman. The Multiple Polynomial Quadratic Sieve. Mathematics

of Computation, 48:329–339, 1987.

[87] N. J. A. Sloane. Sequence A008290 in “The On-Line Encyclopedia of Integer

Sequences.”. http://www.research.att.com/∼njas/sequences/A008290

(Aug. 2006).

[88] I. N. Stewart and D. O. Tall. Algebraic Number Theory and Fermat’s Last

Theorem. Chapman and Hall Mathematics Series. Chapman and Hall, New

York, USA, 3rd edition, 1987.

[89] E. Thomé. Fast Computation of Linear Generators for Matrix Sequences

and application to the Block Wiedemann Algorithm. In Proc. ISSAC 2001,

pages 323–331. ACM Press, 2001.

[90] S. S. Wagstaff, Jr. The Cunningham Project. http://www.cerias.purdue.

edu/homes/ssw/cun/ (Aug. 2006).

[91] C. Zhang. k-Semismooth Integers. Available at http://www.czhang.net/

research.html. (Aug. 2006) pre-print, submitted to Math. Comp.

162


