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ON HIGHER-ORDER VISCOSITY APPROXIMATIONS

OF ODD-ORDER NONLINEAR PDES

VICTOR A. GALAKTIONOV

Abstract. Some aspects of vanishing viscosity (ε→ 0+) approximations of discontinues
solutions of odd-order nonlinear PDEs are discussed. The first problem concerns entropy
solutions of the classic first-order conservation law (Euler’s equation)

ut + uux = 0 (or ut + u2ux = 0), (0.1)

which are approximated by solutions uε(x, t) of the higher-order parabolic equation

ut + uux = ε(−1)m+1D2m

x
u, Dx = ∂/∂x, with integer m ≥ 2. (0.2)

Unlike the classic case m = 1 (Burgers’ equation), which is the cornerstone of modern
theory of entropy solutions, direct higher-order approximations of many known entropy
conditions and inequalities are not possible. Using the concept of proper solutions from
extended semigroup theory, we show that (0.2) and other types of approximations via
2mth-order linear or quasilinear operators correctly describe the solutions of two basic
Riemann’s problems for (0.1) with initial data

S∓(x) = ∓signx,

corresponding to the shock (S−) and rarefaction (S+) waves respectively.
The second model is taken from nonlinear dispersion theory with the parabolic ap-

proximation
ut − (uux)xx = ε(−1)m+1D2m

x
u, with m ≥ 2. (0.3)

We establish similar evolution properties of ε-approximations of stationary shocks S±(x)
posed for (0.3). Special “integrable” quasilinear odd-order PDEs are known to admit
non-smooth compacton or peakon-type solutions (e.g., the Rosenau-Hyman and FFCM
equations), while for more general non-integrable PDEs such results are unknown. It is
shown that the shock S−(x) for (0.3) is obtained as ε→ 0 by an ODE approximation and
also via blow-up self-similar solutions focusing as t → T−. For S+(x), the corresponding
smooth rarefaction similarity solution is indicated that explains the collapse of this non-
entropy shock wave.

A survey on entropy-viscosity methods developed in the last fifty years is included.
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parabolic operators.
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1. Introduction: Euler’s equation and others

1.1. Odd-order quasilinear PDEs are special in general theory and applica-

tions. Odd-order partial differential equations (PDEs) always played a special role in
general theory and in applications. Originated from fluid and gas dynamics (e.g., Euler’s
equations from eighteenth century), these equations deeply penetrated into many crucial
applications and created several famous and sometimes isolated mathematical areas of
PDE theory.

It is key that such nonlinear PDEs are able to describe singularity phenomena that
are not available in other classes of even-order (say, reaction-diffusion type) equations or
in quasilinear wave equations. Actually, the singularity effects such as appearance and
propagation of shock waves and other strong or weak discontinuities are the main features
that these PDEs were oriented to describe and to be good at.

Mathematically speaking, such shocks and other singularities were the origin of many
fundamental theoretical difficulties. Unlike many classes of even-order elliptic, parabolic,
and hyperbolic PDEs, odd-order equations do not contain a mechanism of smoothing of
solutions, which is called the interior regularity of solutions (obviously, this would destroy
shock waves). Since for complicated PDEs of such type, there exists a variety of shocks
with different local behaviour and local laws of propagation (generally called Rankine–

Hugoniot conditions), the correct choice of good “entropy” solutions, which makes the
problem well-posed, becomes a principal difficult question.

In the twenties century, the necessity of entropy definitions of correct solutions has been
recognized since 1940’s, and first results were due to Burgers’ and Hopf, who first develop
“viscosity” approximation approach to Euler’s equation (a scalar conservation law). The
idea of the viscosity approximation consists in adding to the main odd-order operator a
higher-order diffusion-like term with vanishing viscosity parameter ε > 0. This moves
the PDE into the better class of even-order equations that makes possible to construct
a unique approximate solution. The main mathematical difficulty then appears in the
singular limit ε→ 0, which leads to a number of difficult mathematical problems.

The main ideas of viscosity and entropy theory of scalar first-order 1D conservation
laws are associated with such names as Oleinik, Lax, Gel’fand, Glimm, Kruzhkov, and
others, who developed complete existence and uniqueness theory for such first-order PDEs
in the 1950’s and 60’s. This research initiated a large amount of further study and further
discoveries in the theory of conservation laws and hyperbolic systems that are reflected
in a number of monographs to be cited.

It must be noted that the main crucial results have been obtained by using a classical
diffusion viscosity approximation via the Laplace operator . Mathematically, this gives a
lot of advantages of the analysis, since the Laplacian, as mathematicians say, has the sign,
i.e., it is a negative operator in natural topology, and preserves this sign in many related
nonlinear mathematical manipulations. This is a crucial and an exceptional property of
the Laplacian that make it so popular and widely used in PDE theory. In other words,
the resulting ε-regularized equations obey the Maximum Principle (MP), which is a key
ingredient of modern theory of parabolic equations. Actually, it is not exaggeration to
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say that precisely these special properties of regularization via Laplacian made it possible
to create such a mathematically perfect viscosity-entropy theory of conservation laws.

For higher-odd-order PDEs, a natural viscosity approximation leads to higher-order
regularized problems without such good features, since any iteration of the Laplacian
(higher-order diffusion) loses its “global” negativity, to say nothing about the MP. This
implies several, not that pleasant, conclusions underlying that many previous approaches
and results achieved for first and lower-order equations and systems fail in principle. More-
over, fundamentally new mathematical ideas and methodology are necessary to overcome
such difficulties.

Using a mixture of analytical, formal, and numerical methods, we will explain the
main difficulties of analysis of such odd-order PDEs. We also present a number of rather
positive (but not general and exhaustive, which possibly are non-existent for such PDEs)
conclusions on viscosity-entropy analysis of the solutions. We include a survey based on a
detailed list of mathematical references on these subjects for those Readers who are more
interested in purely mathematical issues of PDE theory.

1.2. Preliminary survey: on some known models and results. Thus, we consider
the questions occurring in higher-order approximations (the vanishing viscosity method)
of nonlinear odd-order PDEs. To illustrate their rather special features, we begin with
the classic scalar conservation law or Euler’s equation

ut + uux = 0 in Q = R × R+, u(x, 0) = u0(x) in R, (1.1)

with bounded measurable initial data u0. This equation originated from gas-dynamics
played a key role in general theory of discontinuous entropy solutions of conservation laws
developed in the 1950’s; see books [1, 2, 3]. Among others, the well-established method to
define the unique entropy solutions of the Cauchy problem (1.1) is to consider its viscosity
approximations via regular (analytic) solutions of uniformly parabolic Burgers’ equation
with parameter ε > 0,

uε : ut + uux = εuxx, (1.2)

with the same data u0. The solvability of (1.2) and existence-uniqueness of uε are straight-
forward by standard parabolic theory and the Maximum Principle (MP). Then the entropy
solutions is obtained by the limit

u(x, t) = lim
ε→0+

uε(x, t), (1.3)

which is proved to exist. This methodology goes back to Hopf (1950); see the above
monographs for main results and a detailed historical survey.

Our first higher-order model occurs when we approximate entropy solutions of
(1.1) via higher-order viscosity that leads to 2mth-order extended Burgers’ equation (m ≥
2 is arbitrary integer, Dx = ∂

∂x
)

uε : ut + uux = ε(−1)m+1D2m
x u, u(x, 0) = u0ε(x), (1.4)

with the positive viscosity parameter ε → 0+. On the right-hand side, we see mth
iteration of the 1D Laplacian −D2

x = − ∂2

∂x2 > 0 (a positive operator; see below), taking
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with the minus sign. Overall, this gives again a negative diffusion-like operator in (1.4).
The second-order (m = 1) vanishing viscosity method coincides with (1.2). It turns out
that passing to the limit ε → 0 in (1.4) for m ≥ 2 is uncomparably much more difficult
than in the classic approximation manner (1.2).

One can note that the higher-order approximation (1.4) of Euler’s equation (1.1) is not
needed once the simpler second-order one (1.2) serves extremely well, which, of course,
that is correct. In our analysis, the first problem (1.4) of higher-order approximation
becomes a basic mathematical model for revealing main difficulties and features of such
ε-regularization to be applied to other more complicated odd-order PDEs. In addition,
the problem (1.4) has other independent applications and motivations; see a discussion
below.

Beyond the entropy theory and more general aspects of extended semigroup theory,
singular perturbation problems such as (1.4) have other remarkable applications. For in-
stance, higher-order viscosity terms occur via Grad’s method in Chapman–Enskog expan-
sions for hydrodynamics, where the viscosity part, being put into our hyperbolic equation,
gives

ut + uux =
∑∞

n=0 ε
2n+1∆n(µn∆u) = ε

(

µ0∆u+ ε2µ1∆
2u+ ...

)

,

where ε > 0 is essentially the Knudsen number; see details in Rosenau’s regularization
approach, [4]. In a full model, truncating such series at n = 0 leads to the Navier–Stokes
equations, while n = 1 is associated with the Burnett equations (ill-posed since µ1 > 0, so
a backward parabolic equation occurs), etc. Several aspects of the fourth-order approxi-
mations occurring in mechanical and physical applications and, in particular, in stability
theory of finite-difference schemes (third-order methods) were attracted significant inter-
est and have been studied in the literature on numerical study of the so-called postshock

oscillations; see references in [5, 6, 7]. There exists a large literature in gas and aero-
dynamics on the influence of viscosity and heat conduction processes on the structure
of shocks in compressed flows. This leads to hard higher-order nonlinear systems; see
Zel’dovich–Raiser [8].

The PDE (1.4) for m = 2 (here ε = 1 by scaling)

ut + uux = −uxxxx, (1.5)

which is a version of the Kuramoto–Sivashinsky equation, has the independent interest
and, in particular, occurs as a model for Bunsen burner, [9]. Several important results
on existence, uniqueness, and asymptotic stability of the non-monotone viscosity shock

profile (VSP) for (1.5) have been proved since the 1970s; see [10, 11, 12, 13], [14]–[17],
where further references on application can be found (the existence of the VSP is known
for any m ≥ 2; see further comments below).

Returning to general viscosity approximation (1.4), a crucial result was obtained re-
cently by Tadmor [18], who showed that L2 solutions {uε}, converge in Lp, with p < ∞,
to the entropy solutions, under the assumption that they are uniformly bounded in L∞.
It seems that the last assumption is also difficult to prove without a detailed analysis
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of shock layers occurring as ε → 0. Tadmor’s proof uses Tartar-Murat compensation
compactness theory and interesting crucial spectral ideas.

Concerning other types of regularization of the hyperbolic equation (1.1), for third-order
operators leading, in particular, to the Korteweg-de Vries equation

ut + uux = εuxxx, (1.6)

approximation of entropy solutions with shocks are known to be impossible; see general
conclusions of [19] concerning ODEs and detailed PDE analysis in [20]; see also Lax’s
survey [21]. In the case of a small dispersion perturbation of Burgers’ equation

ut + uux = εuxx + δ(ε)uxxx, (1.7)

for δ(ε) = o(ε2) as ε → 0, the solutions converge to entropy ones of (1.1); see [22], [23],
and more references in [24]. Other types of quasilinear p-Laplacian approximations with
the right-hand side

ε(|ux|ux) + Aεuxxx

can lead to nonclassical shocks (not satisfying Oleinik’s entropy condition), [25, 26, 6].
A similar analysis has been performed for higher-order viscosity approximations

ut + uux = εuxx − δ(ε)uxxxx; (1.8)

see [27] and [28], where a more general diffusion term δD4n+2
x u was considered.

As another more recent example of successful viscosity approximation for odd-order
PDEs, we refer to the Fuchssteiner–Fokas–Camassa–Holm equation,

ut − uxxt = −3uux + 2uxuxx + uuxxx in R× R, (1.9)

which arises as an asymptotic model describing the wave dynamics at the free surface of
fluids under gravity. General existence-uniqueness theory of non-smooth peakon solutions,
possessing discontinuous derivative ux, was developed with the essential use of viscosity
approximations in a number of papers including [29] (the regularization term εuxxxxt is
used), [30], [31] (Kato’s semigroup approach), and [32] (parabolic regularization εuxx in
the equivalent integral equation obtained by application to (I − D2

x)
−1 to (1.9), which

recovered an analogy of Oleinik’s entropy condition [33] to be discussed below).
In general, higher-order semilinear parabolic equations occur in several areas of appli-

cations, and their qualitative mathematical theory is the important popular subject; see
monographs [34, 35, 36]. The questions of 2mth-order approximation of odd-order evo-
lution equations are related to difficult problems of smooth regularization of semigroups
of discontinuous solutions and construction of discontinuous extended semigroups occur-
ring in the study of singularity formation phenomena in PDEs; see [37, Ch. 6,7] and [38,
Ch. 3-5] for further references .

1.3. Other models and layout of the paper. As a first step, we intend to describe
some asymptotic properties of solutions uε(x, t) of (1.4) for small ε → 0, in order to
understand why these violate all classical entropy inequalities (actually, many of such
aspects are a well-known matter). We put into Section 2 a short survey describing classical
local (pointwise) and nonlocal entropy conditions for the hyperbolic equation (1.1), as well
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as Gel’fand’s ODE admissibility concept (the G-admissibility) of solutions. Indeed, it has
been known for a long time that parabolic approximations withm ≥ 2 of conservation laws
are not good for using BV -spaces of functions of bounded variation due to the oscillatory
character of the kernels of fundamental solutions of 2mth-order parabolic operators. This
affects the total variation of solutions and leads to other unpleasant features.

Section 3 is devoted to the well-posedness of the Cauchy problem for (1.4), which is also
a non-trivial matter for such higher-order parabolic flows. In Section 4 we concentrate
on detailed discussion why for m ≥ 2 the regularized solutions {uε(x, t)} of (1.4) do not
approximate as ε → 0 known local entropy conditions for solutions u(x, t) of (1.1). This
happens due to the discontinuity of total variation of uε(x, t) at ε = 0 in approximating
of entropy shocks. We show that, for m ≥ 2, there exists a variation deficiency denoted
by dVm that is determined via the viscosity shock profile having finite total variation. It
turns out that

the variation deficiency dVm = 0 for m = 1 only.

Actually, this made it possible to approximate local entropy inequalities in classical
viscosity-entropy theory. It is curious that, for Riemann’s problems, the total variation
remains bounded, so Helly’s theorem for functions of bounded variation can be applied
similar to the classic case m = 1. Unfortunately, other unsolvable difficulties arise.

As a first step, as a preamble to other approximation problems, we easily demonstrate
that, for any m ≥ 2, parabolic approximations correctly describe entropy solutions of
Riemann’s problems for (1.1) with initial data

S∓(x) = ∓sign x, (1.10)

which lead to the shock and rarefaction waves respectively. We prove that S−(x) is a
proper solution, i.e., is obtainable by higher-order approximations, while S+(x) is not
and, as initial data, lead to standard self-similar rarefaction wave.

The results on 2mth-order approximation of arbitrary entropy solutions generates the
two key asymptotic (large-time behaviour) problems for the corresponding rescaled 2mth-
order parabolic equations (which can be solved for some equations (1.4)):

(I) asymptotic stability of the viscosity shock profile (Section 6), and

(II) asymptotic stability of the rarefaction profile (Section 8).

We also discuss other types of quasilinear 2mth-order approximations of entropy solu-
tions, including quasilinear parabolic or even thin film-type regularizations

ut + uux = −ε(1 + u2)uxxxx,

ut + uux = −εu2 uxxxx,

ut + uux = −ε
(

u2uxxx
)

x
,

(1.11)

for which applications of known methods become very difficult or even not possible. We
check, relying on straightforward numerical evidence, that, for all types of regularization
in (1.11), S−(x) remains a proper shock. As another version, we also briefly discuss similar
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properties of the regularized cubic equation

ut + u2ux = −εuxxxx, (1.12)

with initial data H(−x), where H is the Heaviside function. We show that there exists
an approximating sequence {uε} such that, in L1,

uε(x, t) → H
(

1
3
t− x

)

as ε→ 0+.

Other related approximation problems are studied in Section 7. In particular we con-
sider parabolic approximations of odd-order PDEs including our second model

ut − (uux)xx = −εuxxxx
(

or ... = εuxxxxxx, etc.
)

, (1.13)

which for ε = 0 occurs as a nonlinear dispersion model in the pattern formation in liquid
drops. Such equations are known to admit solutions with finite interfaces and singularities.
For instance Rosenau-Hyman’s equation [39]

ut − (uuxx)x = uux

possesses non-smooth compactly supported solutions with discontinuous derivatives Dk
xu

for any k ≥ 2. See various exact solutions and related mathematical aspects of such odd-
order PDEs in [38, Ch. 4]. Entropy theory for odd-order equations such as (1.13) seems to
be nonexistent and, most probably, entropy-like characterization cannot be represented
as an explicit inequality (or a differential inclusion) for classes of such PDEs.

It is remarkable that the stationary shock S−(x) turns out to be proper for (1.13) with
ε = 0, i.e., approachable by regular solutions {uε} of (1.13). For S+(x), existence of the
rarefaction self-similar solution is studied numerically (the corresponding ODEs are not
easy at all). On the contrary, for initial data S−(x) given in (1.10), it is proved that such a
rarefaction similarity solution describing evolution collapse does not exist. This confirms
that S−(x) does exist as a proper (entropy) standing shock wave.

Including into this paper several accompanying rigorous and formal asymptotic results,
we indent to show that even in simpler models (1.11) or in the more general PDEs like
(1.13) or related others, one cannot expect powerful compensation compactness techniques
to be applied, so that convergence of {uε} as ε → 0 towards entropy solutions needs a
delicate asymptotic analysis of corresponding singularity formation phenomena (shock
layers), and that this is an unavoidable difficulty. In this and other related approximation
problems connected with general extended semigroup theory of nonlinear degenerate or
singular higher-order PDEs, the questions of existence, uniqueness, and asymptotic be-
haviour of limit proper solutions cannot be studied separately, are indivisible, and cannot
be tackled in a sufficient generality by known traditional unified techniques borrowed from
classic theory.

2. Entropy conditions and Gel’fand’s ODE admissibility concept

2.1. Entropy inequalities. It is known from the 1950’s that the Cauchy problem for
general single conservation laws admits a unique entropy solution. We refer to first com-
plete results by Oleinik, who introduced entropy conditions in 1D and proved existence
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and uniqueness results (see survey [33]) and by Kruzhkov [40], who developed general
non-local theory of entropy solutions in RN . In the general case, one of Oleinik’s local
entropy condition has the form [33, p. 106]

u(x1,t)−u(x2,t)
x1−x2

≤ K(x1, x2, t) for all x1, x2 ∈ R, t > 0, (2.1)

where K is a continuous function for t > 0. Oleinik’s local condition E (Entropy) intro-
duced in [41], for the model equation (1.1) with convex function ϕ(u) = 1

2
u2 corresponds

to the well-known principle of non-increasing entropy from gas dynamics,

u(x+, t) ≤ u(x−, t) in Q, (2.2)

with strict inequality on lines of discontinuity, [33, p. 101].
Kruzhkov’s entropy condition on solution u ∈ L∞(Q) [40] is the nonlocal inequality

|u− k|t + 1
2

[

sign(u− k)(u2 − k2)
]

x
≤ 0 in D′(Q) for any k ∈ R. (2.3)

This inequality is understood in the sense of distributions meaning that the sign ≤ is
preserved after multiplying the inequality by any smooth compactly supported cut-off
function ϕ ∈ C∞

0 and ϕ ≥ 0 and integrating by parts. Oleinik’s and Kruzhkov’s ap-
proaches coincide in the 1D geometry.

It was known beginning with the first rigorous results by Hopf [42] (previous ones were
due to Burgers [43]) that entropy solutions can be obtained by the vanishing viscosity
method, i.e., as the limit (1.3) of a sequence of classical solutions {uε} of the Cauchy
problem for Burgers’ equation (1.2) with the same initial data. The convergence in (1.3)
takes place in L1(R) for t > 0 and is pointwise at any point of continuity of u(x, t).
Approximations of the initial data can be included, where

uε(x, 0) = u0ε(x) → u0 as ε→ 0 in L1. (2.4)

See the comparison theorem in [40], and [33] for survey of results on general 1D hyperbolic
equations. We refer to well known Smoller’s book [3] and recent monographs by Dafermos
[2] and Bressan [1] for more detailed information.

The following consequence of the parabolic approximation is of principle importance for
the theory. Let E ′(u) be a monotone C1-approximation of the sign-function sign(u− k)
with a fixed k ∈ R, i.e., E(u) is an approximation of |u− k|. Multiplying equation (1.2)
by E ′(u)χ with a nonnegative test function χ ∈ C1

0 (Q) and integrating over Q yields

−
∫∫

[E(u)χt + F (u)χx] dx dt

= − ε
∫∫

E ′′(u)(ux)
2χ dx dt+ ε

∫∫

E(u)χxx dx dt ≡ J1(ε),

where F (u) =
∫

uE ′(u)du. The first integral on the right hand side in non-positive, while
the second one is of order O(ε) on uniformly bounded regularized solutions uε. Passing
to the limit ε → 0 yields that the limit solution obtained by (1.3) satisfies the nonlocal
Kruzhkov-Lax entropy inequality (see [44] for hyperbolic equations and [45] for systems)

E(u)t + F (u)x ≤ 0 in D′(Q). (2.5)
8



For single conservation laws in RN , (2.5) being true for any convex C2-function E : R →
R, gives an equivalent to (2.3) definition of unique entropy solutions; see [44], [40, p. 241]
and [46]. Note that this is related to a parabolic version of Kato’s inequality [47]: if
u, f ∈ L1

loc(Q), then (see [48, p. 75])

ut − ∆u = f in D′(Q) =⇒ |u|t − ∆|u| ≤ f in D′(Q). (2.6)

2.2. ODE-admissible approximations in the sense of Gel’fand. It was well under-
stood in the theory of entropy solutions that a crucial principle is the correct description
of propagation of shock-waves, which are discontinuous travelling waves (TWs) satisfying
(1.1) in the weak sense,

u(x, t) = S(η), η = x− λt, (2.7)

where λ is the TW speed and S(η) is a step function. Using obvious scaling and transla-
tional invariance of the equation, we set λ = 0. Assuming that the discontinuity is located
at x = 0, by the Rankine-Hugoniot condition

λ = 1
2
[S(0+) + S(0−)], (2.8)

this corresponds to two initial functions with the following entropy solutions of (1.1)
(Riemann’s problems):

S−(x) = −sign(x) =⇒ u(x, t) = S−(x) for t > 0, (2.9)

and

S+(x) = sign(x) =⇒ u+(x, t) =

{

S+(x) for |x| ≥ t,
x
t

for |x| ≤ t.
(2.10)

The first discontinuous TW S−(x) (called a standing shock-wave in gas-dynamics) is the
entropy one. S+(x) is not entropy and the continuous for t > 0 solution u+(x, t) in (2.10)
(the rarefaction wave) describes collapse of this initial singularity.

Consider now a higher-order approximation of the conservation law, where the reg-
ularizing sequence {uε} is given by the Cauchy problem for the 2mth-order uniformly
parabolic equations (1.4) of arbitrary order 2m ≥ 4. Note that (1.4) is invariant under a
two-parametric group of scalings and translations, so that if u(x, t) is a solution, then

Tαβu(x, t) = β2m−1[u(βx+ β2mαt, β2mt) − α] (2.11)

is also a solution for any constants α, β ∈ R.
The approximating operator on the right-hand side of (1.4) is called admissible (or ODE-

admissible to be distinguished from the PDE-one to be introduced later on) if equation
(1.4) admits a TW approximating the entropy one S−(x) as ε → 0 in a reasonable
topology. The concept of admissible approximations (the G-admissibility, in what follows)
was introduced by Gel’fand in [49] and was developed on the basis of TW-solutions of
hyperbolic equations and systems; see [49, Sect. 2 and 8].

In view of the invariance (2.11), we again put λ = 0 (though there exists other types
of solutions with λ 6= 0; see below). From (1.4) we then obtain the ODE for the viscosity
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shock profile (VSP) f− corresponding to the entropy shock-wave S−(x). It is a sufficiently
smooth stationary solution of (1.4)

uε(x) = f−(y), y = x/εα, where α = 1
2m−1

. (2.12)

Here, f− solves the following ODE problem:

(−1)m+1f (2m) = ff ′ in R, f(−∞) = 1, f(+∞) = −1. (2.13)

The family of solutions (2.12) describes formation of the singular shock layer as ε → 0
in the ODE. For m = 1, (2.13) is solved explicitly to give the unique (up to translation)
monotone decreasing VSP

f−(y) = 1−ey

1+ey = tanh y
2
. (2.14)

The VSP f− of (2.13) exists for any m ≥ 2; see [10], [13] and [17]. For the fourth-order
approximation m = 2 it is known to be unique [14] and stable in a weighted Sobolev space
[11, 12].

Thus the higher-order approximations (1.4) for any m ≥ 1 are G-admissible in this
ODE (TW) sense.

3. Well-posedness of higher-order approximations: first L∞ bound

The problem of 2mth-order approximations of first-order PDEs seems was less studied
in the literature. Higher-order parabolic equations of the type (1.4) are well-posed and
admit unique smooth classical solutions local in time [34, 35]. For m = 1, global existence
and the uniform bound |u(x, t)| ≤ sup |u0| follow from the Maximum Principle. Such
global existence results for higher-order semilinear parabolic equations with lower-order
nonlinear perturbations are known in classes of sufficiently small initial data; see [50, 51,
52, 53]. Estimates in Sobolev spaces of solutions of PDEs (1.4) can be found in [28]. For
m = 2, global existence is established in [11, 12] via stability analysis of the VSP (i.e., for
initial data sufficiently close to f−).

Thus, it is principal to confirm that, for any m ≥ 2, solutions of (1.4) are global in time
and cannot blow-up in the L∞-norm. We consider the Cauchy problem (1.4) with initial
data satisfying

|u0ε| ≤ C, ‖u0ε‖2 ≤ C, (3.1)

where C > 0 denotes different constants depending on ε. By approximation of L2 initial
data via compactly supported one, we may assume that solutions have fast exponential
decay as x → ∞. Multiplying equation (1.4) by u and integrating over R gives

1
2

d
dt
‖u(t)‖2

2 = −ε
∫

|Dm
x u|2 ≤ 0, (3.2)

from which comes the first uniform bound on the solution

‖u(t)‖2 ≤ ‖u0ε‖2 ≤ C for all t > 0. (3.3)

Proposition 3.1. Let m ≥ 2 and (3.1) hold. For a fixed ε > 0, the solution uε(x, t) of

(1.4) is uniformly bounded in R × R+.

Proof is rather technical and is postponed until Appendix A.
10



4. On key differences in approximations for m = 1 and m ≥ 2

4.1. Non-monotonicity of the VSP and the variation deficiency. We now describe
a crucial non-monotonicity property of the VSP for m ≥ 2, which directly prohibits any
parabolic approximations of local entropy conditions. Denote by |f−|TV the total variation

of f−(y) on R. We introduce the variation deficiency dVm of f− as follows.

Proposition 4.1. For any m ≥ 2, the VSP f− given by (2.13) has bounded variation,

|f−|TV > 2 = |S−|TV =⇒ dVm ≡ |f−|TV − |S−|TV > 0. (4.1)

Proof. As y → ∞, the linearized ODE (2.13) has the form

(−1)m+1f (2m) = −f ′,

so that the exponential decaying behaviour is determined by functions

f(y) ∼ eµy

with the characteristic equation

(−1)m+1µ2m−1 = −1;

see [55, Ch. 3]. For any m ≥ 2, solutions are oscillatory at y = +∞, i.e., the characteristic
number µ with the maximal Reµ < 0 is such that Imµ 6= 0. This implies (4.1). �

The variation deficiency (4.1) shows that a finite discontinuity of variation occurs for
ε = 0+ at shocks of entropy solutions (though, in order to justify this, one needs the as-
ymptotic stability of the VSP; see Section 6). Note that dVm vanishes for the second-order
approximation m = 1 only and actually, this lies in the heart of parabolic approximations
of local entropy inequalities in classic entropy theory. We will conclude that for m ≥ 2
this is not possible.

In Figures 1 and 2 we show the stationary shock together with moving TWs,

−λf ′ + ff ′ = (−1)m+1f (2m). (4.2)

Figure 3 for m = 7 illustrates the fact that, for large m’s, the total variation of TW
profiles with λ 6= 0 (and essential deviation from the odd structure for λ = 0) can increase
dramatically via high oscillations near the shock. All these satisfy

(−1)m+1f (2m−1) = −λf + 1
2
f 2 + C, (4.3)

obtained from (4.2) on integration. The constant C = C(λ, f±) depends on the limit
values

f± = limy→±∞ f(y).

It follows from (4.3) that f± = ∓1 for λ = 0 only, and then C(0,∓1) = − 1
2
.

For all m = 2, 3, 4, 5, 6, 7, the applied iterative numerical method detects a fast (expo-
nential) convergence to the unique stable VSP. Recall that, rigorously, stability is known
for m = 2 only, [15, 11, 12]. For comparison, Figures 4 and 5 shows the character of non-
monotonicity of the VSP’s (λ = 0), which can be associated with typical oscillating and
sign-changing properties of the fundamental solutions of higher-order parabolic operators,
[34]. We complete this discussion by stating an open problem.

11
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Figure 1. The VSP and TW solutions of (4.2) for m = 2 (a) and m = 3 (b).
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Figure 2. The VSP and TW solutions of (4.2) for m = 4 (a) and m = 5 (b).

Conjecture 4.1. For any m ≥ 3, there exists a unique exponentially stable VSP.

Thus, for m ≥ 2, the total variation diminishing (TVD) property of entropy solutions,

|u(t)|TV ≤ |u0|TV ≡ ‖u′0‖M1 for all t > 0 (4.4)

(M1 is the space of bounded Radon measures), is violated. This property remains valid
for approximations with m = 1 and admits further extensions; see [56].

Next, we consider straightforward consequences of Proposition 4.1 prohibiting approx-
imation of other entropy conditions.

A relation to order deficiency. Here we observe a phenomenon similar to the
order deficiency [53] that can be expressed in terms of the following constant:

D∗ =
∫

|F | > 1 for all m ≥ 2,
12
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Figure 3. The VSP and the TW profiles for m = 7 can have different oscilla-
tory properties and total variations.
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Figure 4. VSPs f−(y) for m = 1 (the monotone dotted line), 2, 3, 4, 5, 6 and 7.

that measures a “degree” of violation of order-preserving properties of semigroups induced
by higher-order parabolic operators ∂/∂t + (−∆)m (being order-preserving for m = 1
only, where F > 0 and hence D∗ = 1). We easily show that the same order deficiency
is responsible for the finite increase of total variation in the higher-order linear parabolic
flows.
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Figure 5. The enlarged left branches of VSPs f−(y) from Figure 4 for m = 1
(the monotone dotted line), 2, 3, 4, 5, 6 and 7. Clearly, the oscillations and total
variations of f−(y) increase with m.

Proposition 4.2. Let m ≥ 2 and u(x, t) satisfy the Cauchy problem

ut = ε(−1)m+1D2m
x u in R × R+, u(x, 0) = u0(x) in R.

Then: (i) the following estimate holds:

|u(t)|TV ≤ D∗|u0|TV for t > 0, with the constant D∗ =
∫

|F | > 1, (4.5)

and (ii) estimate (4.5) is sharp for bounded data u0 ∈ L∞.

For the proof, see Appendix B.

Therefore the main difficulty in higher-order parabolic approximations is not estab-
lishing the compactness of the family {uε} and using Helly’s theorem for functions of
bounded variation; cf. its systematic applications in [33] for m = 1. It is crucial that, in
this case, the convergence uε → u to the entropy solutions assumes an extra hard asymp-
totic analysis and this cannot be avoided in estimating of the total variation of solutions
to (1.4).

On cubic equation. Consider briefly the regularized PDE (1.12). For ε = 0, the
Rankine-Hugoniot condition takes the form

λ = 1
3
[S2(0+) + S2(0−) + S(0+)S(0−)]

(

= 1
3

for S(0−) = 1, S(0+) = 0
)

.

After scaling out the parameter ε, the TW profiles solve the ODE

−λf ′ + f 2f ′ = −f (4). (4.6)

In Figure 6 we show three such profiles including the one (the bold line) corresponding
as ε→ 0 to step-like initial data

u0(x) = H(−x), (4.7)
14
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Figure 6. TW solutions of the ODE (4.6) for various λ’s.

with λ = 1
3
, where H(−x) is the reflected Heaviside function

H(−x) =

{

1 for x ≤ 0,
0 for x ≥ 0.

Hence,

f
(

y/ε
1

3

)

→ u−(x, t) = H
(

1
3
t− x

)

as ε→ 0.

For initial data H(x), we have the rarefaction solution (limit ε→ 0 is not studied)

u+(x, t) =

{

H(x) for x ≤ 0, x ≥ t;
√

x
t

for 0 ≤ x ≤ t.

We observe typical oscillatory behaviour of viscosity shock waves. In what follows, we
return to quadratic nonlinearities, though most of results and conclusions can be extended
to cubic models.

VSPs for quasilinear and thin film-type reqularizations. The VSPs corre-
sponding to S−(x) for PDEs (1.11) are presented in Figure 7. Notice a huge defect of
variation dV2 ∼ 120 of the profile on (b) corresponding to the approximation via the
“non-fully divergent” thin film operator in the last PDE in (1.11). Here we have used the
regularization in the degenerate differential term by replacing

f 2 7→ δ + f 2

with δ = 10−4, so decreasing δ increases dV2, which reaches ∼ 160 for δ = 5 · 10−5.

4.2. Regularized solutions do not satisfy Oleinik’s upper gradient bound. In
the second-order approximation (1.2), it is known that for general hyperbolic equations,
it is sufficient to choose

K(x, t) = C
t
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Figure 7. The VSPs for rescaled PDEs (1.4). In (a), we present (1+f 2)f (4) =

−ff ′ (dash line) and f 2f (4) = −ff ′ (solid line).

in the entropy inequality (2.1); see [33, p. 145]. This follows from the Maximum Principle
for (1.2), since the derivative w = uεx satisfies the parabolic equation

wt = εwxx − uwx − w2 (4.8)

possessing the explicit solution

w∗(t) = 1
t

for t > 0, w∗(0
+) = +∞. (4.9)

Therefore, as a straightforward consequence, by comparison of solutions to (4.8) one
obtains the following upper gradient bound for arbitrary initial data (including both shocks
u0 = S±(x) where for S+ translations in time are performed):

uεx ≤ 1
t

in Q. (4.10)

This makes it possible to get in the limit (1.3) the entropy solutions satisfying (2.1).
Let now m > 1 in (1.4). Then similarly we get for w = uεx the equation

wt = ε(−1)m+1D2m
x w − uwx − w2 (4.11)

possessing the same explicit solution (4.9) though the Maximum Principle does not apply
and (4.10) does not follow. Anyway, the negative quadratic term −w2 on the right-hand
side of (4.11) stays the same and suggests to assume that K(x, t) = C

t
with some C � 1

possibly depending, in view of (2.1), on u(x, t). Just in case, we write down such a
suggestion in the general form: for ε ≈ 0+,

uεx ≤ K(x, t) uniformly in Q, (4.12)

assuming that K is bounded for t > 0. We now easily prove that this is not the case, and
hence uniform estimates (4.10) or (4.12) are associated with the Maximum Principle for
the second-order PDEs such as (1.2) only.
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Proposition 4.3. For m ≥ 2, (i) (4.12) does not hold with any function K(x, t) uni-

formly bounded in x ∈ R for t > 0, and (ii) the same is true for the discrete relation

(2.1).

Proof. (i) For approximation (2.12) as ε→ 0,

uε(x) = f−(y) → S−(x) in L1(R) and a.e., y = x/εα, α = 1
2m−1

, (4.13)

(4.12) implies that for any fixed t > 0,

f ′
−(y) ≤ ε2m−1K(x, t) → 0 as ε→ 0, (4.14)

which leads to f ′
−(y) ≤ 0 contradicting Proposition 4.1.

(ii) Let, for definiteness, f−(y) be oscillating as y → −∞. Taking the family (2.12) and
using the fact that

δ0 = f−(y1) − f−(y2) > 0 for some y2 < y1 < 0, (4.15)

we have
uε(x1)−uε(x2)

x1−x2
= δ0

(y1−y2)εα → +∞ as ε→ 0,

i.e., (2.1) does not holds on the family {uε} approximating the entropy shock-wave S−.
�

Obviously, there is no way to improve such a “bad” property of higher-order approxi-
mations, for instance, by neglecting the uniformity of (2.1), i.e., assuming that uε satisfies
(2.1) for any |x1 − x2| ≥ C(ε) → 0 with C(ε) � εα as ε→ 0 (so that at ε = 0+ we arrive
at (2.1)). Indeed, taking as above x2 = y2ε

α, where y2 < 0 is the point of the absolute
maximum of f−(y), and x1 ∼ x2 − C(ε), we still obtain the divergence

uε(x1)−uε(x2)
x1−x2

≥ δ0
2C(ε)

→ +∞ as ε→ 0.

In the given TW-approximation of S−(x), the approximating sequence satisfies

supx uεx(x, t) → +∞ as ε→ 0 (4.16)

and, moreover, we will introduce a strong evidence of the fact that (4.16) is a generic
property of higher-order approximation of any entropy shocks. Therefore, any family {uε}
converging to a discontinuous entropy solution cannot approximate the entropy condition
(2.1) in the sense of (4.12), which is directed to delete shocks S+ from the entropy class.
On the other hand, if K(x, t) is not bounded for t > 0, e.g.,

K(x, t) = C
|x|

(this leads to a reasonable estimate of uεx), then estimate (2.1) does not exclude the
non-entropy solution S+(x) either.
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4.3. Regularized solutions do not approximate Oleinik’s condition E. It follows
from (4.15) that for arbitrarily small ε > 0, there exists the point x̄ = 1

2
(y1 + y2)ε

α and

h = 1
2
(y2 − y1)ε

α such that for a constant δ0 > 0, there holds

uε(x̄+ h, t) ≥ uε(x̄− h, t) + δ0, where h = O(εα). (4.17)

In this sense, due to non-monotonicity of the VSP, regularized solutions {uε} do not
approximate the condition E (2.2) as ε→ 0.

As a next corollary of Proposition 4.1, bounded variation of uε(x, t) in x for t > 0
(and hence suitable compactness of the family {uε}) cannot be proved via local entropy
conditions (2.1) or (2.2). Form = 1, this is a classical approach for 1D problems; see appli-
cations of the theory of functions with bounded variation and Helly’s theorem throughout
Sections 2–4 in [33]. One can expect that uε has uniformly bounded variation as ε → 0,
but this cannot be established in such a straightforward way as for m = 1.

It seems that for establishing of compactness of {uε} for m ≥ 2 for equations in 1D,
the analysis in the class BV (RN) of functions of bounded variations (see [3, Ch. 16] and
[1]) or estimates for compactness in L1(RN) [40] can be useful, which are powerful tools
in solving hyperbolic equations in RN . It is worth mentioning that both approaches are
based on the Maximum Principle ideas. For instance, main estimates in [40, pp. 232-237]
use comparison barrier techniques and do not extend to higher-order equations.

The only case where (4.14) does not lead to a contradiction, is m = 1, when the VSP
(2.14) is monotone, a property to be associated with the Maximum Principle for the
second-order ODE (2.13). In Section 7, we introduce higher-order models with monotone
VSP’s, which is important for their asymptotic stability.

4.4. Direct approximation of nonlocal entropy inequality is impossible, prob-

lem E ′′–E ′′′′. Let us finally show that special “geometry” of the VSP affects also parabolic
approximations of the nonlocal entropy inequality (2.5), though not in such a direct way
as the local ones do above.

The derivation of the entropy inequality (2.5) from (2.5) is associated with the Maxi-
mum Principle for the second-order parabolic equations. One can see that (2.5) cannot
be obtained in such a way if m > 1. For instance, let m = 2. Multiplying (1.4) by E ′(u)χ
and integrating by parts yields the following right-hand side in (2.5):

J2(ε) = − ε
∫∫ [

E ′′(u)(uxx)
2 − 1

3
E ′′′′(u)(ux)

4
]

χ dx dt

+ ε
∫∫ [

4
3
E ′′′(u)(ux)

3χx + 2E ′′(u)(ux)
2χxx − E(u)χxxxx

]

dx dt.
(4.18)

Consider the first integral in (4.18) depending on χ only, while the second one contains
x-derivatives of χ which hence may be assumed to vanish on any open subset inside
suppχ. We observe here two terms, the first positive one with E ′′ ≥ 0 and the second one
depending on E ′′′′, which can have any sign (actually, if E(u) is sufficiently close to |u−k|
then E ′′′′ changes sign). We will show below that multiplicative, interpolation inequalities
comparing the two terms do not help for coefficients given by sufficiently arbitrary smooth
convex E(u). Taking into account the above rescaled variable y = x/ε

1

3 (assuming shock

to be put at x = 0), we have that both terms in the integral are of the same order O(ε−
4

3 ),
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i.e., even this precise structure of the singular shock layer is not enough to guarantee the
necessary sign. Therefore, in order to get the entropy condition (2.5) directly, firstly, it
is necessary to discuss the following problem E ′′–E ′′′′: is there a sufficiently wide set of

smooth functions E(u) satisfying

E ′′(u) ≥ 0 and E ′′′′(u) ≤ 0 in R? (4.19)

Obviously, such non-trivial bounded E’s do not exist (E ′′(u) is sufficiently smooth, non-
negative, concave in R, hence E ′′ ≡ const). More involved E ′′–E ′′′′–E(6)–... unsolvable
problems occur for m = 3, 4, .... This expresses the fact that Kato’s inequality (2.6) (or
multiplication by sign) does not admit extension to higher-order operators ∂t/∂+(−∆)m.

4.5. Interpolation inequalities do not guarantee the sign. These aspects are dis-
cussed in Appendix C.

5. Parabolic approximation of shock-waves S±(x)

5.1. Proper and improper solutions. We now begin more general analysis of the
admissibility of various higher-order approximations of odd-order equations in the PDE
sense. As a key example, we continue to study the Cauchy problem (1.4) and will use the
following definition, which includes standard properties of weak (generalized) solutions of
conservation laws; see [33] and [3, Ch. 15].

Definition 5.1. We say that a weak solution u(x, t) of the conservation law (1.1) is
m-proper, iff there exists a bounded sequence of initial data {u0ε} → u0 in L1 as ε → 0
such that the family of classical solutions {uε(x, t)} of the 2mth-order parabolic problems
(1.4) satisfies

uε(x, t) → u(x, t) in L1 for any t ≥ 0. (5.1)

u(x, t) is proper if it is m-proper for any m ≥ 2.

Classical theory for m = 1 says that

u(x, t) is 1-proper ⇐⇒ u(x, t) is entropy. (5.2)

According to the definition, proper solutions u(x, t) are only those which can be obtained
by arbitrary 2mth-order parabolic approximations (1.4). Sometimes we will omit “m”
from the “m-proper”, if no confusion is likely. Keeping “m” can be key for other higher-
order models with different viscosity approximation, for which the convergence results for
any m ≥ 2 are more difficult. The definition includes “approximation” of initial data.
Indeed, once convergence (5.1) is established for fixed data u0n, so uεn → un as ε → 0,
convergence uεn → u relative to both ε, n follows for arbitrary L1-approximation of data
u0n → u0 as n→ ∞ by the triangle inequality,

‖uεn(t) − u(t)‖1 ≤ ‖uεn(t) − un(t)‖1 + ‖un(t) − u(t)‖1, (5.3)

since un → u in view of comparison theorems for entropy solutions, [33, 40].
The concept of proper solutions plays an important role in the theory of nonlinear

singular parabolic equations creating finite-time singularities like blow-up, extinction, or
quenching, where regular approximations (truncation of nonlinearities) make it possible to
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construct unique, maximal or minimal, extensions of solutions beyond singularity time;
see [58] and earlier references therein. Another area, where approximation approaches
are important, is concerned nonlinear evolution equations with singular initial data, e.g,
with measures as initial conditions. Then weak solutions can cease to exist; see pioneering
results in Brezis–Friedman [48]. In this cases approximation of singular data is of principal
importance and approximation of equations is not necessary. Such extended semigroups
constructed by approximation can be essentially discontinuous in any weak sense or in the
sense of measures, and other concepts of solutions (demanding more detailed information
on solutions properties) often do not apply. For instance, the positive approximation of
nonnegative initial data, u0ε(x) = u0(x) + ε, with ε > 0, in constructing weak solutions
u = lim uε of degenerate filtration equations

ut = (ϕ(u, x))xx, ϕ′
u(0, x) = 0 (ϕ(u, x) = u2 for the porous medium equation)

is rather folklore after the seminal paper [59].
Clearly, such proper solutions concept is not necessary for the conservation laws, where

classical entropy solution theory applies. It will be used below simply to test the concept
and identify specific asymptotic properties to be treated later on. For a class of higher-
order problems including (1.13) to be studied in Section 7, where entropy theory is not
available, the concept of approximation becomes key.

Let uε(x, t) in Q+ = R+ × R+ be odd in x, so satisfy the anti-symmetry conditions

Dk
xu(0, t) = 0 for t > 0, k = 0, 2, ..., 2m− 2. (5.4)

As the next step, we use in (1.4) the scaling

uε(x, t) = Uε(y, τ), y = x/εα, τ = t/εα, with exponent α = 1
2m−1

, (5.5)

where U = Uε solves a uniformly parabolic equation of the form

Uτ + UUy = (−1)m+1D2m
y U, with initial data Uε(y, 0) = U0ε(y) ≡ u0ε(yε

α). (5.6)

The scaling (5.5) establishes as ε → 0 a “parabolic zoom” for weak solutions of the
conservation law in a shrinking neighbourhood of any point (x0, t0) in the {x, t}-plane
(by replacing x → x − x0 and t → t − t0 in (5.5)). Therefore, it is key to describe the
character of “smeared” shocks created by parabolic approximations. As we have seen,
scaling (5.5) deletes the small parameter ε from the equation and U solves the uniformly
parabolic equation (5.6). Global solvability follows from Proposition 3.1.

For any m ≥ 1, equation (5.6) has the explicit linear solution

Ū(y, τ) = y
τ

(

ūε(x, t) = x
t

)

in Q, (5.7)

which occurs in the entropy rarefaction solution (2.10). Later on, the asymptotic stability
of this rarefaction profile will be of crucial importance in our analysis.

The next two conclusions are elementary and apply to other models in Section 4.1.

Proposition 5.1. The entropy shock wave S−(x) is proper.
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Proof. Let f be a solution of (2.13) with any m ≥ 2. Then, since the convergence
f−(y) → ±1 as y → ∓∞ given by the ODE (2.13) is exponential [55], the following holds:

uε(x) = f−(x/εα) → S−(x) as ε→ 0 (5.8)

in L1, pointwise and uniformly on sets {|y| ≥ c} with any c > 0. �

On the other hand, it is easy to see that a VSP f+ corresponding to the non-entropy
solution S+(x) does not exist. The proof applies to the ODEs corresponding to all three
models in (1.4).

Proposition 5.2. The problem for f+,

(−1)m+1f (2m) = ff ′ in R, f(−∞) = −1, f(+∞) = 1, (5.9)

does not have a solution.

Proof. Integrating the equation once yields

(−1)m+1f (2m−1) = 1
2
(f 2 − 1).

Multiplying by f ′ and integrating over R again by using exponential decay of the derivative
f (2m−2)(y) as y → ±∞, we get the contradiction

∫

(f (m))2 = −2
3
. �

Nonexistence of f+ is of a general nature and holds for various types of quasilinear di-
vergent parabolic approximations. For instance, if instead of (1.4) we consider a parabolic
regularization via the quasilinear p-Laplacian operator (gradient-dependent diffusivity co-
efficients are natural in regularization of conservation laws; see [49])

ut + uux = ε(−1)m+1Dm
x

(

|Dm
x u|p−2Dm

x u
)

, p > 1, (5.10)

then the corresponding “non-entropy” VSP f+ given by

uε = f+(y), y = x/εα, where α = 1
mp−1

,

is a weak solution of the ODE

(−1)m+1(|f (m)|p−2f (m))(m) = ff ′, f(−∞) = −1, f(+∞) = 1. (5.11)

Integrating once yields

(−1)m+1(|f (m)|p−2f (m))(m−1) = 1
2
(f 2 − 1)

and multiplying by f ′ and integrating over R leads to the same contradiction
∫

|f (m)|p = −2
3
.

It seems that no reasonable divergent elliptic operators on the left-hand side of (5.11)
can produce a heteroclinic connection −1 → 1 in the corresponding ODE. For such
approximation operators, this can be done only by taking negative parameters ε < 0
(then f+ becomes f−) creating ill-posed parabolic equations backward in time.

Nonexistence of the VSP does not trivially imply that S+(x) is not proper, i.e., cannot
be obtained by parabolic approximations. In this sense, the case m = 1 is exceptional
since the proof is straightforward by comparison with the exact solution (5.7). Indeed,
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if uε is an approximation, then uε(x, t) ≤ x
t

in Q+. Hence, uε(x, t) cannot stabilize to
S+(x) as ε → 0. For m > 1, where the semigroup induced by equation (5.6) is not
order-preserving, we cannot use comparison, and the result is based on a Lyapunov-type
analysis that easily extends to the two first PDEs in (1.4).

Proposition 5.3. S+(x) is not a proper solution.

Proof. Without loss of generality, we assume that Uε(x, t) → 1 as y → +∞ sufficiently
fast (e.g., exponentially, which happens if U0ε(y) = 1 for y � 1, following from the
exponential decay of the fundamental solution of the parabolic operator [34]). Then all
integrations below make sense. Multiplying equation (5.6) by U and integrating over R+

yields a Lyapunov function that is monotone decreasing on evolution orbits,

d
dτ

Φ(U)(τ) ≡ 1
2

d
dτ

[∫ ∞
0

(U2 − 1) dy
]

= −1
3
−

∫ ∞
0

(

Dm
y U

)2
dy ≤ −1

3
. (5.12)

Therefore,

Φ(U)(τ) ≤ − τ
3

+ Φ(U0ε) for τ > 0.

Using the rescaled variables given in (5.5), we have that, for any t > 0,
∫ [

u2
ε(x, t) − 1

]

dx ≤ −2t
3

+ 2Φ(u0ε). (5.13)

Passing to the limit ε→ 0 and using that uε → S+ in L1 (then Φ(u0ε) → 0), we obtain a
contradiction in the inequality (5.13). The analysis applies to the Cauchy problem in Q
without the anti-symmetry conditions (5.4). �

5.2. On the asymptotics of singular layer for S−. This is much more difficult, and
only local asymptotic estimates are known rigorously. Concerning formal asymptotic
expansions as ε→ 0, notice that even the case m = 1 is rather difficult to justify; see Il’in
[60, Ch. 6]. For instance, it is worth mentioning that the appearance of the logarithmic
expansion terms ln ε in [60, p. 235] is justified by multiple reductions of Burgers’-like
equations to the heat equation. Obviously, this is not possible for m > 1.

We discuss the structure of a connecting orbit S− 7→ f , m ≥ 2, for the problem (5.6)
with initial data S−(y). In the main Region I, with τ � 1, we use the rescaled variables

η = y/τ
1

2m , s = ln τ → −∞ as τ → 0,

so that the PDE for U = U(η, s) contains an exponentially small perturbation,

Us = AU − e
3s
4 UUη as s→ −∞. (5.14)

Here

A = (−1)m+1D2m
η + 1

2m
ηDη (5.15)

is a linear non self-adjoint operator. It has the discrete spectrum
{

− k
2m

< 0, k ≥ 1
}

in
a weighted L2-space L2

ρ, with the weight

ρ = ea|η|
α
, α = 2m

2m−1
,
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where a > 0 is small enough, with complete and closed set of eigenfunctions {ψk}, compact
resolvent, etc.; see [52] and Appendix D, where the adjoint operator A∗ with eigenfunc-
tions {ψ∗

k} are studied, for greater detail. Therefore, passing to the limit s → −∞ in
(5.14), we have that such a solution satisfies in L1

U(η, s) → θ(η) as s→ −∞, (5.16)

so U(η, s) stabilizes to a stationary solution θ(η),

Aθ ≡ (−1)m+1θ(2m) + 1
2m
ηθ′ = 0 in R, θ(±∞) = ∓1. (5.17)

Since θ(η) satisfies the poly-harmonic equation

Uτ = (−1)m+1D2m
y U

with initial data S−(y), we have

θ(η) = 1 − 2
∫ η

−∞ F (ζ) dζ, where F is the kernel in (A.1).

Figure 8 shows functions θ for m = 2 and 3, together with the corresponding VSP profiles,
i.e., stationary solutions of (5.6). It is remarkable that θ and f have very similar shapes.
Therefore, further evolution consists of a slight deformation of these shapes to match the
stationary profiles in Region III, for t � 1. Beforehand, in the intermediate Region II,
with τ = O(1) (s = O(1)), we can use equation (5.14), where we apply the approximation
(5.16) in the nonlinear term to get, by convolution with the fundamental solution (A.1)
(here ε = 1 and x, t 7→ η, s),

U(y, τ) ≈ θ(η) − 1
2

∫ τ

0
(τ − ρ)−

1

m dρ
∫ ∞
−∞ F ′( y−z

(τ−ρ)1/2m

)

θ2
(

z
ρ1/2m

)

dz, η = y
τ1/2m . (5.18)

The first function θ(η) describes the above “parabolic” smoothing of the shock for small
τ , while the second opposite term prevents further collapse of the step behaviour and
thus describes the intermediate stage of attracting to the VSP f−(y). For deriving match-
ing conditions between Regions I–II and II–III containing in (5.18) and describing the
connecting heteroclinic orbit, spectral properties of linearized operators in Regions I (see
Appendix D) and III (see next Section 6) are key. Namely, in Region I, the perturbed
behaviour is as follows:

U(y, τ) = θ(η) + e
3s
4

(

A − 3
4
I
)−1

θθ′ + ... as s→ −∞
(

3
4
6∈ σ(A)

)

. (5.19)

In Region III, we have

U(y, τ) = f−(y) + Ceλ1τ ψ̂1(y) + ... as τ → +∞, (5.20)

where λ1 < 0 is the first negative eigenvalue with eigenfunction ψ̂1 of the linearized (about
f−) operator N2m to be introduced in (6.2). We expect that (5.19), (5.20) determine
a heteroclinic connection S− 7→ f (in the rescaled variables, it is θ 7→ f). Rigorously,
problems of connecting orbits remain open for all semilinear higher-order parabolic PDEs,
since Sturm’s First Theorem on zero sets applies for m = 1 only.

On a formal connection for m = 2 by averaging method. This approach is
discussed in Appendix E.
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Figure 8. Solutions θ of the ODE (5.17) for m = 2 (a) and m = 3 (b). VSPs
f solving (5.13), λ = 0, are given for comparison.

6. Stability of the VSP and entropy inequalities. Asymptotic stability

of the rarefaction profile

In this section, we deal the first asymptotic problem. In view of negative conclusions
of Section 4, we claim that, in general, the convergence (5.1) to entropy solutions cannot
be proved without deep understanding of the corresponding asymptotic problems. The
approximation problem for m ≥ 2 is thus an example, where the existence of a solutions
(as the limit of {uε}) cannot be separated from corresponding parabolic asymptotic theory.
As usual in scaling techniques, due to variables (5.5), the limit ε → 0+ for uε(x, t) in a
natural sense is equivalent to τ → +∞ for U(y, τ).

6.1. On generic formation of the shock layer: stability of the VSP. We now
discuss conditions under which the VSP satisfying (2.13) describes the generic formation
of the shock layer in the convergence (5.1) to the entropy shock S−(x). This means that
f is the asymptotically stable stationary solution of the rescaled equation (5.6), so we
perform the standard linearization by setting

U(y, τ) = f−(y) + Y (y, τ), where Y solves (6.1)

Yτ =N2mY + D(Y ) with N2m = (−1)m+1D2m
y − fDy, (6.2)

D(Y ) = Y Yy being the quadratic perturbation. By the principle of the linearized stability
(see e.g. [63, Ch. 9]), one needs to study the spectral problem

N2mψ = λψ, (6.3)

where by classical ODE theory [55], ψ(y) is assumed to have exponential decay as |y| → ∞.
Multiplying equation (6.3) by ψ̄ in L2(R) and the conjugated one by ψ yields

(Reλ) ‖ψ‖2
2 = −‖ψ(m)‖2

2 + 1
2

∫

f ′(y)|ψ(y)|2 dy. (6.4)
24



We thus observe another “bad” consequence of the VSP f−(y) being non-monotone: if
f ′
−(y) changes sign, then (6.4) does not directly imply the necessary stability condition

Reλ < 0 for λ ∈ σ(N2m), (6.5)

unlike the only case m = 1, where f ′
− < 0 by (2.14) and (6.5) follows from (6.4). Never-

theless, since f−(y) must be “effectively” decreasing as a heteroclinic connection 1 → −1,
one can expect that (6.5) remains true for such f−(y). This is proved in [15] for m = 2
(the proof is partially computational; for an analytic proof of linear stability, see [12]).
As a result, the operator N4 was shown [11] to be sectorial with the spectrum satisfying
(m = 2)

σ(N2m) ⊂ {Reλ ≤ −k} with a constant k > 0, (6.6)

in the weighted Sobolev space H3
ρ(R) with the exponential weight ρ(y) = cosh(µy), where

µ > 0 is a small constant. This guarantees the exponential decay of the semigroup
‖eN2mτ‖L ≤ Ce−kτ in the space of linear maps L(H3

ρ , H
3
ρ), and hence the exponential

stability of the VSP by the principle of linearized stability; see [63, Ch. 9].
It is natural to expect that such stability results are true for arbitrary m > 2. Namely,

the eigenvalue problem (6.3) for the ODE operator N2m in the weighted space L2
ρ(R) of

odd functions satisfying (5.4) with the dense domain H2m
ρ (R), satisfies (6.5) and (6.6).

Nevertheless, even a computational proof, which can be done for m = 3 and 4 by rather
standard codes, is expected to get more and more involved for larger m. Once (6.5) is
proved, the theory of sectorial operators [35, 63] and interpolation inequalities apply to
guarantee the exponential stability of VSP’s. In its turn, this will imply that entropy
conditions (Section 2) cannot be approximated in the viscosity sense for any initial data.
Furthermore, then the variation deficiency (4.1) scaled according to (2.11) for moving
shocks actually describes locally the “jump” of total variation at ε = 0.

6.2. Asymptotic stability of the rarefaction profile. This analysis also features in-
teresting related spectral properties of the linear operators involved and is performed in
Appendix D.

7. On other higher-order models: shocks and approximations

7.1. Preliminary properties of odd-order models. In this section, we describe sim-
ilarities with higher-odd-order equations from nonlinear dispersion theory (cf. [39] for
m = 2 and [66] for m = 4; see also [38, Ch. 4] for further models and references)

ut + (−1)m−1D2m−2
x (uux) = 0 in Q, u(x, 0) = u0(x) in R, (7.1)

where m = 1 gives the conservation law (1.1). As above, we concentrate on evolution
properties of solutions corresponding to initial data S±(x), (1.10). This analysis is a first
step towards understanding general weak solutions of such PDEs. Entropy-like theories
for (7.1) for any m ≥ 2 are still not known, so that we will rely on our proper (extended
semigroup) concept of solutions and necessary numerical ODE results.
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(i) Similarity shock and rarefaction waves: a PDE admissibility. Consider
first the following blow-up (as t→ T− > 0) similarity solution of (7.1):

uS(x, t) = g(z), where z = x/(T − t)
1

2m−1 and g solves the ODE (7.2)

(−1)m−1(gg′)(2m−2) + 1
2m−1

g′z = 0 in R, g(±∞) = ∓1. (7.3)

Assuming, as for m = 1, that g(z) is odd and that g(z) > 0 for z < 0 (to be checked
numerically), we set G(z) = g2(z) to obtain a semilinear ODE with m anti-symmetry
conditions at the origin,

G(2m−1) = (−1)m

(2m−1)
G′z√
G

for z < 0, G(−∞) = 1, G(0) = ... = G(2m−2)(0) = 0. (7.4)

Such (2m-1)th-order ODE problems are not easy for analytical study. In this frame-
work, it is crucial that the asymptotic bundle of solutions as z → −∞, where G(z) → 1,
is given by the linear ODE

G(2m−1) = (−1)m

2m−1
G′z

and has dimension m. Therefore, this is sufficient to match precisely m conditions at the
origin in (7.4). The oscillatory character of solutions for z � −1 (see below) confirms
that this is possible. Uniqueness of such a matching for m ≥ 2 remains an open problem.

Numerically, we obtain a clear evidence on existence and uniqueness of such smooth
solutions g and we state

Conjecture 7.1. For any m ≥ 2, there exists a unique stable solution G(z) of (7.4).

In Figure 9 we present the anti-symmetric profiles G(z) > 0 for z < 0 in cases m = 2
(a) and m = 3 (b). We observe that, on the left-hand side, the similarity profiles G(z)
are strongly oscillatory. For m = 2, i.e., for the third-order PDE (7.1), this corresponds
to the behaviour of the Airy function as z → −∞,

G(z) ∼ 1 + cAi(z) ∼ 1 + c|z|− 1

4 cos
(

a0|z|
3

2 + c0
)

where a0 = 2
9

√
3. (7.5)

Indeed, as x → −∞ and hence u → 1, (7.3), with m = 2, becomes asymptotically linear
with the fundamental solution

ut = uxxx =⇒ b(x, t) = t−
1

3 Ai
(

x
t1/3

)

.

In particular, the asymptotics (7.5) implies that the total variation of any solution of (7.4)
(and uS(x, t) for any t < T ) is infinite. It is easy to check, deriving asymptotics similar
to (7.5), that the same holds for any m ≥ 2. This is in striking contrast with solutions
for m = 1, i.e., of (1.1), where finite variation approaches are key. In view of conditions
at ±∞ in (7.3), for such g(z),

uS(x, t) → S−(x) as t→ T− (7.6)

for any x ∈ R, uniformly in R \ (δ, δ), δ > 0 small, and in Lploc(R) for p ∈ [1,∞).
Using the reflection symmetry u 7→ −u, t 7→ −t of PDEs (7.3), we also conclude that

the same similarity solutions defined for t > 0,

uS(x, t) = g(z), with z = x/t
1

2m−1 , (7.7)
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Figure 9. The shock wave similarity profile G(z) = g2(z) satisfying the ODE (7.4).

describe collapse as t → 0+ of the non-entropy shock S+(x) = sign x, posed as initial
data. Then (7.7) plays the role of the rarefaction wave for higher-order “conservation
laws” such as (7.1). This means that S+(x) is not an entropy shock.

Thus, the above similarity solution (7.2) of (7.3) describe formation of the “entropy”
shock S−(x) from a sufficiently smooth initial data, while the rarefaction wave (7.7) is
responsible for smooth collapse of the initial singularity S+(x). This means that these
two Riemann’s problems admit the same treatment for any order m ≥ 1.

(ii) Quartic nonlinearity. To confirm a generic character of such shocks S−(x), we
consider similar PDEs with fourth-degree nonlinearity

ut + (−1)m−1D2m−2
x (u3ux) = 0,

where the blow-up solutions has the same form (7.2), while g and G = g4 solve

(−1)m−1(g3g′)(2m−2) + 1
2m−1

g′z = 0 =⇒ G(2m−1) = (−1)m

(2m−1)
G′z
G3/4 (7.8)

with the same boundary conditions. Shown in Figure 10 are numerical oscillatory profiles
G(z), z < 0, for m = 2 (a) and m = 3 (b), for which (7.6) holds.

(iii) On non-oscillatory FBP. PDEs (7.1) for m ≥ 2 admit a natural free-boundary
setting with typical “zero contact angle” conditions at levels {u = ±1}. Then, for above
S±–Riemann’s problems, similarity solutions have finite interfaces and are not oscillatory
nearby. This assumes studying the ODE (7.3) with the same number m of conditions at
a free interface position z = a < 0

g(a) = 1, g′(a) = ... = g(m−1)(a) = 0. (7.9)

By the anti-symmetry conditions at z = 0 in (7.4) we have an (m−1)-dimensional bundle
for z ≈ 0− that is enough to match m conditions (7.9) with a free parameter a. Numerics
show existence and uniqueness of such a similarity FBP solution g(z) of (7.3), (7.9) for
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Figure 10. The shock wave similarity profile G(z) = g4(z) of the ODE (7.8).

m = 2 and 3. In particular, global similarity solutions (7.7) represent the rarefaction
waves.

Figure 11 shows the RP (the boldface line) for m = 2 and m = 3, obtained numerically
by shooting in the ODE (7.4) for G = g2. Here, we have performed reflection z 7→ −z for
convenience, so we are restricted to the semi-interval (0, a), with the interface position
a > 0, putting the free-boundary conditions

G(0) = G′′(0) = 0 for m = 2, and ... = G(4)(0) = 0 for m = 3.

We extend the solution into (−a, 0) by −G(−z).
For m = 2, (7.3) with z 7→ −z this leads to a third-order equation,

(g2)′′′ + 2
3
g′z = 0,

which is invariant under a group of scalings. The change of variables

ξ = ln z, g = e3ξϕ(ξ), and P (ϕ) = ϕ′

reduces it to a second-order ODE for P , which can be studied to guarantee existence of
a suitable RP. For m ≥ 3, a shooting-type argument is suitable (but indeed difficult) to
prove existence, while the origin of uniqueness remains obscure and open.

(iv) 2mth-order parabolic approximation. A natural regularization of (7.1) is

ut + (−1)m−1D2m−2
x (uux) = ε(−1)m+1D2m

x u, u(x, 0) = u0ε(x), (7.10)

where u0ε → u0 as ε → 0+ in a suitable (Lp) topology. The well-posedness of such
approximations in the sense of Proposition 3.1 becomes much more delicate problem,
which is not studied here. The corresponding rescalings are

u(x, t) = U
(

x
ε
, t
ε2m−1

)

=⇒ Uτ + (−1)m−1D2m−2
y (UUy) = (−1)m+1D2m

y U. (7.11)
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Figure 11. Shooting the RP (the boldface line) satisfying (7.4), z 7→ −z, and
free-boundary conditions (7.9) for m = 2 (a) and m = 3 (b).

It is important that the PDE (7.11) does not admit moving TWs as heteroclinic con-
nections 1 7→ −1. Indeed, for λ 6= 0, integrating once, we obtain the ODE

−λf + (−1)m−1 1
2
(f 2)(2m−2) = (−1)m+1f (2m−1) + C, (7.12)

where C is a fixed constant. Clearly, for any m > 1, (7.12) cannot possess smooth
solutions satisfying f(±∞) = ∓1 unless λ = 0. This negative result suggests that the
original PDE (7.1) does not admit moving discontinuous solutions of the S±-type (but
indeed there exist others of different shapes). Therefore we need to study approximation
properties of these standing shocks with λ = 0 only.

(v) Monotone viscosity shock profile. The VSP corresponding to the proper (see
below) shock-wave S−(x) as a stationary solution of (7.10) has the form

uε(x) = f−(y), with y = x/ε,

satisfying

f (2m) = 1
2
(f 2)(2m−1), f(±∞) = ∓1 =⇒ f ′ = 1

2
(f 2 − 1). (7.13)

Hence the unique VSP has the form (2.14). Indeed, as we have seen, the monotonicity
of the VSP is an essential positive feature of this higher-order model. Recall that this
non-oscillatory stationary states of (7.10) are quite special, and general solutions of this
PDE must be highly oscillatory about ±1 for any m ≥ 2, as the fundamental solution
(A.1) guarantees.

7.2. Proper and improper shock-waves. Similar to Section 5, we say that u(x, t) is
a proper solution (we do not use “m-proper” by obvious reason) of the Cauchy problem
(7.1) if there exists a sequence of initial data u0ε → u0 such that the solutions of parabolic
problems (7.10) satisfies (5.1) (at least in H−m). Let us study the evolution properties of
the shock-waves S±(x).

Proposition 7.1. (i) S−(x) is a proper solution, and (ii) S+(x) is not.
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Proof. (i) We have that convergence (5.8) with the VSP (2.14) holds a.e. (ii) The VSP
f+ corresponding to S+(x), i.e., a solution of the ODE satisfying f(±∞) = ±1, does not
exist. Consider the equation (7.11) in Q+ = R+ × R+ with conditions (5.4). Assuming
that u0ε(x) → 1 as x → ∞ exponentially fast (then the same holds for solutions uε(x, t)
following from the integral equation), we apply to equation (7.11) operator (−D2

y)
1−m

naturally defined via integrating equation 2m− 2 times and integrate again over (y,∞).
Next, multiplying by U − 1 in L2, we arrive at a Lyapunov function (cf. (5.12))

1
2

d
dτ

∫ ∞
0

[

(Dy)
−m(U − 1)

]2
= −1

3
−

∫ ∞
0

(Uy)
2 ≤ −1

3
. (7.14)

Integrating and rescaling this identity, similarly to the proof of Proposition 5.3, we have
that uε cannot converge to S+ as ε→ 0. �

7.3. For m = 2 the VSP is stable. Let us prove that for m = 2 the monotonicity of
the VSP (2.14) guarantees the necessary condition (6.5) of its stability. The linearization
(6.1) yields the quadratically perturbed equation (6.2) with the linear operator

N4Y = −Y (4) + (fY )′′′. (7.15)

Solving the eigenvalue problem (6.3) in a space of exponentially decaying functions (hence
from L2) and setting ψ = φ′′′, we arrive at the eigenvalue equation

−φ(4) + fφ′′′ = λφ, φ ∈ H4.

Multiplying this equation by φ̄′′ in L2 and the conjugate one by φ′′, after integration by
parts one obtains

(Reλ)
∫

|φ′|2 = −
∫

|φ′′′|2 + 1
2

∫

f ′|φ′′|2.
It follows that in suitable classes of even or odd functions, (6.5) holds. By the interpolation
inequalities, this implies that (7.15) is a sectorial operator in a weighted L2-space (see
[11]) and the exponential stability of the VSP follows.

This means that convergence (5.8) describes the generic formation of the shock layers
in fourth-order parabolic approximations of such shock-waves as weak solutions of the
third-order equation (7.1).

7.4. On higher-order approximations: existence and stability of VSP. Equation
(7.1) admits various parabolic approximations of different orders. For instance, consider
its (2m+2)th-order approximation

ut + (−1)m−1D2m−2
x (uux) = ε(−1)mD2m+2

x u, (7.16)

with rescaled variables

u(x, t) = U(y, τ), y = x/ε
1

3 , τ = t/ε
2m−1

3 ,

where U solves the parabolic PDE

Uτ + (−1)m+1D2m−2
y (UUy) = (−1)mD2m+2

y U. (7.17)

Then the VSP f−(y) for the shock wave S−(x) is the same as for extended Burgers’
equation (1.4) with m = 2 and is uniquely determined by the ODE problem (2.13). The
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Figure 12. Varying the solutions of (7.20) with λ ≈ − 1
4 and ε ≈ 0.1.

stability analysis is based on the results from [15] and [11, 12]. The characterization of
shock-waves, Proposition 7.1, remains unchanged.

For instance, for m = 2 we have the sixth-order parabolic PDE

ut = (uux)xx + εuxxxxxx =⇒ u(x, t) = U(y, τ), y = x/ε
1

3 , τ = t/ε, (7.18)

where U solves the rescaled ε-independent parabolic equation

Uτ = (UUy)yy + Uyyyyyy .

For the VSP with λ = 0, U(y) = f−(y), we have the ODE

(ff ′)′′ + f (6) = 0.

Hence, on integration, we obtain another ODE, which is more difficult than that in (7.13)
and appeared earlier (see (2.13) for m = 2)

f ′′′ = 1
2
(1 − f 2). (7.19)

The VSP solving (7.19) is given in Figure 1(a) (the boldface line).

7.5. On moving proper shocks. The moving TWs u(x, t) = f(x − λt) with λ 6= 0 of
equation (7.18) satisfy the ODE with the Rankine-Hugoniot condition (ε = 0)

−λf ′ = (ff ′)′′ + εf (6) =⇒ λ = [(ff ′)′′ ]
[f ′]

. (7.20)

The passage to the limit in (7.20) as ε → 0 to describe proper shocks is more difficult
and falls out of the scope of this paper. In Figure 12 we present a few types of shocks,
showing that these discontinuous solutions can be approximated by ε-viscosity.

7.6. A quasilinear ε-approximation. Such an example is treated in Appendix F.
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8. Conclusions

We have discussed two main problems of higher-order viscosity approximations of non-
linear degenerate odd-order partial differential equations (PDEs). As is known from classic
theory, unlike parabolic or elliptic (even-order) PDEs, such odd-order equations do not
exhibit internal regularity and therefore may admit essentially discontinuous solutions as
the intrinsic property of the models. The principal question is how to distinguish the
so-called entropy shock waves from the non-entropy shocks that are collapsed and evolve
to smoother rarefaction waves.

Nowadays, there exists fully developed theory of the first-order PDEs called the con-

servation laws with the classic representative, such as the Euler equation originated from
gas-dynamics

ut + uux = 0. (8.1)

Its discontinuous shocks are well known for more than a century, and a complete theory
was created in the 1950s. One crucial conclusion is that the entropy solutions are those,
which can be obtained in the limit ε→ 0+ of smooth analytic solutions of the uniformly
parabolic Burgers equation

ut + uux = εuxx. (8.2)

First problem. We discussed the possibility of higher-order approximations of en-
tropy solutions via the analytic semigroup generated by the extended Burgers equation

ut + uux = ε(−1)m+1D2m
x u with m ≥ 2. (8.3)

Despite the violation of order-preserving, comparison and discontinuity of total variation
(characterized by the variation deficiency, Section 4), our conclusion, though not being
completely rigorously proved, is positive: such an approximation makes sense. We have
showed this using both the ODE (the G-admissibility of shocks in Gel’fand’s sense, Section
2) and sometimes the PDE approximations (Section 5). In particular, we have proved
that the non-entropy shocks S+(x) (actually evolving to rarefaction waves) cannot be
obtained via any parabolic approximations (Section 5).

Second Problem. Higher-order parabolic approximations begin to play a key role
for third-order nonlinear PDEs such as

ut = (uux)xx ≡ 1
2
(u2)xxx, (8.4)

which are associated with a number of important applications in nonlinear dispersion
theory. From its fully divergent version it follows that both shocks

S±(x) = ∓sign x

are indeed week solutions since on both, S2
±(x) ≡ 1, so that the PDE admits a standard

multiplication by a test function and integration by parts. There is no a concept of
entropy solutions for equation (8.4), so we have used approximation approach to reveal
entropy (proper) and non-entropy shocks. The natural approximation of (8.4) leads to
the fourth-order parabolic PDE

ut − (uux)xx = −εuxxxx. (8.5)
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Again, using various concepts of approximation, we have shown that S− = −sign x is the
proper stationary entropy shock, while S+ = sign x is not (Section 7). Numerically, we
constructed smooth similarity solutions of (8.4) describing both the finite-time formation
of the proper shock and the collapse of the non-proper rarefaction wave.

General results and conclusions of this paper make it possible to justify that approxi-
mation (viscosity-like) techniques, which are well-known to be efficient in parabolic and
Hamilton-Jacobi theory, can be also applied to higher odd-order nonlinear PDEs. The
mathematics of such entropy approximations then becomes much more difficult than in the
first-order theory and leads to a number of open problems that are indicated throughout
the paper.
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Appendix A: Proof of Proposition 3.1

Proof. Step 1: L∞-estimate on [0, T ]. Consider the fundamental solution of the linear operator
∂/∂t+ ε(−1)mD2m

x ,

bε(x, t) = (εt)−
1

2mF
(

x/(εt)
1

2m
)

, (A.1)

with the exponentially decaying rescaled kernel F ; see [34] and applications to global existence
in [52]. Writing down uux = 1

2 (u2)x in the equivalent integral equation

u(t) = bε(t) ∗ u0ε − 1
2

∫ t
0 bε(t− s) ∗ (u2)x(s) ds, (A.2)

using the Hölder inequality in the first term and integrating by parts in the last one yields

|u(t)| ≤ sup |u0ε| ‖F‖1 + 1
2

∫ t
0 supx |bεx(t− s)| ‖u(s)‖2

2 ds ≤ C
(

1 + T
m−1

m

)

,

where we have used the estimate

|bεx(x, t)| = (εt)−
1

m

∣

∣F ′(x/(εt)
1

2m
)
∣

∣ ≤ Ct−
1

m .

Step 2: uniform L∞-estimate. This leads to a more delicate scaling analysis, and it seems that
such an estimate cannot be obtained from the integral equation (A.2) just by embedding and
interpolation inequalities or weighted Gronwall’s type techniques. We use a modification of
the rescaling technique in [54, Prop. 2.1], assuming for contradiction that there exist sequences
{tk} → ∞, {xk} ⊂ R, and {Ck} → +∞ such that

sup
RN×[0,tk]

u(x, t) = u(xk, tk) = Ck. (A.3)

Then we perform the scaling

uk(x, t) = u(xk + x, tk + t) = Ckvk(y, s), x = aky, t = a2m
k s. (A.4)

where {ak} is such that the L2 norm is preserved, i.e.,

‖uk‖2 = ‖vk‖2 =⇒ ak = C−2
k . (A.5)

Substituting (A.4) into equation (1.4) yields that vk satisfies

(vk)s = −ε(−Dy)
mvk − δkvk(vk)y in R×R+, where (A.6)

δk = a2m−1
k Ck = C3−4m

k → 0 as k → ∞. (A.7)

Fixing s0 large enough and setting wk(s) = vk(s− s0), we have that

|wk(s)| ≤ 1 on (0, s0), ‖wk‖2 ≤ C, (A.8)

are bounded classical solutions of the uniformly parabolic equations (A.6), so that, by parabolic
regularity theory (see e.g., [34, 35]), we may assume that wk(s) → w(s) as k → ∞ uniformly on
compact subsets, where w solves

ws = −ε(−Dy)
mw for s > 0, w(0) = w0, (A.9)
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with ‖w0‖∞ ≤ 1 and ‖w0‖2 ≤ C. By the Hölder inequality it follows that

‖w(s0)‖∞ ≤ (εs0)
− 1

4m ‖F‖2‖w0‖2 � 1,

if s0 is large enough. Hence, the same holds for ‖v̄k(s0)‖∞ for k � 1 and there occurs a
contradiction with the assumption ‖wk(s0)‖∞ = 1. �

Appendix B: Proof of Proposition 4.2

Proof. (i) It follows from the convolution u(t) = bε(t) ∗ u0 (see (A.1)) that

|u(t)|TV =
∫

|ux(x, t)|dx
≤ (εt)−

1

2m

∫ ∫
∣

∣F
(

z/(εt)
1

2m

)
∣

∣ |u′0(x− z)|dxdz ≤ D∗|u0|TV .
(ii) To show that the estimate is sharp, we take the step-like initial data

u0(x) =

{

1 for x < 0;
0 for x ≥ 0,

so that |u0|TV = 1. Then the solution

u(x, t) =
∫ ∞
x/t

1
2m

F (z) dz

satisfies (4.5) of the form

|u(t)|TV = D∗ ≡ D∗|u0|TV for all t > 0,

i.e., the equality sign is achieved. �

Appendix C: Interpolation inequalities do not guarantee the sign

Consider the first integral given in (4.18) with χ ≡ 1,

P2 ≡ −
∫

E′′(uxx)2 dx+ 1
3

∫

E′′′′(ux)4 dx ≡ −P21 + 1
3P22, (C.1)

assuming that sufficiently smooth solutions u = uε(x, t) have fast (exponential) decay as x→ ∞.
Let us estimate the second positive term via a simple integration by parts

P22 =
∫

E′′′′(ux)3ux = −
∫

uE(5)(ux)
4 − 3

∫

uE′′′′(ux)2uxx,

and using the Hölder inequality (recall that E(u) is convex)
∫

(E′′′′ + uE(5))(ux)
4 ≤ 3

∫

(
√
E′′|uxx|)

[

|uE′′′′|(ux)2/
√
E′′ ]

≤ 3
[ ∫

E′′(uxx)2
]

1

2
[ ∫

(uE′′′′)2(ux)4/E′′] 1

2 .
(C.2)

In order to derive a suitable comparison of the two terms on the right-hand side of (C.1), we
first impose the following conditions on functions E ′(u):

E′′′′(u) + uE(5)(u) ≥ C1E
′′′′(u),

[

uE′′′′(u)
]2
/E′′(u) ≤ C2E

′′′′(u), u ∈ R, (C.3)

where C1 and C2 are some positive constants. Then (C.2) implies
∫

E′′′′(ux)4 ≤ C3

∫

E′′(uxx)2, with C3 = 9C2

C2
1

, (C.4)

and hence by (C.1)

P2 ≤
(

3C2

C2
1

− 1
) ∫

E′′(uxx)2 ≤ 0 if C2
1 ≥ 3C2. (C.5)
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The second condition in (C.3) assumes that E ′′′′(u) ≥ 0 in R, which is not true for E(u) ≈ signu.
Replacing E ′′′′ by |E′′′′| on the right-hand sides of (C.3) (or other optimizations) does not extend
the resulting estimate like (C.5) to the necessary sufficiently wide class of functions E(u). For
the typical power functions

E′(u) = |u|2ku, with a k > 1, (C.6)

(C.1) reads

P2 = −(2k + 1)
∫

|u|2k(uxx)2 + 2
3 (2k − 1)k(2k + 1)

∫

|u|2k−2(ux)
4. (C.7)

Integrating by parts and using the Holder inequality as in (C.2) yields
∫

|u|2k−2(ux)
4 ≤ 9

(2k−1)2

∫

|u|2k(uxx)2,

and we arrive at the following estimate (cf. (C.5)):

P2 ≤ C∗
∫

|u|2k(uxx)2, (C.8)

where C∗ = (1+4k)(2k+1)
2k−1 > 0 for all k > 1

2 . Thus, we cannot get the necessary sign P2 ≤ 0 on

particular functions (C.6) for large k. In fact, this shows that the Nash–Moser technique for
second-order parabolic equations (see [57, p. 344]) do not apply to the fourth-order operators
withm = 2 and to other higher-order ones. Indeed, the iterative nature of the technique with the
eventual limit k → ∞ assumes certain order-preserving properties via the Maximum Principle
(available for m = 1 only), so that the inequality C∗ ≤ 0 for all large k cannot be achieved in
principle via optimization of constants in the interpolation and embedding inequalities.

Appendix D: Asymptotic stability of the rarefaction profile

We now consider the second asymptotic problem (not of less importance) of the stability of
the rarefaction wave occurring for initial data U0(y) = S+(y) in the Cauchy problem (5.6). It is
convenient to introduce new self-similar rescaled variables

U = (1 + τ)−
2m−1

2m θ, ξ = y/(1 + τ)
1

2m , s = ln(1 + τ) : R+ → R+. (D.1)

Then the rescaled solution θ = θ(ξ, s) solves the autonomous equation

θs = (−1)m+1D2m
ξ θ − θθξ + µ θξξ + (2m− 1)µθ, µ = 1

2m , (D.2)

with the same initial data. Equation (D.2) has the explicit stationary solution

θ̄(ξ) = ξ in R. (D.3)

Obviously, (D.1) shows that it is precisely the solution (5.7), so that we refer to (D.3) as the
rarefaction profile (RP) defined in R. We prove that the RP is asymptotically stable. The
linearization θ = ξ + Y yields the perturbed equation

Ys = AY − Y Yξ with A = (−1)m+1D2m
ξ − (2m− 1)µ ξ d

dξ − µ I. (D.4)

Setting ξ = cη with c2m = 1
2m−1 gives

A = (2m− 1)B∗ − 1
2mI.

The corresponding linear elliptic operator

B
∗ = −(−∆η)

m − µ η · ∇η in R
N
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is known to have discrete spectrum σ(B∗) = {− l
2m , l = 0, 1, 2, ...} [52]. Note that the second-

order case m = 1 is classic and exceptional, where

B
∗ ≡ 1

ρ∗ ∇ · (ρ∗∇)

with the weight ρ∗(y) = e−|y|2/4, is self-adjoint in L2
ρ∗(R

N ) with the domain D(B∗) = H2
ρ∗(R

N ),
and a discrete spectrum. The eigenfunctions are Hermite polynomials that form an orthonormal
basis in L2

ρ∗(R
N ), and classical Hilbert-Schmidt theory applies [64].

We describe the spectral properties of the linearized operator in (D.4) which is not self-adjoint
for m > 1. We consider A given in (D.4) in the weighted space L2

ρ∗(R+) of odd functions with
the exponentially decaying weight function

ρ∗(y) = e−a|y|
β
> 0, β = 2m

2m−1 , (D.5)

where a > 0 is a sufficiently small constant. The following holds [52].

Lemma D.1. A : H2m
ρ∗ (R+) → L2

ρ∗(R+) is a bounded linear operator with the discrete spectrum

σ(A) = {λl = −1+(2m−1)l
2m , l = 1, 3, 5, ...}, (D.6)

and the eigenfunction set {ψl(ξ)} (lth-order polynomials) is complete in L2
ρ∗(R+).

As we have mentioned, for m = 1, these are well-known properties of the separable Hermite
polynomials generated by a self-adjoint Sturm-Liouville problem [64]. In view of the principle
of linearized stability [63, Ch. 9], we have that the RP is asymptotically stable in L2

ρ∗(R+) and
moreover, since the real spectrum is uniformly bounded from the imaginary axis, we have the
exponential convergence of the order O(e−s) = O(τ−1) as τ → ∞. Since the weight (D.5) is
exponentially decaying at infinity, the stability conclusion is true for a wide class of initial data.

Thus, the rarefaction solution (5.7) exhibits the exponential asymptotic stability for parabolic
approximations of any order. This explains once more why the non-entropy shocks of type S+

cannot occur in the evolution, cf. Proposition 5.3. For the Cauchy problem (5.6) with bounded
initial data U0ε ∼ S+, the stable RP (D.3) also plays a role, but the convergence as ε → 0 is
again a hard asymptotic problem, which includes a delicate matching-type analysis.

Note that the linear operator B
∗ occurs in the study of blow-up solutions of a completely

different reaction-diffusion equation

ut = −(−∆)mu+ |u|p in R
N ×R (p > 1);

see [65]. The analysis of its global solutions in the supercritical Fujita range p > 1 + 2m
N [52] is

based on spectral properties of the adjoint operator

B = −(−∆η)
m + 1

2m η · ∇η + N
2m I.

Appendix E: On a formal connection for m = 2 by averaging method

A simple formal, but rather practical and sharp, approach to matching is as follows, where
we use the idea of Elenin’s averaging method [61]; see more details in [62, p. 201]. For instance,
comparing profiles for m = 2 in Figure 8(b), we have that

f−(y) ≈ Aθ( ya), with A = 43
39 = 1.103..., a = 8

10 = 0.25. (E.1)
39



Then the global evolution of U(y, τ) can be expressed as follows:

U(y, τ) ≈ ψ(τ)θ(ζ), ζ = x
ϕ(τ) , where

ψ(τ) → 1, ϕ(τ) ∼ τ
1

4 as τ → 0 (Region I);

ψ(τ) → A, ϕ(τ) → a as τ → +∞ (Region III).

(E.2)

To derive a dynamical system describing the evolution of {ϕ(τ), ψ(τ)}, we take two identities
obtained from (5.6), m = 2, via multiplying by Uyy and Uyyyy in L2(R),

{

−1
2

d
dτ

∫

(Uy)
2 − 1

2

∫

(Uy)
3 =

∫

(Uyyy)
2,

1
2

d
dτ

∫

(Uyy)
2 + 1

2

∫

UUyUyyyy = −
∫

(Uyyyy)
2.

(E.3)

Substituting into (E.3) the representation of U(y, τ) from (E.2) yields the following ODE system
for {ϕ,ψ}:







−a1
2

(ψ2

ϕ

)′
+ b1

2
ψ3

ϕ2 = c1
ψ2

ϕ5 ,

a2
2

(ψ2

ϕ3

)′
+ b2

ψ3

ϕ4 = −c2 ψ
2

ϕ7 ,
(E.4)

where the positive constant coefficients are given by

a1 =
∫

(θ′)2, b1 = −
∫

(θ′)3, c1 =
∫

(θ′′′)2,

a2 =
∫

(θ′′)2, b2 =
∫

θθ′θ(4) = 1
4

∫

ζθ(θ′)2, c2 =
∫

(θ(4))2.
(E.5)

It is easy to reduce (E.4) to a standard dynamical system
{

ϕ′ = −µ1ψ + ν1
1
ϕ3 ,

ψ′ = µ2
ψ2

ϕ − ν2
ψ
ϕ4 ,

(E.6)

with the following positive parameters:

µ1 = 1
2

(

b1
a1

− 2b2
a2

)

, ν1 = c2
a2

− c1
a1
, µ2 = 1

4

(

3b1
a1

+ 2b2
a2

)

, ν2 = 1
2

(

3c1
a1

− c2
a2

)

. (E.7)

Then (E.6) has the necessary equilibrium point (a,A) given in (E.1) provided that

ν1
µ1

= ν2
µ2

⇐⇒ 2b1c2
a1a2

= c1
a1

(

3b1
a1

− 2b2
a2

)

> 0. (E.8)

In this case, (E.6) gives an approximate description of the evolution in the transitional Region
II. We claim that the dynamical system (E.4) can be put in a rigorous approximate framework.
The same construction applies to any m ≥ 2.

Appendix F: On a quasilinear approximation

As a final example, we show that even quasilinear degenerate approximations of S− can
preserve the main features of parabolic regularization. Consider the following approximation of
(7.1) via the p-Laplacian operator as in (5.10):

ut + (−1)m−1D2m−2
x (uux) = ε(−1)m+1Dm

x (|Dm
x u|p−2Dm

x ), p > 1, (F.1)

where

uε(x, t) = Uε(y, τ), y = x/εα, τ = t/ε(2m−1)α, and α = 1
1+m(p−2) .

Let m = 2. Then the entropy VSP f− satisfies the ODE

ff ′ = |f ′′|p−2f ′′, with f(±∞) = ∓1
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(one can see that the non-entropy VSP f+ does not exist). For y > 0, we have f < 0, f ′ ≤ 0
and f ′′ ≥ 0, and setting −f ′ = R ≥ 0 yields

f ′′ ≡ RRf = (−f)
1

p−1R
1

p−1 .

If p ∈ (1, 3
2 ], integrating once yields that a solution satisfying R(−1) = 0 does not exist, i.e.,

approximation (F.1) in not admissible. For p > 3
2 , from the equation

R = −f ′ = a0

[

1 − (−f)
p

p−1

]
p−1

2p−3 , a0 =
(2p−3

p

)
p−1

2p−3 , (F.2)

one obtains the unique VSP f = f−(y) from the quadrature
∫ −f
0

(

1 − z
p

p−1

)− p−1

2p−3 dz = a0y, y > 0. (F.3)

Hence, for p ∈ ( 3
2 , 2], f−(y) is strictly monotone decreasing in R and is a C∞ function as in the

linear case p = 2. For p > 2 it has finite regularity at the interface, where f−(y0) = −1 at

y0 = p−1
a0p

B
( p−1

2p−3 ,
p−1
p

)

,

B being Euler’s Beta function. Though for p > 2 the VSP is strictly decreasing on I0 = (−y0, y0),
the stability analysis and other related questions on such approximations become more involved.
Indeed, linearization (6.1) leads to a singular ODE operator N2m on I0 in the equation (6.2).
The functional setting becomes more complicated (the weight function ρ is expected to be
unbounded at the singular end-points y = ±y0), and a delicate matching procedure extending
the stability analysis beyond interval I0 should be performed. Such quasilinear approximations
are not well-posed (e.g., uniqueness of solutions is not well-understood in general), though keep
some typical features of semilinear parabolic regularizations.
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