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Abstract 

 

 A theoretical analysis is carried out to study the behaviour of the structural 

components of a spoked bicycle wheel when radially loaded. This has been done so 

as to establish convenient mathematical relationships for quantifying the individual 

contributions which the spokes and the rim make to the radial stiffness of the wheel. 

The effect of spoke pretension is considered and also the influence that this has on 

the efficient distribution of load and upon the strength of the wheel components. 

 

 

Keywords: radial stiffness, bicycle wheel, spokes, rim, pretension 

 

 

 

Introduction 

 

 Although the wheel has been around for millennia and the bicycle wheel for 

over a century, there are still radical changes being made to the design of the 

modern spoked bicycle wheel (Chandler, 2002). Racing cycle wheels, as used in the 

Tour de France for example, have changed substantially from the multi-spoke 

wheels with open cross section wheel rims as used on the traditional racing bike 

(Schraner, 1999; Okajima et al. 2000; Muraoka et al. 2001). Leading bicycle wheel 

manufacturers, such as Mavic and Shimano, have developed wheels which 

efficiently use few metal spokes that attach to wheel rims which comprise part 

closed and open cross sections. Modern materials, such as carbon fibre, and 

developments in forming techniques have resulted in wheels manufactured as single 

items, effectively having even fewer spokes, and such wheels are widely used in 

speed racing on velodrome circuits 

 The requirements of a modern bicycle wheel are many. The wheel must 

transfer the weight of the cyclist (via the frame, forks and axle) radially from the 

wheel hub to the rim and thus to the ground (via the tyre). In order to achieve 

traction, and thus wheel rotation, torsion must be transmitted from the chain 

sprocket (attached to the hub) to overcome rolling resistance at the tyre (which fits 

within the rim). In addition, a wheel must be sufficient strong to withstand shock 

loads when riding over bumpy terrain and withstand cornering loads (Gordon, 
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2004). Also the rim must run true and the spokes play a major role in achieving this 

together with the selection of appropriate materials (McMahon and Graham, 1992). 

 Understanding how a spoked wheel works is clearly essential but perhaps 

not immediately obvious as pre-tensioning of the spokes is fundamental to a wheel 

functioning efficiently, as shown by Dietrich (1993, 1999). Without pre-tightening 

of the spokes, for example, the weight would only be supported by those spokes in 

tension as the spokes in the lower half of the wheel would be in compression and, 

because of the slender shape of a spoke, it means that they will buckle rather than 

support any appreciable compressive load. 

 Traditionally wheels have used many spokes and this is because the open 

section rim lacked rigidity and would distort too much if the spacing between 

successive spokes were large (Brandt, 1993). However, modern rims are much 

more rigid in bending and torsion because of the part closed cross-section and so 

fewer spokes can be used, according to Hed and Haug (1989) and Muraoka et al. 

(2001). An optimum design, therefore, seeks a compromise between acceptable rim 

and spoke strength and stiffness (Gordon, 2004). 

 Although finite element analysis can be used to good effect to model a 

wheel assembly and also mechanical tests exist confirming performance (Rinard, 

2002), there are advantages also in taking an analytical approach (Hull et al., 2002) 

as the significance of the many variables can more readily be seen. So the primary 

objective of this paper is to establish an analytical expression for determining the 

radial stiffness of an ideal spoked wheel in terms of the major defining parameters. 

 

 

Idealised wheel geometry 

 

 The following analysis is based on an ideal spoked wheel as shown in figure 

1. The wheel consists of the circumferential rim, the hub and a number of spokes, N 

which connect as pin joints between the rim and the hub.  The rim has a radius, R 

and the width of the hub is 2d and so the angle,  between the centre axis is given 

by :  

  

 
R

d
tan  (1) 
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 To determine the wheel radial stiffness a downward load P is applied at the 

hub and this is reacted by an equal force, P at the rim where the rim contacts with 

the ground. The deformation of the wheel is the shortening of the distance between 

the hub and the contact point of the rim with the floor. 

 The original length of the spokes when not under load is L and the length 

when secured at the rim and hub and tightened and thus subjected to pre-tension is 

cos

R
Lo  . 

    

  

Force equilibrium 

 

 Now consider radial force equilibrium for half a wheel whereby all spokes 

are pre-tensioned with tensile load, To and C is the circumferential rim force (see 

figure 2)..   

 For N number of spokes (and with the top spoke aligned with vertical 

datum) the equilibrium condition for the half wheel is 

  

          



2/

2/

0 coscos2




 iTC   (2) 

 

in which the sum is extended over all the spokes anchored to the half rim. So, if the 

total number of spokes of the wheel is N, the number of spokes per angle unit is 

2/N  and the sum may be evaluated as follows 

 

 














N
d

n
i  



cos
2

cos

2/

2/

2/

2/

 (3) 

     

which is acturate for most practical cases. For example, if there are 16 spokes, the 

sum has a value of 5.027 whereas the /N  approximation gives 5.093 indicating 

an error of just 1.3 %.   

 Consequently, the hoop compression of the rim caused by the pretension of 

the spokes is 
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



2

cos0NT
C   (4) 

 

from which the relationship between the extension of the spokes L  due to their 

pretension 0T  and the contraction of the radius R  of the wheel rim due the hoop 

compression can be easily found. 

 Effectively, L being the original length of a spoke, SE  the modulus of 

elasticity and AS its cross section, 

 

 
SS EA

LT
L

R
LLL 0

0
cos




 (5) 

 

and the radius of the wheel rim, with a cross section RA  and a modulus of elasticity 

ER, will be reduced by an amount 

 

 L

E

E

A

A

N

EA

LNT

EA

CR
R

S

R

S

RRRRR











2

cos

2

cos 22

0  (6) 

 

 As the rim cross sectional area is typically about 30 times greater than the 

spoke cross sectional area, because the rim is usually made from an aluminium 

alloy whereas the spokes are from steel, in the case of a wheel having 16 spokes and 

taking 97.0cos   means that : 

  

 LR  25.0  (7) 

 

Equation (7) describes the stiffness of the wheel rim with respect to the spoke 

tension and indicates that the variation of the radius of the rim and the extension of 

the spokes are of the same order of magnitude. 

 However, this reducing of the radius of the rim must not be accounted for 

when analysing the stiffness of the wheel, for it takes place when the wheel is being 

built, previously to its use and loading. Nevertheless it was studied to illustrate how 

the spokes and the rim become a joint structure. 
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Spoke contribution 

 To study the radial stiffness of the wheel it will be assumed that the hub 

supports an in-plane load P, which causes a radial displacement a of the hub. The 

aim of this analysis is to establish a relationship between a and P in order to deduce 

the stiffness. 

 In this section only the displacement aS of the hub resulting from the strain 

and the deflection of the spokes is going to be calculated. The displacement aR of 

the hub due to the distortion of the rim is calculated in the following section and 

then added to aS. 

 Figure 3 shows the hub loaded and displaced aS at the centre of the rim, with 

only one spoke shown for clarity but the calculations account for all spokes. 

 When the load P is applied on the hub it is supported by all the spokes, each 

of them being subjected to a tension Ti and stretched to a length 

 

 




cos

cos iS
i

aR
L


  (8) 

 

according to figure 3. 

 Then the fraction iP  of the total load P assumed by each spoke is  

 

 iii TP  coscos  (9) 

 

the tension of the spoke being worth 

 

 








cos

cos

cos

cos
0

iSSSiSSS
i

a

L

EA
TL

aR

L

EA
T 











  (10) 

 

after substituting the pretension 0T  from equation (5). 

 Consequently the load assumed by each spoke is given by 

 

 iS
SS

ii a
L

EA
TP  2

0 coscoscos   (11) 
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with which the total load may be expressed as 

 

 












2

0

2
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0
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1

coscoscos iS
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i
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i
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L

EA
TPP  (12) 

 

 In this equation both sums are extended over all the spokes anchored to the 

rim and to the hub. So, if the number of spokes is N, there will be  N/2  spokes per 

angle unit, and the two sums can be calculated as follows: 

 

 0cos
2

cos

2

0

2

0

 










d
N

i  (13) 

 

and 
2

cos
2

cos 2

2

0

2

0

2 N
d

N
i  











 (14) 

 

 When these results are put into equation (12) it is obtained that 

 

 P
ENA

L
a

SS

S

2
   (15) 

 

which is the spoke contribution to the radial distortion of the wheel. 

 Equation (15), shows effectively the proportionality between the distortion 

aS  and the load P and defines the stiffness of the wheel relative to the spokes as 

 

 
L

ENA
K SS

S
2

  (16) 

 

where the influence of the count of spokes and of their cross section and modulus of 

elasticity as well as the influence of the size of the wheel are quantified. 

 At this stage it may seem surprising that aS does not depend on the 

pretension of the spokes. However, this is so due to the fact that all the spokes 

anchored to the hub, and pulling from it all around, experiment a tension equally 

increased by such a pretension 0T . This is shown if the result of equation (15) is 

taken into equation (10) yielding that 
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 ii
N

P
TT 


cos

cos

2
0   (17) 

 

and explains why the magnitude of the pretension of the spokes does not influence 

the displacement Sa of the hub. However it is noted that the above calculations have 

been carried out on the assumption that the pretension of the spokes is such that 

they are kept in tension all the time. 

 Equation (17) also shows that the spokes in the upper half of the wheel, for 

which  2/2/   i   (see figure 3), are tensioned beyond the pretension when 

the load P is applied, whereas the spokes in the lower half of the wheel have their 

net tensile load reduced. The amount by which this occurs is due to spoke and rim 

relative stiffnesses and is studied in the next section. 

  

 

Rim contribution 

 

 The wheel rim, when loaded, will experiment bending due to the reaction of 

the floor together with all the spoke tensions, which brings about another 

contribution aR to the shortening of the distance between the hub and the contact 

point of the wheel with the floor. Evidently, this must be taken into account when 

calculating the stiffness of the wheel. 

 The approaching of the hub, upon which the load P is applied, to the lowest 

point of the rim, where the reaction P exerted by the floor acts, is due to the bending 

of the lower half part of the rim. This part of the rim is supported by the upper half  

and is subjected to the tension iT  of the spokes anchored to it and to the reaction of 

the floor P, as represented in figure 4. 

 Then the deflection Ra  of the rim at the lowest point may be calculated by 

deriving the strain energy of the bent half part of the rim, by using the Castigliano´s 

theorem (Hearn, 1999, and Ryder, 1983). 

 Furthermore, accounting for symmetry reasons, the bending of the half rim 

is going to be studied by considering only a quarter of the wheel rim, as shown in 

figure 5, which supports half the reaction of the floor 02/ PP   , the tension iT  of 



 9 

the spokes anchored to it and the hoop compression 0C  as well as the bending 

moment 0M  exerted by the rest of the wheel rim at the base. 

 Consequently, the upright deflection Ra  at the base of the rim is obtained 

using Castigliano´s theorem from 

 

 
0P

U
aR




  (18) 

 

where U is the strain energy of a quarter of the rim. 

 The strain energy stored in a quarter of the rim can be calculated from 

 

 ds
IE

M
U

RR

 2

2

 (19) 

 

where M is the bending moment in each section of the rim and RI  its moment of 

inertia, and the integration is computed between the limits of the quarter rim  

2/R . 

 This calculation can readily be performed for a wheel having N number of 

spokes for the following conditions: 

1.- the quarter of the circle is divided into N/4 segments (see figure 5) with 

spokes specified from the bottom (as 1, 2, ... j, etc) each having an arc 

length  2R/N  between consecutive spokes; 

2.- in each segment the bending moment value jM  is taken to be the value at 

the central point. 

 Based on these assumptions the strain energy for the quarter of the rim can 

be expressed as 

 

 



4/

1

2
N

j

j

RR

M
INE

R
U


 (20) 

 

 In this simplified expression, every moment jM  can be written as 

 

 ),,,( 000 ijj TMCPMM   (21) 



 10 

 

from figure 5, and thus equation (20) represents the total strain energy of the quarter 

of the rim as a function of the external loads 0P , 0C and iT  and of the external 

couple 0M  

 

 ),,,( 000 MTCPUU i  (22) 

 

 This now enables Castigliano´s theorem to be applied. Effectively, the 

upright deflection at the lowest point of the rim will be given by 

 

 
 









4/

1 00

2
N

j

j

j

RR

R
P

M
M

INE

R

P

U
a


 (23) 

 

whereas the horizontal deflection and the angular rotation at this point, which must 

be null for symmetry reasons, will be given by 

 

 02
4/

1 00













N

j

j

j

RR C

M
M

INE

R

C

U 
 (24) 

 

and 02
4/

1 00













N

j

j

j

RR M

M
M

INE

R

M

U 
 (25)  

 

 Now, if each bending moment jM  is substituted from equation (21) and the 

tension of every spoke is taken as 0T , the last three equations (23), (24) and (25) 

allow to express the upright deflection at the lowest point of the rim as a function of 

the load P  and of the pretension of the spokes 0T  

 

 ),( 0TPaa RR   (26) 

 

 The deflection aR determined in this way accounts for the bending of the rim 

due to both the load P and the spoke pretension T0. It is obvious that only the term 

corresponding to the load P must be accounted for when determining the stiffness 

of the wheel rim, since the deflection caused by the spoke pretension will occur 
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when the rim is being mounted as a joint structure and will have already been 

performed when the loading of the wheel takes place and the stiffness is being 

defined. 

 The whole procedure to calculate the rim contribution to the deformation of 

the wheel is going to be throughout illustrated in a particular case. 

 

 

16 spoke wheel rim 

 

 In this section the rim contribution to the displacement of the hub towards 

the contact point of the rim with the floor, in a wheel with  N=16  spokes, is worked 

out, as an example of how it can be carried out in any case and in order to analyse 

how it depends on the different variables which conform the rim. 

 The bending moments for the respective segments between consecutive 

spokes of the considered quarter wheel, as shown in figure 5,  are as follows: 

  

00101 cos1sincossin M
N

RC
N

RT
N

RPM 













 (27) 
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 Substituting these values into equation (23) gives the deflection Ra   
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whereas equations (24) and (25) reduce to 

 

 0
7

cos
5

cos
3

coscos 4321 
N

M
N

M
N

M
N

M


 (29) 

 

and 04321  MMMM  (30) 

 

 Now, if N = 16 and 0TTi   , equations (27) are simplified as follows : 

 

 00001 01921.0cos19509.019509.0 MRCRTRPM    

 

 00002 16853.0cos75066.055557.0 MRCRTRPM    

  (31) 

 00003 44443.0cos58213.183147.0 MRCRTRPM    

 

 00004 80491.0cos56292.298079.0 MRCRTRPM    

 

 Then equations (29) and (30) represent a simple system from which the 

hoop compression 0C  and the bending moment 0M  are directly obtained in terms 

of the load 0P  and of the pretension of the spokes 0T  as follows: 

 

 cos98247.293771.0 000 TPC   (32) 

 

and  cos20118.030384.0 000 RTRPM   (33) 

  

 Afterwards, taking values (32) and (33) to expressions (31) gives 

 

 cos06338.012676.0 001 RTRPM   

 

 cos04684.009370.0 002 RTRPM   

  (34) 
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 cos05545.011088.0 003 RTRPM   

 

 cos03888.007782.0 004 RTRPM   

 

 Finally, by substituting values (34) in expression (28) and  2/0 PP   , it is 

obtained that 

 

  


cos02163.002160.0
8

0

3

TP
IE

R
a

RR

R   (35) 

 

where the two terms of the deflection of the rim appear. As it was said before only 

the term due to the load P is accountable when determining the stiffness of the 

wheel. 

 Consequently, the stiffness relative to the rim, when it has 16 spokes is 

given by 

 

 
306786.0

8

R

IE
K RR

R   (36) 

 

 

Radial stiffness of the wheel 

 

 Now the total displacement a of the hub caused by the in-plane load P may 

be expressed by adding Sa  and the corresponding term of Ra  

 

 
RS

RS

RS

RS
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
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in which the stiffness of the wheel (as a structure comprising rim and spokes) is 

computed as 

  

 

S

R

R

RS

RS

RS

W

K

K

K

KK

KK

KK

K












1
11

1
 (38) 



 14 

 

 In the case of a wheel having 16 spokes, substituting equations (16) and (36) 

into equation (38) yields the result 

 

 

RRSS

W

IE

R

EA

L
K

306786.0

8



  (39) 

 

 This equation quantifies the contributions of both the spokes and the rim, in 

terms of their geometry and materials, to the stiffness of the wheel. 

 If, for example, the spoke stiffness is significantly greater than that of the 

rim, such that SR KK /  is small then the overall wheel stiffness is dominated by the 

less stiff rim. This can be seen from equation (38) by eliminating the KR/KS  ratio 

and leaving KW  --->  KR. 

 

 

 Pretension of the spokes 

 

 When studying the spoke contribution to the stiffness of the wheel, the 

length of every spoke, after the wheel is loaded, was named iL  and expressed in 

equation (8) relative to cos/R  , which is the length the spoke had reached after 

being anchored and fixed between the hub and the rim, with a pretension 0T . 

 The spokes situated below the hub, for which 2/ i  (see figure 3) and 

cos/RLi   , experiment a shortening when the wheel is loaded and so a 

reduction of their tension, from the pretension 0T  to 0TTi   , according to equation 

(17). The biggest shortening corresponds to the spoke at the lowest position and is 

worth, from equation (15), 

 

 
 cos88cos

P

EA

RP

EA

La

SSSS

S   (40) 

 

when the number of spokes is 16. 

 Also, the bending of the low half part of the rim due to the reaction of the 

floor and to the tension of the spokes anchored to it causes an additional shortening 
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of these spokes and the subsequent reduction of their tension. This shortening is 

maximum at the lowest position where it is worth [(see equation (35)]
 

 

 
 cos8

06786.0

cos

3 P

IE

Ra

RR

R   (41) 

 

again, when the number of spokes is 16. 

 It is important to recognise that the developed theory assumes that spokes 

remain in tension at all times. This is because a spoke is incapable of supporting a 

significant compressive load due to its high slenderness (that is length to diameter 

ratio) thus making it prone to buckle. This means that it would have been incorrect 

to have assumed that a spoke could support any appreciable compressive load and 

so means that spokes must remain in tension at all times. This leads to the 

requirement that the axial strain extension resulting from pre-tensioning needs to 

exceed the greatest shortening that a spoke will experience – which is when passing 

through their lowest position. Therefore, based on the 16 spoke wheel examples, the 

following condition must be met [see equations (40) and (41)]: 
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from which the minimum pretension the spokes need is deduced 
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
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
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 This will ensure that all the spokes are always tensioned, whatever their 

position within the wheel may be, which is the most convenient condition for the 

stability and strength of the wheel. 

 

 

Maximum tension of the spokes 

 

 Considering that the spokes in the upper half part of the rim are not as 

highly influenced by the bending of the lower half part, equation (17) is valid for 
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them and may be used to calculate their tension, which depends on their position 

within the wheel. Evidently, the maximum tension occurs in the highest spoke, for 

which  0i  , and is worth 

 

 
 cos8cos

2
00max

P
T

N

P
TT   (44) 

 

if the number of spokes is 16. Then the necessity for the tension never being 

negative makes condition (43) unavoidable and therefore 

 

 maxT
8cos

1
06786.01

2
P

I

RA

E

E

R

S

R

S











 (45) 

 

 This result does not give the tension of the highest strained spoke but its 

minimum value as long as the pretension ensures that no spoke will be in 

compression. In fact, the maximum tension the spokes will be subjected to depends 

very much on the pretension 0T  they are provided with under condition (43). 

 

 

Numerical applications 

 

 It is interesting to apply the theoretical results so far developed to some 

specific cases so that the significance of individual contributions can be seen. The 

examples considered are taken from Chandler (2002) and correspond to three 

commercially available wheel models, namely the Mavic Open Pro, the Shimano 

WH-6500 and the Rolf Vector Pro as shown in figure 6. Their structural properties 

are given in table 1. 

 Although the actual wheels are fitted with different numbers of spokes and 

with different mounting arrangements, in this work the three rims were assumed to 

have 16 spokes with a length equal to the radius of the rim,  350 RL mm 

( 1cos  ), according to the idealised model of figure 1. In this way the results will 

enable direct comparisons to be made. Also, in the three cases the rim material was 

aluminium alloy ( 70RE GN/m
2
), whereas the spokes are from steel 
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( 200SE GN/m
2
). The diameter of the spokes in all cases is taken as 2 mm 

( SA mm
2
). 

 Using this data the radial stiffnesses for spokes and rims were obtained 

using equations (16), (36) and (38) and results are given in table 2. These results 

emphasize the significant differences in the magnitudes of the spoke and the rim 

stiffnesses and thus their contributions to the wheel as a structural assembly of the 

two elements. 

 Table 3 presents the minimum pretension loads of the spokes for the three 

cases, as calculated from equation (43), alongside with the maximum tension the 

spokes will be subjected to, as calculated from equation (45). Both the pretension 

and the maximum tension are given relative to the load applied on the hub. 

 

 

General discussion 

 

 Although this analytical study of a spoked bicycle wheel is not exhaustive, 

the analysis has established some important findings regarding the contributions 

made by the rim and the spokes to the structural behaviour of a wheel. 

 In this work the effect of axial load distribution in the spokes and the 

bending of the rim are combined to establish the radial stiffness of the wheel. It is 

found that the results of this analysis are of the same order as those published by 

Chandler (2002) by Hopkins and Principle (1990) and by Grignon (2002), which 

suggests that the values are of the right order of magnitude. 

 The study has found that, in general, the system of spokes is much stiffer 

than that of the rim and so the rim stiffness largely dictates the wheel radial 

stiffness. This is particularly evident when studying equation (38) which shows how 

the lower value of rim stiffness dominates the wheel stiffness when the system of 

spokes have a stiffness an order of magnitude greater. It is interesting to observe 

that modern optimal wheel design is moving towards wheels having much stiffer 

rim cross sections with fewer spokes. For the radial stiffness of such wheels, which 

have a wider spoke spacing distance, to compare with traditional multi-spoke 

wheels, it is only possible when the cross section is much stiffer in bending.  

 In table 2, and with the help of equation (38), it can be deduced that 

significantly changing the stiffness of the spokes will have little effect on the 

general stiffness of the wheel. Consequently, reducing the number of spokes is 
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considered desirable as long as the wheel remains stable and so rim bending rigidity 

becomes of critical importance. It is interesting to observe how the Rolf Vector Pro 

rim despite having a smaller cross section with respect to the Shimano WH-6500 

rim, and thus less weight and less material usage, has an improved stiffness of the 

wheel due to its increased moment of inertia  (see tables 1 and 2). 

 In addition, if the rim has a greater bending stiffness, spoke pretension need 

not be so great thus permitting a lower maximum tension. This is because the stiffer 

the rim, the lower the bending deflection in the bottom half of the rim and the 

smaller the spoke contraction necessary with a lower pretension [see equation (43)]. 

Consequently with a lower pretension load when the wheel rotates half a turn and 

the lower spokes come to the upper half part of the wheel they will not be placed 

under such high tension [see equation (45)]. 

 However, the rim moment of inertia cannot be increased indefinitely as 

there exists a limit to the number of pre-tensioned spokes possible and so a 

compromise is necessary for an optimum design to be achieved. 

 

 

Conclusions 

 

 This analytical study has helped quantify how the spokes and the rim inter-

act with each other and work together when assembled to form a wheel and 

subjected to a radial load. The work has taken into account both the bending 

stiffness of the rim section and the axial tensile stiffness and preloading of the set of 

spokes in determining a wheel’s radial stiffness. 

 It was deduced that achieving an optimum wheel design, in terms of wheel 

radial stiffness, necessitates making a compromise between maximising rim cross-

section bending stiffness (which permits greater distance between successive 

spokes) and having fewer spokes. Because there are many spoke and rim defining 

parameters, many having conflicting effects, achieving an optimum wheel is a 

complex process and so analytical equations have been developed to help simplify 

the design optimisation process. 

 Pretension of the spokes is an essential part of achieving an efficient wheel 

and the developed theory has enabled the minimum possible magnitude to be 

determined so that spokes always remain under tension throughout the wheel 

rotation load cycle.  
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Figure captions 

 

 

Figure 1.-  Idealised spoked wheel: the spokes are anchored to the rim and to the 

 hub. The load is applied on the hub. 

  

Figure 2.- Half wheel rim supporting the tensions of the spokes fixed to it and 

 the hoop compression. 

 

Figure 3.- When the external load P is applied on the hub it is displaced aS, 

 and so a spoke, whose pretension was T1, is deflected and enlarged 

 iSa cos , while its tension becomes Ti. 

 

Figure 4.- The wheel rim is bent by the reaction P of the floor. The deflection 

 at the contact point aR is the rim contribution to the radial distortion 

 of the wheel. 

 

Figure 5.- Quarter of the rim supported by the rest of the rim at section A and 

 subjected to the tension of the spokes anchored to it and to half the 

 reaction of the floor. The action of the rest of the rim at the bottom 

 ( 0C  and 0M ) is considered also as an external load. 

 

Figure 6.- Different rim cross sections. 
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Rim 

 

 

Mavic Open Pro 

 

Shimano WH-6500 

 

Rolf Vector Pro 

 

Cross-Section Area 

RA  (mm
2
) 

 

 

 

81.9 

 

 

96.6 

 

 

95.1 

 

Moment of Inertia 

RI  (mm
4
) 

 

 

 

4090 

 

 

7670 

 

 

8930 

 

 

Table 1: Rim structural properties. 
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Rim 

 

 

Mavic Open Pro 

 

Shimano WH-6500 

 

Rolf Vector Pro 

 

Stiffness due 

to spokes 

SK (MN/m) 

 

 

14.362 

 

 

 

Stiffness due 

to rim 

RK (MN/m) 

 

 

 

0.787 

 

 

1.476 

 

 

1.719 

 

Resultant 

Radial Stiffness 

K (MN/m) 

 

 

 

0.746 

 

 

1.338 

 

 

1.535 

 

 

Table 2: Radial stiffness of wheels. 
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Rim 

 

 

Mavic Open Pro 

 

Shimano WH-6500 

 

Rolf Vector Pro 

 

Pretension 

0T  

 

 

 

2.41 P 

 

 

1.34 P 

 

 

1.17 P 

 

Maximum Tension 

maxT  

 

 

 

2.53 P 

 

 

1.47 P 

 

 

1.29 P 

 

 

Table 3: Spoke pretension and maximum tension, P being the spoke total load. 

 


