

Citation for published version:
Li, H 2007, The analysis and implementation of the AKS algorithm and its improvement algorithms. Computer
Science Technical Reports, no. CSBU-2007-09, Department of Computer Science, University of Bath.

Publication date:
2007

Link to publication

©The Author July 2007

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/the-analysis-and-implementation-of-the-aks-algorithm-and-its-improvement-algorithms(ae0abbf8-8b85-4a63-b7cd-2a130ecb76b6).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: The Analysis and Implemen-
tation of the AKS Algorithm and Its Improvement Algorithms

Hua Li

Technical Report 2007-09 July 2007
ISSN 1740-9497

Copyright c©July 2007 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

The Analysis and Implementation of the AKS Algorithm and

Its Improvement Algorithms

Hua Li

Batchelor of Science in Computer Science with Honours
The University of Bath

May 2007

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

The Analysis and Implementation of the AKS

Algorithm and Its Improvement Algorithms

Submitted by: Hua Li

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).
This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Batchelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or qualification of this or any other university or institution of learning. Except
where specifcally acknowledged, it is the work of the author.

Signed:

Abstract

In August 2002, three Indian researchers, Manindra Agrawal and his students Neeraj Kayal
and Nitin Saxena presented a remarkable algorithm called AKS algorithm in their paper
Primes is in P. It is the first deterministic primality testing algorithm in polynomial time.
The project provides experimental data to suggest the complexity time of AKS algorithm
is O((log n)8 log log n). Afterwards, many scientists tried to improve the AKS algorithm,
one of the better ones is proposed by Lenstra. R. Crandall and J. Papadopoulos has shown
that Lenstras version of the AKS algorithm has a complexity time of C(log n)6 where C is a
logarithm constant. Our testing supports this result and suggest C can be approximate by

φ(r)
(log log(φ(r)))r where r is the useful certificate. Further testing results have shown a better
complexity time O(log n)5.73 for lenstra’s version.

Contents

1 Introduction 1

2 Literature Survey 2

2.1 Introduction . 2

2.1.1 Number Theory and Algorithm Terminology 2

2.1.2 Historical Background for Prime Numbers 3

2.1.3 Algorithm Development . 4

2.1.4 Primality Testing and Modern Cryptography 5

2.2 The AKS Algorithm . 8

2.2.1 Basic Idea . 8

2.2.2 Algorithm Overview . 9

2.2.3 Complexity Time . 10

2.2.4 Improved Complexity and Sophie Germain Primes 11

2.3 Modifications on the Original AKS Algorithm 12

2.3.1 Dan Bernstein and Lenstra’s Improvements 13

2.3.2 Other Remarkable Results . 14

2.3.3 AKS Later Version . 14

2.4 Summary . 15

3 Requirements 16

3.1 Overview of System . 16

3.2 Requirements Analysis . 16

3.2.1 Evaluation of Previous Systems . 16

ii

CONTENTS iii

3.2.2 Core Functionality Use Cases . 16

3.3 Functional Requirements Specification . 17

3.3.1 Input Data . 17

3.3.2 Output Data . 17

3.3.3 Error Handling . 17

3.4 System Requirements . 18

3.5 Non-Functional requirements . 18

4 Design 19

4.1 Choosing Programming Language . 19

4.2 Usability . 19

4.2.1 Input . 20

4.2.2 Output . 20

4.2.3 Program Structure . 20

5 Implementation and Testing 22

5.1 The AKS Algorithm . 22

5.1.1 Perfect Power Check . 22

5.1.2 The Certificate . 23

5.2 AKS Algorithm - Lenstras Modification . 26

5.2.1 The Certificate . 26

5.2.2 Euler-Phi Function . 26

5.3 Testing . 27

6 Results 28

6.1 Validation of Requirements . 28

6.1.1 Input Data . 28

6.1.2 Output Data . 28

6.1.3 Error Handling . 28

6.2 Individual Component Testing . 29

6.2.1 The Correctness of Perfect Power Check 29

6.2.2 The Correctness of Isprime Check 29

CONTENTS iv

6.2.3 The Correctness of largest prime number 30

6.3 Useful r Testing . 31

6.4 Complexity Measurement - AKS Algorithm 32

6.4.1 Basic Testing . 33

6.5 Complexity Measurement - Lenstra’s Modification 34

6.5.1 Conjecture . 41

6.6 Summary . 44

7 Conclusions 45

A User Documentation 50

A.1 NTL instruction . 50

A.1.1 Obtaining and Installing NTL for Windows and other Platforms . . 50

A.1.2 Obtaining and Installing NTL for UNIX 50

A.1.3 Installing on Dev C++ . 50

A.2 Files Explanation . 51

B Prime Lists and Results Output 52

B.1 Prime Lists . 52

B.1.1 A List of prime for Fig 6.1, 6.2 and 6.3. 52

B.1.2 A List of prime for Fig 6.4, 6.5, 6.6, 6.7 52

B.1.3 A List of prime for Fig 6.8 . 53

B.2 Results Output . 54

B.2.1 Output results for Table 6.7 . 54

B.2.2 Output results for actual time taken clocks per second for Fig 6.1,
6.2 and 6.3. 55

B.2.3 Output results for Fig. 6.1 . 55

B.2.4 Output results for Fig. 6.2 . 56

B.2.5 Output results for Fig. 6.3 . 57

B.2.6 Output results for Fig. 6.4 . 59

B.2.7 Output results for Fig. 6.5 . 60

B.2.8 Output results for Fig. 6.6 . 61

CONTENTS v

B.2.9 Output results for Fig. 6.7 . 62

B.2.10 Output results for Fig. 6.8 . 63

C Code 64

C.1 Program Listing . 64

C.1.1 AKS Original Algorithm . 64

C.1.2 Lenstra’s Modification of the AKS Algorithm 64

C.1.3 Testing Program . 65

C.2 The AKS Original Algorithm . 66

C.2.1 AKS.cpp . 66

C.2.2 PerfectPower.h . 68

C.2.3 Isprime.h . 69

C.2.4 Largestprime.h . 69

C.2.5 congruence.h . 69

C.3 Lenstra’s Modification of the AKS Algorithm 69

C.3.1 File: AKS Lenstra.cpp . 69

C.3.2 PerfectPower.h . 72

C.3.3 Euler.h . 72

C.3.4 Congruence.h . 72

List of Figures

vi

LIST OF FIGURES vii

List of Tables

viii

Acknowledgements

I would like to acknowledge Professor James Davenport, my supervisor, for providing me
with the idea of this project and many helpful suggestions through out the project. I would
also like to thank my parents and sisters for their encouragements. Addtionally thanks to
Victor Shoup, his great number theory library — NTL.

ix

Chapter 1

Introduction

In modern cryptography, prime numbers have played an important role. Difficulties in fac-
torizing a large number composed of two significantly large primes (RSA) or calculations of
logarithms over certain finite fields of a size p prime(Diffie-Hellman) ensure that the key is
computationally infeasible to compute without prior knowledge of the primenumbers used.
Therefore using an good primality testing algorithm to identify prime numbers is crucial
in cryptosystems.

In August 2002, three Indian researchers, Manindra Agrawal and his students Neeraj Kayal
and Nitin Saxena presented a remarkable algorithm called AKS algorithm in their paper
”Primes is in P.” It is the first deterministic primality testing algorithm in polynomial time.
Afterwards, many scientists did some improvements on AKS algorithm, one of the better
ones is proposed by Lenstra.

Because of the importance of prime numbers in cryptography, it is worth investigating the
AKS algorithm and its improvement algorithms. In this project, the above two algorithms
will be implemented. After that, we will compare them, estimate the required running time,
goes further to suggest some improvements on these algorithms and analyze the practicality
of these two algorithms.

1

Chapter 2

Literature Survey

2.1 Introduction

Prime numbers have played an important role in mathematics throughout history. They
form the basic building block for all positive integer numbers and therefore continuous re-
searches are carried on to investigate the behaviour of such numbers over time. Nowadays,
prime numbers are great understood and their applications are far more significant.

2.1.1 Number Theory and Algorithm Terminology

Firstly the algorithm terminology and some definitions in number theory will be presented
because they are essential and helpful for understanding prime numbers and their applica-
tions.

Prime and Composite Numbers

Definition 2.1 [1]: A prime number is an integer n greater than one with the property
that 1 and n are the only positive integers that divide n.

Definition 2.2 [2]: A composite number n is a positive integer n > 1 which is not prime.

Congruence

Definition 2.3 [3]: If two numbers a and b have the property that their difference a − b
is integrally divisible by a number m (i.e., a−b

m is an integer), then a and b| are said to be
congruent modulo m. The number is called the modulus, and the statement a is congruent
to b (modulo m) is written mathematically as

2

CHAPTER 2. LITERATURE SURVEY 3

a ≡ b (mod m).

If a− b is not integrally divisible by m , then we say a is not congruent to b (modulo m),
which is written

a 6≡ b (mod m).

Greatest Common Divisor

Definition 2.4 [4]: The greatest common divisor (GCD of two non-zero integers, is the
largest positive integer that divides both numbers without remainder.

A typical algorithm for calculating GCD of two integers is the Euclidean algorithm (?,
Section 4.5.2-4.5.3, pp.333-379): Given two natural number a and b, check if b is zero. If
yes, a is the gcd. If not, repeat the process using b and the remainder after integer division
of a by b (a mod b).

O-notation

Definition 2.5 [5]: O(g(n)) = {f(n) : there exist constants c > 0 and n0 > 0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0}. If f(n) ∈ O(g(n)), then we write: f(n) = O(g(n)).
Similarly, o(g(n)) = {f(n) : there exist constants c > 0 and n0 > 0 such that 0 ≤ f(n) <
cg(n) for all n ≥ n0}. If f(n) ∈ o(g(n)), then we write: f(n) = o(g(n)).
Another notation is Õ (read soft-O). f(n) = Õ(g(n)) is shorthand for f(n) = O(g(n)logkg(n))
for some k. Essentially, it is Big-O, ignoring logarithmic factors.

2.1.2 Historical Background for Prime Numbers

The study of prime numbers dates back to 300 BC, by that time an ancient Greek mathe-
matician called Euclid used the method of contradiction to prove that there were infinitely
many prime numbers. He also proved the fundamental theorem of arithmetic that is every
integer can be written as a product of primes in an essentially unique way.

In 200 BC, another Greek mathematician called Eratosthenes introduced an algorithm for
primality testing called the Sieve of Eratosthenes. His method [6] works like this, first take
a list of integer number from 2 to n, and then mark all the even numbers except two. Then
start with the next unmarked number, which in our case is three, mark all the numbers
which are multiplies of three, again except three itself. Continue in this way until there are
no new unmarked numbers. All the numbers remaining unmarked are prime numbers.

The prime numbers then went through a dark age until the 17th century Pierre Fermat put
a great effort into it. One of his greatest achievements is the Fermat’s Little Theorem which
states that for any prime p and any integer a, we have ap ≡ a mod p. Since then more and

CHAPTER 2. LITERATURE SURVEY 4

more important and famous proofs, results and properties related to prime numbers have
been established. Some further details are discussed at this webpage [7].

2.1.3 Algorithm Development

Most of the mathematicians who are interested in prime numbers have two challenges:

• To find the next largest prime number relative to current one.

• To provide a fast method or improve a current available one which determines whether
a given number is prime or composite.

This is due to the natural properties of prime numbers and the need of their widespread ap-
plications. The second problem is particularly important because the given number could
be any magnitude. Currently the largest known prime number is 224036583 − 1 which was
found by John Findley [8] in 2004. Therefore methods such as Sieve of Eratosthenes are
not efficient for large numbers since their complexity of time is exponential in terms of
the length of a large number. It is not feasible to determine an integer number of large
magnitude via these methods even based on the latest mainframe computers. Naturally,
a more efficient primality testing algorithm is urgently needed because of the important
role prime numbers play in modern cryptosystems. As a result, there has been a dramatic
increase in developing efficient primality testing algorithms since 1970s. Most of them are
based on the Fermat’s Little Theorem.1

In 1975, Pratt [9] has shown that a short certificate of primality always exists and hence
that primes are in non deterministic polynomial time, but while his method is constructive
it requires one to factor large integers and thus does not run in polynomial time. In 1976,
Miller [10] obtained a deterministic polynomial time algorithm for primality testing based
on the Extended Riemann Hypothesis (ERH). If this hypothesis is proved to be true, the
running time of this algorithm is O(log n)4. In 1977, Solovay and Strassen [11] devised
a randomized polynomial time algorithm using Fermat’s Little Theorem and quadratic
residues. In 1980, Rabin [12] modified Miller’s algorithm and obtained an unconditonal
randomized algorithm. The Miller-Rabin algorithm relies on an equality or set of equalities
that hold true for prime values, and then see whether or not they hold for a number that we
want to test for primality. The algorithm was able to correctly identify the composite num-
bers but had a probability which is less than 0.25 of error in identifying primes. In 1983, a
breakthrough for primality testing was achieved by Adleman, Pomerance and Rumely [13],
who gave a deterministic primality test that runs in (logn)c(log log log n) time which is very
close to the polynomial time. In 1986, Goldwasser and Kilian [14] proved that the majority
of the primes could be determined in randomized polynomial time and devised a randomized

———————————–
1See section 1.2

CHAPTER 2. LITERATURE SURVEY 5

algorithm based on elliptic curves. Later, Atkin and Morain[15] (1990,1993) devised a
method called Elliptic curve primality proving(ECPP). It stated that given any prime n of
length k, the algorithm outputs a certificate of correctness of size O(k2) which can be veri-
fied correct in O(k4) deterministic time. The running time of this algorithm is O((log n)6+ε)
for some ε > 0.

2.1.4 Primality Testing and Modern Cryptography

The origin of cryptography can be dated back to the time when human beings started to
communicate with each other. They need to find some ways to ensure the confidentiality of
their communications. The ancient Greeks were probably the first to use some techniques
to encrypt the information. They used a kind of club called scytale, consisting of a cylinder
with a strip of leather wound around it on which was written a message. Cryptography
was also used in the battlefield. For example, during the Second World War the British
decrypted the cryptographic machines that are used by Germany military and thereby ob-
tained the military information and took advantage of it. Cryptography has been brought
into a new era since the invention of computer.

However, the traditional cryptographic techniques can be easily decrypted by the powerful
computational ability of the modern computers. Therefore researches on cryptography are
concerning the mathematical ways in order to devise a cryptosystem which is difficult to
decrypt. In modern cryptography, prime numbers have played an important role. Diffi-
culties in factorizing a large number composed of two significantly large primes (RSA) or
calculations of logarithms over certain finite fields of a size p prime(Diffie-Hellman) ensure
that the key is computationally infeasible to compute without prior knowledge of the pri-
menumbers used. Therefore choosing an large prime numbers is crucial in cryptosystems.
Primality testing is a mathematical way of finding prime numbers. The faster it works, the
safer the cryptosystems are.

Cryptosystem

In general, there are two types of cryptosystems. One of them is called Private Key Cryp-
tosystem in which the same key is used in the process of encryption and decryption, such
as DES or AES cryptosystem. The other one is called Public Key Cryptosystem in which
a private key and a public key are used in the process of encryption and decryption, such
as RSA cryptosystem.

Generally speaking, private key cryptosystem is the traditional cryptosystem. This kind

CHAPTER 2. LITERATURE SURVEY 6

of system usually does not require a large mount of computation and the efficiency of key
generation is high because the length of the key is relatively short. However, if a message
encrypted in that way can be easily intercepted on the Internet, it then can be decrypted
by computers using an exhausted algorithm.

As a result, it requires a secure channel for the message transmission. Conversely, in pub-
lic key cryptosystem the keys they use are enough long to ensure the system cannot be
decrypted in a reasonable time. Moreover, the message transmitting on the Internet is
encrypted based on the receiver’s public key, even if the message has been intercepted by
other people, it is rather difficult for them to figure out what the private key is.

Nowadays protecting access to information for security reasons is a primary reason for using
cryptography.

Morover, cryptosystem is also used for identification and authentication of individuals due
to the growth of Internet. In this sense, public key cryptosystem is a sensible choice and
is widely used on the Internet. We will briefly talk about some examples of public key
cryptosystem in the following sections.

Deffie-Hellman Key Agreement Protocol

The Deffie-Hellman [16] key agreement protocol was published in 1976. In their system,
there are two public parameters p and g which can be used by all the users. p is a prime
number and g is an integer less than p. Then we have a property that for every integer
number between 1 and p-1 inclusive, such that n = gm mod p. Here n is the public value
and m is the private value.

Suppose Alice and Bob2 want to agree on a shared secret key. First Alice and Bob gener-
ate a private random integer value a and b respectively. Then they compute their public
value. Alice’s public value is ga mod p and Bob’s value is gb mod p. After they exchange
their public values, Alice computes (gb)a mod p and Bob computes (ga)b mod p. Because
gab = gba = k, Alice and Bob have a shared secret key k.

However, the Diffie-Hellman key exchange can be easily attacked if someone in the middle
of them can intercept their public keys and modify them with his/her own. This vulnera-
bility exists because the Diffie-Hellman key exchange does not authenticate the participants.

———————————–
2Commonly used placeholders for archetypal characters in cryptography.

CHAPTER 2. LITERATURE SURVEY 7

Despite that defect, Diffie and Hellman have introduced an important concept which is
called Trapdoor One-way Function. Basically One-way Function means that it is easy to
compute a function in one way but difficult in the inverse way. The Trapdoor One-way
Function itself is a kind of One-way Function and just as the name implies there is a trap-
door inside the function. It is easy to compute the function in the inverse way once we
know what the trapdoor is. This concept has drown a lot of attention by other people.

The R.S.A. Cryptosystem

Two years later after the publication of Diffie and Hellman, Rivest, Shamir and Adle-
man [17] from MIT used that concept and devised a safer algorithm which is called RSA
cryptosystem. Nowadays the RSA cryptosystem has been widely used for the Internet
e-commerce. Its core idea is the integer factorisation and it also uses lots of mathematical
theorems such as Euler’s Theorem and Fermat’s Little Theorem. It works as follow.

• Find two large primes p and q.

• Suppose n = pq, calculate the φ(n) = (p− 1)(q − 1)

• Find a number e which is relatively prime to φ(n), namely gcd(e, φ(n))=1

• Finally find a number d such that ed = 1 mod φ(n)

The enciphering and deciphering function are defined as follow.
Enciphering function:E(x) = xe mod N
Deciphering function:D(x) = xd mod N

Theoretically speaking, the encryption and decryption in RSA is not difficult. The key
thing to ensure the safety of the system is the integer factorization. Currently there are no
algorithms which can factorize N in a reasonable time for large enough p and q.

CHAPTER 2. LITERATURE SURVEY 8

2.2 The AKS Algorithm

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena [18] found a deterministic
primality testing algorithm in polynomial time which relies on no unproved assumptions.
This is called AKS algorithm after their names. This algorithm guarantees to determine
whether an input integer number is prime or not in the running time of O(log n)12.

2.2.1 Basic Idea

The AKS algorithm uses the following lemma which is a generalization of The Fermat’s
Little Theorem.
Lemma 2.1: Suppose a is coprime to n, then n is prime if and only if

(x− a)n ≡ xn − a(n). (2.11)

To prove it, consider the coefficient of xi in ((x−a)n−(xn−a)), which is (−1)i

(
n
i

)
an−i,

where 0 < i < n. Suppose n is prime then

(
n
i

)
= 0 (mod n) and hence all the coefficients

are zero.

An example to make it clearer, n = 7, a =1:
(x− a)n − (xn − a)
= −7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x
= 7[−x6 + 3x5 − 5x4 + 5x3 − 3x2 + x] = 0(mod 7). Therefore 7 is prime.

On the other hand, suppose n is not prime. It then has a prime factor q of n, the qth term
will be (n

q)K instead of (n)K where K denotes a cetain polynomial, hence the coefficient
of xq is not zero (mod n). Lemma 2.1 takes approximately n2 operations involving n terms
and it is not efficient for a polynomial time algorithm. To reduce the number of operations,
AKS algorithm reduces the number of terms by considering (2.11) modulo a polynomial of
the form xr -1 where r is chose to be small enough. In other words, we need to test if the
following equation is satisfied:

(x− a)n ≡ (xn − a)(xr − 1, n). (2.12)

It follows immediately that if for all primes n satisfy (2.11), it will automatically satisfy
(2.12) for all values of a and r. However if n is composite, (2.12) will also be satisfied
for some certain values of a and r. In other words, there exists some pairs(a, r) which will
return a false result by the algorithm. So it is necessary to repeatedly test the correctness of

CHAPTER 2. LITERATURE SURVEY 9

(2.12) for a suitable range of a’s. The AKS article stated that testing a from 1 to 2
√

rlogn
is sufficient.

2.2.2 Algorithm Overview

Below is algorithm taken from the original AKS article[27].

Input: Integer n > 1
1. if (n is of the form ab, b > 1) output COMPOSITE;
2. r = 2;
3. while(r < n){
4. if(gcd(n, r) 6= 1) output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of r − 1;
7. if (q ≥ 4

√
rlog(n)) ∧ (n

r−1
q 6≡ 1 (mod r))

8. break;
9. r ←− r + 1;
10. }
11. for a = 1 to 2

√
rlogn

12. if((x− a)n 6≡ (xn − a)(mod xr − 1, n)) output COMPOSITE;
13. output PRIME;

Figure 2.1: The original AKS Algorithm

All logarithms are to the base two throughout this dissertation.

A proof of correctness of the above algorithm is shown in the section 4 in the original AKS
article[13]. The AKS algorithm can be considered as a filter for composite numbers which
are detected at either at line 1, line 4 or line 12. Only prime numbers can reach line 13. The
aim of the while loop is to find the smallest useful r for a given number n. Lemma 4.2 in
the AKS original article [13] assures that a useful r are in the interval[c1(logn)6, c2(logn)6]
as long as n is sufficiently large. Thus the loop breaks at line 8 for no more than c2(logn)6

iterations once r reaches n. This ensures that the algorithm works in polynomial time.

Line 1 It detects composite numbers of the form ab, b > 1, where a and b are positive
integers.
Line 4 It detects composite numbers which have a smaller prime factor than the useful
prime3 r.
———————————–
3r is a useful prime when it satisfies (q ≥ 4

√
rlog(n)) and (n(r−1

q
) 6≡ 1 (mod r))

CHAPTER 2. LITERATURE SURVEY 10

Line 12 Composite numbers have not been detected above are detected here. This is the
main detection of the algorithm.

Overall Behaviour of the Algorithm

• If n is of the form ab, b > 1, then it returns composite at line 1.

• n is composite but not of the form ab or n is prime.

– A useful prime does not exist.

∗ n is composite. It returns composite at line 4.
∗ n is prime. The while loop iterated until r = n. The for loop iterates until

a = 2
√

rlogn. It returns prime at line 13.

– A useful prime exists.

∗ n is composite.
· n has a prime factor which is less than the smallest useful prime for n.

It returns COMPOSITE at line 4.
· n does not have a prime factor. The while loop finds a useful prime r

which is less than n and breaks at line 8.
It returns COMPOSITE at line 12.

∗ n is prime. The while loop finds a useful prime r which is less than n and
breaks at line 8. The for loop breaks when a = 2

√
rlogn.

It returns PRIME at line 13.

2.2.3 Complexity Time

The asymptotic time complexity of the algorithm is Õ((logn)12).
In the following, we analyse line by line to estimate the time complexity.

Line 1: if(n is of the form ab , b > 1) output COMPOSITE;
This is done by checking if there is an integer in the following sequence: n

1
2 , n

1
3 , ..., n

1

logn.
Therefore the asymptotic complexity time is O((logn)3).

Line 2: r = 2 The complexity time is constant.

Line 3 to 10 While(r < n){...}
Since r is in the range [c1(logn)6, c2(logn)6] by Lemma 4.2. So the number of iterations of
the while loop is O((log n)6).(2.31)

Line 4: if(gcd(n, r)6= 1) output COMPOSITE: poly(log n).(2.32)

Line 5: if(r is prime)

CHAPTER 2. LITERATURE SURVEY 11

Line 6: let q be the largest prime factor of r -1: r
1
2 poly(logn)(2.33)

Line 7: if (q ≥ 4
√

rlog(n))and(n
r−1

q 6≡ 1 (mod r))

Line 8: break;
Line 9: r ←− r +1;
poly(logn)(2.34)

From (2.31), (2.32), (2.33), (2.34), total complexity time for the while loop is
O((logn)6r

1
2 poly(logn)) = O((logn)9poly(logn)) [since r = O((logn)6)]

Line 11: for a = 1 to 2
√

rlogn
Line 12: if((x− a)n 6≡ (xn − a)(mod xr -1, n)) output COMPOSITE;

The for loop does modular computation over polynomials. Fast Fourier Multiplication can
be used then each iteration takes O(r(logn)2poly(log(r(logn)2))) steps.
So the complexity time is:
O(r(logn)2poly(log(r(logn)2r

1
2 logn)

=O(r
2
3 (logn)3poly(log(r(logn)2))

=O((logn)12poly(log(logn)8))
=O((logn)12poly(8loglogn))
=O((logn)12poly(12loglogn))
=O((logn)12poly(log(logn)12))
=Õ((logn)12)

We use the symbol Õ(t(n)) for O(t(n)poly(logt(n))k, where t(n) is any function of n. For
example, Õ(logn)k = O((logn)kpoly(loglogn)) = O(logn)k+ε for any ε > 0.

2.2.4 Improved Complexity and Sophie Germain Primes

There is has been a claim in AKS-paper [26]:

”inpractice, however, ouralgorithm is likely to work much faster.”

Their justification is as follows: The AKS-paper states the following lemma:
Lemma 2.1 Let P (n) denote the greatest prime divisor of n. There exist constants c > 0
and n0 such that for all x ≥ n0

| {p | p is prime, p ≤ x and P (p− 1) > x
2
3 |≥ c x

log x .

CHAPTER 2. LITERATURE SURVEY 12

An immediate corollary is there are many primes r such that P (r − 1) > r
2
3 .

This property is used in the proof of Lemma 2.1 which determines there is a suitable
r = O(log n)6. The value of r played a crucial role in determining the overall complexity
of the algorithm. So if a stronger condition can be proved then a smaller value of r can be
determined which will consequently reduce the running time of the algorithm.

Definition 2.6 Sophie Germain Prime
A prime r is said to be a Sophie Germain prime if 2r + 1 is also prime.

Conjecture 14

The number of Sophie Germain primes less than n is asymptotic to Dn
(log n)2

where D is the
twin constant (approximately 0.660161).

This conjecture is widely believed to be true. A direct consequence of the proof of is for
many primes r, P (r − 1) = r−1

2 . If this is the case then the authors of the AKS-algorithm
present a simple argument which shows a suitable r of size O((log n)2)can be found. This
is formalized as follows:

Lemma 2.1 Assuming the Sophie Germain conjecture (Conjecture 1) there exists suit-
able r in the range 64(log n)2 to a(log n)2 for all n > n0, where n0 and a are positive
constants.
Where a suitable r is one which satisfies conditions of (2.3) in section 2.2. A proof for the
Sophie Germain Conjecture therefore finds r = O((log n)2).

2.3 Modifications on the Original AKS Algorithm

”We will have to wait for efficient implementations of this algorithm (and hopefully clever
restatements of the painful for-loop) to see how it compares to the others for integers of a
few thousand digits. Until then, at least we have learned that there is a polynomial-time
algorithm for all integers that both is deterministic and relies on no unproved conjectures!”

Chris Caldwell[19]

———————————–
4Taken from Chapter 5 of [26]

CHAPTER 2. LITERATURE SURVEY 13

Since the advent of AKS algorithm, most of researches have been attempting to reduce the
complexity time of the algorithm. There are two major approaches which can achieve this:

• Working on restatement of the for loop to reduce the number of iterations.

• Finding more efficient ways to calculate the useful prime r.

2.3.1 Dan Bernstein and Lenstra’s Improvements

Soon after the publication of AKS paper, Lenstra [20] modified the AKS algorithm with
the observation made by C. Pomerance who observed that q need not to be the largest
prime divisor of r-1. The major difference is the construction of the useful prime r. This
modification reduces the number of iterations in the for loop. Hence the complexity time
is reduced to O(logn)6.

Input: Integer n ≥ 2
1. if (n is of the form ab, b > 1) output COMPOSITE;
2. r = 2;
3. while(r < n){
4. if(gcd(n, r) 6= 1) output COMPOSITE;
5. if or(n) > blog2(n)c
6. break;
7. r ←− r +1;
8. }
9. for a = 1 to φ(r)− 1
10. if((x− a)n 6≡ (xn − a)(mod xr − 1, n)) output COMPOSITE;
11. output PRIME;

Figure 2.2: The AKS Algorithm Modified by Lenstra

Where or(n) denotes the order of n mod r, to be the smallest number k ≥ 1 such that
ak ≡ 1 (mod r).

Daniel Bernstein interpreted the modification made by Lenstra in his paper[21] and made
his own improvements. His algorithm is listed below:

Input: Integer n > 1
1. if (n = ab for a ∈ N and b > 1) output COMPOSITE;
2. r = 2;
3. while(r < n){
4. if(gcd(n, r) 6= 1) output COMPOSITE;
5. if (r is prime)

CHAPTER 2. LITERATURE SURVEY 14

6. let q be the largest prime factor of r -1;

7. if

(
2q − 1

q

)
≥ 22b

√
rclogn and n

r−1
q ≤ 1

8. break;
9. r ←− r +1;
10. }
11. for a = 1 to 2

√
rlogn

12. if((x− a)n 6≡ (xn − a)(mod xr − 1, n)) output COMPOSITE;
13. output PRIME;

Figure 2.3: The AKS Algorithm Modified by D. Bernstein

This algorithm also modifies the way of constructing r and hence reduces the number of
iterations of the painful for-loop.

2.3.2 Other Remarkable Results

Felipe Voloch’s improvement [22]
He has shown that the group considered in chapter 4 of AKS paper is bigger than claimed.
As a result, a smaller range of a’s need to be checked in the line 12 Fig 2.1.

Qi Cheng [23]
The reduction in time complexity is achieved by first generalizing Berrizbeitia’s algorithm
to one which has higher density of easily-proved primes. For a general prime, one round
of ECPP is deployed to reduce its primality proof to the proof of a random easily proved
prime. The algorithm has a running time of O(logn)4.

Pedro Berrizbeitia [24]
Presenting a deterministic primality tests with running time of Õ(logn)6. For integers
n ≡ 1 (mod 4) such that for a given integer a, (a

n) = -1 and for integers n ≡ −1 (mod 4)
such that (a

n) = (1−a
n)=-1.

Dan Bernstein [25]
Generalising Berrizbeitia’s improvements and presents an algorithm that, for a given ieteger
n, finds and verifies the primality of n in random time (logn)4+o(1).

2.3.3 AKS Later Version

In the later version of AKS paper [26] the original algorithm has been improved based on
various modifications by other people. This version of algorithm which listed below elimi-
nates the while-loop and uses the idea of Lenstra for constructing r. Hence the complexity
time is reduced to Õ(logn)15/2.

CHAPTER 2. LITERATURE SURVEY 15

Input: integer n > 1.
1. If (n = ab for a ∈ N and b > 1), output COMPOSITE.
2. Find the smallest r such that or(n) > (logn)2.
3. If 1 < (a, n) < n for some a ≤ r, output COMPOSITE.
4. If n ≤ r, output PRIME.
5. For a = 1 to b

√
φ(r)lognc do

if ((x + a)n 6≡ xn + a (mod xr - 1, n)), output COMPOSITE;
6. Output PRIME.

Figure 3.1 : The AKS algorithm

2.4 Summary

This literature review has discussed subjects about AKS algorithm and its relevant ar-
eas that determine the scope of the project. It began with a brief introduction of prime
numbers and followed by some definitions in number theory and algorithm terminology,
because they are the basic knowledge for understanding what AKS algorithm is, what it is
for, why it is special and how it works. Next it was about the history of prime numbers
and suggested two main research areas on prime numbers. The most important area that
was identified with respect to this project is to find a faster algorithm or improve a current
available one which determines that a given number is whether prime or composite. It
was then followed by a brief description of primality testing algorithm development in the
last 30 years. The first section ended in a brief overview of the algorithm applications
—Cryptography.

It was then necessary to discuss the AKS algorithm in the second section. Firstly the basic
idea of this algorithm was presented and a brief proof of its correctness was given. Then
the algorithm was examined line by line to determine the overall behaviour of it, because it
is helpful for implementation in the later stage of the project. Furthermore the algorithm
was analysed line by line to estimate the time complexity which is O(logn)12. In the third
section some improvements on the original AKS algorithm was presented.

The result of this review is that it would be worthwhile to implement the AKS algorithm
and some improved algorithms in order to produce experimental data to support claims
made regarding complexity times. Hopefully during the project, I shall come up with some
further suggestions on improvements on these algorithms which will contribute to the field
of primality testing.

Chapter 3

Requirements

3.1 Overview of System

This document provides the requirements for a single-user application, which is to determine
whether an input number is prime or not. The requirements specification needs to be
addressed properly because they are the basis to the implementation of later stage.

3.2 Requirements Analysis

3.2.1 Evaluation of Previous Systems

The previous typical methods are Rabin-Miller’s method and Adleman, Pomerance and
Rumely’s algorithm. The rabin-miller’s method has a probability of error in identifying
primes so it is not guaranteed to output correct result. although the Adleman, Pomerance
and Rumely’s one are guaranteed to output correct result, they runs not in polynomial
time.

3.2.2 Core Functionality Use Cases

Use Case: input a Number
Primary Actor: Any user
Frequency: Always
Preconditions: N/A
Post conditions:User gets an answer.
Main Success Scenario: System outputs whether the given number is prime or compos-
ite.
Extensions and Variations:

16

CHAPTER 3. REQUIREMENTS 17

• User input valid

– if the input is a prime number, show user the result and time taken.

– if the input is a composte number, show user the result and time taken.

• User input invalid

– if the input is a non possitive number, error message displayed.

– if the input is not a number, fatal error, program terminates.

3.3 Functional Requirements Specification

3.3.1 Input Data

• The system should allow user to input data at run-time.

• The input data must only be a large positive integer which might comprise at least
20 decimal digits. Initially the requirements for the input numbers support up to 50
digits, currently I do not know how fast these algorithm works, it should be capable
to identify composite up to 50 digits in a reasonable time, but probably not true for
prime numbers, so the input numbers will be limited to 20 digits.

• The system should not allow user to input any illegal data.

3.3.2 Output Data

• The system should be able to output results correctly and effectively.

• The system should be able to display the output result and relevant information
concisely.

• The system should be able to store all the existing data.

3.3.3 Error Handling

Since the potential errors which will only occur when ask user for input numbers, the system
should then try to avoid all possible input error or handle them and give user proper error
message.

CHAPTER 3. REQUIREMENTS 18

3.4 System Requirements

Below are the general system requirements which will enhance the usability of our system.

• The program code should be simple, efficient and along with clear comments wherever
possible.

• The system must not include unnecessary functionality

3.5 Non-Functional requirements

• The platform for system should be Microsoft windows 95 or above or Unix.

• Minimum computer memory required 32mb and available disk size 500mb.

Chapter 4

Design

It is important that the design of the final program is carefully considered in order to ensure
the successful implementation of the algorithms. The main design is divided into several
aspects which are justification of the programming language used, usability of the program
and basic program structure.

4.1 Choosing Programming Language

The first choice was thought to be Java because it is the one I am familiar with. But
when I did some search on the Internet, I found a portable library called NTL is highly
recommended by others. Below is taken from Victor Shoup’s homepage [27].

”(Shoup’s) NTL (Number Theory Library) is a high-performance, portable C++ library
providing data structures and algorithms for manipulating signed, arbitrary length inte-
gers, and for vectors, matrices, and polynomials over the integers and over finite fields.”

NTL effectively deals with the manipulation of large integers, polynomial arithmetic and
modulo arithmetic. All of these provided by NTL will be required in the implementation
stage. So the program will be written using C++ because NTL is a C++ library.

4.2 Usability

As stated in the requirements chapter, Designing fancy user interfaces is not a priority of
this project. However it is important that the input and output to the user are designed
in a way to ensure the usability of the program.

19

CHAPTER 4. DESIGN 20

4.2.1 Input

The program should allow user to input data at run-time. This is essential because if the
program requires the input data to be explicitly stated in the source code then the user
will have to change the code of the program for each number to be tested. This is time
consuming and inappropriate because user will have to recompile the code and introduce
possibility of errors if the code is inadvertently changed.

Some algorithms such as the Sieve of Eratosthenes (Section 1.2) perform efficiently only
when providing small numbers. We have seen, especially in cryptographical areas, a good
useful algorithm should accept numbers of large magnitude. Furthermore in requirements
chapter, section 3.2.1 will be achieved with wider range of input numbers comprising of
at least 20 decimal digits (opposed to the 9 decimal digits of a standard int type). This
preliminary difficulty can be resolved by using NTL.

4.2.2 Output

Obtain a result is why users use the program, therefore the output is the most important
part of the program and should be clear, concise and convey the desired information to
the user. The output result should be stored to a file so that they can be recalled later
for the purpose of verifying the conclusions. Consideration also needs to be paid to the
information expected by the user from the algorithm. i.e. whether the input number is
prime or not? What are the useful prime r and the largest prime factor q to the input
number n?

4.2.3 Program Structure

The basic structure of our implementation has been mostly pre-determined because it is
based on the established AKS algorithm. On observation of the AKS algorithm (Fig 2.1) it
is obvious that the algorithm has clearly defined independent tests. From object oriented
view, it is natural to decide to write such tests in separate head files making the final code
easier and clear to read and modify. Writing the program in this way will also make our
testing easier.

The program will terminate under one of the following conditions and return type is spec-
ified.

• If the input n fails under any test then n is composite and 0 is returned.

• If the input n passes all tests then n is prime and 1 is returned.

CHAPTER 4. DESIGN 21

Line Number Tests Inputs Return Type
1 Perfect power check n 1/0
4 Is GCD (n, r)! = 1 n, r 1/0
5 Is r prime? r r + 1
6 Prime factor r − 1 1/0
7 Conditions on q - -

12 Evaluate 2.12 a, r, n 1/0

Table 4.1: Table showing program structure of the AKS algorithm. Line numbers refer to
Fig. 2.1

The same observations can be made for the modification of Lenstra and D.Bernstein.

Line Number Tests Inputs Return Type
1 Perfect power check n 1/0

2-8 Find r - -
9 Calculate Euler-Fun(r) r EF(r)

10 Evaluate 2.12 a, r, n 1/0

Table 4.2: Table showing program structure of the AKS algorithm modified by Lenstra.
Line numbers refer to Fig. 2.2

Chapter 5

Implementation and Testing

In the implementation stage, we will look how the program is going to be developed. Some
of the key tests mentioned in tables of the design stage will be discussed in the order they
occur in each of the three algorithms.

5.1 The AKS Algorithm

5.1.1 Perfect Power Check

If the input number n fails in this step then the program will terminate. This test is to
determine whether the input number n is a perfect power which means it checks if n can
take the form ab. Then the maximum value of b can take is log(n). Thus the problem can
be reduced to just determining whether there exists an a such that ab = n for all b between
2 to blog(n) c. Finally this can be converted to the algorithm below.

1. int root(p, b) /* Returns bp1/bc. */
2. a = 2bB(p)/bc; /* B(n) = number of bits in n. */
3. while(1) {
4. y = b((b− 1)x + p/ak−1)/bc;
5. if(y > a) return a;
6. a = y;
7. }
8. }

Figure 5.1: Algorithm to determine if n is perfect power.

This algorithm can be further optimized, e.g., there is no need to take the b-th power if
int root() returns an even value. However, the improvement can be ignored because the

22

CHAPTER 5. IMPLEMENTATION AND TESTING 23

time spent on this initial step of the AKS algorithm is negligible in practice.

5.1.2 The Certificate

The next stage of the algorithm (line 3 to 10 of figure 2.1) is to find a value of r which
satisfies (q ≥ 4

√
rlog(n)) and (n(r−1

q
) 6≡ 1 (mod r)).

Greatest Common Divisor

We get to this point if n is not a perfect power, but this does not mean that n does
not have other non-trivial factors such as coprimality. If n and r is not coprime, then n
is in fact composite so that the program will terminate at this point. The most common
way of checking the coprimality is to calculate the greatest common divisor of two integers.
Recall (1.1.3) the Euclidean algorithm is a good approach. However, tjhere is a predefined
way of calculating GCD for ZZ class (large integers) in Shoup’s NTL. Because there is al-
ready a method available and it has been developed to optimize the performance for large
numbers, we will take advantage of it.

Is r Prime?

Line 5 of Fig. 2.1 requires checking whether r is a prime number. Recall in section
2.2, Lemma 4.2 in AKS original article [18] assures that r exists in the range of less then
c2(logn)6 (where c2 is a constant). Therefore r is smaller enough so that we can apply an
unconditional deterministic primality test algorithm in non-polynomial time.

Input: Integer r ≥ 2
1.s= 2;
2.t= 4; (t=s2)
3. while (t <= r){
4. if r mod s = 0
5. then return r is composite.
6. else s = s + 1;
7. t = t + 2s - 1; (note t = s2)
8. }
9. return r is prime.

Figure 5.2: Algorithm to determine if r is prime or composite.

This algorithm is based on the result that r is composite if there is at least one divisor
r1 such that r1 <=

√
r. In order to ensure all values from 1 to r have been tested as

CHAPTER 5. IMPLEMENTATION AND TESTING 24

possible divisors of r, we define t = s2. We will implement this definition by addition and
subtraction to ensure better performance. If r is prime, we move to line 6 of Fig. 2.1,
otherwise the value of r will be increased and the algorithm will be repeated.

Largest Prime Factors

Line 6 of Fig. 2.1 requires a new variable q to be defined and assigned the value of the
largest prime factor of r-1. In other words, for an integer n >= 2, let q = lpf(r-1) denote
the largest prime factor of r-1, i.e., the number pk in the factorization

n = p1p2....pk

So the algorithm needs to derive pk and assign this value to q.

Input: Integer r − 1 ≥ 2
1.f= 1;
2.g= 2;
3.x = r - 1;
4.while (x 6= 1&

√
g <= r − 1) {

5. while (x mod g ≡ 0) {
6. else x = x/g;
7. f = g;
8. }
9. g = g + 1;
10. }
11. return f;

Figure 5.3: Algorithm to determine the largest prime factor of r - 1.

In this algorithm, we divide r − 1 by 2 to b
√

r − 1c for each inner loop and save the value
of g to f until x is equal to 1. Then we return f which is the value of q.

Conditions on q

The value of q has been set and we are ready to move to line 7 of Fig. 2.1 in which
additional conditions of q must be met in order to move forward. The first condition is
an inequality which can be written in the main program. The second condition is also
an inequality and requires modular arithmetic. For integer numbers which are less than 9
digits, the division operation is efficient enough to compute the corresponding remainder.
However this method becomes unequal to large numbers. Therefore, an efficient alternative

CHAPTER 5. IMPLEMENTATION AND TESTING 25

for modular arithmetic needs to be employed.

The Barrett method [28] uses division and shift operations to perform modular arithmetic.
The division he uses is different from naive division operation and hence less time consum-
ing. Crandall and Papadopoulos [29] introduced a better version of this method which is
an extension of the Barrett method for large numbers. In their method, only multiplication
and shifting is required.

The Final Congruence

We are now in the final stage to consider line 12 of Fig. 2.1 which is the most time
consuming part and surely needs necessary focus of optimization.

Arithmetic of two polynomials f and g can be calculated by reducing the problem to arith-
metic of large integers. The coefficients of each polynomial are combined in a single string
separated with a sufficient number of 0s in-between each value.

Binary Segmentation is a common method for efficiently multiplying large polynomials to-
gether. For example, to multiply two polynomials f = Σifix

i and g = Σigix
i each of degree

(r -1), one may forge two (typically large) integers:

F = 0...0fr−10...0fr−20......0f0,
G = 0...0gr−10...0gr−20......0g0

The integer product will appear as a set of coefficient cells with small zero-pads between
each coefficient. The zero padding prevents coefficient sums from spilling over and interfer-
ing with each other during the integer multiply. This reduction of a polynomial operation
to one involving large-integer arithmetic has various advantages such as: ease of imple-
mentation, software optimisation and true exploitation of reduced complexity for squaring.
On this last point, if f = g then we simply do a large-integer square F 2. Crandall and
Papadopoulos [29] have demonstrated that this method is even faster than Fast Fourier
Transform.

NTL Polynomial Classes

It has been shown that NTL has its own polynomial routines which are more efficient
than binary segmentation. The classes in NTL we used here are ZZX and ZZ pX, the for-
mer is polynomials with large integer coefficients and the latter is polynomials with large
integer coefficients mod p for some large integer p.

CHAPTER 5. IMPLEMENTATION AND TESTING 26

The left hand side of line 12 Fig. 2.1 is performed by using a routine from ZZ pX. It
calculates fnF where f and F in our context is x− a and xr − 1 respectively.

The right hand side cannot be performed directly. But there is a property of modular
arithmetic that we can use:
(F1 (x)+F2 (x)) mod G(x) = (F1 (x) mod G(x))+(F2 (x) mod G(x))

Letting F1(x) = x, xn mod xr − 1 can be determined using the same routine as above,
denote by F3(x). Then setting F1(x) = axr − 1 the right hand side can be determined as
F3(x)− F2(x).

5.2 AKS Algorithm - Lenstras Modification

The Lenstras modification is not completely different from the original AKS algorithm and
it also starts with perfect power check.

5.2.1 The Certificate

In the certificate stage of finding a suitable value of r, the coprimality test by calculating
GCD also remains the same as before. However, other conditions on r are mostly different
from the original AKS algorithm.

Line 5 of Fig. 2.2 requires that the order of the input number n mod r is greater than
blog2(n)c denoted by m. We want r to be as small as possible to increase the efficiency
of our algorithm. So we start with r of value 2, first ensure r is coprime to n and then
calculate nm mod r. In mod p arithmetic the order of any number is less than or equal to
p, so we will only continue the process if m ≤ r. otherwise m is set to its original value
and r is increased by 1. This process stops once a suitable r is found.

5.2.2 Euler-Phi Function

Lenstras modification requires φ(r)− 1 times of the final for loop where φ(r) is the Euler-
Phi function.

Euler’s totient function, φ(n), is defined as the number of natural numbers ≤ n which are
relatively prime to n. It is an extremely important function in number theory. For primes
p it is clear from the definition that φ(n) = p− 1. For powers of a prime it also easy to see

CHAPTER 5. IMPLEMENTATION AND TESTING 27

(use induction on n) that φ(pn) = pn−1(p− 1). Thus, e.g, φ(25) = 20. For all other values
phi can be computed by factoring n completely.
The remainder of the algorithm is identical to what we discussed for the original AKS
algorithm.

5.3 Testing

After the implementation, effective testing needs to be performed in order to make sure
the program performs correctly and meets the requirements.

Firstly, in order to test the system we need to compare it with initial requirements. The
testing of the system involves the analysis the system in order to validate that the system
meets its initial requirements. We mainly concern on testing systems functional require-
ments. This includes checking whether the design and the implementation meet the re-
quirements.

Secondly, We need to test if the algorithm works correctly. Black box testing will be used
instead of white box testing. Because black box testing is the functional technique of test-
ing where the tester does not need to know how a unit works but only what function(s) it
is supposed to perform. To test a part of the system using black box techniques only the
description of the functionality of that part of the system are needed. Apparently, there
are clear subdivisions of the algorithm in section 4.2.3. As a result, there are several places
where the input number can be possibly identified as a composite and this will lead to the
termination of the program. Furthermore, because these functions are independent to each
other, most of the testing can be done on each individual component. This can be achieved
by testing the each component with a wide range of numbers. Each test is deemed to be
successful if it produces the expected result. Moreover, some suspected parts will be tested
with certain inputs in order to make sure correct behaviors for all numbers.

Furthermore, the purpose our testing is not only verify the correctness of the algorithms
but also analyze their performance and complexity time. Black box and isolation testing
will be used. However this time we will focus on the output results, so timing analysis is an
important testing target. A number of testing program will be produced in order to ease
the testing.

After the validation of system requirements and individual component testing, we will start
to collect data and result produced by the program in the next chapter.

Chapter 6

Results

Firstly we validate the system by checking the design and implementation meet the initial
requirements, mainly the functional requirements. Secondly each individual component
will be tested and the complexity time of each algorithm will be measured.

6.1 Validation of Requirements

6.1.1 Input Data

The program is capable of manipulating large integer of any size and distinguishing illegal
input data.

6.1.2 Output Data

The programs output results and relevant information are correct and as expected. (See
below for further testing information) All the existing results and data are stored into files.

6.1.3 Error Handling

The program handles illegal input data as expected. Any non positive integer number will
be detected and error message will be displayed to ask user to input an correct number.
Any illegal data will lead to program termination.

28

CHAPTER 6. RESULTS 29

6.2 Individual Component Testing

In order to ensure our algorithms output the correct result, we need to make sure each
individual component test performs correctly.

6.2.1 The Correctness of Perfect Power Check

The following table proves the correctness of perfect power check test.The numbers are
intentionally selected in each different number of digits. Number denotes the number se-
lected. In the result column, 0 means the number is not a perfect power, otherwise result
of ab will be displayed.

Bits Number Result
1 4 22

1 7 0
5 42875 353

5 72355 0
10 1564031349 695

10 8812214355 0
15 582622237229761 241375692

15 987687645327744 0
20 266635235464391245607 64363433

20 43454657619840381796 0
25 333446267951815307088493 693439573

25 543565790912343654309875 0
31 1271991467017507741703714391419 5917

60 401007068543157803727680343536350900670553508041935397795649 91267310

Table 6.1: Table showing the correctness of perfect power check

Our test works correctly for all the numbers we test and the time spent are within a single
second. It appears that it should work for arbitrary long numbers.

6.2.2 The Correctness of Isprime Check

The numbers are intentionally selected in each different number of digits. Number denotes
the number selected. In the result column, 1 means the number is prime, 0 otherwise. Since
this test is used to check the primality of useful number r which is significantly smaller
than input number n, so we will test up to 10 digits.

CHAPTER 6. RESULTS 30

Bits Number Result Number Result
1 5 1 7 1
2 37 1 51 0
3 227 1 355 0
4 1850 0 2953 1
5 48821 1 81796 1
6 707280 0 814327 1
7 5721719 1 7467894 0
8 12324357 0 39323857 1
9 621652327 1 987678942 0

10 1450794557 1 9798822121 0

Table 6.2: Table showing the correctness of isprime check

The above table shows that the isprime test works correctly and the time spent are within
a single second.

6.2.3 The Correctness of largest prime number

The numbers are intentionally selected in each different number of digits. Number denotes
the number selected. Result denotes the largest prime factor of the input number.

Bits Number Result Number Result
1 5 5 9 3
2 36 3 51 17
3 121 11 355 71
4 5780 17 7744 11
5 54678 701 81796 13
6 707281 29 897654 89
7 1046529 31 5467893 20479
8 25563136 79 98654327 50411
9 405821025 79 987678942 49384471

10 4565765123 112799 9798822121 8999
11 23243549815 4648709963 42307964721 271
12 454657909123 41332537193 707678007696 6373
13 4062736078129 191 6789009812435 342965891
14 57148035975424 472477 78909845321237 11272835045891
15 104978036482641 2357 234543659210921 119995303
16 7095651301304721 228281 8909876545123254 68013871
17 13254618902157618 4391855169701 45611564418586881 101

Table 6.3: Table showing the correctness of largest prime factor

The above table shows that it calculates the largest prime factor of an input number

CHAPTER 6. RESULTS 31

correctly and quickly.

6.3 Useful r Testing

A test for investigating the properties of useful r is created and it is a reduce form of AKS
algorithm which can be found in the directory called ”Useful r test” in the accompanying
cd-rom.
Another test for investigating the properties of certificate r is created and it is a reduce
form of Lenstras modification to the AKS algorithm which can be found in the directory
called ”Lenstra certificate r” in the accompanying cd-rom.
A collection of primes from 1 bit to 18 bits were tested by the above two tests and the
results are in the following table. N denotes the input number, T denotes time taken in
seconds.

N AKS useful prime r T Lenstra’s certificate r T
5 5 0 2 0

37 37 0 13 0
977 977 0 41 0

2909 2909 1 56 0
11699 11699 1 90 0
11701 11699 2 84 0
86599 17327 3 128 0

123457 18443 3 128 0
2284423 28607 6 208 0

96447077 45083 13 336 0
484240567 53699 19 375 0

1307135101 58727 24 416 0
435465768733 96059 64 700 0

3435465768991 111263 87 805 0
65434218790277 134867 150 970 0

700000000000051 155699 250 1202 0
7000000000000037 177323 358 1331 0

10000000000000061 181199 322 1338 0
100000000000000003 204143 412 1569 1

Table 6.4: Table showing the usful r found for AKS and Lenstra’s modification

Two tests for investigating the properties of useful r is created. The AKS one can be found
in the directory called ”Useful r test” and the Lenstra’s one can be found in the directory
called ”Lenstra certificate r test” in the accompanying cd-rom. Both tests found r very
quickly, but Lenstra’s modification is much much more faster. On average the found r by

CHAPTER 6. RESULTS 32

Lenstra’s algorithm is about 130 times smaller than those found in AKS. The first useful
r found by AKS original algorithm is when input number n is 11701. The time taken by
both tests increases very slowly in terms of the bits of the input number n. Evidence has
also been produced which clearly shows r is an increasing function of the size of the input
n.

6.4 Complexity Measurement - AKS Algorithm

Firstly we will investigate what stated by Lemma 2.1 which is the Sophie Germain conjec-
ture (Conjecture 1) there exists suitable r in the range 64(log n)2 to a(log n)2 for all n > n0,
where n0 and a are positive constants. So there should be an constant C ≥ 64 such that
r = C(log n)2. A collection of primes from 1 bit to 18 bits was tested and the results are
in the following table. N denotes the input number and C denotes the constant.

N C
7 0.888

71 1.877
709 7.906

7103 43.393
11681 63.981
11689 64.015
71011 65.560

710009 64.060
7100003 64.378

70999997 64.106
700000001 64.270

7000000001 64.049
70000000033 64.108

700000000009 64.018
7000000000009 64.205

70000000000009 64.041
700000000000051 64.023

7000000000000037 64.002
10000000000000061 64.141

100000000000000003 64.011

Table 6.5: Table showing the value of C obtained by our test.

It is clear that the value of C has very little variance once it reaches 64. The first prime
which makes C bigger than 64 is 11689, and the next prime is 11699 which is last prime
that AKS algorithm cannot find a useful prime r. So we can conclude that once C reaches

CHAPTER 6. RESULTS 33

64, the AKS algorithm begins to find a useful prime r and reduce the complexity of the
final congruence. So we have verified that r = 64(log n)2 approximately.

6.4.1 Basic Testing

Now we just input a collection of numbers and see what results it will produce. In the
following three tables, number denotes the input number, P/C denotes the whether the
input number is prime or composite, C1 denotes the composite decided by perfect power
check, C2 denotes the composite decided by GCD, C3 denotes the composite decided by
the final congruence, r denotes the value of useful prime r if found and T denotes the time
spent in seconds.

Number P/C C1 C2 C3 r T
4 C

√
0

7 P 7 0
25 C

√
0

97 P 97 1
149 P 149 5
203 C

√
0

211 P 211 9
278 C

√
0

307 P 307 26
341 C

√
0

421 P 421 34
513 C

√
0

683 P 683 122
774 C

√
0

853 P 853 141
1134 C

√
0

1381 P 1381 490
1677 C

√
0

2131 P 2131 1339
3005 C

√
0

3389 P 3389 2110
4574 C

√
0

13314529 C
√

35879 132
47520727 C

√
41759 146

2111888059 C
√

61547 269
12471284621641824623 C

√
0

2138212141297461294612946927 C
√

0
12946981642961298461982461292352352 C

√
0

CHAPTER 6. RESULTS 34

Table 6.6: Table showing the basic test of AKS algorithm

The AKS algorithm runs very slows for detecting primes, it is because it has not find a
useful prime r while the for-loop makes up most of the running time in the whole process.
When the input number is bigger than 11699, it should start becoming efficient. Most the
composites were detected in the while-loop. The time taken for composite numbers which
were detected by C1 and C2 were within a single sec. Initially the composite numbers
which will be detected by C3 are thought to be very larger composites. However the test-
ing results has shown that only composite numbers which are constituted by multiplying
two large primes will be detected in the C3. For example 47520727 = 5413*8779. The time
of the while loop is very small and can be ignored. The number of stpes of the for loop is
estimated as follows:

• The number of iteration of the for loop : O(r
1
2 log n)

• Each iteration

– The number of the inside iteration for (x− a)n : O(log n)

– The number of multiplications of coefficients for LHS in one inside iteration :
O(r2)

– Each multiplication of coefficients : O(log n log log n)

• So the whole step is : O(r
5
2 (log n)3 log log n)

We have verified that r = 64(log n)2, so r
1
2 = log n. Hence the whole step is O((log n)8 log log n).

6.5 Complexity Measurement - Lenstra’s Modification

For the investigation into the complexity time of the Lenstra’s modification a collection
of numbers were tested and the results are shown in the following table. Number denotes
the input number, P/C denotes the whether the input number is prime or composite, C1
denotes the composite decided by perfect power check, C2 denotes the composite decided
by GCD, C3 denotes the composite decided by the final congruence, r denotes the found
certificate r, Euler denotes the Euler phi function at r and T denotes the time spent in
seconds. Any grid will be left blank if not appliable.

CHAPTER 6. RESULTS 35

Number P/C C1 C2 C3 r Euler T
7 P 2 1 0.001

17 P 4 2 0.001
125 C

√
0.001

149 P 30 8 0.04
2547 C

√
0

3137 P 64 32 0.6
10133 P 88 40 1.7
32561 P 112 48 2.2

160583 P 128 64 7.6
268069 P 154 60 13

1771561 C
√

0.001
2969023 P 208 96 40
7741009 P 238 96 33
9786539 C

√
0.001

12434839 P 256 128 72
86457079 P 342 108 97

100982933 P 336 96 61
879673117 P 412 204 176

2492813497 P 456 144 314
90552556447 C

√
640 256 3

435465768733 P 700 240 725
7000000000009 P 856 424 1895

10000000000037 P 876 288 1116
100000000000031 P 1024 512 3004
984060615693223 C

√
1176 336 10.5

Table 6.7: Table showing the basic test of AKS algorithm modified by Lenstra

The results were saved in AKS Lenstra Prime.doc and also can be found in Appendix B.
R. Crandalland J.Papadopoulos [29] showed the complexity time is C(log n)6, where C is
thought to be a logarithm constant. Ideally our implementation should get the same result.
To verify if it is true, we will compare (log n)6 with time taken in terms of the number of
instructions computed by CPU which is seconds * 106 clocks.

CHAPTER 6. RESULTS 36

Figure 6.1: Figure illustrating the relationship between the time taken in 106 clocks and
the expected complexity function (log n)6. The x-axis represents each n in the sequential
order they appear in Appendix B. The actual numberical results can be found in Appendix
B or in the file called ”Lenstra complexity Fig 6.1.doc”.

The diamond markers in Fig. 6.1 indicate the time taken by our program for each input
n. The horizontal lines indicate the value of (log n)6. From the figure we can clearly see
that (log n)6 provides an upper bound for the time taken to determine the primality of
n. however, as n getting bigger and bigger, the difference between time and (log n)6 also
increases. It seems there is still space for the improvement of the time complexity. In order
to find out if it is true, an testing program called ”Lenstra complexity” was written which
asks for an input number a which is the power to the log n, and it will output the value
of (log n)a and C (recall C = T/(log n)a). We will try different a less than 6 and estimate
what is the most suitable complexity time for Lenstra’s modification.

CHAPTER 6. RESULTS 37

Figure 6.2: Figure illustrating the relationship between time taken in 106 clocks and the
values of guessing complexity function (log n)a. The x-axis represents each n in the se-
quential order they appear in Appendix B. The actual numberical results can be found in
Appendix B or in the file called ”Lenstra complexity Fig 6.2.doc”.

The results in Fig. 6.2 indeed produce a good approximation to the logarithmic function.
In particular (log n)5.8 and (log n)5.7 appears to be better estimates. (log n)5.7 can be a
good lower bound for primes less than 10 digits. So it suggests that there must be a better
approximation between (log n)5.8 and (log n)5.7. After a series of trial by using the testing
program Lestra complexity, the results were shown in Fig 6.3.

CHAPTER 6. RESULTS 38

Figure 6.3: Figure illustrating the relationship between time taken in 106 clocks and the
values of guessing complexity function (log n)a. The x-axis represents each n in the se-
quential order they appear in Appendix B. The actual numberical results can be found in
Appendix B or in the file called ”Lenstra complexity Fig 6.3.doc”.

After careful observing the figure, we can conclude that for prime number less than 10
digits, the time complexity is C(log n)5.73. This is a big improvement on the previous time
complexity function with an exponent of 6. For primes more than 10 digits which is 11 -
15 in x-axis, we can see that the distances between complexity C(log n)a and actual time
taken increases as n getting bigger. So there must be a better complexity time for lager
primes.

Now we know T can be calculated by C(log n)6, if we knew how the value of C varies, we
could actually predict the running time of the input number. From the results produced
by Lenstra complexity testing program, the values of C are all positive number less than
1. On observation of Table 6.7, we can easily see that the value of C1 = φ(r)

r seems to be a
good approximation for C. A collection of primes which can be found in Appendix B was
tested, the results were shown in Fig 6.4.

CHAPTER 6. RESULTS 39

Figure 6.4: Figure illustrating the relationship between the actual value of C and first
estimated value C1.The x-axis represents each n in the sequential order they appear in Ap-
pendix B. The actual numberical results can be found in Appendix B or in the file called
”Lenstra complexity Fig 6.4.doc”.

Having observed the figure carefully, we can see our first estimation follows the shape of the
actual C for most of the points. However there are three values which are underestimated.
These are highlighted by rectangle in figure 6.4. Idealy an estimate should be an upper
bound for C, so there must exist a better estimation in terms of more r or φ(r). By a series
of experiments based on what we have got, the best estimation I found is φ(r)

(log log(φ(r)))r
denoted by C2. The new comparison is shown in Fig 6.5.

CHAPTER 6. RESULTS 40

Figure 6.5: Figure illustrating the relationship between the actual value of C and first
estimated value C2.The x-axis represents each n in the sequential order they appear in
Appendix B. The actual numberical results can be found in Appendix B.

Again the estimation C2 follows the shape of the actual C, however there is quite a long
distance between each pair of C2 and C. Multiplying by a value of 0.64 should provide a
good estimate C3 for C in this range. Figure 6.6 shows the result of this modification.

CHAPTER 6. RESULTS 41

Figure 6.6: Figure illustrating the relationship between the actual value of C and first
estimated value C3.The x-axis represents each n in the sequential order they appear in
Appendix B. The actual numberical results can be found in Appendix B.

Hence 0.65 * C2 provides a better and more accurate estimation for the actual value of C
for input numbers from 1 digits to 17 digits. however we cannot determine 0.65 is suitable
for larger primes. So we conclude that the complexity of Lenstras modification to the AKS
algorithm is

T = φ(r)
(log log(φ(r)))r (log n)6

6.5.1 Conjecture

In the analysis of Fig 6.3, a conjecture that the complexity time of Lenstra’s modification
improves as input number n increases was proposed. Now we also know that the complexity
time is dependent on useful certificate r. So in this stage, we will investigate the conjecture

CHAPTER 6. RESULTS 42

that the complexity time of Lenstra’s modification improves as r increases. We will proceed
with the relationship between n and r.

Figure 6.7: Figure illustrating the relationship between the time taken to determine the
primality of n (in seconds) and the corresponding certificate of primality r (in milliseconds,
note the value of r is multiplied by 105 to make the comparison clearer). The x-axis rep-
resents each n in the sequential order they appear in Appendix B. The actual numberical
results can be found in Appendix B.

From the figure, we can see that generally two graphs follow the same trend. Therefore
this result does support that the complexity time is closely related to r. If we want to
determine whether this result is true for all the input numbers, we need to test more larger
numbers. However the time taken for Lenstra’s modification to determine the primality of
a 40 digits or even 30 digits number is too long to wait. This problem can be overcomed
by investigating the behaviour of certificate r for larger primes. Then we can use the result
to predict the behaviour of time taken.

CHAPTER 6. RESULTS 43

Figure 6.8: Figure illustrating the time taken to determine the certificate of primality r (in
milliseconds). The x-axis represents each n in the sequential order they appear in Appendix
B. The actual numberical results can be found in Appendix B.

The testing numbers are large primes from 18 digits to 42 digits. From the figure we can
see that generally r stabilizes as n increases. In particular, the curve is very similar to
a logarithm curve with the exception of three values. Therefore the same can be said
regarding the time taken for all input number n. In conclusion the results we get indeed
support the conjecture we made.

CHAPTER 6. RESULTS 44

6.6 Summary

In this chapter, we have validated that our program indeed meet the initial requirements.
Testing results have shown that individual component such as perfect power check, is-
prime and largest prime factor works correctly and efficiently. Testing results also sup-
port the Sophie Germain conjecture and the first useful prime r found when input num-
ber is 11701. The complexity time of our implementation of AKS algorithm is actually
O((log n)8 log log n).

The result produced by Lenstra’s modification to the AKS algorithm has shown it performs
much faster than AKS original algorithm. The value certificate r found is about 130 times
smaller than those found in AKS. Testing results does support that T ∼ C(log n)6 provides
an good bound for complexity time of Lenstras modification. An argument which suggests
the value of r is an important factor in determining the complexity of the algorithm. Further
experiments and testing results have shown that a good approximation for C appears to
be φ(r)

(log log(φ(r)))r . Moreover, we have shown the behaviour of complexity time does closely
related to r. Hence as r does stabilize for larger primes up to 42 digits, it is possible to
define the complexity time of Lenstra’s modification to be O(log n)5.73.

Chapter 7

Conclusions

This project has produced both expected and surprising results based on the original ob-
jectives. Our program meets the initial requirements. Testing results suggests that the
complexity time of AKS algorithm is O((log n)8 log log n) instead of O(log n)12 based on
the unproved Sophie Germain Conjecture. This is done by firstly analyzing the complexity
time of finding an useful prime r and then estimate the complexity time of AKS algorithm
based on that.

Testing results does support that T ∼ C(log n)6 provides an good bound for complexity
time of Lenstras modification. Further experiments and testing results have shown that a
good approximation for C appears to be φ(r)

(log log(φ(r)))r . Finally we define the complexity
time of Lenstra’s modification to be O(log n)5.73.

Overall this project finishes smoothly, sticking to the project plan in most cases and al-
though the initial implementation is a little bit behind the schedule (mainly due to the
revision of the semester one exam) I made up the lost time and completed the project for
the deadline with a number of days spare. This was due to the sensible project scheduling
in which dissertation write-up was started earlier.

Addtionally, I also found literature survey is a very important part of the whole project.
That is where you accumulate your fundamental knowledge of the project. It is improtant
that you know what you are doing and how you are going to achieve it.

Moreover, although I was unfamiliar with C++ language before this project, it is quite
easy to get on with, probably because it is similar to C and JAVA.

Possible future works:

• Prove Sophie Germain Conjecture.

45

CHAPTER 7. CONCLUSIONS 46

• Is O(log n)5.73 indeed the complexity time of Lenstra’s modification of AKS algorithm
for all input n, or is there a better complexity time?

• Lenstra’s modification is still slow for very large primes, is there any new way to
replace the congruence check in the final for-loop to improve the efficiency.

• Add a user interface to the program.

• Using NTL with GMP. GMP is a library for long integer arithmetic. This will provide
all of the performance benefits of GMP. Also there is build-in function for perfect
power check. Using GMP will essentially improve the ifficiency of our implementation.

Bibliography

[1] D.R. Wilkins, 2005. Topics in Number Theory. [online] Available from: http://www.
maths.tcd.ie/~dwilkins/Courses/311/311NumTh.pdf [Accessed Nov 2006]

[2] Honsberger, R. More Mathematical Morsels. Washington, DC: Math. Assoc. Amer.,
pp. 19-20, 1991.

[3] Burton, D. M. ”The Theory of Congruences.” Ch. 4 in Elementary Number Theory,
4th ed. Boston, MA: Allyn and Bacon, pp. 80-105, 1989.

[4] Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, Third Edition. Addison-Wesley, (1997). ISBN 0-201-89684-2.

[5] Nicolai Vorobjov. Algorithms. Series of Lecture Notes presented University of Bath,
2006.

[6] Anon, 1995. The Sieve of Eratosthenes. [online] Available from: http://www.math.
utah.edu/classes/216/assignment-07.html [Accessed Nov 2006]

[7] O’Connor, J.J., and Robertson, E.F., Prime numbers. [online] Available from: http://
www-groups.dcs.st-and.ac.uk/~history/HistTopics/Prime_numbers.html [Ac-
cessed Nov 2006]

[8] Anon, 2004. The Biggest Number. [online] Available from: http://www.7880.com/
Info/Article-3d278480.html [Accessed Nov 2006]

[9] Pratt, V.R., ”Every prime has a succinct certificate”, SIAM.J Computing 4, (1975),
4:214-220.

[10] Miller, G.L., Riemann’s hypothesis and tests for primality, J. Computing. Sys. Sci.,
13:300–317, 1976.

[11] Solovay, R., Strassen, V., ”A Fast Monte-Carlo Test for Primality”, SIAM J. Comput-
ing 6, 84 (1977).

[12] Rabin, M.O., Probabilistic algorithm for testing primality, J. Number Theory, (1980),
12:128-138.

47

BIBLIOGRAPHY 48

[13] Adleman, L.M., Pomerance, C., Rumely, R.S., On distinguishing prime numbers from
composite numbers, Ann. Math., 117:173-206, (1983). MR0683806 (84e:10008)

[14] Goldwasser, S., Killian, J., symposium on theory of Almost all primes can be quickly
ACM computing, Associate for computing Machinery[C], New York : ACM Press,
(1986). pp.316-329

[15] Atkin, A.O.L, Morain, F., ”Elliptic curves and primality proving”, Math. Computation,
vol.61, pp.29-68, 1993.

[16] W. Diffie and M.E. Hellman., New directions in cryptography, IEEE Transactions on
Information Theory 22 (1976), 644-654.

[17] Rivest, R. L., Shamir, A., Adleman, L. A.: A method for obtaining digital signatures
and public-key cryptosystems; Communications of the ACM, Vol.21, Nr.2, (1978),
S.120-126.

[18] M. Agrawal, N. Kayal and N. Saxena, ‘PRIMES is in P’, Preprint , 2002, 1-
9.[online] Available from http://www.cse.iitk.ac.in/news/primality.pdf [Ac-
cessed November 2006]

[19] Chris Caldwell. Finding primes proving primality. [online] Available from: http:
//primes.utm.edu/prove/prove4_3.html [Accessed Nov 2006]

[20] Lenstra H. W. Jr. ”Primality Testing with Cyclotomic Rings.” Preprint. 14 Aug 2002.

[21] D Bernstein. Proving primality after Agrawal-Kayal-Saxena, 2002 [online] Available
from http://cr.yp.to/papers/aks.pdf [Accessed December 2006]

[22] J Voloch. Improvements to aks. [online] Available from: http://www.ma.utexas.edu/
users/voloch/Preprints/aks.pdf [Accessed November 2006]

[23] Q. Cheng, ”Primality proving via one round of ECPP and one iteration in AKS,”
Crypto 2003, Santa Barbara, (2003) [online] Available from http://www.cs.ou.edu/
%7Eqcheng/paper/aksimp.pdf [Accessed December 2006]

[24] Pedro Berrizbeitia. Sharpening “Primes is in P” for a large family of numbers. Journal:
Math. Comp. 74 (2005), 2043-2059

[25] D Bernstein. Proving Primality in Essentially Quartic Random Time, 2003
[online] Available from http://cr.yp.to/primetests/quartic-20060914-ams.pdf
[Accessed December 2006]

[26] Manindra Agrawal, Neeraj Kayal and Nitin Saxena. PRIMES is in P. Ann. of Math.
160, no. 2 (2004), 781-793

[27] VictorShoup. Victor shoup’s homepage-ntl. [online] Available from http://swww.
houp.net/ntl [Accessed Jan 2007]

BIBLIOGRAPHY 49

[28] P. Barrett. Implementing the Rivest, Shamir and Adleman public-key encryption al-
gorithm on a standard digital signal processor, Advances in Cryptology: CRYPTO’86
(A. M. Odlyzko ed.), LCNS 263, Springer-Verlag, pp. 311-323, 1987

[29] R. Crandall and J. Papadopoulos. On the implementation of aks-class primality
tests. March 2003 [online] Available from: http://images.apple.com/acg/pdf/
aks3.pdf[Accessed Feb 2007]

Appendix A

User Documentation

A.1 NTL instruction

TNL is a number theory library used through out the the program. Before compling the
program, you must first download, install and configure NTL.

A.1.1 Obtaining and Installing NTL for Windows and other Platforms

Full instruction can be found in http://shoup.net/ntl/doc/tour-win.html

A.1.2 Obtaining and Installing NTL for UNIX

Full instruction can be found in http://shoup.net/ntl/doc/tour-unix.html

A.1.3 Installing on Dev C++

1: Download the Dev C++ 4.9.9.2 on the website.
2: Create a new project called libntl (choose static library). And save in a specific directory.
3: click Tools → Compiler Options → select Directories → select C++ Includes → browse
your downloaded WinNTL-5_4\include → click add → click ok.
4: compile → copy the libntl.a file to the Dev-Cpp\lib folder
5: click Tools → Compiler Options → tick ”Add these commands to the linker command
line” → type in ”-lntl”.

50

APPENDIX A. USER DOCUMENTATION 51

A.2 Files Explanation

There are three directories in the root directory of the cd-rom. Directory ”Code” contains
final code of two algorithms and testing program. Directory ”Testing Results” contains
some testing outputs, full testing results can be found in Appendix B. Directory ”Directly
Open In MS VC++ 6.0” contain final code and other files generated by Microsoft Visual
C++, these projects can be directly open once you put these directories into your own
computer (note cannot directly open in cd-rom). In the directory there is a file called
”WINMM.LIB” which is a multimedia library for measuring time in milliseconds. Some of
C++ compilers have already include this resource file, if not, include this file exactly the
same way as ”NTL.lib”.

Appendix B

Prime Lists and Results Output

B.1 Prime Lists

B.1.1 A List of prime for Fig 6.1, 6.2 and 6.3.

1. 10133
2. 32561
3. 160583
4. 268069
5. 2969023
6. 7741009
7. 12434839
8. 86457079
9. 100982933
10. 879673117
11. 2492813497
12. 435465768733
13. 7000000000009
14. 10000000000037
15. 100000000000031

B.1.2 A List of prime for Fig 6.4, 6.5, 6.6, 6.7

1. 88903
2. 99397
3. 107339
4. 777619

52

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 53

5. 1000099
6. 4740623
7. 26933611
8. 10012333
9. 100041703
10. 103736293
11. 1001772091
12. 2958347047
13. 10015571677
14. 44426255143
15. 100020817331
16. 333267326767
17. 1000528294943
18. 3222583708567
19. 10083087720779
20. 35466059872651
21. 112272535095293
22. 281702565146179
23. 1003026954441971
24. 4467165232203397
25. 10022390619214807

B.1.3 A List of prime for Fig 6.8

1. 100055128505716009
2. 1083717775299973771
3. 29546363270378697007
4. 326070784035774767971
5. 4973004941902396102727
6. 51005856776120585677103
7. 614783152143098270145397
8. 7666569009190249923345281
9. 86084043198752959566539209
10. 912613825844053990694091143
11. 1000474617637553175973957663
12. 20476096752860587951845236929
13. 387121083116233373653498534849
14. 4313339400115792413779939218099
15. 53437079999999999999999994656293
16. 617594269939999999993824057300601
17. 7433112517127371273712736384060023
18. 81156673714614395518740388458373409

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 54

19. 974002888812604462999840811965244329
20. 1040924570757777777777777673685320703
21. 27491090500860000000000002749109050087
22. 357035643600060000000000035703564360007
23. 4160277543663151111111110695083356744797
24. 55132856630488887841876472900339410613059
25. 689960931088884849033689023336009222695077

B.2 Results Output

B.2.1 Output results for Table 6.7

n=7 r=2 Euler(2) =1 n is prime Time Taken=0

n=17 r=4 Euler(4) =2 n is prime Time Taken=0

n=125 125 is a perfect power, hence is not prime. Time Taken=1 milliseconds

n=149 r=30 Euler(30) =8 n is prime Time Taken=0

n=2547 2547 is composite. 3 is a divisor. Time Taken=0 milliseconds

n=3137 r=64 Euler(64) =32 n is prime Time Taken=1

n=10133 r=88 Euler(88) =40 n is prime Time Taken=2

n=32561 r=112 Euler(112) =48 n is prime Time Taken=3

n=160583 r=128 Euler(128) =64 n is prime Time Taken=9

n=268069 r=154 Euler(154) =60 n is prime Time Taken=14

n=1771561 1771561 is a perfect power, hence is not prime. Time Taken=0 milliseconds

n=2969023 r=208 Euler(208) =96 n is prime Time Taken=40

n=7741009 r=238 Euler(238) =96 n is prime Time Taken=33

n=9786539 9786539 is composite. 7 is a divisor

n=12434839 r=256 Euler(256) =128 n is prime Time Taken=72

n=86457079 r=342 Euler(342) =108 n is prime Time Taken=97

n=100982933 r=336 Euler(336) =96 n is prime Time Taken=61

n=879673117 r=412 Euler(412) =204 n is prime Time Taken=176

n=2492813497 r=456 Euler(456) =144 n is prime Time Taken=314

n=90552556447 r=640 Euler(640) =256 the a which fails is 1. n is not prime. Time
Taken=2988 milliseconds

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 55

n=435465768733 r=700 Euler(700) =240 n is prime Time Taken=725

n=7000000000009 r=856 Euler(856) =424 n is prime Time Taken=1895

n=10000000000037 r=876 Euler(876) =288 n is prime Time Taken=1116

n=100000000000031 r=1024 Euler(1024) =512 n is prime Time Taken=3004

n=984060615693223 r=1176 Euler(1176) =336 the a which fails is 1. n is not prime. Time
Taken=10525 milliseconds

B.2.2 Output results for actual time taken clocks per second for Fig 6.1,
6.2 and 6.3.

1. 10133 T: 2000000
2. 32561 T: 3000000
3. 160583 T: 9000000
4. 268069 T: 14000000
5. 2969023 T: 40000000
6. 7741009 T: 33000000
7. 12434839 T: 72000000
8. 86457079 T: 97000000
9. 100982933 T: 61000000
10. 879673117 T: 176000000
11. 2492813497 T: 314000000
12. 435465768733 T: 725000000
13. 7000000000009 T: 1895000000
14. 10000000000037 T: 1116000000
15. 100000000000031 T: 3004000000

B.2.3 Output results for Fig. 6.1

D = (log n)6

C =0.3602411828 D =5551836.09
C =0.264339716 D =11349032.39
C =0.3365321355 D =26743359.85
C =0.4072201489 D =34379438.34
C =0.4048000451 D =98814218.24
C =0.2297798994 D =143615695.2
C =0.4201543753 D =171365584.3
C =0.288773652 D =335903221.6
C =0.1726097242 D =353398398

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 56

C =0.2557919932 D =688059066.1
C =0.3394211837 D =925104310.2
C =0.2170265793 D =3340604650
C =0.3139375815 D =6036231760
C =0.1720531843 D =6486366436
C =0.2968864306 D =10118347250

B.2.4 Output results for Fig. 6.2

D = (log n)5.9

C =0.466660065 D =4285774.914
C =0.3465333734 D =8657174.835
C =0.4475210563 D =20110785.57
C =0.5437937829 D =25745053.44
C =0.5501581398 D =72706367.7
C =0.3142428464 D =105014323.7
C =0.5762898234 D =124937135.9
C =0.4005540569 D =242164567.6
C =0.2396273223 D =254561956.5
C =0.3590713117 D =490153332.4
C =0.4788234984 D =655773998.2
C =0.3127831459 D =2317899828
C =0.4569367341 D =4147182440
C =0.2507240953 D =4451107895
C =0.4358551427 D =6892198131

D = (log n)5.8

C =0.6045161593 D =3308430.998
C =0.454284285 D =6603794.361
C =0.5951143286 D =15123144.52
C =0.7261715292 D =19279191.54
C =0.7477123148 D =53496510.9
C =0.4297528496 D =76788321.55
C =0.7904474643 D =91087647.51
C =0.5556031562 D =174585041.3
C =0.3326652301 D =183367525.3
C =0.5040509878 D =349171024.9
C =0.6754791795 D =464855186.6

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 57

C =0.4507894685 D =1608289569
C =0.6650722669 D =2849314419
C =0.3653670939 D =3054462262
C =0.6398733181 D =4694679267

D = (log n)5.7

C =0.7830963355 D =2553964.192
C =0.5955392105 D =5037451.686
C =0.7913841352 D =11372479.68
C =0.969715187 D =14437228.77
C =1.01620546 D =39362118.75
C =0.5877222467 D =56148972.04
C =1.084189185 D =66409074.18
C =0.7706696809 D =125864559.6
C =0.4618261149 D =132084345.2
C =0.7075680793 D =248739315.9
C =0.9529025275 D =329519537.3
C =0.6496870039 D =1115921968
C =0.9680139223 D =1957616473
C =0.532430332 D =2096048878
C =0.9393897721 D =3197820638

B.2.5 Output results for Fig. 6.3

D = (log n)5.75

C =0.688036619 D =2906822.028
C =0.5201385435 D =5767694.083
C =0.686268197 D =13114406.35
C =0.8391540742 D =16683467.83
C =0.8716819013 D =45888299.32
C =0.502568712 D =65662663.06
C =0.9257400239 D =77775615.33
C =0.6543596161 D =148236531.7
C =0.3919610832 D =155627695.2
C =0.5972021344 D =294707587
C =0.8022878644 D =391380717.5
C =0.5411765508 D =1339673714
C =0.8023709951 D =2361750377

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 58

C =0.4410584123 D =2530277099
C =0.7753002324 D =3874628014

D = (log n)5.73

C =0.7245911219 D =2760177.346
C =0.5490799263 D =5463685.442
C =0.7265261656 D =12387716.27
C =0.8891247578 D =15745821.81
C =0.9268456734 D =43157130.84
C =0.5350398388 D =61677650.16
C =0.98613291 D =73012470.5
C =0.6986138686 D =138846370.5
C =0.4185401874 D =145744666.4
C =0.6391166086 D =275380106.9
C =0.859443884 D =365352533
C =0.5822172304 D =1245239684
C =0.8649236532 D =2190944823
C =0.475557222 D =2346720749
C =0.8371827659 D =3588224845

D = (log n)5.71

C =0.7630877187 D =2620930.662
C =0.5796316562 D =5175700.754
C =0.7691457532 D =11701293.24
C =0.9420711395 D =14860873.47
C =0.9855004459 D =40588515.38
C =0.5696089357 D =57934484.4
C =1.050465672 D =68541030.83
C =0.7458610302 D =130051036.4
C =0.4469216358 D =136489252.5
C =0.6839728391 D =257320159.4
C =0.9206717719 D =341055313.7
C =0.626370272 D =1157462339
C =0.9323529022 D =2032492199
C =0.5127544676 D =2176480305
C =0.904004609 D =3322991907

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 59

B.2.6 Output results for Fig. 6.4

Recall: Actual C is calculated by (Timetaken∗106)
(log n)6

. Estimated C1 is calculated by Euler(r)
r .

n = 88903 r = 128 Euler(128) = 64 n is prime Time Taken = 5 C1 =0.5 C = 0.253

n=99397 r=122 Euler(122) = 60 n is prime Time Taken = 5 C1 =0.49 C = 0.24

n=107339 r=128 Euler(128) = 64 n is prime Time Taken = 6 C1 =0.5 C = 0.28

n=777619 r=172 Euler(172) = 84 n is prime Time Taken = 17 C1 =0.49 C = 0.3

n=1000099 r=175 Euler(175) = 120 n is prime Time Taken = 26 C1 =0.69 C = 0.41

n=4740623 r=247 Euler(247) = 216 n is prime Time Taken = 61 C1 =0.87 C = 0.51

n=26933611 r=316 Euler(316) = 156 n is prime Time Taken = 96 C1 =0.49 C = 0.42

n=10012333 r=256 Euler(256) = 128 n is prime Time Taken = 37 C1 =0.5 C = 0.23

n=100041703 r=334 Euler(334) = 166 n is prime Time Taken = 103 C1 =0.5 C = 0.29

n=103736293 r=348 Euler(348) = 112 n is prime Time Taken = 78 C1 =0.32 C = 0.22

n=1001772091 r=418 Euler(418) = 180 n is prime Time Taken = 147 C1 =0.43 C = 0.21

n=2958347047 r=476 Euler(476) = 192 n is prime Time Taken = 245 C1 =0.4 C = 0.25

n=10015571677 r=551 Euler(551) = 504 n is prime Time Taken = 1288 C1 =0.91 C =
0.96

n=44426255143 r=588 Euler(588) = 168 n is prime Time Taken = 400 C1 =0.29 C = 0.2

n=100020817331 r=666 Euler(666) = 216 n is prime Time Taken = 623 C1 =0.32 C =
0.26

n=333267326767 r=686 Euler(686) = 294 n is prime Time Taken = 892 C1 =0.43 C =
0.28

n=1000528294943 r=736 Euler(736) = 352 n is prime Time Taken = 1026 C1 =0.48 C =
0.26

n=3222583708567 r=807 Euler(807) = 536 n is prime Time Taken = 1866 C1 =0.66 C =
0.36

n=10083087720779 r=868 Euler(868) = 360 n is prime Time Taken = 2076 C1 =0.41 C =
0.32

n=35466059872651 r=974 Euler(974) = 486 n is prime Time Taken = 3211 C1 =0.5 C =
0.39

n=112272535095293 r=1024 Euler(1024) = 512 n is prime Time Taken = 3200 C1 =0.5 C
= 0.31

n=281702565146179 r=1112 Euler(1112) = 552 n is prime Time Taken = 8929 C1 =0.5 C

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 60

= 0.73

n=1003026954441971 r=1176 Euler(1176) = 336 n is prime Time Taken = 5042 C1 =0.29
C = 0.33

n=4467165232203397 r=1356 Euler(1356) = 448 n is prime Time Taken = 4902 C1 =0.33
C = 0.25

n=10022390619214807 r=1328 Euler(1328) = 656 n is prime Time Taken = 7209 C1 =0.49
C = 0.32

B.2.7 Output results for Fig. 6.5

n = 88903 C2 = 1.94 C = 0.25

n = 99397 C2 = 1.96 C = 0.24

n = 107339 C2 = 1.94 C = 0.28

n = 777619 C2 = 1.72 C = 0.3

n = 1000099 C2 = 2.15 C = 0.41

n = 4740623 C2 = 2.37 C = 0.51

n = 26933611 C2 = 1.45 C = 0.42

n = 10012333 C2 = 1.55 C = 0.23

n = 100041703 C2 = 1.43 C = 0.29

n = 103736293 C2 = 1.03 C = 0.22

n = 1001772091 C2 = 1.22 C = 0.21

n = 2958347047 C2 = 1.12 C = 0.25

n = 10015571677 C2 = 2.11 C = 0.96

n = 44426255143 C2 = 0.82 C = 0.2

n = 100020817331 C2 = 0.88 C = 0.26

n = 333267326767 C2 = 1.09 C = 0.28

n = 1000528294943 C2 = 1.18 C = 0.26

n = 3222583708567 C2 = 1.52 C = 0.36

n = 10083087720779 C2 = 1.02 C = 0.32

n = 35466059872651 C2 = 1.16 C = 0.39

n = 112272535095293 C2 = 1.16 C = 0.31

n = 281702565146179 C2 = 1.13 C = 0.73

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 61

n = 1003026954441971 C2 = 0.71 C = 0.33

n = 4467165232203397 C2 = 0.78 C = 0.25

n = 10022390619214807 C2 = 1.1 C = 0.32

B.2.8 Output results for Fig. 6.6

n = 88903 C3 = 1.26 C = 0.25

n = 99397 C3 = 1.27 C = 0.24

n = 107339 C3 = 1.26 C = 0.28

n = 777619 C3 = 1.12 C = 0.3

n = 1000099 C3 = 1.4 C = 0.41

n = 4740623 C3 = 1.54 C = 0.51

n = 26933611 C3 = 0.94 C = 0.42

n = 10012333 C3 = 1.00 C = 0.23

n = 100041703 C3 = 0.93 C = 0.29

n = 103736293 C3 = 0.67 C = 0.22

n = 1001772091 C3 = 0.79 C = 0.21

n = 2958347047 C3 = 0.73 C = 0.25

n = 10015571677 C3 = 1.37 C = 0.96

n = 44426255143 C3 = 0.53 C = 0.2

n = 100020817331 C3 = 0.57 C = 0.26

n = 333267326767 C3 = 0.71 C = 0.28

n = 1000528294943 C3 = 0.77 C = 0.26

n = 3222583708567 C3 = 0.99 C = 0.36

n = 10083087720779 C3 = 0.66 C = 0.32

n = 35466059872651 C3 = 0.75 C = 0.39

n = 112272535095293 C3 = 0.75 C = 0.31

n = 281702565146179 C3 = 0.73 C = 0.73

n = 1003026954441971 C3 = 0.46 C = 0.33

n = 4467165232203397 C3 = 0.51 C = 0.25

n = 10022390619214807 C3 = 0.72 C = 0.32

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 62

B.2.9 Output results for Fig. 6.7

n = 88903 Time Taken for n = 5 seconds Time Taken for r = 3 milliseconds

n = 99397 Time Taken for n = 5 seconds Time Taken for r = 4 milliseconds

n = 107339 Time Taken for n = 6 seconds Time Taken for r = 4 milliseconds

n = 777619 Time Taken for n = 17 seconds Time Taken for r = 5 milliseconds

n = 1000099 Time Taken for n = 26 seconds Time Taken for r = 5 milliseconds

n = 4740623 Time Taken for n = 61 seconds Time Taken for r = 10 milliseconds

n = 26933611 Time Taken for n = 96 seconds Time Taken for r = 14 milliseconds

n = 10012333 Time Taken for n = 37 seconds Time Taken for r = 8 milliseconds

n = 100041703 Time Taken for n = 103 seconds Time Taken for r = 11 milliseconds

n = 103736293 Time Taken for n = 78 seconds Time Taken for r = 14 milliseconds

n = 1001772091 Time Taken for n = 147 seconds Time Taken for r = 15 milliseconds

n = 2958347047 Time Taken for n = 245 seconds Time Taken for r = 20 milliseconds

n = 10015571677 Time Taken for n = 1288 seconds Time Taken for r = 17 milliseconds

n = 44426255143 Time Taken for n = 400 seconds Time Taken for r = 15 milliseconds

n = 100020817331 Time Taken for n = 623 seconds Time Taken for r = 30 milliseconds

n = 333267326767 Time Taken for n = 892 seconds Time Taken for r = 16 milliseconds

n = 1000528294943 Time Taken for n = 1026 seconds Time Taken for r = 17 milliseconds

n = 3222583708567 Time Taken for n = 1866 seconds Time Taken for r = 24 milliseconds

n = 10083087720779 Time Taken for n = 2076 seconds Time Taken for r = 28 milliseconds

n = 35466059872651 Time Taken for n = 3211 seconds Time Taken for r = 23 milliseconds

n = 112272535095293 Time Taken for n = 3200 seconds Time Taken for r = 24 milliseconds

n = 281702565146179 Time Taken for n = 8929 seconds Time Taken for r = 31 milliseconds

n = 1003026954441971 Time Taken for n = 5042 seconds Time Taken for r = 32 millisec-
onds

n = 4467165232203397 Time Taken for n = 4902 seconds Time Taken for r = 78 millisec-
onds

n = 10022390619214807 Time Taken for n = 7209seconds Time Taken for r = 45 millisec-
onds

APPENDIX B. PRIME LISTS AND RESULTS OUTPUT 63

B.2.10 Output results for Fig. 6.8

n = 100055128505716009 Time Taken for r =33 milliseconds

n = 1083717775299973771 Time Taken for r =50 milliseconds

n = 29546363270378697007 Time Taken for r =75 milliseconds

n = 326070784035774767971 Time Taken for r =100 milliseconds

n = 4973004941902396102727 Time Taken for r =235 milliseconds

n = 51005856776120585677103 Time Taken for r = 75 milliseconds

n = 614783152143098270145397 Time Taken for r = 100 milliseconds

n = 7666569009190249923345281 Time Taken for r = 101 milliseconds

n = 86084043198752959566539209 Time Taken for r = 155 milliseconds

n = 912613825844053990694091143 Time Taken for r = 115 milliseconds

n = 1000474617637553175973957663 Time Taken for r = 280 milliseconds

n = 20476096752860587951845236929 Time Taken for r = 115 milliseconds

n = 387121083116233373653498534849 Time Taken for r = 280 milliseconds

n = 4313339400115792413779939218099 Time Taken for r = 280 milliseconds

n = 53437079999999999999999994656293 Time Taken for r = 225 milliseconds

n = 617594269939999999993824057300601 Time Taken for r = 320 milliseconds

n = 7433112517127371273712736384060023 Time Taken for r = 205 milliseconds

n = 81156673714614395518740388458373409 Time Taken for r = 170 milliseconds

n = 974002888812604462999840811965244329 Time Taken for r = 260 milliseconds

n = 1040924570757777777777777673685320703 Time Taken for r = 280 milliseconds

n = 27491090500860000000000002749109050087 Time Taken for r = 380 milliseconds

n = 357035643600060000000000035703564360007 Time Taken for r = 600 milliseconds

n = 4160277543663151111111110695083356744797 Time Taken for r = 360 milliseconds

n = 55132856630488887841876472900339410613059 Time Taken for r = 260 milliseconds

n = 689960931088884849033689023336009222695077 Time Taken for r = 410 milliseconds

Appendix C

Code

The following pages gives copies of the final code of AKS algorithm and Lenstra’s modifica-
tion. A full copy with testing program can also be found on the accompanying cd-rom. We
begin with the main C++ code for AKS algorithm with the necessary header files in the
subsequent subsections. The code for Lenstra modification are in the identical structure.

C.1 Program Listing

C.1.1 AKS Original Algorithm

AKS.cpp
Main source of the AKS original algorithm.

PerfectPower.h
This head contains the perfect power check function for AKS.cpp

Isprime.h
This head contains the isprime check function for AKS.cpp

Largestprime.h
This head contains the largest prime factor function for AKS.cpp

Congruence.h
This head contains the congruence check function in the final for-loop for AKS.cpp

C.1.2 Lenstra’s Modification of the AKS Algorithm

AKS Lenstra.cpp
Main source of the Lenstra’s modification of AKS algorithm

PerfectPower.h

64

APPENDIX C. CODE 65

This head contains the perfect power check function for AKS Lenstra.cpp

Euler.h
This head contains the Euler-Phi function for AKS Lenstra.cpp

Congruence.h
This head contains the congruence check function in the final for-loop for AKS Lenstra.cpp

C.1.3 Testing Program

Component test.cpp
Testing the correctness of perfect power check, isprime and largest prime factor functions.
Necessary head files: PerfectPower.h, Isprime.h and Largestprime.h.

Useful r test.cpp
Testing the vaule of useful prime r for AKS original algorithm. Necessary head files:
PerfectPower.h, Isprime.h and Largestprime.h.

useful r test Lenstra.cpp
Testing the vaule of useful prime r for Lenstra’s modification of AKS algorithm. Necessary
head files: Euler.h.

Lenstra complexity.cpp
Estimating the complexity time of Lenstra’s modification of AKS algorithm.

A
P

P
E

N
D

IX
C

.
C

O
D

E
66

C.2 The AKS Original Algorithm

C.2.1 AKS.cpp

#include ”math . h”
#include ” fst ream . h”
#include ” iost ream . h”
#include <s t d i o . h>
#include <windows . h>
#include <mmsystem . h>
#include <time . h>
#include <NTL/ZZ . h> // NTL Li b ra r i e s
#include <NTL/RR. h>
#include <NTL/ZZ p . h>
#include <NTL/ZZ pX . h>
#include <NTL/ZZX. h>
#include <NTL/vec ZZ . h>
#include ”PerfectPower . h” //Each Indepedent Test
#include ” Ispr ime . h”
#include ” l a r g e s tp r ime . h”
#include ”Congruence . h”
int main (int argc , char argv []) {

s t a r t :
ZZ n ;
n = 0 ;

cout << ”Enter a p o s i t i v e i n t e g e r number n you want to
be t e s t ed \n” ; c in >> n ;

i f (n<1){
cout << ” In t eg e r n needs to be p o s i t i v e \n\n” ;
goto s t a r t ;

}
else i f (n==1){

cout << ”1 i s n e i t h e r prime or composite .\n\n” ;
goto s t a r t ;

}
else i f (n==2){

cout << ”2 i s prime .\n\n” ;
goto s t a r t ;

}
else i f (n==3){

cout << ”3 i s prime .\n\n” ;

goto s t a r t ;
}

ofstream my f i l e (”AKS or ig ina l . doc” , i o s : : app) ; //
output r e s u l t in to f i l e

cout << ”n=” << n << ”\n” ;
my f i l e << ”n=” << n << ”\n” ;

// s t a r t t iming
DWORD sta r t , f i n i s h , durat ion ;
s t a r t = timeGetTime () ;
cout << ”CPU c l o ck s per second = ” << CLOCKS PER SEC ∗

1000 << ”\n” ;

int PP = per fec tpower (n) ;
// Check i f n i s a p e r f e c t power
// Returns 1 i f n i s a p e r f e c t power , 0 o therwi se

i f (PP==1){
my f i l e << n << ” i s a p e r f e c t power , hence i s not

prime\n\n” ;

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program
cout << ” Press ’1 ’ to t e s t a new number , ’ 0 ’ to e x i t

the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (0) ; //Exi t program
}

}
else {
// cont inue
}

A
P

P
E

N
D

IX
C

.
C

O
D

E
67

// Find a s u i t a b l e r
ZZ r = to ZZ (2) ;
while (r<n) {// l i n e 3 o f Fig 2.1

ZZ r1 = GCD(r , n) ;
i f (r1 != 1) { // l i n e 4 o f Fig 2.1

cout << ”n has f a c t o r s other than n and 1 , hence
i s composite \n\n” ;

my f i l e << n << ” i s composite .\n” ;
my f i l e << r1 << ” i s a d i v i s o r \n\n” ;

cout << r1 << ” i s a d i v i s o r \n\n” ;

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program
cout << ”Press ’1 ’ to t e s t a new number , ’ 0 ’ to

e x i t the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (0) ; //Exi t program
}

}

int prime = i spr ime (r) ; // l i n e 5 o f Fig 2.1
while (prime == 0) {
r = r +1;// increase r u n t i l i t becomes prime
prime = i spr ime (r) ;

}

ZZ q = la rg e s tp r ime (r−1) ; // l i n e 6 o f Fig 2 .1 , s e t
q to be l a r g e s t prime f a c t o r o f r−1

ZZ p : : i n i t (r) ; // mod r

double t1 = 4∗ s q r t (t o l ong (r)) ∗(l og (n) / log (2)) ;
// t e s t on l e s t hand s i d e in l i n e 7 o f Fig 2.1

ZZ t2 ;

t2 = power (n , t o l ong ((r−1)/q))%r ;
// t e s t on r i g h t hand s i d e in l i n e 7 o f Fig 2.1

i f (to doub le (q)>=t1 && t2 !=1){

break ; // l i n e 8 o f Fig 2 .1 , q s a t s i f i e s requ i red
condi t ions , s top wh i l e loop

}

else {
r=r+1; // l i n e 9 o f Fig 2.1

}
}

i f (r>n) {
r=n ;

}

cout << ” r=” << r << ”\n” ;

my f i l e << ” r=” << r << ”\n” ;

long a ; long b =
to l ong (2∗ s q r t (t o l ong (r)) ∗(l og (n) / log (2))) ;

for (a=1;a<=b ; a++){ // l i n e 11 o f Fig 2.1

int f = Congruence (a , n , to ZZ (r)) ; // l i n e 12 o f
Fig 2.1

//Returns 0 i f cond i t i on f a i l s , r e turns 1 i f
ho ld s

i f (f==0){

my f i l e << ”a f a i l s at ” << a << ”\n” ;
cout << ”a f a i l s at ” << a << ”\n” ;
//Line 12 f a i l s f o r an a , hence n i s

composite
my f i l e << ”Hence n i s not prime\n” ;

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
68

cout << ”Time Taken=” << durat ion << ”
m i l l i s e c ond s \n\n” ;

my f i l e << ”Time Taken=” << durat ion << ”
m i l l i s e c ond s \n\n” ;

my f i l e . c l o s e () ;
cout << n << ” i s not prime .\n\n” ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t

program

cout << ”Press ’1 ’ to t e s t a new number , ’ 0 ’ to
e x i t the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}

else i f (cho i c e == 0) {
return (0) ; //Exi t program

}
}

}

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
my f i l e << ”n i s prime\n” ; // l i n e 13 Fig 2.1
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;
cout << n << ” i s prime .\n\n” ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program
cout << ” Press ’1 ’ to t e s t a new number , ’ 0 ’ to e x i t

the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (1) ; //Exi t program
}

}

C.2.2 PerfectPower.h

#include <NTL/RR. h>
// func t ion to c a l c u l a t e i f n = aˆb
// take s input ZZ n and re turns 1 i f n i s a p e r f e c t

power ,0 o therwi se
int per f ec tpower (ZZ n) {

long b = 2 ;
RR k = to RR(log (n) / log (2)) ;

ZZ a ;
while (b <= to l ong (k)) {

//b cannot be b i g g e r than k

long c = to l ong (c e i l ((l og (n) / log (2)) / t o l ong (b))) ;
a = pow(2 , c) ; // assg in guess va lue f o r a

while (power (a , b)>n) {

double d=
to doub le (((b−1)∗a+n/power (a , (b−1))) /b) ; //Apply
In t ege r Newton ’ s Method

ZZ e = to ZZ (f l o o r (d)) ;
a = to l ong (e) ; // ad ju s t a
}

i f (n == power (a , b)) {
// i f n i s a p e r f e c t power .
cout << n <<” i s a p e r f e c t power , hence i s not

prime\n” ;
cout << ”n= aˆb\n” ;
cout << ”b=” << b << ”\n” ;

cout << ”a=” << a << ”\n\n” ;
return (1) ;

}
else {

b = b + 1 ;
}

}
i f (n != power (a , b)) {

return (0) ; //n i s not a p e r f e c t power .
}

}

A
P

P
E

N
D

IX
C

.
C

O
D

E
69

C.2.3 Isprime.h

//Function checks whether a g iven number i s prime
// re turns 1 i f i t i s prime , 0 o therwi se
int i sp r ime (ZZ n) {
ZZ s ;
ZZ t ;
t = 4 ;

for (s = 2 ; t<=n ; s++){

i f (n%s==0){ //n has f a c t o r s o ther than n and 1 ,
//hence i s composite .

return (0) ;
}

else {
t=t+2∗s−1;
}

}

return (1) ; //n i s prime no d i v i s o r o ther than n and 1
found

}

C.2.4 Largestprime.h

// c a l u l a t e s the l a r g e s t prime f a c t o r o f an input n
ZZ la rg e s tp r ime (ZZ n) {
ZZ f ; f =1;
ZZ r ; r =2;
ZZ x = n ;
while (x!=1 & sqr (r)<=n) {
while (x%r==0){
x=x/ r ;
f=r ;

}
r=r +1;

}
i f (x==1){

return (f) ;
}
else {

return (x) ;
}

}

C.2.5 congruence.h

// c a l c u l a t e s l i n e 10 o f Fig 2.2
int Congruence (long a , ZZ n , ZZ r) {

ZZ p : : i n i t (n) ; //mod n
ZZ pX b = ZZ pX(to l ong (r) , 1) −1; // b = xˆr−1;
ZZ pX c = ZZ pX(1 , 1)−a ; // c = x−a ;
ZZ pX f = PowerMod(c , n , b) ; // f=(x−a)ˆn mod c , n which

i s the RHS
ZZ pX e = ZZ pX(1 , 1) ;
ZZ pX g = PowerMod(e , n , b) ; // xˆn mod b , n
g = g − a ; // g1 = xˆn−a mod c , n .

i f (f==g) {

return (1) ; //n i s prime
}

else {

return (0) ; //n i s not prime .
}

}

C.3 Lenstra’s Modification of the AKS
Algorithm

C.3.1 File: AKS Lenstra.cpp

#include ”math . h” // standard l i b r a r i e s
#include ” fst ream . h”
#include <s t d i o . h>
#include <windows . h>
#include <mmsystem . h>
#include <time . h>
#include <NTL/ZZ . h> // NTL Li b ra r i e s
#include <NTL/ZZ p . h>
#include <NTL/ZZ pX . h>
#include <NTL/ZZX. h>
#include <NTL/vec ZZ . h>

A
P

P
E

N
D

IX
C

.
C

O
D

E
70

#include ”PerfectPower . h” //Each Indepedent Test
#include ”Euler . h”
#include ”Congruence . h”
int main (int argc , char∗ argv []) {

s t a r t :
ZZ n ;
n = 0 ;

cout << ”Enter a p o s i t i v e i n t e g e r number n you want to
be t e s t ed \n” ; c in >> n ;

i f (n<1){
cout << ” In t eg e r n needs to be p o s i t i v e \n\n” ;
goto s t a r t ;

}
else i f (n==1){

cout << ”1 i s n e i t h e r prime or composite .\n\n” ;
goto s t a r t ;

}
else i f (n==2){

cout << ”2 i s prime .\n\n” ;
goto s t a r t ;

}
else i f (n==3){

cout << ”3 i s prime .\n\n” ;
goto s t a r t ;

}
ofstream my f i l e (”AKS Lenstra . doc” , i o s : : app) ; //

output r e s u l t in to f i l e
cout << ”n=” << n << ”\n” ;
my f i l e << ”n=” << n << ”\n” ;

// s t a r t t iming
DWORD sta r t , f i n i s h , durat ion ;
s t a r t = timeGetTime () ;
cout << ”CPU c l o ck s per second = ” << CLOCKS PER SEC ∗

1000 << ”\n” ;

// Test i f n i s a p e r f e c t power
int PP = per fec tpower (n) ;
// re turns 1 i f n i s a p e r f e c t power ,0 o therwi se ;

i f (PP==1){
my f i l e << n << ” i s a p e r f e c t power , hence i s not

prime\n\n” ;

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program
cout << ” Press ’1 ’ to t e s t a new number , ’ 0 ’ to e x i t

the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (0) ; //Exi t program
}

}

// Find a s u i t a b l e r
ZZ r = to ZZ (2) ;
ZZ R;
ZZ r1 ;
while (r<n) { // l i n e 3 o f Fig 2.2

ZZ R = GCD(r , n) ;
i f (R != 1) { // l i n e 4 o f Fig 2.2

cout << ”n has f a c t o r s other than n and 1 , hence
i s composite \n\n” ;

my f i l e << n << ” i s composite .\n” ;
my f i l e << R << ” i s a d i v i s o r \n\n” ;

cout << R << ” i s a d i v i s o r \n\n” ;

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program

A
P

P
E

N
D

IX
C

.
C

O
D

E
71

cout << ”Press ’1 ’ to t e s t a new number , ’ 0 ’ to
e x i t the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (0) ; //Exi t program
}

}
else { // l i n e s 5 and 6 of Fig 2.2
ZZ v = to ZZ (f l o o r (power long (t o l ong (l og (n)) , 2))) ;
// order o f n mod r i s b i g g e r than v ;
int p = 0 ;
ZZ p : : i n i t (r) ; // c a l c u l a t e mod r
while (v<=r) {
ZZ x = to ZZ (power long (t o l ong (n) , t o l ong (v))) ;
// c a l u l a t e s x =nˆv

ZZ p z = to ZZ p (x) ;
i f (z==to ZZ p (1)) {

r1 = r ; // s t o r e va lue o f r ;
r = n+1;
break ;

}
else
v=v+1;

}
}

r=r +1; // l i n e 7 o f Fig 2.2
}
r = r1 ;

cout << ” r=” << r << ”\n” ;

my f i l e << ” r=” << r << ”\n” ;

// c a l u l a t e l i n e s 11−13 o f Fig 2.2

ZZ r2 = Euler (t o l ong (r)) ;

my f i l e <<”Euler (”<<r<<”) =” << r2 << ”\n” ;
cout <<”Euler (”<<r<<”) =” << r2 << ”\n” ;

long a ;
for (a=1; a<=to l ong (r2−1) ; ++a) { // l i n e 9 o f Fig 2.2

int f = Congruence (a , n , r) ;
// l i n e 10 o f Fig 2 .2 , re turns 1 i f cond i t i on holds , 0

o therwi se
i f (f==0){
f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ” the a which f a i l s i s ” << a << ”\n” ;
my f i l e << ” the a which f a i l s i s ” << a << ”\n” ;
my f i l e << ”n i s not prime\n” ;
// l i n e 12 f a i l s f o r p a r t i c u l a r a
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
cout << n << ” i s not prime .\n\n” ;
my f i l e . c l o s e () ;

int cho i c e ;
//Give user oppor tun i ty to cont inue or e x i t program
cout << ” Press ’1 ’ to t e s t a new number , ’ 0 ’ to

e x i t the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (0) ; //Exi t program
}

}
}

f i n i s h = timeGetTime () ;
durat ion = f i n i s h − s t a r t ;
cout << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e << ”n i s prime\n” ;
//n must be prime i f went through t h i s s tage , output

r e s u l t to f i l e .
my f i l e << ”Time Taken=” << durat ion << ”

m i l l i s e c ond s \n\n” ;
my f i l e . c l o s e () ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
72

cout << n << ” i s prime .\n\n” ;
int cho i c e ;

//Give user oppor tun i ty to cont inue or e x i t program
cout << ”Press ’1 ’ to t e s t a new number , ’ 0 ’ to

e x i t the program\n” ; c in >> cho i c e ;

i f (cho i c e == 1) {
goto s t a r t ;

}
else i f (cho i c e == 0) {

return (1) ; //Exi t program
}

}

C.3.2 PerfectPower.h

Same as Appendix C.1.2

C.3.3 Euler.h

//Euler ’ s phi func t i on
ZZ Euler (long r)
{

long eu = to l ong (1) , p ;

for (p = 2 ; p ∗ p <= r ; p += 2)
{

i f (r % p == 0)
{

eu ∗= p − 1 ;
r /= p ;
while (r % p == 0)

{
eu ∗= p ;
r /= p ;

}
}

i f (p == 2)
p−−;

}

ZZ eu1 = to ZZ (eu) ;
// now r i s prime or 1
i f (r == 1) {
return eu1 ;
}

else {
return eu1 ∗ (r − 1) ;
}

}

C.3.4 Congruence.h

Same as Appendix C.1.5

