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Abstract

With the increasing efficiency of answer set solvers and a
better understanding of program design, answer set program-
ming has reached a stage where it can be more successfully
applied in a wider range of applications and where it attracts
attention from researchers in other disciplines. One of these
domains is music synthesis. In this paper we approach the
automation and analysis of composition of music as a knowl-
edge representation and advanced reasoning task. Doing so, it
is possible to capture the underlying rules of melody and har-
mony by a very small, simple and elegant set of logic rules
that can be interpreted under the answer set semantics. Our
system, ANTON is the first algorithmic composer to combine
both harmonic and melodic composition. In addition to de-
scribing the composition system thus created we consider the
advantages of constructing an algorithmic composer this way,
and also the limitations of current solvers.

Introduction

Originally computers were seen as machines to assist in nu-
merical calculations, and it was soon realised that they could
do other things, starting with commerce, but extending to
symbolic operations and eventually to near-universal use in
all technical areas. More recently the application of comput-
ers to artistic activity has become a subject of interest.

In this paper we report on the use of declarative logic pro-
gramming as a significant component of an artistic endeav-
our, the composition of music. We show that it is possible to
use Answer Set Programming (ASP) to create ab initio short
musical pieces that are both melodic and harmonic. After a
description of the computational basis we describe the mu-
sical context of this work, and why it is neither a trivial task,
nor a tractable one. Our system, ANTON, named in honour
of our favourite composer of the second Viennese School, is
presented as both a design and as a practical working system.
We report on our experience in using ASP for this system,
and indicate a number of potentially exciting directions in
which this system could develop, both musically and com-
putationally.

Copyright c© 2008, Association for the Advancement of Artificial
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Answer Set Programming
Due to space constraints, only a brief overview of the answer
set semantics and Answer Set Programming (ASP) is given
here. The interested reader is referred to (Baral 2003) for
a more in-depth coverage of the definitions and ideas pre-
sented in this section.

The answer set semantics is a model based semantics for
normal logic programs.

Following the notation of (Baral 2003), we refer to the
language over which the answer set semantics is defined as
AnsProlog.

The basic components of the language are atoms, ele-
ments that can be assigned a truth value. An atom can be
negated using negation as failure in order to create the lit-
eral not a. If a is true then not a is false and vice versa.
Atoms and literals are used to create rules of the form:

a ← B, not C.

where a is an atom, B and C are sets of atoms. Intuitively,
this means “if all element of B are known/true and no ele-
ment of C is known/true, then a is known/true”. The set of
conditions of a rule (on the right hand side of the arrow) are
known as the body, written as B(r), and the atom that is the
consequence of the rule is referenced as the head of the rule,
written H(r). The body is split further in two sets of atoms,
B+(r) and B−(r) depending on whether the atom appears
positively or negatively. Rules with empty bodies are called
facts; their head should always be true.
A program in AnsProlog is a finite set of rules.

If a program Π contains no negated atoms (∀r ∈ Π ¦
B−(r) = ∅) its semantics is unambiguous and can easily
be computed as the fixed point of the Tp(the immediate con-
sequence) operator. Starting from the empty set, we check in
each iteration which rule bodies are true. The heads of those
rules are added to the set for the next iteration. This is a
monotonic process, so we obtain a unique fixpoint, denoted
T∞p (∅). This fixpoint is called the answer set.

For example, given the following program:

a ← b, c.

b ← c.

c ← .

d ← e.

e ← d.



the unique answer set is {a, b, c}, as Tp(∅) = {c},
Tp({c}) = {b, c}, Tp({b, c}) = {a, b, c} and
Tp({a, b, c}) = {a, b, c}. Note that d and e are not included
in the model as their is no way of concluding e without
knowing d and vice versa. This is different to the classi-
cal interpretation of this program (via Clark’s completion)
which would have two models, one of which would contain
d and e.

The natural mechanism for computing negation in logic
programs in negation as failure, which tends to be char-
acterised as epistemic negation (“we do not know this is
true”), rather than classical negation (“we know that this is
not true”). This correspondence is motivated by the intuition
that we should only claim to know things that can be proven;
thus anything that can not be proven is not known. To extend
the semantics to support this type of negation, the Gelfond-
Lifschitz reduct is used. This takes a set of proposed atoms
and gives a reduced, positive program by removing any rule
which depends on the negation of any atom in the set and
dropping all other negative dependencies.

Definition 1 Given an AnsProlog program Π and a set of
atoms A, the Gelfond-Lifschitz transform of Π with respect
to A is the following set of rules:

ΠA = {H(r)← B+(r)|r ∈ Π, B−(r) ∩A = ∅}

This allows us to extend the concept of answer sets to pro-
grams with negation. Intuitively, these are sets of possible
beliefs about the world which are consistent with all of the
rules and have acyclic support for every atom that is known,
and thus in the set.

Definition 2 Given an AnsProlog program Π, A is an an-
swer set of Π ⇐⇒ A is the unique answer set of ΠA.

For example, the following program has two answer sets:

a ← not b.

b ← not a.

c ← not d.

d ← b.

d ← e, not a, not c.

e ← d, not a.

{a, c} and {b, d, e}. Computing the reduct with respect to
{a, c} gives:

a ← .

c ← .

d ← b.

which results in T∞p (∅) = {a, c}.
A given program will have zero or more answer sets.

With AnsProlog we can represent and reason about NP-
complete problems in such a way that the answer sets of the
program correspond to the solutions of the problem.

When used as a knowledge representation and program-
ming language, AnsProlog is enhanced to contain con-
straints (e.g. ← b, not c) and choice rules (e.g. {a, b, c} ←

b, not c). The former are rules with an empty head, stating
that an answer set cannot meet the conditions given in the
body. The latter is a short hand notation for a conditional
choice; if the conditions in the body are met then a num-
ber of atoms in the head may (a non-deterministic choice)
be contained in answer set. These additions are syntactic
sugar and can be removed with linear, modular transforma-
tions (see (Baral 2003)). Variables and predicated rules are
also used and are handled, at the theoretical level and in most
implementations, by instantiation (referred to as grounding).

Answer set programming (ASP) is a programming
paradigm in which a problem is represented as an
AnsProlog program in such a way that the answer sets
can be interpreted to give the solutions. A reasoning en-
gine is then used to produce the answer sets of the pro-
gram. Typically these are composed of two components, a
grounder which removes the variables from the program by
instantiation and an answer set solver which compute an-
swer sets of the propositional program. GRINGO(Gebser,
Schaub, and Thiele 2007) and LPARSE(Syrjänen 2000) are
the grounders most commonly used and CLASP(Gebser et
al. 2007), SMODELS(Syrjänen and Niemelä 2001), CMOD-
ELS(Lierler and Maratea 2004) and DLV(Eiter et al. 1998)
represent the state of the art of solver development.

ASP has been used to tackle a variety of problems, in-
cluding: planning and diagnosis (Eiter et al. 2002; Lifschitz
2002; Nogueira et al. 2001), modelling and rescheduling of
the propulsion system of the NASA Space Shuttle (Nogueira
et al. 2001), multi-agent systems (Baral and Gelfond 2000;
Buccafurri and Caminiti 2005; Cliffe, De Vos, and Pad-
get 2006), Semantic Web and web-related technologies
(Polleres 2005; Ruffolo et al. 2005), superoptimisation
(Brain et al. 2006), reasoning about biological networks
(Grell, Schaub, and Selbig 2006), voting theory (Konczak
2006) and investigating the evolution of language (Erdem et
al. 2003).

The Musical Background
Music is a world-wide phenomenon across all cultures. The
details of what constitutes music may vary from nation to
nation, but it is clear that music is an important component
of being human.

In this paper we are concentrating on western traditional
musics, but as we will consider later in the section on future
music research, much of the technology can be translated to
other traditions.

The particular area of interest here is composition; that is
creating new musical pieces.

Creating melodies, that is sequences of pitched sounds,
is not as easy as it looks (sounds). We have cultural prefer-
ences for certain sequences of notes and preferences dictated
by the biology of how we hear. This may be viewed as an
artistic (and hence not scientific) issue, but most of us would
be quick to challenge the musicality of a composition cre-
ated purely by random whim. Students are taught rules of
thumb to ensure that their works do not run counter to cul-
tural norms and also fit the algorithmically definable rules of
pleasing harmony when sounds are played together.



“Western tonal” simply refers to what most people in
the West think of as “classical music”, the congenial Bach
through Brahms music which feels comfortable to the mod-
ern western ear because of its adherence to familiar rules.
Students of composition in conservatoires are taught to write
this sort of music as basic training. They learn to write
melodies and to harmonise given melodies in a number of
sub-versions. If we concentrate on early music then the
scheme often called “Palestrina Rules” is an obvious exam-
ple for the basis of this work. Similarly, harmonising Bach
chorales is a common student exercise, and has been the sub-
ject of many computational investigations using a variety of
methods.

In this paper, we take the somewhat arid technical rules
and embed them within a modern computational system,
which enables us to contemplate many original ways of ex-
ploiting the fact that they are simultaneously available; the
rules themselves can be explored, extended and refined, or
student exercises can be evaluated to ensure that they are
indeed “valid”. We will be able to complete partial sys-
tems, such as producing a melody consonant with a given
harmony structure, as well as, more adventurously, to create
new melodies.

For this paper we have opted to work with a sub-type of
the Palestrina Rules called Renaissance Counterpoint. This
style was used by composers like Josquin, Dufay or Palest-
rina and is very distinct from the Baroque Counterpoint used
by composers like Bach, Haendel.

We have used the teaching at one conservatoire in Köln
to provide the basic rules, which were then refined in line
with the general style taught. The point about generating
melodies is that the “tune” must be capable of being accom-
panied by one or more other lines of notes, to create a har-
monious whole. The requirement for the tune to be capable
of harmonisation is a constraint that turns a simple sequence
(a monody) to a melody.

Our experience with this work is to realise how many ac-
ceptable melodies can be created with only a few rules, and
as we add rules, how much better the musical results are.
This concept is developed further in the section on ANTON.

In this particular style of music complete pieces are not
usually created in one go. Composers create a number of
sections of melody, harmonising them as needed, and possi-
bly in different ways, and then structuring the piece around
these basic sections. Composing between 4 bars and 16 bars
is not only a computationally convenient task, it is actually
what the human would do, creating components from which
the whole is constructed. So although the system described
here may be limited in its melodic scope, it has the potential
to become a useful tool across a range of sub-styles.

Automatic Composition
A common problem in musical composition can be sum-
marised in the question “where is the next note coming
from?”. For many composers over the years the answer
has been to use some process to generate notes. It is clear
that in many pieces from the Baroque period that simple
note sequences are being elaborated in a fashion we would

now call algorithmic. For this reason we can say that al-
gorithmic composition is a subject that has been around for
a very long time. It is usual to credit Mozart’s Musikalis-
ches Würfelspiel (Musical Dice Game) (Chuang 1995) as
the oldest classical algorithmic composition, although there
is some doubt if the game form is really his. In essence the
creator provides a selection of short sections, which are then
assembled according to a few rules and the roll of a set of
dice to form a Minuet1. Two dice are used to choose the 16
minuet measures from a set of 176, and another die selects
the 16 trio measures2, this time from 96 possible. This gives
a total number of 1.3 × 1029 possible pieces. This system
however, while using some rules, relies on the coherence of
the individual measures. It remains a fun activity, and re-
cently web pages have appeared that allow users to create
their own original(ish) “Mozart” compositions.

In the music of the second Viennese school (“12-tone”,
serial music) there is a process in action, rotating, inverting
and use of retrograde, but usually performed by hand.

More recent algorithmic composition systems have con-
centrated on the generation of monody3, either from a math-
ematical sequence, chaotic processes, or Markov chains,
trained by consideration of acceptable other works. Fre-
quently the systems rely on a human to select which
monodies should be admitted, based on judgement rather
than rules. Great works have been created this way, in the
hands of great talents. Major descriptions of mathematical
note generators can be found for example in Formalized Mu-
sic (Xenakis 1992). Probably the best known of the Markov
chain approach is Cope’s significant corpus of Mozart pas-
tiche (Cope 2006).

In another variation on this approach, the accompanist,
either knowing the chord structure and style in advance, or
using machine-listening techniques, infers a style of accom-
paniment. The former of these approaches can be found in
commercial products, and the latter has been used by some
jazz performers to great effect, for example by George E.
Lewis.

A more recent trend is to cast the problem as one of
constraint satisfaction. For example PWConstraints is an
extension for IRCAM’s Patchwork, a Common-Lisp-based
graphical programming system for composition. It uses a
custom constraint solver employing backtracking over finite
integer domains. OMSituation and OMClouds are similar
and are more recently developed for Patchwork’s successor
OpenMusic. A detailed evaluation of them can be found
in (Anders 2007), where the author gives an example of a
1st-species counterpoint (two voices, note against note) af-
ter (Fux 1965 orig 1725) developed with Strasheela, a con-
straint system for music built on the multi-paradigm lan-
guage Oz. Our musical rules however implement the melody
and counterpoint rules described by (Thakar 1990), which
we find give better musical results.

1A dance form in triple time, i.e. with 3 beats in each measure
2A Trio is a short contrasting section played before the minuet

is repeated
3A monody is a single solo line, in opposition to homophony

and polyphony



One can distinguish between improvisation systems and
composition systems. In the former the note selection pro-
gresses through time, without detailed knowledge of what
is to come. In practice this is informed either by knowing
the chord progression or similar musical structures (Broth-
well and ffitch 2008), or using some machine listening. In
this paper we are concerned with composition, so the pro-
cess takes place out of time, and we can make decisions in
any order.

It should also be noted that these algorithmic systems
compose pieces of music of this style in either a melodic
or a harmonic fashion, and are frequently associated with
computer-based synthesis. The system we will propose later
is unique as it deals with both simultaneously.

Melodic Composition
In melodic generation a common approach is the use of
some kind of probabilistic finite state automaton or an equiv-
alent scheme, which is either designed by hand (some based
on chaotic oscillators or some other stream of numbers) or
built via some kind of learning process. Various Markov
models are commonly used, but there have been applica-
tions of n-grams, genetic algorithms and neural nets. What
these methods have in common is that there is no guarantee
that melodic fragments generated have acceptable harmonic
derivations. Our approach, described below is fundamen-
tally different in this respect, as our rules cover both aspects
simultaneously.

In contrast to earlier methods, which rely on learning, and
which are capable of giving only local temporal structure,
a common criticism of algorithmic melody (Leach 1999),
we do not rely on learning and hence we can aspire to a
more global, whole melody, approach. In addition we are no
longer subject to the limitations of the kind of process which,
because it only works in time in one direction, is hard to use
in a partially automated fashion; for example operations like
“fill in the 4 notes between these sections” is not a problem
for us.

We are also trying to move beyond experiments with ran-
dom note generation, which we have all tried and abandoned
because the results are too lacking in structure. Predictably,
the alternative of removing the non-determinism at the de-
sign stage (or replacing with a probabilistic choice) runs the
risk of ‘sounding predictable’! There have been examples of
good or acceptable melodies created like this, but the restric-
tion inherent in the process means it probably works best in
the hands of geniuses.

Harmonic Composition
A common usage of algorithmic composition is to add har-
monic lines to a melody; that is notes played at the same time
as the melody that are in general consonant and pleasing.
This is exemplified in the harmonisation of 4-part chorales,
and has been the subject of a number of essays in rule-based
or Markov-chain systems. Perhaps a pinnacle of this work
is (Ebcioğlu 1986) who used early expert system technol-
ogy to harmonise in the style of Bach, and was very suc-
cessful. Subsequently there have been many other systems,

% At every time step, every part either steps
% to the next note in the key or leaps to a
% further note in the key
1 { stepUp(P,T), stepDown(P,T), leapUp(P,T),

leapDown(P,T) } 1 :- part(P), time(T).

% A leap can only be over a consonant interval
% (3,4,5,7 or 12 semitones)
1 { leapBy(P,T,I) : consonantInterval(I) } 1

:- leapUp(P,T).

% When a part leaps up by I, the note at time T+1
% is I steps higher than the current note
chosenNote(P,T+1,N+I) :- chosenNote(P,T,N),

leapBy(P,T,I).

% Every note must be in the chosen mode
% (major, minor, etc.)
:- chosenNote(P,T,N), mode(M), not inMode(N,M).

% The interval between parts must not be dissonant
:- chosenNote(P1,T,N1), chosenNote(P2,T,N2),

interval(N1,N2,C), not consonantInterval(C).

Figure 1: A simplified ANTON fragment

with a range of technologies. There is a review included in
(Rohrmeier 2006).

Clearly harmonisation is a good match to constraint pro-
gramming based systems, there being accepted rules4. It
also has a history from musical education.

But these systems all start with a melody for which at least
one valid harmonisation exists, and the program attempts to
find one, which is clearly soluble. This differs significantly
from our system, as we generate the melody and harmoni-
sation together, the requirement for harmonisation affecting
the melody.

The ANTON Composition System
What we are seeking to do, which is a new application
in both music and computing, is to apply ASP techniques
to compositional rules to produce an algorithmic composi-
tion system which can be applied more widely and freely
than has previously been possible. AnsProlog is used to
create a description of the rules that govern the melodic
and harmonic properties of a correct piece of music. The
AnsProlog program works as a model for music composi-
tion that can be used to assist the composer by suggesting,
completing and verifying short pieces.

The rules of composition are modelled so that the
AnsProlog program defines the requirements for a piece
to be valid, and thus every answer set corresponds to a valid
piece. In generating an new piece, the composition system
simply has to generate an (arbitrary) answer set. Rather than
the traditional problem/solution mapping of answer set pro-
gramming, this is using an AnsProlog program to create a
‘random’ (arbitrary) example of a complex, structured ob-
ject.

Figure 1 presents a simplified fragment of the AnsProlog
program used in ANTON. The model is defined over a num-
ber of time steps, given by the variable T. The key proposi-

4For example see: http://www.wikihow.com/
Harmonise-a-Chorale-in-the-Style-of-Bach



tion is chosenNote(P,T,N) which represents the concept
“At time T, part P plays note N”. To encode the options for
melodic progress (“the tune either steps up or down one note
in the key, or it leaps more than one note”), choice rules are
used. To encode the melodic limits on the pattern of notes
and the harmonic limits on which combinations of notes may
be played at once, constraints are included.

To allow for verification and diagnosis, each rule is given
an error message:

% No tri-tones: No note can be within two notes
% of a tritone (a note +/- 6 semitones)
#const err tt="Tri-tone".
reason(err tt).
error(P,T,err tt) :- chosenNote(P,T,N1),

chosenNote(P,T+2,N1+6).
error(P,T,err tt) :- chosenNote(P,T,N1),

chosenNote(P,T+2,N1-6).

Depending on how you want to use the system, compo-
sition or diagnosis, you will either be interested in those
pieces that do not result in errors at all, or in an answer set
that mentions the error messages. For the former we sim-
ply specify the constraint :- error(P,T,R)., effectively
making any error rule into a constraint. For the latter we in-
clude the rules: errorFound :- error(P,T,R). and :-
not errorFound., requiring that an error is found (i.e. re-
turning no answers if the diagnosed piece is error free).

By adding constraints on which notes can be included, it is
possible to specify part or all of a melody, harmony or com-
plete piece. This allows ANTON to be used for a number
of other tasks beyond automatic composition. By fixing the
melody it is possible to use it as an automatic harmonisation
tool. By fixing part of a piece, it can be used as computer
aided composition tool.

The complete system consists of three major phases;
building the program, running the solver and interpreting the
results. As a simple example suppose we wish to create a 4
bar piece in E major one would use the Perl wrapper and
write
$ programBuilder.pl --task=compose \

--mode=major \
--time=16 > program

which builds the ASP program, giving the length and mode.
Then
$ lparse -W all < program | \

shuffle.pl 6298 | \
smodels 1 > tunes

runs the grounder and solver and generates a representation
of the piece. Using another Perl script we provide a number
of output formats, one of which is a CSOUND (Boulanger
2000) program with a suitable selection of sounds.
$ parse.pl --fundamental=e --output=csound \

< tunes > tunes.csd

generates the CSOUND input from the generic format, and
then
$ csound tunes.csd -o dac

plays the melody. We provide in addition to CSOUND, out-
put in text, AnsProlog facts or the LILYPOND score lan-
guage(Nienhuys and Nieuwenhuizen 2003). Naturally we
provide scripts for all main ways of using the system.

keyMode(lydian).
chosenNote(1,1,25).
chosenNote(1,2,24).
chosenNote(1,8,19).
chosenNote(1,9,20).
chosenNote(1,10,24).
chosenNote(1,14,29).
chosenNote(1,15,27).
chosenNote(1,16,25).
#const t=16.
configuration(solo).
part(1).

Figure 2: musing.lp: An example of a partial piece

Alternatively we could request the system to complete
part of a piece. In order to do so, we provide the system
with a set of AnsProlog facts expressing the mode (major,
minor, etc.), the notes which are already fixed, the number
of notes in your piece, the configuration and the number of
parts. Figure 2 contains an example of such file. The format
is the same as the one returned from the system except that
all the notes in the piece will have been assigned.

We then run the system just as before with the exception
of adding --piece=musing.lp when we run programBuilder.pl.
The system will then return all possible valid compositions
that satisfy the criteria set out in the partial piece.

The AnsProlog programs used in ANTON contains
less than 200 lines (not including comments, empty lines
and user defined pieces) and encodes 28 melodic and har-
monic rules. Once instantiated, the generated programs
range from 3,500 atoms and 13,400 rules (a solo piece with
8 notes) to 11,000 atoms and 1,350,000 rules (a 16 note
duet). The system is licensed under the GPL and is avail-
able, along with example pieces, from http://www.cs.
bath.ac.uk/˜mjb/ . Figure 3 contains an extract from a
series of simple duets composed by ANTON.

It should be noted that ANTON’s 200 lines of code con-
trast with the 8000 lines in Strasheela (Anders 2007) and
88000 in Bol (Bel 1998). For this reason we claim that our
representation of the musical problem is easily read and un-
derstood.

Evaluation of ANTON

Practical Use
All this construction is of little use if the system is not prac-
tical to use, so we benchmarked a variety of solvers us-
ing the programs ANTON generated. Table 1 contains the
times taken by a number of answer set solvers (SMODELS
(Syrjänen and Niemelä 2001), SMODELS-IE (Brain, De Vos,
and Satoh 2007), SMODELSCC (Ward and Schlipf 2004),
CMODELS (Lierler and Maratea 2004) and CLASP (Gebser
et al. 2007)) in composing a single piece of a given length.
Likewise Table 2 contains the times taken to compose a
two part piece of a given length. LPARSE (Syrjänen 2000)
was used to ground the programs and its run time, typically
around 30-60 seconds, is omitted from the results.

All times were recorded using a 2.4GHz AMD Athlon
X2 4600+ processor, running a 64 bit version of Open-
SuSE 10.3. All solvers were built in 32 bit mode. Each
run was limited to 20 minutes of CPU time and 2Gb of



smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 1.02 1.03 0.09 0.09 1.17 0.33 0.39 0.22
6 2.43 2.43 0.38 0.38 2.58 0.64 0.85 0.46
8 5.16 5.16 1.03 1.04 4.94 1.06 1.62 1.01

10 12.25 11.72 2.58 2.59 8.55 1.54 2.63 1.33
12 28.25 46.13 8.08 15.14 11.36 2.42 4.04 2.27
14 40.62 140.00 10.50 43.54 18.78 3.14 6.05 3.48
16 101.05 207.25 29.40 69.53 27.94 4.01 9.40 4.62

Table 1: Time taken (in seconds) for a number of solvers generating a solo piece

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 3.77 3.77 0.31 0.32 4.08 1.18 1.26 0.77
6 10.36 11.24 1.89 1.89 13.90 2.17 2.81 1.60
8 54.64 77.10 14.71 21.84 26.07 3.88 5.93 3.73

10 Time out Time out Time out 500.26 78.72 9.51 11.12 9.34
12 Time out Time out Time out Time out 103.81 14.50 18.14 16.84
14 Time out Time out Time out Time out 253.92 32.41 32.34 25.59
16 Time out Time out Time out Time out 452.38 82.64 49.29 29.63

Table 2: Time taken (in seconds) for a number of solvers generating a duet

RAM. The AnsProlog programs used are available from
http://www.cs.bath.ac.uk/˜mjb/ .

These results show that the system, when using the more
powerful solvers, is fast enough to be used as a component
in an interactive composition tool. Further work would be
needed to support real time generation of music, but we are
not too far away. We also note that the only solvers able to
generate longer sequences in two parts all implement clause
learning strategies, which suggests that the problem is par-
ticularly susceptible to this kind of technique.

Music Quality
Judging quality is a subjective process; after all we do not
all like the same music. However we assert that the music is
acceptable, at least by the standards of a student of composi-
tion, and at times there are moments of excitement. For the
reader to judge we show in Figure 3 part of ANTON’s Opus
1: Twenty Short Pieces; the audio files of the complete work
can be found in http://cs.bath.ac.uk/˜mjb.

ASP as the Representation and Reasoning
Language
One of the main results reported in this paper is how easy it
was to encode the rules in terms both of ease of expression
and of ease of capturing the rules. Composers can think of
ANTON as a testbed for experimentation with musical ex-
pertise that can be formulated as essential musical rules for
all musical parameters5 in order to build relations between
those that either comply with a certain musical style or that
open up new musical experiences. We have made the case
that a sub-style of Renaissance Counterpoint and its melodic

5For a single note commonly known as pitch, loudness, timbre
(sound quality) and duration.

style can be represented with AnsProlog . The flexibility
of creating different solutions based on the same rules offers
the composer the opportunity to discover areas that he might
have never thought of. It is recognised among musicians that
an important component of composition is the use of the lis-
tener’s expectations to obtain an effect. The composer plays
on the listener by either satisfying his expectations or sur-
prising him by not doing what he was anticipating. This
facet of music is not confined to the experience of someone
listening to a completed piece of music. It is inherent in the
entire creative process, since a composer is also his own first
listener. Subtle changes of AnsProlog facts given to AN-
TON can give surprising results, as can small and skillful
adjustments to the set of rules to produce a break with the
previous set, thus allowing the composer to create the mold-
ings for his own creations in a step-by-step process. This
is a multi-faceted feedback-loop between writing the rules,
listening to and examining the musical outcomes and modi-
fying the rules if necessary. One of the most important mu-
sical tasks is to be able to work with impulse and resolution
on multiple levels and with different voices simultaneously.
This gathering and dissipation of musical energy (Thakar
1990) can happen in an infinite number of ways where all
musical lines, defined by their various parameters, partici-
pate together. This process has to take into account all past
musical events as well as the fragile balance between differ-
ent voices and their parameters. Therefore, the modelling of
rules that can capture musical impulse and resolution proves
to be the most challenging aspect of writing programs with
ANTON. There are currently no other programs known to us
offering solutions in this direction and much of our future
work will need to focus on this particular challenge.

There are also some negative points. One persistent
problem was the lack of mature development support



Figure 3: Part of a set of pieces composed by the system

tools, particularly debugging tools. SPOCK (Brain et
al. 2007) was used, but as its focus is on computing the
reasons behind the error, rather than the interface issues
of explaining these reasons to the user, it was normally
quicker to find bugs by looking at the last changes made
and which regression tests failed. Generally, the bugs that
were encountered where due to subtle mismatches between
the intended meaning of a rule and the declarative reading
of the rule used. For example the predicate stepUp(P,T)
is used to represent the proposition “At time T, part P steps
up to give the note at time T+1”; however, it could easily
be misinterpreted as “At time T-1, part P steps up to give
the note at time T”. Which of these is used is not important,
as long as the same declarative reading is used for all rules.
With the first “meaning” selected for ANTON, the rule:
chosenNote(P,T,N+S) :- chosenNote(P,T-1,N),

stepUp(P,T),
stepBy(P,T,S).

would not encode the intended progression of notes. To
avoid these errors it would be possible to develop a system
that translated rules into natural language, given the declar-
ative reading of the propositions involved. It should then
be relatively straightforward to check that the rule encoded
what was intended.

The Future
Music Research
This system could develop in a number of novel ways. For
example we might throw light on the compositional process
by learning aspects of the rules, finding which are inconsis-
tent or redundant, or determining the importance of rules.
We could investigate whether there are “unspoken” rules,
and experiment to find unacknowledged rules of composi-
tion. One particularly interesting possibility is using the sys-
tem to generate a large set of pieces, acquiring human evalu-
ations of the ‘quality’ of each and then using techniques such

as inductive logic programming to infer rules for composing
‘good’ pieces.

So far we have only considered a particular style of West-
ern music. However the framework should be applicable to
other styles, especially formal ones. e.g. the rules of Hindus-
tani classical music are taught in a traditional, oral, fashion,
but we see no reason why our framework could not capture
these. Recent work (Endrich 2008) indicates that there are
indeed universal melodic rules, and the combination of the
ASP methodology with this musical insight is an intriguing
one.

In real life pieces some of the rules are sometimes broken.
This could be simulated by one of a number of extensions to
answer set semantics (preferences (Brain and De Vos 2003),
consistency restoring rules, defensible rules, etc.). However
how to systematise the knowledge of when it is acceptable
to break the rules and in which contexts it is ‘better’ to break
them is an open problem.

A major deficiency of the current system is the lack of
rhythm, as all parts play all the time (with no rests), with
notes of equal duration, which, while usual in some styles,
stands in the way of a whole range of interesting variety.
We have not considered rhythm so far, but one of us is al-
ready researching rhythmic structures and performance ges-
ture (Boenn 2007), so in the longer term this may be incor-
porated.

Systems Development
The current system can write short melodies effectively and
efficiently. Development work is still needed to extend this
to entire pieces; we can start from these melodic fragments
but a longer piece needs a variety of different harmonisations
for the same melody, and related melodies with the same
harmonic structure and a number of similar techniques. We
have not solved the difficult global structure problem but our
system is a starting point on which we can build a structure



that is hierarchical over time scales; we have a mechanism
for building syntactically correct sentences, but these need
to be built into paragraphs and chapters, as it were.

Our results seem to suggest that a real-time composition
system is possible, which would open up the possibility for
performance and improvisation. Profiling of the current sys-
tem has indicated that some conceptually simple tasks, like
parsing, are taking a disproportionate fraction of the run-
time, and some engineering would assist in removing these
problems. Clearly this is one of a number of system-like
issues that need to be addressed. Also, the availability of
a parallel answer set solver that implements clause learning
would help in building this type of application.

An obvious extension to the composition of duets is to
expand this to three and four parts, by adding inner voices,
with their different rules.

Answer Set Synthesis
What we are doing is not answer set programming in the
classical sense because we are not solving a problem per se;
we are generating an arbitrary representative instance. Al-
though this may seem like a subtle shift of emphasis, it has a
number of interesting implications. Firstly for applications,
this takes NMR into ‘procedural synthesis’ of all kinds of
things — by describing what objects are, we can construct
arbitrary examples. This has some interesting possibilities
for computer games and virtual worlds where ‘randomly
generated’ content is needed. This content has to be non-
repetitive; increasingly it needs to be complex and structured
(and have some fixed, hard properties — such as there must
be a way out of the maze). In the case of things such as
background music, high ‘artistic merit’ is not as important
as consistent and non-repetitive.

This also raises questions for solver and language design.
Most solvers are calibrated towards ‘hard’ problems, that
are large (but tractable search spaces) with relatively few
answer sets. However programs from this answer set syn-
thesis school of application tend to have huge (intractable)
search spaces with a very large number of answer sets. Thus
the emphasis in solving shifts towards getting to an answer
quickly (assuming that many paths lead to solutions) rather
than trying to reduce and cover the search space efficiently.
This is likely to influence the choice of branching heuris-
tic. There are also a number of other interesting areas which
come to mind. A metric for distance between answer sets
would allow a solver to generate “things similar to the last
solution”, “things similar to the last solution but not too sim-
ilar”, “things as different as possible to the last solution”,
etc. Also there is a need for schemes for handling prefer-
ences (“it’s not impossible to have A and B, but it should be
avoided if possible”) and probabilities (“there is a choice be-
tween A and B but in 90% of solutions it should be A”), par-
ticularly as part of the solving process, rather than needing to
compute multiple solutions and then refining or optimising
the choice between them, again probably in the heuristic.

Conclusion
In this paper, we have presented ANTON, the first algorith-
mic composing system that is capable of both melodic and

harmonic composition. By using answer set programming
as our modelling language for the technical rules that under-
pin music composition, we have obtained a highly flexible,
extremely compact and efficient system. As all the rules are
simultaneously available the system enables us to explore
the rules themselves, to evaluate pieces for rule compliance,
to complete partial systems, such as producing a melody
consonant with a given harmony structure, as well as, more
adventurously, to create new melodies.

We have demonstrated that current ASP systems can be
used to generate aesthetically acceptable music within an
appropriate time frame.

The development of ANTON opens up interesting re-
search ideas both in the musicological direction and in
declarative programming in general and more specifically
answer set programming. In particular we have identified a
number of ways in which ASP solvers could be extended so
as to widen their application.
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