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2 Designing information fusion 

Three experiments investigated whether reduced cognitive processing 

associated with extracting information from a fused environment may lead 

to impoverished encoding of visual-spatial information. Experienced pilots 

and students completed various simulated flight missions, each requiring 

the use of dynamic onscreen information under Fused and UnFused 

conditions to estimate the position of a number of locations. Following a 

retention interval, memory for locations was assessed. Experiment 1 

demonstrated that the retention of fused information was problematic in an 

applied setting, and Experiment 2 replicated this finding under laboratory 

conditions. Experiment 3 successfully improved the retention of Fused 

information by limiting its availability within the interface, which shifted 

participant’s strategies from over-reliance upon the display as an external 

memory source, towards more memory-dependent interaction. These 

results are discussed within the context of intelligent interface design and 

effective human-computer interaction. 

Keywords: Human-machine system; Information fusion; Adaptive memory; Transfer-

appropriate processing 
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1. Introduction 

Operators of complex systems, such as those found in the modern aircraft cockpit, 

have access to an unprecedented volume of information, originating from a variety of 

on- and off-board sensors. The problem faced by the Human Factors and Ergonomics 

community, therefore, is how best to organise and present such an abundance of 

information without inducing ‘information overload’ (Woods, Patterson, and Roth 

2002). Defined as synergy in the information acquired from multiple sources 

(Dasarthy 2001), information fusion techniques aim to reduce the cost associated with 

accessing and integrating information from the task environment. In doing so, it is 

possible that the operator’s task of information extraction and assimilation is made 

easier and more effortless. However, it is necessary to investigate cost-benefit trade-

offs and whether boundary conditions exist such that performance on certain task 

criteria may be degraded. Specifically, we suggest that the manner in which 

information is presented within a fused environment may have negative consequences 

for the encoding of visual-spatial information. 

1.1. Information fusion – a contemporary solution to information overload 

Ultimately, information fusion aims to reduce the cost associated with accessing 

information from the interface. This principle can also be seen in a variety of more 

established approaches to cognitive engineering (e.g. Ecological Interface Design -

Vicente and Rasmussen 1992, Representation Aiding - Woods 1991, Configural 

Displays - Bennett and Flach 1992, Proximity Compatibility Principle - Wickens and 

Carswell 1995), with many examples designed to meet the demands of particular task 
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criteria. However, use of the term information fusion in the present article is not 

intended to extend to the often complex process by which such approaches attempt to 

provide operators with higher-order functional information within a specific unified 

display. Instead, our investigation and discussion of information fusion focuses on the 

often generic side effects associated with decreasing the cognitive processing 

associated with extracting information from the interface (e.g. Gray, Simms, Fu, and 

Schoelles 2006).  

By integrating information from a number of different sources, information 

fusion reflects a movement away from traditional single-sensor single-display design, 

whereby each display represents the value of a single measurement (Woods 1991). In 

such environments the operator is required to sequentially gather the information 

needed from individual instruments (often spatially separate), maintain this 

information in memory, and mentally integrate the information collected to arrive at a 

decision. These processes of information gathering and integration can impose high, 

sometimes overwhelming cognitive demands upon the operator, taxing limited 

resources such as attention and memory (Wickens 1992). 

Comparisons between integrated and single-sensor single-display design have 

been conducted in a number of environments (e.g. Pawlak and Vicente 1996, Vicente, 

Moray, Lee, Rasmussen, Jones, Brock, and Djemil 1996, Marino and Mahan 2005), 

including aviation (e.g. Dinadis and Vicente 1999, Lintern, Waite, and Talleur 1999), 

and have demonstrated benefits derived from integrated displays in supporting user 

decision making. In their comprehensive review of graphical displays, Bennett and 

Flach (1992) acknowledge that ‘there appears to be a clear consensus that 

performance can be improved by providing displays that allow the observer to utilize 

the more efficient processes of perception and pattern recognition instead of requiring 
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the observer to utilize the cognitively intensive processes of memory, integration, and 

inference’ (p.514). 

There are, however, potential shortcomings associated with attempting to 

provide the operator with the information they need via intelligent displays. This has 

been well documented in the automation literature, (see Parasuraman and Riley 1997 

for a review), with negative effects including the lack of system transparency, and the 

failure to keep the operator ‘in the loop’ (Bainbridge 1987). It is argued here that there 

may be similar potential problems associated with providing the operator with fused 

information. Making information too accessible via the process of fusion may 

increase an operator’s reliance upon the external display, and thus, reduce the extent 

to which the information presented is internalised. (See Waldron, Duggan, Patrick, 

Banbury, and Howes 2005 for an applied demonstration of such a concern.) 

The general philosophy during assessment of display design is not to evaluate a 

display based upon the extent to which it promotes the internalisation of information 

presented within the external display, but rather, to focus upon the effectiveness of the 

display in supporting the operator during information extraction and decision making. 

However, some work has investigated the value of using memory as a methodology 

for evaluating display effectiveness (e.g. Vicente 1992), and has proposed that the use 

of memory to evaluate display effectiveness is better suited to analyses of 

semantically meaningful variables, as opposed to detailed visual information 

(Sperling 1960). For this reason, the current article will focus on display design 

intended to provide the operator with visual-spatial information that does contain 

semantic content. 
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1.2. Psychological consequences of increased accessibility of information 

What follows is a brief review of relevant psychological literature suggesting that 

reducing the cognitive processing required to extract information from a fused 

environment may have negative consequences for the encoding of such information. 

Firstly, work is cited highlighting the importance of display design in promoting 

active engagement (on behalf of the operator) in processes that make use of memory 

and inference making (e.g. McNamara, Kintsch, Songer, and Kintsch 1996, Gray et 

al. 2006), which contribute to the development of a robust internal representation of 

the task environment, and can thus be seen as ‘transfer-appropriate processing’ 

(Morris, Bransford, and Franks 1977), when memory for visual-spatial information is 

important. Secondly, a proposal is made that the use of information fusion will, in 

some situations, reduce the extent to which operators of complex systems engage in 

such transfer-appropriate processing. 

Experimental research has shown that even very small changes to the design of 

an interface can significantly affect the extent to which internal memory is deployed 

during interactive behaviour. For example, by increasing the cost of accessing 

information from a simple eye movement to a head movement, Ballard, Hayhoe, and 

Pelz (1995) induced a shift in participants’ behaviour from a largely display-based 

strategy to one more reliant upon working memory. Work continuing in this theme 

has indicated that the lower the cost associated with accessing information from a 

display, the less likely participants are to employ memory-intensive strategies during 

both routine interactive behaviour (Fu and Gray 2000; Gray and Fu 2004; Gray et al. 

2006) and problem solving (Waldron, Patrick, Howes, and Duggan 2006). If 

information is readily available in-the-world, a shift is often observed from memory-
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intensive strategies to more display-based ones, often referred to as perceptual-motor 

strategies (see Gray et al. 2006). Hence, the individual may rely upon the display as 

an external memory source (O’Regan 1992). It follows then, that the use of internal 

memory by operators of complex systems may decrease as the cost associated with 

accessing and integrating information from the task environment is reduced via 

information fusion. This reduction in the use of memory during information extraction 

from a fused display is likely to have negative consequences for the retention of 

visually presented information. Indeed, the frequency with which different memory 

traces are called upon is integral to many theories of declarative memory (e.g. 

Anderson and Milson 1989). 

In their discussion of the adaptive nature of memory, Anderson and colleagues 

(Anderson and Milson 1989, Anderson and Schooler 1991, Anderson, Fincham, and 

Douglass 1999) have argued that activation of a memory trace is, at least in part, 

determined by retrieval practice. They propose that the human memory system has the 

form it does so as to make more available memories that are used more often in the 

past (the practice effect). It has also been suggested that memory’s most apparent 

deficit, forgetting, may in fact be an adaptive response to the need to focus on 

currently available information (Anderson and Milson 1989, Bjork and Bjork 1992). 

Functional decay theory proposes that when a task requires memory to be updated 

frequently, decay must occur to prevent interference with later memories (Venturino 

1997, Altmann and Gray 2002). It is quite probable, therefore, that a reduction in the 

use of memory during information extraction (as a result of information fusion) will 

have negative consequences for the retention of visual-spatial information. 

There is also a wealth of knowledge suggesting that relevant internal processing 

improves subsequent task performance relative to a passive reliance upon equivalent 
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information provided within the environment (e.g. Palmiter, Elkerton, and Bagget 

1991, McNamara et al. 1996, Duggan and Payne 2001). The idea that the encoding of 

information can be improved via relevant processing can be dated back to the seminal 

‘levels of processing framework’ developed by Craik and Lockhart (1972). Also the 

inserted questions literature (e.g. Glover 1989) and the text comprehension literature 

(e.g. McNamara, et al. 1996) have demonstrated that prompting participants to make 

task-related inferences whilst reading text can aid the comprehension and retention of 

text. Using the everyday task of programming a VCR, Duggan and Payne (2001) 

improved participants’ retention of instructional information by prompting them to 

adopt a chunked instruction-following procedure (reliant upon memory). By reading 

and then performing several steps of the programming cycle at a time (compared to 

one step at a time), participants were engaged in more internal processing during the 

training phase and consequently outperformed the ‘one step at a time’ group at test. 

Engaging individuals in task-relevant inference making and memory-intensive 

strategies during task performance can be seen as an example of what Morris et al 

(1977) coined ‘transfer-appropriate processing’. In essence, transfer-appropriate 

processing theory states that matching the cognitive demands during learning with 

those observed at retrieval gives rise to better retention than mismatched learning and 

retrieval conditions. For example, if information is not permanently available during a 

task, or is presented in a random/variable fashion, the participant will receive practice 

during the task of forgetting and subsequently retrieving this information. 

Consequently, retrieval mechanisms will have been practised and therefore available 

at test. Relatedly, it is not always the case that a manipulation that maximizes 

performance during the task will also benefit the retention of task-related information 

over time. In fact, manipulations that degrade the ease of acquisition during the task 
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can often support the long-term retention of this information (Schmidt and Bjork 

1992). Following from cognitive load theory (Sweller 1988, Chandler and Sweller 

1996), it has been recognised that so-called ‘germane cognitive load’ (van 

Merriënboer, Schuurman, de Croock, and Paas 2002) facilitates learning. Therefore it 

could be predicted that, within the limits of total available cognitive capacity, 

increased processing load associated with the extraction of information presented 

within an external display will facilitate the learning and therefore retention of visual-

spatial information. 

Based upon the assumption that reducing the cost of accessing information 

within an interface will reduce the use of memory-intensive strategies during 

information seeking (e.g. Gray et al. 2006), and the assumption that relevant internal 

processing (e.g. Anderson and Milson 1989, McNamara et al. 1996) is required to 

maintain and update memory during interactive behaviour, we predict that under 

certain circumstances the use of information fusion may lead to impoverished 

encoding and poor retention of information presented within an external display. In 

order to test this hypothesis, the effectiveness of a fused and unfused cockpit display 

will be evaluated in terms of supporting operator performance, both during simulated 

flight missions, and when recalling mission information. A high-fidelity flight 

simulator was used in Experiment 1 to assess and compare the effectiveness of fusion 

technologies currently in development against more traditional unfused displays. 

Further studies (Experiments 2 and 3) were conducted using a low-fidelity simulation 

in an attempt to replicate and differentiate, under laboratory conditions, between 

explanations responsible for the results observed in Experiment 1. 
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2. Experimental task 

Flight missions were used in which the goal of the task was to navigate the aircraft 

within an area of interest and estimate the position of a number of fixed locations (1, 

2, or 3). For all experiments, the area of interest was represented by a 70 x 70 nautical 

mile (nm) terrain map. Although participants were never informed of the actual 

position of the location(s), dynamic indirect estimates of location position were 

provided within the interface in order to guide estimation. Following completion of 

each flight mission, participants’ memory for location position(s) was tested. 

Contained within every square nm of the terrain map were a number of landmarks, 

and thus memory for location information involved semantic properties and relational 

information. 

During each flight mission a confederate aircraft flew alongside the participant’s 

aircraft maintaining a constant separation of 10 nm, enabling information to be shared 

between the two platforms. The extent to which this information was fused within the 

interface was the focal point of the first two experiments, with the final experiment 

concentrating on the effects of manipulating the temporal availability of fused 

information. Both fused and unfused displays contained radar information indicating 

direction but not range of location(s) relative to the participant’s aircraft (see Figure 

1). The representation and availability of dynamic location information projected onto 

the terrain map, however, differed according to whether fusion was, or was not 

present. 

[Insert Figure 1 about here] 
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Within the fused display, shared location estimates were displayed onscreen as 

small squares (see Figure 1a), which were permanently available onscreen 

(representing an estimation of both direction and range of location positioning). In the 

unfused display, information from the radar display from both the pilot and the 

confederate aircraft was presented as individual spokes onscreen (see Figure 1b). 

Each relevant intersection between corresponding spokes represented an estimation of 

both direction and range of location position(s). Consistent with the radar display, 

these spokes were available onscreen for two seconds, with an eight second interval 

between each display (during which no information was available onscreen). These 

dynamic onscreen location estimates were updated throughout each trial and were 

dependent upon the relationship between pilot and confederate aircraft and the fixed 

location(s). Participants were informed that the onscreen estimates would never be 

100% accurate, would move around, and that they could use this information to guide 

their location estimations. 

3. Experiment 1 

The Information Fusion Testbed (IFT) located at QinetiQ, Farnborough, was used in 

Experiment 1 to test the hypothesis that, when compared to a more traditional unfused 

display, a novel fused display would support operator performance during flight 

missions, yet lead to impoverished encoding and subsequent retention of location 

information. Specifically, it was predicted that the use of fusion to provide operators 

with permanently available onscreen information (in the form of small squares) would 

lead to over-reliance on the external display, and a lack of transfer-appropriate 

processing. In contrast, the semi-permanent nature of information provided within the 
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unfused display (in the form of spoke intersections) was predicted to promote the use 

of memory and inference making during flight missions, thus improving the encoding 

and retention of location information. 

3.1. Method 

3.1.1. Participants. Participants were six male pilots between 30 and 50 years of age, 

each with a minimum of ten years flight experience. 

3.1.2. Materials. The IFT simulated a high fidelity future jet cockpit including Head-

Up Display, aircraft controls and interactive touchscreen display. Contained within 

the touchscreen display was the radar and terrain display. Information provided within 

the radar display became active when the participant’s aircraft flew within 55 nm of 

the location(s). 

3.1.3. Design. The representation and availability of information provided within the 

terrain display differed according to whether it was Fused or UnFused and was 

manipulated within-subjects. The fusion algorithm continuously integrated 

information from the two aircraft, whilst taking into account previous estimations in 

order to provide permanent onscreen location information. The Fused display became 

active when both aircraft flew within 55 nm of the location(s), and location estimates 

were in the form of small squares (see Figure 1). In the UnFused condition, however, 

only the sharing of semi-permanent radar information between the two platforms was 

possible. As with the radar display, UnFused spokes became active the moment either 

of the respective aircraft flew within 55 nm of the location(s), and location estimates 

were determined by the relevant intersections between corresponding spokes. 
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Consistent with the radar display, these spokes were displayed for two seconds with 

an eight second interval between each display. The number of locations (1, 2, or 3) 

was also manipulated within-subjects to create three workload conditions. On 

occasions where more than one location was to be identified, each of the locations 

was situated within 10 nm of one another. The starting location of both aircraft and 

the actual position of each location varied systematically across trials. Each 

participant received two trials from each treatment combination in a different 

randomised order. 

3.1.4. Procedure. Prior to the commencement of twelve experimental trials, two 

practice trials were completed to familiarise participants with the task and display 

formats. Each trial consisted of one flight mission, retention interval and recall test. 

The route flown during each mission was under the control of participants at all times, 

and because performance was likely to vary over the duration of flight, measures were 

taken at several points to observe both the development of location accuracy over 

time and any interaction with fusion. At distances of 50, 40, 35, 30 and 20 nm from 

the location, the prompt ‘RESPOND NOW’ appeared onscreen at which point 

participants were required to touch the screen to record each location estimate. Each 

flight mission terminated once a response had been made to the final prompt. Recall 

of location(s) was also measured five minutes following the completion of each flight 

mission. A paper map was given to participants to mark their location estimates. 

During the five minutes preceding this memory test, participants were required to 

complete a subjective assessment of their performance on the preceding flight 

mission. 
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3.2. Results 

A number of rules were implemented during the analysis of these data. Firstly, if the 

number of responses made by the participant ever exceeded the number of responses 

required, the response(s) nearest the actual location(s) was taken. Secondly, any ‘no-

responses’ resulted in missing data points. Two methods were used to measure 

participant’s location estimates. Measure 1 matched a participant’s location 

estimate(s) to the actual location(s) position in such a way so as to minimise the total 

mean distance error. Measure 2 matched the centre of a participant’s location 

estimate(s) to the centre of the actual location(s). Minimal differences were observed 

as a function of these two measures, and thus, only results obtained via measure 1 will 

be reported. Upon violations of sphericity, Greenhouse-Geisser corrected degrees of 

freedom are reported, and non-transformed data are presented in tabular and graphical 

format. The effects of fusion and workload on location accuracy during a flight 

mission will be reported first, followed by the effects of fusion on the retention of 

location information. 

3.2.1. Location accuracy. For prompts 1 and 2, over 50% of locations were not 

correctly identified. Thus, to avoid empty cells only data from prompts 3, 4 and 5 

were analysed. A log transformation was performed on the data in order to correct for 

differences in variance between the fusion conditions, and a 3 (Prompt 3/4/5) x 2 

(Fused/UnFused) x 3 (Locations 1/2/3) within-subjects ANOVA was computed on the 

transformed data. The Fused condition yielded significantly more accurate estimations 

than the UnFused condition, F (1, 5) = 47.36, p <.001, MSE = 0.04, and estimations 

became less accurate as the number of locations increased, F (2, 10) = 12.20, p <.01, 

MSE = 0.02. A significant interaction was observed between fusion x locations, F (2, 
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10) = 11.60, p <.001, MSE = 0.04, with simple main effects revealing an advantage 

for Fused over UnFused when there were two locations, F (1, 5) = 102.71, p <.001, or 

three, F (1, 5) = 19.69, p <.05, but not when there was one, F (1, 5) = 0.99, p >.05 

(see Table 1). No main effect of prompt was observed, F (2, 10) = 0.60, p >.05, MSE 

= 0.03, and participants in each of the fusion conditions were equally accurate in 

identifying the correct number of locations on each trial, as indicated by identical 

proportional means (Fused M = 0.83, SD = 0.21, UnFused M = 0.83, SD = 0.24). 

[Insert Table 1 about here] 

3.2.2. Location retention. Delayed location recall was compared against the 

immediate location estimations provided at the final prompt in order to examine the 

retention of location information following the retention interval. A reciprocal 

transformation was performed on the data in order to correct for differences in 

variance between the fusion conditions, and a 2 (Fused/UnFused) x 2 

(Immediate/Delayed) x 3 (Locations 1/2/3) within-subjects ANOVA was computed 

on the transformed data. Overall, the Fused condition yielded significantly more 

accurate estimates than the UnFused condition, F (1, 5) = 20.08, p <.01, MSE = 0.05, 

and accuracy deteriorated during the retention interval, F (1, 5) = 6.55, p <.05, MSE = 

0.10. Importantly, a retention interval x fusion interaction was found, F (1, 5) = 7.76, 

p <.05, MSE = 0.07, (see Figure 2) and simple main effects indicated that only at the 

final prompt (immediate) were estimations more accurate in the Fused, compared to 

the UnFused condition, F (1, 5) = 20.30, p <.01. No significant difference was 
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observed between Fused and UnFused at delayed recall, F (1, 5) = 1.22, p >.05. 

Simple main effects also indicated that significant deterioration in accuracy occurred 

in the Fused, F (1, 5) = 7.42, p <.05, but not in the UnFused condition, F (1, 5) = 0.31, 

p >.05. A separate one way ANOVA conducted on proportional data found no 

significant differences between the two fusion conditions in terms of recalling the 

correct number of locations for each trial, F (1, 5) = 0.17, p >.05, MSE = 0.01. 

[Insert Figure 2 about here] 

3.3. Discussion 

The two main predictions were supported. Firstly, during flight missions participants 

were more accurate in identifying location position when fusion was present, 

compared to when it was not. Secondly, deterioration of accuracy following the 

retention interval was greater in the Fused, compared to the UnFused condition. Our 

interpretation of the data is based upon the premise that more cognitive processing 

was required to extract information from the UnFused, compared to the Fused display. 

It is proposed that differences in the cognitive processing associated with extracting 

information from the two displays explain both the superiority of the Fused display at 

supporting the accurate estimate of locations during flight, and the impoverished 

retention of location information derived from the Fused display. 

Given the growing body of knowledge suggesting that making information more 

accessible within the interface via integrated displays can facilitate information 

extraction and decision making (e.g. Woods 1991, Vicente et al. 1996, Lintern et al. 
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1999), it is not surprising that the permanently available integrated location 

information provided within the Fused display led to more accurate location 

estimation than the provision of semi-permanent non-integrated location information 

provided within the UnFused display. As expected, with increasing workload the 

Fused display resulted in superior location accuracy during the flight, presumably 

reflecting the competing demands for limited resources, a finding consistent with the 

workload literature (Wickens 2002). 

It is somewhat counterintuitive, however, that by increasing the availability of 

information provided within the interface, the Fused display also yielded a 

disproportionate rate of forgetting, when compared to the UnFused display. There are 

perhaps two explanations for this. Firstly, the permanent nature of onscreen 

information provided within the Fused display may have increased pilot’s reliance 

upon the interface as an external memory source (O’Regan 1992, Gray and Fu 2004, 

Gray et al. 2006), and in doing so, rendered internal processing involving memory and 

inference making redundant. Similar arguments can be found within the training 

literature whereby the provision of concurrent visual feedback within an external 

display can act as a temporary crutch to performance, and subsequently lead to a 

decrement in retention of skill over time (e.g. Patrick and Mutlusoy 1982, Schmidt 

and Wulf 1997). Continuous feedback within a learning environment is often found to 

be effective during the learning phase because it guides the individual towards the 

required responses and reduces errors. However, many studies have also found that 

performance gains during practice are seldom observed at transfer tests when 

augmented feedback is withdrawn (see Patrick 1992 for a review). Although the 

onscreen information provided within the Fused display provided pilots with guidance 

information rather than feedback relating to performance, similar mechanisms are 
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proposed to account for the problematic retention of Fused information in the current 

study. Over-reliance upon display support may be detrimental to retention. 

Secondly, the semi-permanent nature of location information provided within 

the UnFused display, on the other hand, is likely to have encouraged the use of 

internal memory and inference-making strategies in order to maintain an 

understanding of location position(s) during times when location information was not 

available onscreen. As previously emphasised, the use of internal processes such as 

memory and inference making during task performance are integral to the effective 

retention of task-relevant information (Anderson and Milson 1989, Schmidt and Bjork 

1992, McNamara et al. 1996). A further issue concerns the additional cognitive 

processing necessary to integrate and distinguish between meaningful and 

coincidental spoke intersections provided within the UnFused display. The task of 

integrating and distinguishing between meaningful and coincidental intersections will 

necessarily have oriented pilot behaviour towards inference making, which may have 

acted as transfer-appropriate processing (Morris et al 1977, McNamara et al 1996) 

when considering the demands of the recall task Whilst this might contribute to the 

superiority of the UnFused display at retention, this may also have handicapped 

estimates of location during the flight. 

The limitation of Experiment 1 is primarily that it is an applied study and as a 

consequence there are potentially confounding differences between the Fused and 

UnFused conditions, some of which have already been discussed in the context of 

different explanations for the results. There is a lack of representational equivalence 

(Larkin and Simon 1987) between the conditions, although from an applied 

perspective this is to some extent inevitable because a fused display for obvious 

reasons is never likely to adopt the physical characteristics of a radar display. In 
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addition, there are small differences in the nature of the algorithms underlying the 

provision of information between the two displays. Therefore, the overall goal of 

Experiment 2 was not only to remove these algorithmic differences between the Fused 

and UnFused displays, but also to attempt to replicate the main results of Experiment 

1 under laboratory conditions using a low-fidelity simulation of the IFT. Experiment 3 

investigated the importance of the temporal availability of displayed information, 

which has been discussed above as a factor that may affect cognitive processing. 

Given that the permanence of information in the fused display may have reduced 

cognitive processing and thus recall, Experiment 3 attempted to mitigate this effect by 

varying the temporal availability of fused information. 

4. Experiment 2 

Small, but significant discrepancies between the Fused and UnFused displays in 

Experiment 1 may have led to subtle differences between the conditions with regard 

to the accuracy of onscreen information at different points in time. For example, the 

algorithm used to produce the onscreen location information provided within the 

Fused display in Experiment 1 integrated previous information regarding the 

positioning of a particular location when updating information pertaining to that 

location. The onscreen estimates provided within the UnFused display, however, 

relied completely upon radar information, and consequently did not take into account 

previous location information when updating position estimates. There will also have 

been slight inherent delays in the onset of onscreen location information in the Fused 

condition. This was because the Fused algorithm required both the pilot and 

confederate aircraft to be within 55 nm of the location(s) before onscreen estimates 
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could be made available within the interface. In contrast, as soon as either aircraft in 

the UnFused condition flew within 55 nm of the location(s), information in the form 

of a single spoke was emitted from that aircraft (regardless of the status of the other 

aircraft). 

Although the slight time delay and integration of location history information 

were inherent to the fusion technology under investigation in Experiment 1, it is 

important that both are removed in order to ensure the effects observed were 

attributable to the cognitive processing required to extract information from the 

interface, rather than differences between the fusion conditions in terms of accuracy 

of onscreen location information and the point at which such information became 

active. Therefore, Experiment 2 was conducted under laboratory conditions using a 

low-fidelity simulation of the IFT task (IFTsim). 

4.1. Method 

4.1.1. Participants. Participants were 42 Cardiff University students between 18 and 

30 years of age. Each was paid £5 or received course credit for their participation. 

4.1.2. Materials. IFTsim was written in Visual Basic 6.0 and was presented to 

participants via a 12 x 13 inch high-resolution monitor and Pentium IV 2 Ghz PC. 

Both aircraft were set to travel at a constant speed, (simulating the average speed in 

the IFT), and the participant’s aircraft was guided via left and right arrow keys on the 

keyboard. On each occasion an arrow key was pressed, the participant’s aircraft 

would change its current heading by 22.5˚ in the corresponding direction. The 

confederate aircraft was always positioned 10 nm west of the participant’s aircraft. 
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The starting location of both aircraft and the position of the fixed location(s) were 

varied systematically across trials. 

The same algorithm was used to produce the onscreen location information in 

both fusion conditions. The nature of the algorithm meant that onscreen location 

information became more accurate as the aircraft grew closer to the actual location(s), 

and became active the moment the participant’s aircraft flew within 55 nm of the 

actual location(s). Each onscreen estimate was updated in a unique fashion, four times 

per flight mission at distances of 50, 40, 30, and 20 nm from the actual location(s). 

Participants were prompted in the same manner as Experiment 1 to make their 

responses, although responses were made via mouse clicks on the screen rather than 

touchscreen responses, and only four were required per flight mission. 

4.1.3. Design and procedure. These were the same as Experiment 1, with the 

exception that the number of locations was either one or three. At the recall stage of 

each trial, the map was presented on the computer screen and responses were made 

via mouse clicks. Each participant received one of four randomised trial orders so as 

to minimise the contribution of any idiosyncratic order effects. 

4.2. Results 

4.2.1. Location accuracy. A 4 (Prompt 1/2/3/4) x 2 (Fused/UnFused) x 2 (Locations 

1/3) within-subjects ANOVA was computed upon non-transformed data. As in 

Experiment 1, participants in the current experiment revealed more accurate location 

estimation when working with the Fused, compared to the UnFused display, F (1, 41) 

= 5.446, p <.05, MSE = 6.08, and when there was one, compared to three locations to-

be-identified, F (1, 41) = 41.02, p <.001, MSE = 4.43. Simple main effects examining 
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a fusion x prompt interaction, F (3, 123) = 6.10, p <.001, MSE = 17.92, revealed that 

the only benefit of Fused over UnFused occurred at the final prompt, F (1, 41) = 

35.92, p <.001 (Fused Mean Error = 2.79, SD = 0.94; UnFused Mean Error = 4.60, 

SD = 2.61). Simple main effects were used to explore a fusion x location interaction, 

F (1, 41) = 22.10, p <.001, MSE = 7.43, and indicated that estimates in the UnFused 

condition became less accurate as the number of locations increased, F (1, 41) = 

40.26, p <.001, whereas the Fused condition was relatively unaffected by the number 

of locations to-be-identified, F (1, 41) = 2.70, p >.05, (see Table 2). Again, no 

significant differences were found between the two fusion conditions in terms of 

identifying the correct number of locations on each trial, F (1, 41) = 2.29, p >.05, 

MSE = 0.05. 

[Insert Table 2 about here] 

4.2.2. Location retention. A 2 (Fused/UnFused) x 2 (Immediate/Delayed) x 2 

(Locations 1/3) within-subjects ANOVA compared accuracy of delayed recall with 

immediate accuracy at the final prompt for both fusion conditions. A log 

transformation was required to correct for differences in variance between the fusion 

conditions. As with Experiment 1, the Fused display was found to yield more accurate 

estimations than the UnFused, F (1, 41) = 25.06, p <.001, MSE = 0.02, and accuracy 

deteriorated during the retention interval, F (1, 41) = 56.48, p <.001, MSE = 0.05. 

Importantly, a retention time x fusion interaction was found, F (1, 41) = 11.80, p 

<.001, MSE = 0.03, (see Figure 3), and again simple main effects indicated that 
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estimations derived from the Fused display were superior when immediate 

estimations were taken at the final prompt, F (1, 41) = 39.26, p <.001, but that there 

was no difference between the two fusion conditions at delayed recall, F (1, 41) = 

0.03, p >.05. In contrast to Experiment 1 however, a decrement to location accuracy 

was witnessed as a function of retention interval for both the Fused and UnFused 

conditions (ps <.01). 

[Insert Figure 3 about here] 

Similar values observed at recall for the two fusion conditions may imply that a 

floor effect could be distorting the data. However, further examination in accordance 

with a criterion proposed by Cohen (1995) suggested this was not the case. The 

average recall values for both the Fused and UnFused conditions were sufficiently 

different to the average maximum recall error, indicating that performance was not at 

a floor. In addition, the considerable difference in the simple effect F values for the 

effect of retention interval on location accuracy was over twice that for the Fused 

condition, compared to the UnFused condition, suggesting a greater deterioration over 

the retention interval in the Fused condition. This interpretation is confirmed by an 

analysis of effect size that indicated a substantially larger effect in the Fused, 

compared to the UnFused condition (partial eta squared, 0.54 versus 0.34 

respectively). 
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Again, no significant differences were observed between the two fusion 

conditions in terms of recalling the correct number of locations on each trial F (1, 41) 

= 1.89, p >.05, MSE = 0.07. 

4.3. Discussion 

Manipulation of fusion and workload affected task performance in much the same 

way as that observed in Experiment 1. The Fused display improved location accuracy 

relative to the UnFused display during flight missions, again supporting previous 

work (e.g. Woods 1991, Vicente et al. 1996, Lintern et al. 1999) suggesting that the 

provision of highly accessible integrated information can support operator decision 

making. However, unlike Experiment 1 where there was no decrement in UnFused 

information over the retention interval, in this experiment both Fused and UnFused 

information deteriorated. Nevertheless, there appeared to be a greater decrement in 

the Fused condition, as indicated by the interaction effect, and also by the different 

effect sizes. Location accuracy also reduced as the number of locations to-be-

identified increased from one to three. 

Naïve participants were used in Experiment 2, in contrast to the experienced 

pilots in Experiment 1. Although previous work (e.g. Mosier, Skitka, Burdick, and 

Heers 1996) has found student and experienced pilot samples to be equally 

susceptible to automation bias (that is, over-reliance upon automated information), 

participants in the current experiment found the estimation of three locations 

particularly difficult when working with an UnFused display. In contrast, the effect of 

workload on location accuracy during Experiment 1 was approximately equivalent 

across fusion conditions, and may reflect pilot expertise associated with 

distinguishing between meaningful and coincidental UnFused intersections. 
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Given the superiority of the Fused display at supporting the accurate estimation 

of locations during flight missions, it is striking that this did not translate to better 

memory for location positioning following the retention interval. Indeed, the 

disproportionate rate of forgetting observed in the Fused condition suggests that there 

is scope for improving the retention of fused information in the current task. From an 

applied perspective the important goal is to find a means of mitigating this effect and 

supporting the retention of fused information. Our previous discussion suggested that 

the decrement in Fused recall may be due to a lack of cognitive processing due to an 

over-reliance upon the display as an external memory source (O’Regan 1992). In 

contrast, the semi-permanence of information in the UnFused display may have 

resulted in memory-intensive processing. This perspective is consistent with Gray and 

colleague’s (Fu & Gray 2000, Gray & Fu 2004, Gray et al. 2006) distinction between 

external display-based versus internal memory-based interaction strategies. Therefore, 

paradoxically, in Experiment 3 we investigate a method for improving the retention of 

fused information that involves reducing its availability within the interface. 

5. Experiment 3 

Reducing the temporal availability of location information provided within the 

interface is explored in the final experiment as a possible method for improving 

memory for Fused information in the current task. There are two possible 

explanations why this might be effective. Firstly, as discussed previously, when 

information is less available within an interface stronger reliance upon internal 

processing is induced, including memory and inferencing (O’Regan 1992, McNamara 

et al. 1996, Duggan and Payne 2001, Gray and Fu 2004, Gray et al. 2006). Secondly, 
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the on/off-set of visually presented information may lead to attentional capture, as 

seen in visual monitoring tasks (Yantis 1993, Sutcliffe 1995, Yantis and Jonides 

1996). The former explanation predicts that the duration with which fused 

information is made unavailable will determine its retention, as opposed to the latter 

explanation, that predicts improvements will be a function of on/off-set frequency. 

In order to evaluate these competing interpretations of any effect of reducing the 

availability of fused information, four conditions were employed in Experiment 3. 

Three conditions in which Fused information was provided in a semi-permanent 

fashion within every ten second cycle (on2off8, on8off2, on1off4) were compared to a 

Fused condition in which information was permanently provided within the interface 

(on10). If reducing the availability of Fused information does have the desired effect, 

these conditions allow the relative influence of the duration and frequency with which 

onscreen information was provided within the Fused display to be investigated. 

5.1. Method 

5.1.1. Participants. Participants were 80 Cardiff University students, between 18 and 

30 years of age. Each was paid £5 or received course credit for their participation. 

One participant in the on2off8 condition was excluded due to obtaining a z-score of 

4.08 (see Field, 2005). 

5.1.2. Design. The temporal availability of onscreen location information was 

manipulated between-subjects in order to remove any possible contamination due to 

carry-over effects (Poulton 1982), and workload was again manipulated within-

subjects. Table 3 provides a schematic representation of the temporal availability of 

information provided within the four Fused conditions. The ‘on2off8’ Fused condition 
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replicated the temporal availability of location information provided within the 

UnFused display (Experiments 1 and 2). The ‘on8off2’ condition reversed the 

temporal cycle of the ‘on2off8’ condition. In doing so, the duration for which location 

information was unavailable within the display was reduced to two seconds, yet the 

frequency with which Fused information flashed on/off within each ten second cycle 

was held constant. The extent to which attentional factors affected performance within 

the current task were evaluated with respect to the ‘on1off4’ condition, during which 

location information was available for a total of two seconds (on two separate one 

second episodes) within the Fused display for every ten second cycle. The on1off4 

condition thus provided participants with onscreen information for the same duration 

as the on2off8 condition, but reflected an on-/off- set frequency ratio of 2:1. 

[Insert Table 3 about here] 

These four conditions allow for selected critical comparisons to be made on the 

recall data. Firstly, each of the semi-permanent Fused conditions (on2off8, on8off2, 

on1off4) can be compared to the on10 condition, in which Fused information was 

permanently available onscreen, in order to assess the extent to which reducing the 

availability of Fused information improves retention. Secondly, if the relative 

importance of duration takes precedence, we would expect the on2off8 and on1off4 

conditions (both of which have a total off duration of 8 seconds in every 10 second 

cycle) to yield better retention of location information than the on8off2 condition 

(which has a total off duration of 2 seconds in every 10 second cycle). Finally, if the 
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relative importance of frequency outweighs that of duration, we would expect the 

on1off4 condition (with an on-/off- set frequency of two per 10 second cycle) to yield 

better retention of location information than both the on2off8 and on8off2 conditions 

(each with an on-/off- set frequency of one per 10 second cycle). 

5.1.3. Materials and procedure. The materials and procedure were identical to those 

employed during Experiment 2, with the exception that participants experienced six 

experimental trials, rather than twelve (three with one location, three with three 

locations). In addition, the retention interval was reduced to 1.5 minutes in order to 

verify the resilience of the effect with a shorter retention time that may be important 

in operational contexts. 

5.2. Results 

5.2.1. Location accuracy. A 4 (Prompt 1/2/3/4) x 2 (Locations 1/3) x 4 (Temporal 

Availability of Fused Information) ANOVA was computed with the first two factors 

manipulated within-subjects and the final factor manipulated between-subjects. A 

main effect was found for the availability of information, F (3, 75) = 3.30, p <.05, 

MSE = 9.01 (see Table 4), with Bonferroni corrected post hoc analyses indicating that 

only the on8off2 condition significantly improved location accuracy relative to the 

on10 condition (p <.05). The presence of a main effect of prompt, F (1.76, 131.99) = 

409.47, p <.001, MSE = 6.44, indicated that participants’ location estimations became 

more accurate over time. Although no main effect of locations was found, F (1, 75) = 

0.03, p >.05, MSE = 4.92, simple main effects examining the locations x prompt 

interaction, F (1.91, 143.28) = 133.73, p <.001, MSE = 10.15, indicated that accuracy 
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decreased as the number of locations increased at prompts two, three and four (ps 

<.01), but increased at prompt one (p <.001). 

[Insert Table 4 about here] 

5.2.2. Location retention. A 2 (Immediate/Delayed) x 2 (Locations 1/3) x 4 

(Temporal Availability of Fused Information) ANOVA was computed upon the 

immediate and delayed recall data with the first two factors manipulated within-

subjects and the final factor manipulated between-subjects. A reciprocal 

transformation was required to correct for differences in variance between the two 

fusion conditions. Accuracy of estimates decreased during the retention interval, F (1, 

75) = 84.21, p <.001, MSE = 0.10, and as onscreen information became available for 

longer periods of time, F (3, 75) = 5.76, p <.001 MSE = 0.14. Again, a retention time 

x availability of information interaction was found, F (3, 75) = 3.36, p <.05, MSE = 

0.10, (see Figure 4). Although simple main effects pointed to an effect of availability 

of information at the final prompt (immediate), F (3, 75) = 5.40, p <.01, but not at 

delayed recall, F (3, 75) = 1.76, p >.05, planned comparisons revealed that 

participants in the on2off8 and on1off4 conditions exhibited significantly more 

accurate delayed recollection when compared to the on10 condition (ps <.05). No 

differences were observed in recall between the on8off2 versus on10, the on8off2 

versus on2off8, or the on1off4 versus on2off8 comparisons (ps >.05). 
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[Insert Figure 4 about here] 

5.3. Discussion 

Reducing the availability of onscreen information within the Fused display not only 

increased the memorability of location information, but also improved participants’ 

location accuracy during flight missions. Specifically, the on8off2 semi-permanent 

condition improved location accuracy during flight, and the on2off8 and on1off4 

semi-permanent conditions improved memory after flight, relative to the permanent 

Fused condition. 

Although not predicted, it is perhaps not surprising that the on8off2 condition 

improved location accuracy during flight missions when compared to the on10 

condition. Mosier, Skitka, Heers, and Burdick (1997) pointed out that pilots tend to 

use automated cues as a heuristic replacement for information seeking, and tend to 

rely upon these cues despite conflict between expected and actual automation 

performance. Perhaps the semi-permanent nature of information provided within the 

on8off2 Fused condition minimized over-reliance on the onscreen location estimates 

(never 100% accurate), and promoted internal inference making (Glover 1989, 

McNamara et al. 1996). Provided that inference making was accurate, such a strategy 

may have allowed participants to formulate more accurate estimations than those 

provided within the external display. A possible reason why the on2off8 and on1off4 

semi-permanent conditions (both of which removed onscreen information from eight 

seconds of every ten) did not also lead to improvement in location accuracy during 

flight may be due to the considerably larger demands placed upon working memory 

(Baddeley 1986). Importantly, however, no decrement in performance during flight 
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missions was witnessed in these conditions relative to the on10 condition, in which 

Fused information was permanently provided within the external display. 

Support was found for our prediction that reducing the temporal availability of 

information provided within the external display would improve the encoding of 

fused information. Location recall was found to be superior in both of the semi-

permanent Fused conditions that removed onscreen information for eight seconds of 

every ten second cycle (on2off8, on1off4), when compared to the Fused condition 

where onscreen information was permanently available within the interface (on10). 

However, an exception was that when information was removed for only two seconds 

of every ten second cycle (on8off2), recall measures did not differ to when 

information was continually available throughout each ten second cycle. This 

suggests that a threshold value for the unavailability of Fused information may exist 

in order to improve retention, even though there is not a significant difference 

between the on2off8 and on8off2 conditions. 

The next issue concerns the possible explanation for improved recall for semi-

permanent Fused information. The fact that the on1off4 condition did not improve 

retention relative to the on2off8 condition (despite a doubled on-/off- set frequency, 

with duration held constant) supports the proposition that attentional capture (Yantis 

1993, Sutcliffe 1995, Yantis and Jonides 1996), at least within the on/off-set 

frequencies examined here, is unimportant. However, the improved recall observed in 

the on2off8 and on1off4 conditions (both of which remove information for eight 

seconds of every ten second cycle); relative to the on10 condition, strongly suggests 

that it is the duration with which Fused information is made temporarily unavailable 

that is responsible for improved recall. Hence it is the process of inference making 

(Palmiter et al. 1991, McNamara et al. 1996), and the use of memory when 
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information was unavailable during flight missions (Fu and Gray 2000, Gray and Fu 

2004, Gray et al. 2006) that improved the encoding of fused information in the current 

task (Anderson and Milson 1989, Anderson and Schooler 1991, Schmidt and Bjork 

1992, Duggan and Payne 2000). 

Again, it is emphasised that the improved encoding of Fused information 

observed as a function of reducing the temporal availability of information provided 

within the external display did not lead to an associated decrement in location 

accuracy during flight performance. In addition, the lack of an interaction between 

location and temporal availability of Fused information during flight performance 

suggests that each of the Fused conditions was affected in much the same way by 

changes in workload. 

6. General discussion 

Preliminary evidence is provided supporting the concern outlined in the introduction 

that under certain circumstances, the provision of highly accessible information 

within a Fused interface may lead to impoverished encoding and problematic 

retention of visual-spatial information. Experiments 1 and 2 indicated that the 

provision of permanently available, integrated information in the Fused display 

improved location accuracy during flight missions, supporting much work conducted 

within the field of cognitive engineering (Woods 1991, Bennett and Flach 1992, 

Wickens and Carswell 1995, Lintern et al. 1999, Vicente 2002). However, the 

retention of location information derived from the Fused environment deteriorated 

disproportionately, when compared to the UnFused condition (in which onscreen 

information was not integrated and only provided for two seconds of every ten second 
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cycle). Experiment 3 demonstrated that memory for fused information within the 

current task could be improved by reducing operator reliance upon the interface as an 

external memory source (O’Regan 1992, Gray et al. 2006), and encouraging transfer-

appropriate processing (Morris et al. 1979) such as inference making (Palmiter et al. 

1991, McNamara et al. 1996) and the use of internal memory (Anderson and Milson 

1989). 

Essentially, this paper demonstrates that a sensitive balance exists between 

reducing an operator’s cognitive workload by making the required information more 

accessible (Kirsh 2000), and ensuring that extraction of information is not made so 

effortless that information is promptly forgotten. The deployment of internal memory 

during information seeking reduces as information becomes more accessible within 

the interface (Ballard et al. 1995, Fu and Gray 2000, Gray and Fu 2004, Gray et al. 

2006, Waldron et al. 2006), which can have negative consequences for the activation 

of memory traces in the future (Schmidt and Bjork 1992, Anderson, Fincham, and 

Douglas 1999). The current paper provides a topical, perhaps counter-intuitive 

example, whereby actually reducing the availability of Fused information provided 

within the external display improves subsequent performance. 

Task performance criteria will dictate whether memory encoding is beneficial. 

Some may argue that efficacious encoding and retention of information provided 

within task environments such as the one chosen for the current study is not 

necessary. Such displays are designed so as to allow the operator instant access to the 

information needed, thus memory often becomes redundant. However, humans will 

always be required to monitor, supervise, adjust, and maintain augmented displays 

(see Bainbridge 1987) which, on occasion will fail. Indeed, Reising and Sanderson 

(2004) have highlighted the consequences of instrument failure within a display 
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influenced by Ecological Interface Design and stated that ‘the more an arrangement of 

parts adds information beyond that in the parts alone – the more devastating the 

impact of a faulty sensor might be’ (p.317). 

Developing an internal representation of the information provided within the 

external display will benefit situations in which information previously presented, and 

no longer available onscreen, is to be unexpectedly recalled. Reinstating intentions 

and memory following task interruption can be difficult (Edwards and Gronlund 

1998, Einstein, McDaniel, Williford, Pagan, and Dismukes 2003), and recent research 

has begun to examine methods by which task and interface design can support 

interruption tolerance (e.g. Oulasvirta and Saariluoma 2006). Designing the interface 

in order to actively facilitate the development of memory skills is likely to provide 

some resilience to the negative effects of interruption, and will undoubtedly 

complement an operator’s overall situation awareness (see Banbury and Tremblay 

2004 for a cognitive perspective of this concept). 

However, it is anticipated that display manipulations designed to promote the 

development of a robust internal representation of the information presented 

externally will be easier in some situations than others. For example, memory for 

locations assessed in the current set of studies will have had semantic and relational 

properties with regards to landmarks situated within the terrain map (of which there 

were many). The mental organisation of such information has been shown to be 

influenced by the manner in which a map is learnt (Curiel and Radvansky 1998), and 

long-term working memory for visual representations of natural scenes is surprisingly 

robust and long-standing (Hollingwoth 2005). Whether reducing operator reliance 

upon an interface representing detailed physical information would have similar 
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effects to those observed in the current article is yet to be seen, but is likely to prove 

more difficult (Vicente 1992). 

It is fully acknowledged that the paramount function of any external display is to 

provide operators with the information needed, when needed. Indeed, it would be 

defeatist to provide the operator with the necessary information for the majority of the 

task, only to remove critical information when it is required most. Therefore, much 

research is required in order to develop effective methods and guidelines by which 

active encoding of highly accessible information can be promoted, without 

compromising the presentation of such information in a timely fashion. Adaptive task 

allocation (Parasuraman, Mouloua, and Molloy 1996) may provide a means of 

‘refreshing’ an operator’s memory for fused information, and has previously been 

used to improve an operator’s mental picture of automated processes (Parasuraman 

1993). As has been recognised in the automation literature (Parasuraman 2000), we 

argue that the use of fusion is not necessarily an ‘all-or-none’ concept. Instead, it is 

proposed that the use of fusion be adaptive to differing task demands and work in 

harmony with what we already know about the human information processing system 

(e.g. Wickens 1992). 

Adaptively deploying fusion capabilities may well lead to improvements in 

human performance when compared to the static use of fusion. This is often cited as 

being the case in the automation literature (e.g. Hilburn, Jorna, Byrne, and 

Parasuraman 1997), particularly when lower-order sensory and psychomotor 

functions such as information acquisition are under investigation (Kaber, Wright, 

Prinzel, and Clamann 2005). Lintern (1980) provides a good example of the benefits 

of adaptively providing supplementary visual cues during a simulated aircraft landing 

task. When compared to conditions in which visual cues were either not provided at 
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all, or were presented continuously during training, transfer of skill was found to be 

superior when cues were provided adaptively within the external display. According 

to Lintern (1980), participants relied too heavily upon extrinsic visual cues when 

provided continuously, and were in need of assistance when they were not provided at 

all. Although training is not the focus of the current article, it is envisaged that similar 

methods based upon evaluations of operator workload (e.g. Kaber et al. 2005, 

Gregoriades and Sutcliffe 2006) and sensitive to limited cognitive resources (Wickens 

2002) may improve the design of a variety of fused environments. 

A number of limitations have to be acknowledged with respect to the 

experiments reported in this paper. The balance between investigation of a topic 

within an applied context and within controlled laboratory conditions is often 

problematic to effect. Experiment 1 had the benefit of using highly skilled pilots, 

albeit only a few in number, using a high fidelity flight simulator whereas 

Experiments 2 and 3 utilised naive students as participants, using a low fidelity 

simulation. Whilst Experiment 1 presented a rich and realistic context with 

experienced pilots, it was not practically feasible to continue using this expensive 

resource in order to disentangle all the potential confounding factors in subsequent 

experiments. Consequently, Experiment 2 attempted to eliminate some of these 

variables, and replicate the results of Experiment 1. Although our student participants 

would not have developed the domain specific encoding structures of experienced 

pilots, we expected that they would have been familiar with information typically 

provided within standard maps. Also, the design of Experiment 3 was deliberately not 

intended to explore the possible contribution of representational equivalence (Larkin 

& Simon, 1987) between conditions, but rather, to pursue an important applied issue 
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of how to improve the retention of fused information, as configured in our task 

environment. 

Our paradoxical assertion that memory for fused information may be improved 

by reducing the temporal availability of information provided within the interface is 

also somewhat limited to the scenario currently under investigation. In order to 

evaluate the generalisability of this finding, research is required in different settings. 

Indeed, it is expected that such a method will suit some scenarios yet not others. 

Where the scheduled removal of onscreen information is not appropriate, what is 

termed ‘germane cognitive load’ of a different nature may be necessary in order to 

improve the encoding and subsequent retention of visual-spatial information (see Paas 

and Kester 2006 for a review). It is anticipated, nevertheless, that the underlying 

principles discussed throughout the current paper extend to a variety of task domains, 

and are worthy of careful consideration during the design of fused environments of 

the future. 
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Table 1 

The Effect of Fusion and Workload on Location Accuracy (Experiment 1). 

Fused UnFused 

Locations Mean Error SD Mean Error SD 

1 2.48 2.85 2.57 0.80 

2 1.33 0.60 6.95 3.21 

3 3.12 2.27 4.99 2.02 

Note. Values are given in nautical miles. Mean error is the difference between the actual and estimated 

location. 
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Table 2 

The Effect of Fusion and Workload on Location Accuracy (Experiment 2). 

Fused UnFused 

Locations Mean Error SD Mean Error SD 

1 5.82 3.61 5.27 3.30 

3 5.87 2.93 7.31 3.33 

Note. Values are given in nautical miles. Mean error is the difference between the actual and estimated 

location. 
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Table 3 

Schematic representation of the temporal availability of fused information in 

Experiment 3. 

Condition On-/off-set period 
on10 on 

on2off8 on off 
on8off2 off on 
on1off4 on off on off 

1 2 3 4 5 6 7 8 9 10 
Time (seconds) 
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Table 4 

The Effect of Information Availability on Location Accuracy (Experiment 3). 

Information Availability Mean Error SD 
on10 6.16 4.04 

on2off8 5.56 3.64 

on8off2 5.17 3.30 

on1off4 5.34 3.97 

Note. Values are given in nautical miles. Mean Error is the difference between the actual and estimated 

location. 
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FIGURE CAPTIONS 

Figure 1: Representation of fused (a) and unfused (b) displays. 

Note. Screenshots taken from a simulation of the IFT with three locations, omitting maps used. The intersections of unfused 

spokes furthest from both aircraft represent the best estimates of location. 

Figure 2: Effect of fusion and retention interval on location accuracy (Experiment 1). 

Note. Mean error is the difference between actual and estimated location. Error bars represent ±1 standard error. 

Figure 3: Effect of fusion and retention interval on location accuracy (Experiment 2). 

Note. Mean error is the difference between actual and estimated location. Error bars represent ±1 standard error. 

Figure 4: Effect of the availability of onscreen information and retention interval on 

location accuracy (Experiment 3). 

Note. Mean error is the difference between actual and estimated location. Error bars represent ±1 standard error. 
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Figure 1


 (a) Fused (b) UnFused 
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