

Citation for published version:
Komendantskaya, E & Power, J 2008, Fibrational Semantics for Many-Valued Logic Programs: Grounds for
Non-Groundness. in Logics in Artificial Intelligence 11th European Conference, JELIA 2008, Dresden,
Germany, September 28-October 1, 2008. Proceedings. vol. 5293, Springer, Heidelberg, pp. 258-271.
https://doi.org/10.1007/978-3-540-87803-2_22

DOI:
10.1007/978-3-540-87803-2_22

Publication date:
2008

Document Version
Peer reviewed version

Link to publication

The original publication is available at www.springerlink.com

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-540-87803-2_22
https://researchportal.bath.ac.uk/en/publications/fibrational-semantics-for-manyvalued-logic-programs-grounds-for-nongroundness(95d4820a-12b3-4e8a-9bbb-16a1c1c75a79).html

�

Fibrational semantics for many-valued logic
programs: grounds for non-groundness.

Ekaterina Komendantskaya1 and John Power2

1 INRIA Sophia Antipolis, France
ekaterina.komendantskaya@inria.fr

2 University of Bath, UK
A.J.Power@bath.ac.uk �

Abstract. We introduce a fibrational semantics for many-valued logic
programming, use it to define an SLD-resolution for annotation-free
many valued logic programs as defined by Fitting, and prove a soundness
and completeness result relating the two. We show that fibrational se­
mantics corresponds with the traditional declarative (ground) semantics
and deduce a soundness and completeness result for our SLD-resolution
algorithm with respect to the ground semantics.
Key words: Many-valued logic programs, categorical logic, fibrational
semantics, ground semantics, SLD-resolution.

1 Introduction

Declarative semantics for logic programming characterises logic programs from
the model-theoretic point of view, in particular, it shows a procedure for com­
puting (Herbrand) models of logic programs. Commonly, it is given by defining
an appropriate semantic operator that works recursively over the Herbrand base
and the ground instances of clauses and finally settles on the least Herbrand
model of a program, [12]. An assortment of many-valued logic programs has re­
ceived appropriate declarative semantics: annotation-free logic programs [6, 7, 3,
16], implication-based logic programs [17], annotated logic programs [1, 4, 8, 13].
The declarative semantics received algebraic [4] and categorical [5] account.

Another type of semantics for logic programming is called operational. Op­
erational semantics gives a proof-theoretic view on logic programming. Often, it
is given by the SLD-resolution, [12]. As for many-valued generalisations of logic
programming, the (SLD) resolution procedures were suggested for a number of
different many-valued logic programs, [1, 8, 13, 17, 3, 16].

A third type of semantics, a fibrational semantics for logic programming
was suggested; [9]. It gave structural (categorical) characterisation of the syn­
tax of logic programs. Unlike declarative semantics, fibrational semantics does
not use Herbrand models. As a consequence, this kind of semantics does not
depend on ground instances of terms, atoms and clauses. Instead, fibrational

The authors thank the grant “Categorical Semantics for Natural Models of Compu­
tation” by the Royal Society/Royal Irish Academy.

semantics shows that the syntax of a logic program - sorts of variables, arities of
terms, arities of conjunctions in the clause bodies and “ ” , - induces a partic­←
ular structure that characterises the logic program uniquely up to the variable
renaming. We will explain this in Section 3. Due to its non-groundness, fibra­
tional semantics can be easily and naturally related to operational semantics
and SLD-resolution: neither fibrational, nor operational semantics depend on
ground instances of atoms. This is why, the fibrational semantics was used to
give a category-theoretic account of SLD-resolution [9, 15].

Despite of its elegance, the fibrational semantics has never been extended to
any kind of non-classical logic programming. And there was a serious obstacle
for such extensions: namely, the fibrational semantics of [9] gave no answer to
the question of what role a truth value assignment plays in the new semantics.
In fact, this question had no particular importance in case of classical, two
valued, logic programs that were analysed in [9], because the evaluation true
could be automatically assumed for all the clauses constituting a program. And
thus, without explicitly mentioning, the fibrational semantics [9] structurally
interpreted true unit clauses, and true logical implications between clause bodies
and clause heads.

However, in case of many-valued extensions, one cannot simply assume that
all the unit clauses are true. Moreover, in case if truth values are not allowed
as annotations [6, 7], one cannot deduce the truth value of a formula looking
simply at the structure of a logic program. Furthermore, it is impossible to
assign a truth value to a non-ground formula. In this paper, we analyse this
situation categorically. In Section 4 we give a ground semantics to many-valued
logic programs, respecting the tradition [6, 7, 4, 1] to assign truth values only to
ground formulae. In Section 5 we give a fibrational semantics to annotation-free
logic programs, and prove that it is equivalent to the ground semantics.

We believe that Proposition 1 and Theorem 1 establishing precise relations
between ground and fibrational semantics give theoretical justification for fibra­
tional semantics and break new grounds for future development of the fibrational
approach to non-classical logic programming. As an evidence that fibrational
semantics can lead to useful applications, we show, in Section 6, that the fibra­
tional semantics for many-valued logic programs gives rise to a novel algorithm
of SLD-resolution for annotation-free logic programs. We prove its soundness
and completeness relative to the ground and fibrational semantics of Sections
4, 5. In comparison to alternative approaches to many-valued resolution algo­
rithms in [3, 16], this novel algorithm provides the ideal compromise between
expressiveness and efficiency, as we briefly explain in Section 7.

2 Many-Valued Logic Programs

A conventional (two-valued) logic program [12] consists of a finite set of clauses,
some of which form its core, and the rest of which form a database.

Example 1. Let GC (for graph connectivity) denote the logic program with core
(connected(x, x)), (connected(x, y) edge(x, z), connected(z, y)).← ←

A database for GC lists the edges of a particular graph: edge(a, b) ,
edge(b, c) ,

←
←

For the formal analysis of this paper, we need more precision, as follows.

Definition 1. Given a set T , the set Sort(T) of sorts generated by T is the set
of all finite, possibly empty, sequences of elements of T .

We use T1, T2 etc., to refer to elements of T ; and T = T1, . . . , Tn to refer
to sequences of elements of Sort(T). Using categorical notation, we will use the
symbol 1 to denote the terminal object (given the empty sequence) in a Cartesian
category Sort(T), where sequences T1, . . . , Tn are seen as finite products. More
generally, we will use symbol 1 throughout the paper whenever we talk about
an empty product in a given Cartesian category.

Definition 2. A sorted language is a triple L = (T , F , P) consisting of

–	 a set T of primitive sorts;
–	 for each T ∈ Sort(T) and a primitive sort T ∈ T , a set F(T , T) of function

symbols of sort (T , T), and
–	 for each T ∈ Sort(T), a set P(T) of predicate symbols of sort T .

Given a sorted language L = (T , F , P) and a set V of variables, we can define
terms and atomic formulae as usual, all of these with sorts.

Example 2. The language underlying the logic program from Example 1 is a
triple (T , F , P) as follows: T = {D}; F(1, D) = {a, b, c, . . .}, otherwise F(T , T)
is empty; and P(DD) = {connected, edge}, otherwise P(T) is empty.

So, there is one sort D. And there are several nullary function symbols,
i.e, constants a, b, c And there are two binary predicates “connected” and
“edge”. The sortedness of the predicate amounts simply to their being binary,
as the language is single sorted.

Example 3. Suppose we wish to enumerate edges of a given graph using the set
of natural numbers. This would require the use of the second sort N. We use
predicate “rank” for this purpose. E.g, the clause (rank(0, a, b) edge(a, b))←
describes the basic step of enumeration. Then, we redefine T of Example 2:
T = {D, N}; and add F(1, N) = {0, 1, 2, 3, . . .}; and P(NDD) = {rank}. One
can use standard predicates “odd” and “even” over natural numbers. Then we
would additionally have P(N) = {odd, even}.

Definition 3. A sorted logic program Γ over the language L consists of a finite
set of clauses (T , ϕ, ϕ), where T is a sort of a clause, ϕ is a formula of the form
P1(t1) ∧ . . . ∧ Pn(tn) and ϕ is an atomic formula of the form P (t); both ϕ and
ϕ are of sort T .

Example 4. Example 1 is an example of a logic program with one sort. In
Example 2, we expressed the language formally, with the sort denoted by D.
The logic program has two clauses (connected(x, x)) and (connected(x, y)←	 ←

edge(x, z), connected(z, y)) in its core. They are of sorts D and DDD respec­
tively. Additional clauses (edge(a, b)), (edge(b, c)) are of sort 1. ← ←

Thus, the sort of a clause depends on the number and sorts of free
variables. That is, although the predicate “connected” is binary, the clause
(connected(a, x)) would be of sort D. The clause (rank(0, a, b) edge(a, b))← ←
from Example 3 would be of sort 1. The clause (rank(n + 1, x, y)
edge(x, y), rank(n, z, x)) would be of sort NDDD.

←

Many-valued annotation-free logic programs [6, 7], are formally the same as
two-valued logic programs, see Definition 3. But while each atomic ground for­
mula of a two-valued logic program is given an interpretation in {0, 1}, an atomic
formula of a many-valued logic program receives an interpretation in an arbitrary
specified preorder Ω with finite meets.

Example 5. Our leading example of an annotation-free logic program is as fol­
lows. Let Ω be the unit interval [0, 1]. The logic program of Example 1 is, by
definition, also an annotation-free ([0, 1]-based) logic program. But each ground
atom, e.g., (edge(a, b)) or (connected(a, b)), is assigned a truth value from [0, 1],
(cf. the notion of probabilistic graph, where edges and connections in a graph
exist with some probability).

If we have a ground clause (connected(a, b) edge(a, c), connected(c, b)),←
we say that the clause is true relative to an interpretation if |edge(a, c)| ∧
|connected(c, b)| ≤ |connected(a, b)| in [0, 1].

3 The Syntax Viewed Through Fibers

In this section we give a fibrational, or equivalently, indexed category based
semantics to logic programs. In this section, we consider only the syntax of logic
programs, prior to assigning any truth values, and so we essentially rephrase the
fibrational semantics outlined in [9]. The reader can find missing definitions and
explanations in [14, 2, 10].

We start by giving a structural interpretation to terms.

Definition 4. Given (T , F) (before one adds the set P of predicate symbols) and
given a category C with strictly associative finite products, a pre-interpretation
of (T , F) in C is a function γ : T → ob(C) together with, for each function
symbol f of sort (T , T) a map in C from γ(T1) × . . . × γ(Tn) to γ(T).

One needs to show that such pre-interpretation exists and that it is unique.
(Uniqueness of (pre)-interpretation is synonymous to its minimality in conven­
tional terminology.) This was proved in [9] by constructing the category CT ,F
with strictly associative finite products and the unique pre-interpretation � �T ,F
of (T , F) in CT ,F , as follows. The objects of CT ,F are finite sequences of ele­
ments of T . An arrow from T to T is an equivalence class of terms of arity
T1 × . . . × Tn and type T , i.e, terms are factored out by renaming of variables.

Having interpreted terms, we continue with interpretation for formulae. For
this, we need the notion of an indexed category with finite products.

Definition 5. An indexed category over a small category C is a functor p :
Cop Cat. An indexed functor from p to q is a natural transformation τ : p→	 ⇒
q : Cop Cat.→

Let FPs be the category of small categories with finite products and functors
that strictly preserve finite products.

Definition 6. If a small category C has finite products, an indexed category
p : Cop Cat has finite products if p : Cop Cat factors through FPs, i.e, →	 →
there is a functor f : Cop FPs such that p = U f , where U : FPs Cat is→	 ◦ →
inclusion.

An indexed functor h : p q between indexed categories with finite products ⇒
respects finite products if each component does so.

We say that p has strictly associative finite products if C and each p(X) have
strictly associative finite products.

We extend the definition of an interpretation of (T , F) in CT ,F to an in­
terpretation of a language L = (T , F , P) in an indexed category with finite
products over CT ,F as follows.

Definition 7. An interpretation of a sorted language L = (T , F , P) in an
indexed category p : C Cat with finite products is given by the pre-T ,F →
interpretation � �T ,F : of (T , F) in CT ,F , together with, for each sort T =
T1, . . . Tn, a function � �P(T) : P(T) → ob(p(�T1�T ,F × . . . × �Tn�T ,F)).

Existence and uniqueness of such interpretation was proved in [9]. The free
indexed category pL with strictly associative finite products over CT ,F , with an
interpretation � �L of L in pL for a sorted language L = (T , F , P), is given as
follows.

* For each T ∈ ob(CT ,F), pL(T) is the category with strictly associative finite
products freely generated by (ΦT , ∅), where Φ is the set of all triples (U, P, v)T
with U ∈ Sort(T), a predicate symbol P ∈ P(U) and an arrow v ∈ CT ,F (T , U).
(The symbol ∅ in (ΦT , ∅) indicates that the logic programming arrows “←” are
not interpreted yet. Finite products of triples (U, P, v) give account to finite
conjunctions.)

** For each v ∈ CT ,F (T , U), we define the functor pL(v) : pL(U) → pL(T) by
specifying the value of pL(v)(V , P, s), with s ∈ CT ,F (U, V), to be (V , P, s ◦ v).

We can identify an object of p (T) with an equivalence class of finite se-L
quences of atomic formulae with free variables of sort T . We treat the finite
sequence as a conjunction.

Definition 8. Given a logic program Γ over the language L, an interpretation
of Γ in an indexed category p with strictly associative finite products is given by
the following data:

–	 an interpretation � � of L in p and
–	 for each sort T , formula ϕ and atomic formula ϕ in p(T), a function
� � : Γ (ϕ, ϕ) → p(T)(�ϕ1�× . . . ×�ϕn�, �ϕ�), where Γ (ϕ, ϕ) is the family T	 T
of clauses in Γ of the form (T , ϕ, ϕ).

The existence and uniqueness of such interpretation was proved in [9]. The
unique interpretation was called pΓ , and was essentially p , but with added L
arrows that model the implication arrows “ ”.←

Example 6. In Example 4, categories pΓ (1), pΓ (D), pΓ (DD), pΓ (DDD),
pΓ (NDDD) would be “fibers” generated by clauses of corresponding types.

In the many-valued setting that we will develop in the following sections, our
attention will be on indexed category p for which each p(T) is a preorder Ω with
finite meets. In this case, the new “condition” in pΓ amounts to the assertion
that each clause ϕ ← ϕ is sent to an inequality �ϕ1� ∧ . . . ∧ �ϕn� ≤ �ϕ�.

4 Ground Semantics, Fibrationally

We first show how the fibrational semantics fits into the framework of traditional
declarative (ground) semantics.

We first choose a preorder Ω with finite meets in which to take values. By
ground semantics for the underlying language L we mean the assignment, to
each ground formula, of an element of Ω, respecting the structure of L. This
amounts to a finite product preserving functor from p (1) to Ω, where the latter L
is seen as a category with finite products. We extend it to the logic program Γ .

By previous discussions, CT ,F is the category with strictly associative finite
products freely generated by (T , F). Let 1 be the terminal object of CT ,F . So,
for each T ∈ ob(CT ,F), the homset CT ,F (1, T) is the set of ground terms of
type T . Moreover, p (1) is the category with strictly associative finite products L
freely generated by (ΦI , ∅), with ΦI being the set of all triples (U, P, v), where
v ∈ CT ,F (1, U). Thus pL(1) is the set of all ground formulae of the language L
with finite meets, and it corresponds to the Herbrand base. An interpretation | |
of L in Ω is defined to be a finite meet preserving function from pL(1) to Ω.

We now consider clauses. We do not simply assert that each clause is sent to
an inequality in Ω, as that is not the practice in many-valued logic programming.
We must allow unit clauses, i.e., clauses of the form ϕ , to be assigned values ←
other than 1. We do this as follows.

Definition 9. Given a many-valued annotation-free logic program Γ over the
language L, a valuation v of Γ in a preorder Ω with finite meets is an assignment
to each unit clause ϕ of Γ of an element v(ϕ) of Ω.← ←

The notion of a valuation is often used in many-valued logic programming
to describe a map from the elements of the Herbrand base to Ω. In our setting,
the latter map would be redundant. Using Definition 9, we can interpret clauses
directly, as follows.

Definition 10. Given an annotation-free logic program Γ over the language
L, and a valuation v of Γ , a ground interpretation of Γ with respect to the
valuation v in a preorder Ω with finite meets is an interpretation | | : pL(1) → Ω

of L such that for each clause in Γ of the form ϕ ← ϕ, with ϕ non-empty, and
each ground substitution [g],

|ϕ1[g]| ∧ . . . ∧ |ϕn[g]| ≤ |ϕ[g]|,

and, for each unit clause ϕ ← and ground substitution g, v(ϕ ←) ≤ |ϕ[g]|.
Due to its inductive nature, this definition corresponds to the notion of the

semantic operator (and its iterations) for many-valued logic programs; that is,
the ground interpretation of a program is computed stepwise, starting with for­
mulae which have received their valuation and then computing values for the
rest of the formulae using the given data.

Example 7. If we fix [0, 1] to be the chosen preorder, then a valuation for the
logic program GC from Example 1 can be given as follows.
v(connected(x, x)) = 1, v(edge(a, b)) = 0.75, v(edge(b, c)) = 0.25← ← ←

The minimal ground interpretation would be given by
|connected(a, a)| = 1, |connected(b, b)| = 1, |connected(c, c)| = 1;
min(|edge(a, b)| = 0.75, |connected(b, b)| = 1) ≤ |connected(a, b)| = 0.75,
min(|edge(b, c)| = 0.25, |connected(c, c)| = 1) ≤ |connected(b, c)| = 0.25,
min(edge(a, b) = 0.75, |connected(b, c) = 0.25) ≤ connected(a, c) = 0.25,
|edge(

|
a, b)| = 0

|
.75, |edge(b, c)| = 0.25

| | |

There is a standard way of defining a minimal model for many-valued logic
programs, described, for example, in [7, 4]. We can emulate this in our own terms
by defining an ordering on a set of all the ground interpretations as follows. Let
| |1 and | |2 be ground interpretations with respect to a valuation v for a logic
program Γ over the language L. Then we say that | |1 ≤ | |2 if |ϕ[g]|1 ≤ |ϕ[g]|2 for
every ground substitution of every formula ϕ in Γ . The set of all ground interpre­
tations forms a preorder M with objects the ground interpretations and arrows
given by ≤ defined as above. We define the ground model of an annotation-free
logic program Γ to be the least element of M .

One needs to be careful in regard to the ground models as the following
examples illustrate.

Example 8. Consider a logic program of the form p(a) , p(x) q(x), q(a) ,← ← ←
with valuation v in [0, 1] given by v(p(a)) = 0.3; v(q(a)) = 0.7.← ←

By Definition 10, in any ground interpretation, 0.3 ≤ |p(a)|, 0.7 ≤ |q(a)|,
and also |q(a)| ≤ |p(a)|. Thus, 0.7 ≤ |p(a)| in any ground interpretation. So,
there is a one-step proof that 0.3 ≤ |p(a)| and a two-step proof that 0.7 ≤ |p(a)|.
This situation evidently can be extended to logic programs involving proofs of
indefinite length, so needs to be taken seriously when giving SLD-resolution, in
particular in determining the ground model.

Example 9. Consider the logic program of Example 8 with valuation in [0, 1] ×
[0, 1] given by v(p(a)) = (0, 0.5); v(q(a)) = (0.5, 0). Then, in any ground
interpretation, (0.5, 0)

←
≤ |p(a)| and (0, 0.5)

←
≤ |p(a)|, so (0.5, 0.5) ≤ |p(a)|, but

there is no computation that shows this directly. This will lead us to requiring
finite joins in Ω in Section 6. Variants of this example exist in Kleene’s logics
and logics which generalise Kleene’s logics, [6, 7].

http:b)=0.75
http:c)=0.25

5 Fibrational Many-Valued Semantics

The fibrational semantics will provide us with non-ground interpretations for
logic programs. In Theorem 1 we relate ground and fibrational semantics.

Let C be a small category and D have all products, and let 1 be a terminal
object of C. The diagonal functor Δ : D → DCop

has a right adjoint given
by sending F ∈ DCop

to F (1). I.e., a right adjoint to the diagonal is given by
evaluation at 1, and we will denote the right adjoint by ev1 : DC

op → D.

Proposition 1. The functor ev1 : DC
op → D has a right adjoint R : D → DCop

,
given by R(D)(C) = DC(1,C), for each D ∈ D and each C ∈ Cop.

CCorollary 1. The functor ev1 : FPs
T ,F FPs has a right adjoint given by

R(Ω) = ΩCT ,F (1,−).
→

Recall that in Section 4, we studied maps of the form p (1) Ω in FPs.
By Corollary 1, they are equivalent to natural transformation

L
pL →
→
ΩCT ,F (1,−).

So, consider a natural transformation ψ : p ΩCT ,F (1,−). This is equivalent L →
to giving, for each T and each ground term t of sort T , a finite meet preserving
function | | : pL(1) → Ω natural in T .

Since Ω is a preorder with finite meets, ΩCT ,F (1,T) has a preorder structure
with finite meet given pointwise. We use that fact in our definition of fibrational
interpretation, which by the above discussion will be equivalent to Definition 10.

Definition 11. Given an annotation-free logic program Γ over the language L,
a fibrational interpretation, or f-interpretation, with respect to the valuation v
of Γ in Ω is given by an interpretation � � of L in ΩCT ,F (1,−), such that:

– For each unit clause ϕ ← in Γ , v(ϕ ←) ≤ �ϕ�;
– For each clause in Γ of the form ϕ ϕ, where ϕ is non-empty, ←

�ϕ1� ∧ . . . ∧ �ϕn� ≤ �ϕ�.

Theorem 1. Given an annotation-free logic program Γ over the language L, a
preorder Ω, and a valuation v of Γ in Ω, to give an f-interpretation with respect
to v is equivalent to giving a ground interpretation of Γ with respect to v.

Proof. This follows from the adjointness of Corollary 1 and the definition of
interpretation and valuation.

Example 10. We take the valuation of the program GC from Example 7. The

minimal f-interpretation generated by the valuation is:

�connected(x, x)� = 1, �edge(a, b)� = 0.75, �edge(b, c)� = 0.25,

min(�edge(x, z)�, �connected(z, y)�) ≤ �connected(x, y)�.

The last line subsumes all the possible substitutions. Notably, ground sub­
stitutions agree with the ground interpretation for GC from Example 7.

Given a logic program Γ , we will call the least f-interpretation of Γ an f-
model for Γ . It is the least element in the preorder of all f-interpretations of Γ ,
similarly to Section 4.

6 SLD-Resolution

Motivated by our fibrational semantics, we give a definition of the SLD-
resolution for annotation-free logic programs. The idea is as follows. The syntax
of annotation-free logic programs is exactly the same as that of conventional
logic programs. So we can first do SLD-resolution for an annotation-free logic
program qua conventional logic program which is expressible in terms of fibra­
tional semantics and is sound and complete with respect to fibrational semantics;
[9]. Now we introduce valuations. Given a refutation tree, we consider the leaves.
These amount to unit clauses, so have valuation. We then proceed in the back­
ward direction from the leaves to the root of the refutation tree to generate a
minimal value for the substituted goal. Note that the leaves are not necessarily
ground, and hence fibrational rather than ground approach is appropriate.

We restrict the choice of Ω by requiring Ω to have all, not only finite, meets.
The existence of all meets in Ω implies the existence of all joins. A delicate
analysis allows us to restrict to finite joins in addition to finite meets. As Example
9 indicates, we need some such assumption in order to justify the existence of
ground models and f-models for annotation-free logic programs.

We start with a definition of SLD-resolution in terms of state transition
machines. See also [9], where mgus were characterised as pullbacks. We will call
[s1, s2] an mgu of atomic formulae A and B with terms modelled by arrows u
respectively v in CT ,F , if [s1, s2] is an mgu of u and v.

Definition 12. Given an annotation-free logic program Γ in L, the state transi­
tion machine MΓ associated to Γ is the directed graph (N, E) defined as follows.
N is the set of all formulae in L. An edge with source ϕ = ϕ1 × . . . × ϕn is a
triple (l, ρ, (s1, s2)), where l : H B is a clause in Γ , ρ = πi : ϕ ϕi is the ← →
projection to ϕi, and (s1, s2) is an mgu for ϕi and H. The target of (l, ρ, (s1, s2))
is ϕ1[s1, s2] × . . . × ϕi−1[s1, s2] × B[s1, s2] × ϕi+1[s1, s2] × . . . × ϕn[s1, s2].

Definition 13. Given a logic program Γ and a goal G in L, a computation in
MΓ with goal G is a directed path T in MΓ starting at G, in particular, if the
endpoint is a terminal 1 in some fibre of p , then it is said to be a successful L
computation or refutation. Finally, if

1 1 2 2 m−1 m−1(l1,ρ1,(s1,s2)) (l2,ρ2,(s1,s2)) (lm−1,ρm−1,(s1 ,s2))
G = ϕ ϕ . . . ϕ−→ −→ −→

1 1 2 2 m−1 m−1is a computation, (s1, s2), (s1, s2), . . . , (s1 , s 2) is defined to be its answer.

The SLD-refutation is sound and complete with respect to the (two-valued)
fibrational semantics, that is, the following theorem holds:

Theorem 2. [9] Let Γ be a logic program in L. Substitution s : U → T is the
answer of a refutation in MΓ with goal G of sort T if and only if there is an
arrow m : 1 G[s] in the fibre pΓ (U).→

Next we introduce a valuation into a mechanism of refutation to the
annotation-free logic programs and give the inductive definition of a tree com­
puting a value for the goal G as follows.

�	 �

�

�

�

�

�

�

Definition 14. Let MΓ be the state transition machine associated to a logic
program Γ and a goal G as in Definition 12. Let T be a directed path in MΓ

such that T performs a refutation for a formula G in L with the computed answer
s, and let v be a valuation of Γ . A computation of a value for G is a directed
path T op starting at 1 and ending at �G[s]� in Ω, such that the following holds:

1. Whenever there is an edge (l, ρ, (s1, s2)) from ϕ1[s1, s2] × . . . × ϕi−1[s1, s2] ×
ϕi+1[s1, s2]×, . . . , ×ϕn[s1, s2] to ϕ = ϕ1 × . . . × ϕi × . . . × ϕn, as described in
Definition 12, with ρ = πi and l of the form H , then we use the valuation
v of H and substitute ϕi in ϕ by v(H).

←

2. For	 every edge (l, ρ, (s1, s2)) from ϕ1[s1, s2] × . . . × ϕi−1[s1, s2] ×
B1[s1, s2], . . . , Bk[s1, s2]×ϕi+1[s1, s2]×, . . . , ×ϕn[s1, s2] to ϕ = ϕ1 ×. . .×ϕn,
with ρ = πi and l of the form H ← B1, . . . Bk, we use v(B1) ∧ . . . ∧ v(Bk) to
transform the node ϕ into ϕ1×. . .×ϕi−1∧(v(B1)∧. . .∧v(Bk))∧ϕi+1×. . .×ϕn.

It is easy to see that for every such computation of a value for G = ϕ�1 × . . .×ϕ� ,m

the endpont of T op will be �G[s]� = (v(B� [s])) ∧ . . . ∧ (v(B� [s])), where each � 1 m

(v(Bj
� [s])) performs the value of the goal atom ϕ�j [s].

Definition 15. Let Γ be an annotation-free logic program interpreted in a pre-
order Ω with the least element 0. Let G be a goal in Γ . We say that ω ∈ Ω is a
computed value for G if one of the following conditions holds:

–	 There is a refutation for G with answer s and the algorithm of computation
of a value outputs �G[s]� = ω;

–	 There is no refutation for G and we put ω = 0.

Example 11. Consider the logic program GC from Example 1 and the goal G
of the form (connected(a, x)). The leftmost tree T performs a refutation for G
with the answer s = (x/b). The rightmost tree T op shows how the value for G[s]
is computed by the algorithm of computation of a value. We use the valuation
v from Example 10.

connected(a, x)	 0.75

(γ2, π1, (x/a), (y/x))

edge(a, z) × connected(z, x) 0.75 ∧ 1

(γ3, π1, (z/b))

connected(b, x)	 1

(γ1, π1, (x/b))

1	 ∅

Thus, the goal (connected(a, x)[x/b]) receives the computed value 0.75. Note
that this agrees with the minimal ground interpretation of GC from Example 7
and f-model of GC from Example 10.

The algorithm of computation of a value for G[s] is sound and complete with
respect to both ground model and f-model of a logic program.

Theorem 3 (Soundness relative to fibrational semantics). Let Γ be a
logic program and G be a goal formula, such that there is a tree T in the state
transition machine MΓ and T performs refutation for {Γ ∪G} with the computed
answer s. Then the following holds. If the algorithm of computation of a value
outputs the value ω for G[s], then in the f-model of Γ , �G[s]� ≥ ω.

Proof. We use Theorem 2; the rest of the proof proceeds by induction on the
length of the tree T ∈ MΓ .

Theorem 4 (Completeness relative to fibrational semantics). If
�G[s]� = ω is in the f-model of Γ , then there exists a finite set of trees T1, . . . , Tn

which compute the substitution s as answer, such that ω is the supremum of the
computed values for G[s] in T1, . . . , Tn.

Proof. We use Theorem 2; then we proceed by induction on complexity of clauses
interpreted by the ground model of Γ . Finite joins are required in order to
account for cases such as Examples 8, 9. Only finite joins are needed as each
valuation v only makes finitely many assignments. (Note that as we have assumed
the existence of all meets in Ω, it follows that Ω also has finite joins.)

In practice, one needs to use the conventional algorithm of backtracking to
compute all the values. Annotation-free logic programs can have infinitely long
computations and infinitely long trees T in MΓ , as in Example 12:

Example 12. The following logic program may have infinitely long refutations
for the goal (p(x)): q(x) , p(x) q(x), q(x) p(x).← ← ← ←

But the number of unit clauses in any logic program is finite, and so is the
number of values assigned to them. This is why, refutations for annotation-free
logic programs will always have finitely many computed values. In our example,
the only possible computed value for p(x) will be the value v(q(x)).←

We now show that traditional-style soundness and completeness of the SLD-
resolution relative to the ground semantics can be obtained as a corollary of
Theorems 1, 3, 4. We make use of Theorem 1 and use | | instead of � � when
talking about interpretations for ground atoms.

In conventional logic programming [12], one speaks of the success set of a
program Γ . That is the set of all ground atoms for which refutation exists. We
cannot directly use that definition here because of the presence of non-trivial
values. But, to give the success set of a conventional logic program is equivalent
to giving function from p (1) to {0, 1}, satisfying a success condition. We could L
call that the success map corresponding to the success set, cf. [5]. So we generalise
the success map as follows.

Definition 16. Given an annotation-free logic program Γ over L, a preorder
Ω with meets, and a valuation v of Γ in Ω, the success map of Γ is the map
| | : pL(1) → Ω such that for each ground instance ϕ[g] of a formula ϕ, |ϕ[g]| is
the supremum of all computed values ω of ϕ[g].

The soundness and completeness of the algorithm of computation of a value
relative to the ground model of a given program can now be stated as follows.

Corollary 2 (Soundness and completeness relative to ground seman­
tics). Let Γ be a many-valued annotation-free logic program. The success map
of Γ is equal to its ground model.

7 Conclusions and further work

We have given ground and fibrational semantics to many-valued logic program­
ming. We have proved theorems showing the exact relationship between the two
kinds of semantics. This gave theoretical justification of the appropriateness of
the fibrational (non-ground) approach to logic programming semantics. Fibra­
tional semantics easily relates to existing resolution procedures [9] and gives rise
to novel proof search algorithms. In particular, we have developed the novel al­
gorithm of SLD-resolution for annotation-free many-valued logic programs. We
proved that this algorithm is sound and complete relative to the fibrational se­
mantics and showed that soundness and completeness of the algorithm relative
to ground semantics can be obtained as a corollary of that.

Related work. Comparing with other kinds of many-valued resolution al­
gorithms [3, 16], the algorithm we have described turns out to be the ideal com­
promise between expressiveness and efficiency. Unlike [16], we do not impose
syntactical restrictions on the shape and groundness of clauses and goals; and
instead allow any first-order definite logic program to be processed. E.g., pro­
grams as in Example 12 would not be allowed in the setting of [16]. So, fibrational
approach gives a clear advantage of expressiveness.

The algorithm of [3] is not restricting the syntax of logic programs, but it
is very complex and in general non-terminating. In [3] one has to go through
5 consecutive stages of building a forest the trees of which would present all
possible branches of refutation. Our algorithm avoids this by using conventional
method of backtracking to find all the possible values and substitutions.

It is remarkable that both [3] and [16] use ground semantics in order to prove
soundness and completeness of the algorithms. And this adds complications.
Thus, proofs of soundness and completeness of the resolution in [3] exclude the
non-terminating cases like the one in Example 12. So, it would seem that the shift
towards non-ground, fibrational approach to resolution simplifies the algorithm
as well as makes proofs of soundness and completeness easier.

Further work may involve extensions of the fibrational semantics to other
types of many-valued logic programs: implication-based and annotated (signed).

We intentionally analysed only the simplest type of logic programs, that is,
definite programs which allow only conjunctions in clause bodies. One can adapt
existing categorical interpretations of other connectives [11] to the setting.

We also hope that the result relating ground and fibrational semantics
will open new horizons for the structural characterisation of other types of
non-classical logic programs (such as (e.g.) multimodal, non-monotonic) whose
declarative semantics depends on truth assignments.

References

1.	 M. Baaz, C. G. Fermuller, and G. Sazler. Automated deduction for many-valued
logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reason­
ing, volume 2, pages 1355 – 1402. Elsevier, 2001.

2.	 M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall,
1990.

3.	 C. Damásio and M. Medina, J. Ojeda-Aciego. A tabulation procedure for first-order
residuated logic programs. In Proc.IPMU-06, 2006.

4.	 C. V. Damásio and L. M. Pereira. Sorted monotonic logic programs and their
embeddings. In Proc. IPMU-04, pages 807–814, 2004.

5.	 S. E. Finkelstein, P. Freyd, and J. Lipton. Logic programming in tau categories.
In CSL’94, volume 933 of LNCS. Springer, 1995.

6.	 M. Fitting. A Kripke/Kleene semantics for logic programs. J. of logic programming,
2:295–312, 1985.

7.	 M. Fitting. Fixpoint semantics for logic programming — a survey. TCS, 278(1­
2):25–51, 2002.

8.	 M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program­
ming and its applications. J. of logic programming, 12:335–367, 1991.

9.	 Y. Kinoshita and A. J. Power. A fibrational semantics for logic programs. In Proc.
5th Int. Workshop on Extensions of Logic Programming, volume 1050 of LNAI,
Leipzig, Germany, 1996. Springer.

10.	 E. Komendantskaya and J. Power. Fibrational semantics for many-valued logic
programs. Tech. Report N 00295027, http://hal.inria.fr/inria-00295027/en/,
INRIA, 2008.

11.	 J. Lambek and P. Scott. Higher Order Categorical Logic. Cambridge University
Press, 1986.

12.	 J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
13.	 J. J. Lu, N. V. Murray, and E. Rosenthal. Deduction and search strategies for reg­

ular multiple-valued logics. J. of Multiple-valued logic and soft computing, 11:375–
406, 2005.

14.	 S. MacLane. Categories for the working mathematician. Springer-Verlag, Berlin,
1971.

15.	 A. J. Power and L. Sterling. A notion of a map between logic programs. In Logic
Programming, Proc. 7th Int. Conf., pages 390–404. MIT Press, 1990.

16.	 U. Straccia. A top-down query answering procedure for normal logic programs
under the any-world assumption. In Proc. ECSQARU-07, number 4724 in LNCS,
pages 115–127. Springer Verlag, 2007.

17.	 M. van Emden. Quantitative deduction and fixpoint theory. J. Logic Programming,
3:37–53, 1986.

http://hal.inria.fr/inria-00295027/en/

