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Summary

Texturing volume datasets is an important topic in scientific visualisation, surgical

planning, clinic application and medical education. A goodtexture model should not

only present the abstract information to the target users but also give realistic appear-

ances to volume datasets. It should be developed on the basisof domain knowledge,

user requirement and human factors. Unfortunately, segmented, classified and clus-

tered volume objects are conventionally annotated with non-realistic colours to make

them different to their neighbours.

In addition, highly detailed textures are subjugated to making crucial features im-

mediately noticeable. The subsequent loss of realism causes conventional visualisation

and illustration systems to become unconvincing and unacceptable.

Motivated by the demand ofrealismfor volume objects in medical and entertain-

ment applications, we focus on image based realistic volumerendering techniques.

Photos / images provide a variety of realistic visual effects. So we would like to

use these resources to texture map volume objects. Texturedvolume objects could thus

present sensible appearances to end users.

First, we propose aprojective modelfor texturing volume objects. We usesemantic

constraintsto guide the texture projection within volume objects. We developsplitting

layersto control texture penetration and volume self-occlusion.

Second, texture projection is guided through aMulti-Dimensional-Scaling (MDS)

basedLinear-Weighted Laplacian Smoothing (LWLS)method , which flattens plenop-

tic and cel based intermediate templates for texture mapping. In particular, the smoothed

intermediate template can be used to reduce sheared textures, by providing multi-

resolution representations of texcels. The smoothed intermediate template preserves

the areas of surfaces on volume objects. Highly detailed close-ups are offered based

on multi-resolution representations.

Third, the novelprojective modelbridges image based realistic appearances and

volume based datasets. It lifts the restrictions (non-realistic appearances, pseudo-

textures, etc.) of conventional Non-Photo-Realistic (NPR) based volume annotation.

In summary, the presented models have the potential to lead to several important

applications which include:arbitrary resolution enhancement, multi-layer isosurface

annotation, direct splitting, andtransfer functions. More importantly, therealism in

photos / images could thus be transferred onto volume datasets, to meet the target of

perception and cognition based visualisation.



v

We do not build any explicit mesh models for texture manipulation and volume

manipulation. The algorithms are implemented in continuous space. The texture pro-

jection pipeline is implemented based on volume data sets. Therefore, our system

could also be used as a benchmark for testing volume visualisation systems.

The work has been presented at “Vision, Video, and Graphics 2005, (Edinburgh)”,

“The 3rd International Conference on Computer Graphics andInteractive Techniques

in Australasia and Southeast Asia 2005, (Dunedin)” and the 26th Eurographics Con-

ference (Dublin, Ireland, 2005).
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Chapter 1

Introduction: DSOR Representations

and Challenges in Volume

Visualisation

1.1 DSOR Representation and Realistic Appearances

Visualisation research focuses on exploring Discretely Sampled Object Representa-

tions (DSOR) to provide stunning images and effective interactive systems [1]. The

variety of scanned volume data sets, for instance, of human bodies, animals, art works,

vegetables, etc., are now commonly used in computer animation, surgical planning and

medical education.

“Do expert reviews work?” [2],“Is beauty enough?”, “Do the fascinating demos of

visualisation demonstrate their usefulness rather than just visual fraud and illusion?”,

these doubts draw our attention to the obvious gap between research-focus visualisa-

tion systems and realism-focus medical or entertainment applications.

Most existing scientific visualisation techniques focus onmaking the data intelli-

gible to target users. As a result, pseudo-colour techniques are combined with selector

mechanisms to abstract interesting features of the data. However, small but important

features of the physical objects might be lost. Visualisation might be informative, but

it is unacceptable to novices, due to the loss of natured looking appearance of physical

objects.

In contrast the research presented in this thesis is driven by recreating the appear-

1
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ance as realistically as possible, thus extending volume datasets into many areas cur-

rently served by traditional techniques, such as surgical training and medical educa-

tion.

We recognise the importance of giving a volume data set natural appearance. There-

fore, this thesis addresses a problem of texture mapping a volume data set: to find an

appropriate representation of digital images that provides a link between 2D, 2.5D, 3D

texture models and the 3D volumetric data set. We believe it can be the foundation of

many other image-related applications in the areas of volume visualisation.

The intuition behind our image based representation model is the importance of

the roles played by images. Therefore we believe the contribution of this thesis can

provide an appropriate tool to bridge the gap between hiddenstructures of volume

datasets and the 2D, 2.5D and 3D texture information. Applications that need realism

based volume objects, such as medical training, surgical planning, can be drawn from

this model.

The work described here is funded by the UK EPSRC research grant “Volume

Animation”. EPSRC also support a related grant at the University of Swansea. In order

to develop a coherent modelling scheme that brings togetherdiscretely sampled object

representations, to develop algorithms and methods for different stages of animation

pipeline, and to develop a volume-based computer animationtoolkit, our collaborators

focus on developing novel spatial constraints and models for splitting and animating

volume objects. Here, my research focuses on texture mapping volume objects and

providing colour fields (scalar fields) which can be used in the animation pipeline.

The webpage of the project can be found at: http://www.cs.bath.ac.uk/van.

1.2 Contributions

This thesis gives a possible solution to realistic rendering of volume datasets. Here,

“realistic” refers to transferring realism in images or photos onto volume objects, espe-

cially textures with detailed information in real appearances of physical objects [3, 4].

First, we present an imaged based approach to texture mapping volume datasets [39,

40]. The method is based on a projective pseudo-solid texture model. A rendered in-

termediate template for texture warping is needed.

The rendered intermediate template is based on projective mapping. Therefore,

texcels will be smeared over a relatively large area if they are projected onto a sur-
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face which is almost parallel to the direction of projection. Our second contribution

is the solution to this problem by flattening the intermediate template using Multi-

Dimensional-Scaling (MDS) and Linear-Weighted-Laplacian-Smoothing (LWLS).

We focus on realistic texture mapping and high quality close-ups for texturing vol-

ume objects. In addition, we introduce a meshless model for texturing volume objects,

that is, directly manipulating point clouds rather than construct a mesh model as an

intermediate step for texture mapping and annotation.

In summary, the main contributions of this thesis are:� A projective texturing system which links 2D photos / imagesand 3D volume

datasets. The realistic texture featuring in photos / images can therefore be trans-

ferred onto volume datasets.� A point cloud smoothing method using MDS-based LWLS, which allows us to

flatten the intermediate template and thus match textures tothe shape of the

object. We can prevent texture twisting or tangling.� A method to reduce shear texture, by using the flattened texture intermediate

template.� A multi-resolution representation of the flattened intermediate template, ren-

dered by directly manipulating point clouds rather then warping an abstracted

mesh model as an intermediate step.� An algorithm to texture high quality close-ups, using tiledflattened patches.� A volume splitting model (based on projective semantic layers and a texture

atlas) to effectively control texture penetration and volume self-occlusion.

1.3 Organisation

The rest of this thesis is organised as follows: A general review of texturing vol-

ume objects and new challenges for visualisation tasks are given in Chapter 2. Scalar

field based projective texture models are introduced in Chapter 3. The problem of the

texture shear effect that leads us to develop the surface flattening techniques (Multi-

Dimensional-Scaling) is described in Chapter 4. The problem of texture tangling
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which leads us to develop the sufficient-condition solution(Linear-Weighted-Laplacian-

Smoothing) is described in Chapter 5. Since we directly flatten the point cloud within

volume objects rather then warp a constructed mesh model fortexture indexing, multi-

resolution representations of flattened intermediate templates are also given in Chap-

ter 5. The novel split models which are developed to control texture penetration and

volume self-occlusion are offered in Chapter 6. Finally, wemake concluding remarks

in Chapter 7. The detailed outline is given below.� Chapter 2: Challenges and Background: Texturing Volume objects This

chapter will briefly review the history and the scientific background of the tech-

niques of texturing and annotating volume objects. In addition, perception and

cognition based visualisation techniques are also discussed here. It is worth

pointing out that perception based visualisation has become an important re-

search topic in the recent years. Our initial target is to transfer realism in pho-

tos/images onto volume objects, to preserve the perceptualtexture information

which is subjugated in conventional annotations.� Chapter 3: Projective Texture Models This chapter starts by describing the

new projective texture models for texturing volume objects. It also presents the

generic concept of semantic constraints which are used for splitting volume ob-

jects, spatially or logically; whereas, traditional field functions or spatial transfer

functions focus on solving specific visualisation problemsbut providing gener-

alised algorithms. Multi-level volume rendering, multi-texture models, varieties

of field functions and spatial transfer functions could thusbe consolidated into a

flexible and practical rendering system under such a semantic framework. The

projective texture primitives and illustrative colour transfer techniques (from il-

lustrative photos / image to volume data) are also describedhere.� Chapter 4: Multi-Dimensional-Scaling Models (MDS) This chapter shows

how the Multi-Dimensional-Scaling (MDS) method can be applied to projective

texture models to flatten point clouds within volume objects. It shows how the

texturing results can be improved by flattening the texture intermediate template.

Traditional MDS smoothing method, the geodesic distance MDS method and the

graph model based Euclidean distance MDS method are discussed here.
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Point CloudsThis chapter offers a Linear-Weighted-Laplacian-Smoothing (LWLS)

model to flatten point clouds within volume objects. Compared with MDS

smoothing methods described in the previous chapter, we demonstrate that the

proposed MDS-based LWLS method prevents the tangling of flattened point

clouds. Here the MDS method is used to calculate smoothing weights and

boundary conditions in LWLS. Edge length based smoothing weights are dis-

cussed.

This chapter also introduces the multi-resolution representations of flattened in-

termediate templates. Using MDS-based LWLS smoothing control, we render

the intermediate template using volume rendering techniques, i.e., direct volume

rendering (DVR) and direct surface rendering (DSR). This time, the resolution

of sampling positions are directly controlled by the size ofthe areas of flattened

intermediate surfaces. The larger the area of the flattened surface, the more

sampling positions are allocated. Smoothing control and texture annotation are

based on direct manipulation of point clouds. We do not buildany explicit mesh

models for data representation, neither for volume data sets nor for texture mod-

els.� Chapter 6: Projective Masking Fields Novel splitting models are offered in

this chapter, to solve the problem of volume self-occlusionand texture penetra-

tion. The space is split into different semantic layers and so each of them can

be textured independently. A texture atlas can be used to annotate each layer

accordingly.

This chapter also gives a review of consolidating differentmodules into a system.

Some more results of the proposed visualisation and annotation techniques are

given. A possible application of intermediate templates isalso investigated.� Chapter 7: Conclusions and Future Work We finally make our concluding

remarks and provide an overview of future research orientation.
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1.4 Terminology

We will frequently use the word “realistic” to refer to the real appearances of physi-

cal objects. This not only refers to the colour realism in texture images, but also to

the texture features which contribute to the human perceptual and cognitive process.

Unfortunately, such texture features are often hidden by conventional visualisation

techniques. In addition, in terms of cognitive science, “Intuitive” refers to “immedi-

ate apprehension or cognition” [5], i.e, the direct understanding of the communicated

information.

We also use the word “isosurface” to refer to the point cloudsor level sets within

volume objects. We do not assume the mesh model is the eponym of these discrete

point sets, whereas the graphics community usually does.

1.5 Datasets and Software

The volume graphics API (VLIB: http://vg.swan.ac.uk/vlib/) is used to construct the

volume rendering pipeline. The original volume graphic system and API functionali-

ties were described in Dr. Andrew S. Winter’s PhD thesis [6].The development of the

semantic-projective texture model, semantic volume splitting, multi-dimensional scal-

ing and Laplacian smoothing, multi-resolution representations of intermediate tem-

plate, and data-dependant interpolation were developed asadditional API functions by

the author of this thesis.

The matrix operations in MDS based LWLS smoothing, the colour transferring

between illustrative photos/images and slices of volume data were implemented using

MATLAB(7.01).

The volume fish data was downloaded from the volume library constructed by

Dr. Stefan Roettger at the Computer Graphics Lab of the University of Erlangen

(http://www9.cs.fau.de/Persons/Roettger/library/). The CTHead data was downloaded

from VLIB datasets. The other datasets not explicitly mentioned are constructed by

the author of this thesis.



Chapter 2

Challenges and Background:

Texturing Volume Objects

This chapter will briefly review the history and the scientific background of the tech-

niques of texturing volume objects. In addition, perception and cognition based visu-

alisation techniques are discussed here. Perceptual visualisation has become an impor-

tant research topic in recent years. Our initial targets coincide with this, by preserving

realism, i.e., perceptual information in volume visualisation. Realism is preserved by

directly transferring photographs or images onto volume objects. As we will explain in

the following sections, we focus on developing image based realistic volume rendering

techniques, rather then constructing neuropsychology andneurology-based perceptual

models for volumetric objects.

2.1 DSOR: Challenges in Texturing Volume Objects

It is commonly recognised that digital imaging technology is rapidly become an effec-

tive way of collecting data and information. Acknowledged by the enormous number

of captured images, screened videos, scanned volume datasets and point datasets, we

presented a generic concept describing these data representations, that is, “ Discretely

Sampled Object Representations (DSOR)” [1].

DSOR defines a graphical model using collections of discretely positioned sam-

ples. Therefore, it represents certain geometrical or physical properties of sampled

objects.

7
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Example Sampling Modality Data Dimensional / Representation

(physical property) Number of Channels Scheme

Black-white photography 2 / 1 2D regular grid

(light reflection)

Colour photography (light reflection) 2 / 3 2D regular grid

Raw laser scans (distance to a plane) 2.5 / 1 2D regular grid

Circular full-body scan 2.5 / 1 2D curvilinear grid

(distance to an axis)

Computer tomography (X-ray attenuation) 3 / 1 3D regular grid

Magnetic resonance imaging 3 / 1 3D regular grid

(relaxation of magnetized nuclei)

Raw 3D Ultrasonography (sonic reflection) 2.5 / 1 unstructured regular grid

Processed 3D Ultrasonography 3 / 1 3D regular grid

(sonic reflection)

Electron microscopy (electron diffraction) 3 / 1 3D regular grid

Spatial distance fields (distance to surface) 3 / 1 3D regular grid

Spatial vector fields (e.g., velocity) 3 / 3 3D regular grid

3D photographic imaging (light reflection) 3 / 3 3D regular grid

Movies and videos 3 / 3 3D regular grid

(time-varying light reflection)

Particle simulation results 4 / 1 time-series, 3D point set

(space-time position, etc.)

Motion capture data (space-time position) 4 / 1 time-series, 3D point set

Seismic measurements 4 / n time-series, 2D point set

(space-time density, temperature, etc.)

Table 2.1: Example data capture modalities, and their typical characteristics and rep-

resentation schemes [1].

Unlike commonly used data structures in computer graphics,DSORs lack geomet-

rical, topological and semantic information. Hence they pose significant challenges to

develop texture mapping systems that directly operate on them.

Table 2.1 lists the major digitisation techniques widely used for acquiring DSORs

of real-life objects. As the literature on texture mapping is dominated by surface-based
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modelling and rendering techniques, it is certainly sensible to consider the deformation

and texture mapping of discretely sampled object representations in the context of

these techniques.

It is worth pointing out that discretely sampled object representations let us re-

consider the effectiveness of modelling volume datasets.

This includes moving from grid-based volume graphics to point-based volume

graphics and the multi-resolution rendering controls for point-based surfaces, demon-

strated by Boubekeur et al. [7]. Therefore we believe manipulating point clouds for an-

notating volume datasets can become a bridge connecting volume graphics and image-

based texture models.

Here, the novel concept ofPBVO: the point-based volume object[8], are partic-

ularly interesting to us in that point clouds can become an effective representation of

volume objects, by using the technical framework of Constructive Volume Geometry

(CVG).

When a digital object is captured in a DSOR, the much desirable geometrical, topo-

logical and semantic information is not available. In otherwords, we are facing the

abstraction of discretely sampled datasets as well as the generality of true-3D repre-

sentations in the context of computer graphics.Therefore, the challenge of this thesis

is to drive a paradigm shift from surface graphics to volume graphics.

The research will have several impacts upon computer graphics and its applica-

tions. In particular,� it will challenge the concepts and methodologies of volume graphics by stimu-

lating techniques in the less-developed area of realistic volume rendering;� it will shape new techniques that can benefit from DSOR based applications such

as medical imaging and scientific visualisation.

Now we could easily scan a frog, a tomato, a skull, a human body, a lizard, and

so on, using digital imaging techniques. But how do we preserve their realism of

appearances?

Cyber artists have already demonstrated their artificial computer graphic charac-

ters, with charming, realistic, and lifelike characteristics. Portraits of these characters

are so lifelike that it is hard to believe they are just computer generated [9].

So if the virtual characters have already stepped into the cyber world in the 21st

century, why do volume objects still live in the stone age?
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Hence we focus the issues of the realistic appearance of these DSOR volume

datasets, in particular:� image based texture models for volume datasets and highly detailed close-ups.� lifelike applications in medical imaging and scientific visualisation.

Famous movies providing extremely realistic (life-like synthetic characters) visual

effects include: The Matrix: Reloaded, the Matrix: Revolution, The Lord of the Rings:

The Return of the King, The Hulk, etc. Twenty categories of visual effects which are

widely used in creative fields were introduced by the Visual Effects Society (VES,

http://www.visualeffectssociety.com/) [10]. In comparison to these stunning lifelike

CG characters (surface-based mesh models), research on realistically rendering vol-

ume objects (characters) is still in its infancy. There are so far only a few pieces of re-

ported research which focus on manipulating the volume Visible Man dataset through

skeleton based motion controls [1].

As shown in Figure 2-1, continuous models with snake-boundary representations

for image-based characters were presented by Froumentin etal. in [11]. Since tradi-

tional interpolation methods will blur the sharpness of edges and degrade the quality

of texture features, especially the tiny texture features under warping and morphing

operations, their continuous models maintain the sharpness of edges and the smooth-

ness of flat areas to eliminate the noticeable visual flaws while the digital character is

under deformation.

Another example is given in Figure 2-2. Here, the fire, the lobster and the human

body are all DSOR based volume datasets [1]. These volume objects could be manipu-

lated using spatial transfer functions independently [12,13]. Unfortunately, the human

character was rendered without any realistic appearance.

Under such circumstance, it is highly desirable to push rendering based techniques

and visualisation based methods to a practical level. In other words, even without ge-

ometrical, topological and semantic information, we wouldlike to recover one critical

factor for volume objects: realistic appearance.
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(a)Snake model of swan (b)Arbitrary warping (c)Digital composition.

Figure 2-1: 2D DSORs can be deformed using a 2.5D rendering and composition

system [11].

The Visible Man was about to barbecue a lobster (left) and thelobster exploded (right)

Figure 2-2: Splitting of a lobster using a block-based approach in conjunction with

motion of the Visible Man. Both the lobster and the Visible Man are defined using

discrete volume representations and the fire is defined usinga procedural volume rep-

resentation [14]

The core of most mainstream pipelines is surface-based modelling and rendering.

Extracting surface models from digital imaging data is in general a complex and often

ineffective process. The direct use of such surface based data is usually restricted to

traditional texture and environment mapping. In addition,some volume-based tech-

niques are also restricted to modelling and rendering amorphous objects, such as fire

and clouds. However, as we will demonstrate in this thesis, volume objects could be

presented from 2D imagery data (for external specification,for instance, laser scanning

range data) and 3D imagery data (for internal specification,for instance, MRI and CT

data), that is, bringing the DSORs together through a novelcoherent modelling scheme.
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2.2 Mesh models for Texturing Volume Objects

Mesh based graphic models are widely used. Some successful mesh based digital

models are: the female character “Dawn” presented by NVidia[15], the “dinosaur”

characters in “The Lost World: Jurassic Park”, the “Gollum”character in “The Lord

of The Rings: The Two Towers”, and the “Shrek” character in “Shrek”, etc. In order

to achieve such success, processes of intuition, design, creativity, selection, critique

and refinement were extensively gone through. Many advancedmodelling techniques

were used, for instance, free-form curved surfaces, deformations, physical simulations,

surface colouring and reflections, multi-layer models, andso on [10].

Unfortunately, there are not so many techniques for texturing DSOR characters.

The common techniques are based on converting the discretely sampled datasets to

mesh-based geometrical objects. Such conversion inevitably focuses on the exterior

information rather then the interior information found in DSOR objects.

In this section we will briefly review the volume based mesh generating algorithms

and their advantages and problems.

2.2.1 Mesh-generating: from voxel to polygon

One way to use a volume model is to choose an iso-surface within the volume, create

a mesh to fit and then to texture and render it with a conventional surface renderer.

Numerous methods have been developed to abstract surfaces from volume objects.

Detailed discussions from the volume visualisation view point are given in Jones’ PhD

thesis [16] and Satherley’s PhD thesis [17]. Here, we focus on two generic categories:

surface tilersandsurface trackers[17].

Surface tiling

Surface tiling (iso-surfacing) is to traverse the entire dataset to extract surfaces com-

posed of geometrical primitives. Lorensen and Cline’s Marching Cubes is one of the

most popular surface tiling techniques [18]. Marching Cubes, as the eponym suggests,

is to iteratively place a cube over cells of datasets. Triangulations can be further de-

termined as part of the iso-surface contained in a cell. The positions of the vertices of

triangles, which represent the iso-surface, can be interpolated using the relevant ver-

tices of the cube. The surface is thus produced from discretely sampled representations
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of scalar fields of volume objects, i.e,f :<3!<2.
In recent years, many techniques have been presented to improve Marching Cubes.

Examples include the algorithm presented by Lewiner et al. to eliminate both face

and cell ambiguity [19], the real-time adaptive iso-surfacing method presented by Hei-

drich et al. [20] to improve the efficiency of computing, and extended marching cubes

presented by Kobbelt et al. [21] to preserve sharp features.

Note that Kobbelt et al. [21] used normal information to preserve sharp features.

The crucial step in their algorithms focuses on accurately finding the intersection

points of tangent planes of zero-crossing points. This method was further employed

by Ju et al. in their dual contouring algorithms [22], which combine the extended

marching cubes presented by Kobbelt et al. with theSurfaceNetsmethods presented

by Gibson [23]. In particular, Gibson demonstrated that just applying a gradient oper-

ator to the grey-scaled volume data does not always provide agood estimate of surface

normals [23]. That is, normal directions and magnitude may vary much more than we

would expect the surface normals of volume objects to vary. Some normals even point

in inverse directions, a case which might potentially lead to edge flips.

Even though the previously mentioned methods can, to some extent, preserve sharp

features and prevent holes and cracks, they still suffer from ambiguous cases and may

have holes due totopological errors. In other words, these methods may introduce

another problem of inter-cell dependency [24]. Such inter-cell dependency, which is

introduced by edge-flipping operations, may cause the efficiency of the whole algo-

rithms to become lower.

Recently, a notable method to improve marching cube algorithms was presented by

Ho et al. [25]. They presented a novel solution to the previously discussed problems

of surface extraction from volume data. Given a marching cube, it can be unfolded

into six marching squares. Each square is processed independently. The generated

segments on these faces are put back to 3D to form components.By doing so, the

goal of being adaptive without performing crack patching isachieved. In addition,

face ambiguities can be resolved in 2D by resolving the ambiguous faces. Finally, the

resulting components are triangulated to generated the iso-surface.

Surface tracking

Surface tracking algorithms [26] focus on two steps: find a seed point on the surface

and then track the iso-surface through the volume. The tracked iso-surfaces are con-
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verted into cell faces. The final surfaces are represented bya list of connected cells,

for instance, connected edges, connected faces and connected vertexes.

Once the iso-surface is abstracted as a mesh model, then it can be rendered by any

conventional computer graphic system, like Maya, 3DS, Animo, etc. However, these

volume originated surface reconstruction techniques still have some disadvantages, for

instance, single surface representation, expensive pre-processing, and cracks in multi-

resolution meshes.

Abstracting iso-surfaces from volume objects typically assumes a mesh represen-

tation as the final output. However, in the following chapters of this thesis, we use

direct surface rendering (DSR)to calculate positions of iso-value (level-set), rather

than constructing a mesh model. We do not construct any mesh models throughout

this thesis.

2.2.2 Holes, cracks, topological errors and simplifications

Cracks, holes, ambiguity, topological errors are common problems of surface extrac-

tion techniques. The previous subsection gave a brief review of algorithms for ex-

tracting surfaces from volume data. Here, we discuss another category of extracting

geometry from DSORs, i.e, surface reconstruction from point data. A detailed discus-

sion will be found in Chen et al. [1].

Many data acquisition techniques (e.g., laser range scanning [27] and alpha matte

acquisition [28]) generate highly accurate output in the form of an arbitrary set of

points in space. Highly accurate geometric models of complex physical objects could

be acquired through such scanning techniques. Where the properties of these points

cannot be discerned directly, they must be inferred algorithmically. Because of noise

and imperfections introduced in the acquisition stage, holes, cracks and topological

errors become much more serious and can not be eliminated using trilinear techniques

and enhanced lookup tables. Therefore, such surface reconstructing algorithms list

noise tolerance as a priority.

Practical issues relative to these static DSORs based approaches are, for instance,

obtaining a mesh which is free of holes and inconsistencies [29] and inter-cell depen-

dency due to topological errors [30]. In Figure 2-3, the leftimage is the photograph

of the head of Michelangelo’s David. The right rendered image shows a section of

the hair. Because of the scanning inconsistency (self-occlusion: a geometrical incon-
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sistency), holes and floating islands exist even after scanning from different viewing

directions and positions [31].

Note that in [31], Davis et al. focused on the situation in which holes are too

geometrical and topologically complex to be filled using triangulation algorithms. In

particular, they pointed out that for multiple boundary holes, topologically inflexible

methods may fail to find valid manifold surfaces.

Figure 2-3: Geometrical inconsistency: Holes and floating islands exist while gen-

erating mesh models for the discretely sampled David. Holescould be filled using

volumetric diffusions presented by Davis et. al in [31].

In the digital Michelangelo project [27, 31], an ideal surface extracting technique

was defined as having the following properties:� geometrical consistency of producing a manifold, non-self-intersecting surface.� geometrical consistency of tolerance to scanning noise (occlusions, equipment

imaging or calibrating errors, etc.) and functional errors(for instance, low object

reflectance, extreme specularity and surface scattering, etc. ).� practicability of using all available modelling information.� scalability to billions of samples.� topological consistency with multi-boundary components.

A flexible topological noise removal method was presented byGuskov and Wood

in [29]. An out-of-core algorithm for isosurface topology simplification was described
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by Wood et al. in [32]. As shown in Figure 2-4, topological noise becomes obvious in

the progressively close views.

Figure 2-4: Topological inconsistency (an extraneous handle) exists while generating

the mesh model for the Budah [32].

Note that the ideal isosurface of the Buddha statue shown in Figure 2-4 has genus 6 [29,

32]. A handle is a toroidal region of the surface with genus 1.(Ref. detailed discus-

sions in [32]). In fact, the real reconstructed surface has genus 104, because of the

extraneous topological handles. These topological artifacts become obvious in close-

ups.

From the view point of surface reconstruction, these extraneous handles create se-

rious problems for any further geometrical processing, such as mesh simplification and

smoothing. Also, these topological artifacts hinder the processing of texture mapping

and remeshing. In addition, in medical MRI, topological inconsistency may result in

failures in organ fitting, feature registration, and classifications. (Ref. detailed discus-

sions in [32]).

Wood et al. achieved their simplification methods by directly operating on volume

representations. They remove topological defects in an isosurface rather then repairing

defects on the constructed mesh model [32].

2.3 Smoothing Mesh Models

2.3.1 Mesh inversion

Mesh models such as triangulated surface models and tetrahedral volume mesh models

are often used to represent DSOR objects. Moving both the surface mesh model and
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the volume mesh model are common operations in surgical planning, crash simulation,

and volume animation.

During the operation of mesh moving, the boundary domain of the mesh models

as well as the internal vertexes of the mesh models are updated at each time step.

However, mesh invertibility is a common problem in mesh moving. In other words,

if the element of a mesh model is inverted, then the topological structure of the mesh

model will be changed. Holes and cracks might appear.

A good mesh-moving method should avoid any element inversion and preserve the

topology of the mesh model. Mesh smoothing techniques such as Laplacian smooth-

ing, Winslow smoothing, mesh refinement, mesh coarsening and mesh enriching, are

often used to improve the quality of a mesh during manipulation operations. However,

the computation expense and the lack of theoretical guarantees for resisting inversion

are the main weak points of these conventional techniques.

Preserving the connectivity of the mesh model is an important feature for annotat-

ing volume objects using our image based projective texturemodels. Our initial targets

are realistic texture mapping and high quality close-ups for annotating volume objects.

Therefore, the intermediate template should be further smoothed in order to improve

the warping quality of texture images. In practice, boundary conditions should be

satisfied when using mesh-model based surface flattening methods [33].

We noted that the Linear-Weighted-Laplacian-Smoothing method presented by

Shontz and Vavasis [34] addressed the same considerations.The important feature of

their methods is that theconnectivity of the mesh model under warping is not changed.

As we will explain in Chapter 5, we will use this in our texturemapping and annotating

system.

2.3.2 Laplacian mesh processing/smoothing

Laplacian operations for geometry processing are particularly interesting to us. Lin-

ear operators, mesh editing, shape approximation, mesh filtering and morphing, are

becoming common techniques [35]. As Sorkine pointed out [35], discretely sampled

point clouds that are used to construct mesh models are becoming highly detailed,

noisy and complex. The crucial characteristics of a practical mesh operation frame-

work include: (1) detail-preserving operations; (2) linear operations; (3) efficient shape

representation.
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Using a Laplacian Mesh processing framework, we can represent mesh models

using their differential properties, derived from certainlinear operators defined on the

mesh. These linear operators represent conventional mesh models in the differential

based supporting bases, which benefits various manipulation operations.

Differential mesh representations preserve local detailssuch as the size, the orien-

tation and the shape of local geometrical structures.

The linearity of the operations make mesh processing efficient.

The concept of manipulating and modifying a mesh model whilepreserving the

geometric details (connectivity) is also a crucial featurein the application of annotating

and texturing volume objects. Given a Laplacian representation of a mesh model, the

local differential representations, which are independent of the absolute coordinates of

vertexes in Euclidean-space, play key roles in mesh-editing operations and preserve

directions of the local geometrical structures.

Several types of local surface representations employing the Laplacian framework

have been presented elsewhere, for instance, partially intrinsic surface mesh repre-

sentations [36] andÆ-coordinates based representations with spatial boundarycondi-

tions [37].

2.3.3 Geodesic based multi-dimensional-scaling (MDS)

Matching a 2D image onto a flattened object surface could possibly become very te-

dious under some circumstances. Therefore, Zigelman et. alpresented a novel texture

mapping method by using Multi-Dimensional-Scaling (MDS) [38]. The advantages of

their Geodesic MDS methods are that mapping a set of 3D pointson objects into a flat

2D domain. Their method yields minimal changes of the Euclidean distances between

the flattened corresponding points.

The key points of their methods are first calculate the geodesic distances for each

pair of vertex pairs on the volume object, then using this geodesic distance matrix

to flattening the 3D points cloud onto 2D Euclidean plane. Theadvantages of their

methods are of particular interest to us in that, after flattening the 3D points on the

surface of the object, the texture image can be possibly overlaid onto the 2D Euclidean

plane directly.

Such methods allow us to improve the shear effect of projective mapping by di-

rectly manipulating a 3D point cloud by, for example, flattening the 3D point clouds
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within the volume object. Note that in their algorithm, the surface model must guaran-

tee the existence of geodesic-paths for each pair of the 3D points.

2.4 Volume Texture Models

2.4.1 Solid textures and other 3D textures

Direct rendering methods which avoid the need for intermediate meshes [6, 39, 40, 41],

are with the particular advantage to us.

Winter was the first to adopt Bier and Sloan’s two-part texture mapping for textur-

ing volume objects [6]. His work consists of a projective texture method for volume

objects. We use this in our approach; in addition, we offer novel semantic coher-

ent models to control texture extruding through the volume and texture smearing over

large areas [39, 40]. In this section, we will briefly review the texture mapping tech-

niques in volume graphics. (For more detailed discussions on volume graphics please

refer to the PhD theses of Winter [6], Satherley [17] and Rodgman [42].)

Image mapping is a recognised shortcut for simulating surface characteristics. It

enriches the surface shading process by using images to simulate surface texture and

some other important attributes such as roughness and reflectivity (ambient reflection,

diffuse reflection, specular reflection, etc.). Some typical image maps include: en-

vironment maps, colour maps, procedure maps, bump and displacement maps, trans-

parency maps, etc. Typical image mapping projections include flat projection, cubical

projection, spherical projection and warping projection [10].

One research topic of volume graphics is increasing photorealism by introducing

surface graphics techniques such as shadows, reflection, refraction and illumination

into volume rendering. Volume based non-photorealistic rendering (NPR), hypertex-

ture and bump maps were also developed. Unfortunately, these techniques have yet

to produce realistic appearances for volume objects. Textures of real physical objects

around us depend not only on colours and physical characteristics but also on human

perceptual and cognitive factors.

One advantage of volume graphics over surface graphics is that texturing can be

performed on a volumetric object as a preprocess prior to rendering, rather than as the

final matting process in surface graphics [17]. Therefore, successful applications of

amorphous effects like fire, hair, glow and melting have beendemonstrated using solid
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textures, procedure textures, bump maps and hyptertextures [6, 14, 43].

Solid texture was presented by Perlin [44] and Peachey [45] independently in

1985. It is designed for overcoming the limitations of parametric texture-mapping

techniques, for complex surfaces which may not have parametric forms. Only a lo-

cation in space of the surface point needs to be determined for each screen pixel onto

which the surface projects. A texture value is established by evaluating a procedu-

ral spatial texture function. This eliminates surface colour discontinuities because of

poorly-drawn textures or poorly-defined surface parameters. Procedural solid textures

by definition have infinite precision and are, therefore, suitable for close-up viewing.

Note that, even though procedure texture by definition has infinite detail, it does suf-

fer from “minification aliasing” (several texture elementsare projected onto the same

screen pixel) if texture frequencies are above the Nyquist limit of the texture raster [47]

In its basic form solid texture is a function of space, not of the object. Addressing

this, Carr, Hart and Maillot [48] described the solid map method. This generates a

2D texture map from the solid texture, for each polygon of themodel. These textures

are then glued to the polygons in the usual way, with the advantage that the textures

move and distort in the same way that the surface does. This isa major advantage for

animated, flexing objects. Moreover the texture is no longerdetermined at screen res-

olution, with significant gains for image quality control. This was further investigated

and presented as the meshed atlas method by Carr and Hart [49]. One attraction of

their approach for us is that it combines the infinite detail of procedural texture with

the generality of 2D texture image mapping.

Hypertexture is also a space function, one which manipulates the 3D regions around

surfaces of volume objects. Given an iso-surface of an object, the 3D space is repre-

sented by three states, inside the region (represented by a constant scalar value), out-

side the region (soft region, modeled by a scalar value function) and the boundary

(conventionally assigned a value of zero). Hypertexture effects can be achieved by

manipulating density modulation functions (DMF) in the soft regions,D(p), through

the following repeating operations:H(D(p); p) = DMFn(:::(DMF0(D(p))))
wherep represents the 3D position within the soft region. As Millerand Jones sug-

gested [43], distance field volume representations, hypertextures, bump maps and pro-

cedural texture techniques can be flexibly combined together to construct an efficient

GPU based renderer.
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Owada et al.’s work on texturing volumes [41] concentrates on static illustrative im-

ages, with the “interior” texture being applied to the cross-sections. In their method,

internal textures can be browsed by cutting the illustrative mesh models at desired

positions. In particular, the designer must provide guiding information to set up the

correspondence between the cross-section and a reference 2D image of internal tex-

tures. Such guide information is stored with the mesh model of the target object. The

system can thereafter synthesise internal textures which can be visualised on any cross-

section. There is no need to maintain any volumetric data. Therefore, their technical

contributions are: first, the interfaces that are used to assign textures to a given surface

mesh; second, the algorithms that synthesise textures on cross-sections using 2D im-

ages. Their system could enrich human communication in the areas such as medicine,

biology and geology, etc.

Their method does not readily generalise to dynamically-varying cross-sections.

In fact, providing guiding information throughout 3D spacemight be hypothetically

similar to the scalar field based volume modelling techniques described by Winter [50]

using lathe and sweep control.

Owada’s methods focus on providing realistic internal textures of mesh-based ob-

jects using illustrative images. Similarly, Winter’s algorithms offer heterogeneous in-

teriors and amorphous effects from swept volume objects. The importance of con-

structing image based 3D textures and image based volume objects is obvious.

A generic model of image-swept volumes was introduced by Winter and Chen in

[50]. Their 3D trajectory function,a(u), can be extended to other spatial functions,

for instance the projection functions widely used in texture mapping [10]. As we will

demonstrate in the next chapter, projective texture modelscan thus be constructed in

the same manner by stacking pixels in 2D image templates ontothe voxels swept by

3D indexing functions.

The concept of an image-swept volume can be described [50] as: normalising a

given image,nx�ny, onto the sweeping template:m(x; y); 0�x; y�1. The 3D trajec-

tory function can be defined as:a(u) = (ax(u); ay(u); az(u)); umin�u�umax
where(ax(u); ay(u); az(u)) give the 3D positions running along the trajectory. As-

sumer(x; y; u) is the affine transformation which changes the orientation and size of
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the templatem(x; y) along the trajectorya(u). The swept volume can be defined as� = f
1; 
2; :::g. This model contains instances of mapping points in a sweeping tem-

plate to positions in the volume. The instance can be defined as: 
i =< pi; vi >,

wherepi is the point in sweeping template,vi is the position in volume. Integrating the

transformation functionr, the instance function can be defined as:
(x; y; u) =< r(x; y; u) + a(u); m(x; y) >
So given a pointm(x; y) and a 3D trajectory positiona(u), an instance can be gener-

ated by shifting the transformed pointr(x; y; u) onto its new 3D locationr(x; y; u) +a(u). By substituting 3D trajectory functions with other indexing functions and by

adapting other transformation functions, we can extend theabove sweep models to a

more genericimage based indexing volume (IMIV) model.

Both Owada’s and Winter’s techniques acknowledge the importance of 2D images

by using them as original texture templates to construct the3D contents of volume

objects. In fact, from their papers we can conclude that 2D texture images produce

some stunning images of the constructive volume objects. Therefore, there is no doubt

that textures from 2D images can be sufficient, consistent and practical to reproduce

the lifelike appearances of physical objects for virtual DSOR characters.

Texture synthesis models construct 2D or 3D textures which are similar to their

reference images. A detailed discussion on texture synthesis was presented by Wei

in his PhD thesis [51]. Four categories of 3D texture synthesis algorithms are: fre-

quency domain [52], pixel-based [51, 53], patch-based [54]and non-periodic tiling

and sampling [55].

The need for a high-quality and realistic appearance of a volume object was also

addressed by Wang and Mueller [56]. They use constrained texture synthesis to extend

image-guided detail enhancement to multiple levels of scale. New detail is synthesised

to match the local data, scaled appropriately. They demonstrate this both in 2D (a

“virtual microscope”) and in 3D, for volumetric viewing. They use the termsemantic

zoomingto express this; that is, “each level of detail stems from a data source attuned

to that resolution”.

For our interests, colour information in illustrative images could also be transferred

to voxels in volume objects [57, 58, 59]. As Lu and Ebert demonstrated in [57],

volume illustration can have more clearly delineated objects, enriched details, and
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artistically visualised volume objects. Colours are transferred based on the clustering

and similarities in the example (illustration) images and volume objects.

As previously mentioned, Winter used instance functions
(x; y; u) to construct

swept volume objects from image templatem(x; y) [50]. Colour information and in-

tensity (geometrical) information are constructed in thisway. In fact, Lu and Ebert’s

technique, which uses clustering, mapping and transfer methods to construct the colour

indexing function, can be used as an optional candidate to instance functions in Win-

ter’s swept volume model.

It seems that research has shifted from 2D texture images to image-based volu-

metric textures. As Sousa et al. offered in [58], theiremphaticrendering system can

produce images that simulate pictorial representations, for both scientific and biomed-

ical visualisation. Their system combines traditional andnovel illustration techniques,

to guide and facilitate the learning of complex biomedical information, i.e, structural,

functional and procedural information.

2.4.2 Projective texture models

A texture mapping process which does not require uv-parameterization of the recipient

surface was presented by Bier and Sloan [60] in 1986. The texture is first mapped onto

a plenoptic intermediate surface (theS-mapping) and is then projected onto the object

(theO-mapping). Intermediate surfaces tend to be simple geometrical primitives such

as a cube, sphere or cylinder.

When we use direct volume rendering of a volume dataset, there is no surface onto

which to map texture directly. However we can use two-part texture mapping and we

will make use of this in our method. To do this will require theinverse functions of the

S-mapping andO-mapping.

Environment mapping [61] simplifies ray-trace rendering bytreating the environ-

ment as a 2D projected image, which is typically representedon a spherical, cylindrical

or cubic plenoptic surface. This is then treated as the illumination of the object con-

tained within the plenoptic surface. This idea of mapping the world onto a surface has

other uses and we will use it in our method.
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2.4.3 Annotating volume data

Annotating volume objects is an important task in visualisation and surgical planning.

As Kniss et al. [62] and Tzeng et al. [63] demonstrated, multi-dimensional transfer

functions split the 3D space into different semantic layersand thus segment and clas-

sify volume objects effectively, for example by extractingspecific material boundaries

and conveying subtle surface properties. We see that, with the viewpoint of volume

rendering based texture mapping, transfer functions not only help us to classify the

volume object into different layers but also tell us the locations of where appropriate

textures could be applied. Therefore, transfer functions can be used during the vol-

ume rendering to manipulate and guide texture placement. Aswe demonstrate in this

chapter, our 2.5D texture engine is constructed by using three components: projective

texture mapping, transfer functions and volume rendering.

2.4.4 Interpolation methods

We note that image-based texture maps have their advantages. They do not require a

procedural definition but only expect the user to provide a pixel map containing the

texture. This supports a very general class of textures but always at a fixed resolution.

There are techniques for enhancing the resolution of an image, so there is promise in

using a texture map for its generality while interpolating higher-resolution texture on

demand.

Candidate interpolation techniques include bilinear, bicubic or cubic B-spline in-

terpolation; and feature-based methods such as edge directed interpolation (EDI) [64]

and the new edge directed interpolation (NEDI) [65]. These could be used to regen-

erate the texture image with high resolution. Su and Willis [66, 67] describe a fast

method which takes edge information into account, in order to retain visual sharpness

when the image resolution is increased.

2.5 Multi-dimensional Transfer Functions and Pseudo-

Colour Information

Realistic appearances of volume objects become more and more important for surgical

planning and entertainment. The motivation of illustrative visualisation was described
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as: “An illustration is a visualisation such as drawing, painting, photograph or other

work of art that stresses subject more than form. The aim of anillustration is to elu-

cidate or decorate a story, poem or piece of texture information (such as a newspa-

per article) by providing a visual representation of something described in the text”

(Wikipedia, [68]).

Here, techniques depicting and illustrating isosurfaces,particular those which do

not extract explicit surface geometry (meshes or functional models), are particularly

interesting to us. These techniques were implemented on thebasis of direct volume

rendering and direct voxel manipulation, that is, they do not construct mesh models

as intermediate steps. Therefore, there is no worry about the artifacts of mesh surface

extracting algorithms described in the above sections.

Detailed discussions on illustrative visualisation [69] include: human visual per-

ception and illustrative aspects of art, illustrative and non-photorealistic rendering,

illustrative visualisation for isosurfaces and volumes, smart visibility in visualisation,

interactive volume illustration for medical and surgical training, and illustrative visu-

alisation for surgical planning.

Extremely large datsets and multi-channel visualisations, which lack sufficient ge-

ometrical, topological, and semantic information, are typical challenges in medical

and entertainment visualisations, where it is necessary toconvey real-time manipula-

bility to end users. Some practical annotation techniques are discussed in the following

subsections.

2.5.1 Deferred shading

Common isosurface rendering techniques in the volume rendering community are ray-

casting methods, which are based on ray-isosurface intersections [70, 71, 72]. Shading

calculations in these algorithms are conventionally executed on all voxels. Because

of the complexity of shading computation, real-time visualisation applications can be-

come impractical. Therefore, theDeferred Shadingtechnique, shading only for visible

voxels/pixels, was described by Deering et al. [73], Lastraet al. [74], and Saito and

Takahashi [75], to improve computing efficiency. Using a floating point image which

saves the ray-isosurface intersections as its input, the technique thus reduces its com-

puting complexity from voxels in volume spaces to pixels in the final output.

Deferred shading techniques provide two crucial advantages for manipulating vol-
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ume data: first, the effective representation of volume spaces, i.e, the visibility infor-

mation of voxels during rendering; second, differential information, colour mapping

of curvature magnitudes, flow advection along curvature directions, and solid textures,

can be applied to isosurfaces. Curvature magnitudes were visualised by mapping them

to colours (not textures) via one- or two-dimensional transfer functions. Surface struc-

tures such as ridge, valley lines and silhouettes can be rendered and annotated accord-

ingly.

2.5.2 Multi-dimensional transfer functions and hierarchical trans-

fer functions

Transfer functions are designed for classifying datasets during volume rendering. Opti-

cal properties like colour, opacity, refraction and reflection coefficients can be assigned

to theclassifiedvalues the datasets consists of.

Hladuvka et al. [76] define a transfer function as:F1�F2�:::�Fn�!O1�O2�:::�Om (2.1)

whereFi; i = 1; 2; :::; n are scalar fields,Oi; i = 1; 2; :::; m are optical properties. The

above transfer function is therefore defined as a mapping from a cartesian product of

scalar fieldsF to a cartesian product of optical propertiesO.

It is not an easy task for end users to develop useful transferfunctions for their

applications. Discussion of generic transfer functions assigning opacity, colour and

emittance properties were offered by Lichtenbelt et al. [77]. The extended categories of

transfer functions include: optical model [78], first and second derivative model [79],

image model [80], topological model [81], interactive multi-dimensional model [82],

banded widget model and vector calculus operators (i.e, gradient magnitudej5U j,
the Laplacian52U , vector magnitudejU j, and curvaturej5�U j) for flow visualisa-

tion [59].

The geometrical structures of iso-surfaces were mainly represented by gradient and

curvature information, for instance, principal curvaturemagnitudesk1, k2, and gradi-

ent vectorg = (gx; gy; gz). Colour mappings of mean principal curvature magnitudes(k1 + k2)=2 and Gaussian curvaturek1 � k2 can be constructed via a 1D colour lookup

table. Colour mappings of other geometrical structures on iso-surfaces can be calcu-

lated using two-dimensional curvature magnitude transferfunctions,(k1; k2). Typical
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applications of curvature-based transfer functions can beseen in [76, 83].

The transfer function mapping principal curvature to colour and opacity can be

defined as [76]:� : k1�k2�!R�G�B��
Figure 2-7 shows an analytic example of a curvature-based transfer function given

by Hladuvka et al. [76]. Thepseudo-coloursin the domain of the two-dimensional

transfer function are transferred to the 3D scalar values according to their principal

curvatures. Such a definition is useful to distinguish amongshapes, set smooth transi-

tions, and set transfer functions.

Some volume rendering techniques, (for instance, texture splats for 3D scalar and

vector field visualisation presented by Crawfis [84], and flowvolumes for interactive

vector field visualisation presented by Max et al. in [85]), cannot sharply focus on

interesting features while still representing the three-dimensional structure [59, 86].

Svakhine et al. offered illustrative style transfer functions, extended 2D transfer func-

tion widgets and new banding transfer function widgets, to enhance the accuracy and

perceptibility of their flow visualisation system [59]. Here, we refer to hierarchical

transfer functions as multi transfer functions which couldbe iteratively applied to dif-

ferent materials during rendering.

Figure 2-5: Principal curvature based colour transfer function (left) and the rendered

cube [76].
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2.5.3 Illustrative enhancements

Illustrative enhancements includeboundary enhancement(boundaries between mate-

rials are areas with high gradient),silhouette enhancement(modifying the opacity ac-

cording to the dot product of view-vector and gradient vector), sketching(if the silhou-

ette term is small, then it is assigned with lower opacity), edge colouring (modifying

colours rather than opacity), tone shading and illumination, distance colour blending

and feature halos. Detailed discussions on interactive volume illustration for medical

and surgical training were given by Ebert [87].

Some other illustrative enhancement techniques include experimental advection,

photographic flow visualisation, advanced two-dimensional functions, focal and con-

textual illustrative styles, novel oriented structure enhancement techniques, to allow in-

teractive visualisation, exploration, and comparative analysis of time-varying volume

datsets [59].Interactivityand flexibility are the key features of a useful visualisation

system.

2.5.4 Scalar fields and field transfer functions

Scalar fields and field based transfer functions are popular and effective techniques

used in volume visualisation and annotation. Detailed discussions on scalar field mod-

els of volume objects were offered in [1, 6, 14, 16, 17, 42]. A system level discussion

about scalar fields and their operations was addressed by Chen and Tucker [88]:

Let R denote the set of all real numbers, andE 3 denote 3D Euclidean space. A

scalar fieldis a function: F : E 3�!R (2.2)

The tuple of scalar fields defined inE 3 is o = (O;F1; F2; :::; Fn). In particular,

opacity fieldO : E 3�![0 1℄, specifies the “visibility” of every pointp in E 3 . Other

attribute fieldsF1; F2; :::; Fn could be optical or geometrical properties of volume ob-

jects, for instance, colour components (red, green, blue, or luminance and chrominance

components), refraction coefficients, reflection coefficients, specular coefficients, am-

bient coefficients, diffuse coefficients, specular exponent coefficients, intensities, gra-

dients, principal curvatures, and some non-graphical properties like magnetic field and

distance field, etc.
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A field could be built from one or more other fields using appropriate mapping

functions (as offered by Islam et al. in [14]). Operations onscalar components can be

linear, nonlinear, vector or tensor based operators.

Given a finite setP = fp1; p2; :::pn; jpi2E 3g of distinct points, the convex hull�(P ) of the point setsP is the volume ofP . p1; p2; :::pn are voxels in this volume.

When each voxelpi is associated with a scalar valuevi, and the value at every other

voxels in the convex hull�(P ) is calculated using an interpolation functionI, then we

could define an interpolated scalar fieldF by:F (p) = I(p; (p1; v1); :::; (pn; vn)); p2�(P ) (2.3)

Interpolation functions such as trilinear functions for regular grid volume datasets,

and barycentric interpolations for non-regular (3D tetrahedralisation grid) are com-

monly used. Finally, given an interpolated scalar field in volume visualisation, we

could obtain the necessary opacity and optical property fields usingmappingfunc-

tions: O(p) =M(I(p; (p1; v1); :::; (pn; vn))); p2�(P ) (2.4)Fi(p) = Mi(I(p; (p1; v1); :::; (pn; vn))); p2�(P ) (2.5)

whereM are opacity mapping functions andMi are other scalar fields mapping func-

tions. Operations on the tupleo = (O;F1; F2; :::; Fn) can be generally represented by

field transfer functions(Equation (3.19)), and be effectively modelled byconstructive

volume geometryoperations [88].

2.6 Semantic Constraints: Splitting and Multi-level Vol-

ume Rendering.

Although DSORs may capture a collection of objects in a scene, they do not normally

contain any semantic information about the objects of interest, such as object identi-

fication and object hierarchy. Tagged volume objects and their segmentation masks,

i.e., the classified volume identification indexes (IDs), are necessary information which

must be provided for using hierarchy transfer functions.
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Without segmentation and the associated semantic information provided by seg-

mentation, any practical applications of visualisation, such as medical training and

surgical planning, will be impossible [1].

2.6.1 Splitting and segmentation

A notableattribute-based spatial and temporal splitting modelwas presented by Islam

et al. [14].

The concept is more suitable for volume data processing, i.e., segmenting, splitting,

deforming, manipulating, animating, annotating, illustrating, and, of course, visualis-

ing volume datasets. With such generality, it is easy and flexible to construct more

advanced and complex hierarchical visualisation systems.

As we will demonstrate later in this thesis, our semantic projective model is an

extension and a novel contribution to Islam’s spatial and temporal model.

Figure 2-6: An action of splitting a spatial object [14].

Chen et al. [89] developed the concept ofSpatial Transfer Functions (STF)which

enable deformation defined as volume objects in a volume scene graph. Islam et

al. [14] further developed this model by incorporating volume splitting operations,
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to facilitate the spatial and temporal representations of hierarchical volumetric spaces,

i.e., tagged volume spaces with split IDs.

As shown in Figure 2-6, splitting a volume dataset in the spatial and temporal

domains could be defined following Islam et al. [14] as follows:

Given an arbitrary spatial objecto = (O;F1; F2; :::; Fn) and a set of purposely con-

structed component objectss1; s2; :::; sk, the splitting action is a series of transforma-

tion functionsTi;t applied to the constructed componentsi, i = 1; 2; :::; k, over a period

of time t = 0; 1; :::; tmax. O is the opacity field which describes the visibility of vol-

ume objects,F1; F2; :::; Fn are scalar fields describing the other properties of volume

objects. Att = 0, the union of all transformed objectssi = Ti;0(si) is equal to the

original space objecto. That is:Spe
ifi
ation : o =[(T1;0(s1); T2;0(s2); :::Tk;0(sk)) (2.6)Transformation : Ot =[(T1;t(s1); T2;t(s2); :::Tk;t(sk)) (2.7)Transformation : Ot =[(O1;t; O2;t; :::Ok;t) (2.8)

where
S

is the constructive volume geometry union operation [14, 88]. Oi;t is the

transformed split components. Specification operations split the spatial objecto into

a set of components,F = fs1; s2; :::; skg, at initial statust = 0. Conventional split-

ting functionsTi;0 are geometrical splitting functions, logical splitting functions and

spatial transfer functions. The transformation functionsTi;t are deformation functions,

animation functions, field functions, spatial or temporal transformations, and so on.

2.6.2 Generic volume model, two-level rendering and smart visi-

bility

Equations (2.6) to (2.8) offer us the concept of ageneric volume model: First, volume

objects could be specified as a set of tagged components. Second, each component can

be rendered with its own transformation functions.

Two-level volume rendering [90], is composed of a global rendering mode and a

local object-focus rendering mode. In other words, a singleray could pierce different

tagged objects which have their own illustration configurations.
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Smart visibility visualisation [69], is driven by feature importance information.

Dynamic changes in visualisation could be rendered using cut-away or ghost-viewing

techniques. The spatial arrangement of structures is modified. Leafing, peeling, spread-

ing, and splitting are often used to separate context information. Using smart visibility

visualisation techniques, theinner focusinformation can be exposed and visualised

accordingly.

The integration of multi visualisation techniques includes: two-level volume ren-

dering techniques [91], smart visualisation techniques [92], tagged ID volume repre-

sentations [90, 93], global and local compositing buffers [90], and so on.

2.7 New Challenges in Volume Visualisation: Percep-

tion based Evaluation.

“Culture is the epidemiology of mental representations: the spread of ideas and prac-

tices from person to person” - Dan Sperber, Cultural anthropologist [58, 94]

We argue thatvisualisationis not mature enough to address the problem of effec-

tively spreading ideas. However, as Ebert stated [87], “Visualisation is most powerful

when combined with: effective enhancement and extraction of information, perception

research, advanced illumination and shading, art and illustration techniques, improved

interaction, and a large solution”.

Although equations (2.6) to (2.8) offer us a generic model for volume visualisation,

the perceptual and cognitive communications between humanand rendered informa-

tion are not covered. In this regard, equation (2.8) could bemodified to:Per
eptualRepresentation : Vt = PCFt(O1;t; O2;t; :::Ok;t) (2.9)

wherePCFt is theperceptual and cognitive function (PCF)operating on the trans-

formed components at timet, andVt is the neuropsychical modelreconstructedand

reinterpretedby the human brain.

Over the past few years, the importance of human perception based rendering tech-

niques has been recognised by the visualisation community [2, 95]. Human factors,

such as lighting configurations, visual accuracy, surrounding items, colour scales, were

investigated to improve the effectiveness, efficiency and intuitiveness of volume visu-
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alisation systems [96, 97, 98].

2.7.1 Quantity and effectiveness

The urgency of investigating the quantity and effectiveness in volume visualisation

comes from the real failing moment when “neurosurgeons and radiologists used one

of volume renders of the brain and cerebral vasculature during their surgical plan-

ning for a patient” [99]. In fact, we still cannot completelyand effectively evaluate

a visualisation system for its target users [100]. This has drawn the attention of the

visualisation community. The current research interests and efforts are shown inNa-

tional Institutes of Health (NIH) and National Science Foundation (NSF) Visualisation

Research Challenges[101].

Current evaluation techniques include: expert reviews andexperiences [2], user

study guidance: “why, how, and when” [102], point-based surface uncertainty [103],

and visualisation errors [99]. It is shown by Johnson in his survey [99] that visualisa-

tion errors and uncertainty can come from:� Acquisition: instrument measurement error, numerical analysis error, statistical

variation.� Model: both mathematical and geometric.� Transformation: errors introduced from resampling, filtering, quantisation, and

rescaling.� Visualisation.

Further research on effectively evaluating visualisationtechniques would benefit

the following areas which are highly relevant to the aim of this thesis, particularly

from the viewpoint of preserving realism for volume objects:� Modification to data and/or visualisation attributes.� Improvement to psycho-visual metaphors.� Better use of annotation and interactive information overloading.
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2.7.2 Convince and confidence

By highlighting significant features and subjugating less important details, volume

illustrations (NPR plus volume visualisation) can help users perceive communicative

information effectively. However, end users, such as doctors and medical students

still do not have confidence to use NPR based illustration systems, due to the drawing

style of rendered images and possible loss of crucial details. The official validation of

illustration systems has yet to be approved [100, 101, 104].

Many subsidiary details cannot be neglected since they playcrucial roles in hu-

man perceptual and cognitive process. The key point is to effectively preserve these

sensitive textures for volume data rather than subjugate these tiny details.

As we will argue in this thesis, image based annotated modelscould preserve such

crucial information in segmented volume objects, whereas,conventional illustration

and annotation techniques can not.

2.7.3 Optimal and intelligent visualisation

In practice, end users of visualisation systems need to makeextreme effort to explore

volume data sets to obtain the best viewpoint and gain the most intuitive visual im-

pressions. Here, intuitiveness can be defined as “immediateapprehension and cogni-

tion” [95]. To improve the effectiveness of volume visualisation, optimal viewpoint

descriptors have been developed such as surface area entropy, curvature entropy, sil-

houette length, silhouette entropy, etc. [105]. Volume based optimal view descriptors

were developed, such as the feature-driven approach, and view goodness, view likeli-

hood and view stability criteria [106, 107].

Most of the visualisation techniques, for instance, transfer functions, illustrations,

annotations, segmentations, classifications, registrations, and so on, involve the user’s

interactions to guide visualisation processes [101]. Unfortunately, end users often lack

such expert knowledge.

AI techniques such as machine learning based SVM (Support Vector Machine) [108]

and clustering algorithm ISODATA (Interactive Self-Organising Data Analysis Tech-

nique) [109], demonstrate the communicative capabilitiesof intelligent visualisation

techniques by providing effective and intuitive interactions between human and com-

puters.

An intuitive and intelligent user interface was offered by Tzeng and Ma [109].
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In their system, object classes are constructed by using theISODATA method which

derived from K-mean clustering algorithms, and are represented in a set of visualisa-

tion widgets. In particular, their system supports complexmanipulation operations on

different clusters, i.e., splitting, merging and discarding clusters.

2.8 Conclusion

In this chapter we described the challenges and the background of volume visualisa-

tion and texturing mapping. We observed that the study of preserving therealismof

volume objects is still in its infancy. We showed that our observations coincide with

the current attentions of visualisation communication, described in“NIH/NSF Visuali-

sation Research Challenges Report - January 2006” [104]. Wealso discussed common

perception and cognition related factors for visualising volume objects.

The challenges and the observations motivate us to transferthe realism of images

onto volume objects to recover and preserve texture detailswhich are subjugated in

conventional illustration processes, as realistically aswe can.

We described the discretely sampled object representations (DSORs). We dis-

cussed the problems, such as cracks and holes, of traditional mesh abstracting tech-

niques. We justified the properties of different 3D textures, such as solid textures,

hypertextures, and two-part texture mapping.

In addition, the comparison among segmenting, splitting, and general modelling

volume objects was made. Discussions about multi-dimension transfer functions, se-

mantic constraints, generic volume model, two-level rendering, and smart visibility,

were given. We concluded that current illustration techniques might be powerful for

illustration and visualisation, but not realistic enough,particulary for volume objects

using pseudo-colours and subjugating sensitive textures.

In the next chapter, we will introduce projective texture models. The solutions to

the problems such asvolume self-occlusions, texture penetration, multi-resolution rep-

resentationandcolour transferwill be discussed in the subsequent chapters (Chapters

4, 5, and 6).



Chapter 3

Projective Texture Models

We recognise that volume datasets are an increasingly rich source of material and offer

opportunities not present in the traditional surface models widely used. However, by

comparison they present a number of challenges. Preservingappearance realism is one

of these and is the subject of this chapter.

By working with iso-surfaces (level sets) within volume data, rather than extracting

surfaces as meshes, there are particular benefits that we canexploit. In this chapter we

will explain:� A three-part texturing method, which allows us to match the texture to the shape

of the object. We use hierarchy volume rendering for the intermediate template

needed in our method, which means we can have different templates for different

layers within the volume; and we can also have different layers of the volume

on the same template. This gives the great flexibility in mapping texture to the

volume data and more options at render time than with surfacetexture mapping.� A simulated continuous texture from a discrete one, which permits high accuracy

of positioning and, importantly, high quality of renderingeven in close-ups.� A method of extruding texture through the volume, which permits direct sculpt-

ing and cutting of the volume data, without needing to re-mapthe texture. This

permits interactive sculpting with the texture in place. This applies whether we

start with captured volume data or computer-generated volumes and is especially

useful with constructive volume geometry (CVG) [88].� A method of transferring colour from illustrative images tovolume data. This

36
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supports constructive volume graphics (CVG) operations and advanced transfer

functions. Colour transfer functions are constructed through cluster matching,

statistical colour correction, and field functions. Colourrealism in illustrative

images could be transferred to volume datasets, whereas, pseudo-colours in NPR

techniques are hypothetically assigned to voxels through transfer functions for

the purpose of communication only.

3.1 Introduction

Validation, realism and affordability are three key criteria for surgical visualisation

and medical virtual environments [100]. In this chapter, wefocus on offeringrealism

to volume objects, by integrating thegeneric volume object modeland hierarchical

transfer functions.

We present an approach to texture mapping volume datasets. The approach is based

on multiple constraints and continuous space mappings to ensure good image quality.

It requires only one intervention by the user, to determine key points where the texture

must match an intermediate image of the original data. This can also be used to avoid

the problem of texture being smeared over too large an area.

The method is composed of three parts:semantically generating intermediate tem-

plates, selectively forward and inverse indexing, andvolume rendering. This three-part

aspect additionally allows the texture image to be independent of the volume data. We

demonstrate an extension to 2.5D textures, extruded through the volume, using an

approach consistent with 2D texture. A data-dependent triangulation method is used

to retain edge quality in texture images. In addition, colour transferring techniques,

which transfer colour information of pixels in illustrative images to colour fields of

voxels in 3D space, are presented. Finally, we discuss the challenges of our projective

texture model such as texture smearing, penetrating and self-occlusion.

3.1.1 Generic volume model and transfer functions

Starting from Chen’s spatial functions [89] and Islam’s splitting functions [14], as

previously discussed in Subsection 2.5, the generic volumemodel is defined by one

Specification(Equation (2.6)) and twoTransformations(Equations (2.7) (2.8)) as fol-

lows:
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Given an arbitrary spatial objecto = (O;F1; F2; :::; Fn) and a set of purposely con-

structed component objectss1; s2; :::; sk, the splitting action is a series of transforma-

tion functionsTi;t applied to the constructed componentsi, i = 1; 2; :::; k, over a period

of time t = 0; 1; :::; tmax. O is the opacity field which describes the visibility of vol-

ume objects,F1; F2; :::; Fn are scalar fields describing the other properties of volume

objects. Att = 0, the union of all transformed objectssi = Ti;0(si) is equal to the

original space objecto. That is:Spe
ifi
ation : o = S(T1;0(s1); T2;0(s2); :::Tk;0(sk))Transformation : Ot = S(T1;t(s1); T2;t(s2); :::Tk;t(sk))Transformation : Ot = S(O1;t; O2;t; :::Ok;t)
In the above generic volume model,Oi;t is the transformed split component. Speci-

fication operations split the spatial objecto into a set of component,F = fs1; s2; :::; skg,
at initial statust = 0. Splitting functionsTi;0 are geometrical splitting functions, logi-

cal splitting functions and spatial transfer functions. The transformation functionsTi;t,Oi;t = Ti;t(si), are deformation functions, animation functions, field functions, spatial

or temporal transformations, and so on.
S

is the set of CVG operators [88].

Therefore, thegeneric volume modelis defined as a DSOR objecto combining

with its dynamic behaviourTi;t.
Constructing effective splitting functions and transformation functions in volume

visualisation applications becomes a primary and important task. Therefore, segmenta-

tion techniques are often used to abstract classification information to identify different

parts of volume space.

Transformation functions could be extended to a generic description, that is:se-

mantic functions, which operate on space criteria, logical criteria, temporal criteria,

geometrical criteria, topological criteria, and so on. Starting from transformation func-

tions Ti;t, and following the spatial definitions given in [89], thesemantic transfer

functioncould be defined as:� Transfer Functions

Given a spatial objecto:o = (F0(p); F1(p); F2(p); :::; Fn(p)) (3.1)

whereFi(p) is either the scalar field defined on 3D positionp2E 3 or the attribute field

defined inE 3 . With Equation (3.1), not only scalar fields such as geometrical structures
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and physical properties, but also attribute fields such as logical constraints and tagged

volume IDs, are defined at every pointp in E 3 .

A transfer function� is defined to transit one fieldFi to another oneFj, between

any two scalar fields and attribute fields at the same pointp:Fj(p) = �(Fi(p)) (3.2)

In particular, such a definition could further define transfer functions from a scalar

field to a attribute field, and vice versa.� Semantic Transfer Functions

A semantic transfer function, 
 : E 3�!E 3 , is a function the defines the transfor-

mation between scalar field and attribute field at every pointp andq in E 3 :Fj(p) = 
(Fi(q)) (3.3)

In comparison to the definition ofspatial transfer function	 in [89] which oper-

ate on the same pointp between the same attribute field of a spatial object,A0(p) =A(	(p)), the abovesemantic transfer functioncan transfer an attributeFi(p) at a pointp to a different attributeFj(q) at a different pointq. Therefore, this semantic trans-

fer function integrates the properties of conventional transfer functions� and spatial

transfer functions	.

The use of semantic transfer functions differs from that of conventional transfer

functions and spatial transfer functions in two ways:� A semantic transfer function operates on both spatial position p and field valueFi(p); whereas, a transfer function can only manipulate field values on the same

position, spatial transfer function can only transfer the same scalar value from

one position to another.� Manipulating volume objects becomes more flexible. Conventionally, the prior-

ity order for evaluations of a scalar field before and after spatial transfer must be

considered and carefully designed, for instance, the process like normal vector

calculation and spatial filtering.
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As we will explain later, plenoptic functions are implemented as instances ofse-

mantic transfer functions, to transfer colour information at the positions on 3D plenop-

tic surfaces onto the colour attribute fields at 3D positionswithin the volume objects.

In addition, a novel volume splitting function,projective spatial functionswill be of-

fered in the following chapters. The volume space will be split semantically, which

will be of benefit to problems such as texture smearing, texture penetrating, and vol-

ume self-occlusion.

3.2 Projective Texture Models

3.2.1 Volumes and our approach

Applying textures to 3D objects has traditionally been performed in one of two distinct

ways. One way is to construct a parametric map of the surface,and use the resulting

uv-parameterization to modify the appearance by reference toa texture image. An

alternative approach is to define a function which generatesa texture value everywhere

in space.

Our work has the following requirements for texturing volume objects: (1) Tex-

turing volume objects with realistic appearance (projective colour map plus shading

information.); (2) using a method which is robust to topological artefacts; (3) taking

advantage of scalar-field based temporal and spatial constraints and transfer functions

to assist texture mapping.

With the above considerations, and starting from Winter’s projective texture map-

ping method [6], we address the issue of the boundary betweenimage based texturing

methods and solid based texture mapping approaches:

(1) We avoid full 3D procedural textures. We use plenoptic mapping functions for

applying 2D texture images both to surface and to volumes within 3D datasets.

(2) Our approach avoids degradation of rendered image quality and can cope with

varying texture resolution, both in the choice of source texture and in the dynamic

changes which occur across the volume being rendered. The approach also allows

data dependent texture mapping, through a triangular interpolation which usefully pre-

serves edges and detail in the mapped texture. We approach this in the broader context

of work on discretely sampled object representations (DSORs) [1]; that is, volume

datasets and other similar forms.
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3.2.2 Intermediate template

We need to place a texture on an iso-surface, ensuring it aligns with recognisable fea-

tures. For consistency with the established literature, wewill call any image mapped

onto a surface a “texture image” and call the process “texture mapping”. However,

what we are really doing is mapping colouring onto the volumedata, which retains its

own geometric shape including any genuine three-dimensional texture.

Volume Object (1)

Generate intermediate
template by projection

(2)

Textured volume
object (6)

Texture image (3)

Morph the texture
image to fit the
template (4)

Project the texture through
the volume object (5)

Figure 3-1: The pipeline for three-part texture mapping.

Our method does not lose or seek to hide this real texture. We first consider placing

a texture image on a surface of the volume dataset. The surface has to be identified by

an appropriate method for the application: for purposes of discussion, we will assume

this is an iso-surfaceS. We also assume that we have selected an image to use as a

texture. Figure 3-1 summarises the complete process, including later steps about to be

described. The complete process includes the following steps:

1. Identify the surface to be textured (e.g. an iso-surface).

2. Choose the kind of projection.
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3. Project the surface onto a 2D image,the intermediate template, choosing a resolu-

tion convenient for the next step.

4. Manually identify key points on the template with corresponding points on a texture

image.

5. Warp the texture image to match the template image, bringing corresponding key

points together.

6. Render the volume object.

First, the volume has to be enclosed in a conveniently regular shape,P , such as a

sphere, cylinder or box. The shape of this is chosen heuristically, to match the general

shape of the object being textured. In turn this shape determines a projection, spherical,

cylindrical or cubical, with the centre of the projection atthe centre of the shape. In

effect, we will now use this as a plenoptic surface in order todetermine the colouring

to be applied to the iso-surfaceS. However we do not do this directly. We project the

chosen iso-surface to a rectangular 2D image, which we call theintermediate templateT , using a spherical, cylindrical or cubical projection as appropriate. The centre of

projection is located within the volume data, which is then projected outwards onto

the interior of the bounding shapeP . Unwinding this shape to a plane yields the

desired templateT . This projection is similar to that used by Bier and Sloan [60] and

others but generates the texture in a different way.

The pixel resolution of the template can be freely chosen butit is convenient to

make the image large enough on screen for the next step, whichis the only step re-

quiring direct user interaction. Here, the user manually identifies key points on the

template with corresponding points on the texture image. The texture image is then

warped to bring the key points to the same positions as on the template image. What

we have done here is use a multi constraint-based forward projection of the 3D data to

get the template, then warped the texture to arrange key points on the texture image to

align with the template image.

The use of key points adds a degree of elasticity to the texture layer, permitting

two advantages. First, we can match the texture to the surface so that, for example,

eyebrow texture sits at the appropriate position on the underlying head. Second, we

can use this to cope with parts of the surface which differ greatly in slope from the

plenoptic surface. When the underlying surface is roughly parallel to the plenoptic

surface, the texture pixels are not stretched and a satisfactory result occurs. When



3.3Method for Rendering 43

this is not the case, a single texel may be stretched across a significant area of the

underlying surface, producing a very soft, smeared effect.In our approach we can

adjust the texture warp to ensure sufficient texels cover thearea in question, guided by

the projected surface, giving a much more uniform coverage.

We now have a texture which will cover the projected shape. However, we retain

the mappings rather than build that plenoptic shape directly and so we are working in

a continuous space, not in a pixel-based one.

3.3 Method for Rendering

So far we have described how we manipulate the texture, in a first step. Now we

address how we render the volume object so that the texture appears on it, using two

further steps. Logically the remaining two parts map the texture onto the plenoptic

surface and then map that onto the object. In practice rendering drives this in the

inverse order. We will first assume that we wish to texture an iso-surface. Later we

will address the issue of texturing the volume itself.

Figure 3-2: Two texture images applied to one volume object.
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The second step starts by ray-casting through the pixels of the desired output im-

age plane, to the chosen iso-surfaceS. At each intersections with S we construct

a direction in space which starts from the centre of the texture projection and passes

throughs. We follow this direction to determine where it hits the intermediate sur-

faceP (sphere, cubic, cylindrical, planar, or other implicit/explicit representations) .

This yields coordinates in continuous space. The third stepis to map these coordinates

onto the warped texture image, again in continuous space, inorder to retrieve a colour.

The warped image of course consists of discrete pixels, so weinterpolate those pixels

which sit around the intersection, to estimate the colour atthe intersection. This colour

becomes the underlying colour of the surface being ray-cast. (We will say more on the

interpolation process later.) The usual lighting calculations are then applied. The fish

in Figure 3-2 is one volume dataset rendered twice, with different textures. In partic-

ular, one texture is not that of the real fish but is adjusted tofit using the key point

method. The same approach can be used with arbitrary textures.

Strictly we are volume rendering, so voxels not on the iso-surface can also play a

part in the final pixel colour. These can be made transparent,as we have done here,

or treated in some other way appropriate for the application, such as accumulating the

density. We give examples of partial transparency later.

3.4 2.5D Volume Textures: Pseudo-Solid Texture Model

Note that the conventional two-part texture mapping uses 2Dimage texture arranged

to cover a 2D surface, albeit one defined in 3D-space. In comparison, solid texturing

in the traditional sense is defined analytically anywhere in3D-space, either by a 3D-

space function (often called procedural solid texture) or by discrete samples in the

three-dimensional space (often called 3D texture or solid texture). Here, we take a

different approach, assuming that there is no such functionand that we wish to use

image texture. For example, there are applications where the surface texture needs to

be retained to show a relationship with the original surfaceor to help the viewer with

the geometry of the space containing the volume data. So in our implementation we

define texture in 3D space by projecting a 2D texture through the volume. We refer to

this as2.5D texture, or pseudo-solid texture.

Assumep(X,Y,Z)is a point in the volume object and the centroid position of a

plenoptic primitive is(Ox; Oy; Oz), then the texture value at the positionp(X,Y,Z)can
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be indexed by a ray passing throughp(X,Y,Z)and (Ox; Oy; Oz). This ray intersects

the morphed texture image at pointS(u,v). The texture value (colour information, or,

for instance, the perturbation coefficients for bump mapping) in the morphed texture

image is then calculated and assigned to the position of the point p(X,Y,Z):fR(X; Y; Z); G(X; Y; Z); B(X; Y; Z)jp(X; Y; Z)2E 3g= fR(u; v); G(u; v); B(u; v)jS(u; v)2Tg (3.4)

Here the intermediate templateT is constructed exactly as before. The continu-

ous coordinates(u; v) are used to locate the colour informations in the warped tex-

ture image. As shown in Equation (3.4), the rendering process calculates a direction

from the centre of projection(Ox; Oy; Oz) through the ray-traced surface intersectionS(u; v). All other intersections lying on that radial direction will thus have the same

texture colour. Note that this is a continuous space solution: we are not simply picking

the nearest texture pixel but interpolating according to where the required sample lies

within the morphed texture. Many samples will therefore have values not in the orig-

inal pixel texture but which will be blends between those values. More importantly,

as we render the volume, the radial direction will be samplednearby rather than hav-

ing samples directly along its direction. Our approach willcorrectly blend colours to

ensure greatly reduced sampling defects.

The texture colourfR(u; v); G(u; v); B(u; v)g can thus be extruded according to

the chosen projection shapeP . It can be used for non classical applications, such as in

film special effects. For example, to retain the outward appearance of a face while the

shape goes from normal to the underlying skull it is only necessary to use an extruded

skin colouring while dynamically adjusting the selected surface.

Figure 3-3 illustrates the range of possibilities with our volume texture, using a

single dataset and a single colouring set. Figures 3-3(a) and 3-3(b) are generated by a

direct volume renderering while 3-3(c) and 3-3(d) use a direct surface rendering [72].

The top and bottom parts are cut off to show the projective space texture defined within

the volume object. The DVR images clearly show how the texture extrudes while the

DSR images leave only the chosen surface coloured.
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(a) (b)

(c) (d)

Figure 3-3: Projecting a texture image through a volume: Thetop and bottom parts of

the volume object are cut off to show the texture projection within the volume object.

Images (a) and (b) are rendered using DVR. Images (c) and (d) are rendered using

DSR.

3.5 Multiple Textures on One Surface

We now extend the method to the case where we wish to apply morethan one texture

to a single surface. We identify regions on the templateT for each texture. When

rendering, it is now additionally necessary to perform an “inside” test of the template

intersection against these various regions and use the result to select the appropriate

texture colour. (In the case of image mattes, soft edged mattes – with blends – are

needed to avoid stepped edges appearing.)

A continuous position (normalized) in the intermediate template is defined as(u,v).

The discrete position of a pixel in the intermediate template is defined as(x,y). The in-

tegral coordinate pair(x,y) is indexed byu, v , whereu=x/(xd-1) , v=y/(yd-1), xd andyd
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are the dimensions (the width and the height) of the intermediate template,0�x�xd,0�y�yd.
In general each texture will have a different intrinsic resolution and map to a dif-

ferent scale on the surface. As we use interpolation of the texture rather than choosing

the nearest pixel, this is not a technical issue but it is important to both image quality

and usability that this is indeed supported.

3.5.1 Multi-resolution projection of DVR and DSR

As mentioned above, the parameterization of the plenoptic surfaces could be defined

by two continuous variables,u2[0,1] andv2[0,1] . Therefore, it is possible to gener-

ate the intermediate template, in different resolutions, using Direct Volume Rendering

(DVR) or Direct Surface Rendering (DSR) [72]. The resolution intervals of the inter-

mediate template are defined as�u=1/(xd-1) and�v=1/(yd-1). Then the pixel at the

position(u,v)can be indexed by the integral coordinate pair(x,y), u=x*�u, v=y*�v.

The continuous variablesu andv are used to adjust the origin and the direction of the

tracing ray in the forward projection, thus different resolution intervals can be used to

generate the intermediate template.

Figure 3-4: Multi-resolution Projections.

In addition, a different high-resolution representation of a rectangular area in the

template image can be generated. As shown in Figure 3-4, (u1,v1) and (u2,v2) are two

different positions in the intermediate template, such that u1<u2, v1<v2. Then, with

new higher resolution intervals,�u1=1/(xd1-1) and �v1=1/(yd1-1), the new origin of

the tracing ray is:Origin(u; v) = (u1 + x1 � (u2 � u1) � 4u1; v1 + y1 � (v2 � v1) � 4v1) (3.5)
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wherexd1 andyd1 are the dimensions of the new high- resolution image of the region,

andx1 andy1 are the integral coordinates, 0�x�xd1-1, 0�y�yd1-1 .

The multi-resolution representation of intermediate template provides the possi-

bility of high quality composition of texture images in 3D space, as demonstrated by

Froumentin and Willis in their 2.5D rendering and compositing system [110].

3.5.2 High resolution patching

During rendering, textures can be assigned to positions within the volume object by us-

ing the pseudo-solid texture model, i.e., the indexing of aninverse plenoptic function.

Projective texture mapping connects the 3D positionp(X; Y; Z) in the volume object

and the 2D projected position on the plenoptic surfaces(u; v). Note that continuous

spaceP = fp(X; Y; Z); p2E 3g by definition can have infinite texture details. There-

fore the higher resolution texture image could be continuously projected to the projec-

tive space without any limitation. This mechanism we callhigh-resolution patching.

Details of conventional solid textures are limited by theirgrid resolutions.

We assume the high-resolution patch is positioned at a rectangular area in the mor-

phed texture image, which is represented by the coordinatesof its two vertices,(ua1,va1)
and(ua2,va2), whereua1<ua2, va1<va2. Then the position, (xa,ya), in the high resolu-

tion patch, can be defined as:(xa; ya) = ((u� ua1)=4ua; (v � va1)=4va) (3.6)

where4ua and4va are the resolution intervals of the high resolution patch, which

are represented by the width and the height of the patch.(u,v) are the coordinates of

the position in the morphed texture image.

The above two equations, Equations (3.5) and (3.6), are not just the resolution

representations of an image. Equation (3.6) is used to construct pseudo-solid textures

during volume rendering. Equation (3.5) is used to adjust the origins of tracing rays

in DVR or DSR [72], on plenoptic surfaces. These two equations are different and

independent texture indexing functions. They are implemented in the processes of

inverse projection and forward projection respectively.
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(a) The areas around the eyes.

(b) The two eye images.

(c) Surface textured with multiple images.

(d) Local surface textured with high resolution patch.

Figure 3-5: Use of higher detail texture in critical parts ofthe image. In (d) the left

image of the eye has sampling defects not present in the right, high resolution image.

In Figure 3-5 we show how this makes a difference to the eyes. Even though

the difference cannot be seen in longer shots, it becomes apparent as we zoom in.

Figure 3-5(a) is a rendered image of the area around of eyes. We use this image as the
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intermediate template to locate the position of the rectangle areas for texture patching.

Figure 3-5(b) shows two images of the eyes. The left image is in low resolution (30x21

pixels), the right image in high resolution (800x564 pixels). Figure 3-5(c) is a rendered

image of the volume head. Figure 3-5(d) shows the close up of the textured eyes.

The texture of the left eye (pseudo-solid textures constructed through low resolution

patching) loses details and suffers from pixelation (as shown in the area enclosed in

the red frame). However, the texture of the right eye (pseudo-solid textures constructed

through high resolution patching) preserves all the detailand shows no such defects.

3.6 Different Textures on Different Iso-surfaces

Extending the method to having different (groups of) textures assigned to different

selected iso-surfaces is now straightforward: we simply need a set of textures for each

iso-surface to be textured. Figure 3-6 shows examples, eachusing pairs of textures.

The beauty of this consolidated texture mapping method is the flexibility provided by

combining a variety of novel semantic constraints, not justthe benefits provided by

spatial constraints demonstrated by Dr Winter in his PhD thesis [6].

When using our approach with direct volume or surface rendering, semantic con-

straints can be used to facilitate the texture mapping process. We demonstrate this

with a spatial constraint to split the iso-surface into different portions. Each portion

is then associated with its own texture. In Figure 3-6(a), the skin of the head has two

texture images. The top and the bottom parts of the head are split [6, 14]. Then, if

the 3D position on the tracing-ray locates within the space of the top half, this 3D po-

sition is indexed onto one texture image. Similarly, if the 3D position locates within

the space of the bottom half, it is indexed onto another texture image. Figure 3-6(b)

was rendered in the same way, using different spatial constraints and different texture

images.
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(a) (b)

Figure 3-6: Multiple surfaces, separately mapped. (a) The top half and the bottom

half of the head are textured by the use of two different spherical texture images.

(b) The surface of the earth is textured by a spherical texture image and rendered using

CVG operations. The core of the earth is textured by a cylindrical texture image. The

transparency of the air is controlled using a field function.

In order to generate the warped texture images for each iso-surface, we need in

principle to generate an intermediate template for each of them. However, since the

mapping is implemented via a volume rendering engine, and a constraint is used to split

the volume object, one intermediate template may include the key points of multiple

iso-surfaces and we need only one texture image to texture multiple iso-surfaces. In

other words, the intermediate template reflects the constraints placed on the renderer.

This is illustrated in Figure 3-7(a), where the volume object has two iso-surfaces,

the skin and the skull. The top half of the skin is removed, using a spatial constraint,

as shown. Figure 3-7(b) shows the textured output. In order to produce this, we gen-

erated an intermediate template from the constrained data.This template is shown in

Figure 3-7(c). Then we produced a warped texture in the usualway, Figure 3-7(d), for

the final rendering.
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(a) Split volume object (b) Textured volume object

(c) Intermediate template (d) Warped texture image

Figure 3-7: Spatial and semantic constraints within one intermediate template.

3.7 Texture Interpolation

This is an appropriate point to discuss texture interpolation further. The issue is, given a

texture image defined at discrete positions (pixels), interpolate the value at any position

in between.

Interpolation methods permit texture to be sampled anywhere at a point in a contin-

uous plane, or supersampled at multiple continuously-positioned points, even though

the source image is discrete. They thus sit comfortably between discrete texture and

procedural texture while still being image-based.

What interpolated methods have in common is a combination ofa (discrete) pixel

image and a (continuous) interpolation function. The pixelimage determines the res-

olution limit but the choice of function determines the image quality achieved. Since
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all such methods start with a pixel image, the choice of function also characterises the

specific method.

Bilinear interpolation is well-established and supportedin graphics cards, where it

is used to texture the surfaces of scenic objects in games, for example. Image quality

is less important in fast-moving games than in visualisation, so some softening of the

texture is acceptable.

An alternative approach [66, 67] explores a method based on interpolating only

three of these pixels. The motivation is better reconstruction of edges, retaining per-

ceived sharpness and fine detail. Briefly, the method pre-processes the texture image

to add one bit per pixel. Each group of four pixels is examinedto determine the pixel

with the outlier brightness.

A notional diagonal is then placed across the four pixel square, such that the outlier

is strictly to one side of the diagonal. In other words, the diagonal is the one which

doesnot include the outlier. This diagonal roughly represents the direction of any edge

in that square.

As there are only two possible diagonals in each four pixel group, one bit suffices

to identify which. To sample the texture, the triangle that the continuous space sample

falls in is determined. The three pixel values are interpolated to determine the value

at the continuous point. This interpolation is the same method that Gouraud shading

uses. A modest extension to the pre-processing changes the direction of a diagonal if

its neighbours are majority in favour of the other direction. This captures visible edges

better and makes no difference to the storage requirement orto the rendering method

or speed. The approach has also been demonstrated in matted (layered) images [110,

111].

We adopt this way of interpolating texture images because itreadily adapts to be-

ing sampled at varying resolution (required because the template is not a uniform-area

mapping of the iso-surface) and because visualisation applications are more demand-

ing of visual quality than computer games. As a bonus, it reduces visual sampling

defects and is very fast. The method also performs well dynamically, with no dis-

cernible flicker while zooming [66].
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3.7.1 Pixel level data dependent interpolation

As shown in Figure 3-1, the warping and morphing operations implemented in steps

(3) and (4) may degrade the quality of the 2D plenoptic projected texture image, es-

pecially the quality of the tiny texture features in the image. Therefore pixel level

data-dependent interpolation [66, 67] is adapted in the warping and morphing opera-

tions in our algorithms, to improve the quality of the morphed texture image.

a

b c

d

Figure 3-8: Pixel level data dependent interpolation:a, b, c, dare four pixel values,
represented as heights [66].

Assume Figure 3-8 shows four pixel values, represented as heights. Suppose the

(low resolution) plenoptic projected image (or a texture photo directly) isX, the high-

resolution target image to be generated isY.

First, scanX to initialize a 2D array,xmn, which records the edge direction of all

four-pixel squares. Second, scanY to initialize a 2D array,yij. Eachyij is inversely

mapped to the sample imageX, and the arrayxmn is used to identify the triangle in

which the point falls in the source imageX.

Then the value ofyij is calculated by the use of barycentric interpolation. In the

first step, the outlier is detected by comparing the difference ja � 
j and the differ-

encejb� dj. The pair with the smaller difference is treated as an edge. This maintains

the smoothness within the regions as well as the sharpness between the flat region and

cliff region. Pixel level data dependent interpolation preserves edge details by keep-

ing edges sharp and smooth areas smooth. Figures 3-9 and 3-10give an example of

the application of the interpolation method. For comparison purposes, the bilinear

interpolation is also implemented in our algorithms.



3.7Texture Interpolation 55

(a) Stamens

(b) Textured volume object.

Figure 3-9: Pixel level data dependent interpolation: (a) The original photo of stamens,

75 x 75 pixels. (b) Textured volume object. The stamens on theleft side are interpo-

lated by the pixel level data dependent interpolation, the stamens on the right side by

bilinear interpolation.

Figure 3-9(a) is the original photo of stamens. The image size is 75x75 pixels.

Figure 3-9(b) is the textured volume object. The stamens on the left side in Figure 3-

9(b) and Figure 3-10 are interpolated by the pixel level datadependent interpolation,

the stamens on the right side by bilinear interpolation. Theclose up view given in

Figure 3-10 shows that the pixel level data dependent interpolation gives the better

appearance and details of the textures are preserved quite well. Figure 3-10 shows the

enlarged image of the textured object, which is shown in Figure 3-9(b).
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Figure 3-10: The rendered image of textured volume object. Left stamens: pixel level

data dependent interpolation; Right: bilinear interpolation. The deformation of the

volume object is through spatial transfer function. The volume object is shown in

Figure 3-9(b).
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3.8 Further Experimental Results

We show here some more results, combining various aspects ofthe complete system.

(a) (b)

(c) (d)

Figure 3-11: Multiple iso-surfaces associated with their own projected textures.

3.8.1 Multiple textures, varying opacity

The core ideas are brought together in Figure 3-11. These images are taken from a

short movie sequence, in which the composite volume object is rendered with gradu-

ally varying opacities of the iso-surfaces. Each iso-surface is associated with its own

texture set. In Figure 3-11(a), the opacity of the skin is 0.8, the opacity of the skull is

1.0. In Figure 3-11(b), the opacity of the skin 0.2, the opacity of the skull 0.9. In Fig-
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ure 3-11(c), the opacity of the skin is 0.15, the opacity of the skull is 0.3, the opacity

of the brain is 1.0. In Figure 3-11(d), the opacity of the skinis 0.05, the opacity of the

skull is 0.1, the opacity of the brain is 1.0. The skin is coloured using a cylindrically-

projected photograph of a person, the skull is coloured using a cylindrical mapping of

the image of a real skull. In Figure 3-11(c) and (d), the brainhas three volumes: the

main volume, the vertical stem, and the rear lobes. The colours of these are directly

assigned to density ranges.

Here there is an outer surface of skin. Within that there is a skull surface and inside

that a brain surface. These surfaces are determined solely by the volume data but

our choice of colouring determines how they are rendered. Itis important to remind

ourselves that the real texture of the surfaces is still present, from the volume data.

Only the colouring is “texture” in the sense that the computer graphics community uses

the term. This example shows that the transparency can be adjusted gradually, to reveal

the coloured surfaces one by one. It also illustrates how ourkey point selection method

can be used to adjust the texture images to match the volume data. For example, the

face is not that of the cadaver from which the volume data was captured but has been

adjusted to fit the volume data. This is again relevant to special effects, where the face

will be that of an actor but the skull and other internal detail can be obtained from

other sources or indeed synthesised as something wholly unrelated, such as circuitry

to represent the interior of a robot.

3.8.2 Spatial constraints and transfer functions

Rendering is now slightly more complex because we need to decide which surfaces

are visible and whether they are opaque or translucent. In addition, radial projections

of textures might be inappropriate in some applications. Note that, in our system

the semantic-constraints based projective texture mapping mechanism is implemented

through volume rendering methods (DSR [72], DVR [112]), so spatial constraints and

transfer functions facilitate and control the positions ofthe texture. These are all within

the grasp of a volume renderer.

Figure 3-12 shows how multiple iso-surfaces can be associated with their own

texture images, opacity settings and spatial constraints.
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(a) Textured skin (b) Semi-transparent skin plus coloured brain

(c) Textured skull (d) Semi-transparent skull plus coloured brain

(e) Rendering with spatial constraints -1 (f) spatial constraints -2

Figure 3-12: (a)–(d) Multiple textures applied to the skin,the skull and the brain. In

(e) and (f) different portions of the skin and the skull were set to transparent using

spatial constraints.
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In Figure 3-11, the semantic constraints of the iso-surfaces were achieved by us-

ing field functions. In Figure 3-12, the semantic constraints of the iso-surfaces were

achieved by using spatial transfer functions. Similarly, as shown in Figures 3-5, 3-6, 3-

7, and 3-14, spatial constraints (3D positions, splitting functions, etc.) were employed

while texturing and rendering volume objects. Volume data offers us direct control

of texturing from the data itself, whereas in surface methods external geometric con-

straints have to be designed.

3.8.3 Sculpting with 2.5D texture

Animators are used to seeing the external appearance of an object being animated,

even when sculpting to help design the shape. Using our 2.5D method the texture

can be applied and the shape then refined by sculpting, while still showing the correct

texture in the newly carved regions. If any minor repositioning of the texture is then

needed, it can be made on the final shape. This is much easier for the animator than

sculpting a blank form. Figure 3-13 illustrates a tapered cylinder (a volume object)

textured this way. The shape of the cylinder has been modifiedby sculpting, with the

texture appearing much as it would for carved solid texture.This texturing operates the

same as that for sculpting objects with procedural solid texture, except that procedural

textures do not suit this kind application. In contrast, our2.5D approach is directly

appropriate and compatible with the existing way of texturing the head.

Figure 3-13: Sculpting textured volume object: the 2.5D texture model provides

pseudo-solid texture for volume objects.
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3.8.4 Semantic (spatial, logic) constraints for 2.5D texture models

Spatial Splitting

Projecting 2D texture to 3D voxels is an ill-conditioned problem. The texture may

wrongly be applied to parts of the volume where it is not needed. Since the presented

three-part texture mapping method can be directly hooked into volume rendering al-

gorithms (DSR and DVR), we can make use of spatial transfer constraints or semantic

constraints [14]. We use splitting techniques to isolate the portion of the volume object

which needs to be textured (as demonstrated in several of theprevious figures). Now

we consider the case that once the volume object is textured using our method, split-

ting techniques can be directly used for the visualisation.Figure 3-14 demonstrates the

effect of splitting the textured volume object. The outer layer was split using semantic

constraints. As can be seen in Figure 3-14, the textures extrude through the split layer

as well as the volume object itself. The renderer can thus assist us to choose how the

extruded texture is applied, according to the application area.

Figure 3-14: Common 2.5D texture on semantically-split layers.

Logic and field functions

Note that one benefit of the generic volume model is flexibly manipulating its com-

ponents through transformation functions. In its definition, components can be a va-

riety of segmented volume elements. Transformations can bea general set of transfer

functions, spatial functions, deformation functions, etc. Here, we use a distance field

based skull model to demonstrate the flexibility and generality of semantic constraints.

As shown in Figure 3-15, a distance-field based skull is rendered using a procedural
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texture model, a cylindrical texture model, logical (distance value) constraints, a field

function, and FFD deformations.

(a) (b)

Figure 3-15: Coloured skull: Distance-field based skull canbe logically, spatially,

and semantically split. Different texture model such as 2D images (right), procedure

textures (left) are applied to tagged volume objects accordingly. The skull model is

deformed using FFD.

First, given a volume object, the distance field could be one of its scalar fields.

The field value at positionp, could be the distance fromp to its nearest point on an

iso-surface [17]. Thus, different distance values in fact provide us with useful depth

information for splitting the volume space.

Second, we combine FFD deformation control [89] with the semantic projective

texture model. Free-Form Deformation (FFD) is a well-established deformation tech-

nique well-adapted to volume graphics [6, 89].

Adopting the B�ezier deformation model, the volume space was discretised byim-

posing a 3D rectilinear grid onto it. Each vertex in the grid,where parametric coor-

dinates,vu; vv; vw, are known, is transformed into Euclidean space using the B�ezier

volume equation:
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where(vu; vv; vw)2[0 1℄3 is the parametric coordinate of the vertex,Ci;j;k is a Bezier

volume control point andBi, Bj, Bk are the Bernstein functions.

Each vertex in the grid maintains a record of both the original parametric(vu; vv; vw)
and the computed Euclidean coordinates(vx; vy; vz). Hence each cell encloses a small

parametric domain, which is further divided into six tetrahedra. Spatial transfer func-

tions can be generated within such parametric space using bary-centric interpolation.

The problem of determining(vu; vv; vw) is thus transformed to the search for a tetra-

hedron containingv.

Third, the procedural texture model was defined as follows:R(pu; pv; pw) = (vluNoise(pu � 5:0; pv � 5:0; pz � 5:0) + 1:0)=2:0 (3.8)G(pu; pv; pw) = (vluNoise(pv � 5:0; pu � 5:0; pz � 5:0) + 1:0)=2:0 (3.9)B(pu; pv; pw) = (vluNoise(pw � 5:0; pv � 5:0; pu � 5:0) + 1:0)=2:0 (3.10)

wherevluNoise is a solid texturing basis function provided byVLIB. (pu; pv; pw)2[0 1℄3
are the coordinates of a 3D pointp.

In the VLIB implementation, the noise basis functionvluNoise is implemented

through the summation of pseudo-random spline knots. The knots were calculated

using loop calculation and a lookup table. Given a lookup table valueTab, the integral

coordinates ofx; y; z are: ix = FLOOR(x) (3.11)iy = FLOOR(y) (3.12)iz = FLOOR(Z) (3.13)

The fractional remains are: fra
[0℄ = x� ix (3.14)fra
[1℄ = y � iy (3.15)fra
[2℄ = z � iz (3.16)
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Then the noise value was calculated as:for(k = �1; k <= 2; k ++)ffor(j = �1; j <= 2; j ++)ffor(i = �1; i <= 2; i++)xknots[i + 1℄ = valueTab[INDEX(ix + i; iy + j; iz + k)℄;yknots[j + 1℄ = vluSpline(fra
[0℄; 4; xknots);g zknots[k + 1℄ = vluSpline(fra
[1℄; 4; yknots);g noise = vluSpline(fra
[2℄; 4; zknots); (3.17)

wherevluSpine is the implementation of the spline function [?].

3.9 Image based Illustrative Colour Transferring

As previously discussed, a semantic transfer function can transfer an attribute fieldFi(p) to a different attribute fieldFj(q) at different positions. Positionsp andq can be

either 2D or 3D positions. Transferring colours from an illustrative image to 2D slices

of volume objects, or from 3D illustrative volume to 3D volume objects, are common

tasks to annotate volume objects. These techniques are in fact different implementa-

tions of semantic transfer functions.

The common colour transfer techniques include statisticaland colour correction

between source and target images [113, 114] and cluster similarity based colour trans-

fers between illustrative images and volume sources [115].Here, the implementation

of the colour transfer functions is based on cluster similarity and statistic colour cor-

rections.

We define the source (volume) intensity (or other attribute)clustersGs = fGsi; i =1; :::; Nsg, and example (illustrative image) colour clustersGe = fGei; i = 1; :::; Neg.
We follow Lu’s assumption [115]: “Since illustration usually employs different colours

for different objects, we assume that if two objects do not have the same colours in the

example, they will not share the same colours in the source.”, hence we assume the

volume intensity cluster numberNs is equal to that of the illustrative colour clusters,
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(a) (b) (c)

Figure 3-16: Illustrative Sample Image [46]: (a) A 2D slice of the Visible Man. (b)

Realistic Image of original bones, skins, soft tissues. (c)The sample area cut off from

(b) (the enclosed area within red box) is used for constructing colour clusters and

transferring colours from pixels to voxels.

We need to find a correspondence mapf fromGs toGe using the distribution sim-

ilarity criterion between the source clusterGsi and the example clusterGej. Assuming

clusters are interactively provided by users through the swatch technique [113], then

the mappingf can be defined by finding the minimum errors between the normalised

areas of source clusters and example clusters, of course, users can directly constructf
as a lookup table, as illustrators usually do.

Given normalised areasS = fsi = Area(Gsi)g andE = fei = Area(Esi)g, the

mapping functionf : f(S)!E is defined as:MERROR = NsXi=1 (si � f(si))2 (3.18)

With equation (3.18), source clusterGsi will be matched to example clusterGej byj = f(i).
After constructing the mapping function, we can transfer colours from example

clusters to their matching source clusters. We perform the colour transfer in��� chan-

nels. The colour transfer can be described as follows:
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(1) Convert source intensities and example colours (RGB) into ��� channels,�v,�v,�v,�p, �p,�p, wherev is a voxel in the source,p is a pixel in the example.

(2) Calculate the mean and standard deviation of each cluster in the three converted

spaces,mw;Gsi, stdw;Gsi, mw;Gej, stdw;Gej, w = �; �; �
(3) Calculate the distancedv;i between voxelv and clustersG�;si in � space:dv;i =j�v �m�;Gsi j.
(4) Calculate average coefficients
v;i = Inv(dv;i)=PNsj=1(Inv(dv;j)), whereInv() is

the inverse proportional function of distances (contribution factors).

(5) Scale and transit��� channels of voxelv:�̂v = NsXi=1 (
v;i � ((�v �m�;Gsi) � std�;Gej=std�;Gsi +m�;Gsi))�̂v = NsXi=1 (
v;i � ((�v �m�;Gsi) � std�;Gej=std�;Gsi +m�;Gsi))�̂v = NsXi=1 (
v;i � ((�v �m�;Gsi) � std�;Gej=std�;Gsi +m�;Gsi)) (3.19)

wherej = f(i). Equation (3.19) transfers colours from example image to source

volume in��� space. Then we can further convert�̂; �̂; �̂ into RGB space [114, 116]

(Ref. Appendix for the original Matlab code provided by [116]):0B�RGB1CA = 0B�3:240479 �1:537150 �0:498535�0:969256 1:875992 0:0415560:055648 �0:204043 1:057311 1CA �0B� �̂̂�̂�1CA
In Figure 3-17, we first scale the original 16-bit intensity values of the MRI brain

into 8-bit non-negative integers. We then use swatches to construct two source (inten-

sity) clusters from a slice of volume dataset and two example(colour) clusters from the

illustrative image shown in Figure 3-16 [46]. The colour components are normalised

for the purpose of transferring colour space. TheR;G;B colour components will be

reshaped back into 8-bit integers finally. These colour components and their indexed

original 16-bit intensities construct the colour lookup table. The volume rendering

engine uses this lookup table to transfer colours to each voxel’s red, green, and blue

scalar fields.
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(a) (b)

(c) (d)

Figure 3-17: Illustrative colour transferring: (a) A 2D slice of volume MRI brain.

The grey image (voxel intensities) is enhanced using histogram stretching. (b) The

intensities shown in (a) were transferred to the colour information shown in Figure 3-

16(c), illustrative image. (c) Rendered volume MRI brain. (d) Regions of MRI brain

were cut off to show the internal structures. Colour transferring functions in both (c)

and (d) are constructed using the same illustrative image.
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3.10 A Generic Problem: Penetrating and Self-occlusion

3.10.1 Shear-effect

An analytical model was built to test the quality of the projective texture mapping. A

typical artefact is the shear-effect, that is, a single texcel projected to a surface which is

almost parallel to the direction of projection will be smeared over a relatively large area

of solid. In addition, the finite resolution of colour lookuptables in procedural texture

models can also introduce alias artifacts due to “texture minification” [47]. Therefore,

effective surface representations as well as appropriate interpolation techniques are

primary requirements of the novel semantic project texturemodel discussed in this

chapter.

(a) Analytical model (b) Land-marking: yellow pixels

(c) Cliff-effects: Smeared area of solid.

Figure 3-18: Shear effect of pseudo-solid texture model: (a) The constructed analytical
model. (b) The morphed texture image. Land-marking dots aremade in yellow. The
size of each marking dot is only a single pixel. (c) is the close up views of the textured
analytical object. The size of the morphed texture image used in figure (c) is 128x128
pixels.

Figure 3-18(c) shows that the shear effect becomes prominent. As previously dis-

cussed, continuous representations of texture image couldbe a solution to the problem

of texture smearing. Instead, a more advanced and practicaltechnique to solve the

shear effect, smoothing point clouds, will be offered in thenext chapter.
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3.10.2 Penetration and self-Occlusion

As shown in Figure 3-3, texture penetration is a critical issue in pseudo-solid tex-

ture models. Another challenge is theself-occlusionof the volume dataset, that is,

iso-surfaces always have manifold geometrical structures. As previously discussed,

DSOR objects lack geometrical, topological and semantic information. Therefore ex-

pecting users to have expert knowledge of transfer functions to split manifold struc-

tures is unrealistic. Regarding this, we will offer a novel solution, semantic layers,

which is based on the concept of semantic transfer functions, to solve this problem in

a following chapter.

3.10.3 Computational Expenses

The volume rendering pipeline presented in this chapter is implemented using c/c++.

The program is executed on the unix platform without additional parallel computing

resources. The field-based illumination object model, which is based on the single

scattering model, is used in the volume integral operation.The field illumination model

casts a second ray (shadow ray) to calculate the shadow effects for each of the light

source in the scene. We use DSR [72] and DVR [78] as our main volume rendering

techniques.

The complexities of field functions, spatial functions, deformation functions im-

plemented as cascading functions for each volume integral elements of tracing rays,

will direct affect the rendering time. Rendering Figure 3-2will take 1 minutes and

57 seconds. The image size is 400x400 pixels and the running step length is set to

0.1. There are 8 point lights in the rendering scene. The sizeof the carp dataset is

256x256x512 voxels.

Rendering Figure 3-5(c) will take 7 minutes and 1 second. Theimage size is

1320x2000 pixels and the running step length is set to 0.1. There are 4 point lights

in the rendering scene. The size of the CT-head dataset is 180x113x237 voxels.

Rendering Figure 3-12(d) will take 90 minutes. The image size is 2000x2000

pixels and the running step length is set to 0.2. There are 2 point lights in the rendering

scene. This image is used as an example printed on the back cover of the proceeding

of Graphite2005. The size of the MRI-brain dataset is 109x189x172 voxels. The size

of the CT-head dataset is 180x237x113 voxels.

Rendering Figure 3-15(a) will take 40 minutes, and Figure 3-15(b) 19 minutes.
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The image size is 400x400 pixels and the running step length is set to 0.1, and there

are 3 point lights in the rendering scene. The size of the distance field based dataset is

109x189x172 voxels.

3.11 Conclusion

We have considered the needs of volume rendering when being used for applications

that needs realistic appearances of volume objects. We focus on volume iso-surfaces

rather than mesh surfaces. We have presented a multi-constraints-based approach to

texturing which is based on continuous space mappings to ensure good image quality.

Starting from Winter’s projective texture mapping method [6], the system requires only

one intervention by the user, to determine key points where the texture must match an

intermediate image of the original data. This can also be used to avoid the problem of

texture being smeared over too large an area.

We demonstrated an extension to 2.5D textures, extruded through the volume, us-

ing an approach consistent with 2D texture. In conjunction with its intrinsic ability to

generate high resolution images, the overall method has potential in non-classical ar-

eas, such as film special effects, for which volumetric source data are especially useful,

whether captured or synthesised.

If topological artefacts exist, our methods will not degrade the visual effect of the

textured volume objects. Any such regions (whether sculpted or damaged portions of

volume objects) will have the same texture as their radial neighbourhood, as demon-

strated in Figures 3-13 and 3-14. In contrast, as investigated by Wood [32] and Guskov

and Wood [29], traditional mesh-based texture mapping needs to fill the holes intro-

duced in the mesh model, especially for high quality texturemappings, for example in

close-ups and realistic volume characters.

Interpolation techniques, continuous indexing, and multi-resolution representa-

tions, are typical computer graphics methods. We migrate these techniques from the

traditional CG area into Volume Graphics. In our textured volume rendering, the iso-

surfaces (point clouds) are used as semantic constraints, i.e, spatial constraints and

transfer functions [14, 63, 62], to facilitate and guide thetexture placement with high

accuracy, giving a general purpose solution.

Being able to sculpt a volume object with texture running through it is important.

Manipulating the details of volume characters is essential. When using volume source
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data, removing the imaging noise and correcting topological artefacts without touching

the textured realistic appearance is a challenge. Our 2.5D projective texture could

possibly be hooked into practical volumetric sculpting, for example as presented by

Ferley et al. [117] for modelling volume objects, or appliedto volume objects whose

surfaces were smoothed using diffusion normals, as presented by Tasdizen et al. [118].

Transferring colours from illustrative images to volumes also demonstrates the

flexibility and generality of the described generic volume object model, which com-

bines together the generality of scalar fields and the flexibility of a variety of semantic

transfer functions.

Pessimistically speaking, transferring animage modelfrom 2D space to 3D space

is still very much an unsolved problem. In this chapter, we present a possible solu-

tion to this problem. We model the 2.5D pseudo-solid texturemodels trying to satisfy

some deterministic 3D spatial features, where key featuresexist on surfaces of volume

objects. We will demonstrate in later chapters of this thesis that our projective tex-

ture model produces superior results in these areas by providing a flexible rendering

framework.

The additional contribution of our generic volume object model is that it provides a

universal model for integrating 2D images and 3D volume datasets, giving a universal

solution to many DSOR based applications. It challenges many other visualisation

and illustration algorithms and generates more realistic results. Moreover, it provides

the flexibility and possibility of integrating various computer graphics and volume

graphics applications. The high quality visual effects andrealistic appearance prove

its efficacy.



Chapter 4

Multi-Dimensional-Scaling Models

(MDS)

Point sampling and point-based rendering techniques are becoming basic research in

volume graphics, for instance, moving from grid-based volume graphics to point-based

volume graphics [8], and rendering multi-resolution point-based surfaces [7]. We

believe that manipulating point clouds for texturing volume datasets can become a

new bridge connecting volume graphics and image-based texture models, as we will

demonstrate in this chapter.

In order to improve the shear effect of the projective texture model, we here present

a graph model which preserves the neighbourhood relationships of the point clouds

within volume objects. In order to further smooth the point clouds, the classic multi-

dimensional scaling (MDS) using novel shortest-path proximities that is based on the

graph model is also introduced.

By mapping 3D points into a 2D flattened (Euclidean) domain the methods pre-

sented can both flatten the projected 3D surfaces of volume objects (onto intermediate

templates) and preserve local geometrical features on the surface (level sets) of volume

objects.

We will also discuss point clouds tangling and flipping in MDSmethods. In this

chapter we will introduce:� A novel method to construct point clouds of volume objects bysampling the

positions of level sets using projective spherical models.� A point clouds smoothing method using the MDS method, which allows us to

72
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flatten the intermediate template and thus match textures tothe shape of the

object.

This is done by constructing a novel projected (plenoptic) graph model that is

composed of these probed 3D data points (node) and the Euclidean-distances be-

tween each neighbouring 3D points (edges), the algorithm wecall theplenoptic

shortest-path MDS.� A novel method to improve shear effects, by overlaying texture images onto the

flattened intermediate templates.

Our method of flattening 3D volume data sets for the applications of texture

mapping and annotation focuses on linear dimensional reduction, graph layout,

preserving neighbouring relationships among 3D point clouds, with no necessity

to adjust any parameters.

4.1 Introduction: Shear Effects

Motivated by the observations of the importance of realistic visual appearances of

volume objects, we presented an imaged based approach to texture mapping volume

datasets [39, 40] in Chapter 3. The method is based on a projective pseudo-solid texture

model and semantic constraints. A rendered intermediate template for texture warping

is needed.

The rendered intermediate template is based on projective mapping. Therefore,

texels will be smeared over a relatively large area if they are projected onto a surface

which is almost parallel to the direction of projection, thephenomenon that is referred

to “shear effect” in this thesis.

In this chapter, we are trying to introduce a mesh-less modelfor texturing volume

objects and reduce shear effects, that is, directly manipulating a point cloud rather than

constructing a mesh model as an intermediate step for texture mapping and annotation.

4.2 Related Work

Many existing texture models were designed to support mesh-based CG characters.

Here we draw our inspiration mainly from texturing or annotating volume objects
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without mesh models. Therefore, the techniques which are directly relevant to ma-

nipulating points cloud for texturing volume objects are particularly interesting to us.

In this chapter, we focus on mesh based surface flattening methods [38], which

provide positioning control for texture mapping. Here, we discuss the tangling and

flipping of mesh models.

Tangling and flipping

Preserving the quality of moving mesh grids and improving the efficiency of mesh

smoothing algorithms are common problems in many practicalapplications. Unfortu-

nately, we can often see a few lines of mesh models cross the other mesh lines after

mesh deformations. Then, this is just that we called “mesh tangling and flipping” in

this chapter.

To improve the accuracy and efficiency of mesh deformation, the mesh grid can

be regenerated according to the salient features of the local regions. However, since

these local regions can change with time, the local regeneration or refinement of the

mesh grid can become extremely computationally demanding.Under such circum-

stances, Bochev et al. developed and analyzed the method that both uses fixed mesh

grid structures and distributes grid nodes according to a given analytic weight func-

tion of the spatial variables [119]. By defining the appropriate weight functions, they

demonstrated that their methods can accurately repositionthe nodes and do not tangle

the mesh.

The performances of mesh moving algorithms using fixed grid structures are of

particular interests to us: as Bochev et al. pointed in [119], such methods do not

require complicated data structures, since the reference domain is not changed; cost

of moving the grid is limited to computation of new physical coordinates of the grid

points. Therefore overall efficiency of moving grids can be significantly improved.

Bechev et al.’s experimental results indicate that their methods do not tangle the

mesh after moving operations. However, it is worth pointingout that we are currently

dealing with a different problem. Here we are trying to flatten a point cloud from 3D

space into a 2D plane. Therefore there is no explicit mesh grid that can be used.

Mesh quality for moving meshes in 2D and 3D unstructured meshmodels were also

discussed by Berzins et al. [120]. The solutions to the problems of maintaining mesh

quality of unstructured triangular and tetrahedral meshesare considered. They inves-

tigate the anisotropic properties of the atmospheric dispersion mesh model. Tangling

was discussed for moving the unstructured mesh models in 2D or 3D space indepen-
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dently. However, this is also differences with our target which focuses on preventing

tangling while we flatten mesh models from 3D space into 2D plane.

4.3 Principle of the Algorithm: MDS Models

4.3.1 Background: classic multi-dimensional-scaling (MDS)

Given a discretely sampled object representation (level sets), we would like to con-

struct a spatial relationship representing the 3D geometrical configurations of these

sampled points. The abstracted spatial relationship should map the DSOR representa-

tions (point clouds, level sets) into an analytic and function domain.

Starting from the discretely sampled object representations (DSORs), which lack

functional information, we need to useproximitiesamong DSOR level sets and then

output the spatial map using the proximity measurements. Infact, multidimensional

scaling, MDS, is the solution to this problem [121].� Proximities:

A proximity is a measure that indicates how similar or how different the two

objects or two elements of an object to be. In fact, any kind ofinformation

such as geometrical, topological or semantic, can be regarded as a measure of

proximity among different individuals.� Multi-dimensional scaling (MDS):

Multi-dimensional Scaling (MDS) refers to a class of techniques. The input of

these techniques are proximities amongst any kind of objects (or, elements of

an object). The output is the spatial relationship reflecting the hidden structures

among the data set. Such a spatial relationship is often represented as a map,

which demonstrates the geometric configuration of points.

In this thesis, the output of MDS is a 2D Euclidean plane representing the given

proximity measures. The input is the proximity measure matrix whose element is

the distance (proximity measure) between each 3D point in the level sets. Given a

proximity measure matrix,M , then the 2D flattened configuration can be calculated

via Classical Scaling, a direct and metric MDS method. In metric MDS, the original
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distance (or proximity) matrix is approximated. Non-metric MDS deals with data in

which the order of the distances must be preserved [122].

The classical MDS method can be defined as follows [38]:

Given a set of 3D pointsf�pk; k = 1; 2; :::; ng, and proximitiesÆ(k; l) between

points �pk and �pl, we need to find a set of 2D data vectors�̂pk, �̂pk2R2, that have Eu-

clidean distancesfd̂(k; l)g which approximate the proximitiesÆ(k; l) well. Here, the

3D points within volume objects are the 3D positions of pointclouds sampled by firing

tracing rays using the spherical model,�pk = (Xk; Yk; Zk).
Define the matrixPn;3 to represent the(X; Y; Z) positions ofn points in 3D Eu-

clidean space. The square proximity distance between point�pi2Pn;3 and �pj2Pn;3 is

defined as: d2ij = (proximity(�pi; �pj))2 (4.1)

Let M be a matrix whose entries are defined byMij = d2ij, i; j = 1; 2; :::; n, then the

classic scaling MDS method can be calculated using eigenvector decomposition:Double 
entring and normalisation : B = �0:5 � J �M � J (4.2)Eigenve
tor de
omposition : [Q;L℄ = eigs(B; 2; 0LM 0) (4.3)newx = sqrt(L(1; 1)): �Q(:; 1); (4.4)newy = sqrt(L(2; 2)): �Q(:; 2); (4.5)J = I � 1NL�LT ; (4.6)

whereJ is the centring matrix which moves the origin of matrixM onto the cen-

tre of its mass. MatrixI is an identity matrix and vectorL is the vector of ones

(1’s). In Equation (4.3), the centred and normalised proximity matrix B is approx-

imated by the matrixL whose rank is 2. The equation is solved in the least square

sense. In Equations (4.4) and (4.5), the flattened 2D coordinates of thei-th 3D point

are (newxi; newyi), wherei = 1; 2; :::; n. Note that the flattened 2D coordinates

are obtained by multiplying the two largest positive eigenvalues with their associated



4.3Principle of the Algorithm: MDS Models 77

eigenvectors.

4.3.2 Geodesic-based MDS models

Grossmann et al. [122] used minimal geodesic distances between points on the surface

to construct the proximity matrixM . By constructing the geodesic distance on a 3D

surface, their algorithm can be described as follows:

(1) Create proximity matrix (squared geodesic distance matrix):D = fd2ij = (geodesi
 distan
e(xi; xj))2; i; j = 1; 2; :::; ng (4.7)

(2) Calculate the estimated scalar product matrix:B̂ = �0:5JDJ (4.8)

(3) Calculate the eigen-decomposition ofB̂ up to rank 2:B̂ = Q2�2QT2 (4.9)

where�2 andQ2 are2�2 andn�2 submatrices.

(4) The flattened 2D coordinates matrix is:X̂ = Q2� 122 (4.10)

The above classical scaling method was employed for flattening 3D surface points. For

our interests, the unique features of the method are:� direct operations on voxels without the necessity of constructing a mesh model

as an intermediate step;� optimal estimations of Euclidean distances of edge-lengthe between vertexesv
on volume data;� global preservation of minimal geodesic distances of pathsfrom the source ver-

tex to the destination vertex on the graph modelG(v; e);� computational efficiency.
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Floating and isolated voxels:

In Equation (4.7), there are two crucial steps for estimating the minimal geodesic dis-

tances between 3D points on voxel based surfaces:

(1) Representing the surface as a weighted graphG(v; e):voxel()v : vertex; link()e : edge (4.11)

(2) The weight of an edge depends on the three link types:direct, minor diagonal,

andmajor diagonal. The unbiased, minimum Mean-Square-Error length estimation

for a 3D curve is:L̂ =0:9016 �Number(dire
t links) + 1:289 �Number(minor diagonals)+1:615 �Number(major diagonals) (4.12)

where functionNumber() calculates the numbers of the different link types (N1, N2,N3, as shown in Figure 4-1) between neighbouring voxels on the path.

Figure 4-1 shows the three link types in a 26-directional 3D chain code [122].

N1N2
N3

Figure 4-1: Link types in a 26-directional 3D chain code [122]: N1: direct link (parallel

to one of the main axes),N2 : a minor diagonal link, andN3: a major diagonal link.
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The design of 3D length estimators must be based on theoretical analysis of chain

code probabilities in three dimensional chain encoded lines [123]. The contributions

of the above equation, Eq.(4.12), are not only the minimum RMS estimators but also

the predictions of the number of direct, minor diagonal and major diagonal links in the

chain code of a 3D line.

Given the probabilities of a 3D chain code of a 3D line, the crucial problem of

calculating the minimal geodesic distance between source position and destination po-

sition on a 3D voxel based surface is how to let the geodesic trajectory pass through

the “bridging” voxels on the path, as demonstrated by Grossmann et al. [122] and

Kiryati and Sz�ekely [124].

Unfortunately, since DSORs lack geometrical, topologicaland semantic informa-

tion, we cannot guarantee such “bridging” always exists. There is a high possibility

that the 3D point clouds are isolated level sets, rather thenjust the discretely sam-

ple positions on aconnectedsurface. So, we cannot be sure that there is at least one

path between any pair of two voxels on the surface. In this chapter, we deal with the

following special cases:� We do not require the existence of a path from source voxel to target voxel for

estimating minimal geodesic distance.� We start from the primary DSOR sampled positions, which lacktopological,

geometrical information. These 3D positions are theoretically isolated points,

without any explicit connecting constraints.� Grossmann et al.’s work started from an explicitly defined connected surface,

represented by either 3D point clouds or voxels. However, ina reverse sense,

our work in this chapter resides on isolated level sets to represent DSOR-based

surfaces.� In addition, we use plenoptic models to fire tracing rays to construct 3D point

clouds within volume objects. The plenoptic models are alsoused to construct

the graph model to calculate shortest paths for MDS.

4.3.3 Geodesic distance ambiguity

As discussed in Chapter 3, we use projective texture models to generate intermediate

templates. The texture projections include planar projection, spherical projection, cu-
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bic projection and cylindrical projection. The volume object can thus be viewed from

any position in 3D space.

Given two voxels on a volumetric level set (without an explicitly constructed mesh

model), if we view the object from one viewpoint, then the geodesic path between

these two voxels might be different to one viewed from the opposite viewpoint. The

two shortest paths run through different terrain on the different surfaces (level sets)

facing the two opposite viewpoints.

If we try to flatten the enclosed surface using these two different shortest geodesic

distances, then the two flattened surfaces will be differentto each other. We here refer

to this phenomenon as the ambiguity of shortest paths of point clouds. An example is

given in Figure 4-2.

A

B C

v1
v2

A

B C

v1
v2

B A C

B C

(a) (b) (c)

Figure 4-2: Geodesic distance ambiguity between opposite viewpoints: (a) The trian-

gle �ABC is observed from two different viewpoints,v1 andv2. (b) The geodesic

ambiguity exists in a closed structure. If viewing fromv1, the geodesic distance

(geodesic-path) isBAC. If viewing from v2, the geodesic-path isBC . (c) Different

distances of flattened vertexes of the triangle:BAC is the flattened geodesic-distance

viewed from the viewpointv1. BC is the flattened geodesic-distance viewed from the

viewpointv2.

Given the triangle�ABC, the minimal distances (edge lengths) between the three

vertexes are:AB, BC, AC. The edges are composed of neighbouring voxels. If we

observe the triangle from the viewpointv1 and would like to unfold the vertexesB, C
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andA, the estimated minimal geodesic distance should beBAC, which approximates

the flattened Euclidean distance from vertexB to C to A. Unfortunately, the shortest

geodesic distance might also beBC, represented using the dotted line.

In order to flatten the pointsA,B, andC, we need to cut the connection betweenB
andC, either by physically deleting elements on the lineBC, or by logically deleting

the linking elements in the graph modelG(v; e). We refer to the multiple possibili-

ties of minimal geodesic distance between the same pair of vertexes as thegeodesic

distance ambiguity.

This problem becomes worse in the circumstance of flatteninga DSOR data set.

First, cutting a connection (voxels) needs at least topological and geometrical infor-

mation; however, we do not have such information at hand. Second, we cannot keep a

record with both observation configurations and associatedgeodesic paths, since to do

so needs a full understanding and exploration of the volume data.

These two weak points become the main obstacles for constructing a spatial rela-

tionship reflecting the hidden structures of 3D point clouds. Even worse, as we will

explain later, tangling and flipping are inevitable due to such geodesic-distance ambi-

guity.

4.3.4 Euclidean-distance based classic MDS models

Euclidean-distance based proximity matrix

Given a matrixPn;3 to represent the(x; y; z) positions ofn points in 3D Euclidean

space; the square Euclidean distance between point�pi;a and�pj;a is defined as:d2ij =X3a=1(�pi;a � �pj;a)2 (4.13)

The proximity matrix can be constructed by using such squareEuclidean-distance

proximities,Mij = d2ij. After constructing proximity matrixM , we can use the classic

scaling MDS (Equations (4.2) to (4.5)) to flatten the 3D pointclouds.

In Figure 4-3, figure (a) shows a synthesised 3D 3x3 point dataset and figure (b)

shows the 2D positions of the flattened data set.

Here we use the Euclidean-distance based classic MDS method. In this example,

we can see that the 3D points can be flattened without any flipping and tangling of the

2D positions.
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(a) A synthetic 3D data set.
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(b) Flattened 3D point set using MDS

Figure 4-3: Flattening 3D point sets without flipping and tangling. The flattened 2D

positions (red, yellow and blue) preserve the neighbourhood relationships.
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(a) A synthetic 3D data set.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

x/u

y/
v

(b) Flattened 3D point set using MDS

Figure 4-4: Flipped and tangled 3D point sets flattened usingMDS. In figure (b), the

lines cross the others in the flattened configuration.

The 3D points in red, yellow and blue, are the first, the second, and the third point

within the 3D point set. The first (red) 3D point is neighbouring the second (yellow)
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3D point, and the second (yellow) is neighbouring the third (blue) 3D point.

The flattened 2D positions preserve such neighbourhood relationships. In addition,

an example of the tangled 2D positions (lines cross in the flattened plane) is given in

Figure 4-4(b).

Interactive data manipulation

Interactively adjusting MDS configurations and manipulating the proximity matrix us-

ing weighting functions are common techniques in multidimensional scaling analy-

sis [125, 126]. Common techniques include, for instance, power transformations for

metric MDS, distance transformations, group-dependent MDS, etc. These techniques

benefit the data visualisation in MDS. However, they also tell us that a single MDS

techniques cannot cover the variety of data visualisation problems. In particular, as

we will now explain, the existence of flipping and tangling of2D positions, is a major

obstacle for annotating volume objects using 2D texture images.

Flipped and tangled point clouds

In Figure 4-4, if we try to flatten the 3D data set shown in figure(a), the flattened

2D positions become flipped and tangled, i.e, the right side of the quadrilateral model

is flipped onto the left side of the quadrilateral model. In other words, as shown in

figure (b), the neighbourhood status, i.e, from red to yellowto blue, becomes the rela-

tionship starting from blue to red to yellow. So, we refer to the flipping and tangling

shown in figure (b) as the phenomenon that lines cross the other lines in the flattened

configuration.

As shown in Figure 4-3(a), the Euclidean-distance between the first (red) and the

third (blue) 3D points is greater than the distance between the first (red) and the second

(yellow) points, and it is also greater than the distance between the second (yellow) and

the third (blue) points. In Figure 4-4(a), the Euclidean-distance between the first (red)

and the third (blue) 3D point is less than the distance between the second (yellow) and

the third (blue) 3D points.

From Figure 4-3 and Figure 4-4, we can see that estimating an appropriate prox-

imity matrix for MDS methods plays a critical role in analysing hidden structures of

high-dimensional data sets. We noticed that directly calculating the minimal geodesic

distances running along the 3D voxels on the surface of 3D volume objects is not ap-
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propriate to us, since there is no guarantee of the existenceof the minimal geodesic

distance between each pair of 3D points. Instead, we can calculate the shortest-path

length to approximate the geodesic distance between each pair of probed 3D points.

4.3.5 Plenoptic graph model and shortest-path MDS

Neighbouring relationships of 3D point clouds

As discussed in the previous subsection, in order to estimate an appropriate proximity

matrix for MDS methods, we can calculate the shortest-path length to approximate the

geodesic distance between each pair of probed 3D points.

This can be done by constructing a novel projected (plenoptic) graph model which

is composed of these probed 3D data points (nodes) and the Euclidean-distances be-

tween each pair of neighbouring 3D points (edges), the algorithm we call theplenoptic

shortest-path MDS. Given a pair of 3D points probed by two tracing rays, if the origins

of these two tracing rays are neighbouring positions on plenoptic surfaces, then these

two 3D points are defined as neighbouring 3D points. So, we refer to the neighbouring

relationships of 3D points as the neighbourhood status of the origin positions of the

tracing rays used to probe the 3D positions of these 3D points.

To our knowledge, texture tangling have not been discussed in the MDS applica-

tions. The conventional MDS implementation is prone to uncertainties, i.e, “artefacts

in point configurations” and “local inadequacy of the point configurations” [125]. Tra-

ditional solutions to these problems are: first, “diagnostics for pinning down artefac-

tual point configurations”, and, second, “restricting MDS to subsets of objects and

subsets of pairs of objects”.

In this chapter, tangling (lines crossing in flattened configurations) originates from

the differences between the neighbouring status of sampling positions (used as the

origin positions to fire tracing rays) on plenoptic surfacesand the neighbouring status

of the 3D points actually probed. Obviously, there is no guarantee of the coincidence

between these two.

A Euclidean-distance based proximity matrix just constrains the spatial distance

between each pair of 3D point clouds. There is no neighbouring relationship among

these 3D points. In contrast, a shortest-path proximity matrix introduces neighbour-

ing constraints by constructing the graph model. The graph model not only con-

strains the direct neighbouring status using shortest-path, but also constrains the neigh-
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bouring status of the 3D points on the shortest-path. In other words, if the path(v0; :::; vi; :::; vj; :::; vn) is a shortest path fromv0 to vn, then the shortest path fromvi to vj must be a fragment on this path.

Graph layout and local information

As previously discussed, graph layout and local information about the original data

set were employed in MDS applications to improve the visibility and the accuracy of

interpretation of MDS configurations. In particular, usinglocal neighbourhood infor-

mation to construct a global low-dimensional configurationof manifold data is a basic

research topic [127]. Employing ideas of graph layout techniques such as parame-

terised based energy functions, and the novel meta-criterion, Chen and Buja’s local

MDS (LMDS) could both create faithful embeddings and provide a measurement of

the local adequacy of embeddings [127].

LMDS ties together three areas: nonlinear dimension reduction, graph layout, and

proximity analysis. However, it still has tuning parameters to generate a robust em-

bedding configuration for noise data set. Therefore, our consideration of flattening

3D volume data sets for the applications of texture mapping and annotation focuses

on linear dimensional reduction, graph layout, preservingneighbouring relationships

among 3D point clouds, and no necessity to adjust any parameters.

In particular, while LMDS focuses on providing local continuity based meta-criterion

to proximity estimation, our algorithms focus on local continuity (neighbourhood)

based anisotropic parameters. However, as we will explain in the next chapter, these

parameters will be further used in linear weighted Laplacian smoothing.

4.3.6 Proximity matrix: shortest paths

In this subsection, we use a shortest-path based proximity matrix to flatten the 3D point

cloud.

Given ann�n probed 3D point cloud, we use the graphG(V;E) to model the point

cloud.V = f1; 2; :::; n�ng is the node set andE = fei;j; i is neighbouring jg. Then

the shortest-path proximity matrixM can be described as follows:M = fmi;j = shortest path(i; j); i2V; j2V g (4.14)
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The implementation of the shortest-path function is the famous Dijkstra algorithm [128],

described as follows:

We refer to the weight of a path as its length, the minimum weight of a(u; v)-path

will be distance from vertexu to vertexv, denoted byd(u; v).
Given each vertexv, its labell(v) is an upper bound on the distanced(u0; v) be-

tween the starting vertexu0 and an intermediate vertexv. Initially l(u0) = 0 andl(v) =1 for u0 6=v.

First, insert all intermediate verticesv onto set�S0 with their labelsl(v) = p(u0; v).
Delete the vertex with minimum label in set�S0 and add it to the solution setS0. Using

an iterative process, the labell(ui) of the newly inserted vertexui in setSi and the

lablesl(v) in set �Sj can be updated using the following equation:l(u) = d(u0; ui) (4.15)l(v) =MINui�12Si�1fd(u0; ui�1) + w(ui�1; v)g for v2 �Si (4.16)

wherew(ui�1; v) is the sum weight fromui�1 to v.

Repeat the above iterative process. Ifui equalsv0, then stop. The shortest path

between vertexu0 and vertexv0 is saved in labell(v).
As shown in Figure 4-5, we use the shortest-path based MDS to flatten the same

3D point clouds shown in Figure 4-4. Figure 4-5(a) is the graph model of the data

set shown in Figure 4-4(a). The shortest-path from bottom-left corner to top-right

corner is marked in blue (dashed lines). The weights betweeneach pair nodes are also

given. The numbers are the weights of the edges. Figure 4-5(b) shows the flattened 2D

positions of the 3D data set.

Clearly, by constructing the spherical graph model which preserves the neighbour-

hood relationships between each pair of nodes, and employing the shortest-path prox-

imity matrix, the flipping and tangling are eliminated. Notethat, first, by using the

graph model of the data set shown in Figure 4-5(a), we can actually eliminate the

ambiguity of calculating geodesic distances; second, the neighbourhood relationships

(connectivity) between each pairs of points are preserved.Therefore, the flattened

configuration does reflect the preserved neighbourhood relationships.

Note that eliminating the ambiguity of geodesic distances and preserving the neigh-

bourhood relationships are not sufficient conditions yet toflatten point clouds without

tangling and flipping. The lengths of shortest path between boundary points also play
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critical roles. In general, in order to embed all the flattened internal nodes within

the boundary that is composed of flattened boundary nodes, the length of the shortest

path of any pair of internal nodes must be a fragment on a shortest path of the pair of

boundary nodes.

(a) The shortest path from the bottom-left node to the top-right node.
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(b) The flattened 3D point set using shortest-path MDS

Figure 4-5: Flattened 3D point sets using shortest-path MDS, which is based on the

shortest-path based proximity matrixM .

By constructing the novelplenoptic shortest-path MDS, we present the solution to
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the problem of the ambiguity of calculating geodesic distances. We also preserve the

neighbourhood relationships of point clouds using the spherical graph model. More

examples of the novel model which can be used to improve the quality of flattened

configurations will be further given in the following sections.

4.4 Global and Local Properties of Plenoptic MDS

Intermediate templates provide the texel positioning control for texturing volume ob-

jects. It is a flattened plenoptic surface whose pixels are rendered using volume render-

ing algorithms. Ideally, the intermediate template itselfshould be a flattened surface

of volume objects, so that a texture image can be overlaid onto it directly.

In previous methods the intermediate template is rendered using sampling posi-

tions on plenoptic surfaces. For each of the sampling positions, tracing rays probe 3D

positions within the volume dataset (iso-values, intensities, distance fields, etc.) So we

know the sampling points both in the 3D space and in the 2D gridcoordinates. As

shown in Figure 4-6(a), the 6x6 positions are the sampling positions on the plenoptic

surface, which are used as the origin positions to fire tracing rays. The probed 6x6

3D points cloud is shown in Figure 4-6(b). Then we flatten the 3D point cloud using

the Euclidean distance based matrix,M , (a classic MDS method in practice). The

flattened points are shown in Figure 4-6(c). The neighbouring points are connected

using the connection relationship of adjacent sampling positions on the plenoptic sur-

face, shown in Figure 4-6(a). Unfortunately, the flattened points becomes twisted and

tangled.

The 3D points shown in Figure 4-3(a) are from a synthetic dataset. Now the

3D points shown in Figure 4-6(b) are probed using tracing rays fired at the sampling

positions on a plenoptic surface. Sampling positions shownin Figure 4-6(a) are the

positions on the plenoptic surface(u; v) and the positions on the intermediate template(x; y).
Note that, first, we do not construct mesh models for volume datsets; second, we

do not use the geodesic distance to construct the matrixM in MDS. Different paths’

geodesic distances between two vertexes on a mesh model willbe equal to each other

on the flattened plane [38]; however, such an assumption is not further valid to a points

cloud. In fact, geodesic distances will be different to eachother when they run different

paths in 3D space.
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(a) 6x6 spaced sampling positions on a plenoptic surface ((u; v))
and on an intermediate template ((x; y)).

(b) 6x6 3D cloud points probed by fired tracing rays.

(c) Tangled flattened surface using MDS.

Figure 4-6: Euclidean based MDS: (a) 6x6 sampling positionson a plenoptic surface

and on an intermediate template. (b) Sampled 3D points. (c) Tangled and flipped

flattened point cloud.
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As previously discussed, Euclidean-distance based proximity measurements only

guarantee the spatial relationship between pairs of 3D point; no neighbour constraints

exist. Therefore, for both geodesic-distance based classic MDS and Euclidean-distance

based classic MDS, these is no guarantee of preventing such flipping and tangling be-

haviour. So, the novel neighbourhood relationships on plenoptic surfaces are intro-

duced into MDS by constructing the graph model of sampling positions on plenoptic

surfaces.

As shown in Figure 4-7, we use the shortest-path based MDS method to flatten the

3D point cloud. Figure (a) shows the same 3D point cloud viewed from a different

view point. Figure (b) shows the flattened point cloud. The close up of the area within

the red box is shown in Figure 4-8(a). We can see that the point5 and the point 6 are

smoothed without flipping. The close up of the area within thegreen box is shown in

Figure 4-8(b). We can see points 26, 27, 28, 29, 30 are smoothed with flipping and

tangling.� Global and Local Properties of MDS:

It is well known that [125] “The global shape of MDS configurations is determined

by the large dissimilarities; consequently, small distances should be interpreted with

caution: they may not reflect small dissimilarities.”

Points 26, 27, 28, and 29, located within a small 3D space, construct the so called

minimal local structures. Since classic MDS is a principal component (larger proxim-

ities) dominated minimisation process, the less importantcomponent (small proximi-

ties) cannot really do their contribution to the global based configuration.

Note that: first, a minimisation process without large proximities often does not

generate meaningful global configuration in MDS; second, attempts at integrating local

structure to model global structure are often not successful. In practice, truncation and

weighting functions are interactively used to explore local data structures using MDS

methods.
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(a) The same 3D point cloud shown in Figure 4-6(b)

(b) Flattened point cloud using shortest-path based MDS.

Figure 4-7: Shortest-path based MDS: Flattened 3D point cloud using shortest-path

proximities. (a) The same 3D points cloud shown in Figure 4-6(b), viewed from a

different viewpoint. (b) The flattened configurations usingshortest-path proximity

matrix and classic MDS. The close-ups of the areas within redrectangles are given in

Figure 4-8.
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(a) Close-up of the flattened 5th point and 6th point: no tangling
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(b) Close-up of the flattened points, tangling of small pointcloud clusters.

Figure 4-8: Shortest-path based MDS: Tangled flattened point cloud in small areas

enclosed in the red and the green rectangles shown in Figure 4-7(b). In (b), the flattened

points, 26th, 27th, 28th, 29th, are tangled, within the small area.
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4.5 Experimental Assessment

We use CTHead to test our algorithms. As shown in Figure 4-9, the point cloud con-

sists of 21x21 3D positions probed using a spherical projective texture model. The 3D

coordinates of the positions are the terminating positionsof the tracing rays, which are

based on direct volume rendering (DVR).

CTHead: discretely sampled point clouds

Figure 4-9: Point cloud of CTHead: front view and top view

Given the probed 3D positions, we first flatten these 3D pointsusing the classic MDS

method which is based on a Euclidean-distance based proximity matrix. The configu-

ration is shown in Figure 4-10. We see that the shape of the flattened 2D configuration

does not actually match to a flattened shape of the enclosed surface of the volume

CTHead data.

The Shepard diagram (scatterplot) is shown in Figure 4-11. The vertical axis,Eu
lideany, is the Euclidean distance between each pair of flattened 2D positions.

The horizontal axis,Eu
lideanx, is the Euclidean distance between each pair of 3D

points. As shown in Figure 4-11, the Euclidean distances between each pairs on the

flattened planar configuration are less than the Euclidean distances between the pairs

of the original 3D points. We refer to this observation as the“squash” version of the

2D configuration.
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Euclidean-distance MDS flattening
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Figure 4-10: MDS-Flattened point cloud of the CTHead using aEuclidean-distance

proximity matrix.
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Figure 4-11: The Euclidean distance on the 3Dsurface,Eu
lideany, versus the Eu-

clidean distance on the flattened planar configuration,Eu
lideanx. The data corre-

sponds to the CTHead point cloud shown in Figure 4-10.
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Shortest path based MDS flattening

Figure 4-12: Flattened point cloud of the CTHead using a shortest-path proximity

matrix. The close-up of the area within the red box is given inFigure 4-14.

Given the probed 3D positions, we now flatten these 3D points using the classic MDS

method which is based on a shortest-path proximity matrix. The configuration is shown

in Figure 4-12. We can see that points are mostly flattened in the 2D configuration.

The 3D points are flattened according to the 3D shape of the surface (level sets) of the

CTHead data.

The Shepard diagram is shown in Figure 4-13. The horizontal axis,Eu
lideanx, is

the Euclidean distance between each pair of flattened 2D positions in the configuration.

The vertical axis,Eu
lideany, is the Euclidean distance between each pair of the 3D

points. The configuration is nearly identical to the flattened version of the 3D surface

of the CTHead. However, tangling still occurs in the configuration.

As shown in Figure 4-13, the residual errors mainly come fromtwo issues: first, it

is due to the difference between geometrical 3D structures and an impossibly perfect

flattening process; second, “the shortest-path metrics are generally non-Euclidean” [126].

The result approximates a diagonal line, which would have been the geometrically im-

possible perfect flattening outcome.
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Figure 4-13: The shortest-path distance on the 3D surface (level sets) versus the Eu-

clidean distance on the flatted 2D configuration. The data corresponds to the CTHead

point cloud shown in Figure 4-12. The result approximates a diagonal line, which

would have been the geometrically impossible perfect flattening outcome.

Flipping and tangling still exist

As shown in Figure 4-14, the configuration of classical MDS overlaps on the boundary

nodes. Note that this is not an artifact. Metric-distance based classic MDS needs a

third dimension to distinguish such local structures. Unfortunately, we deleted the

third dimension information during the dimension-reduction process.

We notice that the tangling mainly comes from the boundary nodes. Therefore,

an option is to adjust the length of shortest paths usingdistance scalingin the low

dimensional cases [126]. However, distance scaling needs interactive minimisation, a

process which is too time-consuming in real-time applications.
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Figure 4-14: Close up of the area within the red box shown in Figure 4-12. Tangled ar-

eas still exist in the smoothed 2D configuration, using a shortest-path based proximity

matrix.

Indexing positions on the flattened 2D plane

As shown in Figure 4-15, the evenly spaced sampling positions (circles) on an inter-

mediate template (a spherical model is used here to render the intermediate template)

were relocated onto the flattened areas (the red marks) of thesurface of CTHead.

In other words, the indexing positions on the square intermediate template are now

relocated to the indexing positions on the flattened surfaceof CTHead. The relation-

ships between the indexing positions on an intermediate template and the indexing

positions on the flattened configurations can be used to warp an intermediate template

within the area of the flattened configuration. In addition, textures can be directly over-

laid onto the flattened surface of the CTHead. An example of texturing volume objects

is further given in the next subsection.

We used the minimal paths in the graph as the distances for MDSscaling. These

distances are not Euclidean. Therefore, curvatures (not evenly distributed red sampling

positions) in the configuration can also be introduced [126].
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Figure 4-15: Sampling positions on the 2D plane of the flattened point cloud of the

CTHead, using a shortest-path based proximity matrix.

Texturing a volume object

As shown in Figure 4-16, the CTHead data set was textured using a conventional spher-

ical projective model (a) without and (b) with shortest-path MDS flattening control.

The chessboard image was overlaid onto the flattened sampling positions shown in

Figure 4-15. The circle sampling positions are evenly spaced. These sampling posi-

tions are used as origin positions to fire tracing rays in conventional spherical projective

texture models. The texels gradually shrink towards the topof the head.

In contrast, the small red sampling positions were re-located on the flattened sur-

face of the CTHead. The locations of these red sampling positions are warped within

the areas of the flattened surface of the CTHead. The evenly spaced sampling positions

in the conventional projective texture models now become the unevenly spaced sam-
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pling positions located on the flattened surface. The chessboard texels can be overlaid

on the area within the red sampling positions. The texels within the areas enclosed by

the red sampling positions will be mapped onto the 3D surfaceof the CTHead. As

shown in figure (b), texels can be directly overlaid onto the CTHead and the texels’

shrinking (towards the top of the CTHead) can be eliminated.

(a) (b)

Figure 4-16: Texturing volume object using spherical projective model without flat-

tening control (a) and with shortest-path MDS flattening control (b).

4.5.1 Computational Expenses

In our texture mapping pipeline, all the MDS operations are implemented as matrix

operations in Matlab, as described by Zigelman et. in [38].

The flattened 2D positions are used as control points to reposition (u; v) coordi-

nates on an intermediate template onto a flattened surface. For each position on inter-

mediate template, we use lookup table to find its 4 control points of a quadrilateral. We

use 26x26 control points to flatten the 3D surface of the CT-head object in this chapter.

Rendering Figure 4-16 take 14.17 seconds. The image size is 396x600 pixels and

the running step length is set to 0.1. There are 4 point lightsin the rendering scene.

The size of the CT-head dataset is 180x113x237 voxels.
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4.6 Conclusion

MDS is a class of techniques developed for the visualisationof high-dimensional data.

These data are characterised by proximity (similarity or dissimilarity) values for all

pairs of data elements. By interpreting the proximity as distances and constructing

the flattened map, the so called MDS configuration can be used to explore the hidden

structures of high-dimensional data sets.

There are several contributions we introduced in this chapter. First, by introducing

neighbourhood relationships of 3D points, we have presented a new method for flat-

tening 3D point clouds for texturing volume data sets. Thereis no need to construct

mesh models as intermediate steps.

Second, we constructed a novelplenoptic graph modelwhich is based on the

plenoptic projective texture model to automatically estimate the shortest-path based

proximity matrix in MDS.

Third, by using neighbourhood relationships, we can avoid the geodesic distance

ambiguity problem. In particular, theplenoptic graph modelis constructed from the

DSOR representation, i.e, discrete, isolated sampling points. Therefore, the shortest-

path estimation is robust to imaging noise and the resultingtopological errors. Please

note that distortions are inevitable, due to the well known “map maker problem” [38].

Our point cloud smoothing algorithm is not a mesh-based flattening technique.

Though we just used a graph model to calculate the shortest-path proximity matrix for

flattening points cloud using classic MDS, the basic representation of volume objects

is still a point cloud.

Classic MDS analysis focuses on global properties within the proximity data. There-

fore local properties might not be guaranteed with any reasonable configuration and

interpretation. As we demonstrated in this chapter, if we would like to flatten the 3D

point cloud of the CThead, tangling cannot be eliminated. So, in the next chapter, we

will introduce a novel method to solve this problem using Laplaccian smoothing.

A comprehensive investigation of MDS in Volume Graphics might be worthwhile.

The techniques offered in this chapter touch two applications of MDS, which include:

(1) Dimensional reduction: Given high-dimensional data, compute a matrix of pair-

wise distances, and use classic scaling to find lower-dimensional configurations whose

pairwise distances reflect the high-dimensional distancesas well as possible. Classical

scaling is identical to principal components when used for dimensional reduction. (2)
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Graph layout: From the graph we derived a novel plenoptic surface based on shortest-

path metrics, which is used to construct a proximity matrix to MDS for planar and spa-

tial layout. Since shortest-path metrics are not strongly Euclidean, significant residual

error will exist. Fully detailed discussions were given by Buja et al. in [125, 126].



Chapter 5

Linear-Weighted-Laplacian-

Smoothing (LWLS) for Flattening

Point Clouds

In order to eliminate the existence of tangling and twistingin MDS configurations, in

this chapter we will introduce a Linear Weighted Laplacian Smoothing (LWLS) model

to flatten 3D point clouds within volume objects. In addition, the LWLS method can

preserve the continuity of the point cloud representation introduced in the previous

chapter. The LWLS method integrates the benefit of the smoothing mechanism of

Laplacian methods with the advantages of metric classic MDSmethods.

We demonstrate a method that prevents the tangling of flattened points for texturing

DSOR based volume objects.

In this chapter we will explain:� A point cloud smoothing method combining the MDS method and the LWLS

method. This will allow us to flatten the 3D points onto a 2D plane while guar-

anteeing that the smoothed 2D positions have no flipping and tangling.� The proposed method contributes to boundary conditions of the LWLS method.� The proposed method contributes to local multidimensionalscaling analysis.
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5.1 Introduction

By introducing a shortest-path based multi-dimensional scaling method, the plenoptic

texture models were offered in the previous chapter. By flattening the 3D point cloud

using the metric classic MDS, the methods benefit the projective texture models by

overlaying texture images onto flattened surfaces of 3D volume objects in the 2D plane.

Unfortunately, tangling of configurations still occur.

As we will demonstrate in this chapter: first, local differential representations can

also be used to flatten a 3D point cloud within volume objects by using Laplacian

framework; second, boundary conditions can be calculated using shortest-path based

classic MDS, the technique described in Chapter 4.

5.2 Related Work

Many existing Laplacian framework representations were designed to support mesh

editing, warping, and shape interpolation. Here we draw ourinspiration mainly from

detail preserving techniques, in particular the local connectivity.

From MDS to LWLS

Zigelman et al.’s MDS method is based on calculating geodesic distances on the

split surface of a 3D object. The assumption is that geodesic distances running along

different paths between two vertexes are equal to each other. Unfortunately, this as-

sumption is not true for a 3D points cloud. This is ambiguity in calculating geodesic

distances on an enclosed surface of a 3D volume object. In addition, we cannot guar-

antee the geodesic path always exists since what we know is only the point cloud rather

than an explicit geometrical structure. Therefore, when weuse the Euclidean distance

between each pair of the 3D points for multi-dimensional-scaling, the flattened point

cloud might be tangled.

We noted that Shontz and Vavasis presented a mesh warping algorithm for tetrahe-

dral meshes using Linear Weighted Laplacian Smoothing (LWLS) [34]. Their methods

not only guarantees a good quality warped mesh, with no tangled or flipped nodes, it

also preserves the connectivity of the warped meshes.

With simplicity, their method first determines local weights for each interior node,

then after applying an affine boundary transformation, the method solves linear equa-

tions to determine the final smoothed positions of interior nodes.
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5.3 MDS-based LWLS Flattening

5.3.1 Mesh model based linear weighted Laplacian smoothing

Starting from the problem of preserving the connectivity ofthe neighbourhood of a

point cloud of volume objects, we refer to the technique presented by Shontz and

Vavasis [34]: Linear Weighted Laplacian Smoothing (LWLS).We are particularly in-

terested in the theorem that gives the sufficient conditionsfor when a mesh can resist

inversion using a specific transformation.

Given a continuous deformation of the boundary of a mesh model, LWLS can

be used to track the movements of the interior nodes of the mesh model. However,

we should keep in mind that LWLS cannot be guaranteed to work under all types of

boundary transformations. The sufficient conditions of theLWLS smoothing methods

depend on the status of the transformed boundary and can be described as follows:

Suppose the boundary nodes (under boundary transformation) have no tangling

and flipping. Then if LWLS is used to reposition the interior nodes, the resulting mesh

will have no tangling and flipping. Here we refer to the mesh tangling and flipping as

the phenomenon that the lines of mesh models cross the other lines.

Linear Weighted Laplacian Smoothing can therefore be described as follows:

(1) First, generate a set of local weights,wij for each interior node(xi; yi) that repre-

sent the relative distances of the node to its neighbours,(xj; yj). The local weights can

be calculated using the following equations:max(Xj2Ni log(wij)) j wij; j2Nj (5.1)Xj2Nj wij = 1; wij > 0 (5.2)xi = Xj2Nj wijxj (5.3)yi = Xj2Nj wijyj (5.4)

(2) Second, apply an affine transform to the boundary nodes. Using both these new

boundary positions and the sets of weightswij, we can calculate the new positions of
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internal nodes by solving the following linear equations [34]:

Let b andm represent the numbers of boundary and internal nodes. DefinexB andyB to be vectors of lengthb which contain the new repositionedx andy coordinates of

the boundary nodes. DefinexI andyI be vectors of lengthm which contain the newx
andy coordinates of the internal nodes to be repositioned. Then the Laplacian matrix,

(for a weighted graphG(V ;E;w)), can be defined as:L(i; j) = 8>>><>>>:�wij; if i6=jPk2V wik if i = j0 iff (i; j) not in E (5.5)

Note that the boundary nodes are numbered last. By deleting the lastb rows of

the matrixL, we getA = [AI ; AB℄. ThenAI is anm�m matrix which contains

coefficients corresponding to internal nodes andAB is anm�b matrix which contains

coefficients corresponding to boundary nodes. Using the Laplacian matrixAI andAB,

and the new position matrix of repositioned boundary nodes[xB; yB℄, the repositioned

internal nodes[xI ; yI ℄ can be calculated using the following linear equations:AI [xI ; yI℄ = �AB[xB ; yB℄ (5.6)

The LWLS method can be equal to the standard mesh parameterisation algorithm

presented by Floater [131]: embedding a manifold 3D mesh with a boundary in the

plane without foldovers. Floater’s mesh parameterisationmethod, which is the so

called convex combinations (barycentric coordinates), can be described as follows [132]:

(1) To each interior edgee = (i; j) between internal nodesi andj, assign a positive

weightwij, such that: Xj2Niwij = 1 (5.7)

whereNi is the set of vertices neighbouring the internal nodei.
(2) To all other entries(i; j), assignwij = 0.

(3) Embed the boundary vertices in the plane such that they form a closed convex

polygon.

(4) Solve the following equations for the coordinates of internal nodes:(I �W )x = bx (5.8)
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whereW is ann�n matrix containingwij, andbx andby are vectors corresponding to

the verticesadjacentto the boundary. The above equations show us the theorem that

guarantees thenon-foldoverperformance of LWLS transformations: Given a planar

3-connected graph with a boundary fixed to a convex shape inR2, the positions of the

interior vertices form a planar triangular mesh (i.e., noneof the triangles overlap) if and

only if each vertex position is some convex combination of its neighbour’s positions.

Comparing equations (5.5), (5.6) with equations (5.8), (5.9), we have:

I �W = AI = 8>>><>>>:�wij; if i6=j1� 0 =Pk2Vi wik = 1 if i = j0 iff (i; j) not in E (5.10)

[bx; by℄ = �AB [xB; yB℄ (5.11)

The above two equations give us a very important feature that, as long as the bound-

ary is transformed into a 2D convex shape or convex combinations of its neighbours,

then we can combine the connectivity preserving (no-foldover) of LWLS with the

smoothing boundary of MDS. So what we have is the extension ofLWLS: that is,

how to generate a qualified 2D boundary of a 3D point cloud.

When we use MDS to smooth the point cloud, we actually solve the equations (4.4)

and (4.5), which guarantee that the boundary points can be represented using eigen-

vector based combinations of all their neighbours. Note that all the boundary points

on the projecting lines are actually projected onto a thin rectangle on the surface of the

spherical model, a convex shape actually.

The above process can be divided into three steps: first, projecting 3D points onto

the surface of a spherical model; second, smoothing the spherical 3D lattice grid using

the shortest-path MDS method; third, the boundary condition is used in LWLS to

relocate the internal nodes.

Based on the theory of mesh parameterisation with a virtual boundary [129] and

the theory of the spherical parameterisation algorithms [132, 133], we can guarantee

the existence of the one-to-one mapping between the standard evenly spaced sampling

positions on spherical models and smoothed 2D configurations with MDS boundary
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conditions. (The details of sufficient conditions are givenin Appendix B). Therefore,

we can prevent the flipping and tangling of internal nodes.

5.3.2 Principle of the algorithm: MDS-based smoothing weights

Given the point cloud shown in Figure 4-6, each 3D-point within the cloud can be

indexed using the 2D lattice grid. An example is given in Figure 5-1(a). From the

figure, we can see that a group of 3x3 3D points can be indexed bya 2D 3x3 lattice

grid. Whatever the position of the 3D points, their connectively relationships can still

be annotated using this 2D 3x3 lattice grid, which are the 3x3neighbouring sampling

positions on the plenoptic-based intermediate templates.

For each quadrilateral (represented by 2x2 neighbouring sampling positions), the

benefit of our Euclidean distance based MDS method is that theMDS method can

flatten 3D points with both minimal Euclidean differences and minimal differences of

flattened areas. Therefore, for each of the adjacent 3x3 sampling positions shown in

Figure 4-6(a), we can virtually connect a quadrilateral notation by connecting the ad-

jacent positions, as shown in Figure 5-1(a). Each of the fourquadrilaterals can then be

flattened using our Euclidean based MDS (Flip a triangle to untangle the quadrilateral

if it is tangled).p1 p2 p3p4p5 p6
p7 p8 p9

Q1Q2 Q3Q4w1w2 w3 w4 Q1
Q2 Q3

Q4np1np4 np5np2
np4np7 np8

np5 np5np8 np9np6
np2np5 np6np3

(a) 3x3 neighbouring sampling positions. (b) flattened quadrilaterals usingMDS.

Figure 5-1: Flattened quadrilaterals using MDS: (a) The quadrilateral notation of a

3x3 sampling on the plenoptic surface shown in Figure 4-6(a); (b) The flattened four

quadrilaterals.
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As shown in Figure 5-1, the steps of calculating MDS-weighted smooth coeffi-

cients are described as follows:

(1) Given four quadrilateralsQ1, Q2, Q3 andQ4 andpi = (xi; yi), i = 1; 2; :::; 9,

are the vertices of these four on the original intermediate template. Each vertexpi is

indexed with a 3D probed sampling point,Pi(Xi; Yi; Zi).
(2) Flatten each quadrilateral using its four indexed 3D sampling pointsPi(Xi; Yi; Zi).

We use a Euclidean distance based matrixM for multi dimensional scaling [38]:M = fmijji; j = 1; 2; 3; 4gmij = (Xi �Xj)2 + (Yi � Yj)2 + (Zi � Zj)2B = �0:5 � J �M � J; where Jisthe
entringmatrix:[Q;L℄ = eigs(B; 2;0 LM 0);[newx1; newx2; newx3; newx4℄ = sqrt(L(1; 1)): �Q(:; 1);[newy1; newy2; newy3; newy4℄ = sqrt(L(2; 2)): �Q(:; 2);f(newxi; newyi)ji = 1; 2; 3; 4g are the flattened coordinates of the four vertexes.

(3) For each quadrilateral, repeat the above step, thenfnpi(nxi; nyi); i = 1; 2; :::; 9g
are the new 16 smoothed positions of vertexpi on the flattened plane. (Note that the

positions ofnpi will be different if they belong to different quadrilaterals.)

(4) The areas of the quadrilaterals are:S(Q1) = 4(np1; np4; np5) +4(np5; np2; np1)S(Q2) = 4(np4; np7; np8) +4(np8; np5; np4)S(Q3) = 4(np5; np8; np9) +4(np9; np6; np5)S(Q4) = 4(np5; np6; np3) +4(np3; np2; np5)
where4 is the area of a triangle.

(5) Edge lengths (Euclidean distances) of quadrilaterals are represented byEQm(npi; npj),
wherem is the index of the quadrilateral,m = 1; 2; 3; 4; npi andnpj are vertexes on

the quadrilateral,Qm. Then the sum of edge lengths is:Sumedge = EQ1(np2; np5)+EQ1(np4; np5)+EQ2(np4; np5)+EQ2(np8; np5)+EQ3(np6; np5) + EQ3(np8; np5) + EQ4(np2; np5) + EQ4(np6; np5)
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(6) For an internal nodep5, its four MDS based smoothing coefficients are:w1 = (EQ1(np2; np5) + EQ4(np2; np5))=Sumedgew2 = (EQ1(np4; np5) + EQ2(np4; np5))=Sumedgew3 = (EQ2(np8; np5) + EQ3(np8; np5))=Sumedgew4 = (EQ3(np6; np5) + EQ4(np6; np5))=Sumedge
Sufficient conditions for preventing tangling are: convex combination coefficientswi > 0; i = 1; 2; 3; 4, and,w1+w2+w3+w4 = 1. As shown in Figure 5-1(a),w1,w2,w3 andw4 are further represented as colour bars, e.g, green (north),red (west), blue

(south) and dark blue (east).

(7) For each sampling position on the plenoptic surfaces, repeat steps (1)-(6), to

calculate their own smoothing coefficients.

(8) Calculate the totalareaas the sum of all the flattened quadrilateral areas. Then

the length of the edge of the square is:Edgelength = Square root(area).
(9) Finally place 2Dboundarypoints evenly-spaced around a square of this size.

All these re-positioned boundary points will be used as boundary conditions,[xB; yB℄,
in the Linear Weighted Laplacian Smoothing algorithm.

5.4 Smoothing a Point Cloud Using MDS-Weighted LWLS

In Figure 5-2 we give an example of calculated MDS weights using a synthetic 3D

point cloud.

Figure 5-2(a) shows a synthetic 3D planar dataset, except that the center point

is lifted to test the algorithm. Figure 5-2(b) shows the flattened point cloud, using

Euclidean distance based MDS methods, is tangled. Figure 5-2(c) shows the calculated

MDS weights.
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(a) 3D synthetic dataset.

(b) Tangled point cloud.

(c) MDS weights on the quadrilateral notation.

Figure 5-2: MDS weights: (a) The 3D synthetic dataset. (b) Point cloud is smoothed

using Euclidean distance based MDS(anchored boundary). (c) The strength and direc-

tion of MDS weights are represented by the length and direction of colour bars.
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For each internal nodepi, (xi; yi) are itsx andy coordinates on the original inter-

mediate template. Driven by the MDS-based weights,wi1, wi2, wi3 andwi4, pi will be

re-positioned within the flattened square using the LWLS method [34]. The flattened

point colud is shown in Figure 5-3(a). Herei is the indexing number of all the inter-

nal nodes andwij represents the weight of theith node given by thejth. Then the

Laplacian matrix,L, can be defined as:L = 8>>><>>>:�wij; if node j is neighbouring node i1 if i = j0 else (5.12)

wij = 8>>>>>><>>>>>>:
�wi1; if node j is the north neighbour�wi2; if node j is the west neighbour�wi3; if node j is the south neighbour�wi4; if node j is the ease neighbour (5.13)

Here we also number boundary nodes last. Following Shontz’sannotations [34],

matrix A = [AI;AB℄ by deleting last boundary rows in matrixL. [xB ; yB℄ are the

flattened coordinates of boundary nodes estimated in the above step (9). Then the

flattened coordinates of the internal nodes are:[xI ; yI℄ = �AI:=AB[xB; yB℄ (5.14)

The MDS weights ensure the sampling positions on the intermediate template are

now re-positioned over the flattened 3D surface. The boundary condition preserves

the flattened area of the 3D surfaces and thus ensures sufficient texels for rendering

high quality close ups. Here, the boundary is convex. As we will demonstrate later, a

real boundary of a flattened 3D surface can also be used as the boundary condition in

LWLS.

The beauty of this flattening control is, if we overlay evenlyspaced sampling posi-

tions onto the flattened surface, then they will be indexed toun-even sampling positions

on the original intermediate template.
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(a) Flattened quadrilateral notation.

(b) Multiresolution positions on the intermediate template.

Figure 5-3: Smoothing point clouds using MDS weighted LWLS:Warped sampling

positions on intermediate template. (a): “x”: 6x6 evenly spaced sampling positions

on the original intermediate template; “o”: 6x6 smoothed sampling positions on the

flattened intermediate template. (b): “*”: 10x10 warped sampling positions on the

original intermediate template; “+”: 10x10 evenly spaced sampling positions on the

flattened intermediate template; “x”: 6x6 smoothed sampling positions on the flattened

intermediate template; “o”: 6x6 evenly spaced sampling positions on the flattened

intermediate template.

An important feature that we find is that these un-even sampling positions on the

original intermediate template actually represent the high-resolution samplings of the
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details of different areas on the original intermediate template. These un-even sam-

pling positions within different areas (close ups) can be defined asmulti-resolution

representations of the intermediate template.

Note that in Figure 5-3(a), “o” represents the re-positioned sampling positions on

the flattened intermediate template; “x” represents the evenly spaced sampling posi-

tions on the original intermediate template.

In Figure 5-3(b), we first overlayed evenly spaced sampling positions onto the

smoothedquadrilateral annotation. “+” represents the 10x10 evenlyspaced sampling

position. Then, each sampling position “+” will be re-positioned to position “*” ac-

cording to the inverse smoothed/flattened control. Then “*”represents the re-positioned

10x10 sampling positions on the original intermediate template; “x” represents the re-

positioned 6x6 sampling positions on the original intermediate template, “o” represents

the evenly spaced 6x6 sampling positions on the flattened intermediate template. Fi-

nally, if we render the intermediate template using the “*” sampling positions shown

in Figure 5-3(b), then we get a flattened intermediate template.

Figure 5-4: Texturing volume objects using a flattened intermediate template. The

flattened spherical template is an intermediate using the spherical model.

In summary, we overlay the evenly spaced sampling position “+” onto the smoothed

(flattened) surface. Then we re-position these evenly spaced sampling positions onto
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the non-smoothed annotations. We are adjusting the sampling positions on the plenop-

tic surface. These sampling positions are used as starting point for firing tracing rays.

Figure 5-4 gives the texture pipeline: first, construct the flattened intermediate

template; second, directly overlay an image onto the flattened intermediate template;

third, during texture mapping, the indexing position on theintermediate surface was

re-positioned onto the flattened position, at which the texture image is overlaid. A flat-

tened spherical intermediate template, the original greenvolume object and different

texture projection primitives implemented in our system are shown in Figure 5-4.

Figure 5-5 gives the textured volume dataset using standardplanar mapping [40]

and flattened planar mapping. This time we use planar projection for texturing volume

objects. The results show reduced shear effect.

Figure 5-5: Volume object is textured using MDS-weighted LWLS smoothing method

(highlighted textures) and standard projective texture models discussed in [40] (shaded

textures). The results show that the shear effect in the highlighted areas is much less

than those in the shaded areas.
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5.5 MDS Boundary Conditions in LWLS

As described in previous sections, in order to preserve the connectivity of the ver-

tices during mesh smoothing, boundary positions must be smoothed into a convex 2D

shape [129]. We demonstrated the smoothing effect using a square boundary in the

previous sections. Even though the tangling and twisting ofpoints are eliminated, the

distortions around the boundary areas are still too high compared to the distortions

of internal nodes. In other words, if we would like to overlaya texture photo onto

the smoothed intermediate template, we still need to pay attention to the distortions

around the boundary areas to make sure textures can be pinnedonto the associated key

features within.

Here, we present a combination of MDS and LWLS that resolves this high dis-

tortion problem by substituting the boundary shape in LWLS with MDS smoothed

boundary positions. In the ninth step described in subsection 5.3.2, the 2D boundary

points are evenly placed around a square. All these square based boundary positions

are used as boundary conditions in LWLS in the previous sections.
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Figure 5-6: Flattened 3D point cloud using MDS-boundary based LWLS smoothing.
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In order to use the MDS boundary condition, we calculate MDS smoothing for all

the points. Then we use the MDS smoothed boundary positions,[x0B; y0B℄ , in equa-

tion 5.14. The MDS-boundary based LWLS smoothed positions,[x0I ; y0I ℄, can be cal-

culated using the following equation:[x0I ; y0I℄ = �AI:=AB[x0B; y0B℄ (5.15)

The smoothed point cloud using this method are shown in Figure 5-6. The internal

nodes are smoothed within the real boundary, without any flipping and tangling.

5.6 Experimental Results

We show here some more results, containing various aspects of the complete methods.

(a) Texture image (b) Spherical intermediate template

Figure 5-7: (a): Texture image for annotating CT head. (b): Standard spherical inter-
mediate template.

Figure 5-7(a) is a texture image used for annotating a volumeCT head. Figure 5-

7(b) is a spherical intermediate template of this CT head. Since there is no colour

information here, in order to see clearly the effect of surface flattening, we first texture

the CT head using Figure 5-7(a), then flatten the spherical intermediate template using

our MDS weighted LWLS method.

As shown in Figure 5-8(a), the evenly spaced texture blocks were flattened accord-

ing to the shape of the 3D surface of the CT head. In Figure 5-8(b), we overlay the
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edges of the texture image shown in Figure 5-7(a) onto the standard spherical template

shown in Figure 5-7(b). The flattening effect is obvious; thedeeper the 3D surface, the

more texels will be applied to it.

(a) Smoothed texture image (b) Smoothed spherical intermediate template

Figure 5-8: (a) Flattened spherical intermediate templateof the CT head using the
MDS-weighted LWLS smoothing method. (b) Overlayed edges ofthe left image onto
the MDS-LWLS smoothed spherical template (with square boundary condition). Note
that the deformed quadrilaterals reflect the flattened surface on the intermediate tem-
plate.

Two further examples are given in Figure 5-9. The shaded texture on the CT head

was textured using our previously discussed standard texture mapping system [39, 40].

The highlighted textures were textured onto the CThead using MDS-weighted LWLS

methods.

Note that more texels are embedded in the highlighted texture areas, which demon-

strates the reduction of the shear effect. The larger the area of the surface, the more

texels can be embedded in the surface. The size of the different areas on the smoothed

intermediate template of the surface depends on the geometrical structure of the dif-

ferent areas on the 3D surface.

We can use either DSR or DVR to render the image. It is worth pointing out that

here we are still using the spherically projective model to do texture mapping (with

and without MDS-weighted LWLS smoothing control). A novel warped intermediate

template which can reduce texture shrinks will be introduced in the next subsection.
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Figure 5-9: Textured volume object using the MDS-weighted LWLS smoothing

method (highlighted textures) and our previously discussed semantic spherical texture

model (shaded textures) [40]. Note that more texels are embedded in the smoothed

areas (highlighted textures), which demonstrates the reduction of the shear effect. The

larger the area of the surface, the more texels can be embedded in the surface.

5.6.1 Warped intermediate template

By using the MDS-LWLS flattening, we warp the standard intermediate template from

a rectilinear shape to a flattened surface shape, which is based on the boundary based

LWLS smoothing algorithm.

Figure 5-10(a) is the standard square intermediate template. If the texture image

(chessboard) is overlaid onto figure (a), then the texture will shrink onto the top of the

head, as shown in Figure 5-9.

In comparison, if we warp the intermediate template using the warping control

shown in Figure 5-6, then the intermediate template is smoothed into a flattened surface

of the CT-head. Then if the texture image is overlaid onto figure (b), which is the

flattened surface of the CTHead, the texels will be nearly uniformly textured on the

surface.

As shown in Figure 5-11, figure (a) is the textured CTHead using a standard spher-

ical intermediate; figure (b) is the textured CTHead using the warped intermediate
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template. In figure (b) the texture image is overlaid onto thewarped intermediate tem-

plate, Figure 5-10(b), which is the flattened surface of the CTHead.

(a) Standard spherical intermediate template of CTHead.

(b) Warped using MDS-boundary constrained LWLS smoothing control.

Figure 5-10: Warping the intermediate template: (a) The standard spherical interme-

diate template (square) of the CT Head. (b) A warped spherical intermediate template

of (a) using the MDS-boundary constrained LWLS smoothing method. The texture

image (chessboard) can be directly overlayed onto the flattened template (b).
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(a) (b)

Figure 5-11: Textured CTHead: (a) The CT Head is textured using the standard spher-

ical intermediate template. (b) The CT Head is textured using the warped spherical

intermediate template. In figure (b), the intermediate template is warped using the

MDS-boundary constrained LWLS smoothing method.

(a) (b)

Figure 5-12: Textured volume object using the standard classic metric MDS flatten-

ing technique (a) and the MDS-boundary constrained LWLS smoothing method (b).

Image (a) is rendered using the flattened surface shown in Figure 4.13. The textures

on the boundary areas are flipped and tangled. Image (b) is rendered using the MDS-

boundary-LWLS techniques (the flattened surface shown in Figure 5.6), thus there is

no texture tangling and flipping.
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5.6.2 Computational Expenses

In our texture mapping pipeline, all the LWLS operations areimplemented as matrix

operations in Matlab, as described by Shontz and Vavasis in [34]

The flattened 2D positions are used as control points to reposition (u; v) coordi-

nates on an intermediate template onto a flattened surface. For each position on inter-

mediate template, we use lookup table to find its 4 control points of a quadrilateral. We

use 26x26 control points to flatten the 3D surface of the CT-head object in this chapter.

Rendering Figure 4-16 take 14.17 seconds. The image size is 396x600 pixels and

the running step length is set to 0.1. There are 4 point lightsin the rendering scene.

The size of the CT-head dataset is 180x113x237 voxels.

5.7 Conclusion

Starting from solving the problem of tangling and flipping ofthe point cloud, we used

the MDS-boundary condition to embed the internal point set into the nearly-identical

boundary of the flattened 3D surface. MDS-weights were used as smoothing weights

in the LWLS framework.

We demonstrated that the MDS-boundary condition is a practical method to gen-

erate a nearly-identical smoothed boundary of a 3D surface.In particular, such a 3D

surface can be a generically enclosed model without any explicit boundary definition.

It is worth pointing out that we do not need to generate any 3D virtual boundary for

the 3D enclosed surface [129], and in addition, we do not needto split the enclosed

3D surface into patches to control the quality of texture mapping. More texels can be

embedded into large areas in the smoothed surface. Therefore the shear effect can be

reduced when texturing or annotating volume objects.

Our point cloud smoothing algorithms cannot be considered as a mesh-based flat-

tening technique, though geodesic MDS methods [38] or LWLS methods [34] are pre-

sented as mesh-based smoothing techniques. In our implementation, we never build an

explicit connectivity between adjacent sampling positions. The basic representation of

a volume object is still a point cloud.

Mesh-model based surface smoothing techniques can be directly migrated into our

volumetric texture mapping pipeline. The beauty of the quadrilateral lattice grid rep-

resentation is that it can be used to migrate a wide range of mesh smoothing algo-
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rithms [130]. As we demonstrated, shape-preserving algorithms [131] are combined

with a MDS boundary condition in LWLS framework. The quadrilateral lattice grid is

actually the sampling positions on the spherical model; therefore, our MDS-boundary

based LWLS method can be a spherical based parameterisationmethod for 3D point

clouds. Our method can be thought of as an extension that is highly relevant to the

spherical parameterisation for 3D meshes [132].

We believe that, using a variety of semantic constraints, for instance, space con-

straints and logical constraints, the intermediate template based volume texture map-

ping pipeline is be a practical solution to applications of volume visualisation such as

medical training and studio production.



Chapter 6

Projective Masking Fields

Spatial constraints, geometrical constraints, topological constraints, and logical con-

straints may be used to split or segment volume data sets. These constraints play

critical roles in annotating, texture mapping and visualising volume objects, in partic-

ular in applications such as medical training, studio-production, and entertainment. In

this chapter, we present a novel space splitting method, using projective (planar, cu-

bic, cylindrical, and spherical) models, to split iso-surfaces which are self-occluded.

Our technique is also a solution to the texture penetration problem of the pseudo-solid

texture model, which we discussed in the previous chapters.

We present a solution to the texture self-occlusion problemand the texture pene-

tration problem, by splitting the 3D space into different labelled layers. Using labelled

3D masking fields, self-occlusion and texture penetration can be effectively controlled

using volume rendering techniques, such as DVR and DSR. We donot build masking

fields as a pre-constructed scalar field before volume rendering. In contrast to the tech-

niques of constructing 2.5D pseudo-solid texture models, we dynamically construct

masking fields during volume rendering.

In this chapter we will explain:� Splitting and labelling 3D volume space using projective (planar, plenoptic)

models.� Constructing masking fields of 3D volume space during volumerendering, rather

than constructing masking fields as a pre-processing step.� Splitting self-occluded iso-surfaces using the new masking constraints.

124
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6.1 Introduction: Texture Self-Occlusions and Penetra-

tion

Texture penetration is a critical issue in the previously discussed pseudo-solid texture

models. As shown in Figure 3-3(d), although we can use directsurface rendering to

render the iso-surface, textures can still penetrate from the exterior layer (skin) of iso-

surfaces into the interior layer of themaxillary sinus(the same level sets of the skin).

As shown in Figure 6-1, given an iso-surface with multi-layered structures, the

projective colour indexing mechanism cannot tell at which position the iso-surface

should be textured and at which position the iso-surface should not be textured. We

will offer a solution, field masks (semantic layers), to solve this problem.

Iso-Surface

Tracing Ray

Figure 6-1: Iso-surface: Self-occlusion. Given an iso-surface, A and B are two po-

sitions at which the tracing ray passes through. If we fire a tracing ray towards C,

position B will be occluded by position A.

The direct surface rendering technique (DSR) can pick up theiso-value at a specific

3D position. So if we wish to have different texture at position A and position B, then

additional space constraints must be provided.

Suppose a tracing ray passes through positions A and B which have the same iso-

value. Position A will occlude B’s texture information, since position A will be de-

tected first. Therefore, by also labelling the detecting order of the different positions on

the iso-surface, we can effectively split the 3D space to texture position A and position

B independently.
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6.2 Related Work

Splitting 3D space is a basic research topic in the volume community. However, to

our knowledge, using projective models (plenoptic or planar based) to split volumet-

ric space has not been reported anywhere. This chapter offers the technique to split

volumetric space using a projective model based direct surface rendering technique.

We will first discuss the traditional z-buffering algorithm. Then we will discuss the

self-occlusion problem of conventional mesh models. Following this, we will discuss

the volumetric splitting model.

Z-buffering algorithm

The famousz-buffer algorithm was originally developed for rendering the visible-

surface [134]. For each pixel in rendering image, az-value (depth information) is

stored into a bufferz. Thez-buffer is initialised to infinity, representing thez-value at

the back clipping plane. The smallest value that can be stored in thez-buffer represents

the depth information of the front clipping plane. If a polygon point is no farther from

the viewer then the depth-information is saved in thez-buffer. Thez-buffer value is

updated by the new scanned polygon point.

Note that, first, the consequence of thez-buffering algorithm is that the 3D space is

split into two semantic areas: visible or invisible, from the rendering (viewing) direc-

tion; such semantic information does not exist on the polygon model itself. Second, the

visibility information is dynamically generated during the process of rendering; Third,

the occlusion information is highly specific to the viewing direction. This means that

the occlusion is dynamic, which is relevant to rendering configurations.

As we will explain later, the above four properties of thez-buffer algorithm will be

implemented in our volumetric splitting model.

Self-occlusion

Splitting space in volume graphics was addressed by Lischinski and Rappoport

[135]. Their methods are particularly of interest to us. First, as shown in Figure 6-2,

the layer-depth information was saved at each pixel, ordered along the projective di-

rection. In particular, the samples e, f, g and h, are locatedon the same object. These

four samples could be self-occluded if being viewed from pixel 9. Second, Lischin-

ski and Rappoport’s methods consist of image-based rendering, light field rendering

and volume graphics. Their layered-depth cube representations consolidate different

scene representations into a common framework. In other words, the layered depth
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cube method combines view-independent scene information and view dependent ap-

pearance information.

Figure 6-2: A parallel layer depth image of a 2D scene. Pixel 6stores scene samples

a, b, c, d, pixel 9 stores samples e, f, g, h. Figure from [135].

View-independent scene information, such as geometry and diffuse shading, is rep-

resented using three orthogonal high-resolution layer depth images. The view depen-

dent scene information is stored as a separate, larger collection of low-resolution layer

depth images. The rendering algorithms combine these two components using two

steps: first, 3D warping of the layer depth images and filling holes, using the ray

tracing technique. This stage results in the image which represents the geometry of

the scene as seen from the new viewpoint. Second, this image can be shaded using

a local shading model and reflection can be calculated using environmental mapping

techniques. To our interest, Lischinski and Rappoport’s method does present a novel

combination of different techniques, in particular in adopting volume graphics and

splitting volume space using view-independent projectionmodels.

Volumetric splitting model

In additional to Islam et al.’s splitting constraints [14],in this chapter we will

present a plenoptic / planar based projective splitting model. We will present a novel

combination of volume rendering techniques (DSR and DVR), plenoptic modelling

techniques, field functions and spatial transfer functions.
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6.3 Volume Rendering: Semantic Constraints and Se-

mantic Field

6.3.1 Volume rendering: traversing 3D space

By firing tracing rays, 3D space can be traversed at fixed step-length. The scalar field

values at the termination positions of tracing rays can be calculated. Conventional

volume rendering engines use these properties to render theimages.

Here we use this mechanism in a novel way, i.e., constructingfield masks by

sweeping the 3D volumetric space using tracing rays. We refer to the tracing rays

which are used to label the field masks as themasking rays. Here, masking rays

are fired from the positions on a projective masking model (planer, box, cylinder and

sphere). Each masking ray is associated with a variable number of indices. Amasking

field can therefore be defined as the positions of a set of 3D point clouds which have

the same indexing number.

The iso-surface in Figure 6-3 has multiple layers that have the same iso-value. We

would like to split the 3D space into differently labelled layers (masking fields) such

as layers1, 3 and5. Note that1, 3 and5 are labelling numbers of 3D space, whereas,2 and4 are labelling numbers of iso-surfaces.

#1 #2 #3#4 #5
C

C: centre of projection

Figure 6-3: Semantic constraints: projective masking fields.

Figure 6-3 shows a masking ray running towards the 3D position C. Masking rays

split the 3D space into different layers (masking fields). Note that the masking field is

not a static model of the volume object. If we use different projective models to fire

masking rays, then masking fields will be different accordingly. This is the property
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we want to use, that is, we can select different projective models to construct different

masking fields, according to the 3D structures of iso-surfaces. Different masking fields

can be used together to construct more advanced logical constraints.

In Chapter 3, we introduced projective texture based on plenoptic projection. Plenop-

tic projection not only suits a variety of geometrical structures for environment texture

mapping, but can also sweep 3D space along projective directions. These two prop-

erties are the characteristics we want to use in our algorithm, i.e., flexibility of rep-

resenting geometrical structures of iso-surfaces and efficiency of sweeping 3D space.

Therefore, we use plenoptic models to fire masking tracing rays. First, we can select an

appropriate plenoptic model to construct the field masks, according to the geometrical

structure of the iso-surfaces. Second, projective texturemodels and field masks can

have different plenoptic models. These two properties provide us extreme flexibility

in volume rendering.

6.3.2 Tracing a ray: labelling constraints

Plenoptic models, projective indexing and volume rendering are consolidated into our

volume rendering engine. In other words, volume rendering,scalar-field based mod-

elling, and the previously discussed field function controland spatial transfer function

control can be integrated.

As discussed in the previous chapters, scalar fields are properties of volume objects.

The scalar fields could be intensity values of the original scan, the optical properties of

the objects, subsequently-constructed geometrical models, velocity / flow fields, and

so on. Therefore, if we sweep scalar fields using tracing rays, we can sweep the whole

3D volumetric space and also pick up the necessary scalar values.

As shown in Figure 6-4, masking fields can be calculated during volume render-

ing, so there is no need to calculate a static masking field in advance. The rendering

pipeline is now composed of the following steps:

(1) In order to render pixelP (x; y) of the image, we fire a ray towards the volume

object.

(2) The ray terminates at the 3D position(Px; Py; Pz) on the iso-surface. In order to

find the masking field value on this 3D position, we need to fire amasking ray, from

positionP (u; v).



6.3Volume Rendering: Semantic Constraints and Semantic Field 130

Figure 6-4: Volume rendering: projective masking fields andmarking rays.

(3) PositionP (u; v) is the intersection between the masking ray and the plenoptic

model, such as a sphere, cube or box.

(4) The masking ray starts fromP (u; v) and runs toward the centre of the plenoptic

model,(Ox; Oy; Oz).
(5) If the masking ray meets an iso-surface, then its masking-field variable will be

increased, otherwise, the masking-field variable is unchanged.

(6) If the rendering tracing ray runs through position(Px; Py; Pz), the masking-field

value at this position will be equal to the current masking-field value of the masking

ray.

From Figure 6-4, we can see that the masking fields at different iso-surface posi-

tions on the same masking ray are labelled as#0, #1, #2, #3 accordingly.

Different plenoptic models can be used in projective texture and masking fields.

For instance, in order to texture map a volume object, we can use a spherical model

for texture indexing, as we described in Chapter 3. Meanwhile, we can use planar

projection to calculate masking fields.

The benefits of this flexibility are shown by Figure 6-5. We split the CTHead into

exterior and interior layers (a) using a spherical masking field model, and into the left
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and right layers (b) using a planar masking field model (projecting masking rays from

left to right).

Cylindrical, spherical, cubic or planar based geometricalmodel can be used to

calculate field masks. The selection criteria are similar tothose for plenoptic models

for environmental mapping. In addition, projective texture, which was introduced in

Chapter 3, can be spatially controlled using masking fields.As shown in Figure 6-5(a),

the exterior masking field (green layer) and the internal masking field (light pink) can

be textured independently. As shown in Figure 6-5(b), the exterior layer can be further

split into left and right masking fields, therefore, the leftside of the face and the right

side of the face can be textured independently. Additional examples will be given in

the following sections.

(a) (b)

Figure 6-5: Texturing volume objects using field masks. (a) The iso-surface of the

CTHead is split into exterior (skin) and interior (internaltissues such as tongue and ear

channels) layers, using a spherical masking field. (b) The iso-surface of the CTHead

is split into left and right parts, using a planar masking field. Different portions of the

iso-surfaces can therefore be textured or coloured independently.

So spatial constraints, iso-values and masking labels can be used together to texture

map a volume data set more effectively. Note that the above images were rendered

using a single iso-value. In other words, the iso-surface ofthe skin, the nose, the
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tongue are the same iso-surface.

Therefore, we offer a powerful tool to split the iso-surfaceflexibly, without the

need for additional geometrical information. In particular, the masking field can be

treated as an additional scalar field. The beauty of scalar field based models, which we

discussed in Chapter 2, enables us to generate novel properties flexibly and efficiently.

6.4 Semantic Volume Splitting

We present a new spatial constraint, masking field, to effectively split the volumetric

space. The masking field could thus be used as a novel semanticconstraint to the

volume splitting model which is described in Chapter 2.

(a) (b)

Figure 6-6: Textured CTHead using projective marking field:(a) The iso-surface of

the skull is split into exterior and interior layers. Using projective masking fields,

these two layers can be textured independently. (b) The iso-surface of the skin of the

CTHead is split into exterior and interior layers. The skin of the CTHead and the

interior layers (tongue, ear channels, soft tissues) can betextured independently.

Two more examples are given in Figure 6-6. Given the iso-surface, i.e., the skin

or the skull of the CTHead, the exterior and the interior can be split using spherical
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masking field. The different layers can be textured independently since they have

different masking field indices.

In Figure 6-5(a), we use a spherical masking field to split theiso-surface into ex-

terior and interior layers. In Figure 6-5(b), we use a planarmasking field to split

iso-surface into left and right layers.

In Figure 6-6(a), we use a spherical masking field to split theiso-surface of the

skull into exterior and interior layers. In Figure 6-6(b), we use a spherical masking

field to split the iso-surface of the skin into exterior and internal layers. Then we use

spherical texture models to texture the volume skull objectand the volume CTHead

object.

The top part of the skull and the front part of the face are removed (the opacity is

set to zero) to expose the texture differences between different layers.

Tietjen et al. also present volume rendering techniques which combine silhouettes,

surfaces, and volume rendering for surgery education and planning [136]. They use

z-buffer techniques in their volume rendering engine and the original volume has been

segmented in advance.

The depth information and the segmentation are used to enhance the distinction

between different objects. In contrast, in our novel pipeline, the depth information and

the segmentation can be calculated simultaneously.

6.5 Universal Template Atlas

Given a set of warped texture images (intermediate templates), we can now realisti-

cally render a volume object using a variety of semantic constraints during volume

rendering.

We propose in this section to use a set of intermediate template texture images,a

universal template atlas, to store the colour and other necessary information such as

illumination, bump mapping and hyptertexture information. The rendered intermediate

templates are actually the rendered images from semantically segmented parts of the

volume object.

The texture atlas, introduced by Maillot et al. [137], is a set of mesh-based maps.

These maps are further packed into a 2D square. The texture atlas can be generated

using the following steps: first, partition the 3D mesh modelto be textured into a set of

parts; second, each part is provided with a parameterisation; third, each unfolded part
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(referred to as chart) is packed in a 2D texture.

Mesh partitioning, mesh parameterisation, unfolded chartvalidation and the pack-

ing algorithms which are used to gather the unfolded charts in texture space, are crucial

steps in the process of generating a texture atlas. Unfortunately, if a mesh model has

sharp edges, then the segmentation methods would generate too many charts, texture

manipulation operations become impractical for animators. In addition, cracks and

holes on mesh models will lead to texture artifacts on the rendered objects.

Comparing Maillot et al.’s texture mapping methods, our techniques offers the fol-

lowing advantages and novelties:

(1) Given a volume object, there is no need to construct a meshmodel as an inter-

mediate model. We render a set of intermediate templates using a variety of semantic

constraints, as described in the previous chapters.

(2) Each intermediate template can be a texture atlas itself, which integrates the

positions and the geometrical features of different segmented volume parts.

(3) A set of intermediate templates can be a texture atlas of spatially segmented

volume parts, in particular self-occluded iso-surfaces.

(4) Each intermediate template can be independently rendered using an appropriate

plenoptic or planar model.

(5) The rendering template atlas becomes part of the volume rendering process;

therefore, CVG operations can be used during texture composition.

(6) There are no holes and cracks in our universal template atlas. So waste of

memory due to complex borders or holes in mesh surfaces of traditional CAD models

is not a problem in our system. In addition, we can use the MDS-based LWLS method

to warp the template atlas, so the texture can be directly overlaid onto texture atlas.

(7) As explained by Levy et al. [138], some surfaces are too complex to be cor-

rectly parameterised. In such cases, triangles may overlapin the parametric space. The

MDS-based LWLS method solves this problem by using the MDS boundary condition

and linear weighted Laplacian smoothing techniques.

6.5.1 Universal template atlas for texture mapping and annotation

Traditionally, when a texture atlas is used in a 3D paint system, it should meet the

following requirements [138]:

(1) The chart boundaries should be chosen to minimize texture artifacts.
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(2) The sampling of texture space should be as uniform as possible.

(3) The atlas should make optimal use of texture space.

Associated with the above three requirements, the traditional process of generating

a texture atlas is divided into the following categories:

Segmentation:The model is partitioned into a set of charts.

Parameterisation: Each chart is unfolded, i.e., put in correspondence with a sub-

set ofR2 .

Packing: The charts are gathered in texture space.

The remainder of this section presents our offered texture atlas method for these

three steps, in particular from the view point of volume rendering. We introduce a

volumetric based texture atlas generation method, meetingthese requirements by using

field functions, spatial transfer functions and masking fields. We integrate a variety of

volume visualisation techniques. Therefore, our method reduces texture artifacts and

provides the flexibility to preserve realism (nature looking phenomena) for volume

objects.

In our algorithm, first, the borders of the charts do not need to be fixed. For a single

intermediate template, different charts are rendered seamlessly. Self-occluded charts

are rendered into separate intermediate templates.

Second, there is no need to worry about the parameterisationoverlap [139], where

the boundary of the surface self-intersects in texture space.

Third, each chart of the texture atlas can have independent resolution. The inter-

mediate template of a segmented volume part can be generatedindependently, with an

arbitrary resolution [39]. The high-resolution charts aregenerated through volume ren-

dering, but through interpolation. Therefore, high resolution charts additionally give

highly detailed images of geometrical features (shapes, structures, etc.) of volume

objects. The examples of the above are given in Figure 6-7.
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Segmentation into charts: FF, STF and field masks

(a) (b)

Figure 6-7: Textured CTHead using projective masking fields: (a) 3D space can be

split using planar projection (from left to right). The leftlayer is textured using a chess-

board image. The highlighted area is textured using MDS-LWLS control, whereas the

shaded area uses standard spherical indexing control. (b) Auniversal template atlas

can be rendered using a standard spherical template, consolidating the split (left and

right) of iso-surfaces with different texture fragments: chessboard and facial image;

and spatial constraints: highlighted (left + top constraints) and shadowed (left + bot-

tom constraints) areas.

As shown in Figure 6-7, a universal template atlas can be rendering using a variety of

semantic constraints including masking fields, MDS-LWLS constraints, spatial con-

straints and plenoptic texture mapping models. Different texture charts can be ren-

dered seamlessly into the intermediate template. In addition, texture charts can also

be warped using MDS-LWLS constraints, which will guaranteethe reduction of shear

effects and guarantee high quality multi-resolution texture mappings, in particular, pre-

serving geometrical features.
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Chart parameterisation: projective texture models

(a) (b)

Figure 6-8: Textured CTHead using projective masking fields: (a) 3D space can be

split using planar projection (from top to bottom). The top layer is textured using

a chessboard image. The highlighted area is textured using MDS-LWLS control,

whereas, the shaded area uses standard spherical indexing control. (b) A universal

template atlas can be rendered using a standard spherical template, consolidating the

split (top and bottom) of iso-surfaces with different texture fragments: chessboard and

originally rendered image using DVR; and spatial constraints: highlighted (left + top

constraints) and shadowed areas.

As shown in Figures 6-7 and 6-8, a universal template atlas can be be a useful tool to

consolidate different volume rendering information into auniversal template. As we

will demonstrate in the next example, this special feature of the universal template atlas

provides not only the flexibility to texture map volume objects but also to construct the

bridges between 2D image models, 2.5D or 3D mesh models, and 3D volume datasets.

Chart packing in texture space: semantic constraints in volume rendering

It is clear that we can put charts from several segmented objects into one interme-

diate template. The different charts are actually different intermediate templates of

individual volumetric objects. As shown in Figure 6-9, figure(a) is the volumetric vi-



6.5Universal Template Atlas 138

sualisation of the skin and the tongue and the ear channels ofthe CTHead; figure(b) is

the rendered intermediate templates of these segmented volumetric objects.

The beauty of this template atlas is, as we will demonstrate in the next section, if

we would like to further register 3D features (for instance,tumour transitions during

radiotherapy treatment), then we could trace the the 2D projections of these 3D fea-

tures on the information enhanced intermediate template.

(a) (b)

Figure 6-9: Chart packing into one intermediate template: (a) Segmented iso-surfaces

of skin, tongue, and ear-channels. The iso-surfaces (the same level sets) are segmented

using masking fields and are textured independently. (b) Different parts of intermediate

templates of these segmented objects (charts) are consolidated into one intermediate

template, which further provides a landmark guide for 3D feature registration.

6.5.2 Universal template atlas for feature registration: tracking

3D features in 2D space

We use a variety constraints such as field functions, spatialfunctions, texture mapping

functions and colour transfer functions, in our volume rendering engine. Therefore,

intermediate templates include a variety of information such as projections of 3D ge-

ometrical features, colour information and texture information. As we demonstrate in

this thesis, intermediate templates are informatively enhanced by this additional infor-
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mation.

Being an information enhanced image, a 2D intermediate template can be a pow-

erful tool for estimating three dimensional deformations (point cloud representation),

modelling deformable models, and registering 3D and 2D features (converting 3D fea-

ture registration into 2D feature registration). Using MRIor CT slices (greyscale im-

ages) for medical registration applications, intermediate templates do facilitate regis-

tration processes such as segmentation, positioning, registration, and statistical transi-

tion modelling.

3D Optoelectronic
based surface model

Registration

3D CT/MRI
data

Registration 3D Warping

3D Surface model
deformation: transition,
rotation, and non-linear

deformation

3D Warping
Real-time radiotherapy

during treatment

Figure 6-10: Conventional registration process for patient set-up in radiotherapy treat-

ment.

Figure 6-10 shows the conventional registration process ina radiotherapy treatment

system (Please refer to the website of the project MEGURAPH,Metrology Guided

Radiotherapy, for the technical details [140]).

In order to locate the 3D positions of internal features, forinstance, soft tissues or

cancers, the exterior surface (skin) of patients’ MRI / CT data must be registered in

real-time with the 3D reconstructed deformable exterior surfaces of patients, who are

under radiotherapy treatment.

After the pre-processing of the registration, the internalorgans of the MRI / CT

data can be warped according to the current positioning set-up. The position of the

warped internal organ or cancer provides guide informationfor positioning the radio

beam.
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3D Optoelectronic based
surface model (PBR or

explicit geometrical model)
at timeT0

3D Surface model
deformation at time:T3

transition, rotation, and non-
linear deformation

Intermediate
template#1

Intermediate
template#3

Registration

Registration 3D Warping

Intermediate
template#2

Real-time radiotherapy
during treatment

3D Warping3D CT/MRI
data at timeT1

Plenoptic rendering of DSOR objects

Figure 6-11: Intermediate template based registration process for medical applications.

The above 3D deformable surfaces are traditionally reconstructed using structure

light. Such 3D deformable surfaces lose almost all originaltexture information on the

skin. In addition, the reconstructed 3D surfaces are further interpolated or smoothed

using 3D spatial filters.

So, if we construct a 3D deformable surface using computer vision techniques,

such as shape-from-shading, or by projecting structures light, then the useful geomet-

rical features on the 3D deformable surface will be lost. Forinstance, texture infor-

mation such as colour, and wrinkles on the skins will be lost.Therefore detecting and

matching feature points becomes very difficult, in particular in those applications with

the need for high accuracy registration.

We have already introduced information enhanced intermediate templates for fea-

ture registration and matching. The conventional registration process can be improved
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by using intermediate templates as a pre-modelling process.

As shown in Figure 6-11, intermediate templates #1, #2 and #3represent three

different MRI / CT datasets scanned at different patient set-ups.

By registering among the intermediate templates, we can model the 3D deforma-

tion process of the internal organs under different patientset-ups, and then construct

3D warping controls for the internal organs or tissues.

The 3D reconstructed deformable surfaces at timeT3 can be registered with in-

termediate template#3. Then the 3D CT or MRI data at timeT1 can be warped to

simulate its deformations at timeT3.

3D reconstructed deformable surfaces can be directly registered with the exterior

surface (skin) of the CT or MRI data at timeT1, using either statistical model tech-

niques, Bayesian networks or conventional feature matching techniques. However,

modelling the 3D deformations of internal organs at different patient set-ups is the

essential process which cannot be avoided.

The CTHead data set and its spherical intermediate templateare shown in Figure 6-

12. The geometrical features on the CTHead are clearly rendered in the intermediate

template.

In order to simulate the real patient set-up, we use a 3D FFD tocontrol the de-

formation of the CTHead data. The deformed CTHead and its associated spherical

intermediate template are shown in Figure 6-13.

The soft tissues within the CTHead shown in Figure 6-12 are given in Figure 6-

14. The deformed soft tissues within the CTHead shown in Figure 6-13 are given in

Figure 6-15.

Note that the extent of the deformation of the soft tissues within the CTHead are

different to the extent of deformation of the skin.

As we will demonstrate in the following subsections, geometrical features of soft

tissues and skins can be detected and tracked on different intermediate templates.

These different intermediate templates can be rendered using the same volume data

but captured at different patient’s set-ups.
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(a) (b)

Figure 6-12: (a) CTHead data set. (b) Its spherical intermediate template.

(a) (b)

Figure 6-13: (a) Deformed CTHead data set. (b) Its sphericalintermediate template.
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(a) (b)

Figure 6-14: (a) Soft tissues within the CTHead data set. (b)Its spherical intermediate

template.

(a) (b)

Figure 6-15: (a) Soft tissues within the deformed CTHead data set. (b) Its spherical

intermediate template. In (b), the positions of these deformed tissues can be used to

register the movements of these tissues during patients’ set-ups.
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3D FFD deformation lattice

To achieve this deformation, we put a volume object into a flexible parallelepiped lat-

tice structure, which has4�4�4 control points. When the parallelepiped is deformed,

then the volume object inside will deform with it accordingly. The details of FFD con-

trol implemented in VLIB can be seen in Winter’s PhD thesis [6].

Given the three orthogonal axes of the parallelepiped lattice, �S, �T and �U , the origin

of the three axes is atp0, a position with global coordinates in 3D space. Let(s; t; u) be

the local coordinates within the parallelepiped lattice, then the4�4�4 control points,Cijk, can be the control points for a 3D deformation control.

By first calculating the local coordinates(s; t; u) of point p, then the deformed

position�p can be evaluated using the following equation of the tri-variate parametric

volume:�p = 4Xi=1 (4i )(1� s)4�isif 4Xj=0(4j)(1� t)4�jtj[ 4Xk=1(4k)(1� u)4�kukCijk℄g (6.1)

i = 1 i = 2 i = 3 i = 4k = 1 j = 1 (p1; p1; p1) (p2; p1; p1) (p3; p1; p1) (p4; p1; p1)j = 2 (p1; p2; p1) (p2; p2; p1) (p3; p2; p1) (p4; p2; p1)j = 3 (p1; p3; p1) (p2; p3; p1) (p3; p3; p1) (p4; p3; p1)j = 4 (p1; p4; p1) (p2; p4; p1) (p3; p4; p1) (p4; p4; p1)k = 2 j = 1 (p1; p1; p2 + �) (p2; p1; p2 � �) (p3; p1; p2 + �) (p4; p1; p2 � �)j = 2 (p1 + �; p2; p2 + �) (p2 + �; p2; p2 � �) (p3 + �; p2; p2 + �) (p4 + �; p2; p2 � �)j = 3 (p1 + �; p3; p2 + �) (p2 + �; p3; p2 � �) (p3 + �; p3; p2 + �) (p4 + �; p3; p2 � �)j = 4 (p1; p4; p2 + �) (p2; p4; p2 � �) (p3; p4; p2 + �) (p4; p4; p2 � �)k = 3 j = 1 (p1; p1; p2 + �) (p2; p1; p3 � �) (p3; p1; p3 + �) (p4; p1; p3 � �)j = 2 (p1 + �; p2; p3 + �) (p2 + �; p2; p3 � �) (p3 + �; p2; p3 + �) (p4 + �; p2; p3 � �)j = 3 (p1 + �; p3; p3 + �) (p2 + �; p3; p3 � �) (p3 + �; p3; p3 + �) (p4 + �; p3; p3 � �)j = 4 (p1; p4; p3 + �) (p2; p4; p3 � �) (p3; p4; p3 + �) (p4; p4; p3 � �)k = 4 j = 1 (p1; p1; p4 + �) (p2; p1; p4 � �) (p3; p1; p4 + �) (p4; p1; p4 � �)j = 2 (p1; p2; p4 + �) (p2; p2; p4 � �) (p3; p2; p4 + �) (p4; p2; p4 � �)j = 3 (p1; p3; p4 + �) (p2; p3; p4 � �) (p3; p3; p4 + �) (p4; p3; p4 � �)j = 4 (p1; p4; p4 + �) (p2; p4; p4 � �) (p3; p4; p4 + �) (p4; p4; p4 � �)

Table 6.1:4 � 4 � 4 FFD control points:p1 = 0:0,p2 = 0:334,p3 = 0:667,p4 = 1:0,
FFD deformation factor� = 0:1.

In other words, given a volume space, we can discretise the space by imposing the

FFD parallelepiped lattice. Then for each vertex in the 3D volume space, given its
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local coordinates(s; t; u), we can transform its position into Euclidean space using the

following Bezier volume equation:Pv(s; t; u) = 4Xk=1 4Xj=0 4Xi=1 CijkBi(s)Bj(t)Bk(u) (6.2)

The4 � 4 � 4 control points are given in Table 6.1. By changing the FFD defor-

mation factor�, we can deform the CTHead under different deformation controls.

Feature detection and tracking

When simulating the deformation of the skin of patients during real-time radiother-

apy, rotation, scaling and illumination variations can become common deformation

phenomena [141].

However, the features in time-series intermediate templates can be detected accord-

ing to the strength of the discontinuity properties of the neighbourhood [142]. There-

fore we use Harris feature detectors [143] to detect edges and corners in intermediate

templates.

Given an imageI(x; y) and a windowW which centres on(x; y), then the auto-

correlation of the image at the position(x; y) can be defined as:
(x; y) = X(xi;yi)2W [I(xi; yi)� I(xi +4x; yi +4y)℄2 (6.3)

where(4x;4y) is a position shift of the imageI(xi +4x; yi +4y). If we expand

the shifted image using a Taylor expansion truncated to the first order terms, we get:I(xi +4x; yi +4y)�I(xi; yi) + [Ix(xi; yi) Iy(xi; yi)℄[4x4y℄0 (6.4)

whereIx(:; :) andIy(:; :) denote the partial derivatives in thex andy directions.

Substituting the Taylor expansion into the auto-correlation equation, we get:



6.5Universal Template Atlas 146


(x; y) = X(xi;yi)2W(I(xi; yi)� I(xi; yi)� [Ix(xi; yi) Iy(xi; yi)℄[4x4y℄0)2 (6.5)= X(xi;yi)2W(�[Ix(xi; yi) Iy(xi; yi)℄[4x4y℄0℄2 (6.6)= X(xi;yi)2W([Ix(xi; yi) Iy(xi; yi)℄[4x4y℄0℄2 (6.7)= [4x4y)℄[PW (Ix(xi;yi))2PW Ix(xi;yi)Iy(xi;yi) PW Ix(xi;yi)Iy(xi;yi)PW (Iy(xi;yi))2 ℄[4x4y℄0 (6.8)= [4x4y℄C(x; y)[4x4y℄0 (6.9)

where matrixC(x; y) reflects the geometrical structure of the local neighbourhood.

If we calculate the two eigenvalues�1 and�2 of matrix C(x; y), then they form a

rotationally invariant description. The geometrical facts and explanations are:

(1) If both eigenvalues are small, then the local auto-correlation function is flat;

that is, the intensity discontinuity in any direction is very small. The image has a flat

area.

(2) If one eigenvalue is high and the other is low, then this islikely to be an edge.

(3) If both eigenvalues are high, then the local auto-correlation function is sharply

peaked, which indicates the image is a corner.

(4) The two eigenvalues are proportional to the principal curvatures of the matrixC(x; y). When the trace of the matrix is large there is an edge, and when the determi-

nant is large there is an edge. So the corner strength signal can be [142]:�(x; y) = jC(x; y)j � �Tra
e2(C(x; y)) (6.10)

where� = 0:004 is set empirically.

As previously mentioned, first, we detect good corners usingthe Harris corner

detectors on two intermediate templates. These two intermediates are rendered under

different deformation controls which simulate the different patient set-ups. The two

detected corner sets are therefore independent of each other.

The detected feature sets in different intermediate templates are dynamically changed.

First, theith feature in an intermediate template at timet0 might become thejth fea-

ture in another intermediate template at different timet1. Second, theith feature might

disappear since a feature existing only at timet0 can become less prominent at time
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The variety of deformation mechanisms such as scaling, rotating, shearing, and the

different combinations of these deformation mechanisms, require an extremely robust

feature matching algorithm. Such an algorithm will consider not only the correlation

factor, but also the human perceptual feature matching mechanisms; that is, grouping,

similarity, and exclusivity.

A simple matching algorithm was proposed by Scott and Longuet-Higgins [147].

Their algorithm incorporates both the principle of proximity and the principle of ex-

clusion. Given two feature sets,i2M andj2N , the distance metric between features

can be defined as: Gij = e�r2ij=2�2 (6.11)

Matrix G captures relationships for all possible feature pairs.rij is the Euclidean

distance between featuresi andj.
The Gaussian weighted distance measure,Gi;j, is unique. It not only relates the

distance measure with feature coordinates but it also scales distance weighting (the

discrepancy in human perceptual vision) using the parameter �, which controls the

extent of the interaction between two feature sets. In addition, the distance measure

decreases monotonically with Euclidean distance. Finally, for identical images, the

distance measures become positive definite.

Scott and Longuet-Higgins’ method can be improved by addingthe correlation-

weighted factor,Cij, the normalised correlation between two image patches centred

at the positions of two matched features [148].Cij varies from -1 to 1, where -1

represents completely uncorrelated patches, 1 representsidentical correlated patches.

The correlation-weighted proximity of matrixG can be:Gij = (Cij + 1)�0:5�e�r2ij=2�2 (6.12)

Given the distance matrixG, we can calculate its SVD decomposition,[TDU ℄ =SV D(G). Then we set the diagonal elements in matrixD to 1. The matrixG now

becomes the correspondence matrixP , that is:P = T I U = TU (6.13)

The above operation eliminates the singular matrix and thusre-scales data in fea-



6.5Universal Template Atlas 148

ture space. That is, the largest feature in both row and column in matrixP indicates

mutual best match (correspondence).

So we would like to detect the best matching features in both intermediate tem-

plates and select the best matching set with the minimal disparity. By first using Scott

and Longuet-Higgins method to robustly detect good features, we can then match dif-

ferent feature sets and select the matching with the minimumdisparity distance as the

optimal one. SVD based correspondence matching algorithmscannot achieve both

globally optimal solutions and locally optimal solutions.That is, the parameter� in

Equation 6.12 controls the degree of interaction between the two sets of features. A

small value of� enforces local interactions, a large value enforces globalinteractions.

Therefore, we use RANSAC [144] algorithm in our correspondence matching pipeline.

The matching correspondence with minimal disparity will bepicked up as the optimal

solution. Our feature detecting and matching pipeline can be described as:

Image 1 Corner
detector

FeatureSet: D

J=N:1:3N

Image 2 Corner
detector

FeatureSet:Mj
1 N: feature no. in D

2 J: feature no. inMj
3 For j=N:3N

C(j)=S&LH(D,Mj)
End

4 OptimalCorrespondence=

Min disparity(C(j),j=N,...,3N)

Figure 6-16: Feature detecting and matching in intermediate templates: feature setD
andMj are detected using Harris corner detector. Therefore, the strongestJ features in

image 2 will be fed into the correlation weighted S&LH matching algorithm. Image 2

is divided into sub-areas. Feature sets are detected in these sub-areas first. The detected

feature points are then combined into the feature setMj. The dynamic feature setsMj
are different to each other in the loop in step 3. The concept of RANSAC is used here.

The optimal correspondence solution is calculated by picking up the feature set with

minimal disparity between the matching features inMj.
Note that only the matching correspondences whose correlation coefficients are

greater than 0.99 (an empirical threshold) and whose mutualcorrelation are maximum
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at both columns and rows will be picked out as the optimal correspondences. The

number of matched correspondences and the accuracy of the matching will directly

affect the effect of image warping.

(a) Spherical template without FFD (b) Spherical template with FFD

(c) Matched correspondences in (a) (d) Matched correspondences in (b)

Figure 6-17: Matching correspondences between intermediate template (a) without

FFD deformation and intermediate template (b) with FFD deformation. The FFD de-

formation factor is� = 0:2. The index numbers of matching features are different.

Correspondences are dynamically detected. Figures (c) and(d) annotate the matching

features.
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Some experiments

Some results of 2D features detecting and matching are givenhere. The correspon-

dences in Figures 6-17(a) and (b) are dynamically detected using the Harris corner

detector.

The two images are further divided into 5x5 sub-areas. The strongest features in the

sub-areas are detected. This mechanism gives us a nearly even distribution of features

on the whole images. The total number of features in Figure 6-17(a) is10�5�5. The

total number of features in Figure 6-17(a) is29�5�5. The distribution and location of

these two correspondence sets are given in Figure 6-18. In other words, features are

detected locally, whereas, correspondence features are matched globally.

As previously discussed, intermediate templates can be rendered with enhanced in-

formation such as enhanced geometrical features, enhancedtexture images. They can

also be rendered using multi field functions and spatial functions. Therefore, interme-

diate templates can capture a variety of different information which is well-suited to

real applications. Here, we have demonstrated that the feature points of 3D deformable

models can be detected and matched using intermediate templates. In addition, the ge-

ometrical features on the soft tissues within the volume data set can be detected and

matched using the same techniques we provide.

As shown in Figure 6-19, the feature points of soft tissues and the feature points

on the skin can be detected and matched at the same time. The matched feature corre-

spondence can be the control points used in fine registrationalgorithms, such as Lu et

al.’s coarse to fine registration techniques [145].

The corresponding features are dynamically detected and matched. In other words,

they are the best (the strongest) matching features. These features can always exist

during the period of the transitions of different patient set-ups. Therefore, they can

act as the control points for investigating the relationship between the model of the

exterior surface and the model of the internal organs. Note that conventionally, these

control points that act as land marking labels (functional markers) are stuck onto the

skin of patients [146].
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(a) Detected features on the intermediate template withoutFFD.

(b) Detected features on the intermediate template with FFD.

Figure 6-18: Detected correspondences in intermediate templates (a) without FFD de-

formation and intermediate template (b) with FFD deformation. The FFD deformation

factor is� = 0:2.
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(a) Spherical template without FFD (b) Spherical template with FFD

(c) Matched correspondences in (a) (d) Matched correspondences in (b)

Figure 6-19: Matching correspondences between intermediate template (a) without

FFD deformation and intermediate template (b) with FFD deformation. The FFD de-

formation factor is� = 0:2. The index numbers of matching features are different.

Correspondences are dynamically detected. Figures (c) and(d) annotate the matching

features.

6.5.3 Computational Expenses

The volume splitting algorithm presented in this chapter isimplemented using c/c++.

The complexities of the volume splitting algorithm come from the fact that each vol-
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ume integral elements of tracing rays needs to calculate itsown indexing label by

casting an additional tracing ray. Feature detection and tracking algorithms presented

in this chapter are implemented using Matlab, since these operations can be easily

implemented using matrix operations.

Rendering Figure 6-6(b) take 1 minute 48.3 seconds. The image size is 198x300

pixels and the running step length is set to 0.1. There is one point light in the rendering

scene. The size of the CT-head dataset is 180x113x237 voxels.

It is worth pointing out that different configurations of volume rendering pipelines

will lead to different complexities of rendering algorithms. The elements of a typical

volume rendering pipeline may include: resolutions of rendering images, step lengths

of tracing rays, depth of shadow rays, a variety of volume deformation functions, spa-

tial functions, field functions, a variety of interpolationtechniques, etc. We use VLIB

as our basic volume rendering engine. A detailed discussionabout the structural com-

plexity of VLIB was given by Dr. Winter in his PhD thesis [6]. (The structural network

of interconnected data structures in VLIB implementation is given in Appendix C in this

thesis.)

6.6 Conclusion

In this chapter we have introduced a novel constraint for splitting volume objects.

We employ the concept of traditional and contemporary z-buffer techniques and we

implement a novel scalar field, masking field, to split volumetric space. Our methods

can be volume rendering techniques, and additionally with anovel application issue.

We presented a tracing ray based masking ray method. It is based on the volume

rendering techniques. Moreover we have extended the algorithm to more general se-

mantic constraints.

Additionally, we have presented an efficient universal template atlas method for

texture mapping a volume data set.

The iso-surfaces we use here are all single value level-setswith self-occluding

geometrical structures. We can effectively split and annotate different parts of the

iso-surface with different texture information.

The user has to specify the indexing number of the masking field to be textured.

More research needs to be done on computational cost since wefire extra rays to

calculate the masking index number at each position the rendering ray traverses.
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Using masking fields and volume visualisation techniques, we can render infor-

matively enhanced intermediate templates. We demonstrated the application to image

registration, feature detection and matching. In particular, relational information con-

veyed by proximity matrices of adjacency correspondences are considered. Therefore,

we provide a possible solution for modelling deformable models for positioning pa-

tient set-ups in radio-therapy treatment.

The main idea of our intermediate template based registration method is using the

distribution of eigenvalues to achieve globally optimal solutions.



Chapter 7

Conclusions and Future Work

This thesis presents an image based texture mapping pipeline for volume objects. The

solutions offered touch the problem of texture mapping a volume data set: to find an

appropriate representation of digital images that provides a link between 2D, 2.5D, 3D

texture models and the 3D volumetric data set.

Multi-layers of iso-surfaces (hidden structures) can be textured independently. There-

fore, we believe our methods can be a possible solution to other image-related appli-

cations in the areas of volume visualisation. We recognise the importance of giving a

volume data set natural appearance and this is the motivation of our projective texture

model.

By using MDS-based LWLS flattening control, images can be directly overlaid

onto intermediate templates for texture mapping. There is no tangling of textures.

Efficient and effective practical applications that need realism based volume objects,

such as medical training, surgical planning, can be drawn from this model.

We studied the texture smearing and texture penetration problems in volume visu-

alisation. We presented a survey of discretely sampled object representations. We com-

bined projective texture models with colour transfer functions, field mask constraints,

flattened surfaces, and a variety of field function and spatial transfer functions.

7.1 Contribution

We are trying to link textures and 3D volume objects that lackgeometrical, topological

and semantic constraints. We offer a projective texture model for texture mapping vol-

ume objects. This model allows various volume visualisation applications to use this

155
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texture representation and to recover continuous texture colour intensities from dis-

crete image data samples. We have examined several applications such as 2D image

based texture mapping, 2.5D pseudo-solid textures, and data-dependent interpolations

(DDT) of texture mapping volume objects and other applications of texture mappings

in continuous space. The simplicity of the underlying texture model leads to simple

and effective applications in these different areas. In particular, we use field masks to

control texture penetration, which is often the most obvious challenge of using projec-

tive texture models.

Conventional projective texture models index / penetrate textures (colours) along

the projective directions. The drawback of these conventional projective based ap-

proaches is the shear effect. Textures will not only smear over a relative large area

but also penetrate to their neighbours that reside on the projective directions. This the-

sis provides the field mask solution to this problem. In addition, we demonstrate the

flexibility of our semantic texture models by rendering intermediate templates into a

universal template atlas with enhanced information. We believe we offer a direction

to representing volume objects using such intermediate templates. The flexibility of

rendering intermediate templates is given in this thesis.

Our model does not try to detect or attempt to find an explicit geometrical model

for the local geometry. It simply probes 3D positions where tracing rays terminate. By

doing this, the geometrical structures of the volume data set can be well presented.

We propose an MDS-boundary based LWLS technique to explore the hidden struc-

tures of 3D point clouds using 2D flattened configurations. The main strength of this

model is that it represents the flattened 3D surface in the plane, without twisting and

tangling. The algorithm is based on linear calculations andis thus simple and effective

for volume rendering applications.

At heart, out model constructs the connection between pixels and voxels through

different techniques such as projective modelling, volumerendering and effective field

masking. In particular, we offer a MDS-boundary based LWLS method to eliminate

the tangling and twisting of points in 2D configurations.

Projective texture models, MDS-based LWLS flattening algorithms, and field masks

are three cornerstones. We have used these three models in the framework of volume

visualisation. The details of these methods are given below.
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7.1.1 Projective texture models

We present an approach to texture mapping volume datasets. The approach is based

on multiple constraints and continuous space mappings to ensure good image quality.

The method was composed of three parts:semantically generating intermediate tem-

plates, selectively forward and inverse indexing, andvolume rendering. This three-part

aspect additionally allows the texture image to be independent of the volume data. We

demonstrated an extension to 2.5D textures, extruded through the volume, using an ap-

proach consistent with 2D texture. A data-dependent triangulation method is used to

retain edge quality in texture images. In addition, we presented a colour transfer tech-

nique, in which the colour information of pixels in illustration images is transferred to

the colour fields of voxels in 3D space.

7.1.2 MDS-based LWLS flattening algorithms: point clouds’ con-

figurations and shear effect

We discussed the challenges of our projective texture modelsuch as texture smearing,

penetrating and self-occlusion. In order to reduce the shear effect of the projective

texture model, we presented a method for smoothing the pointcloud within volume

objects. The method is based on theclassic multidimensional scaling (MDS)using

shortest-path proximities.

By mapping 3D points into 2D flattened (Euclidean) domain, the presented meth-

ods not only flatten the 3D surfaces of the volume object but also preserve information

about local geometrical features on the surfaces of volume objects. Our plenoptic

based dimensional reduction methods combine three areas: graph layout, volume ren-

dering, and multidimensional scaling. By flattening the 3D points cloud using classic

metric MDS, our method benefits the projective texture modelby overlaying texture

images onto 2D flattened surfaces, i.e., warped intermediate templates, of 3D volume

objects.

In order to eliminate the existence of tangling and twistingin MDS configurations,

we introduce MDS-based Linear Weighted Laplacian Smoothing model to flatten 3D

point cloud within volume objects. This method integrates the benefit of Laplacian

smoothing methods and the advantages of classic metric MDS methods. We demon-

strated that the proposed method prevents the tangling of flattened points cloud in the

application of texturing volume objects.
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7.1.3 Field masks and universal template atlas for annotating vol-

ume objects

We presented a solution to the texture self-occlusion problem and the texture penetra-

tion problem, by splitting the 3D space into differently labelled layers. Using labelled

3D space masks, self-occlusion and texture penetration canbe effectively controlled

using volume rendering techniques, such as DVR and DSR. We donot build any static

field masks in advance. Similar to the techniques of constructing 2.5D pseudo-solid

texture models, we dynamically construct field masks duringvolume rendering. As

we demonstrated in this thesis, different iso-surfaces canbe split independently using

different plenoptic-based field mask models.

So, in our volume rendering engine, the volume data can be textured using different

projective texture models, using their associated field masks models, and using a vari-

ety of field functions and spatial transfer functions. In particular, a flattened (warped)

intermediate template can be used during volume rendering.These operations reduce

the effort of texture warping. In other words, texture images can be directly overlaid

onto flattened intermediate templates. The texture distortion due to plenoptic projec-

tion is reduced.

7.2 Future Work

There are a number of directions in which the work of this thesis can be continued.

2.5D Registration

We offer a possible solution to an medical application: volumetric data registration

during the process of radiotherapy treatment. As discussedin Chapter 2 and in [1], vol-

umetric object registration is commonly based on tracking 3D features of segmented

objects, either using geometrical information (static or statistical models) or advanced

pattern recognition and clustering techniques. However, we demonstrated that 3D fea-

ture tracking can be converted from 3D space into 2D space, i.e., by:

(1) Rendering plenoptic intermediate templates using additional / enhanced informa-

tion such as colours and textures; (2) Warping intermediatetemplates using MDS-

LWLS control, which is equivalent to flattening 3D surfaces of volume objects; (3)

Tracing 3D features is therefore converted into tracking 2Dfeatures in the warped

intermediate templates (images).
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Conventional 2D registration techniques for medical images are based on feature

detection techniques, which use geometrical information and intensity information. In

the rendered intermediate template, we can enhance geometrical features by adding

colour or texture information through field transfer functions. Detecting and tracking

2D features in intermediate templates become easier and more accurate.

Realistic Volume Graphics

We noticed that MRI scanned, CT scanned, 3D X-ray scanned, and distance scanned

data sources such as animals, human bodies, vegetables, andart works, etc., originate

from the variety of the surrounds in our daily life, but are conditionally exposed to us

without natural appearances.

Therefore, it would be extremely desirable to develop technology for physically

realistic volume graphics. It would be even more desirable if the realistic volume

characters can be used in medical training and surgical planning. The ability of realistic

volume graphics will innovate the basic research frameworkof volume graphics.

Estimating optimal proximity in MDS, and optimal linear wei ghts in LWLS

We use Euclidean distance, geodesic distance, and MDS basedlinear Laplacian

weights to smoothing 3D point clouds. The shape of the flattened MDS boundary is

affected by the estimation of proximity. Different proximity estimation will affect the

performance of MDS smoothing.

Using local neighbourhood information to construct low-dimensional-scaling mod-

els is our main consideration. We will focus on using local multidimensional scaling

(LMDS) plus graph layout techniques. We will construct desirable drawings of graphs

by balancing attractive forces between near points and repulsive forces between distant

points. The LMDS method is investigated by Chen and Buja using nonlinear reduction

models, in the draft [127] in 2006. In this thesis, we are facing the same problem, in

particular for volume based applications. However, we prefer to use linear dimension

reduction methods. We are currently working on this.

Visualisation of Errors

We use direct surface rendering algorithm and direct volumerendering algorithm

in our system. While we are trying to locate the positions of iso-surfaces using dif-

ferent step-lengths of tracing rays, we find that the iso-surfaces’ termination positions

are different. This means that we can not exactly locate the positions of iso-surfaces.

In other words, visualisation errors do exist and may not become tolerable under some

circumstances, in particular in surgical planing [99]. Therefore we would like to in-
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vestigate and quantify visualisation errors to improve thevisualisation accuracy in our

system.

7.3 Conclusion

In this thesis, projective texture models are developed to link 2D images and 3D vol-

umetric DSORs. MDS and LWLS methods are combined to deliver aworking and

robust method for smoothing point data and to explore hidden3D structures of volume

data. MDS based LWLS techniques are powerful for smoothing 3D surfaces and are

effective for other texture mapping applications. In addition, a novel splitting model

for volume objects is developed to eliminate texture penetrations.

We are trying to texture mapping volume objects with realistic appearances. This

leads to the research which presents an effective model (theintermediate template)

to exploit properties of 3D features in the information enhanced images. It is not

only a better representation of 3D point clouds but also a more effective model than

conventional 3D procedural texture techniques. Thereforewe believe it is generic for

different kinds of texture based applications, in particular for preserving realism for

volume objects.

Field functions, spatial transfer functions, field masks, and so on, can be effec-

tively integrated into our rendering process. Therefore, intermediate templates can be

rendered flexibly. The enhanced information in intermediate templates includes tex-

ture, colour and geometry features, which will further facilitate the processes of feature

detection and tracking.

Parts of this research have been presented at the following conferences:� The 26th Eurographics Conference (Dublin, Ireland, 2005) [1].� The Institute of Mathematics and its Applications, Vision,Video and Graphics

(Edinburgh, 2005) [39].� The 3rd International Conference on Computer Graphics and Interactive Tech-

niques in Australasia and Southeast Asia, ACM SIGGRAPH (Dunedin, New

Zealand, 2005) [40].



Appendix A

Glossary

3D texture mapping - textures can be added to a 3D object using a three dimensional

texture block. It can be treated as 3D volumetric sculpture.The 3D object can be

effectively carved out of the 3D texture block.

A
Adaptive (early) ray termination - a technique to accelerate the volume rendering.

The casted ray can stop sampling the volume object when the accumulated opacity,

or intensity, reaches a predefined threshold. The amount of voxels which need to be

processed can be reduced.

Aliasing - a problem about objects edges are represented in the ways ofdiscrete repre-

sentations. The edge is decided by judging whether it is inside or outside of the object.

This leads to a jaggy or zigzag effect at the edges.

Annotating volume objects- a process in volume visualisation and the surgical plan-

ning application. 3D space of volume object is split and volume object is segmented in

advance. Transfer functions or are used to assign colour information to inner structures

or segmented and classified geometrical features.

Antialiasing - the process of filtering so that sharp edges can be softened.The geo-

metrical features of edges can be used to facilitate the filtering operation.

B
Backward projection - a volume rendering technique which cast rays through the im-

age plane, into the volume object.
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C
Colour transfer - a set of transfer functions which assign colour information to the

numerical values or positions in a volume object.

Compositing- the process of merging together all the colours and opacities. The com-

position can take place in a back-to-front manner.

Constructive volume geometry (CVG)- a constructive representation of volume ob-

jects, including both volumetric datasets and scalar fields. The combinational opera-

tions are normally defined in the real domain and enable the construction of complex

volume objects through the combination of the geometrical and physical properties of

simple (solid or amorphous) volume objects.

D
Direct surface rendering (DSR) - a method used to display a surface (level sets)

which is inside a volumetric object without constructing a mesh model. The method is

based on ray casting and uses tri-linear interpolation to determine the location of the

iso-value of the surface.

Direct volume rendering (DVR) - rendering an image from a volume object without

any intermediary step in which a surface is generated. Volumetric ray tracing is re-

ferred as direct volume rendering in this thesis.

Distance field- a volume dataset in which the voxel values give the approximate dis-

tance to the surface of interest.

E
Environment mapping - a texture mapping method which reduces the computation of

a reflection ray to a simple intersection. A scene is mapped onto a cubic or a spherical

or cubic map.

F
Forward projection - the name given to a collection of volume rendering algorithms

which synthesis an image by projecting the voxels onto imageplane.

I
Illustrating volume objects - a process of volume visualisation which combining the

familiarity of physical based illumination model or non-photo realistic rendering tech-
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niques to make the important visual cues become more prominent. Volume illustration

provides a flexible unified framework for enhancing structural perception of volume

models through the amplification of features and the addition of illumination effects.

ISO-surface - a surface of equipotential. For a field functionf :R4�!R, the� -iso-

surface,S(�), is defined asxd : f(xd) = � , � is referred to as an iso-value or threshold.

ISO-value - a value which represents something interesting in a particular domain. In

3D iso-surface, the iso-value defines the surface of interest and is calculated such that

all points on the surface (level sets) have a function value equal to this value.

M
Marching cubes algorithm - an algorithm for determining an iso-surface (mesh model)

in a 3D dataset. Function values are evaluated at regular discrete points to make a

3D grid of data values (voxels). Eight neighbouring voxels make up a cube, from

which the surface can be determined using lookup tables for each of the possible cases.

Since each of the eight voxels can be inside or outside of the surface, there exist 256

cube configurations, which ban be reduced to 14 configurations using symmetry. The

lookup table indicates the triangles to be added to a triangular mesh, with their vertices

interpolated from known voxel positions and values.

N
Non-photorealistic rendering - an approach to image synthesis which gives the abil-

ity to use various effects which do not attempt to realistically model and render the

scene, while still retaining the advantages of a conventional rendering system.

O
Object self-occlusion- parts of an object hidden from the viewer

P
Parameterised texture mapping- adds surface details by wrapping a two dimen-

sional texture map around an object.

Projection mapping - adds surface detail in two stage. The texture is first mapped

onto a single (intermediate) three dimension object (plenoptic model),S mapping.

The intermediate object is then mapped onto the object beingrendered,O mapping.
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R
Ray casting- the process of sending a primary ray from a point in space into a scene

with direction. The ray terminated and the intensity is accumulated according to shad-

ing models.

Ray tracing - the process of sending an additional second ray of ray casting process.

Upon the intersection with an object, the second ray will be spawned in order to deter-

mine all contributions of other light sources.

S
Semantic functions - Transformation functions could be extended to a generic de-

scription, that is:semantic functions, which operate on space criteria, logical criteria,

temporal criteria, geometrical criteria, topological criteria, and so on.

Semantic transfer function - A semantic transfer function operates on both spatial

positionp and field valueFi(p); whereas, a transfer function can only manipulate field

values on the same position, spatial transfer function can only transfer the same scalar

value from one position to another.

Scalar field - a scalar field takes a coordinate and returns the value (interpolated or

actual) at that coordinate.

Solid texture - Complex three dimensional textures constructed from primitive, non-

linear and basis functions.

Space partition - the process of dividing space into smaller subspaces. The reasoning

behind this is that processes can be carried out on differentsubspaces independently.

T
Texel - the individual pixels of a two dimensional texture image. Texel is also the

name given to the element of a three dimensional texture block which is used in the

volumetric texturing mapping.

Texture image (map)- a two dimensional image which represents textures.

Texture mapping - gives the impression of surface detail by mapping texels onto the

surface (level sets) of volume objects during volume rendering.

Transfer function) - a mathematical function which assign different scalar properties

to the numerical values of the volumetric object.

Two-part texture mapping - seeprojection mapping.
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V
Volume graphics - a sub-field of computer graphics which models and renders both

discrete volumetric datasets and continuous scalar fields.The main aim of this field is

to provide all known graphics effects and techniques withinthe volume environment.

Typical operations include CVG, volume sculping, hypertextures, etc.

Volume rendering - a process for obtaining images from three dimensional volume

objects. Volume objects can be represented by a set of scalarfields in a way that rays

can pass through the 3D space of these scalar fields simultaneously. Typical scalar

fields include colour components, opacity settings, distance field and velocity field.

Direct surface rendering and direct volume rendering techniques are two typical algo-

rithms used in this thesis.

Volume sculpting - a free-form, interactive modelling technique based on sculpting

voxel-based solid material. It is also used to explore the inner structure of a dataset by

removing material step by step.

Volume visualisation - a sub-field of scientific visualisation focused on visualising

and exploring the inner structures of volume objects.

Z
z-buffer - an arrayz(x; y) of depths for each pixel in images.



Appendix B

Generalised 2D Tutte embedding

To prevent tangling and flipping of internal nodes, we use sufficient conditions given

by generalised 2D Tutte embedding algorithms [133]:

Consider the graphGM of a meshM2MB, withN vertices. There exist a boundary

(cycle)B in the graphGM and all other vertices withinB are internal vertices. There

aren internal vertices, wheren < N .

Assume boundaryB is a convex polygon inR2 . For each internal vertixi, its

weightswij can be constructed using the following conditions:wij > 0; (i; j)2E(GM); and; wij = 0; (i; j)=2E(GM) (B.1)Xj2Niwij = 1 (B.2)

whereNi is the set of vertices neighbouring the internal vertexi.
Givenwij, internal vertex can be calculated using the following equations:ui = NXj=1 wijuj (B.3)

The above equation can be written as the following linear system:ui � nXj=1 wijuj = NXj=n+1wijuj (B.4)
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The above equation can be written into the matrix form:Au = b (B.5)A(i; j) = 8>>><>>>:�wij; if i6=j1 if i = j0 iff (i; j) not in E (B.6)

whereu andb are positions of internal vertices and boundary vertices. MatrixA is anM -matrix therefore it is non-singular. So the above linear system has unique solution.

Given matrixA and boundary positionsb, we can calculate the positions of internal

verticesu.

Lemma 1: Every internal vertexi is positioned atui, and it is the solution of the above

linear system. Then every internal vertex lies strictly inside the convex polygon Q with

vertices atb = fun+1; un+2; :::; uNg.
Theorem 1: The solution of the above linear system yields a planar embedding of the

graphGM of meshM , in which no triangles overlap.

The details of the approvement of Lemma 1 and Theorem 1 are given in [133] on

page 47 and page 48.



Appendix C

Structural Complexity of VLIB

The complexity of volume rendering pipelines highly depends on different configu-

rations of different applications. The following diagram shows the network of inter-

connected data structure in VLIB implementation given by Dr. Winter in his PhD

thesis [6].

Each data structures are represented using a box. They can bea rendering scene,

or some elements of a rendering scene. Their data structuresare implemented using

“struct” structures in C. Arrows from one box to another box constructdynamiclinks

in different configurations of different volume rendering pipelines. The functions are

implemented using pointers in C.
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Figure C-1: Network of interconnected data structure in a VLIB implementation [6].
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