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Abstract 

Two-three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer 

from post-harvest physiological deterioration (PPD) when secondary metabolites are 

accumulated.  Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside 

scopolin) which play roles in plant defence and have pharmacological activities.  

Some steps in the biosynthesis of these molecules are still unknown in cassava and in 

other plants.  We exploit the accumulation of these coumarins during PPD to 

investigate the E-Z-isomerisation step in their biosynthesis.  Feeding cubed cassava 

roots with E-cinnamic-3,2',3',4',5',6'-d5 acid gave scopoletin-d2.  However, feeding 

with E-cinnamic-3,2',3',4',5',6'-d6 and E-cinnamic-2,3,2',3',4',5',6'-d7 acids, both gave 

scopoletin-d3, the latter not affording the expected scopoletin-d4.  We therefore 

synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was 

biosynthesised.  Solely the hydrogen (or deuterium) at C2 of cinnamic acid is 

exchanged in the biosynthesis of hydroxycoumarins.  If the mechanism of E-Z-

cinnamic acid isomerisation were photochemical, we would not expect to see the loss 

of deuterium which we observed.  Therefore, a possible mechanism is an enzyme 

catalysed 1,4-Michael addition, followed by σ-bond rotation and hydrogen (or 

deuterium) elimination to yield the Z-isomer.  Feeding the roots under light and dark 

conditions with E-cinnamic-2,3,2',3',4',5',6'-d7 acid gave scopoletin-d3 with no 

significant difference in the yields.  We conclude that the E-Z-isomerisation stage in 

the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not 

photochemical, but could be catalysed by an isomerase which is independent of light. 
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1.  Introduction 

 

Cassava (Manihot esculenta Crantz Family Euphorbiaceae) is an important 

economical and nutritional crop, the fourth most important food source in tropical 

countries due to its high root starch content.  Although cassava is relatively easy 

to grow, even in poor soils and under drought conditions, its roots have a short 

shelf-life of only one to three days due to post-harvest physiological deterioration 

(PPD) which can cause significant wastage and economic losses.  Within 2-3 days 

of harvesting, the roots show blue to black vascular streaking and are unpalatable 

and therefore unmarketable, significantly affecting the crop’s economic value.  

PPD has been explained as a physiological process not due to microorganisms, 

(Averre, 1967; Noon and Booth, 1977) and on a molecular basis as an oxidative 

burst which initiates within 15 min of the root being injured, (Reilly et al., 2003; 

2004) followed by altered gene expression.  This genetic change is predicted to 

play roles in cellular processes including:  reactive oxygen species turnover, cell 

wall repair, programmed cell death, ion, water or metabolite transport, signal 

transduction or perception, stress response, metabolism and biosynthesis, 

activation of protein synthesis (Reilly et al., 2007) and the accumulation of 

secondary metabolites (Tanaka et al., 1983; Buschmann et al., 2000).  Amongst 

these secondary metabolites are hydroxycoumarins (e.g. scopoletin and its 

glucoside scopolin) which show antioxidant properties and which may by 

oxidation and polymerisation give rise to the blue/black discolouration.  These 

hydroxycoumarins are important in plant defence as phytoalexins due to the 
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induction of their biosynthesis following various stress events (wounding, 

bacterial and fungal infections) (Giesemann et al., 1986; Gutierrez et al., 1995).  

Additionally, they display a wide range of pharmacological activities, including 

anti-coagulant (Mueller, 2004), anti-inflammatory (Silvan et al., 1996), 

antimicrobial (Valle et al., 1997;Cespedes et al., 2006) and anticancer (Kawaii et 

al., 2001; Kawase et al., 2003; Lacy and O'Kennedy, 2004) activities.  However, 

their biosynthesis in cassava is not known and neither is it clearly understood in 

other plants (Petersen et al., 1999). 

 Indeed, the biosynthesis of coumarins in plants is not well understood, 

although these metabolic pathways are often found in the plant kingdom.  From 

recent biosynthetic studies in Arabidopsis thaliana ecotype Columbia, Kai et al. 

(2006) recently reported in this Journal on the occurrence of high levels of the 

coumarins scopoletin and its β-D-glucopyranoside, scopolin, found in the wild-

type roots 180-fold higher than in aerial parts.  Their studies with mutants led to 

the identification of 3'-hydroxylation of p-coumarate catalysed by CYP98A3, 

one of the few enzymes to be identified unambiguously along this complex 

phenylpropanoid pathway.  More recently in A. thaliana, the same research 

group showed that a Fe(II)- and 2-oxoglutarate-dependent dioxygenase, rather 

than a cytochrome P450 enzyme, catalyses the o-hydroxylation of feruloyl-CoA 

in scopoletin biosynthesis (Kai et al., 2008). 

 As part of on-going studies into these hydroxycoumarins (Buschmann et 

al., 2000; Reilly et al., 2003, 2004), we investigated the incorporation of cinnamic 

acid-d7 into cassava roots under PPD, in order to prove that it was a potential 
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precursor of scopoletin and scopolin on the phenylpropanoid pathway (Fig. 1), 

from phenylalanine following the action of phenylalanine ammonia lyase (PAL).   

Fig. 1 near here 
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Fig. 1.  Biosynthetic pathways of phenylpropanoids. 

 

 The unexpected experimental result that scopoletin-d3 was produced, and 

not scopoletin-d4 (Fig. 2), has led us to study in detail the E-Z-isomerisation step in 

the biosynthesis of scopoletin and scopolin.  This isomerisation is not resolved in 

plants, and has not been previously reported in cassava under PPD.  Here we exploit 
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the increase in hydroxycoumarin accumulation in cassava roots post-harvest to 

investigate this isomerisation step in the biosynthesis of scopoletin and scopolin.   

Fig. 2 near here 
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Fig. 2.  The expected result of feeding E-cinnamic-d7 acid is scopoletin-d4 (top 

line).  In cassava under PPD, the actual results of feeding experiments with E-

cinnamic-2,3,2',3',4',5',6'-d7 acid and E-cinnamic-3,2',3',4',5',6'-d6 acid are that 

both precursors gave scopoletin-d3 (middle line).  Experimental results from 

feeding E-cinnamic-2',3',4',5',6'-d5 acid and E-cinnamic-2-d1 show the isotopic 

labelling pattern of scopoletin-d5 and unlabelled scopoletin respectively 

(bottom line).  The biosynthetic steps represented by the multiple arrows 

include:  p-, m-, and o-hydroxylation, E-Z-isomerisation, lactonisation and O-

methylation (in a sequence to be defined). 

 

1.1  The E-Z-cinnamic acid isomerisation stage in different plants 

 

 In order to interpret this unexpected loss of deuterium at position 2 

when E-cinnamic-d7 acid was fed to cassava root under PPD, we undertook a 

detailed literature search on previous studies of the E-Z-isomerisation step in 

coumarin biosynthesis.  These report that the mechanism of this step varies 

between genera and even between species.  It has been reported (Edwards and 

Stoker, 1967 and 1968) that the isomerisation may be induced by UV light in 

vivo, as has been demonstrated in vitro (Koenigs et al., 1993; Zheng et al., 

1999).  Photoisomerisation of the E-double bond, in p-coumarate, has been 

studied using yellow protein that ultimately mediates a phototactic response to 

blue light in certain purple bacteria Ectothiorhodospira (Ryan et al., 2002; 

Dugave and Demange, 2003).  Feeding Melilotus officinalis shoots with E-o-

coumaric acid-2-14C in both dark and light conditions showed much more 
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radioactivity in the coumarins isolated from shoots exposed to light than in the 

coumarins isolated from shoots kept in the dark.  Edwards and Stoker therefore 

concluded that an isomerase enzyme is not involved in the isomerisation of o-

coumaric acid in M. officinalis shoots (Edwards and Stoker, 1967).  In lavender 

(Lavandula officinalis and L. spica), the biosynthesis of herniarin (7-

methoxycoumarin) has been shown to be non-enzymatic, and the reaction is 

light catalysed.  Therefore, based on the available evidence in 1967, Edwards 

and Stoker concluded that “it is probable therefore that the isomerisation step in 

the biosynthesis of all plant coumarins is entirely photochemical” (Edwards and 

Stoker, 1968).  More recently, in this Journal, the isomerisation of cinnamic 

acid derivatives in barley and wheat was “directly attributed to the effect of 

light, and not apparently modulated by any enzymic reactions” (Turner et al., 

1993), and in A. thaliana “sunlight was able to isomerise both cinnamic acid 

isomers” (Wong et al., 2005). 

 M. alba (sweet clover) plants fed with E-cinnamic acid-3-14C in the dark 

produced 14C-labelled coumarin.  The amount of radioactivity in the coumarin was 

less than when plants were exposed to sunlight during the feeding experiments.  

Homogenates of M. alba leaves were also found to convert the 2'-β-glucoside of o-

coumaric acid-2-14C into coumarin in the dark.  These results are indicative of the 

presence of an isomerase enzyme system in M. alba (Stoker, 1964).  Moreover, 

there is evidence for light-independent isomerisation in the vacuole (Strack, 1997).  

E-Z-Isomerisation of o-coumaric acid glucoside was studied in M. alba mespophyll 

cell protoplasts (Rataboul et al., 1985).  Protoplasts were isolated and incubated in 
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the presence of 14C-labelled phenylalanine.  After 4 h incubation in the light, 14C-

labelled o-coumaric acid glucoside was biosynthesised and transported to the 

vacuole.  60% of the synthesised o-coumaric acid glucoside was the E-isomer and 

40% the Z-isomer.  After longer incubation, 10.5 h in light, there was no significant 

change in the proportion of the two isomers.  In contrast, if the protoplasts were 

incubated in light for 4 h then transferred to the dark for 6.5 h, the amount of 

synthesised o-coumaric acid glucoside was decreased while the percentage of the E-

isomer was 28% and the percentage of the Z-isomer was 72% which indicates that 

isomerisation increased.  These experiments indicate that E-Z isomerisation of o-

coumaric acid glucoside is not light dependent (Rataboul et al., 1985). 

 This review of the literature revealed conflicting views on the E-Z-

isomerisation mechanism in coumarin biosynthesis which varies from one species 

to another, but the isomerisation stage has not been reported previously for 

scopoletin and scopolin biosynthesis in cassava or in other plants.  In our study on 

cassava roots, if the isomerisation step in scopoletin and scopolin biosynthesis is 

photochemical, scopoletin-d4 and scopolin-d4 should be biosynthesised in cassava 

roots during PPD when fed E-cinnamic-d7 acid.  If the isomerisation is enzymatic, 

scopoletin-d4 and scopolin-d4 or scopoletin-d3 and scopolin-d3 could be 

biosynthesised depending on the enzyme mechanism.  This specific loss of a proton 

has not been discussed before in the biosynthesis of any coumarins neither in 

cassava nor in other plants.   
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2.  Results and discussion 

 

 Hydroxycinnamates are utilized in various pathways in the formation of 

different phenylpropanoids (Parveen et al., 2008) (Fig. 1) including 

hydroxycoumarins.  E-Cinnamic acid is one of the early precursors in the 

biosynthesis of scopoletin under PPD (Fig. 1).  A preliminary experiment was 

carried out by feeding cubed cassava root with deuterium labelled E-cinnamic-

d7 acid, to determine the level of incorporation of label observed under these 

simple conditions, in order to investigate intermediates along the 

hydroxycoumarin biosynthetic pathway.  However, the intriguing result (Fig. 2) 

that scopoletin-d3 and its O-glycoside scopolin-d3 were obtained and not the 

(expected) corresponding d4 analogues caused us to investigate the 

isomerisation stage in detail. 

 

2.1  Feeding experiments with deuteriated E-cinnamic acids 

 

 In order to investigate the biosynthesis of scopoletin and scopolin 

during PPD, a feeding experiment was developed.  Freshly harvested cassava 

roots were fed with different deuteriated E-cinnamic acid intermediates, at pH 

7.5 adjusted to be compatible with the physiological state of the roots.  A 

commercial authentic sample of scopoletin was used to identify its HPLC peak 

in the root extracts, however, scopolin is not commercially available.  Scopolin 

and scopoletin were collected and unambiguously identified by NMR and HR 
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MS, and therefore our isolated scopolin was used as a reference sample.  HR 

ESI MS spectra (Fig. 3) shown the presence of the natural peaks of scopolin 

and scopoletin in addition to peaks of scopolin-d3 and scopoletin-d3.  There 

were no MS peaks corresponding to scopolin-d4 or scopoletin-d4 which we 

expected from the feeding experiment of E-cinnamic-d7 acid.  This loss of one 

deuterium atom more than expected during the biosynthesis requires a 

reconsideration of the mechanisms along the pathway.  In order to determine 

which additional deuterium atom had been lost, a further feeding experiment 

was carried out using E-cinnamic-3,2',3',4',5',6'-d6 acid, i.e. with 1H isotope at 

C-2.  This afforded the same two products as judged by both HPLC and HR 

MS.  Feeding with E-cinnamic-d6 acid did not result in an MS peak at 195 

(scopoletin-d2, C10H7D2O4 [M + H]+) which was to be expected if the deuterium 

loss was from any other position than C-2. 

 In order to confirm this loss of proton or deuterium from C-2, we 

decided to feed with the deuterium isotope located at C-2.  We therefore 

synthesized E-cinnamic-2-d1 acid by a Knoevenagel reaction (Robbins and 

Schmidt, 2004; Ji et al., 2005), the nucleophilic addition of malonic acid-d4 to 

the carbonyl group of benzaldehyde, as in an aldol condensation.  This 

condensation reaction as well as losing a molecule of water (HOD) undergoes 

decarboxylation in a subsequent step.  The catalyst was a basic mixture of 

piperidine (0.00011 eq.) pKa 11 and pyridine (as solvent) pKa 5.5 (Clayden et 

al., 2001) at 68 oC for 24 h, and it afforded a white crystalline compound (59%, 

mp 127-130 ºC).  It has been synthesised previously from the corresponding α-
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trimethylamino acid via Hofmann elimination in deuteriated water (Manitto et 

al., 1973), but no characterisation details were reported in the communication.  

HR MS gave m/z 148.0516 [M - H]-, and comparison of the peak heights at m/z 

148 (E-cinnamic-2-d1 acid) and m/z 147 (unlabelled E-cinnamic acid) showed a 

deuterium label incorporation of 88%.  Correspondingly, the 13C NMR spectra 

showed two key signals corresponding to C-2 for labelled and unlabelled 

cinnamic acid respectively:  δ 119.1 (t, 1:1:1, 1JCD = 25 Hz), shifted upfield by 

0.2 ppm by α-substitution with deuterium, typically 0.25 ppm per α-deuterium 

atom (Tulloch and Mazurek, 1973; Wehrli and Wirthlin, 1983; Hardick et al., 

1996), and a small singlet at 119.3 for C-2 attached to proton, the residual 

isotopomer.  In the 1H NMR spectrum, H-3 signals (integrating for 1) appear at 

7.66 ppm as a slightly broadened singlet (with a small 3JHD 2 Hz, integral 0.88) 

(Williams and Fleming, 2008), superimposed on 7.67 (d, J = 16 Hz, integral 

0.12) due to 3J H-2–H-3 E-coupling.  The small signal at δ 6.48 corresponding 

to H-2 (d, J = 16 Hz) due to 3J H2-H3 E-coupling likewise integrated for 0.12, 

confirming the HR MS labelling result of 88%.  The presence of the 12% of 

unlabelled cinnamic acid could be due to exchange of malonic acid-d4 

deuterium at position 2 with protons of piperidine.  Finally, 2H NMR 

observation confirmed these results by the signal at δ 6.51 (d, J = 2 Hz) which 

fits within the published range of 1-3 Hz for D-2-H-3 coupling as JHH = 6.5JHD 

(Williams and Fleming, 2008).   
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a    f   

b    g   

c    h   

d    i   

e    j   
Fig. 3.  Mass spectra of scopoletin after feeding experiments with (a) nothing, (b) E-

cinnamic-2-d1, (c) E-cinnamic-2',3',4',5',6'-d5 acid, (d) E-cinnamic-3,2',3',4',5',6'-d6 

acid, (e) E-cinnamic-2,3,2',3',4',5',6'-d7 acid showing the isotopic labelling patterns 

found in the product scopoletin (M + 1H) and (M + 23Na) (f-j, respectively). 
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 Feeding the cassava cubes with this synthetic (88% enriched) E-

cinnamic-2-d1 acid gave HPLC peaks and corresponding HR MS data entirely 

consistent with unlabelled scopolin (Rt = 7.1 min, Table 1) and scopoletin (Rt = 

24.7 min, Table 2).  Finally, in this series, feeding with E-cinnamic-2',3',4',5',6'-

d5 acid gave the same HPLC peaks, but HR MS data consistent with scopolin-

d2 and scopoletin-d2 and therefore, apart from the 3 sites of oxygenation (2', 4', 

5'), there was no further loss of deuterium from the aromatic ring.  We therefore 

compared the percentage incorporation between the labelled and unlabelled 

hydroxycoumarins, scopolin (Table 1) and scopoletin (Table 2) from these four 

experiments feeding with E-cinnamic-2-d1, E-cinnamic-2',3',4',5',6'-d5, E-

cinnamic-3,2',3',4',5',6'-d6 and E-cinnamic-2,3,2',3',4',5',6'-d7 acids. 

 Isotope peaks monitored are shown in Tables 1 and 2.  The accurate 

mass of the [M+1] isotope peaks for scopoletin are (found) 194.0532 and 

194.0527, both values agreeing with the natural abundance calculated for 

C9
13CH9O4 (194.0529) and the percentage of the isotope peak is similar (Table 

2).  The [M+1] peak is not due to the presence of 1 x D isotope at natural 

abundance which is calculated as 195.0562 for C10H8DO4 and thus falls outside 

the 5 ppm limit of acceptable variation in HR MS.  Thus, although at a 

superficial level adding a neutron to make 13C or 2H (D) looks like adding any 

other neutron, it is not the same mass gain, and this small, but measurable 

difference is called the mass defect.  For scopolin (Table 1), the corresponding 

isotope peaks both show the same percentage (13.9%) and are within 5 ppm of 

the natural abundance calculated for C15
13CH19O9 (356.1057). 
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Table 1 

HR MS data of the HPLC peak at 7.1 min 

Feeding cassava cv 

MCOL 22 with 

m/z found 

of scopolin 

Isotope peak 

monitored 

m/z found of 

scopolin-d1-3 (calcd.) 

% of isotope 

peak/m/z 355 

None (natural 

abundance 13C) 

355.1033 C15
13CH19O9 356.1075 (356.1057) 13.9 

Cinnamic-d1 acid 355.1038 C16H18D1O9 356.1075 (356.1086) 13.9 

Cinnamic-d5 acid  355.1059 C16H17D2O9 357.1186 (357.1149) 32.3 

Cinnamic-d6 acid  355.1108 C16H16D3O9 358.1245 (358.1212) 34.0 

Cinnamic-d7 acid 355.1148 C16H16D3O9 358.1214 (358.1212) 26.1 

scopolin, C16H19O9 [M + H]+ (calcd. 355.1024) 

 

Table 2 

HR MS data of the HPLC peak at 24.7 min 

Feeding cassava cv 

MCOL 22 with 

m/z found of 

scopoletin 

Isotope peak 

monitored 

m/z found of scopoletin-

d1-3, (calcd.) 

% of isotope 

peak/m/z 193 

None (natural 

abundance) 

193.0489 C9
13CH9O4 194.0532 (194.0529) 7.5 

Cinnamic-d1 acid 193.0493 C10H8D1O4 194.0527 (194.0558) 8.3 

Cinnamic-d5 acid  193.0499 C10H7D2O4 195.0622 (195.0621) 31.8 

Cinnamic-d6 acid  193.0499 C10H6D3O4 196.0683 (196.0684) 33.1 

Cinnamic-d7 acid 193.0515 C10H6D3O4 196.0684 (196.0684) 25.0 

scopoletin, C10H9O4 [M + H]+, (calcd. 193.0495) 
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 HPLC separation of the peak at 7.1 min is consistent with scopolin and 

HR ESI MS for this peak in each experiment are summarized (Table 1).  HPLC 

separation of the peak at 24.7 min is consistent with an authentic standard of 

scopoletin and HR ESI MS for this peak in each experiment are also 

summarized (Table 2).  The percentages of isotopically labelled scopolin and 

scopoletin were calculated and are shown in Tables 1 and 2 respectively.  Our 

results (summarised above in Fig. 2) confirm that the E-Z-isomerisation of the 

C=C double bond in the biosynthesis of scopoletin and scopolin in cassava 

roots during PPD involves the specific exchange of the hydrogen atom at 

position 2 of E-cinnamic acid and thus is likely to be enzyme catalysed.  If this 

biosynthetic isomerisation step along the pathway to scopoletin was a non-

enzymatic photochemical reaction, it would be expected to proceed through a 

diradical arising by light mediated homolytic fission (π to π* excitation), σ-

bond rotation of the diradical which then closes the C=C double bond to yield 

the Z-isomer.  Therefore, there would be no loss from C-2 of deuterium (or 

proton) during the photochemical isomerisation of E-cinnamic acid-d7 which 

would be converted into scopoletin-d4 and this was not observed.  Feeding 

experiments with E-cinnamic acid-d7 in light or in dark conditions were 

therefore carried out to determine whether or not the enzymatic reaction 

required light.  The percentage of scopoletin-d3 recovered in light was 9.8% 

while in dark was 9.1%.  As there is no significant difference in the amount of 

scopoletin-d3 biosynthesised in light or in dark conditions, this demonstrates 

that the enzymatic step is light independent. 
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 From studies with maleylacetone Z-E-isomerase, it was proposed that 

glutathione transferase could catalyse the addition of glutathione (GSH) acting as 

cellular nucleophile in the enzyme-catalyzed Z-E-isomerisation.  The proposed 

intermediate is a dienediol formed by sulfur attack at C-2 (Fig. 4) and this 

intermediate undergoes σ-bond rotation and then elimination (possibly even before 

protonation at C-3 can take place) (Seltzer and Lin, 1979; Dixon et al., 2000).  

Alternatively, a nucleophilic addition of water across the C=C double bond may 

occur to yield the β-hydroxyacid, as in the second step of the well known β-

oxidation of saturated fatty acids, followed by σ-bond rotation and elimination of 

water to effect the isomerisation.  In the fermentation of sweet clover (M. alba), 

microbial attack on o-coumaric acid leads to 4-hydroxycoumarin and ultimately to 

dicoumarol (from a crossed-aldol reaction with microbial formaldehyde) (Bellis et 

al., 1967; Bye and King, 1970) and the well-known warfarin story (Last, 2002).  

Such a reaction would lead to loss of H (or D) from the C-3 position of cinnamic 

acid and thus we do not consider micro-organisms to be involved in coumarin 

biosynthesis in cassava. 

 Water is similarly added to E-cinnamic acid during first step of 

benzaldehyde, vanillin, benzoic, salicylic and vanilloic acid biosynthesis; enoyl-

SCoA hydratase in plants and bacteria catalyses the addition of water across the 

double bond of the α,β-unsaturated thiol ester (e.g. cinnamoyl SCoA or feruloyl 

SCoA) (Gasson et al., 1998; Abd El-Mawla and Beerhues, 2002; Bahnson et al., 

2002; Walton et al., 2003).  The intermediate from such a nucleophilic addition at 
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the β-position could undergo σ-bond rotation and then antiperiplanar- (β-) 

elimination leading to the formation of the geometrical isomer. 

OOH

O
O

OHO
O

O

OH OH

GS

O
O

OH OH

O
O

GS

Maleylacetone

+GSH -GSH

Fumarylacetone

 

Fig. 4.  Isomerisation of maleylacetone to fumarylacetone via formation of the 

GSH intermediate (though a regiospecific 1,4- or 1,6-Michael addition to the 

enone, not to the unsaturated carboxylate), (Seltzer and Lin, 1979; Dixon et al., 

2000) σ-bond rotation and GSH elimination (retro Michael addition). 

 

 We therefore conclude that as scopoletin-d3 and scopolin-d3 (not d4) 

were biosynthesised when cassava cubes were fed with E-cinnamic-d7 acid, and 

as we have established that the isomerisation stage in their biosynthesis in 

cassava roots during PPD is not photochemical, rather it is enzymatic, it could 

be catalysed by an isomerase that is not dependent on light.   

 

3.  Experimental 
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3.1  Plant material 

 Root tubers of different cultivars (MCOL 22, MNGA 19, MNGA 2) 

were harvested from cassava plants growing in the tropical glass house at the 

University of Bath under the following condition:  22-28 °C, relative humidity 

(R.H.) (40-80%) and a light period of 14 h per d. 

 

3.2  General methods 

 Chemicals were obtained routinely from Sigma-Aldrich Chemical Co. 

Ltd, UK.  E-Cinnamic-2',3',4',5',6'-d5 acid was obtained from CDN Isotopes, 

Canada.  The HPLC instrument consisted of a solvent delivery system equipped 

with Jasco PU-980 pump and monitored at 360 nm with a Jasco UV-975 

detector, using 16% acetonitrile in water containing 0.1% formic acid, flow rate 

4 ml/min at 20 ○C.  The chromatograms were recorded on a Goerz Metrawatt 

Servogor 120 recorder.  HPLC columns were purchased from Phenomenex 

Inc.:  Phenomenex Gemini 10 μ C18 110A 250 x 10 mm with guard column 

Phenomenex Gemini 5 μ C18 10×10 mm.  Samples were injected using a 100 

µl loop.  HR ESI MS was carried out on a Bruker micrOTOF mass 

spectrometer in the department of Pharmacy and Pharmacology, University of 

Bath or on a Micromass Quattro II in EPSRC National Mass Spectrometry 

Service Centre, University of Wales, Swansea.  NMR spectra were obtained on 

a Varian Mercury Spectrometer at 400 MHz (1H) and 100 MHz (13C) in 

CD3OD, all chemical shifts are reported in parts per million (ppm) relative to 

internal tetramethylsilane, and coupling constants (J) are absolute values in Hz. 
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3.3  Synthesis of E-cinnamic-2-d1 acid 

 Benzaldehyde (127 mg, 1.2 mmol) and malonic-d4 acid (99 atom% d) 

(276 mg, 2.63 mmol) were dissolved in pyridine (660 µl).  Piperidine (13 µl, 

131 nmol, 0.00011 eq.) was added, the reaction was heated to 68 ºC (oil bath) 

for 24 h.  Water (7.5 ml) and then conc. HCl (0.4 ml) were added dropwise 

until a precipitate appeared which was collected and recrystallized (water) to 

afford a product, homogenous by TLC, Rf = 0.46, n-hexane-ethyl acetate-acetic 

acid (1:1:0.01, v/v/v), as white crystals 127-130 ºC (Lit. 133 ºC for unlabelled 

E-cinnamic acid, Merck Index), yield 59% relative to benzaldehyde used.  

C9H6D1O2 requires 148.0514, HR MS gave m/z 148.0516 [M - H]-.  1H NMR:  

δ 7.39 (3H, m, H-3',4',5'), 7.58 (2H, m, H-2',6'), 7.66 (0.88H, br s, H-3), as well 

as 6.48 (0.12H, d, J = 16) from the residual isotopomer at H-2 and 7.67 (0.12H, 

d, J = 16, H-3).  13C NMR:  δ 119.1 (C-2-D, 1:1:1 t, 1JCD = 25), 129.2 (C-3',5'), 

130.0 (C-2',6'), 131.4 (C-4'), 135.8 (C-1'), 146.2 (C-3), 170.3 (C-1), as well as a 

small singlet at 119.3 from the residual isotopomer at C-2.  2H NMR (61.41 

MHz):  δ 6.51 (2-D, d, J = 2). 

 

3.4  Extraction, purification and characterisation of scopolin and scopoletin  

 Cassava roots (1.3 kg, various cultivars) were peeled (1.1 kg) and then cut 

into approximately 1 cm3 cubes, allowed to deteriorate for up to 6 d under 

controlled conditions (20° C, 80-90% R.H.) until crushing and extraction.  Daily 

from day 3, approx. 270 g of the sliced roots were crushed and macerated (EtOH 
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200 ml).  The EtOH extracts of these 4 samples were analysed by TLC (CHCl3: 

EtOAc: MeOH 2: 2: 1,visualised by UV at 365 nm) and there was no significant 

difference between the first two samples, days 3 and 4, where it is known that the 

highest amount of scopoletin and scopolin accumulation occurs (Buschmann et al., 

2000).  The combined ethanolic extracts were filtered and evaporated under reduced 

pressure at 35-40 °C.  The residue was fractionated between water (see below) and 

CHCl3.  The combined CHCl3 layers were concentrated to yield a pale yellow 

viscous oil (240 mg) which was then further purified by solid-phase extraction.  C18 

(1 g cartridge) was washed (MeOH, 5 ml) and conditioned (50% aq. MeOH, 5 ml) 

and 8 ml of the extract (1 mg/ml in MeOH with sufficient water added to the 

solution until it became opalescent) was loaded and eluted with 50% aq. MeOH.  

The eluant was concentrated under reduced pressure which afforded scopoletin, 

identical to a commercial sample.  The residue was dissolved in MeOH (0.2 g/ml) 

and purified by HPLC.  A 24.7 min peak was detected, collected, concentrated and 

dissolved in MeOH (0.2 g/ml) and identified by high field NMR spectroscopy and 

High Resolution Electrospray Ionisation Mass Spectrometry (HR ESI MS) (Hirata 

et al., 2000), in order to identify the unlabelled coumarin, scopoletin (4 mg).  1H 

NMR:  δ 3.90 (3H, s, 6-OCH3), 6.19 (1H, d, J = 9.4, H-3), 6.75 (1H, s, H-8), 7.09 

(1H, s, H-5), 7.84 (1H, d, J = 9.4, H-4).  HR MS:  Naturally occurring scopoletin 

C10H9O4 requires 193.0495, HR MS found m/z 193.0489 [M + H]+, C10H8O4Na 

requires 215.0315, found 215.0309 [M + Na]+. 

 The concentrated aq. fraction (7.6 g) was separated using the above 

HPLC conditions.  A 7.1 (and a trace of a 27.4) min peak was detected, 
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collected, concentrated and dissolved in MeOH (0.2 g/ml) and identified by 

high field NMR spectroscopy and HR MS (Fliniaux et al., 1997), in order to 

identify the unlabelled coumarin, scopolin (7 mg).  1H NMR:  δ 3.41-3.55 (4H 

overlapping, H-2',3',4',5'), 3.71 (1H, br s, H-6'a), 3.84 (1H, br s, H-6'b), 3.91 

(3H, s, 6-OCH3), 5.09 (1H, d, J = 8.2, H-1'), 6.31 (1H, d, J = 9.4, H-3), 7.18 

(1H, s, H-8), 7.22 (1H, s, H-5), 7.91 (1H, d, J = 9.4, H-4).  13C NMR:  δ 55.8 

(6-OCH3), 61.2 (C-6'), 70.0 (C-4'), 73.5 (C-2'), 76.6 (C-5'), 77.2 (C-3'), 100.8 

(C-1'), 104.0 (C-8), 109.5 (C-5), 113.3 (C-3, C-4a), 144.5 (C-4), 147.0 (C-6), 

149.5 (C-8a), 150.5 (C-7), 162.4 (C-2).  HR MS:  Naturally occurring scopolin 

C16H19O9 requires 355.1024, HR MS found m/z 355.1033 [M + H]+, 

C16H18O9Na requires 377.0843, found 377.0860 [M + Na]+. 

 

3.5  General feeding procedure 

 Cassava roots (typically 1 kg) were peeled, then cut into approximately 1 

cm3 cubes and divided into groups (typically 100 g).  One group was immediately 

crushed and extracted with EtOH (fresh cassava extract) and another (control 

group) was stored under controlled conditions (20° C, 80-90% R.H.) until crushing 

and extraction.  Where possible biosynthetic precursors were introduced, this was 

by spraying a group with E-cinnamic acid (typically 30 mg dissolved in aq. 4% 

Na2CO3 (3 ml) then adjusted to pH 7.5 with 1 M HCl) with a simple hand-pumped 

aerosoliser.  As the highest amount of scopoletin and scopolin accumulation occurs 

between days 3 and 4 (this is cultivar dependent (Buschmann et al., 2000)), after 3 

d, half the group was crushed and macerated (EtOH 200 ml, 3 d), and the other half 
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was crushed after 4 d and then macerated (EtOH 200 ml, 2 d).  The combined 

ethanolic extracts were filtered.  A second round of maceration (EtOH, 400 ml, 2 d) 

was performed.  The combined EtOH extracts (after 8 d), were filtered and 

evaporated under reduced pressure at 35-40 °C.  The residue was dissolved in 

MeOH (0.2 g/ml) and purified by HPLC.  From repeat injections (n = 12, each of 

100 µl) two peaks of retention time 7.1 min and 24.7 min (scopolin and scopoletin 

respectively, the latter by comparison with a commercial authentic sample) were 

detected, collected, concentrated and dissolved in MeOH (0.2 g/ml) and identified 

by High Resolution Electrospray Ionisation Mass Spectrometry (HR ESI MS), in 

order to separate isotopes and to identify the percentage of labelled scopoletin and 

scopolin in relation to the unlabelled coumarins. 

 

3.6  Feeding with E-cinnamic-d7 acid 

 Using the General Feeding procedure, cassava roots (1.4 kg, cv MNGA 

2) were peeled (1.2 kg) and fed with E-cinnamic-2,3,2',3',4',5',6'-d7 acid (150 

mg) dissolved in aq. 4% Na2CO3 (10 ml).  A representative sample of the 

combined EtOH extract (32.9 g) was then purified by HPLC.  The HPLC peak 

at 7.1 min, consistent with scopolin, naturally occurring scopolin C16H19O9 

requires 355.1024, HR MS found m/z 355.1041 [M + H]+, C16H18O9Na requires 

377.0843, found 377.0847 [M + Na]+, also C16H16D3O9 requires 358.1212, 

found 358.1229 [M + H]+, and C16H15D3O9Na requires 380.1031, found 

380.1017 [M + Na]+. 
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 The HPLC peak at 24.7 min, scopoletin, naturally occurring scopoletin 

C10H9O4 requires 193.0495, HR MS found m/z 193.0497 [M + H]+, C10H8O4Na 

requires 215.0315, found 215.0309 [M + Na]+, also C10H6D3O4 requires 

196.0684, found 196.0687 [M + H]+, C10H5D3O4Na requires 218.0503, found 

218.0506 [M + Na]+, C20H16O8Na requires 407.0737, found 407.0729 [2M + 

Na]+, and C20H13D3O8Na requires 410.0921, found 410.0926 [2M + Na]+. 

 

3.7  Feeding with E-cinnamic-d6 acid 

 Using the General Feeding procedure, cassava roots (1.23 kg, cv MCOL 

22) were peeled (1.0 kg) and a group (195 g) was fed with E-cinnamic-

3,2',3',4',5',6'-d6 acid (30 mg) dissolved in aq. 4% Na2CO3 (3 ml).  A 

representative sample of the combined EtOH extract (~4 g) was then purified 

by HPLC.  The HPLC peak at 7.1 min scopolin, C16H19O9 requires 355.1024, 

HR MS m/z found 355.1037 [M + H]+, C16H18O9Na requires 377.0843, found 

377.0852 [M + Na]+, also C16H16D3O9 requires 358.1212, found 358.1215 [M + 

H]+ and C16H15D3O9Na requires 380.1031, found 380.1029 [M + Na]+. 

 The HPLC peak at 24.7 min, scopoletin, naturally occurring scopoletin 

C10H9O4 requires 193.0495, HR MS m/z found 193.0488 [M + H]+, C10H8O4Na 

requires 215.0315, found 215.0314 [M + Na]+, also C10H6D3O4 requires 

196.0684, found 196.0689 [M + H] +. 

 

3.8  Feeding with E-cinnamic-2-d1 acid, E-cinnamic-2',3',4',5',6'-d5 acid, E-

cinnamic-3,2',3',4',5',6'-d6 acid and E-cinnamic-2,3,2',3',4',5',6'-d7 acid 
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 Using the General Feeding procedure, cassava roots (800 g, cv MCOL 

22) were peeled (640 g) and divided into four groups (85 g) which were fed 

with E-cinnamic-2-d1 acid, E-cinnamic-2',3',4',5',6'-d5 acid, E-cinnamic-

3,2',3',4',5',6'-d6 acid and E-cinnamic-2,3,2',3',4',5',6'-d7 acid (20 mg of each 

acid) dissolved in aq. 4% Na2CO3 (2.0 ml).  A representative sample of the 

combined EtOH extract (~2 g) was then purified by HPLC.  The HPLC peak at 

7.1 min scopolin, C16H19O9 requires 355.1024, HR MS m/z found 355.1033 [M 

+ H]+, and the corresponding HR MS data are listed in Table 1.  The HPLC 

peak at 24.7 min, scopoletin, naturally occurring scopoletin C10H9O4 requires 

193.0495, HR MS m/z found 193.0489 [M + H]+, and the corresponding HR 

MS data are listed in Table 2. 

 

3.9  Feeding with E-cinnamic-2,3,2',3',4',5',6'-d7 acid in light and in dark 

 Using the General Feeding procedure, cassava roots (690 g, cv MNGA 19) 

were peeled (490 g) and divided into two groups (85 g) which were fed with E-

cinnamic-2,3,2',3',4',5',6'-d7 acid (20 mg) dissolved in aq. 4% Na2CO3 (2.3 ml).  

One group was treated as above and then stored in the dark (in a box double 

wrapped with aluminium foil) while the other was treated as usual.  

Representative samples of the EtOH extract (~2 g) were then purified by HPLC.  

In the light conditions, the HPLC peak at 7.1 min, consistent with scopolin, 

naturally occurring scopolin C16H19O9 requires 355.1024, HR MS found m/z 

355.1068 [M + H]+, C16H18O9Na requires 377.0843, found 377.0812 [M + Na]+, 

also C16H16D3O9 requires 358.1212, found 358.1243 [M + H]+, and 
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C16H15D3O9Na requires 380.1031, found 380.1021 [M + Na]+.  The percentage of 

scopolin-d3 was 18.7%.  In the dark conditions, naturally occurring scopolin 

C16H19O9 requires 355.1024, HR MS found m/z 355.1049 [M + H]+, C16H18O9Na 

requires 377.0843, found 377.0850 [M + Na]+, also C16H16D3O9 requires 

358.1212, found 358.1197 [M + H]+, and C16H15D3O9Na requires 380.1031, 

found 380.1069 [M + Na]+.  The percentage of scopolin-d3 was 15.7%. 

 In the light conditions, the HPLC peak 24.7 min, scopoletin, naturally 

occurring scopoletin C10H9O4 requires 193.0495, HR MS m/z found 193.0498 

[M + H]+, C10H8O4Na requires 215.0315, found 215.0324 [M + Na]+, also 

C10H6D3O4 requires 196.0684, found 196.0703 [M + H]+ and C10H5D3O4Na 

requires 218.0503, found 218.0512 [M + Na]+.  The percentage of scopoletin-d3 

was 9.8%.  In the dark conditions, the HPLC peak 24.7 min, scopoletin, 

C10H9O4 requires 193.0495, HR MS m/z found 193.0494 [M + H]+, C10H8O4Na 

requires 215.0315, found 215.0324 [M + Na]+, also C10H6D3O4 requires 

196.0684, found 196.0697 [M + H]+ and C10H5D3O4Na requires 218.0503, 

found 218.0527 [M + Na]+.  The percentage of scopoletin-d3 was 9.1%. 
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