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Mixing Closures for Conservation Laws in Stratified Flows

By Tivon Jacobson, Paul A. Milewski, and Esteban G. Tabak

A closure for shocks involving the mixing of the fluids in two-layer stratified
flows is proposed. The closure maximizes the rate of mixing, treating the
dynamical hydraulic equations and entropy conditions as constraints. This
closure may also be viewed as yielding an upper bound on the mixing rate by
internal shocks. It is shown that the maximal mixing rate is accomplished
by a shock moving at the fastest allowable speed against the upstream flow.
Depending on whether the active constraint limiting this speed is the Lax
entropy condition or the positive dissipation of energy, we distinguish precisely
between internal hydraulic jumps and bores. Maximizing entrainment is shown
to be equivalent to maximizing a suitable entropy associated to mixing.
By using the latter, one can describe the flow globally by an optimization
procedure, without treating the shocks separately. A general mathematical
framework is formulated that can be applied whenever an insufficient number
of conservation laws is supplemented by a maximization principle.

1. Introduction

The vertical stratification of the atmosphere and ocean is the result of the
competing effects of complex mechanisms that enhance stratification, such
as differential heating, and mixing processes, which uniformize the density.
Quantifying these mixing processes is challenging because of the scale
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disparity between the large-scale fluid motion and the diffusion processes that
ultimately lead to mixing. The energy transfer between these scales occurs
through turbulent motion, created either by fluid instabilities or by breaking
internal waves. Ideally, one would like to be able to include the effects of
mixing on the large scale dynamics without resolving the detailed dynamics of
turbulence. The possibility that we explore here is to replace this detailed
dynamics by an optimization procedure, that maximizes an appropriate measure
of mixing while satisfying constraints imposed by the large-scale dynamics.

In this paper, we develop these ideas in the context of mixing at the
interface between two fluid masses of different densities due to the overturning
and breaking of internal waves. This scenario may play a role in a number
of significant applications to geophysical flows, including the entrainment of
deeper, interior fluid into the ocean’s surface mixed layer [1], the entrainment
of ambient water into dense overflows downstream of oceanic sills [2], and the
entrainment of stratospheric air through the tropopause into the troposphere [3].
The Earth’s rotation plays a significant role in most geophysical applications. The
aim of this paper, however, is to isolate and model the physics of entrainment,
and therefore we study idealized scenarios without rotational effects.

A conclusion of geophysical relevance that our model provides is a precise
mathematical distinction between two kinds of internal breaking waves,
hydraulic jumps and bores, whose different structure was first pointed out in
[4]. With this distinction, it becomes clear that breaking waves at the base
of the ocean mixed layer can be characterized as internal bores, while those
occurring downstream of sills are better described as internal Aydraulic jumps.

We use a one-and-a-half layer shallow water model: the situation that we
consider is that of a shallow layer of fluid below a slightly lighter, deep,
ambient fluid at rest (see Figure 1). (The reverse situation of a thin layer of light
fluid above a deep heavy fluid can be mapped to the one we consider.) Because
we consider mostly shock-type solutions, we assume that the fluid is bounded
by horizontal walls, although the addition of topography is straightforward.
We consider the fluids to be miscible, and this paper is an effort to propose
deductive closures that quantify the entrainment and mixing due to shocks.

Even though mixing in stratified fluids is often modeled in terms of shear
instability, and quantified through the Richardson number Ri, shocks may play
a more important role [5-7]. We have shown [8] that the evolution equations
for two-layer shallow water are nonlinearly stable up to wave breaking, if the
initial conditions have Ri < 1. Hence in this case breaking waves provide the
only strong mechanism for mixing.

In Section 2, we derive the set of partial differential equations for the
dynamics of the layer in terms of u, a uniform or average horizontal velocity,
h, the layer depth and b the buoyancy, proportional to the density of the
fluid. There are two conservation laws: total mass and momentum. These
are valid even at possible discontinuities in the solutions (shocks). If one
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Figure 1. Two-layer flow with entraining hydraulic jump.

postulates that the fluids do not mix (constant b), then the equations become
the well known shallow water equations. When the waves break, the two
conservation laws define the shock speed and predict the amount of wave
energy dissipated at the shock and transformed to turbulent energy. Here we
consider the case in which the fluids do mix. In this case, it is useful to
introduce a third conservation principle: that of zotal energy, the sum of energy
in the shallow water dynamics and the small scale turbulent energy created by
shocks. We now have three conservation laws for four dynamical variables.
We therefore need to add another postulate: that there is no small scale
energy created in smooth parts of the flow. The result of this is a closed
hyperbolic system for smooth parts of the flow, derived in Section 3, and
the requirement for a closure that sets the amount of mixing at shocks. In
Section 4, we propose such a closure: by arguing that shocks moving at their
maximal allowable speed (constrained by the Lax condition) will maximize
entrainment.

In Section 5, we explore the consequences and range of validity of this
closure, and in Section 6 we prove that it does indeed maximize entrainment.
The closure is shown to apply to situations where the flow is supercritical
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upstream of the shock, as is the case in standing hydraulic jumps. For these,
we quantify precisely the amount of mixing at the shock and show that the
shocks are physical, in the sense that they also dissipate large scale energy and
create turbulence.

The optimality of the closure is proved only locally in Section 6, that is,
among shock speeds close to the maximal allowable one. Section 7 proves
that the closure is in fact globally optimal, and does it in a quite general
framework, that allows to extend this result to other incomplete systems of
conservation laws. In Section 8, we introduce a mixing entropy, and show that
maximizing entropy generation is equivalent to maximizing entrainment.

Our closure yields physically relevant shocks and predictions of entrainment
and generation of turbulence in a range of regimes which we call internal
hydraulic jumps: regimes in which energy is dissipated in the lower layer.
When this ceases to be the case, the Lax condition on allowed shock speeds is
no longer an active constraint, and is replaced by the constraint of nonnegative
energy dissipation. Hence the corresponding entrainment maximizing shocks
have no dissipated energy in the lower layer, although they still entrain and
mix. These are the internal hydraulic bores, first distinguished from hydraulic
jumps in [4]. Physical examples of bores include gravity currents [9, 10] and,
we conjecture, the breaking waves at the base of the ocean mixed layer. (Notice
that, in regular shallow water, bores and hydraulic jumps are mathematically
equivalent, because they can be mapped into each other through a Galilean
transformation. This is not the case for one-and-a-half layer flows, where the
ambient layer fixes a preferred frame of reference.)

The results above all decompose the flow into smooth parts, where a
close set of partial differential equations apply, and discontinuities, where
the standard jump conditions based on conservation laws are completed by
the maximization requirement. It would be desirable, however (especially for
numerical purposes), to be able to treat the whole flow in a unified fashion,
proposing a global maximization principle. This is what we propose in Section 9,
where we include the smooth parts of the flow into the optimization procedure.
This sheds new light into the physical distinction between hydraulic jumps and
bores.

The work presented here has a dual character. On the one hand, it proposes
a closure for entraining breaking waves, under a somewhat idealized set of
assumptions. One interpretation of the closure and its consequences is that we
find an upper bound for the amount of mixing at a shock allowed by the
dynamical equations of motion. On the other hand, this work is presented as an
application of a more general proposal for quantifying mixing in large-scale
models, through an optimization procedure constrained by the coarse-grained
equations of motion. Consequently, Sections 1-6 are a self-contained discussion
of our mixing closure at jumps, while Sections 7-9 frame this discussion in a
more abstract and generalizable setting.
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2. Conservation principles

Consider the configuration depicted in Figure 1, of a two-layer flow, in a
channel with rigid top and bottom lids, separated by a distance H. Because the
top layer will be assumed to be much deeper than the bottom one, and thought
of as an ambient, we will use the subindex a to identify the corresponding
variables, such as the velocity and density, while no subindices will be used
for the variables representing quantities associated with the bottom, active
layer. The ambient density p, is constant and uniform, but p may vary, due to
the entrainment process. The main modeling assumptions that we make, some
of which are already implicit in Figure 1, are the following:

e The flow is mainly horizontal, and consists of two layers of vertically
homogeneous density and velocity. That is, even though entrainment of
parcels of ambient fluid into the lower layer will be considered, these are
assumed to almost instantly mix throughout the lower layer, driven by
turbulent motion.

e No detrainment (parcels of fluid from the lower layer entering the ambient)
occurs.

e The pressure for the large-scale motion is hydrostatic. Within shocks, the
pressure is clearly nonhydrostatic. In a description in terms of conservation
laws, however, these nonhydrostatic effects are encompassed by the jump
conditions at shocks that our closure will specify.

e The density difference between the two layers is small.

In the limit of a very deep ambient, this two-layer system may be modeled
quite simply, in terms of dynamical variables associated with the bottom layer
alone. Then, conservation of buoyancy (volume and mass), momentum and
energy read

(bh); + (bhu), =0 (1)
bh?
(hu), + (hu2 + 7) =0 )
hu?  bh? hu?
L+_+he + L+bh2u+heu =0. (3)
2 2 . 2 x

Here, & is the depth of the active layer, u its mean velocity, b = g% is a
normalized density (the letter b stands for “buoyancy”, though the latter is
better represented by —b; “reduced gravity” is another commonly used name
for b), and e is the kinetic energy associated to turbulent motion.

We sketch here briefly a derivation of the system (Equations (1)—(3)). A key
element of this derivation is that, because entrainment brings along exchanges
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of volume, mass, momentum and energy between the two layers, one cannot
apply the associated conservation principles to each layer individually. Instead,
these principles have to be posed globally, for the two layers at once. In a fixed
domain confined by rigid lids, conservation of volume adopts the simple form

(hu 4+ (H — h)u,), =0, “)
yielding
hu + (H — hu, = O(t), %)

where (Q(f), the volume flux through the system, is so far undetermined
function of time. Conservation of mass, on the other hand, reads

(oh + pa(H — 1)): + (phu + po(H — h)u,), = 0, (6)

which combined with (4) yields the buoyancy Equation (1). To write down
the momentum equation, we need the vertical integral of the [hydrostatic]
pressure, given by

H 1 1
f pdz = EgpaHz +PH + Ebpahz,
0

where P denotes the pressure at the top lid. The vertical integral of the
momentum flux is

H
f pu?dz = p.(H — h)u,? + phu?.
0

The resulting momentum equation equates the time evolution of the local
momentum density to horizontal variations in the pressure and the momentum
flux:

1
(phu + po(H — h)ug) + | pa(H — h)uaz —+ phu2 + —bpah2 + HP, = 0.
2

To eliminate the extra unknown P, we argue, as in [4], that, in the absence of
detrainment, the ambient flow is comparatively smooth from some streamline
up, even above internal hydraulic jumps. Then we have, on the uppermost
streamline, that

pa(uat + uauax) + Px = 07 (7)

which reduces the momentum equation to

1 2
(phu — pahuy), + (phu2 — pahug’ + Ebpahz + paHuz ) =0. (8

Finally we consider the limit of a deep ambient, H >> h. For the global
volume flux Q(¢) in (5) to remain bounded, we need to have u, = O(1/H)
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which, together with the Boussinesq approximation, reduces the momentum
Equation (8) to its simpler form in (2).

Notice that the simplification brought about by this assumption of a very
deep ambient carrying a bounded volume flux comes at a cost: By making the
ambient fluid nearly motionless, we are effectively selecting a distinguished
reference frame. Hence the Equations (1) and (2) are not Galilean invariant,
unlike their shallow-water counterpart with constant b.

The derivation of the energy Equation (3) follows steps very similar to the
momentum equation, and will be skipped here for brevity (a full derivation
may be found in [11] or, for the particular case of standing internal hydraulic
jumps, in [12]).

Because Equations (1), (2), and (3) are valid even at mixing internal shocks,
they yield the jump conditions

—c[bh] + [bhu] = 0 ©)
bh?
—clhu] + |:hu2 + T:| =0 (10)
hu®  bh? hu?
—c [%+7+he:|+[%+bh2u+heu] =0, (11)

where c is the shock’s speed, and the brackets indicate the jump of the enclosed
expression across it. We denote with subscripts — and + the states up and
downstream of the shock respectively. In Figure 1, upstream is to the left and
downstream to the right of the shock, because the height % is higher on the
right, and the fluid crosses the jump from left to right. Notice that we have
four active variables: b, &, u and e, and only three equations. Hence the need
for an additional physical principle to close the system.

3. Smooth evolution

In this article, we focus on the intense and localized mixing taking place
at internal breaking waves. Hence we simplify matters by assuming that no
mixing takes place away from shocks. Other types of mixing that could be
considered separately can arise from the Kelvin—Helmholz instability or from
other external sources of turbulent energy.

There are various ways to formulate this assumption: in terms of the
buoyancy b, the turbulent energy e, or the depth 4. In terms of the buoyancy,
no mixing in smooth parts of the flow implies that buoyancy is advected,

by + ub, =0, (12)

or equivalently, from (1), volume conservation:
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hy + (hu)x = 0. (13)

On the other hand, in smooth parts of the flow, the advection of turbulent
energy is given by

h 2e
== (1=F*+ =) ® by),
e +ue 2( +hb)(t+u )

which follows from (1), (2), and (3), with F' = jﬁ the Froude number. Hence

a statement equivalent to (12) is that the internal energy density is advected,
e +ue, =0. (14)

This in turn, together with (1) and (12) yields an alternative formulation, i.e.,
conservation of turbulent energy:

(he); + (heu), =0, (15)

Even though Equations (13) and (15) are written in conservation form, they
are not meant to be valid at discontinuities of the flow, across which turbulence
is created, volume is entrained into the active layer, and the buoyancy decreases
through mixing. Hence, even though the problem is now closed in smooth
parts of the flow, it is not closed at shocks, where one piece of information is
missing. This contrasts with the situation in one layer of homogeneous shallow
water, where b is constant, and the energy Equation (3) is used only to diagnose
the energy e lost to turbulence at shocks.

For completeness, the simplest form of the equations describing smooth
parts of the flow are

bt + be =0
h[ + (hu)x == 0 (16)

h
u; +uu, + bh, + be =0.

4. Mixing at shocks: an intuitive closure

Waves described by the smooth evolution equations of the preceding sections will
typically overturn and break, giving rise to the formation of shocks. Once this
happens, the jump conditions (9), (10), and (11) are not sufficient to determine
the dynamics. Across shocks, there are three fundamental conservation laws
and four unknowns, therefore, a further condition is needed to close the system.
This closure will control the amount of entrainment and mixing at shocks. It is
natural to propose as a closure that the system will maximize the amount
of entrainment and mixing. This not only will provide a potentially useful
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upper bound on mixing, but also possibly an accurate estimate of the actual
dynamics. Much as with the entropy maximization in thermodynamics, this
follows from the irreversibility and the rapid timescales of the mixing process.

We will carry out this maximization in three ways: in this and the following
sections, through a simple geometrical characterization of maximally mixing
shocks; in the next one, through a constrained optimization problem that
maximizes the amount of entrainment; and in the one following, through the
introduction of an entropy associated to mixing. We will see afterwards that
the three closures are in fact equivalent for internal hydraulic jumps.

We propose that maximal mixing occurs when the speed of a shock of the
left-most characteristic family (i.e., one with downstream to the right, as in
Figure 1), is the downstream characteristic speed

C=uy — b+h+. (17)

We note that this “jump condition” does not follow from a conservation law
and is therefore different from the situation in more conventional systems,
where the number of conservation principles and the number of independent
variables match. In these, the speed of the shock follows from the integral
formulation of those conservation principles. Shocks that mix, however, have
the peculiarity that an important physical process—i.e., mixing—is local to
them, thus its dynamics is not encapsulated in the equations ruling the flow
elsewhere.

To motivate the closure (17), which specifies directly the speed of the shock
in terms of the downstream state, consider the inviscid Burgers equation

u; + uu, = 0. (18)

When solutions to (18) become multivalued and shocks form, their position
is determined by invoking an integral formulation of (18), physically valid
even when the differential equation itself stops making sense. Typically, one
would rewrite (18) in the conservation form

M2
U, + (?) —0, (19)

implying that the area [udx is conserved by the flow. It follows that the
shocks move at the speed

[4?/2]  u_+u,
c= = .
[u] 2
Figure 2(a) shows the graphical equal area construction for shock placement

that implements area conservation [13]. Alternatively, we might impose that
the energy £ = [ u? dx should be conserved, and rewrite (18) as
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Clearly, there are infinitely many possibilities and only a knowledge of which
quantity should be conserved on physical grounds allows us to choose among

them. However if our goal is to maximize the entrainment of area, then we
should pick the fastest possible shock, with

c=1uy, 21)

as shown in Figure 2(b). The Lax condition for shocks [13] prevents ¢ from
exceeding u, .

The closure (17) is the generalization of this argument to the internal
breaking waves described by (1), (2), and (3). Here the wave characteristic
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speeds are given by u & «/bh; the choice of the minus sign in (17) applies to
shocks with downstream to the right, as in Figure 1.

Interestingly, the condition (21) can be incorporated in the dynamics of (18)
by rewriting Burgers in the conservation form

u” un—i—l
() G). = @

and taking the limit n — oo.

5. Consequences and range of validity of the closure

We now return to the internal wave breaking problem. Notice that the closure
(17) together with the conservations of mass and momentum (Equations (1)
and (2)), closes the shock conditions, so that the conservation of energy (3)
serves as a diagnostic for the amount of turbulent energy generated at a
shock. We will show below that our closure predicts a positive generation of
turbulent energy for standing shocks, while for moving shocks the condition
that turbulence be generated at the shock provides an extra constraint that we
argue forms a natural separation between hydraulic jumps and bores.

First, we completely determine the states that may be connected through
mixing hydraulic jumps. In particular we show that these states satisfy
several intuitively plausible physical properties: that, across jumps, the density
decreases, the layer thickness expands, and the velocity and the Froude number
decrease.

We introduce the notation

B_b, U_u, _h_ P Uy o u_
T by T uy’ T hy T Uhhs T Jbhohe

Equations (9), (10), and (17) then yield:

1-BHU = (1-%)(1—3}1) (23)
, 1—BH? 1
+

The product BH, on the other hand, can be written as

P2

BH = UZF_E' (25)
This downstream Froude number is directly related to the speed of the shock
because

C=Uy — \/b+h+ = \/b+h+(F+ —D. (26)
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We consider first the case with /', = 1, corresponding to a standing internal
jump (¢ = 0). The solution to the system (Equations (23) and (24)) is

U=F">1 (27
3 FP

H=->—F——=<1 (28)
2F2+1)2
2F?+1/2

B=-—_""> 29
3 M T (29)

The net rate of production of turbulent energy at the jump is given by

L5 2 3, .2 23 242
[heu] = — [Ehu + bh u] = 5b+h+u+ <F_ 1

- 1) >0. (30)

More general values of the downstream Froude number F, correspond to
shocks moving with respect to the ambient fluid. Using Equation (23) together
with the definition of the upstream Froude number F_, yields the cubic
equation for U

3 1\ , F?
U—(1-—|U'-—==0. (31)
Fy F3

Again, we think of the downstream information as encapsulated in the Froude
number F',, while the upstream state is completely known, because all three
characteristics from upstream reach the shock. Then Equation (31) determines
U, and we write all other variables in terms of U and F,. Equation (31) can
be rewritten in the form

F? = FIU(1 + F (U - 1)), (32)
yielding explicit expressions for H and B:

(I +2F)(1 + F (U - 1))
14+ 2UF (1 + F (U — 1))

(33)

B U’F? _ 1+ 2UF (1 + F (U — 1))?
HF?> (1+F.(U-D2A+2F,)

(34

The equations above fully determine all parameters of a shock with given
upstream state and downstream Froude number, satisfying the maximal mixing
condition (17). We now determine the range of parameters where the shock
satisfies the condition that there is a positive conversion of large scale energy
into turbulence (i.e., large scale energy dissipation).
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First, we compute the turbulent energy generated at a jump:
AE = —(ll+ — v b+h+)[€h] 4+ [hue]
1 1 1
= (uy —/bihy) |:§hu2 + Eb/ﬂ} — [Ehzf + bh2u]

1 1

2

— BH? <FE(U— D+QU-1)+ : +F‘>] .
F
Physically, a shock must dissipate large-scale energy and convert it to small scale
(turbulent) energy. From the above expression, and using the Equations (32),
(33), and (34), this dissipated energy can be expressed in terms of U and F
alone. After considerable algebra one can show that positive dissipation occurs
when

Fo—1 A J(F2=F) +3QF +1)

U >
2F, +1 2Ff + F,

(35)

Figure 3 displays the admissible domain, which we define as the one where
dissipation is positive. We restrict the domain to U > 1 (the flow decelerates at
the shock), which we show below to hold.

Figure 3 also shows the curve corresponding to the flow upstream being
critical, F_ = 1. To the right of this curve, and in particular in all the
admissible domain, F_ > 1. Hence all admissible shocks are supercritical
upstream. Standing shocks (with /', = 1) all lie in the admissible domain.
Notice also that in the admissible region, F; > 0. We will restrict our
discussion to the more physically relevant range 0 < F, < 1, i.e., flows that
are subcritical downstream of the jump.

We now prove a number of physically reasonable consequences of the
closure within the admissibility domain: that U > 1 (flow deceleration at the
shock), H < 1 (layer expansion) and B > 1 (positive mixing).

The fact that U > 1 follows from (31), with F_ > 1 and F', < 1, which
yield the bounds

2
3

F_ F_
1< — <U< —.
=\F,) = ~F,

One shows that H < 1 with the following steps: First, showing that, as one
changes the parameters F_ and F, smoothly within the allowed range, there
is only one positive solution to (31). This, together with the fact that the
denominator in (33) never vanishes, implies that H, as given by (33), is a
continuous function of F_ and F,. From our special solution for standing
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Figure 3. Admissible domain for mixing shocks. Shocks moving at the downtream characteristic
speed are only physical if they dissipate energy; the admissible range of parameters for these
lies to the right of the curve AE = 0. Notice that this admissible range always has a
supercritical upstream state. The maximal speed closure is not valid to the left of this curve,
where the shocks change their nature from internal hydraulic jumps to internal bores.

shocks, there is at least one shock where H < 1. If, changing F_ and F,
smoothly, one should reach another shock where H > 1, then in between there
must be one with H = 1. However this cannot hold, because H =1 = U =1
from (33), while we have just proved that U must be bigger than one.

To show that B > 1, we proceed along similar lines: From (34), we see that
B is a continuous function of the parameters. Setting B = 1 in (34) yields U =
1 as the only permissible solution. Therefore, by continuation from the case of
a standing shock, we conclude that B > 1.

To the left of the boundary between dissipative and nondissipative shocks in
Figure 3 our closure becomes unphysical, with spontaneous energy generation
at the shocks. One solution in this regime, is to replace the closure proposed
here by a zero energy dissipation closure [11]. The two closures connect
smoothly across the zero-dissipation boundary.
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Hence we have distinguished two kinds of mixing internal shocks: those
that dissipate energy, and move at their maximal allowable shock speed, as
given by the Lax condition, and those that cannot reach this maximal speed,
and instead are characterized by being nondissipative. This provides in fact a
precise, natural distinction between internal hydraulic jumps and bores [4].

In river flow terminology, hydraulic jumps are standing shocks, typically
occurring immediately downstream of spillways, waterfalls or submerged
obstacles, while bores are rapidly moving flood waves, typically arising from
high tides downstream or high rains or intensive ice melting upstream. From
the mathematical viewpoint, at least in the simplest, frictionless models, the
two kinds of discontinuities are completely equivalent, because a Galilean
transformation maps one into the other.

For internal breaking waves in a one-and-a-half layer model, however, there
is a distinguished frame of reference: the one for which the ambient fluid
is at rest. As a consequence, internal hydraulic jumps and bores do exhibit
fundamentally different behavior. It was first pointed out in [4] that gravity
currents are limiting cases of internal bores. Their characteristic pronounced
heads, with entrainment though their backs, are strikingly different from the
profiles of internal hydraulic jumps. The latter, reminiscent of the external
hydraulic jumps at spillways, entrain ambient fluid through the wave’s front.
Figure 4 displays the two typical profiles, together with the flow surrounding
them. It was also pointed out in [4] that

¢ the vorticity associated with the shear has opposite signs for hydraulic
jumps and bores, resulting in very different entrainment properties; and that

¢ the active layers of internal hydraulic jumps dissipate energy, while those
of internal bores are energy conserving.

This latter dissipative contrast, which was exploited in [4] to model jumps and
bores differently, is exactly the distinction that our model makes when the active
constraint switches from the Lax entropy condition to the nonnegativity of the
energy dissipation. Hence, in our model, the characterization of a discontinuity
as a hydraulic jump or a bore is sharp, and internal bores have maximal mixing
efficiency, because all available energy is used for mixing. Hydraulic jumps
are necessarily supercritical upstream, while we see in Section 9 that internal
bores constitute the natural occurrence in subcritical flows.

6. Maximal entrainment
The motivation for the closure above, that shocks move at their maximal

possible speed, is the presumption that the mixing rate increases with the
speed of the shock. This is intuitively plausible, yet needs to be shown to



104 T. Jacobson et al.
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Figure 4. Flow through internal hydraulic jumps and bores, in frames of reference attached
to the shock waves. The nature of entrainment varies widely from one to the other, giving rise
to very different characteristic profiles. In a model that maximizes entrainment, the two can be
distinguished based on whether the active constraint is energy conservation (for bores) or the
Lax entropy condition (for hydraulic jumps).

hold. In this section, we see that the rate of entrainment of ambient fluid into
the active layer is indeed maximized by shocks moving at the downstream
characteristic speed. The following section will place this result in a more
universal framework, where the rate to maximize is not that of entrainment,
but of production of a suitable entropy associated to mixing.

The rate € of entrainment at a shock moving at speed ¢ equals the increase
of volume flow across the shock:

€ = [hu] — c[h].
Our problem consists of choosing the speed ¢ so as to maximize this mixing rate,

subject to the constraints of mass and momentum conservation (Equations (9)
and (10)) and the Lax entropy conditions

Uy — b+h+ <c=<u_ —-/ b_h_.
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The values of all variables upstream are given, because they arrive to the jump
along characteristics. Only the leftmost-going characteristic brings information
from downstream, in the form of a differential constraint:
1dB dH F dU
2B T H YT T
as follows from (16). It will turn out, however, that the form of this constraint
is immaterial for proving the local optimality of our closure (not so for a
global result, that we postpone to the following section.)
For convenience, we nondimensionalize the entrainment rate € and the shock
speed ¢ using the upstream volume flux and fluid speed respectively; i.e., we
define £ = ﬁ and C = u% In terms of these, the problem becomes

0, (36)

1
imize £ = —[(1 — HU CUH —1)],
maximize HU[( )+ ( )]

subject to
1 — BHU = CU(1 — BH), (37)
_ 2
1 - HU* + — =CU(l - HU), (38)
2F?
F2
BH = UZF—E, (39)
1 1 1
—|l-=)=C=1-—, (40)
U F, F_

and (36), with the Froude numbers satisfying 0 < F, < F_ and F_ > 1.
(Equations (37) and (38) represent mass and momentum conservation, (39)
follows from the definition of the Froude numbers, and (40) are the Lax
entropy conditions.) Replacing BH from (39) into (37) yields the following
cubic equation for U in terms of C:

F\2
1-C)U* + (—) (CU—-1)=0, (41)
F.
while the same replacement in (38) yields the expression
1-CU+ :
T
= T
1-CH+ —

2F?
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With this, our problem reduces to

1
1-C+ —
- 1-CU 2F?
maximize E =(1-C) | -1+ U, 42)
1-C 1
1-CU+ —
2F%

subject to (41), (40), and (36).

We prove now that a local maximum of the normalized entrainment E is
achieved when C is minimal; i.e., it is given by the downstream characteristic
speed

C—1 1 ! 43
- (-7): *)

To see this, notice that (41) defines U as a function of C and F,. Then
the entrainment £ in (42) is also a function E(F, C), shown in Figure 5.

Straightforward differentiation shows that, as can be seen in the figure, at the
closure (43),

IE
— =0.
IF,

Next we prove that, whenever E is positive or zero, % < 0. Because C < 1,

as follows from the Lax condition (40), and £ > 0 by hypothesis, we have that

1
1-C+ —
3E 0 |1-CU iy
9C —oC | 1-C Y
9c —ac 1—CU+—
2F%
Expanding this derivative, using % = % yields
0E - 3U(1-CcU)(1 -U) <0,
L 2 A
AF°FI(1-0)y@3-2CU0)(1 -CU+ —
2F%

where we have used the facts that U > 1 (the flow slows down across the
shock) and CU < 1 (as follows from (41)).
This completes the proof of local optimality of the closure (43), because

% =0, 3£ <0, and dC > 0, and hence

oE
dE = —

=—dC <0.
aC
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Figure 5. Contours of constant entrainment E as functions of the downstream state,
characterized by its Froude number, and the speed C of the shock. The maximal shock speed
allowed by the Lax condition is the upper curve, while the lower curve corresponds to
nonmixing hydraulic jumps, identical to the ones in one layer shallow water. Notice that
the contours become vertical as they reach the upper curve, indicating that, locally, the
entrainment does not depend on F,. We prove below that the upper curve gives a global
maximum of entrainment when C is varied, consistently with the constraint given by the
downstream characteristic entering the shock.

7. A general result for incomplete systems of conservation laws

The proof in the prior section can be made far more general, and applied to
different physical settings. Starting with a system of n conservation laws

Uui Fl

ut+F(u)x=(), Y= . = , (44)
Up—1 Fn—l

Up F,
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where only the first n — 1 laws apply at shocks, we consider a shock wave
moving into a known upstream state ©_. In regular systems, this shock will be
completely specified by a single piece of information coming from downstream.
In our case, however, because one jump condition is missing, the shock speed
c is another free parameter.

There is no production of the » — 1 quantities conserved at the shock, so we
have

0= —[u;ldc+ej(d—ch)yduy, je(l,....n—1, (45)
where e; is the canonical unit vector with a one in position j and zeros
elsewhere, and A is the matrix with entries

9 F;
Ajj = — .
j auj (uy)
The production p of the quantity u, at the shock is given by
p = —clu,] + [Fn], (46)
with variation
oF,
auj

dp = —[u,]dc + Z (uy) a’uj.r —cduf = —[u,]dc + e (A —cl)duy.
j=1

47)

Consider now an eigenvalue u of 4 (a characteristic speed of the system),
with corresponding left eigenvector

I=(, . oy, ). (48)

Multiplying the system (45) and (47) by / on the left, we obtain that
dp = —(I, [ul) dc + (n — c){l, duy). (49)
In particular, when the shock speed c agrees with the characteristic speed wu,
dp = —(l, [u]) de, (50)

showing that the rate p of production of u, at the shock depends locally only
on the speed c. When p is the minimal (left-most) characteristic speed, and
{{, [u]) > 0, the corresponding shock speed ¢ = u yields a local maximum for
the production rate p.

In fact, more is true: the information that arrives at the shock from
downstream along the w-characteristic is precisely of the form

(I,duy) =0. (51)
So even away from ¢ = u, the condition

dp = —(l,[u])dc (52)
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holds when the downstream state is constrained by the information carried by
the left-most moving characteristic. Hence, if we can show that (/, [u]) > 0,
then the global maximum of p is achieved at the minimal ¢, which is either the
one given by the Lax condition, or by another constraint, such as the positive
dissipation of energy (35), if it turns active first.

This condition is indeed satisfied in mixing hydraulics, as the following
argument shows. The conserved variables are (¢ = bh, m = hu, h), satisfying

the equations
m
(9): + (%) =0

> g
(m),+(m7+q7> =0

ht+mx:O,

which are (Equations (1), (2), (13)) rewritten in terms of the conserved
variables. Only the first two conservation equations hold at shocks. The left
eigenvector corresponding to the left-most moving characteristic,

dx_m
an VP

is given by

I h 2Fh
S\ +2F)q¢ A +2Fm’ )’

Hence we need to show that

dp h 2F h
—— = (L [ul) = (M + =gl = == —[m] = 0.
dc (1+2F)q+ (1+2F )my
Multiplying by IJ;iF +  a positive number, we obtain

1+2F,
hy

Because U > 1, it is enough to show that

(,[u]) =2 — H1 + B) +2F,H(U — 1).

H(1+ B) <2.

If HB < 1, the statement holds, because H < 1. If not, Equation (37) implies
that C > 0. From the positivity of entrainment at the jump,

1— HU > CU(1 — H),

we obtain that
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H(1+B)Sw§£§2-
ul1-:o) U
Hence the rate of entrainment decreases monotonically with the speed ¢ of the
shock, and the global maximizer of entrainment has, among all allowed speeds,
the one moving fastest to the left. This maximal speed is given either by the
closure (17), or by the constraint of positive energy dissipation, if it acts first.

8. Maximizing a mixing entropy

Entrainment is a meaningful way of quantifying mixing in two layer flows. In
more general settings, however, we need a way of measuring mixing that does
not depend on a particular scenario. Breaking internal waves in a continuously
stratified flow, for instance, would lead to mixing events that cannot be easily
described in terms of entrainment. More generally, small-scale processes not
captured in detail by a particular model of fluid motion, typically lead to
mixing, through a variety of processes commonly placed under the umbrella
of turbulent diffusion.

To apply the ideas of this paper to such general scenarios, we need to
quantify the degree of mixing of a flow in a more universal way. Then
the [incomplete] set of equations modeling the dynamics can be treated as
constraints in an optimization procedure that seeks to maximize this mixing
measure. An entropy associated to the mixing of two fluids has been proposed
in [14]. Based on standard arguments in statistical physics, it adopts the form

S:—/@n%my+a—an%a—a»dn (53)

where a(x, ¢) is the volume fraction of one of the two fluids in position x at time ¢.

In our entraining hydraulic jump, the two fluids mixing are the ambient
fluid and the fluid in the active layer arriving at the shock from upstream. The
corresponding vertically integrated entropy vanishes upstream of the jump,
and downstream it equals

hys(1/B), with s(a) = —[alog(a)+ (1 —a)log(l — a)]. (54)

This definition would suffice to model a single shock. Yet, if one seeks to model
the whole flow through a constrained optimization approach, one may think of
the active layer as having originated in its entirety from the mixture of two fluids:
an ambient fluid of density p, and some denser fluid, of reference density p,
satisfying po > p(x, ). Then vertically integrating the entropy in (53) yields

S = hs(b,), (55)

and
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b, = P — Pa _ Pa b.
Po— Pa &(Po— Pa)
It was shown in [11] that all possible entropies for the system (16), in the

sense given to the term in systems of conservation laws [15], are of the form

S=nhf(b,e). (57)

(56)

These are conserved locally in smooth parts of the flow:
S+ wS), =0. (58)

In addition, convex functions of b alone, f(b, e) = g(b), including the physically
motivated choice g(b) = s(b,), increase at shocks, with corresponding entropy
production given by
p =y — gy — (= h g = (u — Wb (i—* R f—) >0, (59)
n _
where we have used the buoyancy conservation Equation (9). (The positivity of
p follows from the convexity condition which implies that % is a decreasing
function, together with the positive entrainment condition b < b_.)
Moreover, in view of the result of the prior section, that entrainment is
maximized for shocks that move at the minimal speed ¢ = u_ — /b_h_, we
now show that the entropy production p in (59) for any convex specific entropy
g(b) is also maximized by these shocks. To see this, it is convenient to rewrite
(59) in the following way:

P(q.€) =q(gby) — g(b-)) + €(g(by) — g(ba)). (60)

Here ¢ = (u— — c)h_ is the volume flow from upstream into the jump and €
the entrainment of ambient fluid, both decreasing functions of ¢. We have
included the ambient entropy g(b,) for generality, even though it is zero for
our specific application. We also have that

qb_ +€b,

bi(q,€) = qT (61)

The production p in (60) is a growing function of both ¢ and e (that is, the
more mixing, whether by entrainment or by flux into the shock, the more
entropy), and consequently a decreasing function of c. To show this, from the
symmetry of (60), it is enough to show that p is a growing function of ¢. This
follows simply from convexity: adding a positive Ag to ¢ yields

p(q+Aq,€)—plg,€) =(q + €+ Aq)g(bi(q + Aq, €))
—(q +€)g(bi(g,€) — Aqg(b-)
>0,

where the inequality follows from
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(g + Agq)b_ + €b,
q+e+ Ag )
(gb_ +€by) + Aqb_
q+e+ Ag >
(g +e)bi(g,e)+ Aqb—)
(g +¢€)+ Aq
> (g +€)g(bi(g. €)) + Agg(b-).

(g te+Aq)g(bi(q+Agq,€))=(q9 +€+ Ag)g (

=(q+€+Aq)g<

:(q+6+Aq)g<

9. A global optimization approach to the dynamics of mixing

We have so far studied the properties of the shock wave that maximizes
entrainment, or entropy production, subject to the constraints brought along
characteristics from upstream and downstream. We think of the jump conditions
associated to conservation of volume, mass and momentum, as well as the Lax
entropy conditions and the requirement of positive energy dissipation, as extra
constraints imposed upon this optimization problem.

In this section, we investigate whether this approach can be extended
to the description of the whole flow: instead of applying an extra closure
(nonmixing) wherever the solution is smooth, and modeling the shocks through
the procedure above, to think of the [incomplete] dynamical equations as a set
of constrains, and maximize mixing globally.

It is convenient to describe the dynamics in terms of the conserved quantities
q = bh, and m = hu, in addition to the height /4 itself. The equations for
conservation of buoyancy and momentum, positive entrainment and positive
energy dissipation read

a + (ﬂ> —0 (62)
h X

m? 1
m, + (7 + th>x —0 (63)
hi +my >0 (64)

m2 m3

o gh ™ Logm) <o. 65
(5 +am), + (5 +20m) < )

The quantity we would like to maximize is the global entropy production,

d
maximizea / hs(b)dx. (66)
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In smooth parts of the flow, Equations (62), (63), and (65) can be combined to
yield

(1 — F*)(h, +my) <0, (67)
T
depending on wheather the flow is subcritical (|F'| < 1) or supercritical. If the
flow is subcritical, (67) and (64) yield

by +m, =0, (68)

where F is the Froude number, F = . Two different situations arise

that is, no entrainment takes place in smooth parts of the flow (see Section 3),
in agreement with our closure assumption. As the waves of the system
nonlinearly deform and break, they will give rise to entraining shocks, that
will maximize entropy production by moving at their maximal allowed speed,
as we have shown above. Yet these are shock waves that are subcritical on both
sides, so the active constraint will be that of energy conservation. Therefore,

Globally maximally mixing subcritical flows are described precisely by
our closure above: no mixing takes place in smooth parts of the flow,
and when waves break, they form energy preserving bores.

These flows can be computed in two alternative ways: through the global
optimization procedure given by (62)—(66), or, more simply, through the
solution of a complete set of conservation laws, given by (62) and (63) and
the energy dissipation Equation (65) turned into an equality. This model has
various potentially significant applications, including the ocean’s upper mixed
layer, as it grows by entraining water from below through breaking waves at
the interface. A sample computation modeling a gravity current is shown in
Figure 6.

The supercritical case is more subtle: Equations (67) and (64) are now the
same, and they do not impose any constraint on the maximization procedure,
that will gain from any increase in 4, + m,. This is a manifestation of the fact
that supercritical flows are unstable to mixing: for given values of ¢, m and
E= ’"72 + gh, there are two values of 4:

E + /E?* — 4gm?
= 2 ,
one super and one subcritical. The latter one, with the larger 4 and smaller b =
q/h, yields a more mixed state. More precisely, any height 4 in between the
two solutions (69), together with the definitions b = ¢ /h and u = m/h, yields a
state with total energy smaller than E. Hence it is possible for a supercritical
state to liberate energy while mixing.

Despite their natural instability, supercritical flows, and the subsequent
mixing events that turn them subcritical, do occur in nature [16]. They originate

h

(69)
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Figure 6. Numerical solution of a subcritical entraining flow: release of a bulge of heavy
fluid in a lighter ambient. The plot on the top-left shows the evolution of the interface, with a
bore forming. The bottom-left plot shows the density profile at the last computed time: once a
bore forms, entrainment of ambient fluid occurs, lowering the density. The top-right plot
displays the evolution of the [signed] Froude number, which remains subcritical throughout
the run. The bottom-right plot shows the total volume in the active layer as a function of time;
it starts increasing once the bore forms and entrainment occurs.

when dense currents flow over sills, where they switch from subcritical to
supercritical, in what oceanographers denote hydraulic control [2]. Examples
include the Mediterranean outflow over Gibraltar, the dense overflow of Arctic
water over the Denmark strait, that of Antarctic water through the Filchner
depression, and the Antarctic bottom water flowing into the Brazilian basin
through the Vema channel. Thus the properties of much of the abyssal water in
the world’s oceans is determined by the rate of entrainment in supercritical
flows.

How do we conciliate the existence of supercritical flows in nature, with their
instability to mixing, and with our modeling proposal of maximizing a mixing
entropy? It is all a matter of time scales. The intuition behind the modeling
hypothesis of maximizing the degree of mixing of a flow is that, given enough
time, a fluid will mix as much as global constraints, such as conservation
of energy and momentum, permit. Yet mixing of a stratified fluid is not an
instantaneous phenomenon, and the supercritical sections of geophysical flows,
typically between a sill and a hydraulic jump, are short, and travelled rapidly
by the fluid. Hence there is only time for partial mixing prior to the jump;
the role of the latter is in fact to complete the mixing process. Observations
of the Mediterranean outflow [17] show strongly localized entrainment and
mixing at the Portimdo canyon, where the flow appears to transition from
super to subcritical. Partial mixing is observed throughout the supercritical
stretch of the flow. Experiments on internal hydraulic jumps [18] also show that
substantial interfacial entrainment of ambient fluid into the supercritical plume
occurs before the jump, consistently with the flow’s instability to mixing.
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10. Conclusions

Internal breaking waves at the interface between two miscible fluids lead to the
entrainment and subsequent mixing of an a priori unknown amount of one fluid
mass into the other. In this work, we have developed a closure for these waves
based on the hypothesis that they will maximize the rate of mixing, subject to
the dynamical constraints provided by conservation laws (of mass, momentum
and energy) and causality (the Lax entropy conditions, nonnegative turbulence
production). We have found that entrainment is maximized when the speed of
the shock against the velocity upstream is fastest. Depending on whether the
active constraint limiting this speed is given by the Lax entropy conditions, or
by the requirement that the energy in the mean flow converted into turbulence
be nonnegative, two types of shocks arise, corresponding to internal hydraulic
jumps and bores respectively.

We have shown the equivalence of two natural ways of measuring mixing: by
the entrainment rate, and by the rate of a suitably defined entropy production. The
latter has the advantage of being easily generalizable beyond the one-and-a-half
layer scenario of this work, to arbitrary flows. Moreover, it permits replacing
the local maximization at shocks by a global optimization procedure, whereby
the production rate of the total entropy content of the flow is maximized,
subject to the coarse-grained dynamics provided by a large-scale model.

In the context of subcritical flows in the one-and-a-half layer model, such
global procedure leads to a dynamical system that conserves not only mass
and momentum, but also the energy content of the mean flow (i.e., it does
not produce any turbulence). Under these constraints, no entrainment takes
place away from the shocks. These shocks are faster than their single layer
counterpart, because they do not preserve the mass content of the active
layer (which grows due to the entrainment process), but its energy (which is
partially dissipated in single layer jumps). Supercritical flows, by contrast,
are unstable to mixing. The results of this paper are still applicable at the
hydraulic jump itself, but the detailed dynamics of the flow nearby, including
interfacial mixing driven by shear instability, cannot be resolved by our model.

Some of the results of this work could be applied to general scenarios beyond
stratified flows, whenever a system of conservation laws is “incomplete”,
leading to a closure problem at shocks. This is the case, for instance, of
detonation waves in combustion theory, which again move at the maximal speed
consistent with the Lax entropy conditions, and maximize entropy production
(the conventional entropy of gas dynamics this time, not the one associated to
fluid mixing). This analogy helps develop a physical intuition on these flows
(the instability of supercritical flows to mixing, for instance, is the natural
analogue of the instability to combustion of the gas mixture prior to the
detonation), and provides a general mathematical framework where questions
may be formulated more easily, and find a broader set of applicability.
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