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Abstract 

It is shown that the Lambert W function cannot be expressed in terms 
of the elementary, Liouvillian, functions. The proof is based on a theorem 
due to Rosenlicht. A related function, the Wright ω function is similarly 
shown to be not Liouvillian. 

Keywords: Implicitly elementary functions; Transcendental equations; Dif
ferential fields. 

MCS numbers: 33E30, 11J93. 

The Lambert W function [5, 9] is a multi-valued function defined as the 
solution of 

W (x)e W (x) = x , (1) 

one of the simplest possible non-algebraic equations. The Wright ω function [4] 
also satisfies a simple transcendental equation (away from its discontinuities): 

ω(x) + ln ω(x) = x . (2) 

Both of these functions are implicitly elementary, in the sense discussed by Risch 
in [7]. One can ask whether there are explicit formulations of those functions 

∗This paper is dedicated to the memory of Manuel Bronstein (1963–2005). 
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in terms of known functions, or whether they are genuinely new functions. A 
common class of “well-known” functions are the Liouvillian functions. 

Definition 1 Let (k,� ) be a differential field of characteristic 0. A differential 
extension (K,� ) of k is called Liouvillian over k if there are θ1, . . . , θn ∈ K such 
that K = C(x, θ1, . . . , θn) and for all i, at least one of the following holds: 

1. θi is algebraic over k(θ1, . . . , θi−1); 

2. θ� = η for some η ∈ k(θ1, . . . , θi−1);i 

3. θi
�/θi = η for some η ∈ k(θ1, . . . , θi−1). 

We say that f(x) is a Liouvillian function if it lies in some Liouvillian extension 
of (C(x), d/dx) for some constant field C. 

It turns out that the possible closed-form expressions for solutions of equations 
of the form (1–2) were already studied by Liouville [6], who was certainly able 
to prove already that W (x) is not a Liouvillian function. In any event, this 
result was known to Rosenlicht, who published in [8] a proposition that can 
be applied to prove easily that W (x) and ω(x) (or many functions defined 
by similar transcendental equations) are not Liouvillian. Yet, questions about 
whether W (x) is elementary or Liouvillian appear in the literature [3], possibly 
because Rosenlicht’s paper is not as well-read as it deserves to be, so we illustrate 
in this note how Rosenlicht’s theorem can prove that neither W (x) nor ω(x) are 
Liouvillian. 

We start by recalling Rosenlicht’s result. 

Proposition 1 [8, Proposition, p.21] Let k be a differential field of character
istic zero and let y1, . . . , yn,z1, . . . , zn be elements of a Liouvillian extension of 
k having the same subfield of constants as k. Suppose that 

yi
�

= zi
�, i = 1, . . . , n , 

yi 

and that k(y1, . . . , yn, z1, . . . , zn) is algebraic over each of its subfields k(y1, . . . , yn) 
and k(z1, . . . , zn). Then, y1, . . . , yn,z1, . . . , zn are all algebraic over k. 

An immediate consequence of the case n = 1 of that proposition is that if 
W (x) and ω(x) are Liouvillian functions, then they must be algebraic functions: 
suppose that W belongs to a Liouvillian extension K of C(x). Take k = C(x) 
where C is the constant subfield of K, then K is Liouvillian over k and both 
fields have the same subfield of constants. Taking logarithmic derivatives on 
both sides of (1) yields 

W �/W + W � = 1/x , (3) 

whence y�/y = W � where y = x/W ∈ K. Since k(y, W ) = k(y) = k(W ), 
Rosenlicht’s theorem implies that W is algebraic over k = C(x). The proof is 
similar for ω(x): differentiating both sides of (2) yields ω� + ω�/ω = 1, whence 
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ω�/ω = z� where z = x − ω. Since k(ω, z) = k(ω) = k(z), Rosenlicht’s theorem 
implies that ω is algebraic over k = C(x). 

There are obvious analytic arguments why W (x) and ω(x) cannot be alge
braic functions, so they cannot be Liouvillian functions: if W (x) has a pole of 
finite order, then eW (x), and therefore W (x)eW (x), have an essential singularity, 
so W (x)eW (x) cannot equal x. Similarly if ω(x) has a zero, then ln ω(x), and 
therefore ω(x) + ln ω(x), have a logarithmic singularity, so ω(x) + ln ω(x) can
not equal x. Since algebraic functions with either no pole or no zero must be 
constants, and W (x) and ω(x) cannot be constant, they cannot be algebraic. 

The above argument can be cast in algebraic terms. Since Rosenlicht proved 
his result algebraically, we outline the algebraic proof that W (x) and ω(x) can
not be algebraic functions. Note that (3) implies that y = W (x) is a solution of 
the differential equation 

xy�(1 + y) = y . (4) 

We first recall some notations and results from [2]: we say that a field E is an 
algebraic function field of one variable over a subfield F ⊂ E if 

E is of transcendence degree 1 over F ,• 

for any t ∈ E transcendental over F , [E : F (t)] is finite. • 

By an F -place of E, we then mean the maximal ideal of a valuation ring of E 
containing F . For such a place p, we write νp : E∗ → Z for its order function. 
It has in particular the following properties: 

νp(c) = 0 for any c ∈ F ∩ E∗. • 

νp(ab) = νp(a)+ νp(b) and νp(a + b) ≥ min(νp(a), νp(b)) for any a, b ∈ E∗. • 

νp(a + b) = min(νp(a), νp(b)) for any a, b ∈ E∗ such that νp(a) = νp(b). 

For any a ∈ E∗, if νp(a) ≥ 0 at all the F -places of E, then a is algebraic • 
over F . 

Let now t ∈ E be transcendental over F and p be any F -place of E. We write 
rt(p) ∈ Z>0 for the ramification index of p over F (t). In addition, we call the 
place p infinite (w.r.t. t) if t−1 ∈ p, finite (w.r.t. t) otherwise. A finite place p 
contains a unique monic irreducible P ∈ F [t], called the center of p (w.r.t. t). 

Proposition 2 Let (F,� ) be a differential field containing an element x such 
that x� = 1. If F has transcendence degree 1 over its constant subfield, then the 
only solution y ∈ F of (4) is y = 0. 

Proof. Let C be the constant subfield of F and suppose that F has transcen
dence degree 1 over C. Since x� = 1, x is transcendental over C, so F is algebraic 
over C(x). Let y ∈ F be a nonzero solution of (4) and E = C(x, y), which is 
an algebraic function field of one variable over C. Let p be any C-place of E. 
Applying νp on both sides of (4), we get 

νp(x) + νp(y�) + νp(1 + y) = νp(y) . (5) 
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Suppose that νp(y) < 0. Then, νp(1 + y) = min(0, νp(y)) = νp(y) and (5) 
becomes 

νp(x) + νp(y�) = 0 . (6) 

If p is finite w.r.t. x, then νp(x) ≥ rx(p). But Lemma 1.7 of [1] implies that 
νp(y�) = νp(y) − rx(p) < −rx(p), in contradiction with (6). If p is infinite, then 
νp(x) = −rx(p). But Lemma 1.8 of [1] implies that νp(y�) ≤ νp(y) + rx(p) < 
rx(p), in contradiction with (6). Therefore νp(y) ≥ 0 at all the C-places of E, 
which implies that y ∈ C, hence that y� = 0, and (4) becomes 0 = y. 2 

Since the only algebraic solution of (4) is 0, which is not a solution of (1), 
W (x) cannot be algebraic, hence it cannot be a Liouvillian function. 

The proof that ω(x) is not an algebraic function is similar, since y = ω(x) is 
a solution of the differential equation y�(1 + y) = y. The equalities (5) and (6) 
become respectively νp(y�) + νp(1 + y) = νp(y) and νp(y�) = 0, and the proof of 
Proposition 2 remains valid. 
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