Citation for published version:
El-Hamamsy, MHRI, Smith, AW, Thompson, AS \& Threadgill, MD 2007, 'Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis', Bioorganic and Medicinal Chemistry, vol. 15, no. 13, pp. 4552-4576. https://doi.org/10.1016/j.bmc.2007.04.011

DOI:
10.1016/j.bmc.2007.04.011

Publication date:
2007

Link to publication

University of Bath

[^0]
Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis

Mervat H. R. I. El-Hamamsy, ${ }^{\dagger}$ Anthony W. Smith, ${ }^{\dagger}$ Andrew S. Thompson and Michael D. Threadgill*

Department of Pharmacy \& Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
e-mail: m.d.threadgill@bath.ac.uk

Abstract

Tuberculosis is an increasing threat, owing to the spread of AIDS and to the development of resistance of the causative organism, Mycobacterium tuberculosis, to the currently available drugs. Dihydrofolate reductase (DHFR) is an important enzyme of the folate cycle; inhibition of DHFR inhibits growth and causes cell death. The crystal structure of M. tuberculosis DHFR revealed a glycerol tightly bound close to the binding site for the substrate dihydrofolate; this glycerol-binding motif is absent from the human enzyme. A series of pyrimidine-2,4-diamines was designed with a two-carbon tether between a glycerol-mimicking triol and the 6-position of the heterocycle; these compounds also carried aryl substituents at the 5-position. These, their diastereoisomers, analogues lacking two hydroxy groups and analogues lacking the two-carbon spacing linker were synthesised by acylation of the anions derived from phenylacetonitriles with ethyl (4S,5R)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, ethyl (4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, tetrahydrooxepin-2-one and 2,3-O-isopropylidene-D-erythronolactone, respectively, to give the corresponding α-acylphenylacetonitriles. Formation of the methyl enol ethers, condensation with guanidine and deprotection gave the pyrimidine-2,4-diamines. Preliminary assay of the abilities of these compounds to inhibit the growth of TB5 Saccharomyces cerevisiae carrying the DHFR genes from M. tuberculosis, human and yeast indicated that 5-phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine selectively inhibited M. tuberculosis DHFR and had little effect on the human or yeast enzymes.

[^1]
1
2

Figure 1. Structures of the DHFR substrate dihydrofolate 1 and the inhibitors methotrexate 2, pyrimethamine 3, DDMP / metoprine 4a, etoprine 4b, methylbenzoprim 5 and trimethoprim 6.

1. Introduction

Tuberculosis (TB) is responsible for the highest number of deaths of all infectious diseases. ${ }^{1}$ Rates of TB continue to rise, leading to an estimated eight million new cases every year and an annual death toll of two million. ${ }^{2}$ Several factors have contributed to this increase, such as the HIV pandemic. ${ }^{3}$ Current therapy (DOTS) consists of an initial phase with four drugs, isoniazid, rifampin, pyrazinamide and ethambutol daily for two months, followed by a continuation phase of treatment with isoniazid and rifampin thrice weekly for a further four months, and has a cure rate of up to 95%, given patient compliance. ${ }^{4}$ Poor patient compliance with this prolonged regimen, together with other factors, has led to the emergence of multidrug-resistant tuberculosis (MDR-TB), against which DOTS is relatively ineffective. ${ }^{5,6}$ In view of this, DOTS-Plus (DOTS plus second-line TB drugs) is now recommended for treating MDR-TB and TB in areas with high incidence of MDR-TB. ${ }^{4}$ However, DOTS-Plus is expensive, takes longer to administer and has significant side-effects. ${ }^{7}$

Dihydrofolate reductase (DHFR) is an important enzyme in the folate cycle ${ }^{8,9}$ which supplies one-carbon units derived from the action of serine hydroxymethyltransferase ${ }^{10,11}$ on L-serine for the biosynthesis of deoxythymidine monophosphate (dTMP). Inhibition of the folate cycle leads to interruption of the supply of thymidine and thus to inhibition of DNA biosynthesis and inhibition of proliferation of cells. Inhibition of proliferation is a useful goal in the therapy of cancer ${ }^{12}$ and of bacterial and protozoal infections. ${ }^{13}$ Highly potent inhibition of DHFR
has been achieved with analogues of the substrate, dihydrofolate 1 (Figure 1). Methotrexate 2 is a highly potent inhibitor of mammalian DHFR and mammalian tumour DHFR $\left(\mathrm{IC}_{50}=2.5\right.$ nM vs. rat liver DHFR) ${ }^{14}$ and is one of the most widely used anticancer antimetabolite drugs. It has $c a$. seven-fold selectivity for inhibition of human DHFR vs. M. tuberculosis DHFR. ${ }^{15}$

The biological activities of pyrimidine-2,4-diamines have shown that it is not necessary to have the full pteridinediamine structure. These "non-classical" inhibitors have advantages in that they are more lipophilic than 2 and can enter cells by passive diffusion, not requiring the folate carrier. Pyrimethamine 3 was developed over 50 years ago as a DHFR-inhibiting antimalarial drug; ${ }^{16}$ it has selectivity for inhibition of Plasmodium falciparum DHFR activity of $c a$. forty-fold vs. human DHFR. ${ }^{17}$ It is several orders of magnitude less potent than $\mathbf{2}$ against human DHFR. ${ }^{17-19}$ Sulphadoxine / pyrimethamine plus isoniazid has some utility as prophylaxis against tuberculosis in HIV-positive pateints ${ }^{20}$ but isoniazid itself has been implicated in inhibition of M. tuberculosis DHFR after metabolism. ${ }^{21}$ DDMP / metoprine 4a is a close analogue of 3 which shows a similar profile of inhibition of DHFRs, showing some activity as an antitumour agent in clinical trial. ${ }^{22}$ However, this compound is also a highly potent inhibitor of histamine N-methyltransferase, ${ }^{23,24}$ leading to neurological complications with its use. The 6-ethyl analogue etoprine $\mathbf{4 b}$ shows similar antileukaemic activity; ${ }^{25}$ its inhibition of testicular DHFR causes infertility in male rats. ${ }^{26}$ Methylbenzoprim 5 was designed as a non-classical DHFR inhibitor which lacks the full pteridine ring structure of methotrexate 2 but remains extremely potent against mammalian DHFRs (IC_{50} vs. rat liver DHFR 3.2 pM) with some antitumour activity. ${ }^{14}$ Interestingly, this compound is markedly less active against Pneumocystis carinii, Toxoplasma gondii and Escherichia coli DHFRs; ${ }^{14,18}$ these activities have been rationalised in a crystallographic and modelling study. ${ }^{18}$ Trimethoprim 6, in which the 5-aryl substituent is linked through a methylene bridge for increased flexibility, is often cited as an inhibitor of M. tuberculosis DHFR and other bacterial DHFRs, yet it is reported to lack potency ($\mathrm{IC}_{50} 16.5 \mu \mathrm{M}$) and to be only five-fold selective for inhibition of M. tuberculosis DHFR vs. the human enzyme. ${ }^{15}$ There is thus a great need for rationally designed selective inhibitors of M. tuberculosis DHFR for treatment of this widespread and often fatal disease.

2. Structure-based design

Several groups have pointed to structural differences between M. tuberculosis DHFR and human DHFR as possible opportunities for the design of selective inhibitors ${ }^{15,27-29}$ but few studies have exploited these differences successfully in rational drug design for $\mathrm{TB} .^{30} \mathrm{Da}$

Figure 2. Images of structures of DHFR from M. tuberculosis, with methotrexate 2 bound at the dihydrofolatebinding site. A: View of the structure of M. tuberculosis DHFR with 2 bound, showing the glycerol molecule bound close to the active site (crystal structure reported by Li et al. ${ }^{28}$) (glycerol and $\mathbf{2}$ are shown as rods and balls; DHFR is shown as a surface with blue cationic, red anionic and grey hydrophobic neutral). B: Proposed H-bonds from the bound glycerol to the residues surrounding the glycerol pocket (atoms within $3.9 \AA$ of the glycerol are shown as rods; other atoms and bonds are shown as wires).

Cunha et al. ${ }^{30}$ have suggested that addition of hydrophobic groups to 5 -deazapteridines should increase selectivity, based on six examples. Suling et al. ${ }^{31}$ have achieved >100-fold selectivity for inhibition of the M. avium DHFR vs. human DHFR using similar 5-methyl-5-deazapteridine-2,4-diamines but have not published results for M. tuberculosis DHFR. Thus the way is open for rational structure-based design of selective inhibitors of M. tuberculosis DHFR exploiting a major difference between human and M. tuberculosis enzyme structures.

Li et al. reported crystal structures of M. tuberculosis DHFR. One structure contains methotrexate 2 bound at the dihydrofolate-binding site and NADP^{+}at the NADP^{+}-binding site but also contains a glycerol tightly bound in an adjacent pocket where it forms H -bonds with Asp ${ }^{27}, \mathrm{Gln}^{28}$ and Leu ${ }^{24}$ (Figure 2A). ${ }^{28}$ This glycerol is also present in the structure of M. tuberculosis DHFR with the 1,3,5-triazine-2,4-diamine inhibitor Br-WR99210 bound but is absent from the crystal of M. tuberculosis DHFR containing 6, probably owing to the fact that the trimethoxyphenyl unit causes the trimethoprim to bind in a different manner, causing the Gln ${ }^{28}$ side-chain to be disordered. ${ }^{28}$ A more detailed examination of the environment of the glycerol reveals additional H-bonds (Figure 2B), as indicated by $\mathrm{O}-\mathrm{O}$ and $\mathrm{O}-\mathrm{N}$ distances and appropriate orientations. $\mathrm{O}(1)-\mathrm{H}$ makes a H -bond with the side-chain amide carbonyl oxygen of $\mathrm{Asp}^{27} ; \mathrm{O}(1)$ is also involved as an acceptor in a H -bond with the indole $\mathrm{N}-\mathrm{H}$ of

$\mathrm{R}=3 R, 4 \mathrm{~S}-3,4,5$-trihydroxypentyl, 3S,4S-3,4,5-trihydroxypentyl, 5-hydroxypentyl, 1S,2R-1,2,3trihydroxypropyl, $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$, Me
a: $R^{3}=R^{4}=H ; b: R^{3}=H, R^{4}=C l ;:^{3}=H, R^{4}=B r ; d: R^{3}=R^{4}=C l$.

Scheme 1. Structures of designed pyrimidine-2,4-diamines 7-12 and retrosynthetic analysis.
Trp^{22}. $\mathrm{O}(3)$ is also held in a two-H-bond clamp; $\mathrm{O}(3)-\mathrm{H}$ makes a H -bond with the carbonyl oxygen of Leu ${ }^{24}$ and is also an acceptor in a H -bond with the $\mathrm{N}-\mathrm{H}$ of the same amino-acid. $\mathrm{O}(2)$ accepts a single H -bond from the side-chain amide $\mathrm{N}-\mathrm{H}$ of Gln^{28}. The glycerol carbon chain is in hydrophobic contact with Leu ${ }^{20} .{ }^{28}$ In contrast, in the structures of human DHFR complexes containing dihydrofolate or 2 , this site is well packed with hydrophobic sidechains. ${ }^{32,33}$ Since this glycerol is clearly tightly and specifically bound in a fixed conformation close to $\mathrm{N}(8)$ of $\mathbf{2}$, we designed series of molecules in which contain a 1,2,3-triol joined to a head group which would mimic the binding of 2 deep in the dihydrofolate-binding pocket.

Since 3 is a weak inhibitor of M. avium DHFR activity ${ }^{34}$ and many other pyrimidine-2,4-diamines inhibit various DHFRs, we chose pyrimidine-2,4-diamine as the template to which to attach the linker from the triol. Compounds 7 (Scheme 1) were designed directly from modelling the orientation of the glycerol and overlay of the pyrimidine-2,4-diamine unit with the diaminopteridine of $\mathbf{2}$. This overlay suggested that a two-carbon linker $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$ would be optimum to join the triol to the pyrimidine 6-position; it also showed the need for R configuration at the $\mathrm{C}(3)$ secondary alcohol of the 3,4,5-trihydroxypentyl side-chain (mimicking glycerol $\mathrm{O}(1)$) and S configuration at the $\mathrm{C}(4)$ secondary alcohol (mimicking glycerol $\mathrm{O}(2)$), as in 7. The diastereomeric series $\mathbf{8}$ is S at $\mathrm{C}(3)$; this series tests the validity of the drug design, since the linker length is the same as in 7 but the orientation of the triol relative to the
pyrimidine-diamine should not be apposite for binding. In 9, the secondary alcohols are missing, leaving only the primary alcohol of the 6-(5-hydroxypentyl) group to mimic $\mathrm{O}(3)$ of the glycerol and H -bond to Leu^{24} in the glycerol-binding pocket, losing the ability to H -bond to Trp^{22}, Asp^{27} and Gln^{28}, but retaining possible hydrophobic interactions with Leu^{20}. The length of the linker between the triol and the pyrimidine-2,4-diamine is tested in the 6-(1,2,3trihydroxypropyl) compounds 10; these compounds retain the triol motif with the same configuration at the secondary alcohols as in 7 but joined directly to pyrimidine $\mathrm{C}(6)$.

In each of the sets of 6-((poly)hydroxyalkyl)pyrimidine-2,4-diamines 7-10, a phenyl is located at position-5 of the pyrimidine, to occupy a (largely) hydrophobic pocket which the hinge region ($-\mathrm{CH}_{2} \mathrm{NMe}$-) of $\mathbf{2}$ occupies in Figure 2A. This phenyl is unsubstituted in 7a-10a, whereas this ring is halogenated in other designed compounds. It carries a 4^{\prime}-chlorine in $\mathbf{7 b}$ 10b (reflecting the 4^{\prime}-chlorine in $\mathbf{3}$) and a 4^{\prime}-bromine in $\mathbf{7 c}$ - $\mathbf{1 0}$ c. $3^{\prime}, 4^{\prime}$-Dichlorophenyl was incorporated into 7d, 9d and 10d to mimic the dichlorophenyl in 4a,b; the corresponding analogue in the $\mathbf{8}$ series was planned but was synthetically inaccessible. Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ (Scheme 1) were designed as gross tests of the structure-based design of inhibitors, while retaining the essential pyrimidine-2,4-diamine. In 11, the designed triol is replaced by a hydrophobic aromatic benzene ring which should interact unfavourably with the H-bonding environment of the glycerol-binding pocket. In 12, there is no group which may enter this pocket.

3. Chemical synthesis

3.1. Synthetic strategy

The planned synthetic approaches to the series of target pyrimidine-2,4-diamines 7-12 are shown in retrosynthetic format in Scheme 1. In each case, condensation of an appropriately substituted corresponding enol ether $\mathbf{1 3}$ with guanidine would furnish the pyrimidinediamine. The enol ethers would be readily prepared by methylation of the α-acylphenylacetonitriles 14 , which, in turn would be available by acylation of anions derived from (Ar-substituted)phenylacetonitriles 15 with the appropriate esters 16, with or without protection of the side-cahin alcohols. Several questions needed to be addressed during the development of the synthetic routes: how should the condensation with guanidine be optimised? how should the acylation be optimised? do the primary and secondary alcohols in the side-chains need to be protected during the acylation or condensation steps? if so, what should the protecting groups be? We elected to use the general synthetic approach, condensation of guanidine with enol ethers
derived from α-acylphenylacetonitriles, used by Russell and Hitchings ${ }^{16}$ in their syntheses of pyrimethamine 3 , etoprine 4 and related antimalarial compounds carrying simple small-alkyl substituents at the 6-position of the pyrimidine-2,4-diamine core. Tarnchompoo et al. ${ }^{19}$ have extended this synthetic approach to analogues carrying larger alkyl and ω-arylalkyl groups at this position, in their search for pyrimidine-2,4-diamines which inhibit DHFR activity in Plasmodium falciparum which is resistant to 3. The acylation steps and the protection of the OH groups were optimised individually for each series of target compounds.

3.2. Synthesis of 5-aryl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamines 7

Scheme 2 shows our approach to the 5 -aryl-6-(($3 R, 4 S$)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamines 7, using protection for the primary alcohol. We rationalised that the ester 21 would provide the required masked triol at the 6-position and could be synthesised by a twocarbon chain extension from a protected L-erythrose 18. Acetonide protection was introduced between the cis $3-\mathrm{OH}$ and $4-\mathrm{OH}$ of L-arabinose 17 by acid-catalysed reaction with 2,2dimethoxypropane. Oxidative cleavage of the $\mathrm{C}(1)-\mathrm{C}(2)$ bond with periodate then gave L-erythrose-2,3-acetonide 18. The required two-carbon chain-extension was achieved by basefree Wittig reaction of the latent aldehyde of 18 with pre-formed ethyl triphenylphosphoranylidineacetate to afford the stereoisomeric α, β-unsaturated esters $19 E$ and $19 Z$ in 69% overall yield (ratio of geometrical isomers $3: 11,19 E$ and $19 Z$, respectively). These geometrical isomers were readily separated chromatographically and were identified on the basis of the ${ }^{1} \mathrm{H}$ NMR coupling constants in the $-\mathrm{HC}=\mathrm{CH}-$ system. Separation of the isomers was unnecessary in the synthetic plan, as catalytic hydrogenation of the mixture of $19 E$ and $19 Z$ gave the saturated ester $\mathbf{2 0}$ quantitatively. ${ }^{1} \mathrm{H}$ NMR spectroscopy confirmed the presence of only one diastereoisomer of 20. A variety of protecting groups was investigated for the primary alcohol; we proposed that this alcohol should not be exposed during the reaction of the ester with the carbanion derived from the phenylacetonitriles, to avoid possible quenching of the carbanion and to avoid lactonisation of the hydroxy-ester $\mathbf{2 0}$. The primary alcohol of $\mathbf{2 0}$ was benzylated by generation of the alkoxide with lithium bis(trimethylsilyl)amide and reaction with benzyl bromide to give the fully protected ester 21. The classical conditions for using esters to acylate phenylacetonitrile carbanions, ${ }^{16}$ sodium ethoxide in ethanol, failed to effect the required reaction. However, the carbanions were generated from the (halo)phenylacetonitriles under aprotic conditions with lithium bis(trimethylsilyl)amide in diethyl ether at low temperature; these reacted with 21 to afford the α-acylphenylacetonitriles 22a-d in 16-26\%

17

25
$\left.\begin{array}{l}\text { 23: } R=H \\ \text { 24: } R=M e\end{array}\right]$ vii

\leq

7
a: $R^{3}=R^{4}=H ; \mathbf{b}: R^{3}=H, R^{4}=C l ;$
28: $R=H$
29: $R=M e$$\quad$ vii
c: $\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Br} ; \mathbf{d}: \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Cl}$

27

Scheme 2. Synthetic routes to 5-aryl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamines 7, using Bn protection for the primary OH and omitting protection for the primary OH . Reagents: $\mathrm{i}, \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{TsOH}$, DMF; ii, $\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}$, hexane; iii, $\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; v, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{BnBr}$, THF, DMF; vi, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{ArCH}_{2} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O}$; vii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; viii, guanidine. $\mathrm{HCl}, \mathrm{NaOMe}, \mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$; ix, aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} ; \mathrm{x}, \mathrm{Na}$, liquid NH_{3}, xi, $\mathrm{FeCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
yields. The ${ }^{1} \mathrm{H}$ NMR spectra indicated the presence of varying amounts of the enol tautomers
23a-d. Methylation with diazomethane gave the enol ethers 24a-d as inseparable mixtures of geometrical isomers. Condensation of these mixtures with guanidine in boiling 2-methoxyethanol then led to the pyrimidine-2,4-diamines 25a-d in satisfactory yields; similar reactions in the conventional solvent for these condensations, ethanol, gave lower yields.

Removal of the acetonide protection from 25a-d with aq. trifluoroacetic acid revealed the secondary alcohols in 26a-d in excellent yields but subsequent removal of the benzyl protection from the primary alcohol was more challenging. Catalytic hydrogenolysis $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right.$, various solvents) failed to remove the benzyl group from 26a, even in the presence of catalytic per-
chloric acid. However, addition of a catalytic amount of chloroform ${ }^{35}$ to the hydrogenolysis reaction mixture in methanol facilitated the deprotection to give triol 7a. This method could not be extended to debenzylation of the halogen-bearing analogues 26b-d, as hydrogenolysis of the carbon-halogen bonds occurred; 26b and 26c gave 7a only, whereas 26d gave an inseparable mixture of $\mathbf{7 a}, \mathbf{7 b}$ and the meta-monochloro analogue. Attempted debenzylation with hydrogen bromide in acetic acid, another common method, gave regioisomeric mixtures of bromo- and acetoxy-pentylpyrimidine-2,4-diamines. The most effective method for preparation of the Ar-unsubstituted analogue $7 \mathbf{7 a}$ was reductive cleavage of the O -benzyl protecting group with sodium in liquid ammonia. This method could not be extended to preparation of the halogenated congeners $\mathbf{7 b} \mathbf{- d}$, as reduction of the carbon-halogen bonds led to exclusive formation of the phenyl analogue 7a from 26b-d. The most generally applicable debenzylation for this series was the use of the Lewis acid anhydrous iron(III) chloride in dichloromethane, as developed by Park et al. ${ }^{36}$ By this method, 26b-d were converted in high yields into the required triols $\mathbf{7 b} \mathbf{- d}$. Moreover, the Lewis acidity of this reagent could be exploited also in removal of the acetonides, in that both acetonide and benzyl ether protecting groups could be removed from 25a-d in one pot to furnish 7a-d directly, albeit in lower overall yields than in the two-step processes. TLC analysis suggested that, in this one-pot process, the acetonide was cleaved within 5 min and the debenzylation was essentially complete within 80 min .

In view of these challenges, the assembly of the pyrimidine ring was attempted with a free primary alcohol in the side chain. As shown in Scheme 2, the phenylacetonitriles were deprotonated with lithium bis(trimethylsilyl)amide and the anions were quenched with the ester $\mathbf{2 0}$. Use of two equivalents of base was necessary to achieve condensation to obtain the α-acylphenylacetonitriles 27 in a maximum yield of 10%, indicating that protection of the primary alcohol is beneficial for this acylation to proceed efficiently. Methylation of the tautomeric enols 28 with diazomethane and condensation of the enol ethers 29 with guanidine gave the pyrimidine-2,4-diamines 30. Again, the yields were significantly lower with the exposed primary alcohol (30a: 42\%, 30b: 12\%, 30c: 20\%, 30d: 9\%). Deprotection was straightforward to furnish the target triols 7 .

3.3. Synthesis of 5-aryl-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamines 8

The approach to the diastereomeric 5-aryl-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4diamines $\mathbf{8}$ was broadly similar to that for 7 , using the benzyl protection method. In this series (Scheme 3), the key intermediate was the trans dioxolane 38, a diastereomer of the cis

Scheme 3. Synthesis of 5-aryl-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamines 8. Reagents: i, $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{TsOH}, 4 \AA$ molecular sieve, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, LiAlH_{4}, THF; iii, $\mathrm{NaH}, \mathrm{BnCl}, \mathrm{DMF}$; iv, $\mathrm{PCC}, \mathrm{NaOAc}$, $4 \AA$ molecular sieve, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ v, $\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}, \mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PhMe}, \Delta ;$ vi, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH} ;$ vii, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, $\mathrm{ArCH}_{2} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O}$; viii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; ix, guanidine. $\mathrm{HCl}, \mathrm{NaOMe}, \mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$; x, aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} ;$ xi, H_{2}, $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; xii, $\mathrm{FeCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
dioxolane ester 21 above. The approach to 38 started with protection of the secondary alcohols of diethyl R, R-tartrate 31 as the acetonide 32; these secondary alcohols will become the secondary alcohols of the targets $\mathbf{8}$ with the appropriate configurations. Reduction with lithium aluminium hydride furnished the C_{2}-symmetric diol 33 . Mono-protection of this diol was essential for developing the chain-extension of only one arm. The optimum conditions were found to be deprotonation with one equivalent of sodium hydride in DMF, followed by alkylation with benzyl chloride, giving the required monoether 35, with a trace of diether 34 . Pyridinium chlorochromate oxidation converted the exposed alcohol to the aldehyde 36, which was immediately condensed with ethyl triphenylphosphoranylidineacetate in a Wittig reaction to give the chain-extended α, β-unsaturated esters $\mathbf{3 7 E}$ and $\mathbf{3 7 Z}$. In contrast to the analogous uncatalysed formation of $19 E$ and $19 Z$ (which carry free primary alcohols) at ambient temper-
ature, this reaction required prolonged heating at $110^{\circ} \mathrm{C}$ and catalysis with benzoic acid. In this case, the mixture of the separable geometrical isomers $\mathbf{3 7 E}$ and $\mathbf{3 7 Z}$ was approximately equimolar. Careful control of the hydrogenation conditions was required to reduce the alkene of the $\mathbf{3 7 E} / \mathbf{3 7 Z}$ mixture to form key intermediate 38 without causing loss of the benzyl protecting group through hydrogenolysis. The fully protected ester $\mathbf{3 8}$ was then used, as for the diastereomer 21, to alkylate the carbanions derived from the (halo)phenylacetonitriles to afford the α-acylphenylacetonitriles 39a-c; 3,4-di-

a: $R^{3}=R^{4}=H ; \mathbf{b}: R^{3}=H, R^{4}=C l$
c: $R^{3}=H, R^{4}=B r ; d: R^{3}=R^{4}=C l$
Scheme 4. Synthesis of 5-aryl-6-(5-hydroxypentyl)-pyrimidine-2,4-diamines 9. Reagents: i, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, $\mathrm{ArCH}_{2} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; iii, guanidine. HCl , $\mathrm{NaOMe}, \mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$. chlorophenylacetonitrile failed to react. Methylation of the enols 40 and condensation of the enol ethers 41 with guanidine led to the pyrimidine-2,4-diamines 42, in much higher yields (42a: 67%, 42b: 48%, 42c: 53%) than in the R, S series. The side-chain alcohols were deprotected in two steps. Acid-hydrolysis of the acetonide rapidly gave the diols 43. As in the diastereomeric series, hydrogenolysis removed the benzyl group from 43a to afford $\mathbf{8 a}$ in high yield; debenzylation with iron(III) chloride converted $\mathbf{4 3 b}$ and $\mathbf{4 3 c}$ to the triols $\mathbf{8 b}$ and $\mathbf{8 c}$, respectively, avoiding the dehalogenations associated with other debenzylation procedures.

3.4. Synthesis of 5-aryl-6-(5-hydroxypentyl)pyrimidine-2,4-diamines 9

Although a similar approach of protection of the primary alcohol could have been used in the syntheses of 6-(5-hydroxypentyl)pyrimidine-2,4-diamines 9, a strategy was devised to use a lactone to provide the necessary acylating ester, simultaneously masking the primary alcohol (Scheme 4). The carbanions of the (halo)phenylacetonitriles were generated in the usual way with lithium bis(trimethylsilyl)amide; the yields of the reactions with lactone 44 to give the α -(6-hydroxyhexanoyl)phenylacetonitriles 45 were low but provided sufficient material for further methylation of the enols 46 and condensation of 47 with guanidine to give the required 6-(5-hydroxypentyl)pyrimidines 9 in moderate yields. No deprotection steps were required in this series as the primary alcohols had been revealed during the reaction of the lactone with the phenylacetonitrile anions.

3.5. Synthesis of 5-aryl-6-((1S,2R)-1,2,3-

trihydroxypropyl)pyrimidine-2,4-diamines 10

The lactone strategy was also used for the chain-shortened triols 10 (Scheme 5). 2,3-O-Isopropylidene-D-erythronolactone 48 reacted with the phenylacetonitriles anions to afford 49 in 21-38\% yields. In the usual way, methylation of the enols 50 , condensations of the enol ethers 51 with guanidine and aqueous acid deprotection of 52 gave the pyrimidine-2,4-diamines 10 carrying the 6-((1S,2R)-1,2,3-trihydroxypropyl) side-chains.

The dioxolanylpyrimidine intermediates 52 carry two bulky groups in close proximity in the 5- and 6-positions of the pyrimidine. MM2 energy minimisation suggests that this twists the 5-(4-halo)phenyl group in

Scheme 5. Synthesis of 5-aryl-6-((1S,2R)-1,2,3-tri-hydroxypropyl)pyrimidine-2,4-diamines 10. Reagents: i, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{ArCH}_{2} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; iii, guanidine. $\mathrm{HCl}, \mathrm{NaOMe}, \mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$; iv, aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$.

52a-c out of the pyrimidine plane by $c a .60^{\circ}$ (Figure 3). The restricted rotation about the pyrimidine-Ph bond is evident in the NMR spectra of these compounds. The benzene ring is held close to the dioxolane, which bears two chiral centres. Thus the $\mathrm{Ph} 2-\mathrm{H}$ and $6-\mathrm{H}$ become diastereotopic, as do the $\mathrm{Ph} 3-\mathrm{H}$ and $5-\mathrm{H}$. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 52a, the Ph 2-H signal is separated from the $\mathrm{Ph} 6-\mathrm{H}$ signal by 0.21 ppm , whereas the $3-\mathrm{H}$ and $5-\mathrm{H}$ signals are coincident. In the spectrum of the 4 -chloro compound $52 \mathbf{b}$, the $\mathrm{Ph} 2-\mathrm{H}$ and $6-\mathrm{H}$ signals are separated by 0.22 ppm and the $3-\mathrm{H}$ and $5-\mathrm{H}$ signals are separated by 0.04 ppm . In the spectrum of the 4 -bromo compound 52c, the separations are 0.05 ppm and 0.02 ppm , respectively. In 52a-c, the substituents, if present, are in the 4-position of the benzene ring and are therefore coaxial with the pyrimidine-benzene bond. However, 52d carries a chlorine atom in position-3 of the benzene ring, which is off the axis of this bond. Therefore, two different conformers 52dA and 52dB can exist, as shown in Figure 3 in stick and space-filling representations. Conformers 52dA and 52dB are diastereoisomers of very similar energy,

52a

52b

52dA

Figure 3. MM2-minimised structures of pyrimidine-2,4-diamines 52a-d, showing the steric interactions between the 5-(halo)phenyl group and the 6-(2,2-dimethyl-5-hydroxymethyl-1,3-dioxolan-4-yl) substituent. As a result of this steric crowding, the (halo)phenyl group is twisted to $c a .60^{\circ}$ from the plane of the pyrimidine. Compound 52d exists as two diastereomeric conformers, which are evident in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
according to MM2 calculations. The ${ }^{1} \mathrm{H}$ NMR spectrum of 52d shows the presence of both conformers in 1:1 ratio; the sharpness of the signals indicates that, as could be predicted from the severe steric crowding, interconversion is slow. The ${ }^{1} \mathrm{H}$ signals for 2-H for the diastereomeric conformers are separated by 0.10 ppm , the signals for $5-\mathrm{H}$ by 0.02 ppm and the signals for $6-\mathrm{H}$ by 0.10 ppm . Other ${ }^{1} \mathrm{H}$ NMR signals are co-incident for the two conformers, as are all the peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum. The latter was assigned by analogy with the spectra for 3 and related compounds examined in detail earlier. ${ }^{37}$ This effect was not observed for the triols 10a-d and only one set of signals could be seen for each compound, with $2-\mathrm{H}$ and $6-\mathrm{H}$ being magnetically equivalent. This probably reflects the greater flexibility in the triol side-chain. The effects were also not observed for the homologues 7 and $\mathbf{8}$, also owing to increased flexibility and the remoteness of the chiral dioxolane from the benzene ring in these structures.
3.5. Synthesis of pyrimidine-2,4-diamines 11,12 and 3 , lacking OH in the 6 -substituent

Three pyrimidine-2,4-diamines 11, 12 and 3 , lacking alcohols in the 6 -substituent, were required as controls in the biological evaluation. The synthetic approaches followed the general sequence (Scheme 6). Acylation of phenylacetonitrile anion with ethyl 2-phenylpropanoate 53, methylation of 55 and condensation of 56 with guanidine gave 6-(2-phenylethyl)pyrimidine-2,4-di-
amine 11. The minimal analogue 12 was prepared similarly, through acylation of phenylacetonitrile anion with ethyl acetate 57, methylation of 59 and condensation of $\mathbf{6 0}$ with guanidine. Finally, $\mathbf{3}$ was produced in a new route starting with generation of the anion from 4-chloroacetonitrile with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ and reaction with ethyl propanoate $\mathbf{6 1}$ to give 62. Enol 63 was methylated, giving 64; condensation with guanidine in hot 2-methoxyethanol provided 3 in good yield.

4. Biological evaluation

4.1. Inhibition of DHFR activities

Direct screening of candidate drugs with M. tuberculosis is slow and requires biosafety Level 3 facilities and procedures. ${ }^{38}$ The slow growth of M. tuberculosis has been frustrating, with most public health laboratories still employing cultivation techniques that require 3-6 weeks to achieve growth. This mainly reflects the slow generation time inherent in the organism. M. smegmatis and M. avium have often been used as surrogates for assessment of activity of candidate drugs, as they grow rapidly and are less pathogenic to humans. ${ }^{39-41}$ However, drug screening in wild-type M. smegmatis has not always been an accurate predictor of activity ${ }^{42}$ or of mechanism of action in M. tuberculosis. ${ }^{43}$

A new approach to screening compounds for selective inhibition of DHFR from M. tuberculosis has been developed by Gerum et al. ${ }^{38}$ In this, the TH5 strain of the yeast Saccharomyces cerevisiae, which lacks endogenous expression of DHFR, was engineered to contain a vector p414CYC1 carrying a single copy of the dfrA gene from M. tuberculosis. This gene codes for the protein with DHFR activity in M. tuber-

Figure 4. Typical plate (DMSO only control) showing orthogonal streaks of yeast after 3 d of incubation. culosis. The native TH5 strain of S. cerevisiae requires supplementation with dTMP, uracil, adenine and a full complement of amino acids to grow, whereas the engineered strain containing the dfrA gene can grow normally. Thus inhibition of the expressed M. tuberculosis DHFR activity would be manifest as inhibition of growth of the yeast. Two engineered TH5derived strains of S. cerevisiae were also engineered to carry yeast or human DHFR genes. Inhibition of the growth of these yeasts by test compounds would indicate that these eukaryotic DHFRs are inhibited and would point to lack of selectivity for the prokaryotic M. tuberculosis enzyme. These three engineered yeasts were kindly supplied by Dr. Carol Hopkins Sibley (Department of Genome Sciences, University of Washington, Seattle, Washington, USA). Thus, in the present work, the test compounds were evaluated for their ability to inhibit selectively the growth of yeast carrying M. tuberculosis DHFR, while having less inhibition of yeast bearing either the yeast or the human enzyme. This assay, performed on a spoke assay plate, is semi-quantitative; comparison of the diameters of the zones of inhibition of the three yeasts by a particular test compound gives an indication of the selectivity of inhibition of the M. tuberculosis DHFR by that compound. Compounds can also be ranked approximately for potency of inhibition, although no quantitative IC_{50} data can be derived.

Table 1 shows the mean diameters of the zones of inhibition of growth of the three yeasts by the pyrimidine-2,4-diamines $\mathbf{7 - 1 0}$ carrying one or more alcohols in the side-chain, by the pyrimidine-2,4-diamines $\mathbf{1 1}$ and $\mathbf{1 2}$ with simple lipophilic side-chains and by the known DHFR-inhibiting pyrimidine-2,4-diamines 3 and 6. Data for the negative control, DMSO without drug, are also given. Trimethoprim $\mathbf{6}$ has been reported to have a broad spectrum of activity against gram-positive bacteria, including methicillin-sensitive (MSSA) and methic-illin-resistant (MRSA) S. aureus, and gram negative bacteria, including E. coli, but less activity or no activity against Mycobacterium spp., Ps. aeruginosa and Chlamydia pneumoniae. ${ }^{44}$

At the enzymic level, $\mathbf{6}$ is only a weak inhibitor of M. avium DHFR and of eukaryotic DHFR but is potent in inhibiting DHFR activity in susceptible bacteria. ${ }^{41}$ In line with these reports, 6 was found to be inactive against all three DHFRs in this yeast assay. Pyrimethamine $\mathbf{3}$ was very poorly active, even against the human enzyme, despite being reported to have $K_{\mathrm{i}}=58$ nM against human DHFR. ${ }^{17}$ This observation suggests that, despite being only semi-quantitative, the assay is a stringent test of inhibitory activity. The pyrimidine-2,4-diamine 11, which lacks hydroxy groups and carries only lipophilic substituents was also inactive against all the DHFRs. Interestingly, the minimal lipophilic pyrimidine-2,4-diamine 12, which bears only a methyl group at position-6, showed some inhibitory activity, although it was unselective.

Pyrimidine-2,4-diamines 7a-d, which carry the ($3 R, 4 S$)-3,4,5-trihydroxypentyl side-chain at the 6-position were designed to mimic directly the pteridine of the dihydrofolate and the glycerol, with the configuration of each chiral centre being as predicted by the structure-based design; the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - linker is also of the length indicated by the modelling studies to be apposite. Within this set, the 5-phenyl compound 7a showed notable selectivity for inhibition of the growth of the yeast containing the M. tuberculosis DHFR, with only very modest inhibition of the growth of the yeasts containing the H. sapiens enzyme or the S. cerevisiae enzyme. The 4 '-chlorophenyl analogue $\mathbf{7 b}$ also showed some selectivity for inhibition of the M. tuberculosis enzyme, whereas the 4'-bromophenyl and 3',4'-dichlorophenyl compounds 7c and 7d had modest and equivalent activity against each DHFR.

The diastereomeric series 8a-c showed modest activity but little evidence of selectivity. Removal of the secondary alcohols from the 6-position side-chain, in $\mathbf{9}$, led to compounds with increased potency but completely lacking selectivity. In contrast, shortening the side-chain by removal of the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - linker but retaining the configuration of the secondary alcohols effectively abolished inhibitory activity in 9a-c but the $3^{\prime}, 4^{\prime}$-dichlorophenyl compound 9d showed modest but non-selective inhibition of all the DHFRs.

Several trends are noticeable in the structure-activity relationships for these pyrimidine-2,4diamines. Firstly, comparison of the results for $\mathbf{7 a}, \mathbf{b}$ with those for the diastereoisomers $\mathbf{8 a}, \mathbf{b}$ indicates that the configuration of the hydroxy groups is critical for selective inhibition of M. tuberculosis DHFR, as predicted by the model. Secondly, the secondary alcohols appear to be necessary to use the binding contacts of one primary and the secondary alcohol of the glycerol, in that the 6-(5-hydroxypentyl) compounds $\mathbf{9}$ are not selective for the M. tuberculosis enz-
yme. Thirdly, the length of the linker joining the dihydrofolate mimic (the pyrimidine-2,4-diamine) to the glycerol mimic is critical; shortening the distance in $\mathbf{1 0}$ abolishes activity.

4.2. Modelling of the selective inhibitor 7a in the dihydrofolate- and glycerol-binding sites of M. tuberculosis DHFR

The structures of selected pyrimidines from the series were modelled into the dihydrofolatebinding site and the glycerol pocket, to attempt to rationalise the structure-activity observations and thus to validate the design process. The compounds were bound into the dihydrofolate and glycerol binding pockets using the H -bonds from the pyrimidine-2,4-diamine ring to establish an orientation similar to the observed binding conformation of methotrexate 2. ${ }^{28}$ The triol section was then docked using the H -bonds established from the bound glycerol in the X-ray structure (as distance restraints). Molecular dynamics calculations were then performed on the bound ligand using the H -bonds (X-ray observed) as distance restraints between the bound ligand and the pocket. The ligand was ramped to 300 K over a period of 10 ps and then held at 300 K for 20 ps . Observing the conformations over the final 20 ps gave two distinct binding conformers. Throughout the above procedure, the binding pocket was restrained and only the ligand was allowed to change orientation. Average structures were taken (7-13 ps and $15-20 \mathrm{ps}$) which were then minimised within a restrained binding pocket. The two structures obtained were then freely minimised (ligand and binding pocket to a radius of 15 \AA) to give the structures and conformations shown in Figure 5.

Figure 5 shows the occupation of these sites by the two conformers of 7a, the most selective inhibitor of M. tuberculosis DHFR. As expected, the triol makes H-bonds with Asp ${ }^{27}$, Gln^{28}, Leu ${ }^{24}$ and Trp^{22}, following the pattern shown by the glycerol in the crystal structure. ${ }^{28}$ With the glycerol-mimicking triol held by the hydrogen-bonding network, the pyrimidine-2,4-diamine is perfectly located for its own hydrogen-bonding interactions deep in the dihydro-folate-binding site. These constraints place the 5-phenyl substituent of 7a in a pocket of limited size. Indeed, this pocket cannot accomodate halogens in the 4'-position of the phenyl, as this position is tight against the surface of the enzyme; thus the observations that the 4^{\prime} -bromo- and $3^{\prime}, 4^{\prime}$-dichloro- analogues ($7 \mathbf{c}$ and $\mathbf{7 d}$, respectively) not selective inhibitors are rationalised in the model. The 4 '-chloro- analogue $\mathbf{7 b}$, however, does show slight selective inhibition of M. tuberculosis DHFR and it may be possible to accommodate the chlorine, albeit with a significant penalty in displacing the other binding contacts from their ideal positions.

Figure 5. Images of structures of DHFR from M. tuberculosis, with 7a bound at the dihydrofolate-binding site (structure derived from modelling study, see text). A: View of the structure of M. tuberculosis DHFR with 7a bound in conformation 7aA; B: View of the structure of M. tuberculosis DHFR with 7a bound in conformation 7 aB .

The active lead compound 7a can adopt two different conformations. As with all 5-(substitut-ed)phenyl-6-substituted-pyrimidine-2,4-diamines, the 5-phenyl ring of 7a has to be twisted out of the plane of the aromatic heterocycle to accommodate the adverse steric interactions between the phenyl ortho-hydrogens and the adjacent $4-\mathrm{NH}_{2}$ and 6 -substituent. This rotation about the Ph -pyrimidine bond can be either clockwise or anticlockwise to achieve the same relief of steric strain. In conformer 7aA, the phenyl is rotated anticlockwise from coplanarity, whereas clockwise rotation produces $\mathbf{7 a B}$; these conformers are almost identical in energy in free space. However, 7aA fits well into the pocket in the M. tuberculosis DHFR (Figure 5A), whereas the forward edge of the 5-phenyl of 7aB is located tightly pressed against the top of the enzyme pocket (Figure 5B). Thus the calculated energy of the complex of M. tuberculosis DHFR with conformer 7aA is of consistently higher energy than than of the complex of M. tuberculosis DHFR with conformer 7aB; indicating that 7a binds in conformer 7aA.

5. Conclusions

In this paper, we have reported our exploitation of a major difference in the local structure in the region of the dihydrofolate-binding sites of human and M. tuberculosis DHFR to design a compound 7a which shows notable selectivity for inhibition of the latter. In the crystal structure of a M. tuberculosis DHFR ternary complex with methotrexate 2 and glycerol, the glycerol is held tightly in its binding pocket by a network of five H-bonds. This glycerolbinding pocket is close to the site of the methotrexate. This glycerol-binding pocket is absent from the structure of human DHFR. In the structures of 7, the two-carbon link suggested by the crystal structure joins a triol (mimicking the glycerol) to the 6-position of a pyrimidine-

2,4-diamine core which binds into the dihydrofolate-binding site. The configurations of the secondary alcohols match the orientation of the glycerol relative to the methotrexate in the crystal structure. Three series of analogues were also designed to test the hypotheses of the design of 7 . Compounds $\mathbf{8}$ tested the assignment of the configuration of the point of attachment of the triol to the linker and hence to the pyrimidine-2,4-diamine. Mono-hydroxy compounds 9 tested the need to take up the H -bonds from all three alcohols of the glycerol in binding selectively to the mycobacterial DHFR. Compounds $\mathbf{1 0}$ tested the length of the linker between the triol moiety and the pyrimidine-2,4-diamine.

The target compounds were synthesised by acylation of the anions derived from phenylacetonitriles with appropriately functionalised and protected esters and lactones, followed by methylation, condensation with guanidine and deprotection, if appropriate. The acylation step was optimised as generation of the phenylacetonitrile anion with lithium bis(trimethylsilyl)amide at $-78^{\circ} \mathrm{C}$, followed by addition of the ester or lactone. Yields under these optimised conditions ranged from 6% to 41%, with the lower yields being obtained with substrates containing unprotected alcohols. The condensations with guanidine were generally uneventful and high yielding. Removal of benzyl groups presented a particular challenge, as many reductive methods also effected dehalogenation in some analogues.

Evaluation of the test 6-substituted pyrimidine-2,4-diamines for their inhibition of the growth of yeasts containing active DHFR from human, M. tuberculosis and yeast indicated that one compound, 7a, was selective for inhibition of M. tuberculosis DHFR and did not inhibit human DHFR or yeast DHFR significantly in the assay. Other compounds were inactive or less active. Modelling the structure of 7a into the dihydrofolate- and glycerol-binding pockets of M. tuberculosis DHFR rationalised the inhibition data, validating the original design of selective inhibitors and explaining the negative effect of halogenation of the 5-phenyl ring on biological activity. These modelling studies also indicated which of two low-energy conformations was required for binding and that there is a requirement for anticlockwise twist of the 5-phenyl ring relative to the pyrimidine. 5-Phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyr-imidine-2,4-diamine 7a is shown here to be an interesting lead compound for further evaluation and further refinement of design for optimisation of potency and selectivity of inhibition of M. tuberculosis DHFR and, hence, new approaches to treatment of this widespread disease.

6. Experimental Section

6.1. General

NMR spectra were recorded on JEOL/Varian GX270 and EX400 spectrometers of samples in CDCl_{3}, unless otherwise stated. Mass spectra were obtained using a VG7070E spectrometer. IR spectra were measured as thin films or as KBr discs on a Perkin-Elmer RXI FT-IR spectrometer. Optical rotations were measured in a 10 cm cell on an Optical Activity Ltd. polarimeter; c is expressed in g per 100 mL . The stationary phase for chromatography was silica gel. All reactions were carried out under N_{2} at ambient temperature, unless otherwise stated. Solvents were evaporated under reduced pressure. Melting points were determined by using a Reichert-Jung Thermo Galen instrument and are uncorrected.

6.2. 1-(4-Chlorophenyl)-1-cyano-2-methoxybut-1-ene (64) and 5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine (pyrimethamine) (3)

Compound $\mathbf{6 2} / \mathbf{6 3}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{6 4}(88 \%)$ as a pale yellow oil: IR $v_{\max } 2204,1606 \mathrm{~cm}^{-1}$; NMR $1.32(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CMe}), 2.80(2 \mathrm{H}, \mathrm{q}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.31\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}$). Compound $\mathbf{6 4}$ was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$, to give $3(50 \%)$ as a white solid: mp $233-235^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 233-234^{\circ} \mathrm{C}$); NMR $\delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}, \mathrm{Me}), 2.09\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.64\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.92\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.22(2 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}$), $7.49\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ; \mathrm{MS} m / z 251.0884(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{12} \mathrm{H}_{14}{ }^{37} \mathrm{ClN}_{4}\right.$ requires 251.0877), 249.0909 (M+H) ($\mathrm{C}_{12} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{4}$ requires 311.0910).

6.3. 5-Phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7a). Method A

Compound 26a ($150 \mathrm{mg}, 0.4 \mathrm{mmol}$) was treated with $\mathrm{Na}(84 \mathrm{mg}, 3.6 \mathrm{mmol})$ in liquid $\mathrm{NH}_{3}(10$ $\mathrm{mL})$ and THF (5 mL) at $-33^{\circ} \mathrm{C}$ for 20 min . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the mixture was allowed to warm to $20^{\circ} \mathrm{C} . \mathrm{CHCl}_{3}(14 \mathrm{~mL})$ and $\mathrm{MeOH}(7 \mathrm{~mL})$ were added and the mixture was filtered. Evaporation and chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 7: 3\right)$ gave $7 \mathrm{a}(90 \mathrm{mg}$, 78%) as a white solid: $\mathrm{mp} 90-91^{\circ} \mathrm{C}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.29-1.36(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.49-1.55(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{ddd}, J=13.0,10.2,6.2 \mathrm{~Hz}, 1-\mathrm{H}), 2.21(1 \mathrm{H}, \mathrm{ddd}, J=13.0,10.5,5.3 \mathrm{~Hz}, 1-$ H), 3.17-3.21 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $3.22-3.25\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.37(1 \mathrm{H}, \mathrm{dt}, J=8.5,6.1 \mathrm{~Hz}, 4-\mathrm{H}), 7.03$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \operatorname{Ph} 2-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \operatorname{Ph} 6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, Ph $4-$ H), $7.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}\right.$, Ph 3,5-H2); NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{C}} 30.24\left(\mathrm{CH}_{2}\right), 31.10\left(\mathrm{CH}_{2}\right), 62.25(5-$
C), $71.35(\mathrm{CH}), 74.11(\mathrm{CH}), 109.19$ (Pyr 5-C), $128.08(\mathrm{Ph} \mathrm{CH}), 129.19(2 \times \mathrm{Ph} \mathrm{CH}), 130.54$ $(2 \times \mathrm{Ph} \mathrm{CH}), 133.88$ (Ph 1-C), 161.15 (Pyr 2-C), 162.92 (Pyr 4-C), 165.94 (Pyr 6-C); MS m/z $305.1616(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 305.1613), $327(\mathrm{M}+\mathrm{Na}), 243\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}\right), 213$ $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right)$.

6.4. 5-Phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7a). Method B

Compound 30a was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 5 a}$ (reaction time 6 h), to give $7 \mathbf{7 a}(85 \%)$ as a white solid, with data as above.

6.5. 5-(4-Chlorophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7b). Method A

Compound 26b ($60 \mathrm{mg}, 0.14 \mathrm{mmol}$) was stirred with anhydrous $\mathrm{FeCl}_{3}(68 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under N_{2} for 80 min . Water (2 mL) was added. Evaporation and chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 7: 3\right)$ gave $7 \mathbf{b}(30 \mathrm{mg}, 63 \%)$ as a white solid: $[\alpha]^{20}{ }_{\mathrm{D}}=-1.0^{\circ}$ (c 1.1, $\mathrm{MeOH}) ;$ mp $250-251^{\circ} \mathrm{C}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.44\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.65\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.22(1 \mathrm{H}$, ddd, $\left.J=13.6,10.4,6.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.36\left(1 \mathrm{H}, \mathrm{ddd}, J=13.6,10.0,5.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.31(1 \mathrm{H}, \mathrm{m}$, 3'-H), 3.35-3.38 (2 H, m, 5’-H2), 3.48-3.53 ($1 \mathrm{H}, \mathrm{m}, 4$ '-H), 7.18 ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-$ $\left.\mathrm{H}_{2}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 30.05,31.36,62.70,71.97$, 74.14, 107.03, 129.18, 132.23, 133.13, 133.71, 161.73, 162.08, 163.06; MS m/z 341.1185 (M $+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 341.1194), $339.1225(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 339.1223), $308 / 306\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 249 / 247\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right)$.
6.6. 5-(4-Chlorophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7b). Method B

Compound $\mathbf{3 0 b}$ was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{7 a}$, to give $\mathbf{7 b}(91 \%)$ as a white solid, with data as above.
6.7. 5-(4-Bromophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7c). Method A

Compound 26c was treated with FeCl_{3}, as for the synthesis of $\mathbf{7 b}$, to give $\mathbf{7 c}(85 \%)$ as a white solid: $[\alpha]^{20}{ }_{\mathrm{D}}=-4.2^{\circ}(\mathrm{c} 0.24, \mathrm{MeOH}) ; \mathrm{mp} 198-200^{\circ} \mathrm{C} ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.47\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $1.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.19\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.33\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.29\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.32-3.36$ $\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 3.48\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 7.08\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.55(2 \mathrm{H}, \mathrm{d}, J=8.0$
$\left.\mathrm{Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 385.0683(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 385.0698), $383.0714(\mathrm{M}$ $+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 383.0718) .
6.8. 5-(4-Bromophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7c). Method B

Compound $\mathbf{3 0} \mathbf{c}$ was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{7 a}$, to give $\mathbf{7 c}(87 \%)$ as a pale yellow solid, with data as above.

6.9. 5-(3,4-Dichlorophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7d). Method A

Compound 26d was treated with FeCl_{3}, as for the synthesis of $\mathbf{7 b}$, to give $\mathbf{7 d}(77 \%)$ as a white solid: $[\alpha]^{20}{ }_{\mathrm{D}}=-1.4^{\circ}(\mathrm{c} 2.2, \mathrm{MeOH})$; mp $180-181^{\circ} \mathrm{C}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 1.43\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $1.63\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.08\left(1 \mathrm{H}, \mathrm{ddd}, J=13.6,10.4,5.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.34(1 \mathrm{H}, \mathrm{ddd}, J=13.6$, $10.4,5.5 \mathrm{~Hz}, 1$ '-H), 3.17 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 3.28-3.31 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$), 3.48 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 5.79 $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.97\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.16(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{d}, J=$ $1.8 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 31.26,32.09,63.94$, $71.95,75.19,105.22,131.38,131.81,133.16,133.74,133.97,137.51,162.42,166.19$; MS $\mathrm{m} / \mathrm{z} 377.0794(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 377.0775), 375.0814(M+H)($\mathrm{C}_{15} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}$ ${ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires 375.0804), $373.0836(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 373.0834), $345 / 343 / 341\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right)$.

6.10. 5-(3,4-Dichlorophenyl)-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (7d). Method B

Compound 30d was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{7 a}$, to give $\mathbf{7 d}(77 \%)$ as a white solid, with data as above.

6.11. 5-Phenyl-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (8a)

Compound 43a (200 mg, 0.5 mmol) was stirred in $\mathrm{MeOH}(20 \mathrm{~mL})$ with $\mathrm{Pd} / \mathrm{C}(5 \%, 154 \mathrm{mg})$ and $\mathrm{CHCl}_{3}(100 \mu \mathrm{~L})$ under H_{2} for 2 h . Filtration (Celite ${ }^{\circledR}$), evaporation and chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 7: 3\right)$ gave 8a ($150 \mathrm{mg}, 93 \%$) as a white solid: $\mathrm{mp}>350{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+10.9^{\circ}(\mathrm{c}$ $\left.0.5, \mathrm{H}_{2} \mathrm{O}\right)$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.50-1.64\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.28(1 \mathrm{H}, \mathrm{ddd}, J=13.9,10.1,6.3 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 2.40\left(1 \mathrm{H}, \mathrm{ddd}, J=13.9,10.1,6.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.31-3.45\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 7.25(2$ $\left.\mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \operatorname{Ph} 2,6-\mathrm{H}_{2}\right), 7.42(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \operatorname{Ph} 4-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-$
H_{2}); NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta_{\mathrm{C}} 29.75,31.57,62.63,73.61,73.64,109.24,128.37,129.37,130.56$, 133.41, 160.29, 161.05, 161.81; MS m/z $305.1618(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 305.1613).

6.12. 5-(4-Chlorophenyl)-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (8b)

Compound $\mathbf{4 3} \mathbf{b}$ was treated with FeCl_{3}, as for the synthesis of $\mathbf{7 b}$, to give $\mathbf{8 b}(77 \%)$ as a white solid: $\mathrm{mp}>350{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+6.0^{\circ}\left(\mathrm{c} 0.67, \mathrm{H}_{2} \mathrm{O}\right)$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 1.73-1.77\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 2.41\left(1 \mathrm{H}, \mathrm{dt}, J=14.4,6.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.54\left(1 \mathrm{H}, \mathrm{dt}, J=14.4,6.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.44-3.61(4$ $\left.\mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 7.31\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.53\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 27.08,31.39,62.91,70.52,73.58,108.29,129.60,132.04,137.45,137.50$, 156.86, 157.38, 157.80; MS m/z $341.1180(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 341.1194), $339.1237(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 339.1223).
6.13. 5-(4-Bromophenyl)-6-((3S,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine (8c)

Compound 43c was treated with FeCl_{3}, as for the synthesis of $\mathbf{7 b}$, to give $\mathbf{8 c}(77 \%)$ as a white solid: $\mathrm{mp}>350{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+12.5^{\circ}(\mathrm{c} 0.24, \mathrm{MeOH})$; IR $v_{\max } 3649,3468,3418,1618 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.60-1.72\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.30-2.54\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.42-3.56(4 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 7.25\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.72\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right)$; MS $m / z \quad 385.0707(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 385.0698$), 383.0717(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 383.0718).
6.14. 1-Cyano-7-hydroxy-2-methoxy-1-phenylhept-1-ene (47a) and 6-(5-hydroxypentyl)-5-phenylpyrimidine-2,4-diamine (9a)

Compound 45a/46a was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$ (followed by chromatography (EtOAc / hexane 2:1)), to give 47a (78\%) as a pale yellow oil: IR $v_{\max } 3439,2204$ cm^{-1}; MS m/z $246.1492(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\right.$ requires 246.1494). Compound 47a was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$ (chromatographic eluant $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1)$), to give 9a (36\%) as a white solid: mp 214-216 ${ }^{\circ} \mathrm{C}$; IR $v_{\text {max }} 3420,3331,3177,1619 \mathrm{~cm}^{-1}$; NMR δ_{H} $1.27\left(2 \mathrm{H}, \mathrm{qn}, J=7.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 1.45\left(2 \mathrm{H}, \mathrm{qn}, J=7.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{2}\right), 1.55(2 \mathrm{H}, \mathrm{qn}, J=7.2 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{H}_{2}\right), 2.28\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right), 3.56\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $4.98\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.21\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.37(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H})$, $7.44\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 25.38,28.49,31.81,33.79,61.33$, $108.29,127.67,128.95,130.51,134.76,161.32,162.98,165.09 ; \mathrm{MS} m / \mathrm{z} 273.1704(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}\right.$ requires 273.1715), $213\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right), 200\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$.

6.15. 1-(4-Chlorophenyl)-1-cyano-7-hydroxy-2-methoxyhept-1-ene (47b) and 5-(4-chlorophenyl)-6-(5-hydroxypentyl)pyrimidine-2,4-diamine (9b)

Compound $\mathbf{4 5 b} / \mathbf{4 6} \mathbf{b}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$ (followed by chromatography (EtOAc / hexane 3:1)), to give 47b (62\%) as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.52-1.80$ $\left(6 \mathrm{H}, \mathrm{m}, 4,5,6-\mathrm{H}_{6}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.68\left(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.85(3 \mathrm{H}, \mathrm{s}$, Me), $7.29\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.54(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, Ar 3,5-H2); MS m/z $282.1077(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{37} \mathrm{ClNO}_{2}\right.$ requires 280.1074), $280.1102(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{2}\right.$ requires 280.1104), 264/262 ($\mathrm{M}-\mathrm{OH}$). Compound 47b was treated with guanidine, as for the synthesis of $\mathbf{9 a}$, to give $\mathbf{9 b}(59 \%)$ as a white solid: mp $165-166^{\circ} \mathrm{C}$; IR $v_{\max } 3407,3329,3174$, $1631 \mathrm{~cm}^{-1}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.11\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 1.26(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}_{2}\right), 1.42\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{2}\right), 2.07\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right), 3.29(2 \mathrm{H}, \mathrm{t}, J=7.4$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 5.64\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.94\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right) 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$ $\left.\mathrm{Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.47\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 25.88,28.58$, $32.69,34.63,61.00,106.16,129.34,132.25,134.76,133.10,135.47,162.44,162.47,165.87$; MS m/z $309.1310(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{2}\right.$ requires 309.1296), $307.1335(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{2}\right.$ requires 307.1325), 236/234 (M-C4H8).

6.16. 1-(4-Bromophenyl)-1-cyano-7-hydroxy-2-methoxyhept-1-ene (47c) and 5-(4-bromo-phenyl)-6-(5-hydroxypentyl)pyrimidine-2,4-diamine (9c)

Compound $\mathbf{4 5} \mathbf{c} / \mathbf{4 6} \mathbf{c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{4 7 b}$, to give $\mathbf{4 7 c}(32 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.53-1.75\left(6 \mathrm{H}, \mathrm{m}, 4,5,6-\mathrm{H}_{6}\right), 2.76\left(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.69$ ($2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 7-\mathrm{H}_{2}$), $3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.48(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.8 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z $326.0583(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{81} \mathrm{BrNO}_{2}\right.$ requires 326.0578), $324.0596(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{79} \mathrm{BrNO}_{2}\right.$ requires 324.0599). Compound 47c was treated with guanidine, as for the synthesis of $\mathbf{9 a}$, to give $\mathbf{9 c}(43 \%)$ as a white solid: $\mathrm{mp} 177-178^{\circ} \mathrm{C}$; IR $v_{\max } 3550,3468,3414,1617 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.11\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 1.25$ ($2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{2}$), $1.42\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{2}\right), 2.07\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right)$, $3.27\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 4.30(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 5.74\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.00\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $7.11\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.57\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ salt) $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 25.33,27.72,30.33,32.21,60.68,108.00,115.78(\mathrm{q}, J=289.1 \mathrm{~Hz})$, $122.75,130.74,132.74,133.24,153.43,155.31,158(\mathrm{q}, J=37.6 \mathrm{~Hz}), 164.30 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $353.0807(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}\right.$ requires 353.0800), 351.0816(M+H)($\mathrm{C}_{15} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}$ requires 351.0820).

6.17. 1-Cyano-1-(3,4-dichlorophenyl)-7-hydroxy-2-methoxyhept-1-ene (47d) and 5-(3,4-dichlorophenyl)-6-(5-hydroxypentyl)pyrimidine-2,4-diamine (9d)

Compound $\mathbf{4 5 c} / \mathbf{4 6 c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{4 7 b}$, to give $\mathbf{4 7 d}(68 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.41-1.50\left(4 \mathrm{H}, \mathrm{m}, 5,6-\mathrm{H}_{4}\right), 1.62\left(2 \mathrm{H}, \mathrm{qn}, J=7.6 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.75$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.41\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.50(1 \mathrm{H}, \mathrm{dd}, J=$ 8.6, 2.0 Hz, Ar 6-H), 7.63 ($1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H})$; MS $\mathrm{m} / \mathrm{z} 318.0686(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{18}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right.$ requires 318.0655), $316.0689(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{18}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClNO}_{2}\right.$ requires 316.0685), $314.0715(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{18}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right.$ requires 314.0714), 291/289/287 ($\mathrm{M}-\mathrm{CN}$). Compound 47 d was treated with guanidine, as for the synthesis of 9a, to give $9 \mathbf{d}(43 \%)$ as a white solid: $m p 94-95^{\circ} \mathrm{C}$; IR $v_{\max } 3499,3419,3333,1622$ cm^{-1}; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.12\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 1.25\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{2}\right)$, $1.42\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{2}\right), 2.07\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right), 3.27\left(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 4.28(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{OH}), 5.72\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.90\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.11(1 \mathrm{H}, \mathrm{dd}, J=$ 8.2, 2.2 Hz, Ar 6-H), $7.36(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 5-\mathrm{H})$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 25.87,28.50,32.70,34.64,61.02,105.23,130.21,131.37,131.74$, 131.81, 133.19, 137.66, 162.36, 162.69, 165.96; MS m/z $345.0885(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}\right.$ requires 345.0876), $343.0901(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{4} \mathrm{O}\right.$ requires 343.0906$)$, $341.0927(\mathrm{M}$ $+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}\right.$ requires 341.0935), 285/283/281 (M-C $\left.\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)$, 272/270/268 ($\mathrm{M}-$ $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$).

6.18. 5-Phenyl-6-((1S,2R)-1,2,3-trihydroxypropyl)pyrimidine-2,4-diamine (10a)

Compound 52a was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 6 a}$ (reaction time 2 h), to give 10a (73\%) as a highly hygroscopic white solid: $[\alpha]^{20}{ }_{\mathrm{D}}=-0.38^{\circ}(\mathrm{c} 4, \mathrm{MeOH})$; NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{H}} 3.45\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,3.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $3.72\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.73\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, 6.98 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), 7.31 ($2 \mathrm{H}, \mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, \operatorname{Ph} 2,6-\mathrm{H}_{2}$), 7.45-7.61 (3 H, m, Ph 3,4,5$\left.\mathrm{H}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 299(\mathrm{M}+\mathrm{Na})$, $277.1308(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 277.1300).

6.19. 5-(4-Chlorophenyl)-6-((1S,2R)-1,2,3-trihydroxypropyl)pyrimidine-2,4-diamine

 (10b)Compound 52b was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of 26a, to give $\mathbf{1 0 b}(90 \%)$ as a pale yellow solid: $\mathrm{mp} 196-197^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-41^{\circ}(\mathrm{c} 0.4, \mathrm{MeOH})$; IR $v_{\max } 3550,3475$,
$3413,1617 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 3.58(1 \mathrm{H}, \mathrm{dd}, J=11.3,4.7 \mathrm{~Hz}, 3 \mathrm{~J}-\mathrm{H}, 3.63(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=11.3,3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.89-3.92\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.54(5 \mathrm{H}, \mathrm{br})$ and, $6.62(1 \mathrm{H}, \operatorname{br})\left(2 \times \mathrm{NH}_{2}+2 \times \mathrm{OH}\right), 7.40\left(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.47(2 \mathrm{H}, \mathrm{d}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right), 7.79(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 62.60,69.31,72.47,108.42$, 129.88, 132.39, 133.53, 134.72, 161.21, 161.53, 161.87; MS m/z 313.0877 (M + H) $\left(\mathrm{C}_{13} \mathrm{H}_{16}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 313.0881), $311.0905(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{13} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 311.0910$)$.

6.20. 5-(4-Bromophenyl)-6-((1S,2R)-1,2,3-trihydroxypropyl)pyrimidine-2,4-diamine (10c)

Compound 52c was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 6 a}$ (reaction time 4 h), to give $\mathbf{1 0 c}(95 \%)$ as a highly hygroscopic pale yellow solid: $[\alpha]_{D}^{20}=-15^{\circ}(\mathrm{c} 0.9, \mathrm{MeOH})$; IR $v_{\max } 3550,3478,3414,1618 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{H}} 3.51\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,4.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $3.55\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,4.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.74\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $5.94\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.03\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.29\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.71(2 \mathrm{H}, \mathrm{d}, J$ $\left.=8.0 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{C}} 62.47,68.98,72.30,108.83,123.37,129.70,132.92$, 132.98, 133.81, 156.05, 162.06, 164.91; MS m/z 379/377 (M+Na), 357.0396 (M+H) $\left(\mathrm{C}_{13} \mathrm{H}_{16}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 357.0385), $355.0412(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{13} \mathrm{H}_{16}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 355.0405).
6.21. 5-(3,4-Dichlorophenyl)-6-((1S,2R)-1,2,3-trihydroxypropyl)pyrimidine-2,4-diamine (10d)

Compound 52d was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{1 0 c}$, to give $\mathbf{1 0 d}(87 \%)$ as a pale yellow solid: $\mathrm{mp} 120-121^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-3.0^{\circ}$ (c 4.7, MeOH); IR $v_{\max } 3549,3476$, $3415,1618 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{H}} 3.41\left(1 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.45(1 \mathrm{H}, \mathrm{d}, J=13.1$ Hz, 3'-H), 3.63-3.68 ($1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$), $4.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.25\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.67$ ($2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}$), $7.20(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.60$ ($1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 63.67,69.38,74.29,106.16,130.30$, $131.08,131.44,131.63,132.68,134.09,162.01,162.81,164.00 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 371 / 369 / 367(\mathrm{M}+$ $\mathrm{Na}), 349.0469(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{13} \mathrm{H}_{15}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 349.0462), 347.0501 ($\left.\mathrm{M}+\mathrm{H}\right)$ $\left(\mathrm{C}_{13} \mathrm{H}_{15}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 347.0491), $345.0521(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{13} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 345.0521).

6.22. 1-Cyano-1,4-diphenyl-2-methoxybut-1-ene (56) and 5-phenyl-6-(2-phenylethyl)-pyrimidine-2,4-diamine (11)

Compound $54 / 55$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $56(95 \%)$ as a pale yellow oil: IR $v_{\max } 2204 \mathrm{~cm}^{-1}$; MS m/z $264.1390(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}\right.$ requires 264.1388), $236(\mathrm{M}-\mathrm{HCN}), 91(\mathrm{Bn})$. Compound 56 was treated with guanidine, as for the synthesis of 25a (chromatographic eluant $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(8: 1)$), to give $\mathbf{1 1}(32 \%)$ as a pale yellow solid: mp 116-118 ${ }^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 2.54\left(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.62(2$ $\left.\mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 4.99\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.94\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.05(2 \mathrm{H}, \mathrm{d}, J=6.5$ Hz, Ph' 2,6-H2), $7.14\left(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}\right.$, Ph 4-H), $7.17\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right) 7.35(2$ $\left.\mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{Ph}{ }^{\prime} 4-\mathrm{H}\right), 7.39\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{Ph}{ }^{\prime} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 291.1616(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4}\right.$ requires 291.1609), $199(\mathrm{M}-\mathrm{Bn})$.

6.23. 1-Cyano-2-methoxy-1-phenylprop-1-ene (60) and 6-methyl-5-phenylpyrimidine-2,4-diamine (12)

Compound $58 / 59$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{6 0}(87 \%)$ as a pale yellow oil: IR $v_{\max } 2204,1606 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.26(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.30\left(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.61(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, Ph 2,6- H_{2}); MS m/z $174.0921(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}\right.$ requires 174.0918). Compound $\mathbf{6 0}$ was treated with guanidine, as for the synthesis of 25a (chromatographic eluant $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (4:1)), to give $12(38 \%)$ as a pale yellow solid: mp $250-251^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 249-251^{\circ} \mathrm{C}$); IR $v_{\max }$ $3395,3323 \mathrm{~cm}^{-1}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.62\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.00(2 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{NH}_{2}\right), 7.20\left(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.33(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, Ph 4-H), $7.43(2 \mathrm{H}, \mathrm{t}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$; MS m/z $201.1145(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4}\right.$ requires 201.1140), $123(\mathrm{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 109\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

6.24. 2,3-O-Isopropylidene-L-erythrose (18)

L-Arabinose $17(10.0 \mathrm{~g}, 67 \mathrm{mmol})$, TsOH. $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{mg}, 0.79 \mathrm{mmol})$ and 2,2-dimethoxypropane ($23.0 \mathrm{~g}, 221 \mathrm{~mol}$) were stirred in dry DMF (130 mL) under N_{2} for 90 min . The mixture was neutralised with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The evaporation residue was added to water (120 mL) and hexane $(60 \mathrm{~mL}) . \mathrm{NaIO}_{4}(35.5 \mathrm{~g}, 0.17 \mathrm{~mol})$ was added to the aq. layer and the mixture was stirred for $2 \mathrm{~h} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ was added and the slurry was stirred for 1 h . The mixture was extracted with EtOAc. Evaporation and chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane 2:1) gave $18(5.8 \mathrm{~g}$,
54%) as a colourless oil (lit. ${ }^{45}$ oil): NMR $\delta_{\mathrm{H}} 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.89(1 \mathrm{H}, \mathrm{d}$, $J=2.5 \mathrm{~Hz}, \mathrm{OH}), 4.01(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.55(1$ $\mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 3-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 1-\mathrm{H}) ; \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 181(\mathrm{M}+\mathrm{Na}), 159.0650(\mathrm{M}-\mathrm{H})\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{4}\right.$ requires 159.0657).
6.25. Ethyl (Z,4S,5R)-4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane-5-propenoate (19Z) and ethyl ($E, 4 S, 5 R$)-4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane-5-propenoate (19E)

Ethyl triphenylphosphoranylidineacetate $(9.3 \mathrm{~g}, 27 \mathrm{mmol})$ was stirred with $18(2.9 \mathrm{~g}, 18$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ for 16 h . The evaporation residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Evaporation and chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexane $1: 1$) gave $19 \mathrm{Z}(2.2 \mathrm{~g}, 54 \%)$ as a colourless oil (lit. ${ }^{46}$ oil): NMR $\delta_{\mathrm{H}} 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.40(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.53(3 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{Me}), 2.44(1 \mathrm{H}, \mathrm{dd}, J=7.4,5.5 \mathrm{~Hz}, \mathrm{OH}), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHOH}), 3.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHOH})$, $4.16\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.53-4.57(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{dt}, J=7.1,1.7 \mathrm{~Hz}, 5-$ H), $5.91\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,1.7 \mathrm{~Hz}, \mathrm{CHCO}_{2}\right), 6.36\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,7.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right)$. Further elution gave 19E ($600 \mathrm{mg}, 15 \%$) as a colourless oil (lit. ${ }^{46}$ oil): NMR $\delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 2.41(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{OH})$, $3.55\left(2 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.35(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.79$ $(1 \mathrm{H}, \mathrm{dt}, J=5.5,1.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.12\left(1 \mathrm{H}, \mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, \mathrm{CHCO}_{2}\right), 6.88(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.15.6,5.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 231.1240(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5}\right.$ requires 231.1232), $215(\mathrm{M}-$ $\left.\mathrm{CH}_{3}\right), 173\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right), 143\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)$.

6.26. Ethyl (4S,5R)-4-hydroxymethyl-2,3-dimethyl-1,3-dioxolane-5-propanoate (20)

A mixture of $\mathbf{1 9 Z}$ and $\mathbf{1 9 E}(2.3 \mathrm{~g}, 10 \mathrm{mmol})$ was stirred in $\mathrm{EtOH}(100 \mathrm{~mL})$ with $\mathrm{Pd} / \mathrm{C}(5 \%$, 150 mg) under H_{2} for 3 h . Filtration (Celite ${ }^{\circledR}$) and evaporation gave $20(2.3 \mathrm{~g}, 99 \%)$ as a pale yellow oil (lit. ${ }^{46}$ oil): NMR $\delta_{\mathrm{H}} 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.33 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.42 (3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.39(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.40(1 \mathrm{H}, \mathrm{dt}, J=16.4,7.8 \mathrm{~Hz}$, $\left.\mathrm{CHCO}_{2}\right), 2.53\left(1 \mathrm{H}, \mathrm{dt}, J=16.4,7.4 \mathrm{~Hz}, \mathrm{CHCO}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.09-$ $4.20\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}+5-\mathrm{H}+\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 233.1396(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5}\right.$ requires 233.1388), $217\left(\mathrm{M}-\mathrm{CH}_{3}\right)$.

6.27. Ethyl (4S,5R)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate (21)

$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}(1.0 \mathrm{M}$ in THF, $10 \mathrm{~mL}, 10 \mathrm{mmol})$ was stirred with $20(2.3 \mathrm{~g}, 10 \mathrm{mmol})$ and $\operatorname{BnBr}(3.4 \mathrm{~g}, 20 \mathrm{mmol})$ in dry DMF (5 mL). After 2 h , water was added. The mixture was ex-
tracted $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. The extract was washed with water and brine and was dried. Evaporation and chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 4\right)$ afforded $21(1.6 \mathrm{~g}, 48 \%)$ as a pale yellow oil: $[\alpha]^{20}{ }_{\mathrm{D}}=$ $+24.8^{\circ}\left(\mathrm{c} 4.4, \mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}} 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.42$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $1.72-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}_{2}\right), 2.48-2.54(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCO}_{2}\right), 3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.08-4.15\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}+\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.9,6.1 \mathrm{~Hz}, 4-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.57(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.24-$ $7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS m$/ \mathrm{z} 323.1864(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{5}\right.$ requires 323.1858), $265(\mathrm{M}-$ $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$), $91(\mathrm{Bn})$.
6.28. (4R,5S)-5-Benzyloxymethyl-4-(4-cyano-3-oxo-4-phenylbutyl)-2,2-dimethyl-1,3-dioxolane (22a) / (4R,5S)-5-benzyloxymethyl-4-(4-cyano-3-hydroxy-4-phenylbut-3-enyl)-2,2-dimethyl-1,3-dioxolane (23a)
$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}(1.0 \mathrm{M}$ in $\mathrm{THF}, 9.1 \mathrm{~mL}, 9.1 \mathrm{mmol})$ was added to phenylacetonitrile $(1.1 \mathrm{~g}, 9.4$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ under N_{2} at $-78^{\circ} \mathrm{C}$. After $10 \mathrm{~min}, 21(2.9 \mathrm{~g}, 9.0 \mathrm{mmol})$ was added. The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and was stirred for 72 h . Water was added. The solution was washed twice $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ before being acidified to pH 6 with aq. citric acid $(1 \mathrm{M})$ in the presence of EtOAc. The EtOAc phase was separated and washed with water. Drying, evaporation and chromatography (EtOAc / hexane, 2:1) gave 22a/23a (1.5 g, 21\%) as a yellow oil: IR $v_{\max } 2207,1728 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.26(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, 1.66$1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 2.75-2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 3.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.98(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}, \mathrm{CHPh}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHPh}), 7.21-7.41\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right), 8.98(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH})$; MS m/z $394.2016(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{4}\right.$ requires 394.2018), $91(\mathrm{Bn})$.
6.29. (4R,5S)-5-Benzyloxymethyl-4-(4-(4-chlorophenyl)-4-cyano-3-oxobutyl)-2,2-dimeth-yl-1,3-dioxolane (22b) / (4R,5S)-5-benzyloxymethyl-4-(4-cyano-3-hydroxy-4-(4-chloro-phenyl)but-3-enyl)-2,2-dimethyl-1,3-dioxolane (23b)

4-Chlorophenylacetonitrile and 21 were condensed as for the synthesis of 22a/23a (chromatographic eluant EtOAc / hexane (1:1)), to give 22b/23b (26\%) as a yellow oil: NMR $\delta_{\mathrm{H}} 1.25$ ($2.7 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.34(2.7 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(0.3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.51(0.3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.67-1.88(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 1.98-2.08 ($0.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$), 2.60-2.80 ($1.8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$), $3.45(1 \mathrm{H}, \mathrm{dd}$, $J=12.1,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 4.00(0.9 \mathrm{H}, \mathrm{ddd}, J=$ 8.6, 6.0, 2.3 Hz, 4-H), $4.22(0.9 \mathrm{H}, \mathrm{q}, ~ J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.29(0.1 \mathrm{H}, \operatorname{ddd}, J=10.14,6.0,3.9$

Hz, 4-H), $4.39(0.1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.45(0.1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHPh}), 4.49(0.1 \mathrm{H}, \mathrm{d}$, $J=11.5 \mathrm{~Hz}, \mathrm{CHPh}), 4.51(0.9 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh}), 4.56(0.9 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh})$, $5.52(0.1 \mathrm{H}, \mathrm{s}, \mathrm{CHCN}), 7.16\left(0.2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.25-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.35$ (1.8 H, d, $\left.J=8.6 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right), 7.84\left(1.8 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 9.33(0.9 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; MS m/z $430.1604(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{26}{ }^{37} \mathrm{ClNO}_{4}\right.$ requires 430.1599), $428.1618(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{4}\right.$ requires 428.1628), $370\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right), 91(\mathrm{Bn})$.
6.30. (4R,5S)-5-Benzyloxymethyl-4-(4-(4-bromophenyl)-4-cyano-3-oxobutyl)-2,2-dimeth-yl-1,3-dioxolane (22c) / (4R,5S)-5-benzyloxymethyl-4-(4-cyano-3-hydroxy-4-(4-bromo-phenyl)but-3-enyl)-2,2-dimethyl-1,3-dioxolane (23c)

4-Bromophenylacetonitrile and 21 were condensed, as for the synthesis of 22a/23a, to give 22c/23c (18%) as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.27$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $1.35(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.70-$ $1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.62-2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 3.45-3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.00(1$ H , ddd, $J=10.1,6.2,3.9 \mathrm{~Hz}, 4-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}, 5-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, CHPh), $4.49(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh}), 5.48(0.35 \mathrm{H}, \mathrm{s}, \mathrm{CHCN}), 7.21-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$, $7.45\left(1.3 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.55\left(1.3 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right), 7.59(0.7 \mathrm{H}, \mathrm{d}, J$ $\left.=8.6 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right), 7.76\left(0.7 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 9.35(0.65 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; MS m/z $474.1100(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 474.1102), 472.1094(M+H)($\mathrm{C}_{24} \mathrm{H}_{27}{ }^{79} \mathrm{BrNO}_{4}$ requires 472.1123), 415/413 ($\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}$), $91(\mathrm{Bn})$.
6.31. (4R,5S)-5-Benzyloxymethyl-4-(4-(3,4-dichlorophenyl)-4-cyano-3-oxobutyl)-2,2-di-methyl-1,3-dioxolane (22d) / (4R,5S)-5-benzyloxymethyl-4-(4-cyano-3-hydroxy-4-(3,4-di-chlorophenyl)but-3-enyl)-2,2-dimethyl-1,3-dioxolane (23d)

3,4-Dichlorophenylacetonitrile and 21 were condensed, as for the synthesis of 22a/23a, to give 22d/23d (16\%) as a highly hygroscopic white solid: NMR $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, 1.52 (3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.73-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.71-2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, $3.47(1 \mathrm{H}, \mathrm{dd}, J=$ 11.7, $6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.98(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.22(1$ $\mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CHPh})$, 7.26-7.37 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.45(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}$, Ar 6-H), $7.83(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, Ar 2-H), $9.61(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \mathrm{MS} m / \mathrm{z} .466 .1178(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{24} \mathrm{H}_{26}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 466.1179), $464.1193(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{26}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClNO}_{4}\right.$ requires 464.1209), $462.1217(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{26}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 462.1238), 407/405/403 (M $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}$), $91(\mathrm{Bn})$.
6.32. (4R,5S)-5-Benzyloxymethyl-4-(4-cyano-3-methoxy-4-phenylbut-3-enyl)-2,2-dimeth-yl-1,3-dioxolane (24a) and 6-(2-((4R,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-5-phenylpyrimidine-2,4-diamine (25a)

Compound 22a/23a ($1.5 \mathrm{~g}, 3.7 \mathrm{mmol}$) in THF (5 mL) was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}(8.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$ for 16 h . Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed by careful addition of AcOH (30% in THF). Evaporation gave 24a ($1.2 \mathrm{~g}, 81 \%$) as a yellow oil: NMR $\delta_{\mathrm{H}} 1.37$ ($3 \mathrm{H}, \mathrm{s}, 2-$ Me), 1.46 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.77-1.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.78-2.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}$), 2.90$2.98(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 3.53\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.22(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh})$, 7.21-7.59 ($\left.10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS m/z $408.2166(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}\right.$ requires 408.2174), $350\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}\right), 91(\mathrm{Bn}) . \mathrm{NaOMe}(140 \mathrm{~g}, 2.6 \mathrm{mmol})$ was stirred with guanidine. HCl (300 $\mathrm{mg}, 2.6 \mathrm{mmol})$ in $\mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}(10 \mathrm{~mL})$ stirred for 5 min at $30^{\circ} \mathrm{C}$. The filtered solution was boiled under reflux with 24a ($700 \mathrm{mg}, 1.8 \mathrm{mmol}$) for 16 h . Evaporation and chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 19: 1\right)$ gave $\mathbf{2 5 a}(400 \mathrm{mg}, 46 \%)$ as a highly hygroscopic pale yellow solid: IR $v_{\max } 3415,1685 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.61-1.67(2 H, m, $\mathrm{CH}_{2} \mathrm{CHO}$), 2.24 ($1 \mathrm{H}, \mathrm{m}$, Pyr-CH), $2.51(1 \mathrm{H}, \mathrm{m}$, Pyr-CH$), 3.4\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right)$, 3.95-4.00 ($1 \mathrm{H}, \mathrm{m}$, dioxolane 4-H), $4.15(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{d}, J=$ $12.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.68\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.01\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, 7.09-7.39 ($\left.10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS m/z $435.2423(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 435.2396), $200\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\right), 91(\mathrm{Bn})$.
6.33. (4R,5S)-5-Benzyloxymethyl-4-(-4-(4-chlorophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (24b) and 6-(2-((4R,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-5-(4-chlorophenyl)pyrimidine-2,4-diamine (25b)

Compound 22b/23b was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give $\mathbf{2 4 b}(97 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.36(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.45(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO})$, $1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=$ $11.7,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.22(1$ H , ddd, $J=9.4,6.0,3.1 \mathrm{~Hz}, 4-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}$, CHPh), $4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.28\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.30-7.36(5$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.52\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 444.1746(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{37} \mathrm{ClNO}_{4}\right.$ requires 444.1755), $442.1764(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{35} \mathrm{ClNO}_{4}\right.$ requires 442.1785), 428/426 ($\mathrm{M}-\mathrm{CH}_{3}$), 386/384 ($\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}$), $91(\mathrm{Bn})$. Compound 24b was treated with
guanidine, as for the synthesis of 25a (chromatographic eluant $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (9:1)) to give $\mathbf{2 5 b}(25 \%)$ as a pale buff solid: mp $55-56^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 1.62-1.71(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHO}$), $2.25(1 \mathrm{H}$, ddd, $J=13.5,10.1,5.9 \mathrm{~Hz}$, Pyr-CH), $2.51(1 \mathrm{H}, \operatorname{ddd}, J=13.5,10.1,5.9$ $\mathrm{Hz}, \mathrm{Pyr}-\mathrm{CH}), 3.43\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.01(1 \mathrm{H}, \mathrm{ddd}, J=10.1,5.9,4.3 \mathrm{~Hz}$, dioxolane $4-\mathrm{H})$, $4.21(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh})$, $4.56(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.82\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.23\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.14(1 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.27-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.39(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.2 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} m / \mathrm{m} 471.1992(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 471.1976), 469.2005 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{4}\right.$ requires 469.2006), 236/234($\left.\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\right), 91(\mathrm{Bn})$.

6.34. (4R,5S)-5-Benzyloxymethyl-4-(4-(4-bromophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (24c) and 6-(2-((4R,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-5-(4-bromophenyl)pyrimidine-2,4-diamine (25c)

Compound $\mathbf{2 2 c} / \mathbf{2 3 c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{2 4 c}(87 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.36(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, $1.45(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, $1.75-1.88(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHO}\right), 2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=11.7,5.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.21(1 \mathrm{H}, \mathrm{ddd}, J=$ $9.4,5.9,3.1 \mathrm{~Hz}, 4-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}, 5-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh}), 4.59$ $(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh}), 7.27-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.43\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right)$, $7.47\left(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 488.1255(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 488.1259), $486.1263(M+H)\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 486.1279), 430/428 (M-C2 $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}\right)$, $91(\mathrm{Bn})$. Compound 24c was treated with guanidine, as for the synthesis of 25a, to give 25c (57%) as a pale buff solid: $\mathrm{mp} 62-64^{\circ} \mathrm{C}$; IR $v_{\max } 3462,1635 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right)$, 1.58-1.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), $2.22(1 \mathrm{H}, \mathrm{ddd}, J=13.3,10.1,5.9 \mathrm{~Hz}, \mathrm{Pyr}-\mathrm{CH}), 2.49(1 \mathrm{H}$, ddd, $J=13.3,10.1,5.9 \mathrm{~Hz}$, Pyr-CH), $3.41\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.00(1 \mathrm{H}, \mathrm{ddd}, J=$ 9.8, $5.9,3.5 \mathrm{~Hz}$, dioxolane $4-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{d}, J=$ $12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.54(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.65\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.06\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $7.04(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.23-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-$ $\left.\mathrm{H}_{5}\right), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 515.1483(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 515.1480), $513.1497(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 513.1501), 499/497 (M CH_{3}), $91(\mathrm{Bn})$.
6.35. (4R,5S)-5-Benzyloxymethyl-4-(4-(3,4-dichlorophenyl)-4-cyano-3-methoxybut-3-en-yl)-2,2-dimethyl-1,3-dioxolane (24d) and 6-(2-((4R,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-5-(3,4-dichlorophenyl)pyrimidine-2,4-diamine (25d)

Compound 22d/23d was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give $\mathbf{2 4 d}(97 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.36(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.45(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.77(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO})$, $1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=$ $11.3,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=11.3,6.0 \mathrm{~Hz}, \mathrm{CHOBn}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.21(1$ H , ddd, $J=9.4,6.0,3.1 \mathrm{~Hz}, 4-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}$, CHPh), $4.58(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.26-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, Ar 5-H), $7.42(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}) ; \mathrm{MS} m / z$ $480.1319(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{28}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 480.1336), $478.1344(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{28}{ }^{37} \mathrm{Cl}\right.$ ${ }^{35} \mathrm{ClNO}_{4}$ requires 478.1365), $476.1367(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{28}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 476.1395), 422/420/418 ($\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}$), $91(\mathrm{Bn})$. Compound 24d was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$, to give $\mathbf{2 5 d}(47 \%)$ as a pale buff solid: mp $67-69^{\circ} \mathrm{C}$; IR $v_{\max } 3411,1637 \mathrm{~cm}^{-}$ ${ }^{1}$; NMR $\delta_{\mathrm{H}} 1.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.25(1 \mathrm{H}, \mathrm{m}$, Pyr-CH), $2.47(1 \mathrm{H}, \mathrm{m}, \mathrm{Pyr}-\mathrm{CH}), 3.44\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.99(1 \mathrm{H}, \mathrm{ddd}, J=9.8$, $6.0,3.5 \mathrm{~Hz}$, dioxolane $4-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{d}, J=12.3$ $\mathrm{Hz}, \mathrm{CHPh}), 4.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.85\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.21\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.03$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}), 7.26-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.35(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, Ar 2H), $7.46(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$; MS m/z $507.1563(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 507.1557), $505.1586(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 505.1587), $503.1617(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 503.1616), $91(\mathrm{Bn})$.

6.36. 6-((3R,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-phenylpyrimidine-2,4-diamine

 (26a)Compound 25a ($700 \mathrm{mg}, 1.6 \mathrm{mmol}$) was stirred for 16 h with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(30 \%, 70 \mathrm{~mL})$. Evaporation and chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 7: 3\right)$ to give 26a ($600 \mathrm{mg}, 95 \%$) as a highly hygroscopic pale yellow solid: NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 1.69\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.88\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, 2.43 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$), $2.60\left(1 \mathrm{H}, \mathrm{ddd}, J=15.3,10.6,5.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.43-3.47\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}-\right.$ H_{2}), 3.49-3.56 (2 H, m, 5'- H_{2}), $4.52(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{CHPh}), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}$, CHPh), 7.27-7.41 ($6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph} 3,4,5-\mathrm{H}_{3}$), 7.47-7.58 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph} 2,6-\mathrm{H}_{2}$); MS m/z 417 $(\mathrm{M}+\mathrm{Na})$, $395.2097(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 395.2083), $243\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}\right), 213(\mathrm{M}-$ $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}$), $91(\mathrm{Bn})$.

6.37. 6-((3R,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-(3-chlorophenyl)pyrimidine-2,4-diamine (26b)

Compound $\mathbf{2 5 b}$ was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 5 a}$, to give $\mathbf{2 6 b}(87 \%)$ as a white solid: mp $131-133^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 1.64\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $2.37\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 2.51\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.49-3.55\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}-\mathrm{H}_{2}\right), 3.57-3.64\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{CHPh}), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{CHPh}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\left.\mathrm{Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.33-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.47\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 29.02,30.84,71.03,71.61,72.09,72.99,107.42,121.01,127.36,127.58,128.01$, 129.32, 132.16, 134.14, 138.10, 161.81, 162.16, 163.66; MS m/z 453/451 (M + Na), 431.1657 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 431.1663), $429.1680(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{4}\right.$ requires 429.1693), 279/277 ($\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}$), 249/247 ($\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}$), $91(\mathrm{Bn})$.
6.38. 6-((3R,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-(3-bromophenyl)pyrimidine-2,4-diamine (26c)

Compound $\mathbf{2 5 c}$ was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 5 a}$, to give $\mathbf{2 6 c}(91 \%)$ as a highly hygroscopic pale buff solid: NMR $\delta_{\mathrm{H}} 1.65-1.84\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.35-2.55(2 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.52-3.71\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 4.49(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.54(1 \mathrm{H}, \mathrm{d}, J=$ $12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.71\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.09\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 2,6-$ H_{2}), 7.24-7.34 (5 H, m, Ph-H5), $7.54\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z 497/495 (M+ $\mathrm{Na}), 475.1184(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 475.1167), 473.1179(M+H) $\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4}\right.$ requires 473.1188), 323/321 (M-C9 $\left.\mathrm{C}_{11} \mathrm{O}_{2}\right), 293 / 291\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}\right), 91$ (Bn).
6.39. 6-((3R,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-(3,4-dichlorophenyl)pyrimidine-2,4-diamine (26d)

Compound 25d was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of 25a, to give $\mathbf{2 6 d} \mathbf{(7 4 \%}$) as a pale yellow solid: mp $123-125^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 1.60\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.82(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 2.31\left(1 \mathrm{H}, \mathrm{ddd}, J=14.2,9.0,5.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.47\left(1 \mathrm{H}, \mathrm{ddd}, J=14.2,9.0,5.9 \mathrm{~Hz}, 1^{\prime}-\right.$ H), 3.44-3.51 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}-\mathrm{H}_{2}$), 3.54-3.59 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$), $4.47(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}, \mathrm{CHPh})$, $4.52(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}), 7.22-7.33(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}-\mathrm{H}_{5}\right), 7.41\left(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}\right.$, Ar 2-H), $7.57(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$; NMR (CD ${ }_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} 23.30,30.97,71.23,71.58,72.99,106.22,181.16,127.31,127.55,127.99,130.64,131.15$,
131.95, 132.61, 134.54, 138.17, 162.09, 162.83, 163.16; MS m/z 489/487/485 (M + Na), $467.1258(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{25}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 467.1244), $465.1272(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{25}{ }^{37} \mathrm{Cl}\right.$ ${ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires 465.1274), $463.1293(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{25}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 463.1303), $315 / 313 / 311\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}\right), 91(\mathrm{Bn})$.
6.40. (4R,5S)-4-(4-Cyano-3-oxo-4-phenylbutyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (27a) / (4R,5S)-4-(4-cyano-3-hydroxy-4-phenylbut-3-enyl)-5-hydroxymethyl-2,2-di-methyl-1,3-dioxolane (28a)
$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}(1.0 \mathrm{M}$ in THF, $30 \mathrm{~mL}, 30 \mathrm{mmol})$ was added to phenylacetonitrile $(1.75 \mathrm{~g}, 15$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ under N_{2} at $-78^{\circ} \mathrm{C}$. After 10 min , $20(3.5 \mathrm{~g}, 15 \mathrm{mmol})$ was added. The mixture was warmed to $20^{\circ} \mathrm{C}$ and was stirred for 72 h . Water was added. The solution was washed twice $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ before being acidified to pH 6 with aq. citric acid $(1 \mathrm{M})$ in the presence of EtOAc. The EtOAc phase was separated and washed with water. Drying, evaporation and chromatography (EtOAc / hexane, 3:1) gave 27a/28a ($450 \mathrm{mg}, 10 \%$) as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.74-1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.71(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHC}=\mathrm{O}), 2.83(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{O}), 3.62\left(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.07(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.15$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $4.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCN})$, 7.36-7.50 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}$); MS m/z 303.1464 (M + H) $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}\right.$ requires 303.1470), $287\left(\mathrm{M}-\mathrm{CH}_{3}\right)$, $271\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right), 245\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}\right)$.
6.41. (4R,5S)-4-(4-(4-Chlorophenyl)-4-cyano-3-oxobutyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (27b) / (4R,5S)-4-(4-(4-chlorophenyl)-4-cyano-3-hydroxybut-3-enyl)-5-hyd-roxymethyl-2,2-dimethyl-1,3-dioxolane (28b)

4-Chlorophenylacetonitrile was condensed with 20, as for the synthesis of 27a/28a, to give $\mathbf{2 7 b} / \mathbf{2 8 b}(7 \%)$ as a pale yellow solid: mp $133-135^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}$, Me), 2.35-2.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.66-2.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $3.63(1 \mathrm{H}, \mathrm{dd}, J=12.7,4.9$ $\mathrm{Hz}, \mathrm{CHOH}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=12.7,4.9 \mathrm{~Hz}, \mathrm{CHOH}), 4.21-4.28\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 7.35(2 \mathrm{H}$, d, $\left.J=9.0 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z $340(\mathrm{M}+\mathrm{H})$ $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{37} \mathrm{ClNO}_{4}, 338(\mathrm{M}+\mathrm{H}) \mathrm{C}_{17} \mathrm{H}_{20}{ }^{35} \mathrm{ClNO}_{4}, 322 / 320(\mathrm{M}-\mathrm{OH}), 308 / 306\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right)$.
6.42. ((4R,5S)-4-(4-(4-Bromophenyl)-4-cyano-3-oxobutyl)-5-hydroxymethyl-2,2-dimeth-yl-1,3-dioxolane (27c) / (4R,5S)-4-(4-(4-bromophenyl)-4-cyano-3-hydroxybut-3-enyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (28c)

4-Bromophenylacetonitrile was condensed with 20, as for the synthesis of 27a/28a, to give
$\mathbf{2 7 c} / \mathbf{2 8 c}(6 \%)$ as a pale yellow solid: mp $128-130^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.51(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me})$, 2.39-2.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.69-2.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $3.62(1 \mathrm{H}, \mathrm{dd}, J=11.6,5.3$ $\mathrm{Hz}, \mathrm{CHOH}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=11.6,5.3 \mathrm{~Hz}, \mathrm{CHOH}), 4.19-4.27\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 7.30(2 \mathrm{H}$, d, $\left.J=8.5 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.47\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} m / \mathrm{z} 382.0480(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{17} \mathrm{H}_{20}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 382.0476), $380.0475(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{17} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 380.0497), $368 / 366\left(\mathrm{M}-\mathrm{CH}_{3}\right), 342 / 340\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right), 326 / 324\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}\right)$.
6.43. (4R,5S)-4-(4-Cyano-4-(3,4-dichlorophenyl)-3-oxobutyl)-5-hydroxymethyl-2,2-di-methyl-1,3-dioxolane (27d) / (4R,5S)-4-(4-cyano-4-(3,4-dichlorophenyl)-3-hydroxybut-3-enyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (28d)

3,4-Dichlorophenylacetonitrile was condensed with 20, as for the synthesis of 27a/28a, to give $\mathbf{2 7 d} / \mathbf{2 8 d}(7 \%)$ as a pale yellow solid: $\mathrm{mp} 117-118{ }^{\circ} \mathrm{C}$; IR $v_{\max } 3424,2209,1718 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.38-2.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.72-2.84(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 3.64(1 \mathrm{H}, \mathrm{dd}, J=11.5,5.5 \mathrm{~Hz}, \mathrm{CHOH}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=11.5,5.5 \mathrm{~Hz}$, $\mathrm{CHOH}), 4.18-4.29\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 7.27(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}$, Ar 6-H), $7.43(1 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \operatorname{Ar} 5-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{z} 375 / 373 / 371(\mathrm{M}+\mathrm{H})$, $334 / 332 / 330\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}\right), 316 / 314 / 312\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}\right)$.
6.44. (4R,5S)-4-(4-Cyano-3-methoxy-4-phenylbut-3-enyl)-2,2-dimethyl-5-hydroxymeth-yl-1,3-dioxolane (29a) and 6-(2-((4R,5S)-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolan-4-yl)ethyl)-5-phenylpyrimidine-2,4-diamine (30a)

Compound 27a/28a was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give $\mathbf{2 9 a}$ (330 mg , 95\%) as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.51(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.87-2.01(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.84-3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.69\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.86(3 \mathrm{H}, \mathrm{s}$, OMe), 4.22-4.27 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), 7.24-7.42 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}$); MS m/z 318.1707 (M + H) $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\right.$ requires 318.1705), $302(\mathrm{M}-\mathrm{Me})$, $277\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}\right)$, $258\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}\right)$. Compound 29a was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$ (reaction time 4 h , chromatographic eluant $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$), to give 30a (42\%) as a pale buff solid: $\mathrm{mp} 72-75^{\circ} \mathrm{C}$; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.75-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.32(1 \mathrm{H}$, ddd, $J=15.9,9.7,6.0 \mathrm{~Hz}$, Pyr-CH), $2.49(1 \mathrm{H}, \mathrm{ddd}, J=15.9,8.7,7.4 \mathrm{~Hz}$, Pyr-CH), 3.53 (1 H , dd, $J=11.6,5.9 \mathrm{~Hz}, \mathrm{CHOH}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=11.6,5.9 \mathrm{~Hz}, \mathrm{CHOH}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=$ $12.2,5.9 \mathrm{~Hz}$, dioxolane $4-\mathrm{H})$, $4.12(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $4.95\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.21(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, Ar 2-H), $7.22(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}), 7.36$
($1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \operatorname{Ar} 4-\mathrm{H}), 7.21\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right) ; \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{C}} 23.01,25.58$, 25.70, 28.17, 58.60, 74.07, 75.63, 105.27, 106.26, 125.50, 126.82, 126.85, 127.94, 158.71, 159.82, 162.92; MS m/z $345.1935(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 345.1926), $329(\mathrm{M}-\mathrm{Me})$, $200\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}\right)$.
6.45. (4R,5S)-4-(4-(4-Chlorophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-5-hydr-oxymethyl-1,3-dioxolane (29b) and 5-(4-chlorophenyl)-6-(2-((4R,5S)-2,2-dimethyl-5-hyd-roxymethyl-1,3-dioxolan-4-yl)ethyl)pyrimidine-2,4-diamine (30b)

Compound 27b/28b was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{2 9 b}(90 \%)$ as a pale yellow oil. Compound 29b was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$ (reaction time 10 h , chromatographic eluant $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$), to give $\mathbf{3 0 b}$ (12\%) as a white solid: mp 94-95 ${ }^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) 1.73(1 \mathrm{H}, \mathrm{m}$, CHCHO), 1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}$), 2.29 ($1 \mathrm{H}, \mathrm{ddd}, J=13.4,10.8,5.1 \mathrm{~Hz}, \operatorname{Pyr}-\mathrm{CH}$), $2.46(1 \mathrm{H}$, ddd, $J=13.4,10.4,5.9 \mathrm{~Hz}$, Pyr-CH), $3.56(1 \mathrm{H}, \mathrm{dd}, J=11.7,6.1 \mathrm{~Hz}, \mathrm{CHOH}), 3.66(1 \mathrm{H}, \mathrm{dd}, J$ $=11.7,6.1 \mathrm{~Hz}, \mathrm{CHOH}), 4.02(1 \mathrm{H}, \mathrm{dt}, J=8.1,5.8 \mathrm{~Hz}$, dioxolane $4-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{q}, J=5.8$ Hz , dioxolane $5-\mathrm{H}$), $5.04\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $5.76\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Ar} 2,6-$ $\left.\mathrm{H}_{2}\right), 7.42\left(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right)$; NMR $\delta_{\mathrm{C}} 25.57,28.04,28.42,30.46,60.90,76.77$, $77.09,107.39,107.94,129.71,132.64,134.29,160.82,162.48,164.40$; MS m/z $381.1506(\mathrm{M}$ $+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{24}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 381.1507), $379.1525(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{24}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{4}\right.$ requires 379.1536), 236/234 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$), $188 / 186\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClO}_{3}\right)$.
6.46. (4R,5S)-4-(4-(4-Bromophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-5-hydr-oxymethyl-1,3-dioxolane (29c) and 5-(4-bromophenyl)-6-(2-((4R,5S)-2,2-dimethyl-5-hyd-roxymethyl-1,3-dioxolan-4-yl)ethyl)pyrimidine-2,4-diamine (30c)

Compound $\mathbf{2 7 c} / \mathbf{2 8 c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{2 9} \mathbf{c}(90 \%)$ as a pale yellow oil: IR $v_{\max } 3435,2243,1592 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}$, Me), 2.38-2.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.74-2.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.64 (1 $\mathrm{H}, \mathrm{dd}, J=11.1,5.0 \mathrm{~Hz}, \mathrm{CHOH}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=11.1,5.0 \mathrm{~Hz}, \mathrm{CHOH}), 4.21-4.27(2 \mathrm{H}, \mathrm{m}$, dioxolane $\left.4,5-\mathrm{H}_{2}\right)$, $7.29\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$. Compound 29c was treated with guanidine, as for the synthesis of 25a (reaction time 10 h , chromatographic eluant $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$), to give $\mathbf{3 0 c}(20 \%)$ as a white solid: mp 124$125^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 1.61-1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.26(1 \mathrm{H}, \mathrm{ddd}, J=13.0$, $10.6,5.8 \mathrm{~Hz}$, Pyr-CH), $2.46(1 \mathrm{H}, \mathrm{ddd}, J=13.0,10.6,5.8 \mathrm{~Hz}, \operatorname{Pyr}-\mathrm{CH}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=$
$11.1,5.9 \mathrm{~Hz}, \mathrm{CHOH}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=11.1,5.9 \mathrm{~Hz}, \mathrm{CHOH}), 4.01(1 \mathrm{H}, \mathrm{ddd}, J=9.9,5.9$, 3.9 Hz , dioxolane 4-H), $4.08(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}$, dioxolane $5-\mathrm{H}), 7.21(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}$ $\left.2,6-\mathrm{H}_{2}\right), 7.66(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, Ar 3,5-H2$)$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 24.43,27.11,28.49,30.66$, $60.32,76.63,77.89,107.20,107.82,121.84,132.21,132.57,133.50,160.82,162.98,163.71$; MS m/z $425.1007(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{24}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 425.1011), $423.1019(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{18} \mathrm{H}_{24}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4}\right.$ requires 423.1013), 280/278 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$), $186\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrO}_{3}\right)$.
6.47. (4R,5S)-4-(4-(3,4-Dichlorophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolane (29d) and 5-(3,4-dichlorophenyl)-6-(2-((4R,5S)-5-hydroxy-methyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)pyrimidine-2,4-diamine (30d)

Compound $\mathbf{2 7} \mathbf{c} / \mathbf{2 8 c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{2 9 d}(91 \%)$ as a pale yellow oil: IR $v_{\max } 3467,2210,1597 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.50(3 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{Me})$, 2.30-2.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.72-2.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.58$3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.18-4.26\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}), 7.84$ (1 $\mathrm{H}, \mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H})$. Compound 29 d was treated with guanidine, as for the synthesis of $\mathbf{2 5 a}$ (reaction time 6 h , chromatographic eluant CHCl_{3} / $\mathrm{MeOH}(9: 1)$), to give $\mathbf{3 0 d}(9 \%)$ as a white solid: mp $114-115^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}$), $1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.34(1 \mathrm{H}, \mathrm{m}$, Pyr-CH$)$, $2.48(1 \mathrm{H}, \mathrm{m}$, Pyr-CH$), 3.58(1 \mathrm{H}, \mathrm{dd}, J=11.4,5.9 \mathrm{~Hz}, \mathrm{CHOH}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=11.4,5.9$ $\mathrm{Hz}, \mathrm{CHOH}), 4.05(1 \mathrm{H}, \mathrm{m}$, dioxolane 4-H), $4.15(1 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}$, dioxolane 5-H), 4.95 (2 $\left.\mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.53\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.08(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, J=1.7$ Hz, Ar $2-\mathrm{H}$), 7.52 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, Ar $5-\mathrm{H})$; NMR $\delta_{\mathrm{C}} 25.53,28.04,28.12,30.35,61.05$, $65.83,70.51,106.62,108.04,130.15,131.41,131.45,133.51,134.4,160.93,162.22,168.33$; MS m/z $417.1091(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{23}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 417.1088), $415.1103(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{18} \mathrm{H}_{23}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 415.1117), $413.1129(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{18} \mathrm{H}_{23}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 413.1147), 272/270/268 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$) $186\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}\right)$.

6.48. Diethyl (R, R)-2,2-diethyl-1,3-dioxolane-4,5-dicarboxylate (32)

Diethyl (R, R)-2,3-dihydroxybutanedioate 31 ($15.0 \mathrm{~g}, 70 \mathrm{mmol}$), 2,2-dimethoxypropane (8.0 g , 80 mmol) and 4-methylbenzenesulfonic acid ($66 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dichloromethane (200 mL) were heated under reflux through activated $4 \AA$ molecular sieves (33 g) in a Soxhlet apparatus for $3 \mathrm{~h} . \mathrm{Na}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added. Filtration, drying and evaporation gave
$32(16.0 \mathrm{~g}, 89 \%)$ as a pale buff oil (lit. ${ }^{47}$ oil): NMR $\delta_{\mathrm{H}} 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.50\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 4.28\left(4 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 4.77\left(2 \mathrm{H}, \mathrm{s}, 4,5-\mathrm{H}_{2}\right)$.

6.49. (S,S)-4,5-Di(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (33)

$\mathrm{LiAlH}_{4}(6.0 \mathrm{~g}, 150 \mathrm{mmol})$ was heated in dry THF $(60 \mathrm{~mL})$ for 30 min . Compound $32(18.0 \mathrm{~g}$, $70 \mathrm{mmol})$ in dry THF (80 mL) was added during 1.5 h . The mixture was heated under reflux for 5 h , then cooled to $0^{\circ} \mathrm{C}$. Water (10 mL), aq. $\mathrm{NaOH}(4 \mathrm{M}, 10 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$ were added. Filtration and evaporation gave 33. The solid was extracted with hot 1,4-dioxane; evaporation gave further 33 (total $7.0 \mathrm{~g}, 60 \%$) as a pale yellow oil (lit. ${ }^{48}$ oil): NMR $\delta_{\mathrm{H}} 1.41$ (6 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 2.65(2 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{OH}), 3.68-3.78\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.97\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right)$.
6.50. (S,S)-4,5-Di(benzyloxymethyl)-2,2-dimethyl-1,3-dioxolane (34) and (S,S)-4-benzyl-oxymethyl-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (35)
$\mathrm{NaH}(60 \%$ oil, $1.4 \mathrm{~g}, 34 \mathrm{mmol})$ was stirred in dry DMF (20 mL) under N_{2} for 30 min . Compound $33(5.0 \mathrm{~g}, 31 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was added dropwise and the mixture was stirred for 30 min before $\mathrm{BnCl}(4.0 \mathrm{~g}, 32 \mathrm{mmol})$ was added. The mixture was stirred for 1.5 h , then poured into ice-water (250 mL) and extracted thrice with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with water and brine. Drying, evaporation and chromatography (hexane / $\mathrm{Et}_{2} \mathrm{O}$ 1:1) gave 34 ($2.2 \mathrm{~g}, 28 \%$) as a pale yellow oil (lit. ${ }^{49}$ oil): NMR $\delta_{\mathrm{H}} 1.42(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.54-3.66 (4 $\left.\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OBn}\right), 4.02\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 4.54(2 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, 2 \times \mathrm{CHPh}), 4.58(2 \mathrm{H}, \mathrm{d}$, $J=12.3 \mathrm{~Hz}, 2 \times \mathrm{CHPh}), 7.35\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right)$. Further elution gave $35(3.2 \mathrm{~g}, 64 \%)$ as a pale yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}=+8.0^{\circ}\left(\mathrm{c} 3.2, \mathrm{CHCl}_{3}\right)\left(\mathrm{lit.}^{50}[\alpha]^{23}{ }_{\mathrm{D}}=+8.2^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)\right.$); NMR δ_{H} $1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.33(1 \mathrm{H}, \mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, \mathrm{OH}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=$ 9.8, $4.3 \mathrm{~Hz}, \mathrm{CHOBn}), 3.64-3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}+\mathrm{CHOBn}), 3.75(1 \mathrm{H}, \mathrm{dt}, J=11.7,4.3 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.94(1 \mathrm{H}, \mathrm{dt}, J=8.3,4.3 \mathrm{~Hz}, 5-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{dt}, J=8.3,4.3 \mathrm{~Hz}, 4-\mathrm{H}), 4.58(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 7.29-7.35 (5H, m, Ph- H_{5}).

6.51. (4S,5R)-4-Benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-5-carboxaldehyde (4-O-benzyl-2,3-O-isopropylidene-L-threose) (36)

Compound 35 ($3.6 \mathrm{~g}, 14 \mathrm{mmol}$) was stirred with pyridinium chlorochromate ($3.6 \mathrm{~g}, 35$ mmol), NaOAc ($300 \mathrm{mg}, 3.5 \mathrm{mmol}$) and powdered $4 \AA$ molecular sieves (3.0 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (215 mL) under N_{2} for 3 h . The mixture was passed through a bed of silica. The silica was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Evaporation of the solvent from the combined filtrate and extract gave 36
(3.3 g, 93\%) as a pale yellow oil: $[\alpha]^{20}{ }_{\mathrm{D}}=+14^{\circ}\left(\mathrm{c} 3, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{51}[\alpha]^{20}{ }_{\mathrm{D}}=+16.2^{\circ}$ (c 1, CHCl_{3}); NMR $\delta_{\mathrm{H}} 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.67\left(2 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right)$, 4.19-4.29 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), $4.58(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CHPh}), 4.61(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$, CHPh), 7.25-7.36 (5 H, m, Ph-H5), $9.76(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{CHO})$.

6.52. Ethyl (Z,4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-5-propenoate (37Z) and ethyl (E,4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-5-propenoate (37E)

Compound 36 ($2.0 \mathrm{~g}, 8.0 \mathrm{mmol}$), ethyl triphenylphosphoranylideneacetate ($4.2 \mathrm{~g}, 16 \mathrm{mmol}$) and benzoic acid ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$) were heated at reflux in $\mathrm{PhMe}(200 \mathrm{~mL})$ under N_{2} for 4 h. The evaporation residue was extracted thrice with $\mathrm{Et}_{2} \mathrm{O}$. Evaporation and chromatography (hexane / $\mathrm{Et}_{2} \mathrm{O} 5: 1$) gave $37 \mathrm{Z}(800 \mathrm{~g}, 31 \%)$ as a colourless oil (lit. ${ }^{52}$ oil): NMR $\delta_{\mathrm{H}} 1.25(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.45\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 3.68\left(2 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.97(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.62(1 \mathrm{H}, \mathrm{d}, J=$ $12.1 \mathrm{~Hz}, \mathrm{CHPh}), 5.38(1 \mathrm{H}, \mathrm{td}, J=8.3,1.2 \mathrm{~Hz}, 5-\mathrm{H}), 5.92\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,1.2 \mathrm{~Hz}, \mathrm{CHCO}_{2}\right)$, $6.18\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,8.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right), 7.32-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$. Further elution gave 37E ($800 \mathrm{mg}, 31 \%$) as a colourless oil (lit. ${ }^{53}$ oil): NMR $\delta_{\mathrm{H}} 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.43(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.45(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 3.62\left(2 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.95(1 \mathrm{H}, \mathrm{dt}, J=$ 8.6, $4.7 \mathrm{~Hz}, 4-\mathrm{H}), 4.19\left(2 \mathrm{H}, \mathrm{q}, ~ J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.42(1 \mathrm{H}, \mathrm{ddd}, J=8.6,5.5,1.4 \mathrm{~Hz}, 5-\mathrm{H})$, $4.56(1 \mathrm{H}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.61(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 6.09(1 \mathrm{H}, \mathrm{dd}, J=15.6,1.4$ $\left.\mathrm{Hz}, \mathrm{CHCO}_{2}\right), 6.88\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.6,5.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right)$, $7.27-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$.

6.53. Ethyl (4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-5-propanoate (38)

A mixture of $\mathbf{3 7 Z}$ and $\mathbf{3 7 E}(620 \mathrm{mg}, 1.9 \mathrm{mmol})$ was stirred in $\mathrm{EtOH}(25 \mathrm{~mL})$ with $\mathrm{Pd} / \mathrm{C}(5 \%$, 30 mg) under H_{2} for 1 h . Filtration (Celite ${ }^{\circledR}$), evaporation and chromatography (hexane / $\mathrm{Et}_{2} \mathrm{O}$ 4:1) gave 38 ($400 \mathrm{mg}, 63 \%$) as a pale yellow oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-15^{\circ}\left(\mathrm{c} 4.0, \mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}} 1.23$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.39(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{CO}_{2}$), $1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.37-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, $3.53-3.60(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.80-3.87\left(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J=$ $12.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CHPh}), 7.32-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS m/z $323.1856(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}\right.$ requires 323.1858), $265\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right), 91(\mathrm{Bn})$.
6.54. (4S,5S)-5-Benzyloxymethyl-4-(4-cyano-3-oxo-4-phenylbutyl)-2,2-dimethyl-1,3-dioxolane (39a) / (4S,5S)-5-benzyloxymethyl-4-(4-cyano-3-hydroxy-4-phenylbut-3-enyl)-2,2-dimethyl-1,3-dioxolane (40a)

Phenylacetonitrile was condensed with 38, as for the synthesis of 22a/23a, to give 39a/40a (14%) as a pale yellow solid: $\mathrm{mp} 75-77^{\circ} \mathrm{C}$; IR $v_{\max } 2206,1731 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s}$, Me), 1.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.48-2.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 3.54-3.63 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), 3.87-3.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}$), $4.57(1 \mathrm{H}, \mathrm{d}, J=12.5$ $\mathrm{Hz}, \mathrm{CHPh}), 4.61(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{CHPh})$, $5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCN})$, 7.33-7.64 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ’ $\left.3,4,5-\mathrm{H}_{3}+\mathrm{Ph}-\mathrm{H}_{5}\right), 8.11\left(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right.$); MS m/z $392.1859(\mathrm{M}-\mathrm{H})$ $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4}\right.$ requires 392.1861), $335\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right), 317\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{6}\right), 91(\mathrm{Bn})$.
6.55. (4S,5S)-5-Benzyloxymethyl-4-(4-(4-chlorophenyl)-4-cyano-3-oxobutyl)-2,2-di-methyl-1,3-dioxolane (39b) / (4S,5S)-5-benzyloxymethyl-4-(4-(4-chlorophenyl)-4-cyano-3-hydroxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (40b)

4-Chlorophenylacetonitrile was condensed with 38, as for the synthesis of 22a/23a (chromatographic eluant EtOAc / hexane (1:1)), to give $\mathbf{3 9 b} / \mathbf{4 0 b}(41 \%)$ as a yellow oil: IR $v_{\max } 2209$, $1731 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.00(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCHO}), 2.46-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, 3.53-3.62 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), 3.83-3.87($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.26-7.40$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}$), $7.44\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right), 8.02\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right)$; MS $m / z 430.1608(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{37} \mathrm{ClNO}_{4}\right.$ requires 430.1599), 428.1623 (M+H) $\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{4}\right.$ requires 428.1628), 372/370 (M-C2 $\left.\mathrm{C}_{2} \mathrm{H} \mathrm{NO}\right), 91(\mathrm{Bn})$.
6.56. (4S,5S)-5-Benzyloxymethyl-4-(4-(4-bromophenyl)-4-cyano-3-oxobutyl)-2,2-di-methyl-1,3-dioxolane (39c) / (4S,5S)-5-benzyloxymethyl-4-(4-(4-bromophenyl)-4-cyano-3-hydroxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (39c)

4-Bromophenylacetonitrile was condensed with 38, as for the synthesis of 22a/23a, to give 39c/40c (24\%): as a yellow oil: IR $v_{\text {max }} 2208,1718 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{O}), 2.79(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{O}), 3.55-3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{dt}, J=8.0,3.7$ $\mathrm{Hz}, 4-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CHPh}), 4.61(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CHPh}), 7.22(2 \mathrm{H}, \mathrm{d}, J$ $\left.=8.1 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.26-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.53\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z
$474.1103(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 474.1102), $472.1103(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{24} \mathrm{H}_{27}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 472.1123), 415/413 ($\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}$), $91(\mathrm{Bn})$.
6.57. (4S,5S)-5-Benzyloxymethyl-4-(4-cyano-3-methoxy-4-phenylbut-3-enyl)-2,2-di-methyl-1,3-dioxolane (41a) and 6-(2-((4S,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-diox-olan-4-yl)ethyl)-5-phenylpyrimidine-2,4-diamine (42a)

Compound 39a/40a was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give 41a (79\%) as a pale yellow oil: IR $v_{\max } 2208,1605 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.83$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}$), $1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.40-2.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, 3.55-3.60(2 H, m, 4,5- H_{2}), $3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.81-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{CHPh})$, $4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{CHPh})$, 7.14-7.45 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}$); MS m/z $408.2184(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}\right.$ requires 408.2174), $391\left(\mathrm{M}-\mathrm{CH}_{4}\right), 380(\mathrm{M}-\mathrm{HCN}), 91(\mathrm{Bn})$. Compound 41a was condensed with guanidine, as for the synthesis of $\mathbf{2 5 a}$ (reaction time 4 h , chromatographic eluant $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$), to give 42a (67\%) as a highly hygroscopic pale yellow solid: IR $v_{\max } 3454,1664 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.71-1.91 (2 H , $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.33 ($1 \mathrm{H}, \mathrm{ddd}, J=13.5,10.3,5.8 \mathrm{~Hz}, \mathrm{Pyr}-\mathrm{CH}$), 2.45 (1 H , ddd, $J=13.5,10.5$, 5.7 Hz, PyR-CH), $3.44\left(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.67(1 \mathrm{H}, \mathrm{dt}, J=7.9,4.6 \mathrm{~Hz}$, dioxolane $4-\mathrm{H})$, $3.75(1 \mathrm{H}, \mathrm{q}, ~ J=4.6 \mathrm{~Hz}$, dioxolane $5-\mathrm{H})$, $4.28(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh})$, $4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CHPh})$, $4.64\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $5.14\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $7.19-7.43(10 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 435.2398(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 435.2396), $327(\mathrm{M}-$ $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$), $91(\mathrm{Bn})$.
6.58. (4S,5S)-5-Benzyloxymethyl-4-(-4-(4-chlorophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (41b) and 6-(2-((4S,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4yl)ethyl)-5-(4-chlorophenyl)pyrimidine-2,4-diamine (42b)

Compound $\mathbf{3 9 b} / \mathbf{4 0 b}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4} \mathbf{a}$, to give $\mathbf{4 1 b}(91 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.62-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right)$, 2.86-2.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 3.52-3.65 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84-3.93(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.24-7.38$ $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}+\mathrm{Ar}-\mathrm{H}_{4}\right)$. Compound 41b was condensed with guanidine, as for the synthesis of 25a (reaction time 4 h , chromatographic eluant $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1)$), to give $\mathbf{4 2 b}(48 \%)$ as a highly hygroscopic pale yellow solid: IR $v_{\max } 3475,3414,1618 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 2.30(1 \mathrm{H}, \mathrm{ddd}, J=$
$13.5,10.5,5.7 \mathrm{~Hz}$, Pyr-CH), 2.45 (1 H, ddd, $J=13.5,10.5,5.7 \mathrm{~Hz}$, Pyr-CH), 3.41-3.49 (2 H, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right)$, $3.66(1 \mathrm{H}, \mathrm{dt}, J=8.2,3.5 \mathrm{~Hz}$, dioxolane $4-\mathrm{H})$, $3.51(1 \mathrm{H}, \mathrm{m}$, dioxolane $5-\mathrm{H})$, $4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.54(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.69\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.11$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.10-7.35\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}+\mathrm{Ar}-\mathrm{H}_{4}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 471.1979(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 471.1976), $469.1999(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 469.2006), 363/361 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$), $91(\mathrm{Bn})$.
6.59. (4S,5S)-5-Benzyloxymethyl-4-(-4-(4-bromophenyl)-4-cyano-3-methoxybut-3-enyl)-2,2-dimethyl-1,3-dioxolane (41c) and 6-(2-((4S,5S)-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4yl)-ethyl)-5-(4-bromophenyl)pyrimidine-2,4-diamine (42c)

Compound $\mathbf{3 9} \mathbf{c} / \mathbf{4 0} \mathbf{c}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{4 1 c}(93 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.78-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right)$, 2.85-2.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 3.52-3.68 ($2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}_{2}$), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.84-3.94 (2 H , $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.59(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 7.22-7.42$ $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}+\mathrm{Ar}-\mathrm{H}_{4}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 488.1255(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 488.1259), $486.1258(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{29}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 486.1279), $91(\mathrm{Bn})$. Compound 41c was condensed with guanidine, as for the synthesis of 42a, to give 42c (53\%) as a highly hygroscopic buff solid: NMR $\delta_{\mathrm{H}} 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHO}), 1.88(1 \mathrm{H}$, m, CHCHO), 2.33 ($1 \mathrm{H}, \mathrm{ddd}, J=13.7,10.5,5.9 \mathrm{~Hz}, \operatorname{Pyr}-\mathrm{CH}$), 2.48 ($1 \mathrm{H}, \operatorname{ddd}, J=13.7,10.5$, 5.9 Hz, Pyr-CH), 3.45-3.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}$), $3.70(1 \mathrm{H}, \mathrm{dt}, J=7.8,3.5 \mathrm{~Hz}$, dioxolane 4-H), $3.77(1 \mathrm{H}, \mathrm{m}$, dioxolane $5-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CHPh}), 4.57(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}$, CHPh), $4.76\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $5.18\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.09\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.28-$ $7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.54\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 515.1488(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 515.1480), $513.1500(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{25} \mathrm{H}_{30}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4}\right.$ requires 513.1501), 487/485 ($\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}$), 407/405 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$), $91(\mathrm{Bn})$.

6.60. 6-((3S,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-phenylpyrimidine-2,4-diamine

 (43a)Compound 42a was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of 26a, to give 43a (210 $\mathrm{mg}, 76 \%)$ as a pale buff solid: mp 101-102 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 1.70\left(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 2^{\prime}-\right.$ H_{2}), $2.36\left(1 \mathrm{H}, \mathrm{dt}, J=14.2,7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.48\left(1 \mathrm{H}, \mathrm{dt}, J=14.2,7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.42-3.55(4$ $\left.\mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CHPh}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CHPh})$, 7.22-
$7.49\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 395.2082(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 359.2083), 91 (Bn).
6.61. 6-((3S,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-(4-chlorophenyl)pyrimidine-2,4-diamine (43b)

Compound 42b was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of 26a, to give $\mathbf{4 3 b}$ (75%) as a pale yellow solid: $\mathrm{mp} 141-143^{\circ} \mathrm{C}$; IR $v_{\max } 3562,3492,3430,3343,1618 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 1.65-1.73\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.28\left(1 \mathrm{H}, \mathrm{ddd}, J=13.7,9.4,6.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.42(1 \mathrm{H}$, ddd, $\left.J=13.7,9.4,6.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.42-3.54\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, CHPh), 4.52 ($1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CHPh}), 7.20\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.30-7.36$ (5 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 431.1680(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 431.1663), $429.1702(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 429.1693), 91 (Bn).
6.62. 6-((3S,4S)-5-Benzyloxy-3,4-dihydroxypentyl)-5-(3-bromophenyl)pyrimidine-2,4-diamine (43c)

Compound 42c was treated with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as for the synthesis of $\mathbf{2 6 a}$, to give $\mathbf{4 3 c}(95 \%)$ as a highly hygroscopic pale yellow solid: IR $v_{\max } 3582,3350,1613 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}}$ $1.71-1.78\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.36\left(1 \mathrm{H}, \mathrm{dt}, J=14.6,7.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 2.46(1 \mathrm{H}, \mathrm{dt}, J=14.6,7.8$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 3.43-3.61\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}, 4^{\prime}, 5^{\prime}-\mathrm{H}_{4}\right), 4.51(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CHPh}), 4.56(1 \mathrm{H}, \mathrm{d}, J=$ $11.9 \mathrm{~Hz}, \mathrm{CHPh}), 7.18\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.34-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right), 7.63(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.6 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 29.26,31.59,70.80,72.32,71.11,72.99,107.30$, $120.98,122.10,127.39,127.58,128.04,130.83,132.31,138.05,161.45,161.80,162.50 ; \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 475.1184(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 475.1167), 473.1186(M+H) $\left(\mathrm{C}_{22} \mathrm{H}_{26}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{4}\right.$ requires 473.1188), $91(\mathrm{Bn})$.
6.63. 1-Cyano-7-hydroxy-1-phenylheptan-2-one (45a) / 1-cyano-1-phenylhept-1-en-1,7diol (46a)

Phenylacetonitrile and tetrahydrooxepin-2-one 44 were treated with $\operatorname{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a, to give 45a/46a (21\%) as a pale yellow solid: mp $98-99^{\circ} \mathrm{C}$; IR $v_{\max }$ $3402,2205,1718 \mathrm{~cm}^{-1}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.35-1.42\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.44-1.51(2 \mathrm{H}, \mathrm{m}, 6-$ $\left.\mathrm{H}_{2}\right)$, $1.65\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.40(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}$, $\left.7-\mathrm{H}_{2}\right), 4.36(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, Ph 3,5-
$\left.\mathrm{H}_{2}\right)$, $7.61\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}\right.$, Ph 2,6- $\left.\mathrm{H}_{2}\right)$; MS m/z $232.1329(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}\right.$ requires 232.1337), $214(\mathrm{M}-\mathrm{OH}), 185\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right), 115\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)$.
6.64. 1-(4-Chlorophenyl)-1-cyano-7-hydroxyheptan-2-one (45b) / 1-(4-chlorophenyl)-1-cyanohept-1-en-1,7-diol (46b)

4-Chlorophenylacetonitrile and tetrahydrooxepin-2-one 44 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a, to give $\mathbf{4 5 b} / \mathbf{4 6 b}(11 \%)$ as a white solid: $\mathrm{mp} 92-94^{\circ} \mathrm{C}$; NMR δ_{H} $1.21-1.30\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.50\left(2 \mathrm{H}, \mathrm{qn}, J=6.8 \mathrm{~Hz}, 6-\mathrm{H}_{2}\right), 1.58\left(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right)$, $2.58(1 \mathrm{H}, \mathrm{dt}, J=18.2,7.4 \mathrm{~Hz}, 3-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{dt}, J=18.2,7.4 \mathrm{~Hz}, 3-\mathrm{H}), 3.60(2 \mathrm{H}, \mathrm{t}, J=6.8$ $\left.\mathrm{Hz}, 7-\mathrm{H}_{2}\right), 4.65(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.32\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, Ar 3,5- H_{2}); MS m/z $268.0912(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{14} \mathrm{H}_{17}{ }^{37} \mathrm{ClNO}_{2}\right.$ requires 268.0918), $266.0942(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{14} \mathrm{H}_{17}{ }^{35} \mathrm{ClNO}_{2}\right.$ requires 266.0947), 250/248(M-OH), 207/205 (M - $\left.\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$.

6.65. 1-(4-Bromophenyl)-1-cyano-7-hydroxyheptan-2-one (45c) / 1-(4-bromophenyl)-1-cyanohept-1-en-1,7-diol (46c)

4-Bromophenylacetonitrile and tetrahydrooxepin-2-one 44 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a (chromatographic eluant EtOAc / hexane (3:1)), to give 45c/46c (8%) as a pale yellow solid: mp $76-78^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.28\left(2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 1.50(2$ $\left.\mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H}_{2}\right), 1.58\left(2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.62(1 \mathrm{H}, \mathrm{dt}, J=18.0,7.3 \mathrm{~Hz}, 3-$ H), $2.65(1 \mathrm{H}, \mathrm{dt}, J=18.0,7.3 \mathrm{~Hz}, 3-\mathrm{H}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 4.64(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $7.26\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.41\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z 312.0430 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{14} \mathrm{H}_{17}{ }^{81} \mathrm{BrNO}_{2}\right.$ requires 312.0422), $310.0449(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{14} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}\right.$ requires 310.0442), 294/292 (M - OH).
6.66. 1-Cyano-1-(3,4-dichlorophenyl)-7-hydroxyheptan-2-one (45d) / 1-cyano-1-(3,4-chlorophenyl)hept-1-en-1,7-diol (46d)

3,4-Dichlorophenylacetonitrile and tetrahydrooxepin-2-one 44 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of $\mathbf{4 5 c} / \mathbf{4 6 c}$, to give $\mathbf{4 5 d} / \mathbf{4 6 d}(25 \%)$ as a pale yellow solid: $\mathrm{mp} 95-97^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{H}} 1.26\left(2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 1.53\left(2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H}_{2}\right), 1.62$ ($2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}, 4-\mathrm{H}_{2}$), $2.66\left(2 \mathrm{H}, \mathrm{dt}, J=15.4,7.3 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.60(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 7-$ $\left.\mathrm{H}_{2}\right), 4.69(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.39(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$, $7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} 2-\mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 304.0520(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{14} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right.$ requires 304.0499),
$302.0537(\mathrm{M}+\mathrm{H}) \quad\left(\mathrm{C}_{14} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClNO}_{2}\right.$ requires 302.0528), $300.0559(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{14} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right.$ requires 300.0558), 286/284/282 (M-OH).
6.67. (4R,5R)-4-(2-Cyano-1-oxo-2-phenylethyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (49a) / (4R,5R)-4-(2-cyano-1-hydroxy-2-phenylethenyl)-5-hydroxymethyl-2,2-di-methyl-1,3-dioxolane (50a)

Phenylacetonitrile and 2,3-O-isopropylidene-D-erythronolactone 48 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a, to give 49a/50a (27\%) as a pale yellow oil: IR $v_{\max } 3408,2246,1694 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=$ $11.0,3.5 \mathrm{~Hz}, \mathrm{CHOH}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHOH}), 4.75(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.88$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $7.47\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}\right.$, Ph $3,5-\mathrm{H}_{2}$), $7.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{H}), 8.10(2$ $\left.\mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 276.1225(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\right.$ requires 276.1235$), 258$ ($\mathrm{M}-\mathrm{OH}$).
6.68. (4R,5R)-4-(2-(4-Chlorophenyl)-2-cyano-1-oxoethyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (49b) / (4R,5R)-4-(2-(4-chlorophenyl)-2-cyano-1-hydroxyethenyl)-5-hydr-oxymethyl-2,2-dimethyl-1,3-dioxolane (50b)

4-Chlorophenylacetonitrile and 2,3-O-isopropylidene-D-erythronolactone 48 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a, to give $\mathbf{4 9 b} / \mathbf{5 0 b}(21 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.59(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, \mathrm{CHOH}), 4.09(1$ $\mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, \mathrm{CHOH}), 4.86(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.27(2 \mathrm{H}, \mathrm{d}, J$ $\left.=8.4 \mathrm{~Hz}, \mathrm{Ar} 2,6-\mathrm{H}_{2}\right), 7.48\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 312.0849(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{17}{ }^{37} \mathrm{ClNO}_{4}\right.$ requires 312.0816), $310.0855(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{16}{ }^{35} \mathrm{ClNO}_{4}\right.$ requires 310.0846), 294/292 (M - OH).
6.69. (4R,5R)-4-(2-(4-Bromophenyl)-2-cyano-1-oxoethyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (49c) / (4R,5R)-4-(2-(4-bromophenyl)-2-cyano-1-hydroxyethenyl)-5-hydr-oxymethyl-2,2-dimethyl-1,3-dioxolane (50c)

4-Bromophenylacetonitrile and 2,3-O-isopropylidene-D-erythronolactone 48 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a (chromatographic eluant EtOAc / hexane (3:1)), to give 49c/50c (38\%) as a pale yellow oil: IR $v_{\max } 3422,2208,1777 \mathrm{~cm}^{-1} ;$ NMR δ_{H} $1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.47(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=10.9,3.7 \mathrm{~Hz}, \mathrm{CHOH}), 4.45(1 \mathrm{H}, \mathrm{d}, J=$ $10.9 \mathrm{~Hz}, \mathrm{CHOH}), 4.74(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCN})$,
$7.27\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.51\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$; MS m/z 356.0326 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{17}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 356.0320), $354.0327(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 354.0340), 338/336 ($\mathrm{M}-\mathrm{OH}$).
6.70. (4R,5R)-4-(2-Cyano-2-(3,4-dichlorophenyl)-1-oxoethyl)-5-hydroxymethyl-2,2-di-methyl-1,3-dioxolane (49d) / (4R,5R)-4-(2-cyano-2-(3,4-dichlorophenyl)-1-hydroxyethen-yl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (50d)

3,4-Dichlorophenylacetonitrile and 2,3-O-isopropylidene-D-erythronolactone 48 were treated with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, as for the synthesis of 22a/23a (chromatographic eluant EtOAc / hexane (1:1)), to give 49d/50d (22\%) as a pale yellow oil: IR $v_{\max } 3404,2250,1782 \mathrm{~cm}^{-1} ; \mathrm{NMR} \delta_{\mathrm{H}}$ $1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.93(1 \mathrm{H}, \mathrm{dd}, J=10.3,3.7 \mathrm{~Hz}, \mathrm{CHOH}), 4.00(1 \mathrm{H}, \mathrm{d}, J=$ $10.3 \mathrm{~Hz}, \mathrm{CHOH}), 4.70(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 4-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=5.9,3.7 \mathrm{~Hz}, 5-\mathrm{H}), 7.33(1$ $\mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} 5-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}$ 2-H); MS m/z $348.0411(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 348.0397), $346.0901(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClNO}_{4}\right.$ requires 346.0906$), 344.0448(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{15} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 344.0456), 330/328/326 (M - OH).
6.71. (4R,5R)-4-(2-Cyano-1-methoxy-2-phenylethenyl)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (51a) and 6-((4S,5R)-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolan-4-yl)-5-phenylpyrimidine-2,4-diamine (52a)

Compound 49a/50a was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give 51a (85\%) as a pale yellow oil: IR $v_{\max } 3492,2209 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.44$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.58 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.39(1 \mathrm{H}, \mathrm{dd}, J=11.0,3.7 \mathrm{~Hz}, \mathrm{CHOH}), 4.45(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}$, $\mathrm{CHOH}), 4.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.30-7.41\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS $\mathrm{m} / \mathrm{z} 290.1388(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right.$ requires 290.1392$), 274(\mathrm{M}-\mathrm{Me}), 258(\mathrm{M}-\mathrm{OMe})$. Compound 51a was treated with guanidine, as for the synthesis of 25a (chromatographic eluant $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1)$) to give 52a (48%) as a pale yellow solid: mp $214-216^{\circ} \mathrm{C}$; IR $v_{\max } 3492,3465,3422,3318,3178,1624 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=+3.3^{\circ}\left(\mathrm{c} 4, \mathrm{CHCl}_{3}\right) ; \mathrm{NMR} \delta_{\mathrm{H}} 1.21$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, \mathrm{CHOH}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=12.7$, $3.3 \mathrm{~Hz}, \mathrm{CHOH}), 3.97(1 \mathrm{H}, \mathrm{m}$, dioxolane $5-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$, dioxolane 4-H), 4.90 $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.16\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.10(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d}, J=7.4$ $\mathrm{Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.41\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}\right.$, Ph 4-H), $7.47\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right)$; MS m/z $317.1622(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 317.1613).
6.72. (4R,5R)-4-(2(4-Chlorophenyl)-2-cyano-1-methoxyethenyl)-5-hydroxymethyl-2,2-di-methyl-1,3-dioxolane (51b) and 5-(4-chlorophenyl)-6-((4S,5R)-2,2-dimethyl-5-hydroxy-methyl-2,2-dimethyl-1,3-dioxolan-4-yl)pyrimidine-2,4-diamine (52b)

Compound 49b/50b was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give $\mathbf{5 1 b}(69 \%)$ as a pale yellow oil: MS m/z $326.0989(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{37} \mathrm{ClNO}_{4}\right.$ requires 326.0973), 324.1014 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{4}\right.$ requires 324.1002), $307 / 305\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$. Compound 51b was treated with guanidine, as for the synthesis of 52a, to give $\mathbf{5 2 b}(50 \%)$ as a pale buff solid: mp 172$174^{\circ} \mathrm{C}$; IR $v_{\max } 3497,3459,3433,3396,3217,1613 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.63 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.66(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.3 \mathrm{~Hz}, \mathrm{CHOH}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=$ $12.8,3.3 \mathrm{~Hz}, \mathrm{CHOH}), 3.98(1 \mathrm{H}, \mathrm{m}$, dioxolane $5-\mathrm{H}), 4.66\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J=6.2$ Hz , dioxolane 4-H), $4.93\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.05(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}), 7.27(1 \mathrm{H}$, dd, $J=9.4,2.0 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, \operatorname{Ar} 3-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=9.4$, 2.0 Hz , Ar 5-H); MS m/z $353.1218(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20}{ }^{37} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 353.1194), 351.1236 $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 351.1223), 295/293 (M-C3H5).
6.73. (4R,5R)-4-(2-(4-Bromophenyl)-2-cyano-1-methoxyethenyl)-2,2-dimethyl-5-hydr-oxymethyl-1,3-dioxolane (51c) and 5-(4-bromophenyl)-6-((4S,5R)-2,2-dimethyl-5-hydr-oxymethyl-1,3-dioxolan-4-yl)pyrimidine-2,4-diamine (52c)

Compound $\mathbf{4 9} \mathbf{c} / \mathbf{5 0}$ c was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of $\mathbf{2 4 a}$, to give $\mathbf{5 1 c}(91 \%)$ as a pale yellow oil: NMR $\delta_{\mathrm{H}} 1.44$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.48 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 3.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.40 ($1 \mathrm{H}, \mathrm{dd}, J=10.9,3.5 \mathrm{~Hz}, \mathrm{CHOH}), 4.46(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{CHOH}), 4.61(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $5.34(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.36\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} 2,6-\mathrm{H}_{2}\right), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, Ar 3,5- H_{2}); MS m/z 370.0481 (M+H) ($\mathrm{C}_{16} \mathrm{H}_{19}{ }^{81} \mathrm{BrNO}_{4}$ requires 370.0476), $368.0501(\mathrm{M}+$ H) $\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{79} \mathrm{BrNO}_{4}\right.$ requires 368.0497). Compound 51c was treated with guanidine, as for the synthesis of 52a, to give $52 \mathrm{c}(29 \%)$ as a pale yellow solid: mp 181-183 ${ }^{\circ} \mathrm{C}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ $\delta_{\mathrm{H}} 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.45\left(2 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.03(1 \mathrm{H}, \mathrm{dt}, J=6.4$, 3.5 Hz , dioxolane $5-\mathrm{H}), 4.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}\right.$, dioxolane 4-H), $5.70\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, 5.85 (2 $\left.\mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, \operatorname{Ar} 2-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H})$, $7.61(1 \mathrm{H}, \mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, \mathrm{Ar} 3-\mathrm{H})$; NMR $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{C}} 25.44,26.37,62.49,76.46,79.81,108.35,108.72,121.70,132.30,132.35$, 132.59, 133.38, 134.30, 159.21, 162.29, 163.21; MS m/z $397.0694(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 397.0698), $395.0712(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{3}\right.$ requires 395.0718).
6.74. (4R,5R)-2-Cyano-4-(2-(3,4-dichlorophenyl)-1-methoxyethenyl)-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolane (51d) and 5-(3,4-dichlorophenyl)-6-((4S,5R)-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolan-4-yl)pyrimidine-2,4-diamine (52d)

Compound 49d/50d was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as for the synthesis of 24a, to give $\mathbf{5 1 d}(78 \%)$ as a pale yellow oil: IR $v_{\max } 3534,2247,1595 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{H}} 1.44(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.47(3 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{Me})$, $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.54(1 \mathrm{H}, \mathrm{dd}, J=10.7,4.1 \mathrm{~Hz}, \mathrm{CHOH}), 4.73(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}$, $\mathrm{CHOH}), 4.96(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 4-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H})$, 7.37 ($1 \mathrm{H}, \mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}$, Ar 2-H); MS m/z 360.0378 (M - H) $\left(\mathrm{C}_{16} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 360.0397), $358.0433(\mathrm{M}-\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{16}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClNO}_{4}\right.$ requires 358.0426), $356.0452(\mathrm{M}-\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{4}\right.$ requires 356.0456), 346/344/342(M-Me). Compound 51d was treated with guanidine, as for the synthesis of 52a, to give 52d (47\%) as a pale yellow solid: mp 181-183 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{H}} 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.40-3.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $4.03(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 4-\mathrm{H}), 5.21(2 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{NH}_{2}\right), 5.31\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.11(0.5 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.21(0.5 \mathrm{H}, \mathrm{dd}, J=8.2$, $2.0 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{H}), 7.38(0.5 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, Ph $2-\mathrm{H}), 7.48(0.5 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{Ph} 2-\mathrm{H}), 7.60$ ($0.5 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ph} 5-\mathrm{H}), 7.62(0.5 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\mathrm{Ph} 5-\mathrm{H})$; NMR $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta_{\mathrm{C}} 24.90$ (Me), $25.88(\mathrm{Me}), 61.93\left(\mathrm{CH}_{2} \mathrm{OH}\right), 76.13(\mathrm{CH}), 79.16(\mathrm{CH}), 107.43\left(\mathrm{CMe}_{2}\right), 108.75(\mathrm{Pyr} 5-$ C), 130.36 (Ph C), 131.07 (Ph CH), 131.18 ($\mathrm{Ph} \mathrm{C)}$,131.51 (Ph CH), 132.89 (Ph CH), 135.14 (Ph C), 159.37 (Pyr 2-C), 161.93 (Pyr 4-C), 162.93 (Pyr 6-C); MS m/z 389.0778 (M + H) $\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 389.0775), $387.0810(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{37} \mathrm{Cl}^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 387.0833), $385.0833(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires 385.0834), 331/329/327 ($\mathrm{M}-$ $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$).

6.75. 1-Cyano-1,4-diphenylbutan-2-one (54) / 1-cyano-1,4-diphenylbut-1-en-2-ol (55)

Phenylacetonitrile was condensed with ethyl 3-phenylpropanoate 53, as for the synthesis of 22a/23a, to give $54 / 55$ (34%) as a pale buff solid: $\mathrm{mp} 53-54^{\circ} \mathrm{C}$ (lit. ${ }^{54} \mathrm{mp} 76-78^{\circ} \mathrm{C}$) ; IR $v_{\max }$ $2200 \mathrm{~cm}^{-1}$; NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 2.88\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.94\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 7.20-7.61 ($\left.10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}-\mathrm{H}_{5}\right), 11.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) \mathrm{MS} \mathrm{m} / \mathrm{z} 250.1240(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}\right.$ requires 250.1231), $222(\mathrm{M}-\mathrm{HCN}), 91(\mathrm{Bn})$.

6.76. 1-Cyano-1-phenylpropan-2-one (58) / 1-cyano-1-phenylprop-1-en-2-ol (59)

Phenylacetonitrile was condensed with ethyl acetate 58, as for the synthesis of 22a/23a except
that chromatography was omitted and the product was recrystallised (aq. EtOH), to give 58/59 (31%) as a pale buff solid: mp $87-88^{\circ} \mathrm{C}$ (lit. ${ }^{55} \mathrm{mp} 87-89^{\circ} \mathrm{C}$); NMR $\delta_{\mathrm{H}} 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.66$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHCN}$), 7.38-7.47 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{5}\right)$; MS m/z $160.0740(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}\right.$ requires 160.0762), $144\left(\mathrm{M}-\mathrm{CH}_{3}\right), 118\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)$.

6.77. 1-(4-Chlorophenyl)-1-cyanobutan-2-one (68) / 1-(4-chlorophenyl)-1-cyano-but-1-en-2-ol (64)

4-Chlorophenylacetonitrile was condensed with ethyl propanoate 62, as for the synthesis of 22a/23a, to give $\mathbf{6 2} / \mathbf{6 3}$ (31%) as a pale yellow solid: $\mathrm{mp} 50-51^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 50-52^{\circ} \mathrm{C}$); NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta_{\mathrm{H}} 1.24(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{Me}), 2.62\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.42(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.8 \mathrm{~Hz}, 2,6-\mathrm{H}_{2}\right), 7.66\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 3,5-\mathrm{H}_{2}\right)$.

6.78. Biological assay

The radial spoke assay was performed essentially as described by Gerum et al. ${ }^{38}$ and Sibley et $a l .{ }^{56}$ The three yeasts were grown in media comprising 10% yeast extract, 10% peptone and 10% dextrose. Sulfanilamide ($1.0 \mathrm{mM}, 100 \mu \mathrm{~L}$), an inhibitor of dihydropteroate synthase, ${ }^{57}$ was spread onto fresh agar plates and allowed to absorb into the medium overnight. Three template plates were streaked with the yeast cultures in two orthogonal lines and incubated at $30^{\circ} \mathrm{C}$ for 3 d . These plates were used to generate replica test plates. Test compounds 7a-d, 8ac, 9a-d, 10a-d and control compounds 3, 6, 11, 12 were made up as 10 mM solutions in DMSO; a spot $(10 \mu \mathrm{~L})$ of each of these solutions was placed at the centre of each test plate. The assay plates were then incubated for 3 days at $30^{\circ} \mathrm{C}$ before the inhibition zone was measured. Each compound/yeast combination was assayed in triplicate.

Acknowledgements

We thank Dr. Steven J. Black and Dr. Timothy Woodman (University of Bath) for the NMR spectra, Jo Carter (University of Bath) for support of the microbiological study, the EPSRC Mass Spectrometry Centre (Swansea) for some of the mass spectra and Dr. Carol Hopkins Sibley (University of Washington) for the kind gift of the yeast cell lines. We are very grateful to the Government of the Arab Republic of Egypt for a studentship (to MHRIE-H).

References

1. Srivastava, R.; Kumar, D.; Subramaniam, P.; Srivastava, B. S. Biochem. Biophys. Res. Comm. 1997, 235, 602.
2. Janin, Y. L. Bioorg. Med. Chem. 2007, 15, 2479.
3. Crofton, J. J. Pharm. Pharmacol. 1997, 49, 3.
4. Takayama, K.; Kilburn, J. O. Antimicrob. Agents Chemother. 1989, 33, 1493.
5. Wolucka, B. A.; McNeil, M. R.; de Hoffmann, E.; Chojnacki, T.; Brennan, P. J. J. Biol. Chem. 1994, 269, 23328.
6. DeCock, K. M.; Chaisson, R. E. Int. J. Tubercul. Lung Dis. 1999, 3, 457.
7. Zhang, Y.; Amzel, L. M. Current Drug Targets 2002, 3, 131.
8. Kompis, I. M.; Islam, K.; Then, R. L. Chem. Rev. 2005, 105, 593.
9. Blaney, J. M.; Hansch, C.; Silipo, C.; Vittoria, A. Chem. Rev. 1984, 84, 333.
10. Tendler, S. J. B.; Threadgill, M. D.; Tisdale, M. J. Cancer Lett. 1987, 36, 65.
11. Zanetti, K. A.; Stover, P. J. J. Biol. Chem. 2003, 278, 10142.
12. McGuire, J. J. Current Pharm. Des. 2003, 9, 2593.
13. Then, R. L. J. Chemother. 2004, 16, 3.
14. Robson, C.; Meek, M. A.; Grunwaldt, J.-D.; Lambert, P. A.; Queener, S. A.; Schmidt, D.; Griffin, R. J. J. Med. Chem. 1997, 40, 3040.
15. White, E. L.; Ross, L. R.; Cunningham, A.; Escuyer, V. FEMS Microbiol. Lett. 2004, 232, 101.
16. Russell, P. B.; Hitchings, G. H. J. Am. Chem. Soc. 1951, 73, 3763.
17. Sardarian, A.; Douglas, K. T.; Read, M.; Sims, P. F. G.; Hyde, J. E.; Chitnumsub, P.; Sirawaraporn, R.; Sirawaraporn, W. Org. Biomol. Chem. 2003, 1, 960.
18. Denny, B. J.; Ringan, N. S.; Schwalbe, C. H.; Lambert, P. A.; Meek, M. A.; Griffin, R. J.; Stevens, M. F. G. J. Med. Chem. 1992, 35, 2315.
19. Tarnchompoo, B.; Sirichaiwat, C.; Phupong, W.; Intaraudom, C.; Sirawaraporn, W.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Thebtaranonth, Y.; Yuthavong, Y. J. Med. Chem. 2002, 45, 1244.
20. Haller, L.; Sossouhounto, R.; Coulibaly, I. M.; Dosso, M.; Kone, M.; Adom, H.; Meyer, U. A.; Betschart, B.; Wenk, M.; Haefeli, W. E.; Lobognon, L. R.; Porquet, M.; Kabore, G.; Sorenson, F.; Reber-Liske, R.; Sturchler, D. Chemotherapy 1999, 45, 452.
21. Argyrou, A.; Vetting, M. W.; Aladegbami, B.; Blanchard, J. S. Nature Struct. Mol. Biol. 2006, 13, 408.
22. Lynch, G.; Kemeny, N.; Currie, V. Cancer Treat. Rep. 1981, 65, 127.
23. Zawilska, J.; Nowak, J. Z. Polish J. Pharmacol. Pharm. 1985, 37, 821.
24. Horton, J. R.; Sawada, K.; Nishibori, M.; Cheng, X. J. Mol. Biol. 2005, 353, 334.
25. Laszlo, J.; Fyfe, M. J.; Sedwick, D.; Lee, L.; Brown, O. Cancer Treat. Rep. 1978, 62, 341.
26. Malik, N. S.; Matlin, S. A.; Fried, J.; Pakyz, R. E.; Consentino, M. J. J. Androl. 1995, 16, 169.
27. Mdluli, K.; Spigelman, M. Curr. Opinion Pharmacol. 2006, 6, 459.
28. Li, R.; Sirawaraporn, R.; Chitnumsub, P.; Sirawaraporn, W.; Wooden, J.; Athappilly, F.; Turley, S.; Hol, W. G. J. J. Mol. Biol. 2000, 295, 307.
29. Arcus, V. L.; Lott, J. S.; Johnston, J. M.; Baker, E. N. Drug Discovery Today 2006, 11, 28.
30. da Cunha, E. F. F.; Ramalho, T. C.; de Alencastro, R. B.; Maia, E. R. J. Biomol. Struct. Dynamics 2004, 22, 119.
31. Suling, W. J.; Seitz, L. E.; Pathak, V.; Westbrook, L.; Barrow, E. W.; Zywno-vanGinkel, S.; Reynolds, R. C.; Piper, J. R.; Barrow, W. W. Antimicrob. Agents Chemother. 2000, 44, 2784.
32. Cody, V.; Galitsky, N.; Luft, J. R.; Pangborn, W.; Rosowsky, A.; Blakley, R. L. Biochemistry 1997, 36, 13897.
33. Davies, J. F. D.; Delcamp, T. J.; Prendergast, N. J.; Ashford, V. A.; Frisheim, J. H.; Kraut, J. Biochemistry 1990, 29, 9467.
34. Shah, L. M.; Meyer, S. C.; Cynamon, M. H. Antimicrob. Agents Chemother. 1996, 40, 2426.
35. Uwai, K.; Oshima, Y. Tetrahedron 1999, 55, 9469.
36. Park, M. H.; Takeda, R.; Nakanishi, K. Tetrahedron Lett. 1987, 28, 3823.
37. Threadgill, M. D.; Griffin, R. J.; Stevens, M. F. G.; Wong, S. K. J. Chem. Soc., Perkin Trans. 1, 1987, 2229.
38. Gerum, A. B.; Ulmer, J. E.; Jacobus, D. P.; Jensen, N. P.; Sherman, D. R.; Sibley, C. H. Antimicrob. Agents Chemother. 2002, 46, 3362.
39. Cren, S.; Gurcha, S. S.; Blake, A. J.; Besra, G. S.; Thomas, N. R. Org. Biomol. Chem. 2004, 2, 2418.
40. Malik, M.; Lu, T.; Zhao, X.; Singh, A.; Hattan, C. M.; Domaglia, J.; Kerns, R.; Drlica, K. Antimicrob. Agents Chemother. 2005, 49, 2008.
41. Suling, W. J.; Seitz, L. E.; Reynolds, R. C.; Barrow, W. W. Antimicrob. Agents Chemother. 2005, 49, 4801.
42. Quan, S.; Venter, H.; Dabbs, E. R. Antimicrob. Agents Chemother. 1997, 41, 2456.
43. Mdluli, K.; Sherman, D. R.; Hickey, M. J.; Kreiswirth, B. N.; Morris, S.; Stover, C. K. Barry, C. E. J. Infect. Dis. 1996, 174, 1085.
44. Hawser, S.; Lociuro, S.; Islam, K. Biochem. Pharmacol. 2006, 71, 941.
45. Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org. Chem. 1990, 55, 4683.
46. Batty, D.; Crich, D. J. Chem. Soc., Perkin Trans. 1 1992, 3193.
47. Carmack, M.; Kelley, C. J. J. Org. Chem. 1968, 33, 2171.
48. Hungerbuhler, E.; Seebach, D. Helv. Chim. Acta 1981, 64, 687.
49. Kataky, R.; Nicholson, P. E.; Parker, D. J. Chem. Soc., Perkin Trans. 2 1990, 321.
50. Morimoto, T.; Chiba, M.; Achiwa, K. Chem. Pharm. Bull. 1993, 41, 1149.
51. Achmatowicz, B.; Wicha, J. Bull. Pol. Acad. Sci. Chem. 1988, 36, 267.
52. Saksena, A. K.; Lovey, R. G.; Girijavallabhan, V. M.; Ganguly, A. K.; McPhail, A. T. J. Org. Chem. 1986, 51, 5024.
53. Clough, S.; Raggatt, M. E.; Simpson, T. J.; Willis, C. L.; Whiting, A.; Wrigley, S. K. J. Chem. Soc. Perkin Trans. 1 2000, 2475.
54. Haworth, R. D.; Mavin, C. R.; Sheldrick, G. J. Chem. Soc. 1934, 1423.
55. Falcon, E. A.; Russell, P.B.; Hitchings, G. H. J. Am. Chem. Soc. 1951, 73, 3753.
56. Sibley, C. H.; Brophy, V. H.; Cheesman, S.; Hamilton, K. L.; Hankins, E. G.; Wooden, J. M.; Kilbey, B. Methods 1997, 13, 190.
57. Gonzalez, A. H.; Berlin, O. G.; Bruckner, D. A. J. Antimicrob. Chemother. 1989, 24, 19.

Table 1. Diameters of zones of inhibition of growth of S. cerevisiae carrying the DHFR gene from M. tuberculosis, S. cerevisiae carrying the human DHFR gene and wild-type S. cerevisiae by test pyrimidine-2,4-diamines $\mathbf{7 - 1 0}$ and by control pyrimidine-2,4-diamines 11, 12, 3 (pyrimethamine) and 6 (trimethoprim).

9d	Cl	Cl	5-hydroxypentyl	9	9	9
$\mathbf{1 0 a}$	H	H	$(1 S, 2 R)-1,2,3$-trihydroxypropyl	5	5	5
$\mathbf{1 0 b}$	H	Cl	$(1 S, 2 R)-1,2,3$-trihydroxypropyl	5	5	5
$\mathbf{1 0 c}$	H	Br	$(1 S, 2 R)-1,2,3$-trihydroxypropyl	5	5	5
$\mathbf{1 0 d}$	Cl	Cl	$(1 S, 2 R)-1,2,3$-trihydroxypropyl	8	8	7
$\mathbf{2 0}$	H	H	2 -phenylethyl	5	5	5
$\mathbf{1 2}$	H	H	Me	7	8	8
$\mathbf{3}$ (pyrimethamine)	Cl	H	ethyl	5	6	5
$\mathbf{6}$ (trimethoprim) DMSO negative control			5	6	6	

${ }^{a}$ Diameters of the zone of inhibition were measured for each of the orthogonal streaks on each of at least three test plates for each determination; data are expressed $\pm 1 \mathrm{~mm}$.
${ }^{\mathrm{b}}$ TB5 yeast engineered to contain DHFR from M. tuberculosis only.
${ }^{\mathrm{c}}$ TB5 yeast engineered to contain human DHFR only.
${ }^{\mathrm{c}}$ TB5 yeast engineered to contain yeast DHFR only.

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ## Take down policy

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: ${ }^{\dagger}$ Present address: Faculty of Pharmacy, Tanta University, Tanta, Egypt
 *Present address: School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK

