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Jacobi-Davidson method with preconditioned

iterative solves
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Abstract

We show that for the non-Hermitian eigenvalue problem simplified Jacobi-Davidson
with preconditioned Galerkin-Krylov solves is equivalent to inexact Rayleigh quo-
tient iteration where the preconditioner is altered by a simple rank one change. This
extends existing equivalence results to the case of preconditioned iterative solves.
Numerical experiments are shown to agree with the theory.

Key words: Eigenvalue approximation, Inexact Rayleigh quotient iteration,
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1 Introduction

Consider the problem of computing a simple, well-separated eigenvalue and
corresponding eigenvector of a large, sparse, non-Hermitian matrix A ∈ Cn×n,
that is,

Ax = λx, xHx = 1.

Many popular methods involve the inexact solution of a shifted linear sys-
tem: examples are inexact inverse iteration, [1–3] inexact Rayleigh quotient
iteration [4] and the Jacobi-Davidson method [5,6]. As a practical tool, the
Jacobi-Davidson method builds a subspace from which the approximate eigen-
vector is chosen. In this note, we shall consider only the simplified version,
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(also known as the Newton-Grassmann method [4]) where no use is made of
previous information.

In [4] it is proved that for Hermitian matrices, simplified Jacobi-Davidson is
equivalent to Rayleigh quotient iteration if no preconditioner is used in the
inner solve. This equivalence is based on a Lemma from [7] which also holds
for the non-Hermitian case, though no use of this fact is made in [4]. In [8]
this equivalence is generalised to two-sided Jacobi-Davidson for nonnormal
matrices to accelerated two-sided Rayleigh quotient iteration. However, as
noted in [8] these results do not hold if a preconditioner is used to speed up
the iterative solves.

In this note we extend the result of [4] to preconditioned iterative solves for
non-Hermitian eigenvalue problems where we utilise the “tuning” of any stan-
dard preconditioner as introduced in [9,10]. Specifically, we shall show in Sec-
tion 2 that, assuming a Galerkin-Krylov solver is used and in exact arithmetic,
the inexact Rayleigh quotient iteration with the altered preconditioner and the
inexact simplified Jacobi-Davidson method with the standard preconditioner
produce equivalent approximate eigenvectors. Numerical results that support
the theory are presented in Section 3.

The equivalence result proved here is of interest since, in most applications,
preconditioned iterative solves will be applied. Additionally, there is the pos-
sibility of further equivalence results for subspace based methods.

2 Inexact Rayleigh quotient iteration and inexact Jacobi-Davidson
method

In this section we describe the inexact Rayleigh quotient algorithm and the
inexact Jacobi-Davidson algorithm to find a simple eigenvalue of a large and
sparse non-Hermitian matrix A.

Let x be an approximate unit eigenvector and let the corresponding approx-
imate eigenvalue be given by ρ(x) = xHAx. The Rayleigh quotient iteration
gives a new approximate eigenvector by normalising the solution y of the
system

(A − ρ(x)I)y = x. (1)

Alternatively, the simplified Jacobi-Davidson method produces a correction s
to x, which satisfies s ⊥ x, from the correction equation

(I − xxH)(A − ρ(x)I)(I− xxH)s = −r, (2)

where
r = (A − ρ(x)I)x (3)
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is the current eigenvalue residual. The new eigenvector approximation is then
given by the normalisation of x+ s. In practice the Jacobi-Davidson approach
builds up a subspace, from which an improved eigendirection is obtained, but
in this paper we concentrate on the simplified version which ignores previous
information. It has been shown that, if both systems (1) and (2) are solved
exactly, then y and x+ s have the same direction (see [4,11]). Hence, in exact
arithmetic both methods produce the same sequence of eigenvector approxi-
mations. For inexact solves this property need not hold. However, Simoncini
and Eldén [4] have shown that if the same Galerkin-Krylov subspace method
is applied to solve (1) and (2), then there exists a constant c ∈ C, such that

yk+1 = c(x + sk),

where yk+1 and sk denote the approximate solution of (1) and (2) after k + 1
and k steps respectively. (Note that the proof of [4, Proposition 3.2] applies
to non-Hermitian matrices, even thought the paper only considers Hermitian
positive definite matrices). This means that if k+1 steps of a Galerkin-Krylov
method were applied to (1) and k steps of the same Galerkin-Krylov method
were applied to (2) then the resulting approximate eigenvectors are the same.
The results in Figure 1 in the next section support this equivalence. Hochsten-
bach and Sleijpen [8] have extended these results to the case of a two-sided
Rayleigh quotient iteration and a two-sided Jacobi-Davidson, when BiCG is
used as the iterative solver. However, both papers also observe that these re-
sults do not hold if preconditioned Krylov methods are used with the inexact
iterative solve. In this note, we extend these results to the case of precondi-
tioned solves, where a special “tuned” preconditioner is applied to the Rayleigh
quotient iteration.

2.1 Preconditioned Rayleigh-quotient iteration and Jacobi-Davidson

First, we give an account of how both inexact Rayleigh quotient iteration
and inexact simplified Jacobi-Davidson are preconditioned. We restrict our-
selves to right-preconditioned methods here, although the results extend to
left-preconditioned methods. (Note that in order to preserve symmetry for
Hermitian eigenproblems a split preconditioner may be used for the inner it-
eration. However, a split preconditioner may be transformed to either a left-
or a right-preconditioner using a different inner product, (see [12]).)

Let P be any preconditioner for A−ρ(x)I. Then right-preconditioned (1) has
the form

(A− ρ(x)I)P−1ỹ = x, with y = P−1ỹ. (4)

Hence, for a Krylov method applied to (4) the solution ỹ lies in the Krylov
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subspace

span{x, (A− ρ(x)I)P−1x, ((A− ρ(x)I)P−1)2x, . . .}. (5)

The preconditioning of an iterative solver for the approximate solution of (2)
has to be discussed more carefully. The preconditioner P is restricted to the
subspace orthogonal to x, so that,

P̃ := (I− xxH)P(I− xxH), (6)

is used instead of P. Clearly P̃ is singular on Cn, but is assumed to be non-
singular on the subspace Cn

⊥ := {v ∈ Cn : v ⊥ x}. Let P̃† denote the pseudo-
inverse of P̃. Right preconditioned (2) then has the form

(I − xxH)(A − ρ(x)I)(I− xxH)P̃†s̃ = −r, with s = P̃†s̃. (7)

The solution of (7) using a Krylov solver requires the action of the matrix
(I−xxH)(A− ρ(x)I)(I−xxH)P̃†. First we need the efficient implementation
of P̃†s̃ for some s̃ ∈ Cn

⊥. This is discussed in [13,14] as we now describe.
Consider v = P̃†s̃, where v and s̃ in C

n
⊥. Then P̃v = s̃, and using (6) we have

(I − xxH)Pv = s̃

Pv − xxHPv = s̃

v − P−1xxHPv = P−1s̃.

Hence with v ⊥ x we obtain

v =

(

I−
P−1xxH

xHP−1x

)

P−1s̃. (8)

If t = (I − xxH)(A − ρ(x)I)(I − xxH)P̃†s̃, that is t denotes the action of
(I − xxH)(A − ρ(x)I)(I − xxH)P̃† on the vector s̃, we have

t = (I − xxH)(A − ρ(x)I)v.

So with s̃ denoting the approximate solution of the preconditioned linear sys-
tem in (7), s = P̃†s̃ is recovered using (8). If we introduce the projectors

Π1 = I− xxH and ΠP

2 =

(

I −
P−1xxH

xHP−1x

)

, (9)

a Krylov solver applied to (7) generates the subspace

span{r, Π1(A− ρ(x)I)ΠP

2 P−1r, (Π1(A− ρ(x)I)ΠP

2 P−1)2r, . . .}. (10)

Clearly, the subspaces (5) and (10) are not the same and the numerical results
shown in Figure 2, where the corresponding residuals are plotted, confirm that
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there is no equivalence between the eigenvector approximations obtained from
(4) and (7). However, we shall show that if a small modification is made to
the standard preconditioner P in (4) then we obtain an equivalence between
the inexact versions of Rayleigh quotient iteration and the simplified Jacobi-
Davidson method.

2.2 Equivalence between preconditioned Jacobi-Davidson and Rayleigh quo-
tient iteration

In [9] and [10] a “tuned” preconditioner, P, was introduced. P is merely a rank-
one change to P, a standard preconditioner and has the additional property

Px = Ax. (11)

It is shown in [10] that for Hermitian problems the use of P instead of P leads
to an overall reduction of the number of matrix-vector multiplications within
the inner solve, since the right hand side of the system in (4) with P replaced
by P is approximately in the kernel of the system matrix.

In this note we employ a slightly different choice for P. Specifically, we ask
that

Px = x, (12)

and in this paper we will achieve this by making the choice

P = P + (I −P)xxH . (13)

An immediate consequence of (12) is that for the projector ΠP

2 in (9) we have

ΠP

2 = Π1. (14)

Using the Sherman-Morrison formula and assuming xHP−1x 6= 0 we obtain

P
−1 = P−1 −

(P−1x − x)xHP−1

xHP−1x
. (15)

The application of P−1 involves only one extra solve per outer iteration, since
P−1x has to be computed only once in the iteration process.

The following Lemma is a generalisation of [7, Lemma 4.1] for preconditioned
iterative solves.

Lemma 1 Let x be a unit-norm vector and let ρ(x) = xHAx. Let P be a pre-
conditioner for A and let Π1 be defined as in (9). Let the tuned preconditioner
P satisfy (12) and let r = Ax− ρ(x)x = Π1r. Introduce

Kk = span{x,AP
−1x, (AP

−1)2x, . . . , (AP
−1)kx}
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and

Lk = span{x, r, Π1AΠP

2P
−1r, . . . , (Π1AΠP

2P
−1)k−1r}.

Then, for every k ≥ 1, we have Lk = Kk.

Proof. As noted in (14), ΠP

2 = Π1, and

ΠP

2P
−1 = Π1P

−1 = P
−1(I− xxH

P
−1). (16)

In order to prove the equivalence between Lk and Kk in the non-Hermitian
case we use induction over k. Note that by construction Kk and Lk are k + 1-
dimensional subspaces. Clearly L0 = K0 and since AP−1x = Ax we also have
L1 = K1. Assume that Li = Ki for i < k.

For z ∈ Lk, there exists a u1 ∈ Lk−1 = Kk−1 and γ ∈ C such that

z = u1 + γ
(

Π1AP
−1(I − xxH

P
−1)

)k−1

r

= u1 + Π1AP
−1(I − xxH

P
−1)u2,

where u2 = γ
(

Π1AP−1(I − xxHP−1)
)k−2

r ∈ Lk−1 = Kk−1. Then we obtain

z = u1 + (I− xxH)AP
−1
(

u2 − xxH
P
−1u2

)

= u1 + AP
−1u2 − xHAP

−1u2x − xH
P
−1u2AP

−1x + xHAP
−1xxH

P
−1u2x.

We have u1 ∈ Kk−1, x ∈ K1, AP−1x ∈ K2 and, by the induction hypothesis
AP−1u2 ∈ Kk. Thus z ∈ Kk and Lk ⊆ Kk. Finally, if Lk is of full rank, then
its dimension is k + 1, the same as Kk and hence the two spaces must be
equal and the lemma is proved. If Lk is not of full dimension, then let i be the
largest index such that Li is full rank, then Li+1 = Li = Ki. Now let u3 ∈ Ki,

then, we deduce that Π1AP−1
(

I− xxHP−1
)

u3 ∈ Ki. Using similar equations

to the ones displayed above we obtain that AP−1u3 ∈ Ki, so that Ki+1 = Ki.
By induction we have Lk = Li = Ki = Kk for all k ≥ i, which completes the
proof. 2

Remark 2 We note that for a Hermitian preconditioner the Lemma is just
a Corollary of [7, Lemma 4.1], since, if the tuned P satisfies (12) and is also
constructed to be Hermitian then P−1 commutes with Π1, and the equivalence
of Lk and Kk is a corollary of [7, Lemma 4.1] applied to AP−1.

However, as we now show, a wider result is possible, in that, there is an
equivalence between Lk and the subspace built by the Jacobi-Davidson method
using the standard preconditioner, rather than the tuned preconditioner.
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Lemma 3 Let the assumptions of Lemma 1 hold. With P given by (13),

Lk = span{x, r, Π1AΠP

2P
−1r, . . . , (Π1AΠP

2P
−1)k−1r},

and
Mk = span{x, r, Π1AΠP

2 P−1r, . . . , (Π1AΠP

2 P−1)k−1r},

we have Lk = Mk for every k > 1.

Proof. In order to prove this equivalence it is sufficient to show that

ΠP

2P
−1 = ΠP

2 P−1.

With (15) we have

ΠP

2P
−1 = Π1P

−1 = P
−1 − xxH

P
−1

= P−1 −
(P−1x − x)xHP−1

xHP−1x
− xxH

(

P−1 −
(P−1x − x)xHP−1

xHP−1x

)

= P−1 −
P−1xxHP−1

xHP−1x

and hence

ΠP

2P
−1 =

(

I −
P−1xxH

xHP−1x

)

P−1 = ΠP

2 P−1.

which gives the required result. 2

Combining Lemma 1 and Lemma 3 we have that Kk = Lk = Mk for every
k > 1.

Note, that the space Kk := Kk(AP−1,x) is a Krylov subspace. A Galerkin-
Krylov method to solve the right preconditioned system AP

−1ỹ = x, con-
structs an approximate solution ỹk ∈ Kk(AP−1,x) such that the residual
x−AP−1ỹk is orthogonal to the Krylov subspace Kk(AP−1,x), assuming the
starting guess is zero. An example of such a method is the preconditioned
conjugate gradient method (for symmetric systems) or preconditioned FOM
(for nonsymmetric linear systems), see [12]. Note that Lemma 1 and Lemma
3 also hold for shifted systems A − σI for any σ ∈ C, by simply replacing A
by A−σI in Lemmata 1 and 3. The next theorem, which is the main result of
this paper, is an extension of [4, Proposition 3.2] and will make use of Lemma
1 and Lemma 3 applied to shifted systems.

Theorem 4 Let the unit vector x be an approximate eigenvector of the non-
Hermitian matrix A and set ρ(x) = xHAx. Let the assumptions of Lemma 1
hold and let yRQ

k+1 and sJD
k be the approximate solutions to

(A− ρ(x)I)P−1ỹ = x, with y = P
−1ỹ, (17)
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and
(I− xxH)(A− ρ(x)I)(I − xxH)P̃†s̃ = −r, with s = P̃†s̃, (18)

respectively, obtained by k + 1 (k, respectively) steps of the same Galerkin-
Krylov method with starting vector zero. Then there exists a constant c ∈ C

such that
yRQ

k+1 = c(x + sJD
k ). (19)

Proof. The proof consists of two parts. First we compute the solution sJD
k to

(18) and then the solution yRQ
k+1 to (17) and then we compare them.

(a) The solution sJD
k to (18).

Let r = (A − ρ(x)I)x. The Krylov subspace for the solution s̃JD
k of (18)

is given by

span{r, Π1(A − ρ(x)I)ΠP

2 P−1r, . . . , (Π1(A − ρ(x)I)ΠP

2 P−1)k−1r}.

which, by Lemma 3 (with A replaced by A−ρ(x)I) and ΠP

2 = Π1 is equal
to

span{r, Π1(A − ρ(x)I)Π1P
−1r, . . . , (Π1(A − ρ(x)I)Π1P

−1)k−1r}.

Let Vk be an orthogonal basis of this subspace. Note that x ⊥ Vk, so that
VH

k x = 0 and VH
k Π1 = VH

k . Then the Galerkin-Krylov solution is given
by s̃JD

k = Vkw
JD, with wJD ∈ Ck, and where the Galerkin condition

imposes
VH

k Π1(A − ρ(x)I)Π1P
−1Vkw

JD = −VH
k r,

or VH
k (A − ρ(x)I)Π1P

−1Vkw
JD = −VH

k Ax. Thus

wJD = −(VH
k (A− ρ(x)I)Π1P

−1Vk)
−1VH

k Ax,

and hence

s̃JD
k = −Vk(V

H
k (A − ρ(x)I)Π1P

−1Vk)
−1VH

k Ax.

Using (8), with P replacing P, and ΠP

2 = Π1 we obtain

sJD
k = −Π1P

−1Vk(V
H
k (A− ρ(x)I)Π1P

−1Vk)
−1VH

k Ax (20)

as an approximate Galerkin solution to (18) after k steps of the method.
We can rewrite sJD

k in the following way. Using the definition of Π1 we
have

wJD = −(VH
k (A − ρ(x)I)P−1Vk − VH

k AxxH
P
−1Vk)

−1VH
k Ax,

and using the Sherman-Morrison formula we have

wJD = −S−1

k VH
k Ax

(

1 +
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

)

,
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where

Sk = VH
k (A − ρ(x)I)P−1Vk.

Then, with sJD
k from (20) we obtain

sJD
k = −Π1P

−1VkS
−1

k VH
k Ax

(

1 +
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

)

.

Using again the definition of Π1 we get

sJD
k = −P

−1VkS
−1

k VH
k Ax

(

1 +
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

)

+ xxH
P
−1VkS

−1

k VH
k Ax

(

1 +
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

)

= −P
−1VkS

−1

k VH
k Ax

(

1 +
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

)

+ x

(

xH
P
−1VkS

−1

k VH
k Ax +

(xHP−1VkS
−1

k VH
k Ax)2

1 − xHP−1VkS
−1

k VH
k Ax

)

= −P
−1VkS

−1

k VH
k Ax−

(

P
−1VkS

−1

k VH
k Ax− x

)

ξ,

where ξ is a constant given by

ξ =
xHP−1VkS

−1

k VH
k Ax

1 − xHP−1VkS
−1

k VH
k Ax

. (21)

Finally, using 12 and the definition of Sk we obtain

sJD
k = −P

−1Vk(V
H
k (A − ρ(x)I)P−1Vk)

−1VH
k Ax−

(

P
−1Vk(V

H
k (A − ρ(x)I)P−1Vk)

−1VH
k Ax− x

)

ξ.

(22)

(b) The solution yRQ
k+1 to (17).

Consider now the solution of (17). According to Lemma 1 (with A replaced
by A − ρ(x)I), the columns of [x,Vk] form an orthogonal basis of

span{x, (A− ρ(x)I)P−1x, ((A − ρ(x)I)P−1)2x, . . . , ((A− ρ(x)I)P−1)kx},

which is the same space as generated by the Krylov subspace method
applied to (4). Then the approximate solution to (4) is given by ỹRQ

k+1 =
hx+Vkh, where h ∈ C and h ∈ Ck. The values of h and h are determined
by imposing the Galerkin condition on (4):







xH(A− ρ(x)I)P−1x xH(A − ρ(x)I)P−1Vk

VH
k (A − ρ(x)I)P−1x VH

k (A − ρ(x)I)P−1Vk













h

h






=







1

0






.
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Note that xH(A − ρ(x)I)P−1x = xH(A − ρ(x)I)x = 0. From the second
row we obtain

VH
k (A − ρ(x)I)P−1xh + VH

k (A − ρ(x)I)P−1Vkh = 0,

and hence
VH

k Axh + VH
k (A − ρ(x)I)P−1Vkh = 0,

where we have used Px = x and VH
k x = 0. Therefore we have

h = −(VH
k (A − ρ(x)I)P−1Vk)

−1VH
k Axh,

and thus from ỹRQ
k+1 = hx + Vkh

ỹRQ
k+1 = h(x −Vk(V

H
k (A − ρ(x)I)P−1Vk)

−1VH
k Ax).

Finally from (4) with the tuned preconditioner P we obtain

yRQ
k+1 = h(x − P

−1Vk(V
H
k (A − ρ(x)I)P−1Vk)

−1VH
k Ax), (23)

where we have used P−1x = x.

Combining both the results of (a) and (b), (23) and (22) and setting

tk := P
−1Vk(V

H
k (A − ρ(x)I)P−1Vk)

−1VH
k Ax

we obtain
yRQ

k+1 = h(x − tk)

and
sJD
k = −tk − (tk − x)ξ.

Rewriting these equations and using ξ 6= −1 yields

yRQ
k+1 =

h

1 + ξ
(x + sJD

k ).

ξ 6= −1 follows straight from (21). The required result follows with c =
h

1 + ξ
. 2

Note that for a Hermitian tuned preconditioner, the result follows straight
from (23) using (20) and PH = P as well as VH

k Π1 = VH
k such that Π1P

−1Vk =
PΠ1Vk = PVk.

Theorem 4 shows that, in exact arithmetic, solving (4) and (7) with the same
preconditioned Galerkin-Krylov method where in (4) the tuned preconditioner
and in (7) the standard preconditioner is used, are equivalent. Note that
Rayleigh quotient iteration uses one step more than Jacobi-Davidson (k + 1

10



instead of k) because simplified Jacobi-Davidson already uses a matrix-vector
multiplication to compute the residual.

Remark 5 Theorem 4 also holds if a fixed shift σ is used for both methods
(4) and (7) instead of a Rayleigh quotient shift ρ(x).

3 Numerical examples

In this section we illustrate the equivalence in Theorem 4 by two numerical
examples; one for a fixed shift and one for Rayleigh quotient shifts. In both
examples the iterative solver is the Full Orthogonalisation Method (FOM).

Example 6 (Problem from the Matrix Market library [15]) Consider
matrix sherman5.mtx from the Matrix Market library [15]. It is a real non-
symmetric matrix of size 3312×3312 with 20793 nonzero entries. We seek the
eigenvector belonging to the smallest eigenvalue 4.692e − 02. We use a fixed
shift σ = 0 and an initial starting guess of all ones and compare inexact in-
verse iteration with simplified inexact Jacobi-Davidson method and investigate
the following approaches to preconditioning:

(a) no preconditioner is used for the inner iteration.
(b) a standard preconditioner is used for the inner iteration.
(c) a tuned preconditioner with Px = x is used for the inner iteration.

We use FOM as a solver with incomplete LU factorisation with drop tolerance
0.005 as preconditioner where appropriate. Furthermore, we carry out exactly
4 steps of preconditioned FOM for the inner solve in the simplified Jacobi-
Davidson method, while precisely 5 steps of preconditioned FOM are taken
for each inner solve in the inexact inverse iteration. If no preconditioner is
used 124 steps of FOM are carried out in each inner step of simplified Jacobi-
Davidson whilst 125 steps of FOM are used in each inner step of inverse
iteration. We do this in order to verify (19). We also restrict the number of
total outer solves to 20.

Figures 1-2 show the results for Example 6. For unpreconditioned solves (Fig-
ure 1) we observe that inexact simplified Jacobi-Davidson exhibits the same
convergence behaviour as inexact inverse iteration, which confirms the results
in [4]. For preconditioned solves with a standard preconditioner this property
is lost, as it can be readily observed in Figure 2. For inexact inverse iteration
with the standard preconditioner the eigenvalue residual stagnates!

For the tuned preconditioner which satisfies Px = x, we see in Figure 2 that
with inexact inverse iteration we obtain the same convergence behaviour as
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Fig. 1. Convergence history of the eigenvalue residuals for Example 6, case (a); no
preconditioner
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Fig. 2. Convergence history of the eigenvalue residuals for Example 6, cases (b) and
(c); standard and tuned preconditioner

for the simplified inexact Jacobi-Davidson method, which confirms the results
in Theorem 4.

Example 7 We use the same matrix as in Example 6, but a Rayleigh quotient
shift is employed to find the eigenvector belonging to the smallest eigenvalue.
The initial eigenvector approximation is close enough to the desired eigenvec-
tor. Again methods (a), (b) and (c) from Example 6 are tested and we used
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(un)preconditioned FOM as iterative inner solver. We carry out exactly 4 steps
of preconditioned FOM for the inner solve in the simplified Jacobi-Davidson
method, while precisely 5 steps of preconditioned FOM are taken for each in-
ner solve in the inexact Rayleigh quotient iteration. If no preconditioner is
used 124 steps of FOM are carried out in each inner step of simplified Jacobi-
Davidson whilst 125 steps of FOM are used in each inner step of Rayleigh
quotient iteration. The maximum number of outer iterations is taken to be 20.
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Fig. 3. Convergence history of the eigenvalue residuals for Example 7, case (a); no
preconditioner

Figures 3-4 show the results for Example 7. Note that outer convergence is
much faster than in Example 6, reaching about 10−6 instead of 10−3 for un-
preconditioned solves and 10−10 instead of 10−5 for preconditioned solves as is
seen by comparing the size of the eigenvalue residuals on the vertical axes of
Figures 1-4. For unpreconditioned solves (Figure 3) we observe that inexact
Rayleigh quotient iteration shows the same convergence behaviour as the sim-
plified Jacobi-Davidson method. If a preconditioner is used, this equivalence
holds only if a tuned preconditioner is used for the inexact Rayleigh quotient
iteration (Figure 4). For the standard preconditioner stagnation is observed in
this case (Figure 4). This again supports the theoretical results in Theorem 4.
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