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Abstract

Background: Stomatal guard cells monitor and respond to environmental and endogenous signals such that the stomatal
aperture is continually optimised for water use efficiency. A key signalling molecule produced in guard cells in response to
plant hormones, light, carbon dioxide and pathogen-derived signals is hydrogen peroxide (H2O2). The mechanisms by
which H2O2 integrates multiple signals via specific signalling pathways leading to stomatal closure is not known.

Principal Findings: Here, we identify a pathway by which H2O2, derived from endogenous and environmental stimuli, is
sensed and transduced to effect stomatal closure. Histidine kinases (HK) are part of two-component signal transduction
systems that act to integrate environmental stimuli into a cellular response via a phosphotransfer relay mechanism. There is
little known about the function of the HK AHK5 in Arabidopsis thaliana. Here we report that in addition to the predicted
cytoplasmic localisation of this protein, AHK5 also appears to co-localise to the plasma membrane. Although AHK5 is
expressed at low levels in guard cells, we identify a unique role for AHK5 in stomatal signalling. Arabidopsis mutants lacking
AHK5 show reduced stomatal closure in response to H2O2, which is reversed by complementation with the wild type gene.
Over-expression of AHK5 results in constitutively less stomatal closure. Abiotic stimuli that generate endogenous H2O2, such
as darkness, nitric oxide and the phytohormone ethylene, also show reduced stomatal closure in the ahk5 mutants.
However, ABA caused closure, dark adaptation induced H2O2 production and H2O2 induced NO synthesis in mutants.
Treatment with the bacterial pathogen associated molecular pattern (PAMP) flagellin, but not elf peptide, also exhibited
reduced stomatal closure and H2O2 generation in ahk5 mutants.

Significance: Our findings identify an integral signalling function for AHK5 that acts to integrate multiple signals via H2O2

homeostasis and is independent of ABA signalling in guard cells.
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Introduction

Plants are constantly exposed to a large multitude of environ-

mental stimuli, and under adverse conditions, are mostly able to

survive due to their ability to sense and transduce these signals into

cellular and physiological responses. Hydrogen peroxide (H2O2) is a

form of reactive oxygen species (ROS) generated by plants via

several mechanisms, which include metabolic processes such as

respiration and photosynthesis as well as reactions to environmental

stimuli such as water deficit, high and low temperature, pollutants,

UV-B light and pathogen challenge [1]. It is now well accepted that

controlled or regulated production of H2O2 is beneficial to the plant.

H2O2 acts as a signal and/or second messenger enabling the plant to

activate physiological processes resulting in protection from and

adaptation to environmental stress [2].

H2O2 regulates a number of molecular and cellular processes in

plants ranging from gene expression, programmed cell death, cell

division, elongation growth, and stomatal closure [3]. The molecular

mechanisms by which each of these processes occurs through H2O2

signalling have not been fully clarified. Recently, several targets for

H2O2 have been identified in Arabidopsis, including protein kinases

and phosphatases [4–8]. In relation to stomatal closure and redox

signalling, the ABI1 and ABI2 members of the protein phosphatase

2C family are redox regulated in response to ABA [9,10]. Moreover,

the MAP kinase MPK3 was shown recently to be essential for both

ABA and H2O2-inhibition of stomatal opening in Arabidopsis [11].

The protein kinase OST1 regulates H2O2 production in guard cells

through signalling pathways requiring the ROS-producing NADPH

oxidase subfamily of proteins (namely, AtRBOHD and AtRBOHF

[12,13]). Thus, reversible protein phosphorylation appears to be a key
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mechanism by which cellular responses to multiple stimuli are

regulated via H2O2 in guard cells and other cell types.

An alternative mechanism by which H2O2 acts on proteins is

by oxidation of Cys residues [14]. H2O2 oxidation of –SH

groups on Cys residues in proteins causes either disulfide bond

formation or the formation of sulfenic acid groups. The latter

can be sequentially oxidised to sulfinic and sulfonic acid groups

at higher concentrations of H2O2. Reversal of oxidation occurs

under reducing conditions, for example, by reduced glutathione

or thioredoxin [14]. Until recently, there was little evidence that

H2O2 action on Cys residues is responsible for defined

physiological responses. In recent work, we have shown that

one member of the Arabidopsis hybrid histidine kinase (HK)

family, the ethylene receptor ETR1, is a potential target for

H2O2 during stomatal closure [15]. ETR1 is required for H2O2-

mediated stomatal closure, with the Cys65 residue of ETR1

being essential. Intriguingly the HK domain of ETR1 was not

required for H2O2-induced closure [15]. In recent developments

we have also shown that ETR1 has a dual function in guard

cells, that of perceiving ethylene as well as acting as a target for

H2O2, thereby mediating downstream signalling processes to

initiate stomatal closure [16].

The hybrid HK family of receptor proteins are part of the two-

component signal perception and transduction system in plants

[17]. Perception of a signal by a hybrid HK leads to autopho-

sphorylation of a His residue in the HK domain, followed by a

phosphotransfer reaction to an Asp residue on its receiver domain.

Subsequently, a relay of the phosphoryl residue occurs to a His

residue on a histidine phosphotransfer protein (HP) followed by

phosphorylation of an Asp residue on a response regulator (RR)

protein [18]. Representative HK family members in plants are the

cytokinin and ethylene receptors [17]. However, the plant’s two-

component signalling network appears to contribute to several

other signal response pathways. For instance, recent work has

demonstrated functional cross-talk between cytokinin and light

(phytochrome B) signalling [19,20]. These overlaps in signalling

processes induced by multiple stimuli suggest that two-component

proteins are key sensors and transducers of various environmental

and endogenous signals.

One mechanism by which different signalling processes and

pathways may be integrated is via common second messenger

molecules. ROS such as H2O2 are ideal candidates for such

messenger molecules acting as focal points for cross-talk between a

wide array of signalling cascades [3]. This is evidenced by a large

overlap in the expression of genes that are regulated by ROS on

the one hand and by environmental stimuli on the other. For

example, H2O2-regulated genes are also regulated by drought,

cold, UV-B light and pathogen attack [21,22] as well as by ABA

[23]. Clearly, there exist multiple targets for H2O2 to mediate its

effects in specific cells and tissues. Functional overlap is also likely

to exist between these pathways, with certain targets acting as

integrators of multiple stimuli.

In an attempt to identify further targets for H2O2 signalling in

guard cells, the function of a least-characterised member of the

HK family in Arabidopsis, namely AHK5, was investigated. AHK5

is predicted to be the only cytoplasmic HK, with both a canonical

HK domain and receiver domain, classifying it as a hybrid HK

[17]. Our data here indicate that AHK5 also co-localises to the

plasma membrane. Recent work has identified a function for

AHK5 in counteracting the ethylene and ABA-regulated growth

response in Arabidopsis roots [24]. However its role in integrating

signalling responses to H2O2 is not known.

Using a combination of molecular genetic, cell imaging,

biochemical and physiological tools, we show that AHK5 is a

key player in H2O2 homeostasis in Arabidopsis guard cells in

response to environmental and endogenous signals, including NO,

ethylene, darkness and bacterial flagellin. Intriguingly, AHK5 does

not appear to be involved in the ABA signalling pathway in

stomata. Our data suggest a regulatory function of AHK5 that is

essential for guard cell response to abiotic and biotic environmen-

tal stimuli.

Results

Intracellular localisation and tissue-specific expression of
AHK5

AHK5 is predicted to be the only cytoplasmic HK amongst

the canonical HK class of proteins in Arabidopsis [17]. In order to

confirm this, we performed in vivo localisation studies using 35S

promoter-driven GFP fusion constructs of AHK5. In transiently

transformed Arabidopsis protoplasts and tobacco (Nicotiana

benthamiana) leaf cells the full-length fusion protein was expressed

and was present in the cytoplasm, independent of whether the

GFP tag was fused to the N-terminus or C-terminus of AHK5

(Fig. 1A and B, and Data S1). To substantiate our cell biological

results we also performed cell fractionation experiments with

extracts from transiently transformed tobacco leaf cells express-

ing 35S:GFP-AHK5 or several GFP-marker protein fusion genes.

Whereas the ER marker ERS1-GFP [25] and the plasmalemma/

endosome marker BRI1-GFP [26] were detected in the

microsomal fraction and the cytoplasmic/nucleoplasmic marker

ARR4-GFP [19] in the soluble fraction, GFP-AHK5 was found

in both fractions (Fig. 1C). This intracellular distribution could

be substantiated by recording the wavelength-specific intensity

distribution of a cytoplasm-plasmalemma-cell wall section of

neighbouring tobacco epidermal cells co-expressing GFP-AHK5

and the red fluorescent plasmalemma marker pm-rk-CD3-1007

(Fig. 1D; [27]). Whereas pm-rk-CD3-1007 showed one distinct

peak representing the two plasmalemmata of the adjacent cells,

three peaks were observed for GFP-AHK5 (Fig. 1D). The medial

GFP-AHK5 peak showed a perfect overlay with pm-rk-CD3-

1007, whereas the other two peaks extended to the cytoplasmic

sites of the adjacent cells. Our results therefore suggest that

AHK5 is a HK that is localised both in the cytoplasm and at the

plasmalemma of plant cells.

The expression profile of AHK5 in different Arabidopsis tissues

and cell types was analysed by semi-quantitative RT-PCR. AHK5

transcript was detectable in light-grown but not in etiolated

seedlings (Fig. 2A). Furthermore, AHK5 transcript was present in

flowers, siliques and roots and to a lower extent in stems and

leaves of 30-days-old Arabidopsis plants (Fig. 2A). Increasing the

number of PCR cycles showed a detectable level of AHK5

transcript in mature leaves. As guard cells were the focus of our

study, AHK5 expression was also analysed in guard-cell enriched

samples [16]. Compared to whole leaves the AHK5 transcript

level was significantly lower in guard cells. However, AHK5

expression was increased in guard cell RNA extracted from

H2O2-treated leaves (Fig. 2A), suggesting that AHK5 might have

a function in H2O2 signalling in guard cells. The guard cell

expression of AHK5 was confirmed by creating an AHK5

promoter-GFP-AHK5 genomic construct (PAHK5:GFP-AHK5)

and transiently expressing this in tobacco leaves. As shown in

Fig. 2B and comparable to our RT-PCR results, GFP

fluorescence was detected in guard cells as well as in epidermal

cells indicating that the AHK5 promoter is active in stomata. Our

expression data therefore correlate well with the expression

profile of AHK5 observed in the AtGenExpress developmental

data set [28] and adds to that reported earlier [24].

AHK5 Function in Guard Cells
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Figure 1. Subcellular localisation of AHK5 in plant cells. (A) Confocal images of Arabidopsis protoplasts and tobacco (Nicotiana benthamiana)
leaf cells transiently transformed with a construct expressing P35S:GFP-AHK5 cDNA. Left panel, GFP fluorescence; right panel, bright field image. The
bars represent 10 mm. (B) Western blot showing the expression of full-length GFP-AHK5 in transiently transformed tobacco leaf cells using anti-GFP
antibody. Lane 1, protein standard; lane 2, extracts from cells transformed with a P35S-GFP-AHK5 construct; lane 3, extracts from cells transformed with
the empty vector. (C) Cell fractionation of transiently transformed tobacco leaf cells expressing either GFP-AHK5, the microsomal marker BRI-GFP, the
ER marker ERS1-GFP or the soluble marker ARR4-GFP.Two days after the infiltration of the Agrobacteria the leaf tissue was harvested and total protein

AHK5 Function in Guard Cells
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Identification and characterisation of ahk5 T-DNA
insertion mutants

The functional characterisation of AHK5 was initiated by the

isolation and molecular characterization of Arabidopsis ahk5 T-

DNA insertion lines. Two independent ahk5 alleles were found,

one in the INRA-Versailles T-DNA collection (ahk5-3 in Ws4

background; [29]) and one in the Syngenta SAIL T-DNA

collection (ahk5-1 in Col-0 background; [30]), respectively. Plants

homozygous for the insertion events were identified by PCR on

genomic DNA, and the positions of the T-DNA insertions

confirmed by sequencing. As shown in Fig. 2C the T-DNA of

ahk5-3 is located in an intron within the predicted HK domain,

whereas in ahk5-1 the T-DNA is inserted in a 39 exon which

encodes a part of the AHK5 receiver domain. The T-DNA

insertions did not appear to cause any other changes within the

AHK5 sequence. In addition, the presence of a single T-DNA

insertion event in each line was verified by Southern blotting (Data

S1). Semi-quantitative RT-PCR was used to determine the level of

expression of AHK5 in the homozygous lines. Fig. 2D shows that

across the T-DNA borders there was no amplification of an AHK5

transcript. Further extensive PCR using different primer pair

combinations (of those shown in Fig. 2C) confirmed that no full-

length transcript of AHK5 was present in the mutant lines (Data

S1). Therefore a fully functional AHK5 is unlikely to be expressed

in ahk5-1 and ahk5-3.

For complementation and functional analyses ahk5-1 and ahk5-3

were transformed with a construct expressing the full-length GFP-

AHK5 or AHK5-TAP fusion construct respectively under the

control of the 35S promoter. In addition, AHK5 was ectopically

expressed in the Ws4 wild type background (Fig. 2D). RT-PCR

confirmed that the transformed ahk5 mutants and wild type

expressed AHK5 to high levels (Fig. 2D).

A functional AHK5 HK is required for H2O2 responses in
stomatal guard cells

Initially, a pharmacological approach was used to establish

whether HK activity is required for H2O2 -induced stomatal closure.

Arabidopsis wild type (Col-0) leaves were pre-treated with the inhibitor

3,39,49,5-tetrachlorosalicylanilide (TCSA) [31], followed by exposure

to H2O2 and stomatal apertures measured. TCSA inhibited H2O2-

induced closure in a dose-dependent manner (Fig. 3), thereby

suggesting that HK activity is indeed required for H2O2 signalling to

occur in guard cells leading to stomatal closure.

Regulation of AHK5 expression in guard cells by H2O2 led us to

investigate whether AHK5 function is necessary for the response

of guard cells to exogenous H2O2 by performing stomatal

bioassays. Compared to wild type, guard cells of ahk5-1 and

ahk5-3 were dramatically less sensitive to H2O2 at various

concentrations (Fig. 4 A, B). The sensitivity of both mutant lines

to H2O2 was restored by the expression of the wild type AHK5

cDNA under the control of the 35S promoter (Fig. 4C) showing

that the GFP-AHK5 fusion protein used for the localisation studies

is functional in planta. These data also demonstrate that loss of

AHK5 gene function causes the H2O2-insensitive mutant pheno-

type and that AHK5 is required for stomatal response to

exogenous H2O2. Interestingly, ectopic expression of AHK5 in

wild type background resulted in slightly smaller stomatal

apertures compared to wild type Ws4 in the absence of H2O2

(Fig. 4C, right columns). This suggests that the guard cells of the

AHK5 overexpressor are more sensitive to endogenous H2O2.

However, we observed a response of the overexpressor to

exogenous H2O2 suggesting that ectopic accumulation of AHK5

per se does not significantly alter the plant’s sensitivity to H2O2.

Stomatal responses to NO, ethylene and darkness are
impaired in ahk5 mutants

The insensitivity of ahk5 mutant guard cells to H2O2 suggests

that AHK5 could be an essential signalling component in the

stomatal closure response of Arabidopsis to various stimuli.

Recently, we have shown that H2O2 induces the generation of

NO in the response of guard cells to ABA [32]. If AHK5 is acting

downstream of H2O2, the response to NO might also be affected

in the ahk5 mutants. As shown in Fig. 5A, ahk5-1 and ahk5-3

stomata showed a reduced sensitivity to the NO donor sodium

nitroprusside (SNP). The NO insensitive phenotype of the ahk5

mutants was functionally complemented by the wild type GFP-

AHK5 construct (Fig. S1). In addition, experiments with TCSA

showed that NO-induced closure required HK activity (Fig. S2).

These results indicate a function for AHK5 in both the H2O2 and

NO response pathway in Arabidopsis guard cells. In contrast, the

sensitivity of both mutants to ABA was not changed appreciably

(Fig. 5A) suggesting the possibility that stimuli other than ABA

lead to H2O2 and NO generation which might act via AHK5, and

that ABA signalling occurs largely independent of AHK5.

In our previous work we demonstrated that pea guard cells

exposed to darkness generate H2O2 [33]. Our pharmacological

data revealed that pre-treatment with TCSA inhibited dark-

induced stomatal closure, suggesting a requirement for HK

activity in this response (Fig. S2). To investigate the role of

AHK5 in dark-induced stomatal closure, the response of ahk5

mutants to dark conditions were examined. As shown in Fig. 5A,

detached leaves of both the ahk5-1 and ahk5-3 mutants showed

reduced stomatal closure in response to dark conditions, with

stomata of ahk5-1 responding slightly to dark conditions. The

experiments were also performed with non-detached leaves.

Whilst the stomata of wild type and ahk5-1 plants were open

30 min prior to transfer to darkness, the light-off conditions

induced stomatal closure only in the wild type but not in the

mutant (Fig. 5B). These data indicate that AHK5 function also

contributes to the dark-induced stomatal closure response in

Arabidopsis.

We have shown previously that ethylene perceived by the

ethylene receptor ETR1 (a hybrid HK) also induces stomatal

closure via H2O2 synthesis [16]. Furthermore, a functional ETR1

receptor is required to mediate H2O2-induced stomatal closure

[15]. Experiments with TCSA showed that HK activity is required

for ethylene-induced stomatal closure (Fig. S2). We therefore

investigated the effect of ethylene on ahk5-1 and ahk5-3 guard cells.

Treatment with the ethylene-generating compound ethephon

induced a stomatal closure response in wild type but not in ahk5

extracted. The microsomal fraction (M) and the soluble fraction (S) were separated by ultracentrifugation. Equal cell equivalents were loaded per lane.
(D) Fluorescence intensity images (upper panel) and the corresponding intensity profiles (lower diagram) of the indicated plasmalemma-cell wall
section (blue bar in the magnification) of two adjacent, transiently transformed tobacco leaf cells co-expressing GFP-AHK5 (green dots) and the
plasma membrane marker pm-rk-CD3-1007 (red dots). The red line represents the mono-peak Gauss fit of RFP fluorescence and the green line the
multi-peak Gauss fit of GFP fluorescence (green). The single fits which compose the multi-peak Gauss fit of GFP, are shown in black.
doi:10.1371/journal.pone.0002491.g001

AHK5 Function in Guard Cells
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Figure 2. Expression pattern of AHK5 and characterisation of the T-DNA insertion sites in ahk5-1 and ahk5-3. (A) Steady-state levels of
AHK5 transcript in different tissues and developmental stages of Arabidopsis detected by semi-quantitative RT-PCR using different cycle numbers. For
the detection of AHK5, up to 40 cycles of PCR were performed using primers 3 and 10 (left panel) or primers 8 and 9 and 40 cycles of PCR (right panel).
GC, cDNA from guard cell-enriched non-treated leaf sample; GC+H, cDNA from guard cell-enriched leaf samples treated with 0.5 mM H2O2 for 2 h;
WL, cDNA from whole-leaf sample. ACTIN and EF1 were used as controls. Primer numbers indicated in panel C. (B) Expression of a PAHK5-GFP-
AHK5genomic construct in transiently transformed tobacco leaf cells. Agrobacteria carrying the PAHK5-GFP-AHK5 construct were infiltrated into the
abaxial side of the leaf and the GFP fluorescence analysed by CLSM 2 days later. Top panels = GFP images, lower panels = GFP image overlaying

AHK5 Function in Guard Cells
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guard cells. The sensitivity to ethylene could be restored when the

GFP- and TAP-tagged AHK5 fusion constructs were expressed in

the ahk5 mutants under the control of the 35S promoter (Fig. 5C).

These data show that ethylene induces stomatal closure via AHK5

function.

The data so far indicate that AHK5 function is required for

H2O2, NO, darkness and ethylene-induced stomatal closure, but

not for ABA-induced closure. To establish if AHK5 might be

regulating redox homeostasis in response to these stimuli, the

generation of both H2O2 and NO were measured in guard cells.

Whilst the source of H2O2 in Arabidopsis guard cells has been

established as AtrbohD and F for ABA [13], and AtrbohF for

ethylene [16], it is not known how darkness induces H2O2.

Figure 6A shows that guard cells of the atrbohD/F NADPH oxidase

double mutant did not produce H2O2 nor close their stomata after

transfer into darkness, thereby demonstrating that these homologs

regulate dark-induced H2O2 synthesis in Arabidopsis guard cells.

Interestingly, ahk5 guard cells did generate H2O2 following dark

adaptation of leaves as in wild type (Fig. 6B), thereby suggesting

that AHK5, although involved in dark-induced stomatal closure, is

not involved in regulating dark-mediated H2O2 synthesis.

H2O2 can also induce NO synthesis in the ABA signal

transduction pathway in guard cells [32]. Although ahk5 mutants

do not respond to either H2O2 or NO (Fig. 4 and 5A), H2O2

induced NO synthesis in both mutant alleles (Fig. 6C), thereby

positioning AHK5 downstream of H2O2 and NO in the signal

response pathway. In addition, ethylene-induced H2O2 produc-

tion was investigated in ahk5-1. Upon treatment with ethephon we

observed a strong increase in H2O2-fluorescence in wild type

guard cells (Fig. 7D). In contrast, ethylene caused a decrease of

H2O2 levels in ahk5-1 in comparison to that of the mock-treated

control (Fig. 7D). These data demonstrate that AHK5 contributes

to both, the ethylene-induced H2O2 production and stomatal

closure response in Arabidopsis. However, ABA induced H2O2

synthesis in ahk5 mutant, as in wild type guard cells (25% increase

over controls; Data S1).

In summary so far, the data presented show that darkness-

induced H2O2 synthesis, which is generated by ATRBOHD/F,

signals through AHK5 to mediate stomatal closure, and that

AHK5 is positioned downstream of H2O2 and NO in the signal

response pathway. Moreover, AHK5 regulates ethylene-induced

H2O2 synthesis leading to stomatal closure, but is not involved in

the ABA signal transduction pathway.

Stomatal responses to PAMPs are impaired in the ahk5
mutants

Bacteria-derived pathogen-associated molecular patterns

(PAMPs) such as flagellin and EF-Tu have been shown to induce

the synthesis of ethylene [34] and an oxidative burst in Arabidopsis

leaves, which is mediated by ATRBOHD [35]. Furthermore,

recent work by Melotto and colleagues (2006) demonstrated that

stomata act as sites of entry for bacteria, and that bacteria and

bacteria-derived PAMPs caused a primary stomatal closure

response followed by a re-opening, when the plant was attacked

by a virulent bacterium [36].

Experiments with the Pseudomonas syringae strains pv DC3000 and

the hrpA2 mutant, which lacks a functional type III secretory

apparatus, revealed that ahk5-1 mutant guard cells showed

reduced stomatal closure in response to both bacterial strains

(Fig. 7A). The reduced stomatal closure response to the hrpA2

mutant strain suggests that AHK5 is involved in the basal defence

of Arabidopsis, which is mediated by PAMPs such as the flagellin

peptide 22 (flg22) and the EF-Tu peptide 26 (elf26; [37]).

Flagellin-induced stomatal closure in wild type plants was

inhibited by pre-treatment with TCSA (Fig. S2), indicating a

requirement for HK activity to mediate this response. To

investigate this in more detail, leaves of the ahk5-1 mutant (Col-

0 background) were exposed to flg22 and the stomatal apertures

measured. The response to flg22 was not investigated in the ahk5-3

mutant as the Ws background lacks a functional FLS2 receptor

[38]. As reported [36], flg22 induced stomatal closure in Col-0

wild type guard cells (Fig. 7B). This response was not observed in

the ahk5-1 mutant. The loss-of-function phenotype of ahk5-1 was

complemented by the expression of the GFP-AHK5 fusion

construct, which is under the control of the 35S promoter

(Fig. 7B). Interestingly, elf26 caused an identical stomatal closure

response in wild type (Col-0, Ws4) as well as in the ahk5-1 and

ahk5-3 mutants (Fig. 7C). These data suggest that AHK5 plays a

specific role in the flagellin signal response pathway in guard cells.

PAMP-induced H2O2 production was also investigated to study

the role of AHK5 in redox homeostasis during basal defence.

Interestingly, whereas elf26 caused an identical increase in H2O2

fluorescence in guard cells of wild type and ahk5-1, treatment with

flg22 actually caused a decrease in H2O2 fluorescence in ahk5-1,

when compared with that of the mock-treated control (Fig. 7D).

Therefore AHK5 appears to play a role in both the flg22-induced

regulation of H2O2 production and stomatal closure.

Discussion

An AHK5-dependent signalling pathway acts in stomatal
guard cells

We have characterised the canonical HK AHK5 as being a

cytoplasmic/membrane protein differentially expressed in various

tissues of Arabidopsis. Despite the predicted cytoplasmic location

bright field image. The scale bar represents 20 mm. Images shown from repeat experiments. (C) AHK5 gene structure, position of primers used for
genomic and RT-PCR and T-DNA insertions in ahk5-1 (Col-0) and ahk5-3 (Ws4). (D) Analysis of AHK5 expression in seedlings of wild type, ahk5-1 and
ahk5-3 mutant, P35S-AHK5 complemented and AHK5 over-expressing plants using the indicated primer pairs (see Supplementary data for sequences).
doi:10.1371/journal.pone.0002491.g002

Figure 3. HK activity is required for H2O2-induced stomatal
closure. Effect of the histidine kinase (HK) inhibitor 3,39,49,5-
tetrachlorosalicylanilide on H2O2-induced stomatal closure in wild type
Arabidopsis (Col-0). Arabidopsis leaves were incubated in stomatal
opening buffer for 2.5 h followed by treatment for 15 min with 0.1, 1, 5
or 10 mM of TCSA prior to exposure to 200 mM H2O2 (H) for 2.5 h.
Control, buffer alone. TCSA, buffer with TCSA alone at 10 mM. Data are
expressed as mean +/2 S.E. from 3 independent experiments (n = 60–
80 guard cells).
doi:10.1371/journal.pone.0002491.g003
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Figure 4. ahk5 mutant guard cells show reduced sensitivity to H2O2. (A) Stomatal closure in wild type Col-0 (white bars) and ahk5-1 (black
bars) leaves 2.5 h after exposure to increasing concentrations of H2O2. (B) Stomatal closure in wild type Ws4 (white bars) and ahk5-3 (black bars)
leaves 2.5 h after exposure to increasing concentrations of H2O2. (C) Stomatal closure in leaves of wild type (Ws4, Col-0), ahk5-3 and ahk5-1 as well as
in the ahk5 mutants and wild type (Ws4) transformed with a construct expressing the AHK5 cDNA under the control of the 35S promoter (P35S-AHK5).
The leaves were either mock-treated (white bars) or exposed to or 100 mM H2O2 (black bars). Data are expressed as mean +/2 S.E. derived from
measuring the apertures of at least 60 guard cells from 3 independent experiments.
doi:10.1371/journal.pone.0002491.g004
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Figure 5. Guard cells of ahk5 mutants show an altered response to NO, ethylene and darkness. (A) Stomatal closure in wild type (Col-0,
Ws4), ahk5-3 and ahk5-1 in response to buffer (white bars), 50 mM sodium nitroprusside, (SNP, black bars), 10 mM abscisic acid (ABA, grey bars) and
2.5 h exposure to darkness (striped bars). Data from ahk5-1 dark treatment are statistically significant (Student’s t-test; p,0.05) versus dark treatment
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[18] and lack of transmembrane domains within the AHK5

sequence, our data suggest that AHK5 co-localises at the

plasmalemma as well. Interestingly, putative N-myristoylation

sites are predicted for AHK5, suggesting that an association of

AHK5 to the plasmalemma is possible. In addition, we cannot

exclude the possibility that the interaction with intrinsic membrane

proteins including other HKs locates AHK5 to the plasmalemma.

Expression of AHK5 appears to be regulated by H2O2 in guard

cells. In addition, we have shown using functional approaches that

AHK5 plays a crucial role in mediating H2O2-dependent

processes in stomatal guard cells which are induced by

environmental and hormonal signals such as NO, ethylene,

adaptation to darkness and the PAMP flagellin (flg22). Despite

its low level of expression, mutations in the AHK5 gene appear to

have profound effects on the guard cell phenotype. The pattern of

low expression of a gene in guard cells still resulting in distinct

stomatal phenotypes has been observed before – e.g. the nitric

oxide (NO)-generating enzyme nitrate reductase (NR). There are

two NR genes, NR1 and NR2, in the Arabidopsis genome. Although

NR1 is expressed at much lower levels than NR2 in guard cells,

mutations in NR1 but not NR2 appear to affect ABA-induced NO

responses in stomata [39]. Although cis elements found in the

promoters of guard cell specific genes [40] are present in the

promoter region of AHK5, it is possible that other cis elements

which repress promoter activity in guard cells cause the weak

expression pattern, as seen with other guard cell genes [41]. It is

also likely that phenotypic effects may be explained by specific

protein-protein interactions between a low-expressed protein in

guard cells and other proteins of higher abundance. Preliminary

data show that expression of the phosphotransfer protein AHP2

and the response regulator ARR4 that AHK5 interact with are of

higher abundance than AHK5 in guard cells (Data S1). Further

studies will analyse the functions of AHK5 promoter, as well as

studying the protein interacting two-component partners of

AHK5.

AHK5 functions as integrator of H2O2- dependent
signalling in stomatal guard cells

A lack of functional AHK5 results in altered stomatal responses

not only to exogenous H2O2 but also to multiple stimuli which are

known to generate H2O2 in plant tissues. These signals include

ethylene [16], the light-off signal (darkness; data shown here and

[33]) and the PAMP flg22 [35].

Previously we provided evidence for a role for the plant

hormone ethylene in mediating stomatal closure via H2O2

signalling [16]. Although the HK function of ETR1 is not

required for H2O2 signalling, the N-terminus of ETR1 appears to

be essential for this signalling to occur in guard cells [15]. The

pharmacological data presented here with TCSA indicate that HK

activity is required for H2O2 (and NO)-induced stomatal closure in

Arabidopsis. As ethylene is able to produce H2O2 in wild type guard

cells [16], and as shown here, AHK5 is also involved in ethylene-

dependent signalling leading to H2O2 synthesis and stomatal

closure, it is possible that the ethylene-sensing N-terminus of

ETR1 functionally and/or physically interacts with H2O2-

activated AHK5 during ethylene signal transduction in guard

cells. This is in agreement with recent work by Iwama et al. [24],

who demonstrated a functional interaction of AHK5 with the

ethylene and ABA response in the control of root growth in

Arabidopsis. The authors propose an ‘‘unidentified’’ stimulus as

being sensed by AHK5, which could integrate the ABA and

ethylene signalling pathways in roots. On the basis of our data it is

likely that this unknown stimulus for AHK5 is H2O2, although the

ahk5 phenotype in roots in response to H2O2 remains to be

determined.

Synthesis of H2O2 upon transfer of plants to darkness was found

to depend on NADPH oxidase orthologues in pea [33]. By using

an atrbohD/F double mutant we demonstrate here that dark-

induced H2O2 formation occurs by a similar mechanism in

Arabidopsis. We also show that ahk5 mutants do not close their

stomata in response to darkness. This is substantiated by the

pharmacological data showing inhibition by TCSA, of dark-

induced closure in wild type Arabidopsis. Stomata of the H2O2-

insensitive etr1-1 mutant still respond to darkness (Data S1),

suggesting the possibility that as far as HKs are concerned, AHK5

might have a unique role in the dark-H2O2 signalling pathway in

guard cells. Although of fundamental physiological and ecological

relevance, little is known of the dark-induced signalling processes

leading to stomatal closure. The type 2C protein phosphatases

ABI1 and ABI2 [42], the outward potassium channel GORK [43]

and the MYB transcription factor AtMYB61 [44] have functions

in guard cell responses in the dark. However, the mechanism by

which AHK5-dependent phosphorelay is linked to proteins such as

ABI1, 2, GORK and AtMYB61 in the guard cell signalling

network is not yet known.

AHK5 also appears to be essential for mediating flagellin- (flg22)

induced stomatal closure in the Col-0 ecotype, again correlating

with the TCSA data demonstrating inhibition of flg22-induced

stomatal closure. Surprisingly, the AHK5-mediated response

seems to be specific for flg22 because the mutants showed a wild

type stomatal closure response to the PAMP elf26. This is

unexpected because the signalling cascades of flg22 and elf26

overlap considerably in non-guard cell tissue in respect to ethylene

and H2O2 production, alkalinisation, activation of MAPKs and

changes in gene expression [34,37]. However, as noted recently,

there are likely to be differences between guard cells and

mesophyll cells mediating pre- and post-invasive immunity [45].

Recent work by Melotto et al. [36] indicates that bacterial PAMPs

such as flagellin induce stomatal closure in Arabidopsis. Our data,

therefore, position AHK5 in a signal transduction cascade specific

to flagellin in guard cells. The exact mechanism by which AHK5

interacts with this pathway remains to be determined, but it is

likely that the interaction occurs with the flg22 receptor FLS2. It is

interesting to note that the expression of FLS2 is abundant in

guard cells [46]. Given that FLS2 is a plasmalemma-bound and

AHK5 is likely to be located at the plasma membrane as well as

the cytoplasm, one may speculate that both receptors could

physically interact at the plasma membrane allowing AHK5 to

perceive high local H2O2 concentrations induced by the flg22-

activated FLS2/BAK1 receptor complex [47,48]. Importantly,

flg22 but not elf26 was unable to induce H2O2 accumulation in

ahk5 mutant guard cells. Thus, AHK5 also appears to contribute

of wt, and data from ahk5 ABA treatment are statistically significant (p,0.05) versus controls. (B) Guard cell response in plant-attached leaves in light
and after transfer to darkness. Stomatal apertures were measured from wild type (Col-0) or ahk5-1 leaves either 30 min prior to light off (white bars)
or 1 h after transfer to darkness (black bars). Data are expressed as mean +/2 S.E. from 3 independent experiments (n = 60 guard cells). (C) Stomatal
closure response to ethylene in guard cells of wild type (Col-0, Ws4), ahk5-1, ahk5-3 and ahk5 mutants transformed with the P35S-AHK5 construct.
White bars, mock-treated; black bars, 3 h treatment with 100 mM ethephon. Data are expressed as mean +/2 S.E. from 3 independent experiments
(n = 60 guard cells).
doi:10.1371/journal.pone.0002491.g005
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Figure 6. Regulation of H2O2 homeostasis by AHK5. (A) Stomatal responses to darkness in wild type (Col-0) and the atrbohD/F mutant. White
bars, stomatal apertures of guard cells from leaves exposed to light (light) or transferred to darkness for 2 h (dark). Black bars, H2O2 fluorescence
determined by confocal microscopy from epidermal peels exposed to light (light) or transferred to darkness for 30 min (dark). Data are expressed as
mean +/2 S.E. (n = 60 guard cells for aperture measurements; n = 40–80 guard cells for average H2O2 fluorescence from confocal experiments). (B)
Darkness-induced H2O2 synthesis in wild type (Ws4) and ahk5-3 mutant guard cells. H2O2 fluorescence from epidermal peels exposed to ambient
light (white bars) or darkness (black bars) for 30 min was determined by confocal microscopy using the H2O2-sensitive fluorescent dye H2-DCFDA.
Data are expressed as mean +/2 S.E. (n = 40–80 guard cells for each treatment). (C) H2O2-induced NO fluorescence from guard cells of wild type and
ahk5 mutants using confocal microscopy and the NO-sensitive fluorescent dye DAF2-DA. White bars, mock-treated; black bars, 15 min treatment with
100 mM H2O2. Data are expressed as mean +/2 S.E. (n = 75–130 guard cells for each treatment.
doi:10.1371/journal.pone.0002491.g006
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Figure 7. Guard cells of ahk5 mutant show a differential response to PAMPs. (A) Stomatal aperture of wild type (Col-0) and ahk5-1 3 h after
exposure to P. syringae pv. DC3000 (black bars) or hrpA2 mutant (grey bars). White bars, mock-treatment. (MgCl2). (B) Stomatal closure of wild type
(Col-0), ahk5-1 and ahk5-1 transformed with a P35S-AHK5 construct after a 3 h treatment with either buffer (white bars) or 10 nM flg22 peptide (flg22,
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to the flagellin-induced regulation of H2O2 levels in guard cells (see

below for detailed discussion). This also implies that an additional

H2O2 sensor is required for the perception of the H2O2 signal

derived from the EF-Tu/EFR receptor complex.

As demonstrated by the wild type behaviour of both ahk5

mutants to ABA, the AHK5-dependent signalling pathway does

not contribute to the ABA response pathway in guard cells. This is

not entirely surprising, as we have previously observed that

mutants of ETR1 also respond normally to ABA [16]. Although

ABA signalling requires the synthesis and action of H2O2 [13], our

data indicate that this function is independent of AHK5.

The complexity of redox signalling in stomatal guard
cells

Redox signalling in guard cells is likely to be regulated via a

number of signalling pathways. This may be because of the nature

of H2O2 as such, being able to diffuse freely between cellular

compartments, and also due to the fact that H2O2 is likely to be

generated in localised ‘‘hot spots’’ within the cell, thereby leading

to localised effects of H2O2 on its target proteins [2]. Generation of

H2O2 in guard cells in response to ABA and darkness occurs via

the NADPH oxidase orthologues ATRBOHD and ATRBOHF

([13] and this study). ATRBOHF is essential for H2O2 generation

in response to ethylene and ETR1 functions as a central mediator

of H2O2 responses [16]. In leaves, flg22-induced H2O2 production

occurs via ATRBOHD [35]. RBOH proteins are localised at the

plasma membrane [49], and the proteins involved in H2O2

signalling are located at the ER (ETR1; [25,50]), plasma

membrane (AHK5, FLS2, [51]) or in the cytosol (AHK5). We

have observed that AHK5 function is crucial for ethylene and

flg22-induced but not for darkness or elf26-induced H2O2

accumulation. Further work using ahk5 plants crossed with atrboh

mutants is required to confirm how AHK5 and RBOH signalling

interact. However, AHK5 transcript appears to be regulated by

H2O2 in guard cells, and AHK5 function is essential for H2O2 and

NO-dependent signal transduction. Together, the data suggest

that AHK5 acts to maintain H2O2/redox homeostasis in guard

cells in response to multiple stimuli. A positive feedback loop is

possible, whereby H2O2, generated via different stimuli (from

RBOH), regulates AHK5 expression (or activity), which in turn

regulates H2O2 synthesis (for ethylene and flagellin pathways) and

action leading to stomatal closure. Regulation of the expression of

HKs by the stimulus that induces their activity is not uncommon –

expression of the cytokinin receptor CRE1 and ethylene receptors

is regulated by cytokinin and ethylene treatments, respectively

[22]. Detailed investigations are necessary to elucidate the

molecular mechanisms of redox regulation of AHK5, via mass

spectrometry of the purified protein.

The dual function of AHK5, in regulating H2O2 synthesis and

action is reminiscent of the role of ETR1, which we have shown

previously to have a dual function in guard cells, that of perceiving

ethylene as well as H2O2 [16]. AHK5 could therefore have

multiple functions as well: firstly, AHK5 may contribute to the

flagellin- and ethylene-induced H2O2 accumulation and, secondly,

may sense H2O2 produced in the course of the ethylene-, NO-,

flg22- and darkness-regulated stomatal closure response. Our

evidence that AHK5 plays a role in the inducible accumulation of

H2O2 comes from our observation that the H2O2 level is

decreased in ahk5-1 guard cells upon treatment with ethylene or

flg22. It is not yet known whether AHK5 interacts with receptors

such as ETR1 or FLS2, H2O2-generating enzymes such as

ATRBOHD/F and redox-active proteins such as ATGPX3, ABI1

and ABI2 which are located in distinct sub-cellular compartments

[9,10,52] or whether AHK5 co-ordinates their functions to

integrate H2O2 signalling. However, our study provides evidence

that AHK5 acts to integrate multiple H2O2-dependent processes

at different molecular levels.

Summary and concluding remarks
We have shown that AHK5 functions in guard cells to mediate

stomatal responses to various stimuli that generate H2O2.

Evidence is slowly emerging that implicate overlapping signalling

pathways during abiotic and biotic stress responses in plants,

which include hormone signalling, ROS signalling and protein

phosphorylation [22,53]. Our data position AHK5 both upstream

and downstream of ROS in integrating bacterial, darkness and

hormonal-induced responses which could be achieved by

differential protein-protein interactions. This is the first demon-

stration of a role for a HK two-component signalling pathway in

integrating abiotic and biotic signals. Moreover, it is the first

identification of a HK mediating H2O2 homeostasis to integrate

multiple stress responses in guard cells. The data presented here

highlight the mechanism and function of the AHK5 two-

component signal transduction pathway in stomata, which are

ideal model systems to study integration of multiple stimuli.

Materials and Methods

Growth and maintenance of plants
Wild type and mutant seeds of Arabidopsis thaliana ecotype

Columbia (Col-0) and Wassilewskijia (Ws4) were sown on

Levington’s F2 compost and grown under a 16 h photoperiod

(100–150 mE m22 s21), 22uC and 65% relative humidity in

controlled environment growth chambers (Sanyo Gallenkamp,

UK). atrbohD/F seeds were obtained from J Jones (Sainsbury

Laboratory, Norwich, UK).]. Details of the T-DNA insertion lines

in AHK5 are as follows: ahk5-1 mutant seeds (SAIL 50_H11) were

originally obtained from Syngenta (SAIL collection, now available

at ABRC/NASC), and the ahk5-3 seeds (FLAG_271G11) were

obtained from the INRA/FLAG-FST collection at Versailles

[29,30].

Stomatal bioassays
Stomatal assays were performed on leaves essentially as

described in [15]. Leaves were floated for 2.5 h under continuous

illumination (100–150 mE m22 s21) in Mes/KCl buffer (5 mM

KCl/10 mM Mes/50 mM CaCl2, pH 6.15). Once the stomata

were fully open, leaves were treated with various compounds for a

further 2.5 h. The leaves were subsequently homogenised

individually in a Waring blender for 30 s and the epidermal

fragments collected on a 100 mm nylon mesh (SpectraMesh, BDH-

Merck, UK). Stomatal apertures from epidermal fragments were

then measured using a calibrated light microscope attached to an

imaging system (Leica QWin software, Leica, UK). Flg22 and

black bars). (C) Stomatal closure of wild type (Col-0, Ws4), ahk5-1 and ahk5-3 in response to a 3 h treatment with buffer (white bars) or 1 mM elf26
peptide (elf26, black bars). Data are expressed as mean +/2 S.E. from 3 independent experiments (n = 60 guard cells), p,0.05 (student’s t-test) versus
appropriate controls. (D) H2O2 fluorescence from epidermal peels of wild type (Col-0, white bars) and ahk5-1 (black bars) treated for 15 min with 10
nM flg22, 1 mM elf26 or for 30 min with 100 mM ethephon. Fluorescence intensity was quantified as described in methods. Data are expressed as
relative fluorescence (% control values) +/2 S.E. (n = 90–122 guard cells for each treatment).
doi:10.1371/journal.pone.0002491.g007
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elf-26 peptides were a kind gift from J Mansfield (Imperial College

London). Elicitors were added to the incubation buffer at 2.5 h

and stomatal apertures measured after a further 3 h.

For bacterial experiments, Pseudomonas syringae pv DC3000 or P.

syringae hrpA2 mutant were grown overnight in LB media and

overnight cultures centrifuged, resuspended in 10 mM MgCl2 at

an OD600 = 0.2 (equivalent to 26108 cfu/ml). Silwet (0.002% v/v)

was added to cultures or MgCl2 to act as a wetting agent. Bacteria

were gently coated onto the abaxial side of leaves on intact plants

(controls were MgCl2 with Silwet alone). Plants were left in the

growth chambers with a covered lid (to increase humidity) for 3 h,

inoculated leaves subsequently detached and stomatal apertures

measured.

Measurement of H2O2 and NO using confocal/fluorescent
microscopy

Epidermal peels from mature leaves, prepared as described

above, were incubated in Mes/KCl buffer for 2–3 h. Following

this, the fragments were loaded by incubation in 50 mM of the

H2O2-sensitive fluorescent dye 29,79-dichlorodihydrofluorescein

diacetate (H2DCFDA, Molecular Probes, Leiden, The Nether-

lands) for 10 min. After washing in fresh buffer for a further

20 min, the fragments were challenged with various compounds as

indicated in the figure legends. For dark treatments the peels were

incubated in darkness for 30 min and microscopy performed.

Confocal laser scanning microscopy was used to visualise

fluorescence, using an excitation wavelength of 488 nm and an

emission wavelength of 515–560 nm (Nikon PCM2000, Nikon

Europe B.V. Badhoewvedorp, The Netherlands). Images were

acquired and analysed using Scion Image software (Scion Corp.,

USA) to measure the relative fluorescence intensities in the cells

following various treatments. For the data in Figure 7D,

fluorescent microscopy (Zeiss Axioskop2, Zeiss, UK) was used

with filter set 10 (excitation filter BP 450–490 nm, beam splitter

FT 510 nm and emission filter BP 515–565 nm). Images were

acquired and analysed using Image J software (NIH, USA). Data

represent fluorescence intensities expressed as average fluores-

cence or as a percent of the control values, from several guard cells

analysed in different experiments. For NO fluorescence, epidermal

peels were loaded with 10 mM of the NO-sensitive dye

diaminofluorescein diacetate (DAF2-DA, Calbiochem, UK) using

exactly the same dye loading procedure, and images acquired

using confocal microscopy as described above.

Cloning, expression analysis of AHK5 and characterisation
of T-DNA mutants

The AHK5 Entry clone was constructed using GatewayTM

technology (Invitrogen, UK). It was obtained through TOPO-

reaction using the pENTR/D-TOPO vector (Invitrogen). PCR was

performed using PhusionTM polymerase (Finnzymes, UK) and

cDNA from Arabidopsis roots as template. Primers were as follow:

59-CACC-ATGGAGACTGATCAGATTGAGGAA-39, 59-GTGC-

AAATACTGTTGCAAACACTCTC-39. The AHK5 Entry clone

was verified via restriction analysis and sequencing (GATC Biotech).

The construct for the expression of the GFP fusion proteins under

the control of 35S promoter (P35S::GFP:AHK5) was cloned via LR-

reaction into the destination vector pK7WGF2.0 [54]. For

complementation of the mutant line in the Ws4 background, the

TAP-tag destination vector pYL436 [55] was used to transform ahk5-

3 plants. The transformants were selected on BASTA and

gentamycin and analysed by PCR. For the Col-0 mutant

complementation the P35S::GFP-AHK5 construct in pK7WGF2.0

was used to transform ahk5-1 plants. The transformants were

selected on BASTA and kanamycin and analysed by PCR as

described below. For the AHK5 overexpressor in Ws4 background,

LR reaction was used to clone the AHK5 cDNA under the control of

35S promoter into the destination vector pMDC32 [56]. All plant

transformations were carried out using Agrobacterium-mediated

transformation by floral dipping [57].

A four-step procedure was used to generate the PAHK5::GF-

P::AHK5 expression cassette. In step 1, a 7117 bp fragment

containing the 3.2 kb upstream promoter region of AHK5, the full

length genomic sequence of AHK5 and 217 bp of 39 region was

amplified from Col-0 genomic DNA by PCR using KOD Hot

Start DNA polymerase (Novagen, Germany) and the primers

AHK.FOR.-3205 (59-CACC-TCTAGACCCTACACGGGATA-

GATTATCG-39) and AHK.REV.+219 (59-TTTGTCGAC-

TCTGCTGGATTCGAATGGTGGG-39) and cloned into the

pENTRD/TOPO entry vector (Invitrogen, UK) to generate

pMKC101. The entire construct was verified by sequencing. In

step 2, a hybrid DNA fragment containing 643 bp upstream

promoter region of AHK5 from pMKC101 was joined to the GFP

sequence and AHK5 exon 1 sequence (from the P35S::GFP::AHK5

construct) by single joint PCR [58]. Briefly, in the 1st round PCR

stage, 2 separate PCR reactions were set up. In reaction 1, primer

1 (59-CCTTTTGCATCTCGAGACTTCATGATTAC-39) and

primer 2 (59-GGTGAACAGCTCCTCGCCCTTGCTCAC-

CATTTCACAGACCATTGATCAAGGTTTCTC-39) were

used to incorporate a XhoI restriction site (underlined in primer

1) and a 27 bp of the 59 end of GFP sequence (underlined in primer

2) onto the 59- and 39-ends of the 643 bp AHK5 promoter region,

respectively. In reaction 2, a fragment containing the entire GFP

sequence and AHK5 exon 1 was amplified using primer 3 (59-

ATGGTGAGCAAGGGCGAGGAGCTGTTCACC-39) and

primer 4 (59-GATGAGTCGAATTCAATAGGTTTGGTAA-

CC-39) from the P35S::GFP::AHK5 construct. Primer 4 contains

an EcoRI site (underlined). The products from the two reactions

were joined (via the 27 bp overlapping 59 GFP sequence common to

both PCR products) in the 2nd round PCR stage to generate a

hybrid DNA fragment. This fragment was then amplified with the

primers 1 and 4 in the 3rd round PCR stage. In step three, the

hybrid PCR product was digested with XhoI/EcoRI, and cloned

into an XhoI/EcoRI cut pMKC101 plasmid to create the

PAHK5::GFP::AHK5 cassette. The integrity of the hybrid DNA

fragment was verified by sequencing. Finally, step 4; the

PAHK5::GFP::AHK5 cassette was cloned into the Gateway destination

vector pMDC99 [56] using the LR reaction. This binary vector was

then transformed into the Agrobacterium tumefaciens strain GV3101,

and used in tobacco transient expression studies as described above.

For identification and characterisation of homozygous insertion

mutants, genomic DNA isolated from appropriate wild type and

mutant plants was used for PCR analysis, using various PCR

combinations and primers. T-DNA primers used were those

already described [29,30]. Individuals were chosen from homo-

zygote lines by selection on BASTA, Southern analysis confirmed

the presence of single T-DNA insertions in these lines and at least

3 generations were followed through to get a homozygote

population.

For RT-PCR, total RNA from corresponding tissues and

developmental stages of A. thaliana was isolated using RNAwizTM

(Ambion, UK) or TRIZOL reagent (Invitrogen, UK) and genomic

DNA was removed using TURBO DNA-freeTM (Ambion, UK).

RNA was isolated from guard cell-enriched epidermal fragments

and whole leaves as described previously [16]. Subsequently, 1.5

mg of total RNA was reverse transcribed using oligo-dT primer

with SuperScriptTM III Reverse Transcriptase (Invitrogen, UK)

and the resulting cDNA was used as template for the PCR with
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HotStart Taq polymerase (Genaxxon, Germany). PCR products

were separated via agarose gel electrophoresis after different

number of PCR cycles for comparison with ACTIN2 or EF1 as

described in [59]. The sequences of the primers shown in Figure 2

are in Supplementary data.

Transient transformation of tobacco leaf cells and
Arabidopsis protoplasts, GFP and RFP analyses

The p19 protein from tomato bushy stunt virus cloned in pBIN61

[60] was used to suppress gene silencing in tobacco (Nicotiana

benthamiana). All plasmids were transformed in Agrobacterium tumefaciens

strain GV3101 pMP90, which was grown in YEB medium to OD600

1.0 and prior to infiltration resuspended in AS medium (10 mM

MgCl2, 150 mM acetosyringone and 10 mM MES pH 5.7) to

OD600 = 0.8. The Agrobacterium strains containing the GFP or p19

construct were mixed in a 1:1 relationship and co-infiltrated into

leaves of 4-week-old tobacco plants as described in [60]. The abaxial

epidermis of infiltrated tobacco leaves was assayed for fluorescence

by CLSM (confocal laser-scanning microscopy) 2 to 3 days post

infiltration according to [61]. Arabidopsis protoplasts were trans-

formed using PEG mediated transformation procedure and assayed

for fluorescence by CLSM after 20 h [61]. CLSM was performed

using a Leica TCS SP2 confocal microscope (Leica Microsystems,

Germany). These CLSM images were obtained using the Leica

Confocal Software and the HCX PL APO 636/1.2 W CORR

water-immersion objective.

For recording the RFP and GFP intensity profiles a homemade

confocal laser-scanning microscope, based on a Zeiss Axiovert was

used [62,63]. The microscope was equipped with an avalanche

photodiode (APD, SPCM-AQR-14, Perkin Elmer, USA) as a

spectrally integrating detector. A pulsed 473 nm diode laser

(Picoquant LDH-P-C470) operating at a repetition rate of

10 MHz served as excitation source. Fluorescence intensity images

were obtained by raster scanning the sample and detecting

emission intensity for every spot on the sampled area. The setup

was equipped with a 480 nm long pass filter (Semrock Razor Edge

LP02-473RU-25) to block back-scattered excitation light, a

500 nm bandpass filter (Semrock BrightLine BL500/24) to detect

GFP-fluorescence and a 590 nm bandpass filter (Semrock FF01-

590/20-25) to detect RFP-fluorescence in front of the APD. The

processing of the obtained fluorescence intensity images was

accomplished with the WSxM software [64].

Protein extraction, cell fractionation, SDS-PAGE and
western blotting

For cell fractionation 100 mg tissue of transiently transformed

tobacco leafs were homogenised in liquid nitrogen and the

homogenate was extracted in 2 ml homogenization buffer (25 mM

MOPS, 0.1 mM MgCl2, 8 mM L-cysteine, 2.5 mM EDTA, 26
protease inhibitor mix (Roche), 250 mM sucrose; pH 7.8). The crude

extract was cleared from debris by centrifugation (4000xg, 40 min,

4uC). The microsomal fraction was separated from the soluble

fraction by ultracentrifugation (100,000xg, 30 min, 4uC).

The pellet was washed three times in homogenization buffer

supplemented with 0.05% Triton X-100 and resuspended in 50 ml

SDS-PAGE sample buffer. The soluble fraction was mixed with SDS-

PAGE sample (ratio: 2:1 v/v). For SDS-PAGE 18 ml of the soluble

fraction and 10 ml of microsomal fraction were loaded. Western blot

analysis and immunodetection were performed according to [61]

using anti-GFP antibody (Roche, Switzerland) to detect GFP-AHK5,

BRI1-GFP, ERS1-GFP and ARR4-GFP. An anti-mouse-AP

conjugate (BioRad, UK) was used as secondary antibody.

Statistical analysis
All data from stomatal bioassays and fluorescence measurements

were statistically analysed by using Student’s t-test analysis. Data are

statistically significant (p,0.01) for all treated versus control

responses for wild type and complemented lines, and not significant

(p.0.01) for mutant treated (H2O2, ethephon, NO, darkness and

flg22) versus mutant controls, unless otherwise indicated.

Supporting Information

Figure S1 The NO insensitive stomatal closure response

phenotype of the ahk5-1 mutant is complemented by the 35S

promoter-driven expression of the AHK5 cDNA. Stomatal closure

in wild type Col-0, ahk5-1 mutant or ahk5-1 transformed with a

construct expressing GFP-AHK5 under the control of the 35S

promoter (P35S-AHK5/ahk5-1) in response to mock treatment

(white bars) or SNP (50 mM, black bars) for 2.5 h.

Found at: doi:10.1371/journal.pone.0002491.s001 (1.42 MB TIF)

Figure S2 Histidine kinase (HK) activity is required for NO-,

dark- and flg22-induced stomatal closure. Effect of the HK

inhibitor 3,39,49,5-tetrachlorosalicylanilide (TCSA) on stomatal

closure in wild type Arabidopsis (Col-0). Arabidopsis leaves were

incubated in stomatal opening buffer for 2.5 h followed by

treatment for 15 min with 10 mM of TCSA prior to exposure to

darkness, ethephon (eth, 100 mM), flg22 (100nM) or SNP (50 mM)

for 2.5 h. Control, buffer alone. Data are expressed as mean +/2

S.E. from 3 independent experiments (n = 60 guard cells).

Found at: doi:10.1371/journal.pone.0002491.s002 (0.61 MB TIF)

Data S1

Found at: doi:10.1371/journal.pone.0002491.s003 (0.02 MB

DOC)
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