

Citation for published version:
Stratford, J & Davenport, J 2008, Unit Knowledge Management. in S Autexier, J Campbell, J Rubio, V Sorge, M
Suzuki & F Wiedijk (eds), Intelligent Computer Mathematics: Proc. AISC/Calculemus/MKM 2008. Lecture Notes
in Computer Science, no. 2, vol. 5144, Springer, Berlin, Heidelberg, pp. 382-397. https://doi.org/10.1007/978-3-
540-85110-3

DOI:
10.1007/978-3-540-85110-3

Publication date:
2008

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-540-85110-3
https://researchportal.bath.ac.uk/en/publications/unit-knowledge-management(5acfb8a5-8071-4788-8401-e88ba5039c20).html

Unit Knowledge Management

Jonathan Stratford & James H. Davenport

Department of Computer Science
University of Bath, Bath BA2 7AY, United Kingdom

Jonathan.Stratford@alumni.bath.ac.uk

J.H.Davenport@bath.ac.uk

Abstract. In [9], various observations on the handling of (physical)
units in OpenMath were made. In this paper, we update those obser-
vations, and make some comments based on a working unit converter
[21] that, because of its OpenMath-based design, is modular, extensible
and reflective. We also note that some of the issues in an effective con-
verter, such as the rules governing abbreviations, being more linguistic
than mathematical, do not lend themselves to easy expression in Open-
Math.

1 Introduction

For the purposes of this paper, we define a unit of measurement as any de-
terminate quantity, dimension, or magnitude adopted as a basis or standard of
measurement for other quantities of the same kind and in terms of which their
magnitude is calculated or expressed [19, unit].

Units are generally thought of as “fairly easy”, but, as this paper shows, there
are some subtleties. One of the early design goals for Java was that it should be
‘unit safe’ as well as ‘type safe’, but this was dropped due to the difficulties [12].

There have been many famous examples where unit conversion was not un-
dertaken, or where it was incorrectly calculated. The Gimli Glider [18, 24], as it
became known, was a (then) new Boeing 767 plane, which, during what should
have been a routine flight in 1983, ran out of fuel just over halfway to its intended
destination. The ensuing investigation established that an incorrect conversion
had been performed, leading to a woefully insufficient fuel payload, because the
aircraft was one of the first of its kind to use a metric measure of fuel, and the
refuellers had used an imperial conversion instead of the correct metric one. In
addition, although a second check was carried out between legs of the flight, the
same incorrect conversion was used.

Large organisations such as NASA are not immune to such problems [17].
Software controlling the thrusters on the Mars Climate Orbiter was configured
to use imperial units, while ground control, and the other parts of the space
craft, interpreted values as if they were metric. This led to the orbiter entering
an incorrect orbit too close to Mars, and ultimately to its being destroyed.

Again, even widespread systems such as Google can get this wrong — see
the example in section 4 — as can attempts such as OntoWeb to “understand”
MathML in terms of simple structures such as RDF [6] (section 4.3).

2 Prior Work on Semantics of Units

2.1 OpenMath

OpenMath [3] is a standard for representing mathematical semantics. It differs
from the existing versions1 of Content MathML [4, 5] in being extensible: new
Content Dictionaries (CDs) can add new OpenMath symbols, known as OMS,
and can prescribe their semantic, via Formal Mathematical Properties (FMPs).
In contrast, OpenMath variables, known as OMVs, are purely names.

OpenMath is essentially agnostic with respect to type systems. However, one
particular one, the Simple Type System [8] is used to provide arity and similar
information that is mechanical, and also information that is human-readable,
but not currently machine processable, such as stating that <OMS name="plus"
cd ="arith1"/> takes its arguments from, and returns an answer in, the same
Abelian semigroup, by having the following signature.

<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>
</OMA>
<OMV name="AbelianSemiGroup"/>
</OMA>

2.2 Prior Work on Units in OpenMath

The major previous work on the semantics of units on OpenMath is [9]. This pro-
poses several Content Dictionaries of units: units metric1, units imperial1
and units us1. These contain definitions of many common units covering a va-
riety of dimensions (the dimensions themselves are defined in the Content Dic-
tionary dimensions1) — metric (SI)2 units are contained in units metric1, for

1 Versions 1 and, to a lesser extent, 2. It is intended that OpenMath 3 and Content
MathML 3 will have converged on this important point

2 The system in [9] actually differs in one respect from the SI system in [13, 15]. [9]
takes the fundamental unit of mass to be the gram, rather than the kilogram. This
is necessary, as a slavish following of the general principles of [13] would lead to such
absurdities as the millikilogram (see section 3.1 of this paper) rather than the gram.
[13, section 3.2] explains the special rules for multiples of the kilogram, as follows.

Names and symbols for decimal multiples and submultiples of the unit of mass
are formed by attaching prefix names to the unit name “gram”, and prefix

example. [9] suggests using the “usual” times operator (that stored in arith1)
to represent a number in a particular unit — i.e. storing the value as the number
multiplied by the unit, with the unit following the value to which it refers. The
suggestions for unit “implementation” in OpenMath are stated as being based
on those used by a complementary mathematics display language, MathML —
although not blindly; where the authors believe MathML has some deficiencies,
these have been corrected. This document also specifies a reasonable way of
connecting a prefix to a unit (described in section 3.1), thus defining kilo as a
separate concept, which can then be used to construct kilogram.

[9] uses STS in a novel (for OpenMath) manner. Rather than merely ‘human-
readable’, as with <OMV name="AbelianSemiGroup"/> above, it uses formal Open-
Math symbols as the type, thus the type of gram is

<OMS cd="dimensions1" name="mass"/>

More complicated dimensions can be expressed, e.g. Newton’s type is

<OMS cd="dimensions1" name="force"/>

which has the formal property

<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="dimensions1" name="force"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="dimensions1" name="mass"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="dimensions1" name="length"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="dimensions1" name="time"/>
<OMI> 2 </OMI>

</OMA>
</OMA>

</OMA>
</OMA>

Hence this system supports “dimensional analysis” (which should properly be
called “dimensional algebra”).

2.3 Unit Converters

There are a great many unit converters publicly available online. These have
a range of units and features — see the analysis in [21, chapter 2]. However,

symbols to the unit symbol “g” (CIPM 1967, Recommendation 2; PV, 35, 29
and Metrologia, 1968, 4, 45).

in all cases, they are monolithic, in that new units cannot be added to them
by the user. In some senses, this means that they go against modularity and
incrementality, and are not reflective, in that they do not know that other units
exist.

None of the converters surveyed seem to know about dimensions, and hence
attitudes to the question “convert months into days”, instead of being our (1),
were generally (2), and surprisingly often (4).

1. They are both time, so the conversion is meaningful, but I don’t have an
exact conversion factor.

2. There are 30 699
1600 = 30.43687500 days in a month, which is correct on average,

but false for every month (for some reason, Google uses 30.4368499)!
3. There are 30 days in a month, which is “the nearest”, but not the most

common (e.g. http://online.unitconverterpro.com/unit-conversion/
convert-alpha/time.html), and which leads to absurdities such as “1 decade
= 121 2

3 months”.
4. I don’t know about months.

3 Abbreviations and Prefixes

Units have a variety of abbreviations and, particularly in the metric system,
a range of prefixes. It is possible, as apparent in [14, section 5.3.5], to regard
prefixed units as units in their own right, and introduce a unit centimetre
with a formal property relating it to the metre, but this way lies, if not actual
madness, vast repetition and the scope for error or inconsistency (who would
remember to define the yottapascal?).

3.1 Prefixes

OpenMath therefore defines prefixes in the units_siprefix1 CD, with FMPs
to define the semantics, e.g. the following one for peta.

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMA>
<OMS name="prefix" cd="units_ops1"/>
<OMS name="peta" cd="units_siprefix1"/>
<OMV name="unit"/>

</OMA>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>

<OMS name="power" cd="arith1"/>
<OMI> 10 </OMI>
<OMI> 15 </OMI>

</OMA>
<OMV name="unit"/>

</OMA>
</OMA>
</OMOBJ>

OpenMath uses a prefix operation (described as option 4 of [9, section 4]) to
apply prefixes to OpenMath units. Its signature is given as follows.

<Signature name="prefix" >
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS cd="units_sts" name="prefix"/>
<OMV name="dimension"/>
<OMV name="dimension"/>

</OMA>
</OMOBJ>
</Signature>

which can be seen as
prefix× unit→ unit. (1)

This has the slightly unfortunate property that it would allow, for example,
‘millimicrometre’, which is explicitly forbidden by [13, p. 122]. This could be
solved by making the signature

prefix× unit→ prefixed unit, (2)

which should probably be done.
This construction also allows the use of prefixes with non-SI units, but this

is in fact legitimate [13, p. 122].

3.2 Abbreviations

One issue not covered in [9] is that of abbreviations. Here we must confess to
not having a completely worked-out and sensible solution yet. The following
possibilities have been considered.

Alternative Definition in the same CD This would mean that, for example,
as well as units_metric1 having the symbol metre, it would also have m. These
would be linked via a FMP saying that the two were equal. Similarly, we would
have prefixes k as well as kilo.

Pro A small extension of [9].

Con Allows “mixed” units such as kilom or kmetre, which are (implicitly)
forbidden in [13].

Con No built-in way of knowing which is the full name and which is the abbre-
viation.

Alternative Definition in different CDs This would mean that units_metric1
would have the symbol metre, and a new CD, say units_metricabbrev1, would
have the symbol m. Again, these would be linked via a FMP saying that the two
were equal. We would also have a new CD, say units_sipefixabbrev1, contain-
ing the abbreviations for the prefixes, and a different operation for combining
the two, say

<Signature name="prefixabbrev" >
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS cd="units_sts" name="prefixabbrev"/>
<OMV name="dimensionabbrev"/>
<OMV name="dimensionabbrev"/>

</OMA>
</OMOBJ>
</Signature>

Pro Prevents ‘hybrid’ units.
Pro A converter such as [21] could output either full names or abbreviations

(‘symbols’ in [13]) depending on which CDs were available on the output
side.

Con Knowledge of which is the name and which is the abbreviation is still
implicit — merely moved from the name of the symbol to the name of the
CD. The linkage between the name of the CD and the fact that the symbol
should be regarded as <OMV name="dimensionabbrev"/> would be outside
the formal OpenMath system.

“This isn’t an OpenMath problem” It could be argued that abbreviating
units and prefixes isn’t an OpenMath problem at all, but a presentation one.
This is superficially tempting, but poses the question “Whose problem is it?”
Do we need a new layer of software to deal with it? One interesting sub-question
here is whether an ontology language such as OWL [7] would be better suited
to expressing such concepts.

3.3 Non-SI (but metric) Units

The reader will have noticed that the CD is called units_metric1 rather than
units_si1. This is deliberate, as it includes the litre, which is explicitly not
an SI unit [13, Table 6, note (f)]. What of the other units in [13, Tables 6, 8]?

bar This is 100kPa, and presumably is retained because of its convenience for
atmospheric pressure. Prefixes are valid with it [13, p. 127], though the only
common one is the millibar (which is also the mbar, since the bar, uniquely,
is its own abbreviation).

tonne (alias ‘metric ton’) [13, Table 6] This is essentially an alias for the
megagram, and as such does not take prefixes3. If the “different CDs” ap-
proach above were to be adopted, this could be in yet another CD, say
units_metricmisc1, on which no prefixing4 operated.

hectare As 104m2, this is in a very similar category to the tonne, and again
does not take prefixes. The only question might be whether we ought to start
with the are instead, but it is possible to argue that the are is obsolete, and
conveys no advantage over the square decameter. If litre_pre1964 moves
to a different CD, we could reasonably leave the are there as well.

ångström Similarly.
nautical mile (= 1852m) Similarly.
knot (= 1852

3600 m/s) Similarly. This is also an excellent argument for the repre-
sentaton of definitional conversions (section 5.1) as exact fractions.

4 Not All Dimensions are Monoids

[9] assumed, implicitly, that all physical dimensions could be regarded as (Abelian)
monoids, in the sense that they could be added, and hence multiplied by integers.
This is in fact not the case.

4.1 The Temperature Problem

One problem was not addressed in [9], but has been observed elsewhere [1,
Celsius# note-10], viz. that temperatures are not the same thing as tempera-
ture intervals. This confusion is widespread, as evidenced by the Google calcu-
lator’s ability to produce computational absurdities such as

(1 degree Celsius) plus (1 degree Celsius) = 275.15 degrees Celsius

More subtly, the reader should compare the following Google outputs (generated
from (-1C) in F and -(1C) in F respectively).

(-1) degree Celsius = 30.2 degrees Fahrenheit

with

-(1 degree Celsius) = -953.14 degrees Fahrenheit

3 The reader may ask “what about the megaton(ne)?” This is, of course, the mega[ton
of TNT equivalent], and is not a unit of mass at all, but rather of energy, and is in
fact 4.184 petajoules [22, Appendix B.8], where the figure 4.184 is definitional in the
sense of section 5.1.

4 Except that, in Belgium, the megaton (Nederlands) or megatonne (Français), and
certain other multiples (kilo- to exa- only) are legal [2, Chap II, §4].

Possibly the best explanation of the difference between relative and non-relative
temperatures is in [22, Appendix B.9]5.

4.2 To Monoid or not to Monoid

We can ask whether this is a peculiarity of temperature. The answer is in fact
that it is not.

Most units form (Abelian) monoids, i.e. they can be added: 2 tonnes + 3
tonnes = 5 tonnes etc. Non-relative6 temperatures are one obvious counter-
example: 2◦F + 3◦F 6= 5◦F or indeed any other temperature. The point is that
relative temperatures, as in “A is ten degrees hotter than B”, are additive, in
the sense that if “B is twenty degrees hotter than C”, then indeed “A is thirty
degrees hotter than C”, are additive, as are non-relative plus relative, but two
absolute temperatures are not additive.

The same problem manifests itself with other scales such as decibels. Strictly
speaking, these are purely relative, but in practice are also used in an absolute
way, as in “the sound level exceeded 85dB”. Again, the relative units form a
monoid, but the absolute units do not.

This forces us to rethink the concept of “dimension”. Though not using the
word here (it is used in section 1.3), these are defined in [13, section 1.2] as
follows.

The base quantities used in the SI are length, mass, time, electric cur-
rent, thermodynamic temperature, amount of substance, and luminous
intensity.

This implies that all masses, for example, have the same dimension, and can be
treated algebraically in the same way. But, as we have seen, not all tempera-
tures are the same, and indeed have different algebraic properties. Two relative
temperatures can be added, as in the example of A, B and C above. A rela-
tive temperature can be added to an absolute temperature, as in the following
examples.

X was heated by 10◦C, from 20◦C to 30◦C. (3)
X was heated by 10K, from 20◦C to 30◦C. (4)

X was heated by 10◦C, from 293.15K to 303.15K. (5)
X was heated by 10K, from 293.15K to 303.15K. (6)

Equations (3) and (4) mean precisely the same thing (similarly for equations (5)
and (6)), and this is obvious because, in the Content Dictionary defining relative
temperatures, we state that the two are equal7.
5 http://physics.nist.gov/Pubs/SP811/appenB9.html\#TEMPERATUREinterval.
6 Referring to ‘absolute’ temperatures would be likely to cause confusion, though that

is what we mean in sense 10 of [19, absolute].
7 This is the standard OpenMath way of doing so for units. It might make more sense

simply to declare that the two symbols were precisely equal — see the discussion

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="relative_Kelvin" cd="units_metric1"/>

</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="relative_Celsius" cd="units_metric1"/>

</OMA>
</OMA>

Equations (3) and (5) also mean precisely the same thing, but this time we need
to rely on the definitions of non-relative temperatures, as in the following8,

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="degree_Kelvin" cd="units_metric1"/>

</OMA>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="degree_Celsius" cd="units_metric1"/>

</OMA>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMI> 27315 </OMI>
<OMI> 100 </OMI>

</OMA>
</OMA>

</OMA>

and need to do some actual arithmetic, as in [21].

in section 7.2. It could be argued that, since the two symbols are equal, we do not
actually need to have both — a minimalist view. This is similar to the discussion
about <OMS name="Landauin" cd="asymp1"/> in [11], and our conclusion would be
the same — convenience of rendering outweights minimality.

8 This differs from the currently-published experimental CD units metric1 in fol-
lowing the recommendation in section 5.1 that 273.15, as a defined number, should
be represented as an element of Q.

The system of dimensions in [9] had, as the Simple Type System [8] sig-
nature of dimensions, the OpenMath <OMV name="PhysicalDimension"/>. As
its format implies, this is a mere name with no formal semantic connotation.
We therefore suggest that this be replaced by two objects: MonoidDimension
for those cases where the dimension does represent an (additive) monoid, and
NonMonoidDimension. While these could be OMVs as before, we now believe
that it would make more sense for them to be OMSs, since there is a definite
semantics being conveyed here to software packages, rather than to human be-
ings. This also agrees with a growing feeling in the OpenMath community that
STS could “do more”.

4.3 The Confusion is Widespread

It should be noted that the confusion between temperatures and relative temper-
atures manifests itself elsewhere in “web semantics”. Consider an excerpt9 from
ontoworld’s “approach to rewrite Content MathML so that it is expressable (sic)
as RDF.”

<owl:Class rdf:about="&phml;Temperature">
<rdfs:subClassOf rdf:resource="&phml;PhysicalDimension"/>

</owl:Class>

<owl:Class rdf:about="&phml;TemperatureDifference">
<rdfs:subClassOf rdf:resource="&phml;Temperature"/>

</owl:Class>

This could be argued to illustrate the difficulties of using a general-purpose
language such as RDF beyond the semantics it is capable of handling, or, more
simply perhaps, as an illustration of the fact that, since the presentation of
temperatures and temperature intervals are the same, it is hard to distinguish
the semantics, different though these may be.

5 Precision

5.1 Accuracy in the OpenMath

Conversion factors between units can be divided broadly into three categories.

Architected There are those that, at least conceptually, arose when the unit(s)
were defined. All the metric prefixes fall into this category, as do conversions
such as “3 feet = 1 yard”, or even “1 rod = 5 1

2 yards”. These conversions, and
their inverses, clearly ought to be stored as elements of Q, i.e. as OpenMath
integers (OMI objects) or fractions thereof.

9 http://ontoworld.org/wiki/Semantic_MathML/0.1\#Physical_Dimensions.

Experimental These are those that are truly determined by an experiment,
such as the measurement of a standard of length in one system in terms
of another such. An obvious example is those units that involve g, as in “1
slug ≈ 32.17405 pounds”. These are probably best represented by means of
floating-point numbers (OMF objects).
The reader might object that, since these items are only approximate, we
should represent them by intervals, which are well-handled by OpenMath,
as in the CD interval1. This is a plausible point. We happen to disagree
with it, for the reasons about to be given, but nevertheless it is fair to say
that more usage of these factors is called for before a definitive decision can
be made.
– Manipulation of intervals is not conservative unless it is done sym-

bolically — [10]. Hence, if g were to be represented by an interval,
say [32, 33] (absurdly wide, but this makes the point better), one slug
would be [32, 33] pounds, which, on conversion back, would become
[3233 ≈ 0.97, 33

32 ≈ 1.03] slugs.
– Definitions in OpenMath are intended to be permanent, so an increase

in precision would have to lead to a change in the formal definition.
– Experimentalists tend not to work in terms of intervals, but in terms of

the standard accuracy [16]. It would be a fair argument, though, to say
that there ought to be OpenMath interval types capable of representing
these.

Definitional These are those that started life as experimental, but have since
been adopted as architected definitions. An obvious example is “1 yard =
0.9144 metre”, which was adopted as a formal definition, replacing the pre-
vious experimental result10 of “1 metre ≈ 39.370147 inches” [20] in 1959.
Another example would be the value of “absolute zero”, in the days of an
independent celsius scale, which was about −273.15◦C. Nowadays, this is
fixed as precsiely this value, or, more accurately, the concept of ◦C is defined
in terms of absolute zero and the number 273.15 [13, 2.1.1.5].

We now believe that all definitional numbers occurring in unit conversions, as
well as those architected, should be expressed as elements of Q, i.e. as (fractions
of) OMI. Hence the 0.9144 mentioned above should in fact be encoded as

<OMA>
<OMS name="divide" cd="arith1"/>
<OMI> 9144 </OMI>
<OMI> 10000 </OMI>

</OMA>

This suggestion is well-characterised by the foot. Thus U.S. survey foot is de-
fined11 as 1200

3937 ≈ .3048006096m, whereas the ‘international’ foot is defined
10 It is worth noting that [20] describes this as “1 yard = 0.91439841 metres”, [1,

Imperial units] as 0.914398416 metres, and an accurate conversion of the headline
figure in [20] is .9143984146. This illustrates the general point that a number and
its reciprocal are unlikely both to be exact decimals.

11 U.S. Metric Law of 1866.

as precisely 0.3048m. The difference is only just detectable in IEEE (single-
precision) floating-point, and is best stored exactly.

5.2 Precision of Display

There is also the issue of how much precision to display in the result. In general
terms, the result should not be more precise than the least precise value used in
the calculation. [21] currently supplies the entire result from the calculation, with
a user-controllable “significant figures” level as part of the system’s front-end.
This was chosen on the basis that several alternatives considered appeared non-
sensical or unreasonably difficult to implement or make firm decisions about. For
example, internally, fractions (which in OpenMath are comprised of two infinite
precision integers) are stored as finite-precision floating point numbers. It is
impossible to tell, when presented with such a floating point number, whether
it was made as such (again, OpenMath Floats, in decimal, can be of arbitrary
precision) or whether it came from a fraction; in both these cases rounding would
not be required, or if it was the result of a calculation, in which case rounding
would be necessary. A nonsensical answer would clearly result if values were
rounded during the calculation, and due to the aforementioned unknowable fact
of where the value came from, it would also be impossible to maintain an internal
counter of to how many significant figures the end result would be reasonable.
With the chosen approach, a currently unanswered question regards the number
of significant figures to display in a result such as 10 metre is 1 rod 5 yard 1
foot 3 inch 0.700787401574787 mil. Should the number of significant figures
only cover the last part of the result?

6 The two meanings of “obsolete”

According to the OpenMath standard [3], a content dictionary can be declared
to be obsolete. This facility is needed so that, when an area of OpenMath
gets rewritten in a (hopefully) better way, the semantics of existing OpenMath
objects are preserved. However, there has been no need to deploy it yet. It is
a feature of OpenMath12 that this takes place at the content dictionary level,
rather than the symbol level.

However, when we say that

<OMS name="litre_pre1964" cd="units_metric1"/>

is “obsolete”, we do not mean that it is obsolete as an OpenMath symbol, rather
that it is a current OpenMath symbol denoting an obsolete unit of measurement,
and therefore that it should be in an official CD. Does this matter? There are
two views.

No This is the view of [9]. It is a unit, which may still be encountered as old
texts/experiments etc. are analysed, so should be present.

12 At least at version 2. This may change in version 3.

Yes In [21] we produced a unit converter that attempted to produce the “best”
fit to a given input. Hence, as 175.98 pints converts to 100.002614775
litres, but also 99.99991478 litre_pre1964s, the latter conversion would,
much to the user’s surprise (and indeed ours on first encountering this issue),
be preferred. In fact, we actually get

OpenMathConverter.exe --source_quantity 175.98 --source_unit
pint --destination_unit metric
0.999998147801862 hectolitre_pre1964

Similarly, as 10 metres is 10.93613298 yards, but 1.988387814 rods, the
latter will again be preferred13.

From the point of view of ‘user-friendliness’, we are inclined to sympathise with
[21], and state that obsolete units belong in separate CDs, in particular that
litre_pre1964 should be moved from units_metric1 to, say, units_metricobs
before units_metric1 becomes official.

7 Conclusion

We conclude that it is possible to use the OpenMath unit system (or ontology,
as one might call it) of [9] to produce a serious and, unlike others, extensible
unit converter, as in [21].

7.1 Recommendations for OpenMath Unit/Dimension CDs

The most important recommendation is a recognition that some (in our sense of
the word) dimensions are (additive) monoids, and some are not, as outlined in
section 4.

1. Move litre_pre1964 into a different CD, which is an official CD of “ob-
solete” units. Similar steps should be taken for “obsolete” imperial units.

2. Fix dimensions1 so as to have a definition for power.
3. Delete metre_squared from the units_metric1. It is anomalous (why isn’t

there metre_cubed, and why doesn’t units_imperial1 have foot_squared?)
and tempts a piece of software (such as earlier versions of [21]) into creating
units such as

<OMA>
<OMS name="prefix" cd="units_ops1"/>
<OMS name="deci" cd="units_siprefix1"/>
<OMs name="metre_squared" cd="units_metric1"/>

</OMA>

13 which will in fact come out as 10 metre is 1 rod 5 yard 1 foot 3 inch

0.700787401574787 mil.

which is a deci(metre2), as opposed to a (decimetre)2, and is illegal [13, p.
121].

4. units_imperial1 is missing units such as inch, which need to be added.
5. Add a CD for U.S. units, where different (e.g. for volume). Move U.S. Survey

units14, currently in units_imperial1 into this.
6. Add a CD for E.U. units, where different. The only case known to the authors

is the therm, which comes in both U.S. and E.U. variants. [22, footnote 25]
states the following.

Although the therm (EC), which is based on the International Table
Btu, is frequently used by engineers in the United States, the therm
(U.S.) is the legal unit used by the U.S. natural gas industry.

The difference is about 0.02%.
7. Update all the semantics in the world of OpenMath units so as to adhere

to the principles of section 5.1, in particular definitional numbers should be
expressed as elements of Q, i.e. as (fractions of) OMI.

8. Sort out electrical energy definitions and other suggestions in [9].
9. Modify the signature of prefix, as described in section 3.1, from (1) to (2).

10. Update the definition of pascal to include an FMP: currently missing.

7.2 Further Considerations

We saw, in section 4.3, that the sort of semantics of RDF [6] are inadequate
to convey the relationship between, for example, relative temperature and non-
relative temperature. However, the OpenMath required to state that

<OMS name="relative_Kelvin" cd="units_metric1"/>

and

<OMS name="relative_Celsius" cd="units_metric1"/>

mean precisely the same thing is clumsy, and requires OpenMath-capable reason-
ing whereas all that is needed in this case is RDF-like, or OWL-like, reasoning.

We can also ask whether OWL would not be better at solving the abbrevia-
tions problem than OpenMath (see section 3.2).

Some units (calendar_year is the notable example) have multiple FMPs,
whereas most of the other secondary units have only one, which is essentially a
defining mathematical property in the sense [23, I, p. 11] that the definiens can
be completely replaced by the definiendum. Making the distinction clear, as has
been proposed elsewhere in the OpenMath community, would be a step forward.

7.3 Unsolved Problems

We see two currently unsolved problems.

14 See the discussion at the end of section 5.1 for the (small) difference.

1. The abbreviations issue — section 3.2, and the fact that legal prefixes can
differ between countries, as in note 4. This last might be a problem best
solved outside OpenMath.

2. The dimensions1 CD has symbols length and displacement, with the
difference being explained (under displacement) as

This symbol represents the spatial difference between two points.
The direction of the displacement is taken into account as well as
the distance between the points.

It would be possible to read this as a non-monoid version of length, but
more thought is necessary.

Acknowledgements. The authors are grateful to Dr Naylor for his expla-
nations of [9], to Dr Donner for useful comments, and to Dr De Vos for her help
with Belgian metrology.

References

1. Anonymous. Wikipedia, English. http://www.wikipedia.org, 2008.
2. The Kingdom of Belgium. Réglementation Métrologique. http://mineco.fgov.be/

organization_market/metrology/showole_FR.asp?cParam=1150. Metrologische
Reglementering . http://economie.fgov.be/organization_market/metrology/

showole_nl.asp?cParam=1152.
3. S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano, and

M. Kohlhase. OpenMath Standard 2.0. http://www.openmath.org/standard/

om20-2004-06-30/omstd20.pdf, 2004.
4. World-Wide Web Consortium. Mathematical Markup Language (MathML[tm])

1.01 Specification. http://www.w3.org/TR/MathML/, 1999.
5. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-

sion 2.0 (Second Edition). http://www.w3.org/TR/MathML2/, 2003.
6. World-Wide Web Consortium. RDF Semantics. http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/, 2004.
7. World-Wide Web Consortium. Web Ontology Language OWL. http://www.w3.

org/2004/OWL/, 2004.
8. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin,

34(2):16–21, 2000.
9. J.H. Davenport and W.A. Naylor. Units and Dimensions in OpenMath. http:

//www.openmath.org/documents/Units.pdf, 2003.
10. J.H. Davenport and H.-C. Fischer. Manipulation of Expressions. Improving

Floating-Point Programming, pages 149–167, 1990.
11. J.H. Davenport and P. Libbrecht. The Freedom to Extend OpenMath and its

Utility. To appear in Mathematics in Computer Science, 2008.
12. M. Donner. Private Communication, May 2008.
13. Organisation Intergouvernementale de la Convention du Mètre. The International

System of Units (SI) 8th edition. http://www.bipm.org/utils/common/pdf/si_

brochure_8_en.pdf.
14. World-Wide Web Consortium (ed. D.W. Harder and S. Devitt). Units in MathML.

http://www.w3.org/Math/Documents/Notes/units.xml, 2003.
15. IEEE/ASTM. SI 10-1997 Standard for the Use of the International System of

Units (SI): The Modern Metric System. IEEE Inc., 1997.

16. International Standards Organisation. Guide to the Expression of Uncertainty in
Measurement, 1995.

17. Mars Climate Orbiter Mishap Investigation Board. Mars climate orbiter:
Phase i report. ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.

pdf, November 1999.
18. Wade H. Nelson. The Gimli Glider. Soaring Magazine, 1997.
19. Oxford University Press. Oxford English Dictionary. http://dictionary.oed.

com/entrance.dtl, 2008.
20. J. E. Sears, W. H. Johnson, and H. L. P. Jolly. A New Determination of the Ratio

of the Imperial Standard Yard to the International Prototype Metre. Phil. Trans.
Roy. Soc. A, 227:281–315, 1928.

21. Jonathan Stratford. An OpenMath-based Units Converter. Dissertation for
B.Sc. in Computer Science, University of Bath, 2008. Technical Report CSBU–
2008–02, http://www.cs.bath.ac.uk/department/technical-report-series/

technical-report-series/index.php

22. B. N. Taylor. Guide for the Use of the International System of Units (SI). http:

//physics.nist.gov/Pubs/SP811, may 2007.
23. A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University

Press, 1910.
24. Merran Williams. The 156-tonne Gimli Glider. Flight Safety Australia, 2003.

