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ABSTRACT

This thesis provides a model–theoretic semantic analysis of aspects of the LF
logical framework. The LF logical framework is the λΠ-calculus together with
the judgements-as-types representation mechanism.

A denotational semantics is provided for the λΠ-calculus in terms of Kripke
λΠ-models. These are a generalization of the Kripke lambda models of Mitchell
and Moggi to dependent types and are based on the contextual categories of
Cartmell and their reformulation by Ritter. We analyse these models in terms of
(Kripke) logical relations.

We also present Kripke models of the internal logic of the λΠ-calculus, the
{∀,⊃}-fragment of many-sorted minimal first-order logic, and show that the
propositions-as-types correspondence induces an isomorphism between the two
classes of Kripke models.

We provide a proof- and model-theoretic account of judged object-logics (log-
ics suitable for representation in LF). We show that the judgements-as-types cor-
respondence induces an epimorphism between these Kripke models and Kripke
λΠ-models; which we use to provide model-theoretic proofs of faithfulness.

We consider a variant of the LF logical framework which uses the worlds-
as-parameters representation mechanism. The generality of our account of the
judgements-as-types correspondence allows us to treat the worlds-as-parameters
representation mechanism as a special case. We interpret the syntactic ‘worlds’
introduced by worlds-as-parameters as worlds in our Kripke models and show
that there exists a worlds-as-parameters epimorphism.

We provide a semantic account of proof-search in the λΠ-calculus by identi-
fying a class of Herbrand models and providing a least fixed-point construction
corresponding, as usual, to resolution. Finally, we provide a characterization
of abstract logic programming languages, as defined by Miller et al., in the LF
logical framework.
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Chapter 1

Introduction

An important aspect of (theoretical) computer science is being able to reason
about formal systems in a way which is independent of their implementation.
One proposed solution is to represent the formal system in a logical framework
(Harper, Honsell & Plotkin 1993).

A logical framework can be seen as arising from Martin-Löf’s intuitionistic
theory of iterated inductive definitions (Martin-Löf 1971) and (Martin-Löf 1975),
in which form and inductive definitional status in the natural deduction inference
rules are considered. In other words, Martin-Löf provides a formal metatheory
of inference rules.

In order to describe a logical framework, we must (Ishtiaq & Pym 2002) have
methods of

1. Characterizing the class of (object-)logics to be represented;

2. Describing a metalogic or language, together with its metalogical status
vis-à-vis the class of object-logics;

3. Characterizing the representation mechanism.

We remark that these components are not entirely independent of each other.
The above prescription can be summarized by the slogan

Framework = Language + Representation.

This thesis provides a proof- and model-theoretic account of the LF logical
framework (Harper et al. 1993). LF is the logical framework whose language is
the λΠ-calculus and whose representation mechanism is the judgements-as-types
correspondence.

Chapter 2 describes the λΠ-calculus (Harper et al. 1993) both syntactically
and algebraically. Chapter 7 provides a categorical semantics for the λΠ-calculus
in terms of Kripke models. These models are based on the contextual categories
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of Cartmell (1986) and their reformulation by Pitts (2000). Our Kripke models
are a generalization of the Kripke λ-models of Mitchell & Moggi (1991) to the
dependently typed setting.

The work of Mitchell and Moggi also provides the motivation of Chapter 4.
We show that their analysis of Kripke λ-models in terms of logical relations can
also be carried out for our Kripke models of the λΠ-calculus.

We conclude our semantic analysis of the λΠ-calculus and foreshadow the
next four chapters in Chapter 5. We describe the internal logic of the λΠ-calculus
and show that it can be represented in the λΠ-calculus using the propositions-
as-types correspondence. We then carry out original analysis to show that the
propositions-as-types correspondence induces an isomorphism between Kripke
models of the internal logic and Kripke models of the λΠ-calculus.

Moving on from our analysis of the λΠ-calclus, we turn our attention to a
characterization of a class of object-logics which are suitable for representation
in LF. Chapter 6 provides an overview of logical frameworks. This chapter is a
summary of existing research on logical frameworks heavily influenced by (Avron,
Honsell, Miculan & Paravano 1997).

Chapter 8 provides an account of judged object-logics. This account includes
proof- and model-theoretic analysis. We describe judged proof systems which
provide a proof-theoretic characterization of judged object-logics. This work is
closely related to that of Gardner (1992b). The describe Kripke models of judged
object-logics and examine under what circumstances soundness and completeness
holds. The Kripke models draw heavily on the work of Lawvere (1970).

Having provided a characterization of object-logics which are suitable for en-
coding in LF, we turn our attention to the representation mechanism. Chapter 8
provides a syntactic and semantic account of the judgements-as-types correspon-
dence. The syntactic account is a presentation of the encoding found in (Harper
et al. 1993). The semantic account is original and shows that the judgements-
as-types correspondence induces an epimorphism between Kripke models of the
object-logic and Kripke models of the λΠ-calculus. Using an idea of Simpson
(1993), we show that the faithfulness of an encoding can be established model-
theoretically.

We conclude this section of work by looking at the worlds-as-parameters rep-
resentation mechanism, Chapter 9. This turns out to be a special case of the
judgements-as-types encoding described in Chapter 8. We argue that labelled
natural deduction systems (Basin, Matthews & Viganò 1998) are the appropriate
proof system to characterize object-logics which are encoded using worlds-as-
parameters. They also provide a more systematic account of the satisfaction
relation used to define certain connectives in a Kripke model. We show that the
labels used in labelled natural deduction systems can be interpreted as worlds
in Kripke models of the object-logics, and that the worlds-as-parameters repre-
sentation mechanism induces an epimorphism between these models and Kripke
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models of the λΠ-calculus where the objects that encode labels are interpreted
as worlds. Apart from the labelled natural deduction systems and the worlds-as-
parameters representation mechanism, the chapter is original.

We conclude the thesis by providing a model-theoretic account of proof-search
in LF. Chapter 10 provides an overview of logic programming and why proof-
search is important. Chapter 11 shows that a class of Kripke λΠ-models are also
Herbrand models. We show that there is a least fixed-point operator on Herbrand
models arising from resolution in the λΠ-calculus and that the least fixed-point
is a Herbrand model. This work is original and is a generalization of the work of
Miller (1989).

The final two chapters examine the relationship between uniform proofs in
the object-logic and their representation in LF. Chapter 12 shows how certain se-
quent calculi can be represented in LF. This work is taken from (Pfenning 2000).
We show that his encoding method can be extended to higher-order logics. The
logics discussed in this chapter are those given as examples of abstract logic pro-
gramming languages in (Miller, Nadathur, Pfenning & Sc̆edrov 1991). Chapter 13
provides an account of the relationship between abstract logic programming lan-
guages and their encodings in LF. We provide some conditions on LF terms so
that they always represent uniform proof-terms.

This thesis can also be seen as carrying our the research proposal outlined in
(Ishtiaq & Pym 2002), which means we have provided LF with a semantics. This
research is based on (Pym 2004a), (Pym 2004b) and (Pym 2004c).

It is important to note that while this thesis does apply the results of Chap-
ters 2 to 9 to logic programming (Chapters 10 to 13), this thesis mainly provides
a contribution to logic. The majority of this thesis is a mathematical study of
logical frameworks. The relationship between logical frameworks and logical sys-
tems (logical frameworks provide a basis for a systematic study of the uniformity
of logical systems) means that this thesis contributes to our understanding and
study of logical systems and hence to logic.

This thesis was typeset with LATEX 2ε(LATEX 2ε 1994) and commutative dia-
grams were produced with Taylor (1986) diagrams.
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Chapter 2

The λΠ-calculus

We develop two presentations of the λΠ-calculus: the first is syntactic and the
second algebraic. The syntactic presentation is an overview of the presentation
of the λΠ-calculus introduced in Harper, Honsell & Plotkin (1987) and (Harper
et al. 1993). The λΠ-calculus is essentially the dependently typed λ-calculus λP
(Barendregt 1991) with signatures. The λΠ-calculus is in propositions-as-types
correspondence (Howard 1980) with the many sorted {∀,⊃}-fragment of minimal
first-order logic this is discussed in detail in § 5. As well as defining the syntax,
grammar and typing rules, we discuss the important meta-theoretic properties;
for example, that weakening, transitivity, strengthening and permutation are ad-
missible, uniqueness of types and kinds, a Church-Rosser property holds and the
decidability of the typing relations. Equality is not dealt with in this presenta-
tion; it is left until § 3.5. This is done for the sake of simplicity and allows us to
highlight the important meta-theoretic properties rather than dealing with the
technical issues associated with equality.

The algebraic presentation involves the construction of strict indexed cate-
gories out of the syntax of the λΠ-calculus. It is similar to other algebraic presen-
tations of dependent type theories; for example, (Streicher 1989), (Jacobs 1991),
(Hofmann 1996) and (Pitts 2000).

2.1 A Syntactic Presentation

The λΠ-calculus is a language with entities of three levels: objects; types and
families of types; and, kinds. Objects are classified by types; while types and
families of types are classified by kinds. The kind Type classifies the types; the
other kinds classify functions, f , which yield a type f(M1) . . . (Mn) when applied
to objects M1, . . . ,Mn of certain types determined by the kind of f . Any function
derivable in this system has a type as domain, while its range can either be a
type, if it is an object, or a kind, if it is a family of types. The λΠ-calculus is
therefore predicative.
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The theory we shall deal with is a formal system for deriving assertions of one
of the following shapes:

` Σ sig Σ is a signature
`Σ Γ context Γ is a valid context in Σ
Γ `Σ K Kind K is a kind in Γ and Σ
Γ `Σ A :K A has kind K in Γ and Σ
Γ `Σ M :A M has type A in Γ and Σ

where the syntax is specified by the following grammar:

Signatures Σ ::= 〈〉 | Σ, c :K | Σ, c :A
Contexts Γ ::= 〈〉 | Γ, x :A
Kinds K ::= Type | Πx :A .K
Types A ::= c | Πx :A .B | λx :A .B | AM
Objects M ::= c | x | λx :A .M | MN

where we let M and N range over expressions for objects, A and B range over
expressions for types and families of types, K for kinds, x and y over variables
and c over constants. We also allow f and g to range over variables where the
intention is that, in general, these have higher types. We assume α-equivalence
throughout.

We define free and bound variables in the usual way (cf. (Barendregt 1992))
with Π and λ being the only binding operators. Capture-avoiding substitution is
also defined in the usual way. We write X[M1, . . . ,Mk/x1, . . . , xk] for the result
of simultaneously substituting M1, . . . ,Mk for free occurrences of x1, . . . , xk in X,
renaming bound variables where necessary.

We refer to the collection of constants declared in a signature Σ by Dom(Σ),
the collection of variables declared in a context Γ by Dom(Γ) and the collection
of free variables in an expression E by FV (E).

The inference rules of the λΠ-calculus appear in Table 1. We shall refer to
this system as N because it is a system of natural deduction. We write N proves
Γ `Σ M :A, etc., to denote that the assertion Γ `Σ M :A, etc., is provable in the
system N and we shall sometimes write simply Γ `Σ M :A where no confusion can
arise. For technical reasons, we also require that the assertion Γ `Σ 〈〉 :〈〉, where
〈〉 stands for the unit type and unit object, can be derived from any signature Σ
and context Γ.

We have not included the premiss Γ `Σ A : Type in each of the abstraction-
forming rules, unlike (Harper et al. 1987), (Harper et al. 1993), (Pym 1990)
and (Pym 1995). This premiss is inessential for the definition of proofs in the
λΠ-calculus. Certain inductive proofs, however, such as that of Theorem 2.1 in
(Harper et al. 1993) which is proven via the correctness of an inductive algorithmic
formulation of the calculus, are technically simplified by their inclusion.
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Valid Signatures

` 〈〉 sig
(2.1)

` Σ sig `Σ K Kind c 6∈ Dom(Σ)

` Σ, c :K sig
(2.2)

` Σ sig `Σ A :Type c 6∈ Dom(Σ)

` Σ, c :A sig
(2.3)

Valid Contexts
` Σ sig

`Σ 〈〉 context
(2.4)

`Σ Γ context Γ `Σ A :Type x 6∈ Dom(Γ)

`Σ Γ, x :A context
(2.5)

Valid Kinds
`Σ Γ context

Γ `Σ Type Kind
(2.6)

Γ, x :A `Σ K Kind

Γ `Σ Πx :A.K Kind
(2.7)

Valid Families
`Σ Γ context c :K ∈ Σ

Γ `Σ c :K
(2.8)

Γ, x :A `Σ B :Type

Γ `Σ Πx :A.B :Type
(2.9)

Γ, x :A `Σ B :K

Γ `Σ λx :A.B :Πx :A.K
(2.10)

Γ `Σ B :Πx :A.K Γ `Σ N :A

Γ `Σ BN :K[N/x]
(2.11)

Γ `Σ A :K Γ `Σ K ′ Kind K =βη K
′

Γ `Σ A :K ′
(2.12)

Table 1: Rules for Typings (continued on the next page)
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Valid Objects
`Σ Γ context c :A ∈ Σ

Γ `Σ c :A
(2.13)

`Σ Γ context x :A ∈ Γ

Γ `Σ x :A
(2.14)

Γ, x :A `Σ M :B

Γ `Σ λx :A.M :Πx :A.B
(2.15)

Γ `Σ M :Πx :A.B Γ `Σ N :A

Γ `Σ MN :B[N/x]
(2.16)

Γ `Σ M :A Γ `Σ A′ :Type A =βη A
′

Γ `Σ M :A′
(2.17)

Table 1: Rules for Typings

We write A→ B for Πx :A .B when x does not occur free in B and A→ K
for Πx :A .K when x does not occur free in K. Together with the typing rules:

Γ, x :A `Σ B :Type x /∈ FV (B)

Γ `Σ A→ B :Type
(2.18)

Γ, x :A `Σ B :K x /∈ FV (B)

Γ `Σ λx :A .B :A→ K
(2.19)

Γ `Σ B :A→ K Γ `Σ N :A

Γ `Σ BN :K
(2.20)

Γ, x :A `Σ M :B x /∈ FV (B)

Γ `Σ λx :A .M :A→ B
(2.21)

Γ `Σ M :A→ B Γ `Σ N :A

Γ `Σ MN :B
(2.22)

this use of → constitutes a conservative extension of the language.
For a calculus to be suitable for proof-search each typing rule needs to satisfy

the sub-formula property: every type in the conclusion of a rule is a sub-type of
an object in the premiss. If the sub-formula property does not hold for a given
rule then there is too much non-determinism to carry out proof-search because
one has to guess any type which does not have a sub-type in the conclusion.
In N the rule (2.15) does not satisfy the sub-formula property making it a bad
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calculus for proof-search. Alternative presentations of the λΠ-calculus which do
satisfy the sub-formula property can be found in (Pym 1990) and (Pym 1995).
In § 3.8, we present a calculus C which satisfies the sub-formula property and is
thus suitable for proof-search.

A term is said to be well-typed in a signature and context if it can be shown
to either be a kind, have a kind, or have a type in that signature or context. A
term is well-typed if it is well-typed in some signature and context.

The λΠ-calculus comes equipped with the intensional αβη-equality. We write
U = V to denote the α-equality of expressions U and V , while we use ≡ to denote
their syntactic identity. To denote a definition we write ≡def . βη-reduction, writ-
ten →βη, can be defined at the level of types and families of types in the obvious
way; the details can be found in (Harper et al. 1993). We write M =βη N if and
only if M →∗βη P and N →∗βη P for some object P , where ∗ denotes transitive
closure. We write NF (U) to denote the βη-normal form of the expression U .

A summary of the major meta-theorems pertaining to N and its reduction
properties are given by the following theorem:

Theorem 2.1 (Basic Metatheory of the λΠ-calculus (Harper et al. 1993))
Let Σ be a λΠ-signature and Γ be a λΠ-context. Let X range over basic assertions
of the form A :K and M :A. The following statements hold in the λΠ-calculus:

1. Thinning (weakening) is an admissible rule: if N proves Γ `Σ X and N
proves `Σ Γ,Γ′context, then N proves Γ,Γ′ `Σ X;

2. Transitivity is an admissible rule: if N proves Γ `Σ M :A and N proves
Γ, x :A,Γ′ `Σ X then N proves Γ,Γ′ `Σ X[M/x];

3. Strengthening is an admissible rule: if N proves Γ, x :,Γ′ `Σ X and x /∈
FV (Γ′) ∪ FV (X) then Γ,Γ′ `Σ X;

4. Permutation is an admissible rule: if N proves Γ, x :A, y :B,Γ′ `Σ X and
if x /∈ FV (B), then N proves Γ, y :B, x :A,Γ′ `Σ X;

5. Uniqueness of types and kinds: if N proves Γ `Σ M : A and N proves
Γ `Σ M :A′, then A =βη A

′, and similarly for kinds;

6. Subject reduction: if N proves Γ `Σ M :A and M →βη M
′, then Γ `Σ M ′ :

A, and similarly for types;

7. All well-typed terms are strongly normalizing, i.e., all reduction sequences
arrive at a normal form;

8. All well-typed terms are Church-Rosser, i.e., if X →∗βη X ′ and X →∗βη X ′′,
then there exists a Y such that X ′ →∗βη Y and X ′′ →∗βη Y ;
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9. Each of the five relations defined by Table 1 is decidable, as is the property
of being well-typed;

10. Predicativity: if N proves Γ `Σ M :A then the type-free λ-term obtained by
erasing all the type information from M can be typed in the Church type-
assignment system (cf. Hindley & Seldin (1986), ch. 15, pp. 205-223). �

The proof of this theorem is rather complicated. The main difficulty lies
in proving the Church-Rosser property in the presence of η-conversion. One
method due to Salvesen (1990) adopts the methods developed by Van Daalen
(1980) in his thesis to this type theory. The essential step in obtaining the proof
in the presence of η-conversion is to first reformulate the λΠ-calculus as a system
with equality judgements in which type labels are explicit, i.e., the assertions of
equality have shape Γ `Σ M = N : A, etc. This step is sufficient to allow the
methods of van Daalen to go through. Harper (1988) also considers equational
formulations of the λΠ-calculus as a basis for the construction of environmental
models (Meyer 1982) of the type of the LF logical framework. We will discuss
Harper’s presentation in more detail in § 3.5.

In (Harper et al. 1987) similar properties are proven for N with β-reduction
only. N was presented without η-reduction because the aforementioned proof was
only discovered by Salvesen after the original technical report was published. The
conclusion of (Harper et al. 1993) discusses this in detail. The proof of part 8 in
(Harper et al. 1993), requires one to first prove decidability. The Church-Rosser
property, strong normalization and the presence of type labels are all required
to prove decidability. There is an alternative approach due to Coquand (1991)
which makes use of an analogy with Kripke worlds, however Coquand does not
exploit this by providing a Kripke model and hence a Kripke semantics, in fact
he only uses a single world.

In Appendix A of (Felty 1991), Felty presents a system which she calls canon-
ical LF. This is essentially a restriction of the λΠ-calculus to canonical terms.
She defines a term as canonical if it is in β-normal form and every variable is
fully applied with respect to Γ. A variable x is fully applied with respect to a
context Γ if it occurs in a subterm of the form xM1 . . .Mn, where n is the arity
of x. An object P is pre-canonical if its β-normal form is canonical. Felty shows
that canonical LF can be embedded into full LF, i.e., the λΠ-calculus and full
LF restricted to pre-canonical terms is equivalent to canonical LF. This system is
useful for representing logics since one does not need to restrict the representation
theorems to terms in canonical forms. The result of Salvesen (1990) means that
it is now simpler to work with the λΠ-calculus than this system.
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2.2 An Algebraic Presentation

We give a brief account of the algebraic organization of the λΠ-calculus. Presen-
tation of similar systems can be found in, for example, (Cartmell 1986), (Cartmell
1990), (Streicher 1989), (Jacobs 1991), (Hofmann 1996) and (Pitts 2000). We let
|E|, where E ranges over the grammatical expressions of the λΠ-calculus ((Harper
et al. 1993) and (Ishtiaq & Pym 2002)), denote the equivalence class of E with re-
spect to provable αβη-equality. Where no confusion can occur, we shall omit the
brackets |−|. We begin by defining the base category of contexts and realizations.

Definition 2.2 (category of contexts and realizations)
Let Σ be a λΠ-signature. The (base) category B(Σ) of contexts and realizations
is defined as follows:

Objects: contexts Γ such that `Σ Γ context;

Arrows: realizations Γ
〈M1,...,Mn〉−−−−−−→ ∆, such that, for each 1 ≤ i ≤ n, N proves

Γ `Σ Mi :Bi[Mj/yj]
i−1
j=1, where ∆ = y1 :B1, . . . , yn :Bn.

• Identities, written 1Γ(≡x1:A1,...,xm:Am), are x1 :A1, . . . , xm :Am
〈x1,...,xm〉−−−−−−→

x1 :A1, . . . , xm :Am.

• Composition is defined as follows: if σ = Γ
〈M1,...,Mn〉−−−−−−→ ∆ and ρ =

∆
〈N1,...,Np〉−−−−−−→ Θ are arrows in B(Σ) then their composition σ; ρ =

Γ
〈N1[Mj/yj ]

n
j=1,...,Np[Mj/yj ]

n
j=1〉−−−−−−−−−−−−−−−−−−→ Θ. �

We now proceed to define the appropriate indexed category. The key idea
here is that we have a category over each context which classifies the dependence
of the assertions M :A and A :Type on that context.

Definition 2.3
Let Σ be a λΠ-signature. We define a strict indexed category E(Σ) over the base
category B(Σ),

E(Σ) :B(Σ)op → Cat,

where Cat denotes the category of all small categories and functors, as follows:

• For each object Γ in B(Σ), the category E(Σ)(Γ) is defined as follows:

Objects: Types A such that N proves Γ `Σ A :Type;

Arrows: A
M−→ B such that Γ, x :A

〈1Γ,M〉−−−−→ Γ, y :B is an arrow in B(Σ).

– Identities are arrows A
1A−→ A such that Γ, x :A

〈1Γ,1A〉−−−−→ Γ, x :A is
an arrow in B(Σ).
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– Composition is defined as follows: if A
M−→ B and B

N−→ C are

arrows in E(Σ)(Γ) then their composition A
M ;N−−−→ B is A

N [M/y]−−−−→
C, where N is such that Γ, y :B

〈1Γ,N〉−−−−→ Γ, z :C is an arrow in B(Σ)
for appropriate x and y.

• For each arrow Γ′
σ−→ Γ in B(Σ), E(Σ)(σ) is a functor E(Σ)(Γ)

σ∗−→ E(Σ)(Γ′)
which sends an object A of E(Σ)(Γ) to an object A[σ/~x] of E(Σ)(Γ′), where
A[σ/~x] = A[Mi/xi]

n
i=1 when σ = 〈M1, . . . ,Mn〉 and Γ = x1 :A1, . . . , xn :An.

Similarly, σ∗ sends an arrow A
M−→ B in E(Σ)(Γ) to an arrow A[σ/~x]

〈M [σ/~x]〉−−−−−→
B[σ/~x] in E(Σ)(Γ′), where M [σ/~x] = M [Mi/xi]

n
i=1 when σ = 〈M1, . . . ,Mn〉

and Γ = x1 :A1, . . . , xn :An. �

We note that functorality for E(Σ) follows from composition in the base cat-
egory. We compare E(Σ) with Cartmell’s (1986) category R(U) of contexts and
realizations of a theory U . Cartmell does not have our indexed structure, he uses

pullbacks to obtain an arrow analogous to the functor E(Σ)(Γ)
σ∗−→ E(Σ)(Γ′). If

we were to collapse our indexed structure onto the base category, we would have
a contextual category.

In anticipation of constructions to follow later, q.v., § 3.8 and § 4, we observe
that we can extend the classifying category to permit, respectively, realizations
and families of types in the fibres. We begin by extending our definition to allow
us to classify realizations in the fibres.

Definition 2.4 (Contextual Fibres)
The indexed category E(Σ) can be extended to a strict indexed category Con(Σ)
as follows:

• The base of Con(Σ) is B(Σ), just as in E(Σ);

• The objects of the fibre over Γ are arrows ∆
σ−→ Θ, where Γ,∆

〈1Γ,σ〉−−−→ Γ,Θ
is an arrow on B(Σ) (we require that variables are standardized apart);

• The arrows of the fibre of Con(Σ) over Γ are pairs (h, k) such that the
diagram

∆
σ

- Θ

Ψ

h

?

σ′
- Φ

k

?

commutes, where ∆
h−→ Ψ and Θ

k−→ Φ are objects of Con(Σ) over Γ;
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• For each Γ′
σ′−→ Γ, Con(Σ)(σ) is a functor Con(Σ)(Γ)

σ∗−→ Con(Σ)(Γ′) defined
by the commuting square

σ∗∆
σ∗ρ
- σ∗Θ

σ∗Ψ

σ∗h

?

σ∗ρ′
- σ∗Φ

σ∗k

?

which gives the action on arrows (h, k) as above and σ∗ is the usual substi-
tution. �

Before we can extend the definition of E(Σ) to families of types in the fibres,
we need to recall the definition of the category of families of sets.

Definition 2.5 (Families of Sets)
The category Fam of families of sets is defined as follows:

Objects: ordered pairs, F = (B,E), where B is a set and E = (Eb)b∈B is a
family of sets indexed by elements of B;

Arrows: if F = (B,E) and F ′ = (B′, E ′) are objects of Fam, then an arrow
from F to F ′ is an ordered pair (β, ε), where β :B → B′ is a function and
ε = (εb)b∈B is a family of functions εb :Eb → E ′β(b).

Given two arrows (B,E)
(β,ε)−−→ (C,G) and (C,G)

(γ,δ)−−→ (D,H), their composition
is a function γ ◦ β and a family of functions δβ(b) ◦ εb determined by function
composition for each b ∈ B. The identity is the identity function paired with a
family of identity functions. �

This definition tells us how to extend E(Σ) to a category Fam(Σ) :B(Σ)op →
Fam which will capture families of types in the fibres. Note that whereas E(Σ)
is valued in Cat, Fam(Σ) is valued in Fam. This category is well-known, see;
for example, (Hofmann 1996) and (Dybjer 1995).

Definition 2.6 (Familial Fibres)
The indexed category E(Σ) can be extended to a category Fam(Σ) : B(Σ)op →
Fam as follows:

• Over each object Γ in B(Σ), there is a family (Ty(Γ),Tm(Γ, A)A∈Ty(Γ)),
where Ty(Γ) is the set of well-formed types in the context Γ (and signature
Σ) and each Tm(Γ, A) is the set of well-formed terms of type A in the
context Γ (and signature Σ);
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• Each arrow Γ′
σ−→ Γ′ defines an arrow in Fam defined by pointwise substi-

tution. �
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Chapter 3

Kripke Models of the λΠ-calculus

In this chapter, we define a (categorical) model of the λΠ-calculus. The λΠ-
calculus is in propositions-as-types correspondence with the {∀,⊃}-fragment of
minimal first-order logic and so to describe it in terms of Kripke models is a
natural choice. Further motivation for the choice of Kripke models arises from the
work of Mitchell & Moggi (1991). Their Kripke lambda models provide a general
class of models for the simply typed λ-calculus. Our models are generalizations of
theirs to the dependently typed setting. Gallier (1997) has also extended Mitchell
and Moggi’s Kripke lambda models to the second-order λ-calculus. His models,
however, are more concrete than ours; that is, not categorical, and so not as
general. His models are intended to model inequalities as well as equalities, while
our modes do not allow us to model inequalities.

It is well-known ((Cartmell 1986), (Streicher 1989), (Cartmell 1990), (Jacobs
1991), (Ritter 1992), (Jacobs 1993), (Hofmann 1996), (Jacobs 1999) and (Pitts
2000)) and that (strict) indexed categories provide a suitable model for dependent
type theories, like the λΠ-calculus. One can view the context Γ in the assertion
Γ `Σ M :A as being an index for M :A. Thus M :A depends on Γ for its meaning,
and we are led to the technology of an indexed category (Paré & Schumacher
1978). Given an indexed category Cop → Cat, the context Γ is interpreted as a
(choice of) object in the base category C, the type A is interpreted as an object in
the fibre over (the interpretation of) Γ and the assertion Γ `Σ M :A is interpreted
as the arrow from the terminal object in the category over Γ to (the interpretation
of) A.

Our Kripke models of the λΠ-calculus combine the Kripke lambda models of
Mitchell and Moggi with an indexed structure. Pictorially, we have:
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Category of worlds

Base category at world W

W

JΓK 1 JAK
JMK

Fibre over JΓK at
world W

This picture describe a Kripke λΠ-prestructure in which we can interpret as-
sertions of the form Γ `Σ M :A at a given world W . We wish to also be able to
interpret realizations; that is, assertions of the form Γ `Σ ∆

σ−→ ∆. We achieve
this by moving to a Kripke λΠ-prestructure.

Category of worlds

Base category at world W

W

JΓK JΘK JΞK
JσK

Fibre over JΓK at
world W

A Kripke model of the λΠ-calculus is defined to be a Kripke λΠ-structure
together with an interpretation function.

After examples, we turn to soundness and completeness of Kripke models of
the with respect to the λΠ-calculus. These results are fairly routine. Since our
Kripke models of the λΠ-calculus are able to interpret realizations, we define a
calculus of realizers, C, and provide soundness and completeness results.

The majority of the work in this chapter involves adapting existing material
and results for our purposes. So while it is known that the results hold, no one
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has actually worked out the details in quite this way before. The Kripke Σ-λΠ-
models are similar to the Kripke resource models of (Ishtiaq & Pym 2002). The
calculus of realizers, Definition 3.43 is taken from (Galmiche & Pym 2000).

3.1 Kripke λΠ-Prestructures and -Structures

As mentioned above, our Kripke λΠ-prestructure is intended to interpret asser-
tions of the form Γ `Σ M : A at a world W . Our models are based on the
contextual categories of Cartmell (1986) and their reformulation by Ritter (1992)
and Pitts (2000).

Definition 3.1 (Kripke λΠ-prestructure)
A Kripke λΠ-prestructure J is a functor

J : [W , [Dop,V ]]

where W is a small category (“of worlds”), Dop =
∐

W∈|W|D
op
W , where W ranges

over each object W in W and each category DW (the base at W ) is small and V ,
a subcategory of Cat, is a category of values, such that:

1. Each DW has a terminal object 1DW ;

2. Each J (W )(D), where W is an object of W and D is an object of DW ,
has a terminal object 1J (W )(D), preserved on the nose by each functor f ∗(=
J (W )(f)) :J (W )(D)→ J (W )(E), where f :E → D is an arrow in DW ;

3. For each object W in W , D in DW , A in J (W )(D), there is a D • A
in DW together with canonical projections D • A

pD,A−−−→ D in DW and

1J (W )(D•A)

qD,A−−→ p∗D,A(A) and canonical pullbacks

E • f ∗A
f • A
- D • A

E

pE,f∗A

?

f
- D

pD,A

?

in DW satisfying the strictness conditions

id∗D(A) = A
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and
id • A = idD•A,

for each A in J (W )(D), and that

g∗(f ∗(A)) = (g; f)∗(A)

and
(g • (f ∗(A))); (f • A) = (g; f) • A,

for each appropriate A, f and g. Moreover, for each W and D,

D • 1J (W )(D) = D;

4. At each object W inW , the arrow p∗D,A(= J (W )(pD,A)) has a right adjoint

p∗D,A a ΠD,A :J (W )(D • A)→ J (W )(D)

that satisfies the following (strict) Beck-Chevalley condition: for each E
f−→

D in DW , each A in J (W )(D) and each B in J (W )(D • A)

f ∗(ΠD,AB) = ΠE,f∗A((f • A)∗B)

and
(f • A)∗(appW (A,B)) = appW (f ∗A, (f • A)∗B)

where appW is the co-unit of the adjunction.

5. For each arrow W
α−→ W ′ in W , then

(a) there is a functor Kα :DW → DW ′ ; and

(b) J (W )(D) = J (W ′)(D) for all D in both DW and DW ′ ; otherwise
J (W ′)(D) is undefined.

Where no confusion can arise, we shall write just D(op) instead of D(op)
W . �

A few remarks concerning this definition are in order.

• We take the co-product of the categories DW because it is conceptually
natural. It is analogous to the Kripke model for intuitionistic logic where
there is a classical model at each world. For similar reasons, we use the
category [W , [Dop,V ]] rather than use the simpler category [W ×Dop,V ].

• In (Ritter 1992), the context-extension operator • arises from the Grothen-
dick construction ((Jacobs 1999)). We have avoided using this construction
by using the pullback structure found in (Pitts 2000).
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• The requirement of (4) amounts to the existence of a natural isomorphism,

curW : homJ (W )(D•A)(p
∗
D,AC,B) ∼= homJ (W )(D)(C,ΠD,A(B)) : cur−1

W , (3.1)

where B is an object in J (W )(D •A) and C is an object in J (W )(D) with
the co-unit of the adjunction, the application map,

appW :p∗D,AΠD,A ⇒ 1J (W )(D•A)

given by arrows

p∗D,AΠD,A(B)
appW (A,B)−−−−−−→ B (3.2)

in J (W )(D • A).

The Kripke λΠ-prestructure provides enough structure to allow us to interpret
assertions of the form Γ `Σ M : A, cf., Definition 2.3. However, we are also
interested in realizations and hence assertions of the form Γ `Σ ∆→ Θ. This is
mirrored in the move from a Kripke λΠ-prestructure to a Kripke λΠ-structure.
The fibres KJ (W )(D) use components of the fibres in the Kripke λΠ-prestruture:
arrows in J (W )(D) are taken to be objects in KJ (W )(D).

Definition 3.2 (Kripke λΠ-structure)
Let J be a Kripke λΠ-prestructure, J : [W , [Dop,V ]]. A Kripke λΠ-structure on
J is a functor

KJ : [W , [Dop,V ]],

such that the category V has the following properties:

Objects: Categories V = KJ (W )(E) built out of V = J (W )(E) with

Objects: Arrows

A
fA,B−−→ B

of DW , where A = A1 • . . .•Am and each Ai is an object of J (W )(E •
A1 • . . . • Ai−1) and B = B1 • . . . • Bn and each Bi is an object of

J (W )(E •B1 • . . . •Bi−1) such that E •A
〈1E ,fA,B〉−−−−−→ E •B is an arrow

of DW ;

Arrows: Arrows

(A
fA,B−−→ B)→ (C

fC,D−−−→ D)

are given by E • A
〈1E ,fA,C〉−−−−−→ E • C in DW .

Arrows: Functors KJ (W )(f), where E
f−→ D is an arrow in DW , defined as

follows. Let A = A1 • . . .•Am
fA,B−−→ B1 • . . .•Bn be an arrow in KJ (W )(D)
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and C = C1 • . . . •Cm
fC,D−−−→ D1 • . . . •Dn be an arrow in KJ (W )(E),. The

functor KJ (W )(f) satisfies the following conditions:

1. KJ (W )(f)(A) = C, where C1 = f ∗(A1) and for each

Ci = (. . . ((f • A1) • A2) . . . • Ai−1)∗(Ci);

2. If A
µ−→ A′ is an arrow in KJ (W )(D), then KJ (W )(f)(µ) = ν, the

unique mediating arrow determined by the pullback

E • f ∗A
f • A

- D • A

E • f ∗A′
f • A′

-

ν(=
def f ∗

µ)-

D • A′

µ

?

E

pE,f∗A

? f
-

p
E
,f ∗
A

-

D

pD,A′

?

where each − denotes the obvious composite. �

We refer to a Kripke λΠ-structure rather than a Kripke λΠ-structure on J
when no confusion can arise by our doing so.

3.2 Examples

We provide some suitable examples of Kripke λΠ-structures. We begin with the
simplest example, the term model.

3.2.1 Term Model

We begin by defining a posetal subcategory of B(Σ) defined in Definition 2.2.

Definition 3.3
The category P(Σ) is defined as follows:

Objects: The empty context, 〈〉, is an object of P(Σ). If Γ is an object of P(Σ)
and there exists an arrow Γ

σ−→ Γ,Γ′ in B(Σ), then Γ,Γ′ is an object of P(Σ);

Arrows: Γ → ∆ if and only if there is an arrow Γ → ∆ in B(Σ) and ∆ ≡ Γ,Γ′

for some (possibly 〈〉) Γ′. �
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We wish to extend a context Γ by ∆ whilst ensuring that variable names are
kept consistent and any duplications are removed, we define this operation as
follows.

Definition 3.4 (Consistent Merge)
Let Γ and ∆ be valid λΠ-contexts. The consistent merge of Γ and ∆, Γ ./ ∆, is
defined as follows:

• If Dom(Γ) ∩Dom(∆) = ∅, then Γ ./ ∆ ≡ Γ,∆;

• If Dom(Γ) ∩ Dom(∆) 6= ∅ then we rename all occurrences in ∆ of each
variable in Dom(Γ) ∩Dom(∆), taking care with dependencies, and define
Γ ./ ∆ ≡ Γ,∆′, where ∆′ =α ∆. �

We are now in a position to define the base category at each world Γ, CΓ.

Definition 3.5
The category CΓ, for each Γ in P(Σ) is defined as follows:

Objects: Γ ./ ∆, where ∆ is an object of B(Σ).

Arrows: Γ ./ ∆
〈1Γ,M1,...,Mn〉−−−−−−−−→ Γ ./ ∆′, where ∆

〈M1,...,Mn〉−−−−−−→ ∆′ is an arrow in
B(Σ).

Given arrows Γ ./ ∆
〈1Γ,M1,...,Mn〉−−−−−−−−→ Γ ./ ∆′ and Γ ./ ∆′

〈1Γ,N1,...,Np〉−−−−−−−−→ Γ ./ ∆′′, their

composition is Γ ./ ∆
〈1ΓN1[Mj/yj ]

n
j=1,...,Np[Mj/yj ]

n
j=1〉−−−−−−−−−−−−−−−−−−−−→ Γ ./ ∆′′. �

We define Aop =
∐

Γ∈|P(Σ)| CΓ and we are now able to define the indexed

category TΣ : [P(Σ), [A(Σ)op,V ]] which we then show is a Kripke λΠ-prestructure.

Definition 3.6
Let Σ be a λΠ-signature. The functor category TΣ : [P(Σ), [A(Σ)op,V ]] is defined
as follows:

• if Γ → Γ′ is an arrow in P(Σ), then we define a natural transforma-
tion TΣ(Γ)⇒TΣ(Γ′). Since Γ′ is an extension of Γ, we have inclusions
I∆ : TΣ(Γ)(Γ ./ ∆) → TΣ(Γ′)(Γ′ ./ ∆) for each ∆. We take these as
our components:

Γ ./ ∆ TΣ(Γ)(Γ ./ ∆) ⊂
I∆- TΣ(Γ′)(Γ′ ./ ∆)

Γ ./ ∆′

σ

?

TΣ(Γ)(Γ ./ ∆′)

TΣ(Γ)(σ)

?
⊂

IΓ′

- TΣ(Γ′)(Γ′ ./ ∆′)

TΣ(Γ′)(σ)

?
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• If Γ is an object of P(Σ) and Γ ./ ∆ is an object in A(Σ). The fibre
TΣ(Γ)(Γ ./ ∆) is a category defined as follows:

Objects: Types A such that Γ ./ ∆ `Σ A :Type;

Arrows: A
M−→ B, where the arrow M is such that Γ ./ ∆, x :A

〈1Γ./∆,M〉−−−−−−→
Γ ./ ∆, y :B is an arrow in CΓ and if x :A or y :B are not in Γ ./ ∆

then x, y /∈ Dom(Γ ./ ∆). If A
M−→ B and B

N−→ C, then A
M ;N−−−→ C

is given by A
M [N/x]−−−−→ C, where N is such that Γ ./ ∆, y :B

〈1Γ./∆,N〉−−−−−→
Γ ./ ∆, z :C.

• If σ is an arrow Γ ./ ∆′ → Γ ./ ∆ in CΓ, then we have a functor TΣ(Γ)(Γ ./
∆)(σ) = σ∗ between TΣ(Γ)(Γ ./ ∆) and TΣ(Γ)(Γ ./ ∆′). The functor σ∗ is

defined in terms of substitution, i.e., an arrow A
M−→ B in TΣ(Γ)(Γ ./ ∆)

is sent to A[σ/~x]
M [σ/~x]−−−−→ B[σ/~x] such that Γ ./ ∆′, x :A[σ/~x]

〈1Γ./∆′ ,M [σ/~x]〉−−−−−−−−−→
Γ ./ ∆′, y :B[σ/~x]. �

Lemma 3.7
TΣ is a Kripke λΠ-prestructure.

Proof It is straightforward to verify that TΣ is a functor. We show that it
satisfies the other conditions.

1. Each CΓ contains a terminal object: Γ ./ ∅ ≡ Γ.

2. Each TΣ(Γ)(Γ ./ ∆) has a terminal object the unit type 〈〉. Let Γ ./ ∆′
σ−→

Γ ./ ∆ be an arrow in CΓ, then σ∗(〈〉) = 〈〉[σ/~x] = 〈〉. Thus the terminal
object is preserved on the nose by every appropriate arrow σ in CΓ.

3. Let Γ be a object in P(Σ), ∆ be an object in CΓ and A be an object in
TΣ(Γ)(Γ ./ ∆). Γ ./ ∆ • A = Γ ./ ∆ ./ x :A is an object in CΓ. We have a

projection Γ ./ ∆, x :A
pΓ./∆,A−−−−→ Γ in CΓ and a projection 1

qΓ./∆,A−−−−→ p∗Γ./∆,A(A)
in TΣ(Γ)(Γ ./ ∆). We observe that p∗Γ./∆,A(A) = A[~x/~x] = A.

Claim 3.8
Let Γ be a object of P(Σ), Γ ./ ∆ ≡ Γ, x1 : A1, . . . , xm : Am

〈idΓ,M1,...,Mn〉−−−−−−−−→
Γ ./ ∆′ ≡ Γ, y1 :B1, . . . , yn :Bn be a morphism in CΓ and A be an object in
TΣ(Γ)(Γ ./ ∆). Then

Γ ./ ∆, y :A[Mj/yj]
n
j=1

〈idΓ,M1, . . . ,Mn, y〉- Γ ./ ∆′, x :A

Γ ./ ∆

pΓ./∆,A[Mj/yj ]nj=1

?

〈idΓ,M1, . . . ,Mn〉
- Γ ./ ∆′

pΓ./∆′,A

?
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is a pullback.

A similar proof can be in (Pitts 2000).

Proof Suppose we have arrows Γ ./ ∆′′
σ′−→ Γ ./ ∆ and Γ ./ ∆′′

σ′′−→ Γ ./
∆′, x :A in CΓ satisfying 〈M1, . . . ,Mn, id∆〉 ◦ σ′ = pΓ./∆′,A ◦ σ′ : Γ ./ ∆′′ →
Γ ./ ∆′, i.e., the diagram

Γ ./ ∆′′
σ′′

- Γ ./ ∆′, x :A

Γ ./ ∆

σ′

?

〈M1, . . . ,Mn, id∆〉
- Γ ./ ∆′

pΓ./∆′,A

?

commutes. We have to show that there is a unique arrow δ :Γ ./ ∆′′ → Γ ./
∆, x′ :A[Mj/yj]

n
j=1 satisfying pΓ./∆,A[Mj/yj ]nj=1

◦ δ = σ′ : Γ ./ ∆′′ → Γ ./ ∆

and 〈idΓ,M1, . . . ,Mn, x
′〉◦δ = σ′′ :Γ ./ ∆′′ → Γ ./ ∆′, x :A, i.e. the triangles

Γ ./ ∆′′
δ
- Γ ./ ∆, x :A[Mj/yj]

n
j=1

Γ ./ ∆

pΓ./∆,A[Mj/yj ]nj=1

?

σ ′

-

and

Γ ./ ∆′′

Γ ./ ∆, x′ :A[Mj/yj]
n
j=1

δ

?

〈idΓ,M1, . . . ,Mn, x
′〉
- Γ ./ ∆′, x :A

σ ′′

-

commute. Since 〈idΓ,M1, . . . ,Mn〉 ◦σ′ = pΓ./∆,A ◦σ′ :Γ ./ ∆′′ → Γ ./ ∆′, we
must have that σ′′ is of the form 〈idΓ,M1[Nj/xj]

m
j=1, . . . ,Mn[Nj/xj]

m
j=1, N〉

where σ′ = 〈idΓN1, . . . , Nm〉 and N is a term such that N proves Γ ./
∆′′ `Σ N : A[Mi[Nj/xj]

m
j=1/yi]

n
i=1. Now since A[Mi[Nj/xj]

m
j=1/yi]i=1 =

A[Mi/yi]
n
i=1[Nj/xj]

m
j=1, we get a morphism δ =def 〈idΓ, N1, . . . , Nm, , N〉 :
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Γ ./ ∆→ Γ ./ ∆, x :A[Mj/yj]
n
j=1 satisfying

〈idΓ,M1, . . . ,Mn, x
′〉 ◦ δ = 〈idΓ,M1, . . . ,Mn, x

′〉 ◦ 〈idΓN1, . . . , Nm, N〉
= 〈idΓ,M1[Nj/xj]

m
j=1, . . . ,Mn[Nj/xj]

m
j=1, N〉

= σ′′

and
pΓ./∆,A[Mj/yj ]nj=1

◦ δ = ~x ◦ 〈idΓ, N1, . . . , Nm, N〉

as required. If δ′ : Γ ./ ∆′′ → Γ ./ ∆, x′ : A[Mj/yj]
n
j=1 were any such

morphism, then from the requirement pΓ./∆,A[Mj/yj ]nj=1
◦ δ′ = σ′ we can

conclude that δ′ is of the form 〈idΓ, N1, . . . , Nm, N
′〉. The requirement

〈idΓ,M1, . . . ,Mn, x
′〉 ◦ δ = σ′′ tells us that N proves Γ ./ ∆′′ ` N ′ :

A[Mj/yj]
n
j=1[Ni/xi]

m
i=1. Hence δ′ = δ :Γ ./ ∆′′ → Γ ./ ∆, x′ :A[Mj/yj]

n
j=1. �

It remains to show the strictness conditions. Firstly, idΓ./∆ = 〈x1, . . . , xn,
y1, . . . , ym〉 when Γ ./ ∆ = x1 : A1, . . . , xn : An, y1 : B1, . . . , ym : Bm and
idΓ./∆,x:A = 〈x1, . . . , xn, y1 :B1, . . . , ym :Bm, x〉. We have that 〈idΓ, x1, . . . ,
xn〉 • A = 〈x1, . . . , xn, x〉 as required. Also, id∗Γ./∆(A) = A[xi/xi]

n
i=1 = A.

The next two conditions just require us to be careful.

Let f : Γ ./ ∆ → Γ ./ ∆′ and g : Γ ./ ∆′ → Γ ./ ∆′′ where f =
〈idΓ,M1, . . . ,Mn〉, Γ ./ ∆′ ≡ Γ, y1 : B1, . . . , yn : Bn,, g = 〈idΓ, N1, . . . , Np〉
and Γ′′ ≡ z1 :C1, . . . , zp :Cp. Thus

g∗(f ∗(A)) =g∗(A[Mi/yi]
n
i=1)

=A[Mi/yi]
n
i=1[Nj/zj]

p
j=1

=A[Nj[Mi/yi]
n
i=1/zj]

p
j=1

=〈idΓ, N1[Mi/yi]
n
i=1, . . . , Np[Mi/yi]

n
i=1〉∗A

=(g; f)∗(A)

We show that (g • (f ∗(A))); (f •A) = (g; f)•A by calculating the two sides
and showing that they are equal. We begin with the left hand side:

f • A = 〈idΓ,M1, . . . ,Mn, x〉

and

g • (f ∗(A)) =g • (A[Mi/yi]
n
i=1)

=〈N1, . . . , Np, id∆, x〉
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and

(g • (f ∗(A))); (f • A) = 〈idΓN1[Mi/yi]
n
i=1, . . . , Np[Mi/yi]

n
i=1, x〉

The right hand side is

(g; f) • A = 〈idΓN1[Mi/yi]
n
i=1, . . . , Np[Mi/yi]

n
i=1, x〉

and these are equal.

Finally, D • 〈〉 = D, x :〈〉 = D.

4. The functor p∗Γ./∆,A : TΣ(Γ)(Γ ./ ∆) → TΣ(Γ)(Γ ./ ∆, x : A) has a right
adjoint if for all objects B in TΣ(Γ)(Γ ./ ∆, x :A), there exists an object
Πx :A .B in TΣ(Γ)(Γ ./ ∆) and a morphism appB :p∗Γ./∆,A(Πx :A .B) → B
in TΣ(Γ)(Γ ./ ∆, x :A), such that for all objects C in TΣ(Γ)(Γ ./ ∆), and
for all morphisms M : p∗Γ./∆,A(C) → B in TΣ(Γ)(Γ ./ ∆, x :A), there exists
a unique morphism N :C → Πx :A .B in TΣ(Γ)(Γ ./ ∆) such that

C p∗Γ./∆,A(C)

Πx :A .B

N

?
p∗Γ./∆,A(Πx :A .B)

p∗Γ./∆,A(N)

?

appB
- B

M

-

commutes.

Since p∗Γ./∆,A(C)
M−→ B in TΣ(Γ)(Γ ./ ∆, x : A) we have that Γ ./ ∆, x :

A, y :p∗Γ./∆,A(C) `Σ M :B. We can apply λ-abstraction to obtain Γ ./ ∆, y :
p∗Γ./∆,A(C) `Σ λx :A .M : Πx :A .B. Since p∗Γ./∆,A(C) = C, we have that
Γ ./ ∆, y :C `Σ λx :A .M : Πx :A .B. By the definition of the fibres, we

have an arrow C
λx :A .M−−−−−→ Πx :A .B in TΣ(Γ)(Γ ./ ∆). We take this arrow

to be N and observe that it is unique. We now define ΠΓ./∆,A to be the
functor from TΣ(Γ)(Γ ./ ∆, x :A)→ TΣ(Γ)(Γ ./ ∆), which sends every B in
TΣ(Γ)(Γ ./ ∆, x :A) to Πx :A .B in TΣ(Γ)(Γ ./ ∆).

The morphism appB is also dependent on the choice of A, so we define
app(A,B) = appB :Πx :A .B → B. We now show that ΠΓ./∆,A satisfies the

strict Beck-Chevalley conditions. Let Γ ./ ∆′
σ−→ Γ ./ ∆ be a morphism in

CΓ, A an object in TΣ(Γ)(Γ ./ ∆) and B be an object in TΣ(Γ)(Γ ./ ∆, x :A).
We have that

σ∗(ΠΓ./∆,AB) =σ∗(Πx :A .B)

=Πx :A .B[Mi/xi]
n
i=1
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while

ΠΓ./∆′,σ∗(A)((σ • A)∗B) = ΠΓ./∆′,σ∗(A)(B[σ • A/~x])

= Πy :A[Mi/xi]
n
i=1 . B[Mi/xi]

m
i=1[x/y]

which are equal.

We have that (σ • A)∗(app(A,B)) = B[Mi/xi]
n
i=1[x/y] in TΣ(Γ)(Γ ./ ∆, x :

A[Mi/xi]
n
i=1 and app(σ∗A; (σ • A)∗B) = B[Mi/xi]

n
i=1[x/y] in TΣ(Γ)(Γ ./

∆, x :A[Mi/xi]
n
i=1). Thus ΠΓ,A satisfies the strict Beck-Chevalley conditions.

We can now conclude that TΣ is a Kripke λΠ-prestructure. �

We are now able to define a Kripke λΠ-structure KTΣ on TΣ. Let KTΣ :
[P(Σ), [Aop,V ]]. Let Γ ./ ∆ ∈ CΓ. We define KTΣ(∆)(Γ ./ ∆) as follows:

Objects: Categories V = KTΣ(Γ)(Γ ./ ∆) with

Objects: Sections Γ ./ ∆
〈1Γ./∆,N〉−−−−−→ Γ ./ ∆, z :B (arrows in CΓ), such that

B is an object of TΣ(Γ)(Γ ./ ∆);

Arrows: Identities Γ ./ ∆
〈idΓ./∆〉−−−−→ Γ ./ ∆.

Arrows: Functors σ∗ :KTΣ(∆)(Γ ./ ∆) → KTΣ(∆)(Γ ./ ∆′) induced by arrows

Γ ./ ∆′
σ−→ Γ ./ ∆ in CΓ. σ∗ sends objects Γ ./ ∆

〈idΓ./∆,N〉−−−−−−→ Γ ./ ∆, z :C to

objects Γ ./ ∆
〈idΓ./∆,N [Mj/xj ]

n
j=1〉−−−−−−−−−−−−→ Γ ./ ∆, z :C[Mj/xj]

n
j=1. σ∗ sends arrows

Γ ./ ∆
〈idΓ./∆〉−−−−→ Γ ./ ∆ to Γ ./ ∆

〈idΓ./∆〉−−−−→ Γ ./ ∆.

Lemma 3.9
KTΣ is a Kripke λΠ-structure on TΣ.

Proof We begin by showing that arrows of the form Γ ./ ∆
〈1Γ./∆,N〉−−−−−→ Γ ./

∆, z :C are of the right form. We first fix TΣ(Γ)(Γ ./ ∆). We need to show that
Γ ./ ∆ is of the form A1 • . . . • An, where each Ai is an object of J (Γ)(Γ ./
∆•A1 • . . .•Ai−1). We observe that for any Ai which is in Γ ./ ∆ ≡ A1 • . . .•An,
Γ ./ ∆ • A1 • . . . • Ai−1 ≡ Γ ./ ∆ and each Ai is an object of J (Γ)(Γ ./ ∆).We
only need to show that C is an object of TΣ(Γ)(Γ ./ ∆). This holds by definition

and further, Γ ./ ∆
〈1Γ./∆,N〉−−−−−→ Γ ./ ∆, z :C is an arrow of CΓ. The arrows idΓ./∆

are of the right form since Γ ./ ∆ • Γ ./ ∆ ≡ Γ ./ ∆.
Let Γ ./ ∆′

σ−→ Γ ./ ∆ be an arrow in CΓ. We show that σ∗ satisfies conditions
(1) and (2) of Definition 3.2.

1. This holds by definition, since σ∗ is a substitution which changes ∆ to ∆′

and leaves Γ unchanged.
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2. Let Γ ./ ∆
〈idΓ./∆〉−−−−→ Γ ./ ∆ be an arrow in TΣ(Γ)(Γ ./ ∆). We need to show

that Γ ./ ∆′
〈idΓ./∆′ 〉−−−−−→ Γ ./ ∆′ is the unique mediating arrow given by the

following canonical pullback:

Γ ./ ∆′ • σ∗(Γ ./ ∆)
σ • Γ ./ ∆

- Γ ./ ∆ • Γ •∆

Γ ./ ∆′ • σ∗(Γ ./ ∆)
σ • Γ ./ ∆

-

σ ∗
(id

Γ./∆ )
-

Γ ./ ∆ • Γ ./ ∆

idΓ./∆

?

Γ ./ ∆′

p

?

σ
-

p

-

Γ ./ ∆

p

?

We have a lot of redundancies and so we have the diagram

Γ ./ ∆′
〈σ, id〉

- Γ ./ ∆

Γ ./ ∆′
〈σ, id〉

-

id

-

Γ ./ ∆

id

?

Γ ./ ∆′

p

?

σ
-

p

-

Γ ./ ∆

p

?

from which it is clear that the result holds. �

It is important to keep this example in mind when we define Kripke λΠ-
models in the next section. We also observe that Γ ./ ∆ `Σ M :A if and only if

there exists an arrow 〈〉 M−→ A in TΣ(Γ)(Γ ./ ∆).

3.2.2 The {∀,⊃}-fragment of many-sorted minimal first-
order logic

We write L{∀,⊃} for the {∀,⊃}-fragment of many-sorted first-order logic. This is
another important example because L{∀,⊃} is the internal logic of the λΠ-calculus;
that is, it is in propositions-as-types correspondence with it. We stress that the
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Kripke λΠ-structure we are about to construct is not a model of L{∀,⊃}, rather,
it is a Kripke λΠ-structure built out of the syntax of L{∀,⊃}. We discuss L{∀,⊃}
in more detail in § 5 and provide a Kripke model of the logic there. We sketch
the definition of L{∀,⊃} here with the fuller definition being found in § 5.

We have an alphabet A consisting of the following sets:

• A countable set of sorts, including the sort of individuals ι and propositions
o;

• A finite set of constant symbols c1, . . . , cp each given a sort Ti;

• A finite set of function symbols f1, . . . , fn each given an sort Si1, . . . , S
i
mi
→

Si;

• A finite set of predicate symbols P1, . . . , Pp with sort T i1, . . . , T
i
qi
→ o;

• A set of connectives containing ⊃ and ∀, which have sorts (o, o) → o and
(ι→ o)→ o.

This definition should be compared with the more general definition of an
alphabet for a judged object-logic in § 7. We further distinguish the sorts into
those sorts which have variables and those which do not. For each sort which has
variables, we have assign a countable set of variables.

We generate the expressions of L{∀,⊃} by the following rules:

• All constant symbols, function symbols, variables and connectives are ex-
pressions;

• (Application) Given an expression of sort (S1, . . . , Sm)→ S and expressions
e1, . . . , em with sorts S1, . . . , Sm respectively, then ee1 . . . em is an expression
of sort S;

• (Abstraction) Given expressions e1, . . . , en with sorts S1, . . . , Sm respec-
tively and an expression e then (e1, . . . , en)e is an expression of sort S1, . . . ,
Sn → S.

We call all expressions of sort o the propositions of L{∀,⊃}. We define a conse-
quence relation ` on the set of propositions. This consequence relation satisfies
the following:

Reflexivity For all propositions φ, φ ` φ;

Transitivity (Cut) If ∆ ` φ and ∆, φ,∆′ ` ψ then ∆,∆′ ` ψ for all proposi-
tions φ and ψ and all sets of propositions ∆ and ∆′;

Weakening If ∆ ` φ then ∆,∆′ ` φ for all propositions φ and sets of proposi-
tions ∆ and ∆′;
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Permutation If ∆, φ, ψ,∆′ ` χ then ∆, ψ, φ,∆′ ` χ for all propositions φ, ψ
and χ and all sets of propositions ∆ and ∆′.

We have the following natural deduction rules for the connectives ∀ and ⊃.

Ax
∆, φ ` φ

∆, φ ` ψ
⊃ I

∆ ` φ ⊃ ψ

∆ ` φ ∆ ` φ ⊃ ψ
⊃ E

∆ ` ψ
∆ ` φ

∀ I
∆ ` ∀x :S . φ

(x not free in any assumption
on which φ depends)

∆ ` ∀x :S . φ
∀ E

∆ ` φ[t/x]

The rules are extended to use proof-objects and we use Barendregt’s (1992) no-
tation.

Ax
∆, y :φ ` y :φ

∆, y :φ ` δ :ψ
⊃ I

∆ ` Iφδ :φ ⊃ ψ

∆ ` δ1 :φ ∆ ` δ2 :φ ⊃ ψ
⊃ E

∆ ` δ1δ2 :ψ

X, x :S ∆ ` δ :φ
∀ I

∆ ` Gx : ι . δ :∀x :S . φ

∆ ` δ :∀x :S . φ
∀ E

∆ ` δt :φ[t/x]

We fix the alphabet A of L{∀,⊃} for the remainder of the chapter.

Definition 3.10
The category B(A) is defined as follows:

objects: sets of sorts labelled by first-order syntactic variables, x1 : S1, . . . , xn :
Sn;

Arrows: tuples of terms x1 :S1, . . . , xn :Sn
〈t1,...,tm〉−−−−−→ y1 :T1, . . . , yn :Tn, where, for

each 1 ≤ i ≤ n, x1 :S1, . . . , xn :Sn `T ti :Ti.
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Given two arrows x1 :S1, . . . , xn :Sn
〈t1,...,tm〉−−−−−→ y1 :T1, . . . , ym :Tm and y1 :T1, . . . , ym :

Tm
〈u1,...,up〉−−−−−→ z1 : U1, . . . , zp : Up, we define their composition to be the arrow

x1 :S1, . . . , xn :Sn
〈u1[ti/yi]

m
i=1,...,up[ti/yi]

n
i=1〉−−−−−−−−−−−−−−−−→ z1 :U1, . . . , zp :Up. �

We write Dom(x1 : S1, . . . , xn : Sn) for the set of variables {x1, . . . , xn}. We
define a postel category of worlds which is a subcategory of B(A).

Definition 3.11
We define the category W of worlds as follows:

Objects: Sets X = x1 :S1, . . . , xm :Sm, where x1 :S1, . . . , xm :Sm is an object of
B(A);

Arrows: X → X ′ if and only if X ⊆ X ′. �

We take sets of sorts labelled by first-order syntactic variables to be worlds so
that at each world, X, we only define those propositions whose have free variables
are in X. Further, since every future world X ′ contains X, more propositions
can be defined at future worlds. We now define a category of proof-variables.

Definition 3.12
We define the category P(A) as follows:

Objects: sets of proof-variables y1 :φ1, . . . ,yn :φn, where φi is a proposition of
L{∀,⊃};

Arrows: tuples of proofs y1 :φ1, . . . ,yn :φn︸ ︷︷ ︸
∆

〈δ1,...,δm〉−−−−−→ z1 : ψ1, . . . , zm : ψm, where

for 1 ≤ i ≤ n, ∆ `L{∀,⊃} δi :ψi[δj/yj]
i−1
j=1 is provable in L{∀,⊃}.

Given two arrows y1 : φ1, . . . ,yn : φn
〈δ1,...,δm〉−−−−−→ z1 : ψ1, . . . , zm : ψm and z1 :

ψ1, . . . , zm : ψm
〈δ′1,...,δ′p〉−−−−−→ x1 : χ1, . . . ,xp : χp, we define their composition to be

y1 :φ1, . . . ,yn :φn
〈δ′1[δi/yi]

m
i=1,...,δ

′
p[δi/yi]

m
i=1〉−−−−−−−−−−−−−−−−→ x1 :χ1, . . . ,xp :χp. �

We define Dom(y1 :φ1, . . . ,yn :φn), for each y1 :φ1, . . . ,yn :φn in P(A) to be
{y1, . . . ,yn}.

We define CX , a subcategory of P(A) to be the base category at each world
X as follows:

Definition 3.13
For each world X in W , the category CX is defined as follows:

Objects: Sets ∆, where ∆ is an object of P(A), the free variables of each φi of
∆ are in X and Dom(∆) ∩Dom(X) = ∅;
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Arrows: tuples of proofs ∆
〈δ1,...,δn〉−−−−−→ ∆′ such that ∆

〈δ1,...,δn〉−−−−−→ ∆′ is an arrow of
P(A).

Composition is inherited from P(A). �

We now define Aop =
∐

X∈|W| C
op
X and we are now able to define a functor

TA : [P(A), [Aop,V ]], which will turn out to be our Kripke λΠ-prestructure. We
define the fibres TA(X)(∆) as follows:

Objects: Propositions φ such that (X) ∆ ` φ :o;

Arrows: Proofs φ
δ−→ φ′ such that ∆, y :φ

〈id,δ〉−−−→ ∆, z :φ′ is an arrow in CX .

Functors between fibres are induced by a morphism ∆′
σ−→ ∆ such that

• for all objects φ ∈ TA(X)(∆) σ∗(φ) = φ[Mi/yi]
n
i=1 where σ = 〈M1, . . . ,

Mn〉 and X ′ = y1 :S1, . . . , yn :Sn.

• for all arrows φ
δ−→ ψ, σ∗(φ

δ−→ ψ) = φ[Mj/yj]
n
j=1

δ[Mj/yj ]
n
j=1−−−−−−−→ ψ[Mj/yj]

n
j=1

such that ∆′, x :φ[Mj/yj]
n
j=1

〈id∆′ ,δ[Mj/yj ]
n
j=1〉−−−−−−−−−−→ ∆′, y :ψ[Mj/yj]

n
j=1 is an arrow

in CX .

We have that any morphism X → X ′ in P(A) induces a natural transfor-
mation TA(X) ⇒ TA(X ′). Since X ⊆ X ′, we have inclusions I∆ : TA(X)(∆) →
TA(X ′)(∆) for each ∆. We take these as our components:

∆ TA(X)(∆) ⊂
I∆- TA(X ′)(∆)

∆′

t

?

TA(X)(∆′)

TA(X)(t)

?
⊂

I∆′

- TA(X ′)(∆′)

TA(X ′)(t)

?

We now show that TA satisfies the conditions in the definition of a Kripke λΠ-
structure.

1. Each CX has a terminal object: the empty set ∅.

2. Each TA(X)(∆) has a terminal object, the unit proposition. Let ∆′
σ−→ ∆

be an arrow in CX then σ∗(〈〉) = 〈〉[Mj/yj]
n
j=1 = 〈〉.

3. For each object X in P(A), ∆ in CX and φ in TA(X)(∆), we define ∆ • φ
as follows:

• If y :φ ∈ ∆, for some y, then ∆ • φ ≡ ∆;
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• If y :φ /∈ ∆, for some y, then ∆ • φ ≡ ∆, z :φ, where z /∈ Dom(∆).

There are projections ∆,y :φ
p∆,φ−−→ ∆ and 〈〉

q∆,φ−−→ φ.

Claim 3.14
Let X be an object in P(A), ∆ ≡ y1 : φ1, . . . ,ym : φm

〈M1,...,Mn〉−−−−−−→ ∆′ ≡ z1 :
ψ1, . . . , zn :ψn be a morphism in CX and φ an object in TA(X)(∆). Then

∆,y :φ[Mj/yj]
n
j=1

〈M1, . . . ,Mn,y〉- ∆′,x :φ

∆

p∆,φ[Mj/yj ]nj=1

?

〈M1, . . . ,Mn〉
- ∆

p∆,φ

?

is a pullback.

This proof is similar to a proof found in (Pitts 2000).

Proof Suppose σ′ :∆′′ → ∆ and σ′′ :∆′′ → ∆′,x :φ are morphisms of CX
satisfying 〈M1, . . . ,Mn〉 ◦ σ′ = p∆,φ ◦ σ′′, i.e., the diagram

∆′′
σ

- ∆′,x :φ

∆′′

σ′

?

〈M1, . . . ,Mn〉
- ∆′

p∆′,φ

?

commutes. We have to show that there is a unique arrow δ : ∆′′ → ∆,x′ :
φ[Mj/yj]

n
j=1 satisfying p∆,φ[Mj/yj ]nj=1

◦δ = σ′ :∆′′ → ∆ and 〈M1, . . . ,Mn,x
′〉◦

δ = σ′′ :∆′′ → ∆′,x :φ, i.e., the triangles

∆′′

∆,x :φ[Mj/yj]
n
j=1

δ

-

∆

σ

?�
p∆
,x

:φ
[M
j
/y
j
]nj=

1
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and

∆′′

∆′,x :φ

σ ′′

-

∆,x′ :φ[Mj/yj]
n
j=1

δ

?� 〈M
1
, .
. .
,M

n
〉

commute.

Since 〈M1, . . . ,Mn〉 ◦ σ′ = p∆,φ ◦ σ′′ : ∆′′ → ∆′. σ′ must be of the form
〈M1[Nj/xj]

m
j=1, . . . ,Mn[Nj/xj]

m
j=1, N〉, where σ′ = 〈N1, . . . , Nm〉 and N is

such that ∆′′ ` N :φ[Mi[Nj/xj]
m
j=1/yi]

n
i=1 holds. Now since φ[Mi[Nj/xj]/

yi]
n
i=1 = φ[Mi/yi]

n
i=1[Nj/xj]

m
j=1, we get a morphism

δ =def 〈N1, . . . , Nn, N〉 :∆′′ → ∆,x′ :φ[Mj/yj]
n
j=1

satisfying

〈M1, . . . ,Mn〉 ◦ δ =〈M1, . . . ,Mn, x
′〉 ◦ 〈N1, . . . , Nm, , N〉

=〈M1[Nj/xj]
m
j=1, . . . ,Mn[Nj/xj]

m
j=1, N〉

=σ′′

and p∆,φ[Mj/yj ]nj=1
◦ δ = ~x ◦ 〈N1, . . . , Nm, N〉 as required. If δ′ : ∆′′ →

∆,x′ : φ[Mj/yj]
n
j=1 were any such morphism, then from the requirement

that p∆,φ[Mj/yj ]nj=1
◦δ′ = σ′ we conclude that ∆′ ` N ′ :φ[Mj/yj]

n
j=1[Ni/xi]

m
i=1.

Hence δ′ = δ :∆′′ → ∆,x′ :φ[Mj/xj]
n
j=1. �

It remains to show the strictness conditions:

id∗∆(φ) = φ[xi/xi]
n
i=1 = φ

id∆ • φ = 〈x1, . . . ,xn,x〉

which is the identity id∆,y :φ.

For the remaining two conditions, we have to be careful. Let f : ∆ → ∆′,
where f = 〈M1, . . . ,Mn〉, and g :∆′ → ∆′′ and g = 〈N1, . . . , Np〉. We need
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to show that g∗(f ∗(φ)) = (f ; g)∗(φ), we have

g∗(f ∗(φ)) =g∗(φ[Mj/xj]
n
j=1)

=φ[Mj/xj]
n
j=1[Ni/yi]

m
i=1

=φ[Mj[Ni/yi]
m
i=1/xj]

m
j=1

=(f ; g)∗(φ)

We now show that (g • (f ∗(φ)); (f • φ)) = (g; f) • φ. We have that

f ∗(φ) = φ[Mj/xj]
n
j=1

g • φ[Mj/xj]
n
j=1 = 〈N1, . . . , Nm,x〉

f • φ = 〈M1, . . . ,Mm,y〉

which we compose to obtain 〈N1[Mi/xi]
m
i=1, . . . , Nm[Mi/xi]

m
i=1,y〉

which is equal to (g; f) • φ.

4. p∗∆,φ :TA(X)(∆)→ TA(X)(∆,x :φ) has a right adjoint if for all objects ψ in
TA(X)(∆,x :φ), there exists an object φ ⊃ ψ in TA(X)(∆) and a morphism
appψ : p∗∆,φ(φ ⊃ ψ) → ψ in TA(X)(∆,x : φ), such that for all objects χ in
TA(X)(∆), and for all morphisms δ : p∗∆,φ(χ) → χ in TA(X)(∆,x :φ) there
exists a unique morphism δ′ :χ→ φ ⊃ ψ, such that the diagram

χ p∗∆,φ(χ)

φ ⊃ ψ

δ′

?
p∗(φ ⊃ ψ)

p∗∆,φ(δ′)

?

appψ
- ψ

δ

-

commutes.

Since p∗∆,φ(χ)
δ−→ ψ in TA(X)(∆,x : φ) we have that (X) ∆,x : φ,y :

p∗∆,φ(χ) `Σ δ : ψ. We can deduce that (X) ∆,y : p∗∆,φ(χ) `Σ Iφδ : φ ⊃ ψ.
Since p∗∆,φ(χ) = χ, we have that ∆,y :χ `Σ Iφδ :φ ⊃ ψ. By the definition of

the fibres, we have an arrow χ
Iδ−→ φ ⊃ ψ in TA(X)(∆). We take this arrow

to be δ′ and observe that it is unique. We now define Π∆,φ to be the functor
from TA(X)(∆,x :φ) → TA(X)(∆), which sends every ψ in TΣ(Γ)(∆,x :φ)
to φ ⊃ ψ in TΣ(Γ)(Γ ./ ∆).

We now show that Π∆,φ satisfies the strict Beck-Chevalley conditions. Let

∆′
σ−→ ∆ be a morphism in CX and φ be an object in TA(X)(∆, x :φ). We
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have that

σ∗(Π∆,φ(ψ)) =σ∗(φ ⊃ ψ)

=φ[Mi/xi]
n
i=1 ⊃ ψ[Mi/xi]

n
i=1

while

Π∆′,φ[Mi/xi]ni=1
((σ • φ)∗ψ) =Π∆′,φ[Mi/xi]ni=1

(ψ[Mi/xi]
n
i=1[x/y])

=φ[Mi/xi]
n
i=1 ⊃ ψ[Mi/xi]

n
i=1[x/y]

which are equal.

Finally, we have that (σ • φ)∗(app ∗W (φ, ψ)) = ψ[Mi/xi]
n
i=1[x/y] in TA(X)

(∆,x : φ[Mi/xi]
n
i=1) and appW (σ∗(φ), (σ • φ)∗ψ) = ψ[Mi/xi]

n
i=1[x/y] in

TA(X)
(∆,x :φ[Mi/xi]

n
i=1). Thus TA satisfies all the conditions in the definition of

a Kripke λΠ-prestructure.

We are now able to define a Kripke λΠ-structure KTA on TA. Let KTA :
[P(A), [Aop,V ]] and X an object in B(A) and ∆ be object in CX . We define
KTA(X)(∆) as follows:

Objects: Categories V = KTA(X)(∆) with

Objects: Sections ∆
〈id,δ〉−−−→ ∆, z :φ (arrows in CX) such that φ is an object

of TA(X)(∆).

Arrows: Identities ∆
〈id〉−−→ ∆.

Arrows: Functors σ∗ :KTA(X)(∆)→ KTA(X)(∆′) induced by arrows ∆′
σ−→ ∆ in

CX . σ∗ sends an object ∆
〈id,δ〉−−−→ ∆, z :φ to ∆′

〈id,δ[δ′j/xj ]nj=1〉−−−−−−−−→ ∆′, z :φ[δ′j/xj]
n
j=1.

σ∗ sends an arrow ∆
〈id∆〉−−−→ ∆ to the arrow ∆′

〈id∆〉−−−→ ∆′.

Lemma 3.15
KTA is a Kripke λΠ-structure on TA.

Proof We begin by showing that arrows of the form ∆
〈id∆,δ〉−−−−→ ∆, y : φ are of

the right form. We first fix TA(X)(∆). We need to show that ∆ is of the form
φ1 • . . . φn, where each φi is an object of J (X)(∆ • φ1 . . . • φi−1). We observe
that any φi in ∆ ≡ φ1 • . . . • φn, ∆ • φ1 • . . . φi−1 ≡ ∆ and that φi is an object of
TA(X)(∆). We only need to show that φ is an object of TA(X)(∆). This holds

by definition and further, ∆
〈id∆,δ〉−−−−→ ∆,y :φ is an arrow of CX . The arrows id∆ are

of the right form since ∆ •∆ ≡ ∆.
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Let ∆′′′
σ−→ ∆′ be an arrow in B(A)∆. We show that σ∗ satisfies conditions (1)

and (2) of Definition 3.2.

1. This holds by definition, since σ∗ is a substitution which changes ∆ to ∆′.

2. Let ∆
〈id∆〉−−−→ ∆ be an arrow in KTA(X)(∆). We need to show that ∆′

〈id∆′ 〉−−−→
∆′ is the unique mediating arrow given by the following canonical pullback:

∆′ • σ∗(∆)
σ •∆

- ∆ •∆

∆′ • σ∗(∆)
σ •∆
-

σ ∗
(id

∆ )
-

∆ •∆

id∆

?

∆′

p

?

σ
-

p

-

∆

p

?

We have a lot of redundancies and so we have the diagram

∆′
〈σ, id〉

- ∆

∆′
〈σ, id〉

-

id

-

∆

id

?

∆′

p

?

σ
-

p

-

∆

p

?

from which it is clear that the result holds. �

Looking ahead to the next section, where we define a Kripke λΠ-model, we
remark that the interpretation function which interprets the syntax of the λΠ-
calculus in this Kripke λΠ-structure, is closely related to the proposition-as-types
correspondence.
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3.3 Kripke Σ-λΠ-models

Having define a Kripke λΠ-structure, we are in a position to provide an interpre-
tation of the λΠ-calculus in a Kripke λΠ-structure. The interpretation itself is
long and complex because we are interpreting a dependent type theory. The com-
ponents in the model are interdependent, thus requiring that they all be defined
simultaneously by induction on the raw syntax apart from the structure. Ignoring
these interdependencies for a moment, we explain the purpose of each component
in the model. It is helpful to have the term model in § 3.2.1 in mind at this point.
First, the Kripke λΠ-structure provides the abstract domain where the type the-
ory may be interpreted. We require the Kripke λΠ-structure to have additional
structure, namely Σ-operations, to ensure it has enough structure to interpret the
signature Σ. Second, the interpretation J−K is a partial function. It maps raw
(that is not necessarily well-typed) contexts Γ to objects of D. Types over raw
contexts AΓ are sent to objects in the category indexed by (the interpretation
of) Γ. It sends terms over raw contexts MΓ to arrows in the category indexed by
(the interpretation of) Γ. Types and terms are interpreted up to βη-equivalence.
The model also needs to be constrained so that multiple occurrences of variables
in a context get the same interpretation. Finally, satisfaction is defined to be a
relationship on worlds and sequents axiomatizing the desired properties of the
model. The abstract definition of the model is sufficient to derive Van Dalen’s
(1994) description of a Kripke model for intuitionistic logic.

We remark that we restrict our discussion of semantics to the Γ `Σ M :A :
Type-fragment of the λΠ-calculus. The treatment of Γ `Σ A :− − K-fragment
is dealt with analogously — in a sense, the A :K-fragment has the same logical
structure as the M : A-fragment. To interpret the kind Type, we must require
the existence of a chosen object, call it Ω, in each fibre. The object Ω must obey
several equations: it must be preserved on the nose by any f ∗ and must behave
well under quantification. Details of the A :K-fragment in the case of contextual
categories can be found in Streicher’s (1989) thesis. The analogous development
in our setting is similar and we omit the details. The logical motivation for this
restriction is that we intend to use the λΠ-calculus as the language of a logical
framework and then we will interested interested in terms M :A, since these will
represent the proof of a judgement.

There are several important notions of partiality in the model. The interpre-
tation function is a partial one because it is defined for raw objects of the syntax
and we are only interested in interpreting well-typed terms. Since we are dealing
with a dependent type theory, there is no guarantee that an object can be defined
until everything it depends on can be defined. The partiality allows us to assume
objects are interpreted together with their dependent objects, inductively, so that
we can “bootstrap” the definition. There is also a Kripke semantic partiality of
information. The further up the world structure one goes, the more objects have
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defined interpretations. We refer the interested reader to (Streicher 1989) and
(Mitchell & Moggi 1991) for further comments on these matters.

Note that since models are βη-extensional, q.v. Theorem 3.35, the interpreta-
tion of X does not differ from that of X[M/x], etc. We subscript an object by
its context Γ to indicate that it is being interpreted in the fibre over (the inter-
pretation of) Γ. We first define Σ-operations. These provide enough structure to
ensure that we can interpret every constant in a given signature.

Definition 3.16 (Σ-operations)
Let Σ be a λΠ-signature. A Kripke λΠ-structure, KJ has Σ-operations if for all
objects W in W corresponding to each constant:

1. c : Πx1 :A1 . . . . .Πxm :Am .Type ∈ Σ, there is in each fibre J (W )(JΓKWKJ ),

an operation opc such that opc(J(M1)ΓKWKJ , . . . , J(Mm)ΓKWKJ ) is an object of

J (W )(JΓKWKJ ), where each JMiKWKJ is an object in J (W )(JΓKWKJ );

2. c :Πx1 :A1 . . . . .Πxm :Am . A ∈ Σ, there is in each fibre J (W )(D) an arrow

1KJ (W )(D)
opc−−→ JAKWKJ , where D = JΓKWKJ • JA1KWKJ • . . . • JAmKWKJ

where J−K−KJ is a partial function from the (raw) syntax of the λΠ-calculus to
(the components of) KJ defined in the following definition. �

The Σ-operations guarantee that a Kripke λΠ-structure has enough structure
to be able to interpret all constants in the signature, Σ.

Definition 3.17 (Kripke Σ-λΠ-Model)
Let Σ be a λΠ-signature. A Kripke Σ-λΠ-model is an ordered pair 〈KJ , J−K−KJ 〉,
where KJ : [W , [Dop,V ]] is a Kripke λΠ-structure that has Σ-operations and
J−K−KJ is a partial function from the (raw) syntax of the λΠ-calculus to (the
components of) KJ , defined simultaneously on the structure of the (raw) syntax
of the λΠ-calculus as follows:

1. J〈〉KWKJ = 1DW ;

2. JΓ, x :AKWKJ = JΓKWKJ • JAKWKJ ;

3. JΓ
〈(M1)Γ,...,(Mn)Γ〉−−−−−−−−−−→ ∆KWKJ = JΓKWKJ

〈J(M1)ΓKWKJ ,...,J(Mn)ΓKWKJ 〉−−−−−−−−−−−−−−−−→ J∆KWKJ ;

4. J〈〉ΓKWKJ = 1JΓKWKJ
in J (W )(JΓKWKJ );

5. J(cM1 . . .Mm)ΓKWKJ = opc(J(M1)ΓKWKJ , . . . , J(M1)ΓKWKJ ) in J (W )(JΓKWKJ ),
where c : Πx1 : A1 . . . . . xm : Am .Type ∈ Σ, such that if cM1 . . .Mm ≡βη
cM ′

1 . . .M
′
m, then J(cM1 . . .Mm)ΓKWKJ = J(cM ′

1 . . .M
′
m)ΓKWKJ ;

6. J(Πx :B .C)ΓKWKJ = ΠJΓKWKJ ,JBΓKWKJ
(JCΓKWKJ );
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7. J〈〉ΓKWKJ = 1JΓKWKJ
(i.e., the identity map on the terminal object);

8. JcΓKWKJ = curmW (opc) in J (W )(JΓKWKJ ), where c :Πx1 :A1 . . . . .Πxm :Am . A;

9. JxΓKWKJ = p∗J∆,x :AKWKJ ,J∆
′KWKJ

(qJ∆KWKJ ,JAKWKJ
), where Γ = ∆, x :A,∆′;

10. J(λx :A .M)ΓKWKJ = curW (JMΓ,x :AKWKJ );

11. J(MN)ΓKWKJ = (J〈x1, . . . , xm, N〉KWKJ )∗(p∗JΓKWKJ ,JAKWKJ
JMΓKWKJ ); appW (JAΓKWKJ ,

JBΓKWKJ )), where Γ ≡ x1 :A1, . . . , xm :Am.

We require that the following conditions are satisfied:

1. Syntactic monotonicity: if JXKWKJ is defined, then so is JX ′KWKJ , for every
subterm X ′ of X, where X ranges over all the raw terms of the λΠ-calculus
with signature Σ;

2. Accessibility: if there is an arrow W
α−→ W ′ in W , then (i) there is a

functor Kα : DW → DW ′ ; and, (ii) J (W ′)(JΓKWKJ ) = J (W ′)(JΓKW ′KJ ) and

J (W )(JΓKWKJ ) = J (W )(JΓKW ′KJ ) for each Γ; otherwise, J (W ′)(JΓKWKJ ) is
undefined.

The second accessibility condition (ii) is a simple instance of a more general
condition . We can require that there exists functors ταJΓKWKJ

and τα
JΓKW ′KJ

such that

the following diagram, in which ηαJΓKWKJ
and ηα

JΓKW ′KJ
are components of the natural

transformation J (α),

J (W )(JΓKWKJ )

ηαJΓKWKJ- J (W ′)(JΓKWKJ )

J (W )(JΓKW
′

KJ )

ταJΓKWKJ
?

ηα
JΓKW ′KJ

- J (W ′)(JΓKW
′

KJ )

τα
JΓKW ′KJ
?

commutes. We also require the following coherence condition:

J (W ′)(Kα(JΓKWKJ )) = (ταJΓKWKJ
; ηαJΓKW ′KJ

)(J (W )(JΓKWKJ )).

In this definition, we have the simple case in which both ταJΓKWKJ
and τα

JΓKW ′KJ
are iden-

tities in V . In this simple setting, we shall refer to ταJΓKWKJ
; ηα

JΓKW ′KJ
(= ηαJΓKWKJ

; τα
JΓKW ′KJ

)

as N α. In the case where W is posetal, i.e., α :W ≤ W ′, we write NW,W ′ . �
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There is substantial scope, beyond the reach of this thesis, for investigating
different choices of ταJΓKWKJ

in the above definition. We have taken the simplest

accessibility condition with regards to relativization: the idea of interpreting
constructs at one world, and reasoning about them from another.

A syntactic term can be seen, in a certain sense, as a “rigid designator”.
That is one whose interpretation is the same over different worlds, for a semantic
object. For example, suppose N proves Γ `Σ M :A. If JMKWKJ is defined (given

soundness, this will be the case), then, for all objects W ≤ W ′ in W , JMΓKW ′KJ
is defined and equal to JMΓKWKJ . In a sense, the syntactic term M designates all

objects JMΓKWKJ at all worlds W where they are defined.
The next three Lemmas, 3.18, 3.19 and 3.20, are consequences of the previous

definition. We include them here in order to emphasize the organisation of the
models we have defined. However, their proofs, which are by induction on the
structure of proofs in N, must be performed simultaneously with the proof of
Theorem 3.35, the soundness theorem for the M :A : Type-fragment of the λΠ-
calculus. To see why this must be so, consider that the well-foundness of types,
and so of contexts, depends in general on the well-formedness of objects. More-
over, the definedness of an interpretation of an object in a model depends upon
the definedness of its type and the context in which its variables are declared.

Lemma 3.18 (Context Interpretation)
Let Σ be a valid λΠ-signature and Γ be a valid λΠ-context. Let 〈KJ , J−K−KJ 〉,
where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. If N proves `Σ Γ context,
then, for each object W at which it is defined, JΓKWKJ is an object of DW . �

Lemma 3.19 (Type Interpretation)
Let Σ be a valid λΠ-signature and Γ be a valid λΠ-context. Let 〈KJ , J−K−KJ 〉,
where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. If N proves Γ `Σ A : Type,
then, for each W at which it is defined, JAΓKWKJ is an object of J (W )(JΓKWKJ ). �

Lemma 3.20 (Term Interpretation)
Let Σ be a valid λΠ-signature and Γ be a valid λΠ-signature and M be a valid λΠ-

object. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. If N

proves Γ `Σ M :A, then for each W at which it is defined J〈〉KWKJ
JMΓKWKJ−−−−−→ JAΓKWKJ

is an arrow of J (W )(JΓKWKJ ). �

The astute reader will have noticed that the results above do not make use of
the Kripke λΠ-structure. This is because we interpret terms, types and assertions
of the form Γ `Σ M :A in the Kripke λΠ-prestructure. The Kripke λΠ-structure is

defined in such a way that we are able to interpret realizations `Σ ∆
〈M1,...,Mn〉−−−−−−→ Θ

in each of its fibres. This will be developed in detail in § 3.8.
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3.4 Examples

We return to our previous examples and provide an interpretation.

3.4.1 Term Model

We take the interpretation function to be the identity function. It is clear that
syntactic monotonocity and accessibility hold.

3.4.2 The {∀,⊃}-fragment of many-sorted first-order logic

The interpretation function is close to being given by the propositions-as-types
correspondence. The main difference is that Πx :A .B is interpreted as φ ⊃ ψ,
rather than ∀x : S . ψ. Other than this important point, the interpretation is
straightforward and it is clear that syntactic monotonocity and accessibility hold.

3.5 Adding Definitional Equality: λΠ=

So far we have considered the basic λΠ-calculus, which comes equipped with the
intensional αβη-equality. However, from the point of view of the λΠ-calculus
as a theory of functions, it is both important and interesting to consider also
definitional equality. We extend our signatures to include declarations of the
form M = N :A by taking the following rule of signature (see also Table 2):

` Σ sig `Σ M :A `Σ N :A

` Σ,M = N :A sig

which generates these declarations.
Roughly, equational declarations of this form correspond, under the prop-

ositions-as-types correspondence, to theories in the internal logic. We spell this
out in detail in § 5, but for now consider the following: if the term language of
the internal logic were extended with arithmetic terms, one might wish to assert
that

(0 + 0) = 0:N

which makes use of equational declarations. We might also add declarations of
the form A = B :K, or indeed of the form K = L Kind, to signatures but these
extensions are beyond our present requirements.

Our presentation of definitional equality is similar to that of (Harper 1988).
In addition to the assertions in the λΠ-calculus, we consider also the following
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equality assertions:

Γ `Σ K =L Kind K and L are equal kinds
Γ `Σ A=B :K A and B are equal types of kind K

Γ `Σ M =N :A M and N are equal objects of type A

The additional rules required to support these assertions are given in Table 2; the
system N extended with these rules is called N=. When c ∈ Dom(Σ) we write
Σ(c) for the unique K or A such that c :K or c : A ∈ Σ. When x ∈ Dom(Γ),
we write that x :A ∈ Γ and Γx for the prefix of Γ up to, but not including, the
declaration of x.

Equations in Signatures

` Σ sig `Σ M :A `Σ N :A

` Σ,M = N :A sig
(3.3)

Equivalence Relation
Γ `Σ K Kind

Γ `Σ K = K Kind
(3.4)

Γ `Σ A :K

Γ `Σ A = A :K
(3.5)

Γ `Σ M :A

Γ `Σ M = M :A
(3.6)

Γ `Σ K = L Kind

Γ `Σ L = K Kind
(3.7)

Γ `Σ A = B :K

Γ `Σ B = A :K
(3.8)

Γ `Σ M = N :A

Γ `Σ N = M :A
(3.9)

Γ `Σ J = K Kind Γ `Σ K = L Kind

Γ `Σ J = L Kind
(3.10)

Table 2: Rules for Definitional Equality (continued on the next page)
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Γ ` A = B :K Γ `Σ B = C :K

Γ `Σ A = C :K
(3.11)

Γ `Σ M = N :A Γ `Σ N = P :A

Γ `Σ M = P :A
(3.12)

Structural Equality Rules

`Σ Γ context M = N :A ∈ Σ

Γ `Σ M = N :A
(3.13)

Γ `Σ A = B :K Γ `Σ K = L

Γ `Σ A = B :L
(3.14)

Γ `Σ M = N :A Γ `Σ A = B :Type

Γ `Σ M = N :B
(3.15)

Γ `Σ A = B :K `Σ Γ′ context Γx `Σ Γ(x) = Γ′(x) :Type x /∈ FV (A,B,K)

Γ′ `Σ A = B :K
(3.16)

Γ `Σ M = N :A `Σ Γ′ context Γx `Σ Γ(x) = Γ′(x) :Type x /∈ FV (M,N,A)

Γ′ `Σ M = N :A
(3.17)

Kind Equality
Γ `Σ A = B :Type Γ, x :A `Σ K = L : Kind

Γ `Σ Πx :A .K = Πx :B .L : Kind
(3.18)

Types and Families Equality

Γ `Σ A = B :Type Γ, x :A `Σ C = D :Type

Γ `Σ Πx :A .C = Πx :B .D :Type
(3.19)

Γ `Σ A = B :Type Γ, x :A `Σ C = D :K

Γ `Σ λx :A .C = λx :B .D :Type
(3.20)

Γ `Σ B = C :Πx :A .L Γ `Σ M = N :A

Γ `Σ BM = CN :K[M/x]
(3.21)

Γ, x :A `Σ B :K Γ `Σ M :A

Γ `Σ (λx :A .B)M = B[M/x] :K[M/x]
(3.22)

Γ `Σ B :Πx :A .K x /∈ FV (B)

Γ `Σ λx :A .K
(3.23)

Γ `Σ A :K Γ `Σ K = L Kind

Γ `Σ A :L
(3.24)

Table 2: Rules for Definitional Equality (continued on the next page)
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Object Equality
Γ `Σ A = B :Type Γ, x :A `Σ M = N :C

Γ `Σ λx :A .M = λx :B .N :Πx :A .C
(3.25)

Γ `Σ M = N :Πx :A .B Γ `Σ P = Q :A

Γ `Σ MP = NQ :B[P/x]
(3.26)

Γ, x :A `Σ M :B Γ `Σ P = Q :A

Γ `Σ (λx :A .M)N = NQ :B[P/x]
(3.27)

Γ `Σ M :Πx :A .B x /∈ FV (M)

Γ `Σ λx :A .Mx = M :Πx :A .B
(3.28)

Γ `Σ M :A Γ `Σ A = B :Type

Γ `Σ M :B
(3.29)

Table 2: Rules for Definitional Equality

The main syntactic metatheoretic properties of λΠ= are summarized in Propo-
sitions 3.21 and 3.22. These are minor variations on (Harper 1988) and extend
Theorem 2.1. For clarity, they are stated separately. They must, however, be
proved simultaneously with Theorem 2.1, by induction on the structure of proofs
in N.

Proposition 3.21 ((Harper 1988))
Let X range over the basic assertions of the form K Kind, A :K and M :A.

1. If Γ `Σ X, then FV (X) ⊆ Dom(Γ).

2. If Γ `Σ X, `Σ Γ′ context, and for all x ∈ FV (X), Γx `Σ Γ(x) = Γ′(x) :
Type, then Γ′ `Σ X.

3. Unicity of classifier:

(a) If Γ `Σ A :K and Γ `Σ A :L, then Γ `Σ K = L :Kind;

(b) If Γ `Σ M :A and if Γ `Σ M :B, then Γ `Σ M = N :A. �

Proposition 3.22 ((Harper 1988))
The following hold in the λΠ=-calculus.

1. If Γ `Σ K = L Kind, `Σ Γ′ context, and for all x ∈ FV (K) ∪ FV (L),
Γx `Σ Γ(x) = Γ′(x) :Type, then Γ′ `Σ K = L Kind.

2. Well-formedness of equands:

(a) If Γ `Σ K = L Kind, then Γ `Σ K Kind and Γ `Σ L Kind.
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(b) If Γ `Σ A = B :K, then Γ `Σ A :K and Γ `Σ B :K.

(c) If Γ `Σ M = N :A, then Γ `Σ M :A and Γ `Σ N :A.

3. Invertiblity of type and kind equations:

(a) If Γ `Σ Πc :A .K = Πx :B .L, then Γ `Σ A = B :Type and Γ `Σ K =
L Kind.

(b) If Γ `Σ Πx : A .C = Πx : B .D : Type, then Γ `Σ A = B : Type and
Γ, x :A `Σ C = D :Type.

4. Substitution (Cut): If Γ, x : A `Σ ε and Γ `Σ M : A, then Γ `Σ [M/x]ε,
where ε ranges over assertions of the form K = L Kind, A = B : K and
M = N :A. �

Turning to the algebraic formulation of the syntax. We construct a syntac-
tic category of contexts and realizations, B(Σ)=. We observe that the equality
defined in Table 2 is an equivalence relation. We extend the equality on types
to contexts by induction on the length of contexts and equality on objects to
realizations by induction on the length of realizations. We now have a notion of
equality on contexts and realizations which is an equivalence relation. We thus
construct B(Σ)= by quotienting B(Σ) by this equivalence relation, i.e., provable
equality. Similarly, we can obtain the categories E(Σ)=, Con(Σ)= and Fam(Σ)=

by quotienting. We extend our definition of Kripke λΠ-model to an equational
Kripke Σ-λΠ=-model.

Definition 3.23 (Equational Kripke Σ-λΠ=-model)
Let Σ be a λΠ=-signature. An equational Kripke Σ-λΠ=-model is a Kripke Σ-
λΠ-model which also satisfies the following condition:

• If M = N :A ∈ Σ, then JM〈〉KWKJ and JN〈〉KWKJ are defined at each world W

and JM〈〉KWKJ = JN〈〉KWKJ . �

3.6 Satisfaction

We define two notions of satisfaction both of which are based on Kripke forcing,
(Kripke 1963). The first notion of satisfaction is intended to be the semantic
counterpart of the assertion Γ `Σ M :A. We have

W |=KJΣ (M :A)[Γ]

which is read as in the Kripke Σ-λΠ-model KJ , W forces (M :A) with respect to
Γ. The second notion is intended to be the semantic counterpart to the assertion

44



`Σ Γ
〈M1,...,Mn〉−−−−−−→ Θ. We discuss this assertion in more detail in § 3.8. We have

W |=⇒KJW (∆
〈M1,...,Mn〉−−−−−−→ Θ)[Γ]

which is read as in the Kripke Σ-λΠ-model, KJ , W forces (Γ
〈M1,...,Mn〉−−−−−−→ Θ) with

respect to Γ. Clearly, the former can be considered a special case of the latter by
setting ∆ ≡ 〈〉 and Θ ≡ x :A. This is based on the fact that the interpretation

equates 〈〉 〈M〉−−→ x :A with M :A. It is not the case that we can always construct
|=⇒ from |= . We are always able, however, to do so in the term model. This
special case will be particularly important when we construct Herbrand models in
§ 11. Both of these notions of satisfaction are easily extended to the λΠ=-calculus,

The first notion of satisfaction will mainly be used in § 6 - § 9 of this thesis.
There we will be considering the λΠ-calculus as the language of a logical frame-
work. |= will allow us to force the representation of a proof-term, i.e., Mδ :Aj(φ).
The second notion of satisfaction will mainly be used in § 11. There we will be
considering the λΠ-calculus as a logic programming language. We then use |=⇒
to allow us to force a realization and describe resolution.

Definition 3.24 (|=-satisfaction for λΠ)
Let Σ be a valid λΠ-signature, Γ be a valid λΠ-context and M be a valid λΠ-

object. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]]. be a Kripke Σ-λΠ-model,
Γ be a context, A be a type and M be an object. In the Kripke Σ-λΠ-model,
〈KJ , J−K−KJ 〉, the world W satisfies the inhabitation of A by M with respect to
Γ, i.e.,

W |=KJΣ (M :A)[Γ],

if and only if JΓKWKJ , JAΓKWKJ and JMΓKWKJ are all defined and, for all arrows

W
α−→ W ′ in W , J〈〉KW ′KJ

JMΓKW
′

KJ−−−−−→ JAΓKW ′KJ is defined such that

J〈〉KWKJ
JMΓKWKJ- JAΓKWKJ

J〈〉KW ′KJ

N α

? JMΓKW ′KJ-

N α

?

JAΓKW
′

KJ

N α

?

holds. �

We extend the definition of satisfaction to an equational Kripke Σ-λΠ=-model.

Definition 3.25 (|=-satisfaction for λΠ=)
Let Σ be a λΠ=-signature, 〈KJ , J−K−KJ 〉, whereKJ : [W , [Dop,V ]], be an equational
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Kripke Σ-λΠ=-model, Γ be a context, A be a type and M and N be objects. In
the equational Kripke Σ-λΠ=-model, 〈KJ , J−K−KJ 〉, the world W satisfies (i) the
equation A = B :Type with respect to Γ, i.e.,

W |=KJΣ (A = B :Type)[Γ],

if and only if JΓKWKJ , JAΓKWKJ and JBΓKWKJ are all defined and JAΓKWKJ = JBΓKWKJ ,
and (ii) the equation M = N :A with respect to Γ, i.e.,

W |=KJΣ (M = N :A)[Γ],

if and only if W |=KJΣ (M :A)[Γ], W |=KJΣ (N :A)[Γ] and JMΓKWKJ = JNΓKWKJ . �

The raw syntax of signatures, contexts, kinds, types and objects can be ex-
tended to a raw syntax of contexts and realizations as follows: if Γ and ∆, where
∆ ≡ y1 :B1, . . . , yn :Bn, are raw contexts. Then a raw realization from Γ to ∆ is
a n-tuple 〈M1, . . .Mn〉 of raw objects, extending the interpretation J−K−KJ to raw
realizations over an object in the base in the obvious way. If σ = 〈M1, . . . ,Mn〉,
then

JσΓKWKJ = 〈J(M1)ΓKWKJ , . . . , J(Mn)ΓKWKJ 〉

is defined over JΓKWKJ . We are now able to define our second notion of satisfaction.

Definition 3.26 ( |=⇒ -satisfaction for λΠ)
Let Σ be a valid λΠ-signature, 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke
Σ-λΠ-model, Γ, ∆ and Θ be valid λΠ-contexts, and σ be a valid λΠ-realization.
In the Kripke Σ-λΠ-model 〈KJ , J−K−KJ 〉, the world W satisfies the realization

∆
σ−→ Θ with respect to Γ, i.e.,

W |=⇒KJΣ (∆
σ−→ Θ)[Γ],

if and only if JΓKWKJ , J∆ΓKWKJ , JΘKWKJ and JσKWKJ are all defined and, for each

W
α−→ W ′,

J∆ΓKW
′

KJ

JσΓKW
′

KJ−−−−→ JΘKW
′

KJ

is defined such that

J∆ΓKWKJ
JσΓKWKJ- JΘΓKWKJ

J∆ΓKW
′

KJ

N α

? JσΓKW ′KJ-

N α

?

JΘΓKW
′

KJ

N α

?
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holds. �

Again, we extend the definition to an equational Kripke Σ-λΠ-model in the
natural way.

Definition 3.27 ( |=⇒ -satisfaction for λΠ=)
Let Σ be a Kripke λΠ=-signature, 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be
an equational Kripke Σ- λΠ=-model, Γ, ∆ ≡ y1 : B1, . . . , ym : Bm, ∆′ ≡ y′1 :
B′1, . . . , y

′
m :B′m, Θ ≡ z1 :C1, . . . , zp :Cp and Θ ≡ z′1 :C ′1, . . . , z

′
p :C ′p be contexts

and σ = 〈M1, . . . ,Mn〉 and σ′ = 〈M ′
1, . . . ,M

′
n〉 be realizations. In the equational

Kripke Σ-λΠ=-model, 〈KJ , J−K−KJ 〉, the world W satisfies the realization ∆ =

∆′
σ=σ′−−−→ Θ = Θ′ with respect to Γ, i.e.,

W |=⇒KJΣ (∆ = ∆′
σ=σ′−−−→ Θ = Θ′)[Γ],

if and only if W |=⇒KJΣ (∆
σ−→ Θ)[Γ], W |=⇒KJΣ (∆′

σ′−→ Θ)[Γ], J∆ΓKWKJ , J∆′ΓKWKJ ,

JΘΓKWKJ , JΘ′ΓKWKJ , JσΓKWKJ and Jσ′ΓKWKJ are defined and J∆ΓKWKJ = J∆′ΓKWKJ , JΘΓKWKJ
= JΘ′ΓKWKJ and JσΓKWKJ = Jσ′ΓKWKJ . �

An important special case of this satisfaction relation occurs when ∆ =

∆′ and Θ = Θ′, i.e., W |=⇒KJΣ (∆ = ∆
σ=σ′−−−→ Θ = Θ)[Γ], which amounts to

W |=⇒KJΣ (∆
σ=σ′−−−→ Θ)[Γ].

All the remaining proofs in this section are sketches. Each proof requires an
induction over the interpretation which we have left out and instead concentrated
on the main argument required for each inductive step. Turning these sketch
proofs into formal proofs is straightforward, but tedious.

The following lemma follows immediately from Definitions 3.24 and 3.26. It
formalises our earlier comment about the relationship between the two notions
of satisfaction.

Lemma 3.28
The satisfaction relation |=KJΣ is a special case of the satisfaction relation |=⇒KJΣ

as follows: if W |=⇒KJΣ (〈〉 〈M〉−−→ x :A)[Γ], then W |=KJΣ (M :A)[Γ].

Proof (Sketch) Since W |=⇒KJΣ (〈〉 〈M〉−−→ x : A)[Γ], we know that JMΓKWKJ and

Jx :AKWKJ are defined and that JAΓKWKJ is defined and is an object of J (W )(JΓKWKJ ).

We also have that JMΓKWKJ is an object in KJ (W )(JΓKWKJ ). If JΓKWKJ
〈id,JMΓKWKJ 〉−−−−−−−→

JΓKWKJ • JAKWKJ is an arrow in DW . The definition of the interpretation tells

us that JMΓKWKJ is going to be defined as an arrow in J (W )(JΓKWKJ ). Thus

J〈〉KWKJ
JMΓKWKJ−−−−−→ JAΓKWKJ is defined. Since J〈〉ΓKW ′KJ

JMΓKW
′

KJ−−−−−→ Jx :AKWKJ is defined for
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all W ′, such that W
α−→ W ′, it follows that J〈〉ΓKW ′KJ

JMΓKW
′

KJ−−−−−→ JAΓKW ′KJ is also defined
for all W ′. Since

J〈〉ΓKWKJ
〈JMΓKWKJ 〉- Jx :AKWKJ

J〈〉ΓKW
′

KJ

N α

? 〈JMΓKW ′KJ 〉-

N α

?

Jx :AKW
′

KJ

N α

?

holds and we know that N α sends J (W )(JΓKWKJ ) to J (W ′)(JΓKW ′KJ ). We infer
that

J〈〉ΓKWKJ
〈JMΓKWKJ 〉- JAΓKWKJ

J〈〉ΓKW
′

KJ

N α

? 〈JMΓKW ′KJ 〉-

N α

?

JAΓKW
′

KJ

N α

?

holds and we conclude that W |=KJΣ (M :A)[Γ]. �

If W
α−→ W ′, then we write J−K[α]

KJ to denote J−KWKJ after α, e.g., if JAΓKWKJ is

an object of J (W )(JΓKWKJ ) and W
α−→ W ′, then we write JAΓK[α]

KJ for the object

N α(JAΓKWKJ ) in J (W ′)(JΓKW ′KJ ), etc., . . . . We also write JΓK[α]
KJ for κα(JΓKWKJ ).

Similarly, if E
f−→ D in DW and if (−) is interpreted over D, then we write (−)[f ]

to denote (−) interpreted over E, e.g., if (∆
σ−→ Θ) is interpreted as J∆ σ−→ ΘKWKJ

over D, then (∆
σ−→ Θ)[f ] is interpreted as KJ (W )(f)(J∆ σ−→ ΘKWKJ ) over E.

The remaining lemmata in this section give the basic logical properties of the
satisfaction relations |= and |=⇒ . The previous lemma tells us that if we prove
the result for |=⇒ then it holds for |= .

Lemma 3.29 (Monotonicity of Satisfaction)
Let Σ be a valid λΠ-signature, Γ, ∆ and Θ be valid λΠ-contexts and σ be a valid

λΠ-realization. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]]. be a Kripke λΠ-model.

If W |=⇒KJΣ (∆
σ−→ Θ)[Γ] and W

α−→ W ′, then W ′ |=⇒KJΣ (∆
σ−→ Θ)[Γ].

Proof (Sketch) Since W |=⇒KJΣ (∆
σ−→ Θ)[Γ], we know that J∆ΓKWKJ

JσΓKWKJ−−−−→
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JΘΓKWKJ is defined and that

N α(J∆ΓKWKJ
JσΓKWKJ−−−−→ JΘΓKWKJ ) =(J∆ΓKWKJ

JσΓKWKJ−−−−→ JΘΓKWKJ )[α]

= J∆ΓK[α]
KJ

JσΓK[α]
KJ−−−−→ JΘΓK[α]

KJ

is defined. It remains to show that for all W ′ α′−→ W ′′ J∆ΓKW ′′KJ
JσΓKW

′′
K)J−−−−−→ JΘΓKW ′′KJ is

defined and

J∆ΓKW
′

KJ

JσΓKW ′KJ- JΘΓKW
′

KJ

J∆ΓKW
′′

KJ

N α′

? JσΓKW ′′KJ-

N α′

?

JΘΓKW
′′

KJ

N α′

?

holds. Since W is a category, given W
α−→ W ′ and W ′ α′−→ W ′′, there exists an

arrow W
α;α′−−→ W ′. Thus we have that J∆ΓKW ′′KJ

JσΓKW
′′

KJ−−−−→ JΘΣKW ′′KJ is defined and
that

J∆ΓKWKJ
JσΓKWKJ- JΘΓKWKJ

J∆ΓKW
′′

KJ

N α;α′

? JσΓKW ′′KJ-

N α;α′

?

JΘΓKW
′′

KJ

N α;α′

?

holds. N α;α′ = N α;N α, so we get the necessary conditions for W ′ |=⇒KJΣ (∆
σ−→

Θ)[Γ] �

Lemma 3.30 (Weakening of Satisfaction)
Let Σ be a valid λΠ-signature, Γ, Γ′, ∆, Ξ and Ξ′ be valid λΠ-contexts and

σ be a valid λΠ-realization. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a

Kripke λΠ-model. If W |=⇒KJΣ (Ξ
σ−→ Ξ′)[Γ,Γ′] and if N proves `Σ Γ,∆,Γ′ context,

then W |=⇒KJΣ (Ξ
σ−→ Ξ′)[p][Γ,∆,Γ′], where JΓ,∆,Γ′KWKJ

p−→ JΓ,Γ′KWKJ is the obvious
projection.

Proof (Sketch) Since N proves `Σ Γ,∆,Γ′ context, we know that we have a con-
text Γ,∆,Γ′, which we can interpret in our Kripke Σ-λΠ-model and a projection
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JΓ,∆,Γ′KWKJ
p−→ JΓ,Γ′KWKJ . p induces a functor p∗ which sends the realization

JΞΓ,Γ′KWKJ
JσΓ,Γ′K

W
KJ−−−−−−→ JΞ′Γ,Γ′KWKJ to JΞΓ,∆,Γ′KWKJ

JσΓ,∆,Γ′K
W
KJ−−−−−−−→ JΞ′Γ,∆,Γ′KWKJ = J(Ξ σ−→

Ξ′)[p]KWKJ . We also have that for all W ′, such that W
α−→ W ′, JΞΓ,∆,Γ′KW

′
KJ

JσΓ,∆,Γ′K
W ′
KJ−−−−−−−→ JΞ′Γ,∆,Γ′KW

′
KJ is defined, and

JΞΓ,∆,Γ′KWKJ
JσΓ,∆,Γ′KWKJ- JΞ′Γ,∆,Γ′K

W
KJ

JΞΓ,∆,Γ′KW
′

KJ

N α

?

JσΓ,∆,Γ′KW
′

KJ

-

N α

? JΞ′Γ,∆,Γ′K
W ′

KJ

N α

?

holds because we can apply N α to the realization in Γ,Γ′ and then apply p∗.
This is equivalent to applying N α after p∗ because p∗ only sends the realization
to another fibre. Thus we can conclude W |=⇒KJΣ (Ξ

σ−→ Ξ′)[p][Γ,∆,Γ′]. �

Lemma 3.31 (Substitutivity of Satisfaction)
Let Σ be a valid λΠ-signature, Γ, Γ′, Θ and ∆ be valid λΠ-contexts and σ be a

realization. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke λΠ-model. If

W |=⇒KJΣ (∆
σ−→ Θ)[Γ, x : A,Γ′], N proves Γ `Σ N : C and W |=KJΣ (N : C)[Γ],

then W |=⇒KJΣ (∆[N/x]
σ[N/x]−−−−→ Θ[N/x])[Γ,Γ′[N/x].

Proof (Sketch) Since N proves Γ `Σ N :C we know that N is a term of type C.

Thus we have arrows J〈〉ΓKWKJ
JNΓKWKJ−−−−→ JCΓKWKJ and JΓKWKJ

〈id,JNΓKWKJ 〉−−−−−−−→ JΓ, x :CKWKJ
in J (W )(Γ) and DW respectively. We now have the pullback

JΓ,Γ′[N/x]]KWKJ
J〈1Γ, N, 1Γ′[N/x]〉KWKJ- JΓ, x :C,Γ′KWKJ

JΓKWKJ

p

?

J〈1Γ, N〉KWKJ
- JΓ, x :CKWKJ

p

?

where each p denotes the composition of projections and J〈1Γ, N〉KWKJ • JΓ′KWKJ =

J〈1Γ, N, 1Γ′[N/x]〉KWKJ . We can now apply (J〈1Γ, N, 1Γ′[N/x]〉KWKJ )∗ to KJ (W )(JΓ, x :

C,Γ′KWKJ ). Thus the realization J∆Γ,x :C,Γ′
σΓ,x :C,Γ′−−−−−→ ΘΓ,x :C,Γ′KWKJ is sent to

J∆[N/x]Γ,Γ′[N/x]

σ[N/x]Γ,Γ′[N/x]−−−−−−−−→ Θ[N/x]Γ,Γ′[N/x]KWKJ in KJ (W )(JΓ,Γ′[N/x]KWKJ ).
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We have that J∆[N/x]KW ′KJ , JΘ[N/x]KW ′KJ and Jσ[N/x]KW ′KJ are defined for all

W ′, where W
α−→ W ′, because J∆Γ,x :C,Γ′KW

′
KJ , JΘΓ,x :C,Γ′KW

′
KJ and JσΓ,x :C,Γ′KW

′
KJ are

defined for all W ′, where W
α−→ W ′. We apply (J〈1Γ, N, 1Γ′[N/x]〉KWKJ )∗ to these

and obtain the required results. Similarly, we see that

J∆[N/x]Γ,Γ′[N/x]KWKJ
Jσ[N/x]Γ,Γ′[N/x]KWKJ- JΘ[N/x]KWKJ

J∆[N/x]Γ,Γ′[N/x]KW
′

KJ

N α

? Jσ[N/x]Γ,Γ′[N/x]KW
′

KJ-

N α

?

JΘ[N/x]KW
′

KJ

N α

?

holds since applying (J〈1Γ, N, 1Γ′[N/x]〉KWKJ )∗ followed by N α gives the same result

as applying N α followed by (J〈1Γ, N, 1Γ′[N/x]〉KWKJ )∗. Thus W |=⇒KJΣ (∆[N/x]
σ[N/x]−−−−→ Θ[N/x])[Γ,Γ′[N/x]]. �

Lemma 3.32 (Strengthening of Satisfaction)
Let Σ be a valid λΠ-signature, Γ, ∆ and Θ be valid λΠ-contexts and σ be a

realization. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model.

If W |=⇒KJΣ (∆
σ−→ Θ)[Γ, x :C], N proves `Σ Γ context and x /∈ FV (∆, σ,Θ), then

W |=⇒KJΣ (∆
σ−→ Θ)[q][Γ], where JΓKWKJ

q−→ JΓ, x :CKWKJ .

Proof (Sketch) Since N proves `Σ Γ context, there exists an arrow JΓKWKJ
q−→

JΓ, x : CKWKJ , where q = 〈id, JNΓKWKJ 〉, for some JNΓKWKJ . q induces a functor

q∗ : KJ (W )(JΓ, x : CKWKJ ) → KJ (W )(JΓKWKJ ). q∗ takes J∆ σ−→ ΘKWKJ to J(∆ σ−→
Θ)[N/x]KWKJ in KJ (W )(JΓKWKJ ). Since x /∈ FV (∆, σ,Θ), (∆

σ−→ Θ)[N/x] = (∆
σ−→

Θ). J∆ΓKW ′KJ
JσΓKW

′
KJ−−−−→ JΘΓKW ′KJ is defined for all W ′, such that W

α−→ W ′, because
we apply q∗ to all future interpretations. Similarly,

J∆ΓKWKJ
JσΓKWKJ- JΘΓKWKJ

J∆ΓKW
′

KJ

N α

?

JσΓKW ′KJ
-

N α

? JΘΓKW
′

KJ

N α

?

holds and thus W |=⇒KJΣ (∆
σ−→ Θ)[q][Γ]. �
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Lemma 3.33 (Exchange)
Let Σ be a valid λΠ-signature, Γ and ∆ be valid λΠ-contexts and let X range
over all appropriate expressions of the form M : A. Let 〈KJ , J−K−KJ 〉, where

KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. If W |=KJΣ (X)[Γ,∆] and J∆,ΓKWKJ
and JX∆,ΓKWKJ are defined, then W |=KJΣ (X)[∆,Γ].

Proof (Sketch) We have an arrow J∆,ΓKWKJ
f−→ JΓ,∆KWKJ since J∆,ΓKWKJ is defined.

This arrow induces a functor f ∗ : J (W )(JΓ,∆KWKJ ) → J (W )(J∆,ΓKWKJ ) such

that JXΓ,∆KWKJ is sent to JX∆,ΓKWKJ . For every choice of X, we have an arrow

J〈〉KW ′KJ
J−KW

′
KJ−−−−→ J−KW ′KJ which is defined for all W ′ such that W

α−→ W ′ because
we can apply f ∗ to all future interpretations. Similarly, we get the coherence
condition for N α. Thus W |=KJΣ (X)[∆,Γ]. �

Lemma 3.34 (Π-forcing)
Let Σ be a λΠ-signature and 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke

λΠ-model. W |=KJΣ (M : Πx :A .B)[Γ] if and only if, for all W
α−→ W ′ and for

all N such that W ′ |=KJΣ (N : A)[α][Γ], there is a P such that W ′ |=KJΣ (P :
B[N/x])[α][Γ] and P =βη MN . Similarly, for the non-dependent function space,
→.

Proof (Sketch) If W |=KJΣ (M : Πx : A .B)[Γ], then J〈〉ΓKWKJ
JMΓKWKJ−−−−−→ JΠx :

A .BΓKWKJ is defined over JΓKWKJ . If W
α−→ W ′, then by monotonicity, we have

that J〈〉ΓK[α]
KJ

JMΓK[α]
KJ−−−−−→ JΠx : A .BK[α]

KJ is defined over JΓK[α]
KJ . Moreover, we must

have that the adjunction defining the function space at W ′ is in the image of
J−KW ′KJ , i.e.,

p∗JΓKW ′KJ ,JAΓKW ′KJ
JMΓKW

′

KJ ; appW ′(JAΓKW
′

KJ , JBΓKW
′

KJ )

is an arrow J〈〉Γ,x :AKW ′KJ → JBΓ,x :AKW ′KJ . By Definition 3.17, JMNKW ′KJ is defined

and equal to (J〈x1, . . . , xm〉KW
′

KJ )∗(p∗
JΓKW ′KJ ,JAΓKW ′KJ

JMΓKW ′KJ ; appW ′(JAΓKW ′KJ , JBΓKW ′KJ ),

where as usual, Γ ≡ x1 :A1, . . . , xm :Am). As we noted above, p∗
JΓKW ′KJ ,JAΓKW ′KJ

JMΓKW ′KJ ; appW ′(JAΓKW ′KJ , JBΓKW ′KJ ) is an arrow J〈〉KW ′KJ → JBΓ,x :AKW ′KJ over JΓ, x :

AKW ′KJ . The functor (J〈x1, . . . , xn, N〉KW
′

KJ )∗ sends this arrow to J〈〉ΓKW ′KJ
JMNΓKW

′
KJ−−−−−−→

JB[N/x]ΓKW ′KJ . It remains to show that this is defined for all future worlds W ′′ such

that W ′ α−→ W ′′ and that it satisfies the coherence conditions. We observe that the
argument holds for all accessible worlds and thus W ′ |= KJΣ(MN :B[N/x])[Γ].

For the converse, we observe that the argument can be reversed. �
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3.7 Soundness and Completeness of λΠ and λΠ=

We now prove soundness and completeness for our Kripke Σ-λΠ-models. We need
to provide proofs for both notions of satisfaction. We begin with |= because we
need to introduce a calculus of realizers before we can deal with |=⇒ . Soundness
is proven by an induction over the structure of N and C, the calculus of realizers
and is thus rather lengthy. Completeness is obtained via a constructed term
model. This model will turn out to be the Kripke Σ-λΠ-model we gave in § 3.4.1.

Soundness and Completeness of λΠ and λΠ= for |=

The proof of soundness is by induction over the structure of proofs in the system
N and must, formally, be performed simultaneously with the proofs of Lem-
mas 3.18, 3.19 and 3.20. To see why this must be so, consider that in order for
the interpretation of a type to be well-defined, the interpretation of the context
in which its variables are declared must be well-defined. Similarly, if the inter-
pretation of an object as an arrow is to be well-defined, then the interpretation
of the context in which its variables are declared must be well-defined. Provided
we are mindful of these induction dependencies, we can proceed without undue
concern.

Theorem 3.35 (Soundness of λΠ for |= )
Let Σ be a valid λΠ-signature, Γ be a valid λΠ-context and M be a valid λΠ-

object. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. Let

W be a world, i.e., an object ofW. If N proves Γ `Σ M :A and if JΓKWKJ , JMΓKWKJ
and JAΓKWKJ are defined then W |=KJΣ (M :A)[Γ] (and so JMΓKWKJ is a section of

JAΓKWKJ over JΓKWKJ ). Moreover, if U =βη V , then JUKWKJ = JV KWKJ .

Proof (Sketch) With the above remarks and the statements of Lemmas 3.18,
3.19 and 3.20 in mind, we proceed to give the main cases of the argument. We
give the main steps in each of the cases, leaving the reader to perform the extra
calculations should they so desire. We show that the rules (2.13) - (2.17) hold.

Suppose Γ `Σ c :Πx1 :A1 . . . . .Πxm :Am . A︸ ︷︷ ︸
C

is an axiom sequent of N (2.13).

By Definition 3.3, KJ has Σ-operations. c :C ∈ Σ means we have J〈〉Γ•AKWKJ
opc−−→

JAΓ•AKWKJ , where Γ • A = Γ, x1 : A1, . . . , xm : Am. We thus interpret cΓ as

curmW (opc). In order to show that W |=KJΣ (c :C)[Γ], for W such that JCΓKWKJ is
defined, we need to show that

J〈〉KWKJ
JcΓKWKJ−−−−→ JCΓKWKJ

is an arrow in J (W )(JΓKWKJ ). By the induction hypothesis, pace Lemma 3.18,

we have that JΓKWKJ is well-defined. According to to Definition 3.3, JcΓKWKJ =
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curmW (opc) holds. The satisfaction condition follows immediately from (3.1).
Suppose (Γ ≡)∆, x : A,∆′ `Σ x : A is an axiom sequent (2.14). In order to

show that W |=KJΣ (x :A)[Γ], for W such that JAΓKWKJ is defined. We need to
prove that

J〈〉ΓKWKJ
JxΓKWKJ−−−−→ JAΓKWKJ

is an arrow in J (W )(JΓKWKJ ). By the induction hypothesis, pace Lemmas 3.18,

3.19 and 3.20, we have that JΓKWKJ , JAΓKWKJ and JxΓKWKJ are well-defined. Accord-
ing to Definition 3.3,

JxΓKWKJ = p∗J∆,x :AKWKJ ,J∆
′KWKJ

(qJ∆KWKJ ,JAΓKWKJ
).

The satisfaction condition is obtained by noting that, according to Definition 3.2,
qJ∆KWKJ ,JA∆KWKJ

has the appropriate domain and co-domain and that the pullback

functors preserve the terminal object on the nose.
Suppose that the last rule of N applied is Π I (2.15),

Γ, x :A `Σ M :B

Γ `Σ λx :A .M :Πx :A .B

By the induction hypothesis, pace Lemmas 3.18, 3.19 and 3.20. We have, for W
such that JBΓKWKJ is defined, that

W |=KJΣ (M :B)[Γ, x :A]

i.e., that J〈〉Γ,x :AKWKJ
JMΓ,x :AKWKJ−−−−−−−→ JBΓ,x :AKWKJ . According to Definition 3.3, J(λx :

A)ΓKWKJ is defined and equal to curW (JMΓ,x :AKWKJ ), from which it follows, via (3.1)
that

J〈〉ΓKWKJ
J(λx :A .M)ΓKWKJ−−−−−−−−−−→ J(Πx :A .B)ΓKWKJ

is an arrow in J (W )(JΓKWKJ ).
Suppose that the last rule of N applied is Π E (2.16),

Γ `Σ M :Πx :A .B Γ `Σ N :A

Γ `Σ MN :B[N/x]

then by the induction hypothesis, pace Lemmas 3.18, 3.19 and 3.20. We have
that

W |=KJΣ (M :Πx :A .B)[Γ]
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i.e., that J〈〉ΓKWKJ
JMΓKWKJ−−−−−→ J(Πx :A .B)ΓKWKJ . Also

W |=KJΣ (N :A)[Γ],

i.e., that J〈〉ΓKWKJ
JNΓKWKJ−−−−→ JAΓKWKJ . According to Definition 3.3, the arrow

J(MN)ΓKWKJ is defined and equal to

(J〈x1, . . . , xm, N〉KWKJ )∗(p∗JΓKWKJ ,JAΓKWKJ
JMΓKWKJ ; appW (JAΓKWKJ , JBΓ,x :AKWKJ ),

where Γ ≡ x1 : A1, . . . , xm : Am. A brief inspection of this expression re-
veals that it has the correct type: from (3.2), and by the induction hypothesis,
appW (JAΓKWKJ , JBΓ,x:AKWKJ ) is an arrow

J〈〉Γ,x :AKWKJ → J(Πx :A .B)Γ,x :AKWKJ

over JΓ, x : AKWKJ . Finally, J(MN)ΓKWKJ is the image of this arrow over JΓKWKJ ,

under the pullback functor (J〈x1, . . . , xm, N〉KWKJ )∗, which performs the required
substitution.

Suppose that the last rule of N applied is (2.17),

Γ `Σ M :A Γ `Σ A
′ :Type A = βηA′

Γ `Σ M :A′

i.e., βη-equality. This case follows in a standard way (cf. (Pitts 2000), (Ritter
1992), (Streicher 1989) and (Jacobs 1991)) from the interpretation of the de-
pendent function space via the right adjoint to substitution. The only novelty
here is that the focus of our attention must be the rightmost premiss A =βη A

′.
It is convenient to observe that since we are restricting our semantics to the
M :A :Type-fragment of the λΠ-calculus, β-equalities are generated by the rule

Γ, x :A `Σ M :B Γ `Σ N :A

Γ `Σ (λx :A .M)N =β M [N/x] :B[N/x]

for some appropriate Γ. Similarly, η-equalities are generated by the rule

Γ `Σ M :Πx :A .B y /∈ FV (Γ, x :A)

Γ `Σ λy :A .My =η M :B

for some appropriate Γ. In our fragment, the type A is a βη-redex just in case
there is an object M , on which A depends, is a βη-redex. The argument ex-
ploits the natural isomorphism (2.17) and Lemma 3.31 to get β-equality and
Lemmas 3.30 and 3.31 to get η-equality. So if M =βη N , then JMKWKJ = JNKWKJ .
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A similar argument is presented in full in (Streicher 1989); we leave the detailed
calculation in our setting to the reader. �

In the proof, the dependent function space was modelled by the right adjunc-
tion to substitution. If we did not have η-equality, then a semi-adjunction would
be sufficient, cf. (Hayashi 1985) and (Jacobs 1991).

Corollary 3.36 (Definitional Equality)
Let Σ be a valid λΠ=-signature, Γ be a valid λΠ=-context and M and N be valid

λΠ=-objects. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be an equational Kripke
Σ-λΠ=-model.

1. If Γ `Σ A : Type and Γ `Σ B : Type are provable in N=, then JAΓKWKJ =

JBΓKWKJ .

2. If Γ `Σ M :A, Γ `Σ N :A and Γ `Σ M = N :A are provable in N=, then
JMΓKWKJ = JNΓKWKJ .

Proof (Sketch) By induction on the structure of proofs in N=, making essential
use of the requirement in the definition of a Kripke Σ-λΠ=-model that if M =
N :A ∈ Σ, then JM〈〉KWKJ = JN〈〉KWKJ .

We prove transitivity (3.11) as an example. By the induction hypothesis,
JAΓKWKJ , JBΓKWKJ and JCΓKWKJ are defined and JAΓKWKJ = JBΓKWKJ and JBΓKWKJ =

JCΓKWKJ . Since = is an equivalence relation, we get JAΓKWKJ = JCΓKWKJ .

Suppose that the last rule used was (3.13). By Definition 3.23, JM〈〉KWKJ =

JN〈〉KWKJ . The induction hypothesis tells us that JΓKWKJ is well-defined and that

there is an arrow JΓKWKJ
p−→ J〈〉KWKJ . We apply p∗ and observe that JMΓKWKJ =

JNΓKWKJ .
If the last rule used was (3.15), then we can apply the induction hypothesis

to obtain JMΓKWKJ = JNΓKWKJ and JAΓKWKJ = JBΓKWKJ . JMΓKWKJ = JNΓKWKJ is an
arrow

J〈〉ΓKWKJ → JAΓKWKJ
but since JAΓKWKJ = JBΓKWKJ , we also have an arrow

J〈〉ΓKWKJ → JBΓKWKJ

as required. W |=KJΣ (M :A)[Γ] and W |=KJΣ (N :B)[Γ] by Theorem 3.35.
Suppose that the last rule applied was (3.16). We apply the induction hy-

pothesis to obtain JAΓKWKJ = JBΓKWKJ and JΓKWKJ are well-defined. The assertion
Γx `Σ Γ(x) = Γ′(x) : Type tells us that Γ and Γ′ are equal up to the choice of a
free variable. This means that there is an arrow

JΓ′KWKJ
〈id,JxΓKWKJ 〉−−−−−−→ JΓKWKJ
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which induces a functor J (W )(JΓKWKJ → J (W )(JΓ′KWKJ ). This takes JAΓKWKJ =

JBΓKWKJ to JAΓ′KWKJ = JBΓ′KWKJ . Since x /∈ FV (A,B,K). We have that JAΓ′KWKJ =

JBΓ′KWKJ . This argument is also used for (3.17). We observe that W |=KJΣ (M :

A)[Γ] and W |=KJΣ (N :B)[Γ], by Theorem 3.35.
We assume that the last rule used was (3.19). By the induction hypothesis

we have that JAΓKWKJ = JBΓKWKJ and JCΓ,x :AKWKJ = JDΓ,x :AKWKJ . We can apply

ΠJΓKWKJ ,JAKWKJ
to JCΓ,x :AKWKJ to obtain

J(Πx :B .C)ΓKWKJ = J(Πx :B .D)ΓKWKJ .

Since JAΓKWKJ = JBΓKWKJ and JCΓ,x :AKWKJ = JDΓ,x :AKWKJ = JCΓ,x :BKWKJ =

JDΓ,x :BKWKJ we have that

J(Πx :A .C)ΓKWKJ = J(Πx :B .D)ΓKWKJ .

If the last rule used was (3.25) then by the induction hypothesis, we have that
JAΓKWKJ = JBΓKWKJ and JMΓ,x :AKWKJ = JNΓ,x :AKWKJ . Since JAΓKWKJ = JBΓKWKJ , we
also have

JMΓ,x :AKWKJ = JNΓ,x :AKWKJ = JMΓ,x :BKWKJ = JNΓ,x :BKWKJ .

We can now apply curW to these arrows to obtain

J(λx :A .M)ΓKWKJ = J(λx :A .N)ΓKWKJ

as required.
If (3.27) was the last rule used then we apply the induction hypothesis to ob-

tain JMΓKWKJ = JNΓKWKJ and JPΓKWKJ = JQΓKWKJ . From Theorem 3.35, we observe

that JMPΓKWKJ is well-defined and gives the correct arrow. It then follows from
the above equalities that

JMNΓKWKJ = JNQΓKWKJ

as required.
Finally, if the last rule was (3.29), then applying the induction hypothesis

gives us that JMΓKWKJ and JAΓKWKJ = JBΓKWKJ are well-defined. JMΓKWKJ is an

arrow J〈〉KWKJ → JAΓKWKJ . Since JAΓKWKJ = JBΓKWKJ , JMΓKWKJ is also an arrow

J〈〉KWKJ → JBΓKWKJ . �

Having proven soundness, we now turn to completeness. The proof of com-
pleteness is obtained via a term model construction. We show that there exists a
(equational) Kripke Σ-λΠ(=)-model where the object cannot be forced at a given
world. Usually, a term model is obtained via the prime extension of a theory, cf.,

57



the proof of the completeness theorem for the intuitionistic predicate calculus in
(Van Dalen 1994). In the absence of any positive connectives, we are able to do
without such a construction. A consequence of a direct construction is that we
construct long βη-normal forms when dealing with occurrences of function types
of the form

Γ, x :Πy :A .B `Σ X

where X ranges over the assertions of the λΠ-calculus. Before we can prove model
existence results, we need to to define validity for |= .

Definition 3.37 ( |= -validity for λΠ)
Let Σ be a valid λΠ-signature, Γ be a valid λΠ-context and M be a valid λΠ-

object. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke Σ-λΠ-model. We
say that M :A is valid with respect to Γ, i.e.,

Γ |=Σ M :A

if and only if, for all Kripke Σ-λΠ-models and all worlds W where JΓKWKJ , JMΓKWKJ
and JAΓKWKJ are defined, W |=KJΣ (M :A)[Γ]. �

We extend this definition to equational Kripke Σ-λΠ=-models.

Definition 3.38 ( |= -validity for λΠ=)
Let Σ be a valid λΠ=-signature, Γ be a valid λΠ=-context and M be a valid

λΠ=-object. Let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be an equational Kripke
Σ-λΠ=-model.

1. A = B :Type is valid with respect to Γ, i.e.,

Γ |=Σ A = B :Type

if and only if, for all equational Kripke Σ-λΠ=-models and all worlds W
where JΓKWKJ , JAΓKWKJ and JBΓKWKJ are defined, W |=KJΣ (A = B :Type)[Γ].

2. M = N :A is valid with respect to Γ, i.e.,

Γ |=Σ M = N :A

if and only if, for all equational Kripke Σ-λΠ=-models and all worlds W
where JΓKWKJ , JMΓKWKJ , JNΓKWKJ and JAΓKWKJ are defined W |=KJΣ (M = N :
A)[Γ]. �

The following lemma is key to our completeness proof.
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Lemma 3.39 (Model Existence)
Let Σ be a valid λΠ-signature, ∆ be a valid λΠ-context and M be a valid λΠ-

object. There is a Kripke Σ-λΠ- model 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]],

and a world W0 such that if ∆ 6`Σ M :A, then W0 6|=KJΣ (M :A)[∆].

Proof Recall the Kripke Σ-λΠ-model we constructed in § 3.2.1 and 3.4.1. We

have that Γ |=KTΣΣ (M : A)[Γ ./ ∆] if and only if Γ ./ ∆ `Σ M : A. We take

W0 = Γ = 〈〉 and then we have W0 |=
KTΣ
Σ (M :A)[∆] if and only if ∆ `Σ M :A.

This is the required model. �

The appropriate equational Kripke Σ-λΠ=-model is obtained by quotienting
the term model.

Corollary 3.40 (Equational Model Existence)
Let Σ be a valid λΠ=-signature, ∆ be a valid λΠ-context, M and N be valid
λΠ-objects. There is an equational Kripke Σ-λΠ=-model 〈KJ , J−K−KJ 〉, where

KJ : [W , [Dop,V ]], and a world W0 such that

1. if ∆ `Σ A = B :Type, then W0 6|=KJΣ (A = B :Type)[∆];

2. if ∆ `Σ M = N :A, then W0 6|=KJΣ (M = N :A)[∆]. �

Proof We take the model KTΣ used in Lemma 3.39 and form a model K=
TΣ .

We firstly quotient B(Σ) to obtain B(Σ)=. We replace B(Σ) by B(Σ)= in the
definitions of P(Σ) and CΓ to obtain P(Σ)= and C=

Γ . We now define T =
Σ according

to the definition of TΣ but using P(Σ)= and C=
Γ instead of P(Σ) and C=

Γ , and
quotienting each fibre TΣ(Γ)(Γ ./ ∆) by =. The category K=

TΣ is then defined
according to the definition of KTΣ except that T =

Σ is used instead of TΣ.
We observe that we still have Γ ./ ∆ `Σ A :Type if and only if, A is an object

of T =
Σ (Γ)(Γ ./ ∆). Since we have quotiented by provable equality, we get that

JAΓ./∆KΓ
KJ = JBΓ./∆KΓ

KJ and JMΓ./∆KΓ
KJ = JNΓ./∆KΓ

KJ for all worlds Γ. Thus at

world W0 = 〈〉 = Γ, ∆ `Σ A = B :Type if and only if W0 |=
KTΣ
Σ (A = B :Type)[∆],

and Γ `Σ M = N :A if and only if, W0 |=
KTΣ
Σ (M = N :A)[∆]. �

We have the following results.

Theorem 3.41 (Completeness)
Let Σ be a valid λΠ-signature, Γ be a valid λΠ-context and M be a valid λΠ-object.
Γ `Σ M :A if and only if Γ |=Σ M :A.

Proof

(Only If) By soundness, Theorem 3.35.

(If) Suppose that Γ 6`Σ M :A, then Lemma 3.39 yields a contradiction. �
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Corollary 3.42 (Equational Completeness)
Let Σ be a valid λΠ=-signature, Γ be a valid λΠ=-context and M and N be valid
λΠ=-objects. We have

1. Γ `Σ A = B :Type if and only if Γ |=Σ A = B :Type;

2. Γ `Σ M = N :A if and only if Γ |=Σ M = N :A.

Proof

(Only If) By soundness, Corollary 3.36.

(If) Suppose that Γ 6`Σ A = B : Type, then Lemma 3.40 yields a contradiction.
Similarly, if Γ 6`Σ M = N :A, then Lemma 3.40 yields a contradiction. �

3.8 Soundness and Completeness of λΠ and λΠ=

for |=⇒
We now turn to our second notion of satisfaction. The calculi λΠ and λΠ= do
not deal with assertions of the form `Σ ∆

σ−→ Θ, which |=⇒ forces. We introduce
a calculus of realizers, C, which handles assertions of this form. The calculus we
use was first introduced by Galmiche & Pym (2000).

Definition 3.43 (The system C)
Let Σ be a λΠ-signature and let Γ ≡ x1 :A1, . . . , xm :Am and Θ = y1 :D1, . . . , yn :
Dn be valid λΠ-contexts. The system C is given by the following rules:

Axiom

`Σ Γ
〈@1,...,@n〉−−−−−−→ Θ

(3.30)

where each @i ∈ Σ ∪ Γ and N proves Γ `Σ @i :Di[@j/yj]
i−1
j=1 for 1 ≤ i ≤ n;

`Σ Γ
〈M1,...,Mn〉−−−−−−→ Θ `Σ Γ

〈1Γ,M
′
i〉−−−−→ Γ, Di[Mj/yj]

i−1
j=1

Application

`Σ Γ
〈M1,...,M ′i ,...,Mn〉−−−−−−−−−−→ Θ

(3.31)

where Mi : Πx :B .C ∈ Σ ∪ Γ, N proves Γ `Σ P :B and MiP =βη M
′
i , for some

1 ≤ i ≤ n;

`Σ Γ, x :A
〈1Γ,M〉−−−−→ Γ, x :A, y :B

Introduction

`Σ Γ
〈1Γ,λx :A .M〉−−−−−−−−→ Γ, y :Πx :A .B

(3.32)

`Σ Γ
σ−→ Θ Γ =βη Γ′ σ =βη σ

′ Θ =βη Θ′

Equality

`Σ Γ′
σ′−→ Θ′

(3.33)
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where each equality is defined componentwise. �

We extend this system by adding all the definitional equalities induced by the
rules of Table 2. Equality is defined componentwise and Γ = Γ′ means xi :Ai = A′i,
for 1 ≤ i ≤ m.

Definition 3.44 (The System C=)
Let Σ be a valid λΠ=-signature, Γ, Γ′, Θ and Θ′ be valid λΠ=-contexts and σ
and σ′ be valid λΠ=-realizations. We add the following rules to C to obtain C=.

`Σ Γ
σ−→ Θ

`Σ Γ = Γ
σ=σ−−→ Θ = Θ

(3.34)

`Σ Γ = Γ′
σ=σ′−−−→ Θ = Θ′

`Σ Γ′ = Γ
σ′=σ−−−→ Θ′ = Θ

(3.35)

`Σ Γ = Γ′
σ=σ′−−−→ Θ = Θ′ `Σ Γ′ = Γ′′

σ′=σ′′−−−→ Θ′ = Θ′′

`Σ Γ = Γ′′
σ=σ′′−−−→ Θ = Θ′′

(3.36)

`Σ Γ
σ=σ′−−−→ Θ

(3.37)

where Mi = Ni :Di[Mj/yj]
i−1
j=1 ∈ Σ and N= proves Γ `Σ Mi = Ni :Di[Mj/yj]

i−1
j=1.

`Σ Γ = Γ′
σ−→ Θ = Θ′ `Σ Γ

σ=σ′−−−→ Θ

`Σ Γ = Γ′
σ=σ′−−−→ Θ = Θ′

(3.38)

`Σ Γ
〈id,M=N〉−−−−−→ Γ, x :A = B `Σ Γxm

〈1Γxm
〉

−−−−→ x1 :A1 = A′1, . . . , xm−1 :Am−1 = A′m−1

`Σ Γ′
〈1Γ′ ,M=N〉−−−−−−→ Γ′, x :A = B

(3.39)
where N= proves `Σ Γ′ context, for all m.

`Σ (Γ, x :A) = (Γ′, x :B)
〈1Γ,x,M=N〉
−−−−−−−→ (Γ, x :A, y :C) = Γ′, x :B, y :D

`Σ Γ = Γ′
〈1Γ,λx :A .M=λx :A .N〉−−−−−−−−−−−−−−→ Γ,Πx :A .C = Γ′,Πx :B .D

(3.40)

`Σ Γ
〈M1,...,Mi=Ni,...,Mn〉−−−−−−−−−−−−→ Θ (`Σ Γ

〈1Γ,M
′
i=N

′
i〉−−−−−−−→ Γ, Di[Mj/yj]

i−1
j=1)

`Σ Γ
〈M1,...,M ′i=N

′
i ,...,Mn〉−−−−−−−−−−−−→ Θ

(3.41)

where Mi = Ni :Πx :B .C ∈ Σ ∪ Γ, N= proves Γ `Σ P = Q :B, MiP =βη M
′
i and
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NiP = N ′i , for some 1 ≤ i ≤ n.

`Σ Γ
σ−→ Θ `Σ Γ = Γ′

〈1Γ〉−−→ Θ = Θ′

`Σ Γ′
σ−→ Θ′

(3.42)

�

Having defined the systems C and C=, we examine the relationship between
them and N and N=. The relationship is similar to the relationship between |=⇒
and |= .

Lemma 3.45 (Soundness of C for N)
Let Σ be a valid λΠ-signature and let Γ ≡ x1 : A1, . . . , xm : Am and Θ ≡ y1 :

D1, . . . , yn : Dn be valid λΠ-contexts. If C proves `Σ Γ
〈M1,...,Mn〉−−−−−−→ Θ then N

proves Γ `Σ Mi :Di[Mj/yj]
i−1
j=1 for 1 ≤ i ≤ n.

Proof The proof is by induction on C proofs and the length of terms. We
begin with the axiom rule. N proves Γ `Σ Mi :Di[Mj/yj]

i−1
j=1 is a side condition

of the rule and this is all we need to prove, so we are done.
We assume that application was the last rule used. We first fix i. Since

Mi : Πx :B .C ∈ Γ ∪ Σ, we conclude that N proves Γ `Σ Mi : Πx :B .C. We also
observe that N proves Γ `Σ MiP :C[P/x] by an instance of the application rule
in N with Γ `Σ Mi : Πx :B .C and Γ `Σ P :B as premisses. Since MiP =βη M

′
i

and N proves Γ `Σ M
′
i :C[P/x], we can apply the induction hypothesis to obtain

Γ `Σ M
′
i :Di[Mj/yj]

i−1
j=1 and conclude that C[P/x] =βη Di[Mj/yj]

i−1
j=1. We replace

Mi by M ′
i . We have that for 1 ≤ k ≤ i−1, Γ `Σ Mk :Dk[Mj/yj]

k−1
j=1 and Γ `Σ M

′
i :

Di[Mj/yj]
i−1
j=1. We then have that Γ `Σ Mk : Dk[Mj/yj]

i−1
j=1[M ′

i/yi][Mp/yp]
k
p=i+1,

for i + 1 ≤ k ≤ n. If the last rule applied was the introduction rule then by
the induction hypothesis we have Γ, x :A `Σ M :D. We apply (2.15) to obtain
Γ `Σ λx :A .M :Πx :A .D as required.

Finally, we consider the case where the last rule used was equality. We have
βη-equality on all levels. We apply the induction hypothesis and the various βη-
rules to obtain Γ′ `Σ M

′
i :D

′
i[Mj/yj]

i−1
j=1, for 1 ≤ i ≤ n. �

Corollary 3.46 (Soundness of C= for N=)
Let Σ be a λΠ=-signature and let Γ ≡ x1 :A1, . . . , xm :Am and Θ = y1 :D1, . . . , yn :

Dn be valid λΠ=- contexts. If C= `Σ Γ = Γ′
σ=σ′−−−→ Θ = Θ′, then N proves`Σ

Γ = Γ′
σ=σ′−−−→ Θ = Θ′. N= proves Γ = Γ′ `Σ Mi = M ′

i : (Di = D′i)[Mj/yj]
i−1
j=1), for

1 ≤ i ≤ n.

Proof By induction on the structure of C= proofs. The equivalence relation
rules are straightforward. We only show transitivity. The induction hypothesis
yields Γ = Γ′ `Σ Mi = M ′

i : ((Di = D′i)[Mj/yj]
i−1
j=1) and Γ′ = Γ′′ `Σ M ′

i = M ′′
i :
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((D′i = D′′i )[Mj/yj]
i−1
j=1). By the transitivity rules in N=, we can conclude that

Γ = Γ′ and Γ′ = Γ′′ imply Γ = Γ′′. (Di = D′i)[Mj/yj]
i−1
j=1 and (D′i = D′′i )[Mj/yj]

i−1
j=1

imply (Di = D′′i )[Mj/yj]
i−1
j=1. Mi = M ′

I and M ′
i = M ′′

i imply Mi = M ′′
i . Putting

all these together gives us the required result.
If the last applied rule was (3.37), we apply (3.13) which gives Γ `Σ Di :

((Mi = Ni)[Mj/yj]
i−1
j=1) and we are done.

Suppose that the last rule applied was (3.38). We apply the induction hy-
pothesis to obtain Γ `Σ Mi = M ′

i : ((Di = D′i)[Mj/yj]
i−1
j=1). The assertions

are well-typed so we can apply (3.14) to obtain Γ = Γ′ `Σ Mi = M ′
i : ((Di =

D′i)[Mj/yj]
i−1
j=1) as required.

If the last rule applied was (3.39), we an apply the induction hypothesis to
the first premise to obtain Γ `Σ M : A = B. This term is well-typed, so we
have Γ `Σ A = B : Type. We apply the induction hypothesis to the second
premise to obtain Γxm `Σ Mi : Ai = A′i. This term is also well-typed, so that
Γxm `Σ Γ(x) = Γ′(x) :Type. We now apply (3.16) to obtain Γ′ `Σ M :A = B.

We assume the last rule applied was (3.40). The induction hypothesis yields
(Γ, x : A) = (Γ′, x : B) `Σ M = N : (C = D). We apply (3.25) to obtain
Γ = Γ′ `Σ (λx :A .M) = (λx :B .N) : (Πx :A .C) = (Πx :B .D) as required.

Suppose the last rule was (3.41), we apply the induction hypothesis to obtain
Γ `Σ Mi = Ni : Di[Mj/yj]

i−1
j=1 and Γ `Σ M ′

i = N ′i : Di[Mj/yj]
i−1
j=1. Since Mi =

Ni : Πx : B .C and Γ `Σ P : B, we can apply (3.26). N= proves Γ `Σ MiP =
NiP :B[P/x]. Since Mi =βη M

′
i and NiP =βη N

′
i we conclude that N= proves

Γ `Σ M ′
i = N ′i :B[P/x], hence B[P/x] =βη Di[Mj/yj]

i−1
j=1. Using the rules for βη

equality we get Γ `Σ M
′
i = N ′i :Di[Mj/yj]

i−1
j=1, Γ `Σ Mk :Dk[Mj/yj]

k−1
j=1 , 1 ≤ k ≤ i1

and Γ `Σ Mp :Dp[Mj/yj]
i−1
j=1[M ′

i/yi][Mj/yj]
p
j=i+1, for i+ 1 ≤ p ≤ n.

Finally, suppose that the last rule applied was (3.42). We apply the induction
hypothesis to obtain Γ `Σ Di[Mj/yj]

i−1
j=1 and Θ `Σ x : Di = D′i. Since this is

well-typed we have Θ `Σ Di = D′i : Type. We now apply (3.29) to conclude N
proves Γ `Σ Mi :D

′
i[Mj/yj]

i−1
j=1, as required. �

It is important to understand that Lemma 3.45 and Corollary 3.46 do not
imply that N or N= is an adequate approximation of |=⇒ . It is possible for

arrows of the form J∆ σ−→ ΘKWKJ to exist in the fibre over JΓKWKJ in the absence

of putatively corresponding arrows of the form J〈〉ΓKWKJ
JMΓKWKJ−−−−−→ JAΓKWKJ . The

satisfaction relation |=⇒ is defined on the raw syntax independently of |= and

gives the semantic counterpart to the assertion `Σ −
−−→ − of C. Just as |= gives

the semantic counterpart of the assertion − `Σ − :− of N.

Lemma 3.47 (Completeness of C for N)
Let Σ be a valid λΠ-signature, let Γ ≡ x1 :A1, . . . , xm :Am be a valid λΠ-context

and Mi, for 1 ≤ i ≤ m, be valid λΠ-objects. If N proves Γ `Σ Mi :Di[Mj/yj]
i−1
j=1,

for each 1 ≤ i ≤ n, then C proves `Σ Γ
〈1Γ,Mi〉−−−−→ Γ, x :Di[Mj/yj]

−1
j=1 for 1 ≤ i ≤ n.
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Proof The proof is by induction on i and proofs in N. We first fix i and proceed
by induction on the structure of N proofs. Suppose we have the axiom sequent
Γ `Σ c : Πx1 : A1 . . . . .Πxm : Am . A[Mj/yj]

i−1
j=1, we apply (3.30). There is a

problem since we do not not know whether or not Mj for 1 ≤ j ≤ i − 1 is in
Σ∪Γ. We also know, however, that N proves Γ `Σ c :C[Mj/yj]

i−1
j=1[xk/xk]

i−1
k=1 and

xk ∈ Σ ∪ Γ for 1 ≤ k ≤ i− 1, which means we can apply (3.30) to get C proves

`Σ Γ
〈1Γ,c〉−−−→ Γ, x :C[Mj/yj]

i−1
j=1.

Similarly, if we have the axiom sequent Γ `Σ y :A[Mj/yj]
i−1
j=1, then N proves

Γ `Σ x :A[Mj/yj]
i−1
j=1 and hence, by (3.30), we have C proves `Σ Γ

〈1Γ,y〉−−−→ Γ, x :

A[Mj/yj]
i−1
j=1.

Suppose that the last rule used was (2.15), which in the current setting is

Γ, x :A `Σ M :B[Mj/yj]
i−1
j=1

Γ `Σ λx :A .M :Πx :A .B[Mj/yj]
i−1
j=1

where no yj occurs free in A and each yj is distinct from x, we apply the induction

hypothesis to obtain C proves `Σ Γ, x :A
〈1Γ,x :A,M〉−−−−−−→ Γ, x :A, y :B[Mj/yj]

i−1
j=1. We

apply (3.32) to obtain C proves `Σ Γ
〈1Γ,λc:A .M〉−−−−−−−→ Γ, y : Πx : A .B[Mj/yj]

i−1
j=1 as

required.
Suppose the last rule applied was (2.16), which in our situation is

Γ `Σ M :Πx :A .B Γ `Σ N :A

Γ `Σ MN :B[N/x]

where no yi occurs free in A or N and each yi is distinct from x. Applying the in-

duction hypothesis gives us that C proves `Σ Γ
〈1Γ,M〉−−−−→ Γ, y :Πx :A .B[Mj/yj]

i−1
j=1.

The side condition N proves Γ `Σ N :A is satisfied so we can apply (3.32) and

(3.33) to get C proves `Σ Γ
〈1Γ,MN〉−−−−−→ Γ, y :B[N/x][Mj/yj]

i−1
j=1 as required.

Finally, the last rule applied was (2.17), which in our situation is

Γ `M :A[Mj/yj]
i−1
j=1 Γ `Σ A

′[Mj/yj]
i−1
j=1 :Type A =βη A

′

Γ `Σ M :A′[Mj/yj]
i−1
j=1

We apply the induction hypothesis to get C proves `Σ Γ
〈1Γ,M〉−−−−→ Γ, y :A[Mj/yj]

i−1
j=1.

Since A =βη A
′, we apply (3.33) to get C proves `Σ Γ

〈1Γ,M〉−−−−→ Γ, y :A′[Mj/yj]
i−1
j=1.

�

Corollary 3.48 (Completeness of C= for N=)
Let Σ be a valid λΠ=-signature, let Γ ≡ x1 : A1, . . . , xm : Am be a valid λΠ=-
context and Mi and Ni, for 1 ≤ i ≤ n, be valid λΠ=-objects. If N= proves
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Γ `Σ (Mi = Ni) : (Ai = Bi)[Mj/yj]
i−1
j=1 for 1 ≤ i ≤ n, then C= proves `Σ

Γ
〈1Γ,Mi=Ni〉−−−−−−−→ Γ, y : (Ai = Bi)[Mj/yj]

i−1
j=1 for 1 ≤ i ≤ n.

Proof The proof is by induction over i and N= proofs. We begin by fixing i
and then proceed by induction on the structure of N= proofs. The equivalence
relations are straightforward. We show transitivity as an example. We apply the

induction hypothesis to get C= proves `Σ Γ
〈1Γ,Mi=M

′
i〉−−−−−−−→ Γ, y :Ai = A′i[Mj/yj]

i−1
j=1

and C= proves `Σ Γ
〈1Γ,M

′
i=M

′′
i 〉−−−−−−−→ Γ, y :A′i = A′′i [Mj/yj]

i−1
j=1. (3.36) gives C= proves

`Γ

〈1Γ,Mi=M
′′
i 〉−−−−−−−→ Γ, y :Ai = A′′i [Mj/yj]

i−1
j=1 as required.

Suppose that we have the axiom sequent N= proves Γ `Σ M = N :

A[Mj/yj]
i−1
j=1. We apply (3.37) and thus C= proves `Σ Γ

〈1Γ,M=N〉−−−−−−→ Γ, y :

A[Mj/yj]
i−1
j=1.

Suppose that we have rules (3.16) and (3.17). We apply the induction hypoth-

esis to obtain that C= proves `Σ Γ, x :A = B
〈1Γ,x :A=B ,M=N〉
−−−−−−−−−−→ Γ, x :A = B, y :C =

D[Mj/yj]
i−1
j=1. We apply rule (3.39) to get C= proves `Σ Γ

〈1Γ,λx :A .M=λx :B .N〉−−−−−−−−−−−−−−→
Γ, y : (Πx :A .C = Πx :B .D)[Mj/yj]

i−1
j=1.

Suppose the last rule applied was (3.26). We apply the induction hypothesis

to get C= proves `Σ Γ
〈1Γ,M=N〉−−−−−−→ Γ, y :Πx :A .B[Mj/yj]

i−1
j=1. We apply (3.41) and

(3.42) to see that C= proves `Σ Γ
〈1Γ,MP=NQ〉−−−−−−−−→ Γ, y :B[N/x][Mj/yj]

i−1
j=1.

Finally, assume that the last rule applied was (3.29). We apply the induction

hypothesis to obtain C= proves `Σ Γ
〈1Γ,M〉−−−−→ Γ, x : A and C= proves `Σ x :

A
〈1x :A〉−−−−→ x :A = B. We apply (3.42) to get C= proves `Σ Γ

〈1Γ,M〉−−−−→ Γ, x :B. �

Having explored the relationship between N(=) and C(=), we now turn to

the relationship between |=⇒ and `Σ −
−−→ −. We restrict our attention to

realizations of the form ∆
〈1Γ,N〉−−−−→ ∆, z :A for two reasons. They correspond to

the provable assertions of the form Γ `Σ N :A in N and in § 12 and § 13, when we
consider λΠ as the language of a logical framework, these will be the realizations
we are interested in when we carry out proof search. With this restriction, it
is clear that soundness for C with respect to Kripke Σ-λΠ-models follows from
Lemma 3.45 and Theorem 3.35. Soundness for C= follows from Corollary 3.46
and Corollary 3.36. We move straight to completeness.

Definition 3.49 ( |=⇒ -validity for λΠ)
Let Σ be a λΠ-signature. Let Γ be a valid λΠ-context and let ∆

σ−→ Θ be a

realization. We say that ∆
σ−→ Θ is valid with respect to Γ, i.e.,

Γ |=⇒Σ (∆
σ−→ Θ)

if and only if, for all Kripke Σ-λΠ-models, 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]],
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and worlds W such that JΓKWKJ and J∆ σ−→ ΘKWKJ are defined and W |=⇒KJΣ (∆
σ−→

Θ)[Γ]. �

We extend this definition to λΠ= in the natural way.

Definition 3.50 ( |=⇒ -validity for λΠ=)
Let Σ be a λΠ=-signature, Γ be a valid λΠ=-context and ∆

σ−→ Θ and ∆′
σ′−→ Θ′ be

valid λΠ=-realizations. We say that ∆ = ∆′
σ=σ′−−−→ Θ = Θ′ is valid with respect

to Γ, i.e.

Γ |=⇒Σ (∆ = ∆′
σ=σ′−−−→ Θ = Θ′)

if and only if, for all Kripke Σ-λΠ=-models, 〈KJ , J−K−KJ 〉, where KJ : [W ,Dop,V ]],

and worlds W such that JΓKWKJ , J∆ σ−→ ΘKWKJ and J∆′ σ
′
−→ ΘKWKJ are defined J∆ σ−→

ΘKWKJ = J∆′ σ′−→ ΘKWKJ we have that W |=⇒KJΣ (∆
σ−→ Θ)[Γ] and W |=⇒KJΣ (∆′

σ′−→
Θ′)[Γ]. �

Lemma 3.51 (Model Existence)
Let Σ be a λΠ-signature, let Γ be a valid λΠ-context and let ∆

〈1Γ,N〉−−−−→ ∆, z :

A[Mj/yj]
n
j=1 be a realization. If 6`Σ ∆

〈1∆,N〉−−−−→ ∆, z :A[Mj/yj]
n
j=1 (in C) then there

exists a Kripke Σ-λΠ-model 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], and a world

W0 such that W0 6|=⇒Σ (∆
〈1Γ,N〉−−−−→ ∆, z :A)[∆].

Proof In the term-model, KTΣ , in § 3.2.1, Γ |=⇒KJΣ (Γ ./ ∆
〈1Γ./∆,N〉−−−−−→ Γ ./

∆, z : A)[Γ ./ ∆] if and only if N proves Γ ./ ∆ `Σ N : A[Mj/yj]
n
j=1. By

Lemma 3.47, Γ |=⇒KJΣ (Γ ./ ∆
〈1Γ./∆,N〉−−−−−→ Γ ./ ∆, z : A)[Γ ./ ∆] if and only if C

proves `Σ Γ ./ ∆→ Γ ./ ∆, z :B[Mj/yj]
n
j=1. Thus we take W0 = 〈〉. �

Corollary 3.52 (Equational Model Existence)
Let Σ be a λΠ=-model, let Γ be a valid λΠ=-context and let ∆

〈1∆,M=N〉−−−−−−→ ∆, z :A =

B[Mj/yj]
n
j=1 be a realization. If 6`Σ ∆

〈1∆,M=N〉−−−−−−→ ∆, z :A = B[Mj/yj]
n
j=1 then there

exists an equational Kripke Σ-λΠ=-model 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]]

and a world W0 such that W0 6|=⇒KJΣ (∆
〈1∆,M=N〉−−−−−−→ ∆, z :A = B)[∆].

Proof In the equational Kripke Σ-λΠ=-model KTΣ , Γ |=⇒KJΣ (Γ ./ ∆
〈1Γ,M=N〉−−−−−−→

Γ ./ ∆, z : A = B)[Γ] if and only if N= proves Γ ./ ∆ `Σ M = N : A =

B[Mj/yj]
n
j=1. By Corollary 3.48, we have that Γ |=⇒KJΣ (Γ ./ ∆

〈1Γ,M=N〉−−−−−−→ Γ ./
∆, z :A = B)[Γ] if and only if C proves `Σ Γ ./ ∆→ Γ ./ ∆, z :A = B[Mj/yj]

n
j=1.

Thus we take W0 = 〈〉. �
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Theorem 3.53 (Completeness)
Let Σ be a λΠ-signature, let Γ be a valid λΠ-context and let ∆

〈1∆,N〉−−−−→ ∆, z :

A[Mj/yj]
n
j=1 be a realization. C proves ∆

〈1∆,N〉−−−−→ ∆, z :A[Mj/yj]
n
j=1 if and only if

∆ |=⇒Σ (∆
〈1∆,N〉−−−−→ ∆, z :A[Mj/yj]

n
j=1).

Proof

Only If By Lemma 3.45 and Theorem 3.35.

If Suppose 6`Σ ∆
〈1∆,N〉−−−−→ Γ∆, z :A[Mj/yj]

n
j=1, then Lemma 3.51 yields a contra-

diction. �

Corollary 3.54 (Equational Completeness)
Let Σ be a λΠ=-signature, let Γ be a valid λΠ=-context and let ∆

〈1∆,N〉−−−−→ ∆, z :

A[Mj/yj]
n
j=1 be a realzation. C= proves `Σ ∆

〈1∆,M=N〉−−−−−−→ ∆, z :A = B[Mj/yj]
n
j=1

if and only if ∆ |=⇒Σ ∆
〈1∆,M=N〉−−−−−−→ ∆, z :A = B[Mj/yj]

n
j=1.

Proof

Only If By Corollary 3.46 and Corollary 3.36.

If Suppose 6`Σ ∆
〈1∆,M=N〉−−−−−−→ ∆, z :A = B[Mj/yj]

n
j=1, then Lemma 3.52 yields a

contradiction. �
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Chapter 4

Applicative Structures and
Kripke Logical Relations

Having defined Kripke Σ-λΠ-models and proven the relevant soundness and com-
pleteness results, we now define a set-theoretic class of Kripke Σ-λΠ-models. The
starting point for these models is the work of (Dybjer 1995) and (Hofmann 1996).
The motivation for this chapter is § 6 of (Mitchell & Moggi 1991). As we have
mentioned previously, this part of the thesis adapts their work to the λΠ-calculus.
We show that their work on logical relations can be generalized to our setting. We
begin by defining a class of Kripke Σ-λΠ-models with families. These are then
restricted to a set-theoretic class of Kripke Σ-λΠ-models which we call Σ-λΠ-
applicative structures. We are then able to define Kripke Σ-λΠ-logical relations
on these, which are the generalization of Mitchell and Moggi’s Kripke logical re-
lations to our setting. Finally, we examine classical Σ-λΠ-applicative structures
and show how they can arise from Σ-λΠ-applicative structures.

The presentation of the material in this chapter is new. The general theory
which has been adapted to this setting is, however, well-known. The majority of
the proofs are similar to those found in (Mitchell & Moggi 1991).

4.1 Applicative Structures

4.1.1 Kripke Σ-λΠ-models with Families

(Dybjer 1995) and (Hofmann 1996) have defined set-theoretic models of depen-
dent types using the category of families of sets, Fam. The idea is simple, yet
provides a different class of models from those described in § 3, they are distin-
guished here by their interpretation of the syntax. Starting with a category C of
contexts and realizations, one constructs a functor F :Cop → Fam as follows:

• Take a category C of semantic contexts and semantic context morphisms;
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• Take the object-part to be

F(Γ) = (Ty(Γ),Tm(Γ)) = (Ty(Γ),Tm(Γ, A)A∈Ty(Γ))

where Ty(Γ) is a set of semantic types A such that Γ `Σ A : Type and
Tm(Γ, A) is a set of semantic terms;

• The arrow-part of F is given by semantic substitutions via inverse images.

The familial fibre given in Definition 2.6 is an instance of this definition. The
following example can be found in (Dybjer 1995) and (Hofmann 1996). We
take C to be the category of all small sets and functions, Set. Contexts, Γ, are
interpreted as sets whose cardinality is equal to the number of variables in Γ.
Realizations are interpreted as functions between sets. We then define the set
Ty(Γ) to be the set of Γ-indexed small sets, (σγ)γ∈Γ and each element of Tm(Γ, σ)
is the assignment of an element M(γ) of σγ for each γ ∈ Γ.

It is possible to define a whole class of Kripke λΠ-prestructures with families.
Our attention turns, however, to Kripke λΠ-structures with families built on a
Kripke λΠ-structure. We extend the definition of families of sets, Definition 2.5,
to the following category.

Definition 4.1
Let V be a category. We define the category, Fam(V), as follows:

Objects: Families, {Vi}i∈I , of objects of V , which can be described as an ordered
pair (I, V ), in which V is indexed over I;

Arrows: An arrow (f, {fi}i∈I) : (I, V )→ (J, V ′) is given by a function f :I → J
such that for each i ∈ I, fi :Vi → V ′f(i).

Given arrows (f, {fi}i∈I) : (I, V ) → (J, V ′) and (g, {gj}j∈J) : (J, V ′) → (K,V ′′)
their composition is a function g ◦ f and a family of functions {gf(i) ◦ fi}i∈I
determined by function composition for each i ∈ I. �

Having generalized families of sets to the above category, it seems natural to
also generalize the index to allow indexing by objects. For our purposes, it is
sufficient to keep the index as a set. To define Kripke Σ-λΠ-models with families,
we begin with a Kripke λΠ-prestructure

J : [W , [Dop,V ]]

as in Definition 3.1. For Kripke λΠ-structures with families, we must have not
only the construction −, but also Fam(−):

FJ : [W , [Dop,Fam(V)]]
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and we recall that for each V , there is a choice of V such that V ∼= V . An inter-
pretation with families, J−K−FJ , is following the usual pattern, a partial function
from the raw syntax of the λΠ-calculus to the prescription below.

• Contexts Γ are mapped to objects JΓKWFJ of D. Realizations σ = 〈M1, . . . ,

Mn〉 are mapped to arrows JσKWFJ of D.

For example, take each D to be Set. We then interpret Γ as a set whose
cardinality is equal to the number of variables in Γ and a realization σ as a
function between sets.

• It follows that for each world W , F(W )(JΓKWFJ ) is an object of F(V), i.e.,

a family (I, V ), where each V i has as objects arrows ∆
f−→ Θ over Γ in D

and as arrows, arrows ∆→ ∆′ in D
Types A, in context Γ, are mapped to elements of the indexing sets I in
the pairs (I, V ). Corresponding to each i(= JAΓKWKJ ) ∈ I is a category V i,

chosen as in Definition 3.2 as a choice of D-arrows over JΓKWFJ .

For example, take I to be the set of all JΓKWFJ -indexed small sets, (ργ)γ∈JΓKWFJ
.

Each V JAΓKWFJ
has as objects the functions JΓKWFJ → JΓ, x :AKWFJ and arrows

the identity function JΓKWFJ → JΓKWFJ .

• Objects M in context Γ are mapped to objects of the category V JAΓKWFJ
, for

some A, and so is a D-arrow JΓKWFJ
f−→ JΓ, x :AKWFJ such that f ; pJΓ,x :AKWFJ

=

1JΓKWFJ
. For this purpose, it is sufficient that each V i, for i ∈ I, be discrete.

For example, assign M to the function JΓKWFJ
f−→ JΓ, x :AKWFJ in V JAKWFJ

. It

is clear that we f ; pJΓ,x :AKWFJ
= 1JΓKWFJ

.

We are now in a position to define a Kripke Σ-λΠ-model with families. While
we could restrict our attention to the λΠ-calculus, we instead go straight to the
λΠ=-calculus. For the remainder of this chapter we shall be concerned primarily
with equational theories. We thus sketch the formal definition of an equational
Kripke Σ-λΠ=-model with families, eliding repetitive details, as follows:

Definition 4.2 (Equational Kripke Σ-λΠ=-models with families)
Let Σ be a λΠ=-signature. An equational Kripke Σ-λΠ=-model with families is

an ordered pair, 〈FJ , J−K−FJ 〉, where FJ : [W , [Dop,Fam(V)]], is a Kripke Σ-

λΠ-structure with families. J−K−FJ is an interpretation with families, defined
simultaneously by induction on the (raw) syntax of the λΠ=-calculus according
to the prescription above and following the cases of Definitions 3.17 and 3.23. �
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It should be clear that we obtain soundness and completeness of the system
N= for equational Kripke Σ-λΠ-models with families. If we were to permit in the
third point above, the interpretations of realizations of Γ, as in Definition 3.26.
Then we would be able to obtain soundness and completeness of C= for equational
Kripke Σ-λΠ=-models with families.

The presence of families allows a type and its inhabitants to be interpreted
as a single object (I, V ). It is this feature which makes Kripke Σ-λΠ=-models
with families the appropriate basis for an account of logical relations (q.v. § 4.2)
for dependent types. To this end, we now define set-theoretic equational Kripke
Σ-λΠ=-applicative structures.

4.1.2 Equational Kripke Σ-λΠ=-Applicative Structures

We modify the Kripke Σ-λΠ=-model with families to a set-theoretic structure.
We produce a structure similar to Cartmell’s category Fam.

Definition 4.3 (Equational Kripke Σ-λΠ=-applicative structures)
Let Σ be a λΠ-signature. An equational Kripke Σ-λΠ=-applicative structure is
an equational Kripke Σ-λΠ=-model with families FJ in which

• W is assigned to any poset, regarded as a category;

• D is assigned to Set;

• Fam(V) is assigned to Fam.

The interpretation J−K−FJ is the one sketched above. �

It should now be clear that equational Kripke Σ-λΠ=-applicative structures
can be written in the form

FJ (W )(JΓKWFJ ) = (Ty(JΓKWFJ ),Tm(JΓKWFJ , JAΓKWFJ )JAΓKWFJ ∈Ty(JΓKWFJ ))

We drop the J from FJ when no confusion can arise.

4.2 Kripke Logical Relations

In the classical model theory of the λ-calculus, logical relations ((Plotkin n.d.),
(Plotkin 1980), (Statman 1985) and (Friedman 1975)) are families of relations
indexed by types which indicate a condition implying closure under application
and λ-abstraction.

Our notion of Kripke Σ-λΠ=-logical relation is the generalization of Mitchell
& Moggi’s (1991) Kripke logical relations to dependent types, i.e., our logical re-
lations indicate closure under application and Π-abstraction. Mitchell & Moggi’s
(1991) work is in turn a generalization of Plotkin’s (1980) I-relations.
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The worlds in Kripke Σ-λΠ=-logical relations are intended to be type assign-
ments; cf. (Mitchell & Moggi 1991). In § 4.2.3 we use the worlds to provide a
counter-model to the following: let f, g ∈ J(Πx :A .B)Γ)KW− . For all W ≤ W ′ and
all a ∈ JAΓKW ′−

(NW,W ′f)a = (NW,W ′g)a implies f = g.

Definition 4.4 (Equational Kripke Σ-λΠ=-logical relations)
Let Σ be a λΠ=-signature and let F1, F2 be equational Kripke Σ-λΠ=-applicative
structures over the same poset of worlds,W . An equational Kripke Σ-λΠ=-logical
relation over F1 and F2 is a triple of families of relations. Indexed respectively
by worlds; worlds and contexts; and, worlds, contexts and types.

R = (RCon,RT y,ROb)

where

(Con) RConW ⊆ (Set � J−KWF2
)× (Set � J−KWF2

),

(Ty) RT yW,Γ ⊆ TyJΓKWF1
× TyJΓKWF2

, and

(Tm) RObW,Γ,A ⊆ TmJΓKWF1
(JAΓKWF1

)× TmJΓKWF2
(JAΓKWF2

),

subject to the following conditions:

(Mon) • If RConW (JΓKWF1
), JΓKWF2

), then, for all W ≤ W ′,

RCon
W ′ (κW,W

′
(JΓKWF1

), κW,W
′
(JΓKWF2

));

• If RT yW,Γ(JAΓKWF1
, JAΓKWF2

), then, for all W ≤ W ′,

RT yW ′,Γ(NW,W ′(JAΓKWF1
),NW,W ′(JAΓKWF2

));

• If RObW,Γ,A(JMΓKWF1
, JMΓKWF2

), then, for all W ≤ W ′,

RObW,Γ,A(NW,W ′(JMΓKWF1
),NW,W ′(JMΓKWF2

));

(Kconst) For each c :Πx1 :A1 . . . . .Πxm :Am .Type ∈ Σ and for eachM1, . . . ,Mn

such that, for all W ≤ W ′, and each 1 ≤ i ≤ m,

ROb
W,Γ,Ai[Mj/xj ]

i−1
j=1

(JMiKWF1
, JMiKWF2

),

we have,

RT yW ′,Γ(op1
c(NW,W ′(JM1KWF1

), . . . ,NW,W ′(JMmKWF1
)), op2

c(NW,W ′(JM1KWF2
), . . . ,
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NW,W ′(JMmKWF2
)))

where op1
c and op2

c are the operations corresponding to c in F1 and F2

respectively;

(Tconst) For each c : Πx1 :A1 . . . . .Πxm :Am . A ∈ Σ and for each M1, . . . ,Mm

such that, for all W ≤ W ′, and each 1 ≤ i ≤ m,

ROb
W ′,Γ,A[Mj/xj ]

i−1
j=1

(NW,W ′(JMiKWF1
),NW,W ′(JMiKWF2

))

we have

ROb
W,Γ,A[Mj/xj ]mj=1

(op1
c(JM1KWF1

, . . . , JMmKWF1
), op2

c(JM1KWF2
, . . . , JMmKWF2

))

where op1
c and op2

c are the operations corresponding to c in F1 and F2,
respectively;

(Connex) RConW (JΓKWF1
, JΓKWF2

) and RTy
W,Γ(JAΓKWF1

, JAΓKWF2
), if and only if,

RCon(JΓ, x :AKWF1
, JΓ, x :AKWF2

)

(Compre) RObW,Γ,Πx :A .B(JMΓKWF1
, JMΓKWF2

) if and only if, for all W ≤ W ′,

RObW,Γ,A(JNΓKW
′

F1
, JNΓKW

′

F2
)

implies

RObW ′,Γ,B[N/x](NW,W ′(JMΓKWF1
)JNΓKW

′

F2
,NW,W ′(JMΓKWF1

)JNΓKW
′

F2
). �

Having defined equational Kripke Σ-λΠ=-logical relations, we now prove the
fundamental lemma.

Lemma 4.5 (Fundamental Lemma)
Let Σ be a λΠ=-signature, let F1 and F2 be equational Kripke Σ-λΠ=-applicative
structures and let R be an equational Kripke Σ-λΠ=-logical relation on them. If
N= proves Γ `Σ M :A and, at each world W , RCon(JΓKWF1

, JΓKWF2
), then, at each

world W ,

1. RT yW,Γ(JAΓKWF1
, JAΓKWF2

), and

2. RObW,Γ,A(JMΓKWF1
, JMΓKWF2

).

Proof By induction on the structure of proofs in N=, as usual, both parts must
be proven simultaneously because of dependencies.

We begin with the case where Γ `Σ c :Πx1 :A1 . . . . .Πxm :Am . A is an axiom
sequent. (Tconst) satisfies the condition of the second part of (Compre) m-times.
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Thus we obtain that

RT yW,Γ(JΠx1 :A1 . . . . .Πxm :Am . AKWF1
, JΠx1 :A1 . . . . .Πxm :Am . AKWF2

)

and
RObW,Γ,Πx1 :A1 . ... .Πxm :Am . A(JcΓKWF1

, JcΓKWF2
).

Suppose (Γ ≡)∆, x :A,∆′ `Σ x :A is an axiom sequent. We repeatedly apply
(Connex) to obtain

RT yW,∆(JA∆KWF1
, JA∆KWF2

)

which also holds at Γ. We can thus conclude

RObW,Γ,A(JxΓKWF1
, JxΓKWF2

)

and
RT yW,Γ(JAΓKWF1

, JAΓKWF2
).

Suppose the last rule used was Π I, i.e.,

Γ, x :A `Σ M :B

Γ `Σ λx :A .M :Πx :A .B

To show RObW,Γ,Πx :A .B(J(λx :A .M)ΓKWF1
, J(λx :A .M)ΓKWF2

) we must show

RObW,Γ,A(JNΓKWF1
, JNΓKWF2

)

implies

RObW,Γ,B[N/x](NW,W ′(J(λx :A .M)ΓKWF1
)JNΓKW

′

F1
,NW,W ′(J(λx :A .M)ΓKWF2

)JNΓKW
′

F2
)

So we must assume RObW,Γ,A(JNΓKWF1
, JNΓKWF2

). We apply the induction hypothesis

and apply terms to obtain RObW ′,Γ,B[N/x](NW,W ′(J(λx : A .M)ΓKWF1
,NW,W ′J(λx :

A .M)ΓKWF2
)) and RT yW,Γ(JΠx :A .BKWF1

, JΠx :A .BKWF2
) as required.

If the last rule applied was Π E, i.e.,

Γ `Σ M :Πx :A .B Γ `Σ N :A

Γ `Σ MN :B[N/x]

then applying the induction hypothesis yields RObW,Γ,Πx :A .B(JMΓKWF1
, JMΓKWF2

) and
RObW,Γ,A(JNΓKWF1

, JNΓKWF2
). We apply (Connex) and (Mon) to obtain

RObW ′,Γ,B[N/x](NW,W ′(JMΓKWF1
)JNΓKW

′

F1
,NW,W ′(JMΓKWF2

)JNΓKW
′

F2
)

and we are done.
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Suppose the last rule applied was

Γ `Σ M :A Γ `Σ A
′ :Type A =βη A

′

Γ `Σ M :A′

We recall from soundness that since we are restricting to the M :A :Type-fragment
of the λΠ-calculus, the type A is a βη-redex just in case where an object M on
which A depends is a βη-redex. We can then use (Connex) to obtain the result. �

4.2.1 Partial Logical Equivalence Relations

Mitchell & Moggi (1991) show that partial equivalence relations can be used to
explain the interplay between the classical meta-theory of the simply typed λ-
calculus and Kripke λ-models. Here, we show that a similar technique works
for models of the λΠ-calculus. In the next section we will define a classical Σ-
λΠ=-applicative structure (essentially a Kripke Σ-λΠ=-applicative structure at
a single world) and the Kripke Σ-λΠ=-logical partial equivalence relations allow
us to quotient the classical Σ-λΠ=-applicative structure to obtain an equational
Kripke Σ-λΠ=-applicative structure.

A Kripke Σ-λΠ=-logical partial equivalence relation is, as its names suggests,
a Kripke Σ-λΠ=-logical relation which is symmetric and transitive. The follow-
ing lemma shows that Kripke Σ-λΠ=-logical partial equivalence relations can be
constructed by a partial equivalence relation on any level of the λΠ-calculus.

Lemma 4.6 (Partial Equivalence)
Let Σ be a λΠ=-signature. Let F be an equational Kripke Σ-λΠ=-applicative
structure and let R = (RCon,RT y,ROb) be an equational Kripke Σ-λΠ=-logical
relation on it. Then the following are equivalent:

1. RCon is a partial equivalence;

2. RT y is a partial equivalence;

3. ROb is a partial equivalence.

Proof (Sketch) The proof is by induction on the structure of contexts, types and
objects. The proof involves showing that the property of a relation on any level
defines the same property for relations on other levels. �

4.2.2 Kripke Logical Relations on Classical Applicative
Structures

We take a classical Σ-λΠ=-applicative structure to be a pair U = 〈U , J−K−U 〉,
in which U : [Dop,Fam] carries the structure carried by an equational Kripke Σ-
λΠ=-applicative structure at a fixed world and JXKU is defined for all X derivable
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in N=. Alternatively, we could have taken a Kripke Σ-λΠ=-applicative structure
in which W is taken to be the category with one object and one arrow.

Given a classical applicative structure U = 〈U , J−KU〉, we define a Kripke
applicative structure [W ,U ] as follows (we sketch just a few key points):

• Take W to be a poset;

• At each world W we have the functor U ;

• The natural transformation induced by arrows between worlds is taken to
be the identity.

Let U and V be classical Σ-λΠ=-applicative structures. We say that R is a
Kripke logical relation on the classical Σ-λΠ=-applicative structures U and V if
R is a Kripke logical relation on [W ,U ] and [W ,V ].

In the case of a partial equivalence relation on U , i.e., V = U , we can form
the quotient U/R.

Lemma 4.7 (quotients yield Kripke applicative structures)
In the notion of the discussion above, U/R is an equational Kripke Σ-λΠ=-
applicative structure.

Proof (Sketch) We need to show that JXKWU/R = [JXKWU ]R for all derivable X in
N=. This is done by an induction over the structure of N=. �

Lemma 4.8
Let U/R be as above and let f, g ∈ J(Πx :A .B)ΓKWU/R. Then, for all W ≤ W ′

and for all a ∈ JAΓKW ′U/R, U/R satisfies the following extensionality condition:

(NW,W ′f)a = (NW,W ′g)a implies f = g (4.1)

Proof (Sketch) JAΓKW ′U/R is a set and so it is either empty or non-empty. If it is

empty, then f = g. If JAΓKW ′U/R is non-empty, then fa = ga for all appropriate
worlds. Thus f and g are equal on all values of f and g, hence f = g. �

Theorem 4.9 (Classical Equational Completeness)
Let Σ be a λΠ=-signature. Let Γ `Σ M = N :A and Γ `Σ A = B :Type be provable
assertions in N=. There exists a classical Σ-λΠ=-applicative structure U and a
Kripke partial logical equivalence relation on U such that Γ |=U/RΣ M = N : A

and Γ |=U/RΣ A = B :Type.

Proof (Sketch) We recall the Kripke λΠ=-structure KT =
Σ

, we defined in § 3.7. The
idea is to carry out the above construction on this Kripke λΠ=-structure. We
first have to modify our model slightly so that it is a Kripke Σ-λΠ-applicative
structure. We define the fibre KT =

Σ
(∆)(∆ ./ Γ) to be the ordered pair (I, V ),

where I is the set of types A, such that ∆ ./ Γ `Σ A : Type and V is the set
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of sections ∆ ./ Γ
〈id,M〉−−−→ ∆ ./ Γ, x : A. We then take the classical applicative

structure U to be the fibre at the world ∆ = 〈〉. We take the Kripke logical
relation R to be the one which identifies equations Γ `Σ M = N :A and Γ `Σ

A = B :Type. It remains to show that this is a partial equivalence relation. This
is straightforward. �

The above proof illustrates the difficulties involved in proving completeness
in the absence of worlds.

4.2.3 A Counter-model to Semantic Implication

As an application of Kripke quotients, we provide a counter-model to the ex-
tensionality condition shown in Lemma 4.8. We construct a classical Σ-λΠ=-
applicative structure together with a Kripke logical relation. We let f, g ∈ J(Πx :
A .B)ΓKWU/R. We then show that for all W ≤ W ′ and for all a ∈ JAΓKW ′U/R

(NW,W ′f)a = (NW,W ′g)a does not imply f = g (4.2)

We take the classical Σ-λΠ=-applicative structure we described in the proof of
Theorem 4.9. We takeW to be the poset containing two worlds {0, 1}. The proof
of Lemma 4.8 required that JAΓKWU/R be either globally empty or non-empty. We

take RT yΓ (JAΓK0
U) = ∅ and RT yΓ (JAΓK1

U) = id. Clearly, when we take the quotient,
JAΓKWU/R will be empty at world 0 and non-empty at world 1, thus breaking the

argument of Lemma 4.8. We now need to show that (NW,W ′f)a = (NW,W ′g)a.
This holds trivially at world 0. At world 1, we must make fa = ga, an easy way
to do this is to chose the relation RT yΓ so that JAΓK1

U/R has only one element.
We have constructed our counter-model and it is straightforward to verify that
equation 4.2 holds.
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Chapter 5

The Internal Logic and its
Models

In this chapter, we depart from the work of (Mitchell & Moggi 1991) and provide
a preview of the material to come in § 8. The internal logic of a type theory
is the logic obtained using the propositions-as-types ((Curry 1934), (Curry &
Feys 1958), (Howard 1980)) correspondence. For the λΠ-calculus, this is the
{∀,⊃}-fragment of many sorted minimal first-order logic. We begin this chapter
with a syntactic account of this logic. We present the logic as a natural deduction
system with proof-objects. Following this presentation, we provide an algebraic
account of this logic. We provide models in the same spirit as Kripke λΠ-models.
These models, which we call Kripke LT -models, are closely related to the hy-
perdoctrines of Lawvere (1970) and Seely (1983). We begin with Kripke LT -
prestructures, with the move to Kripke LT -structures corresponding to the move
from studying proofs to logical consequence. The final section of this chapter pro-
vides the pattern and motivation for § 8. We show that the propositions-as-types
correspondence induces an (indexed) isomorphism between Kripke LT -models
and Kripke Σ-λΠ-models.

The material in this chapter up to § 5.3 is well-known. The Kripke LT -models
are new, although the principles behind them are well-understood. The work on
the propositions-as-types isomorphism is original research.

5.1 The Propositions-as-types Correspondence

Within this section, technical details have been toned down to allow us to present,
clearly, the essential points needed to motivate and explain the propositions-as-
types isomorphism. The material in this section is already well-explained within
the literature. The reader is advised to consultant the appropriate references for
a fuller account; for example, (Barendregt 1991) and (Howard 1980).

The λΠ-calculus is in propositions-as-types (Curry-Howard-de Bruijin-
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Barendregt) correspondence with the {∀,⊃}-fragment of many sorted minimal
first-order logic. The correspondence can be formulated in the style of Barendregt
(1991).

Let LT denote the {∀,⊃}-fragment of many sorted minimal first-order logic
with theory T consisting of a finite set of constants of basic sorts, function symbols
of finite arity (0- ary functions are constants) and atomic predicate letters of finite
arity. The alphabet A of LT to consist the following sets:

• A countable set of basic sorts including ι and o;

• The set {∀,⊃, c1, . . . , cn, f1, . . . , fm, P1, . . . , Pp}.

We assume a countably infinite stock of variables of each basic sort which has
variabes. We define TermS, the collection of terms with sort S, as follows:

• If x has sort S, then x ∈ TermS;

• If c has sort S, then c ∈ TermS;

• If f has sort S1, . . . , Sn → S and if for 1 ≤ i ≤ n, ti ∈ TermSi , then
f(t1, . . . , tn) ∈ TermS.

We define Form, the collection of formulæ of LT , as follows:

• If P ⊆ T1× . . . Tm is a predicate letter and ti ∈ TermTi for 1 ≤ i ≤ m. then
P (t1, . . . , tm) ∈ Form;

• If φ ∈ Form and ψ ∈ Form, then φ ⊃ ψ ∈ Form;

• If φ ∈ Form, then ∀x :S . φ ∈ Form, where x is free in φ.

A natural deduction system for LT is defined by the following rules.

[φ]
···
ψ
⊃ E

φ ⊃ ψ

···
φ

···
φ ⊃ ψ

⊃ E
ψ

···
φ

∀ I
∀x :S . φ

(x not free in any
assumption upon
which φ depends)

···
∀x :S . φ

∀ E
φ[t/x]

(t ∈ TermS)
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We extend our view of LT to include proof-objects. To this end, we use Baren-
dregt’s (1991) notation for natural deductions, δ : (∆ `T φ), as follows:

φ ∈ ∆⇒ αφ : (∆ `T φ)

δ1 : (∆ `T φ) δ2 : (∆ `T φ ⊃ ψ)⇒ δ1δ2 : (∆ `T ψ)

δ : (∆, φ `T ψ)⇒ Iφδ : (∆ `T φ ⊃ ψ)

δ : (∆ `T ∀x :S . φ), t ∈ TermS ⇒ δt : (∆ `T φ[t/x])

δ : (∆ `T φ), x :S /∈ FV (∆)⇒ Gx :S . δ : (∆ `T ∀x :S . φ)

The theory T defined over L plays a rôle similar to that of the signature in
the λΠ- calculus. We are now able to define the (proof-theoretic) propositions-
as-types correspondence, following (Barendregt 1991).

Definition 5.1 (Propositions-as-types Translation)
We define a translation {{−}} from LT to the ΣLT -λΠ-calculus as a triple ({{−}}T ,
{{−}}F , {{−}}P ), defined below.

We define the translation, {{−}}T , from TermS to objects of the λΠ-calculus.
The sort S is translated to the type S.

• {{x}}T = x :S

• {{c}}T = c :S

• {{f(t1, . . . , tn)}}T = f{{t1}}T . . . {{tn}}T

We define the translation {{−}}F from Form to types of the λΠ-calculus.

• {{φ}}F = Aφ

• {{φ ⊃ ψ}}T = Πx : {{φ}}F . {{ψ}}F ({{φ}}F → {{ψ}}F ) where x does not occur
free in {{ψ}}F

• {{∀x :S . φ}}F = Πx :S . {{φ}}F

The translations {{−}}T and {{−}}F also sends the theory T to the signature
ΣT . ΣT contains {{c}}T , {{f}}T and {{P}}F .

We define the translation {{−}}P from the proof-objects of LT to objects of
the λΠ-calculus.

• {{αφ}}P = x :{{φ}}P

• {{Iφ}}P = λx :{{φ}}P

• {{G}}P = λ �

While δ : (∆ `T φ) is a natural deduction proof, from now on we consider it
as a realizer.
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Proposition 5.2 (Propositions-as-types Correspondence)
The sequent X δ : (∆ `T φ) is provable if and only if N proves {{X}}, {{∆}} `ΣT

{{δ}} : {{φ}}, where ΣT is the set which contains {{c}}, {{f}} and {{P}} for all the
constants, function symbols and predicate letters in T and X is the set of syntactic
variables in δ.

Proof (Sketch) Both directions of this proof require a striaghtforward induction.
The if direction requires an induction over the structure of proof-objects of LT ,
while the only if direction requires an induction over N. �

A few comments are needed about the relationship between the λΠ=-calculus
and LT . We need to extend LT so that it includes equality. This is done by
adding a predicate = and adding axioms about the properties of this predicate,
e.g., it should be an equivalence relation. Thus we define a theory T=. We then
identify the predicate = with equality in the λΠ=-calculus under the propositions-
as-types correspondence. The equality predicate can, however, be treated as just
another predicate, rather than a special one which corresponds to equality in the
λΠ=-calculus. So from now on, we just consider the λΠ-calculus, since it can
adequately represent (q.v. § 6) LT for any T , including ones with equality.

5.2 The Semantics of the Internal Logic LT
The semantics of the logic LT can be given in many ways. Perhaps, the most fa-
miliar is Kripke’s (1965) approach in which many propositions can be interpreted
in a structure at a world. Informally, letM be a Kripke model of LT , consisting
of a preordered set of worlds, with enough structure to interpret the constants,
function symbols and predicate letters of T , and an assignment ρ of the variables
of LT in a structure at a world. The satisfaction relation w, ρ ‖−MT φ, read as,
“the world w forces proposition φ in Kripke modelM with respect to assignment
ρ”. It is defined by induction on the structure of propositions as follows:

• w, ρ ‖−MT p( t ) if and only if J t KwM is defined and is in JpKwM;

• w, ρ ‖−MT φ ⊃ ψ if and only if, for all w
f−→ w′, (w′, ρ[f ] ‖−MT φ implies

w′, ρ[f ] ‖−MT ψ);

• w, ρ ‖−MT ∀x :S . φ if and only if, for all w
f−→ w′, all a : JSKwM → JSKwM and

terms t such that JtKwM = a, (w′, ρ[f ][x := a] ‖−MT φ[t/x]).

We are concerned with the extension of forcing to consequences labelled with
proof-objects. We consider a version of Kripke semantics for the {∀,⊃}-fragment
of many sorted minimal first-order logic with proof-objects. Our formulation will
be appropriate for considering a semantic account of the propositions-as-types
correspondence. Specifically, we formulate Kripke models of LT within the same
categorical framework as our Kripke Σ-λΠ-models.
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5.2.1 Kripke Prestructures and Structures for LT
We use indexed categories to define a Kripke prestructure for LT . Indexed cate-
gories, or doctrines, are used to model algebraic theories, cf. (Kock & Reyes 1977).
The Kripke prestructure for LT , we will presently define, is at each world a special
case of a hyperdoctrine.

The definition of a hyperdoctrine in Lawvere (1969) provides a model for
intuitionistic logic. The relationship between this definition and ours is as follows:

• We only require the existence of a right adjoint to functors induced by
projections in the base category. Lawvere requires right and left adjoints
to all functors between fibres. We only need right adjoints because we are
only interested in the {∀,⊃}-fragment and so do not require that there is
enough structure to interpret the existential. Intuitionistic logic coincides
with minimal logic for the fragment we are interested in.

• The Beck-Chevalley condition we use is a special case of the condition given
by Lawvere. Our Beck-Chevalley condition is sufficient for our prestructure,
cf. Seely (1983), § 8.

Definition 5.3 (Kripke Prestructures for LT )
A Kripke prestructure for the logic LT is a functor J : [W , [Bop,V ]], such that (i)
W is a small category of worlds; (ii) Bop =

∐
W∈W B

op
W , where each BW is a small

cartesian closed category; and, (iii) V is a (sub)category (of Cat) of values such
that

• For all worlds W in W and objects U in BW , J (W )(U) is cartesian closed;

• For all worlds W in W and arrows f : R → U in BW , there is a functor
f ∗ :J (W )(U)→ J (W )(R). This functor preserves on the nose the terminal
object 1J (W )(U) in J (W )(U) and the cartesian closed structure of J (W )(U);

• For all worlds W in W and projections pU,V : U × V → U , each functor
p∗U,V :J (W )(U)→ J (W )(U × V ) has a right adjoint

p∗U,V a ∀U,V :J (W )(U × V )→ J (W )(U)

that satisfies the following (strict) Beck-Chevalley conditions: for each f :
R→ U in BW , each L in BW and each V in J (W )(U × L) we have

f ∗(∀U,LV ) = ∀R,L((f × L)∗V )

and
(f × L)∗(appW (L, V )) = appW (L, (f × L)∗V )

where appW is the counit to the adjunction. �
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We take base categories at each world and then define fibres over their co-
product to follow the structure of a Kripke λΠ-prestructure. We recall that the
reason for this is that we want our Kripke models to be analogous to Kripke mod-
els of intuitionistic logic where there is a model of classical logic at each world.
We will find when we construct the term model of LT that we need to take the
same category at each world. This is because we need to define constants and
functions at each world.

We now have a Kripke prestructure for LT in which we can interpret its for-
mulæ and proofs. We wish, however, to be able to interpret logical consequence as
well. We achieve this by moving to a Kripke structure for LT . The objects in each
fibre of the Kripke structure for LT are tuples of arrows in the fibres of the Kripke
prestructure for LT . The objects in the fibres of the Kripke structure for LT are
used to interpret proofs, so that the arrows interpret proofs. Then the arrows
between these proofs interpret proof transformations, i.e., logical consequence.

Definition 5.4 (Kripke Structures for LT )
Let J be a Kripke prestructure for LT , J : [W , [Bop,V ]]. A Kripke structure for
LT on J is a functor

KJ : [W , [Bop,V ]],

such that the category V has the following properties:

Objects: Categories V built out of V = J (W )(U) with:

Objects: Arrows

A
fA,A−−→ A

in V , where A = A1 × . . .× Am;

Arrows: Arrows

(A
fA,A−−→ A)→ (B

fB,B−−→ B)

are arrows A
µ−→ B in V , where B = B1 × . . .×Bn.

Arrows: Functors f ∗ :KJ (W )(U) → KJ (W )(R), where U
f−→ R is an arrow in

BW , defined as follows:

1. The functor KJ (W )(f) takes an object of KJ (W )(U), the arrow fA,A,
and returns an object in KJ (W )(R), which is the arrow:

KJ (W )(f)(fC,C) =
n∏
i=1

J (W )(f)(Ci)
J (W )(f)(fC,C)
−−−−−−−−−→ J (W )(f)(C).

2. The functor KJ (W )(f) takes an arrow of KJ (W )(U), A
µ−→ B, and

returns the arrow ν = J (W )(f)(U), where C1× . . .×Cm
ν−→ D1× . . .×
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Dn is such that J (W )(f)(Ai) = Ci for 1 ≤ i ≤ m and J (W )(f)(Bj) =
Dj for 1 ≤ j ≤ n. �

5.2.2 Kripke Models of LT
We need to ensure that a Kripke model for LT has enough structure to interpret
all the constants and function symbols in T . This is similar to the requirement
that Kripke Σ-λΠ-models have Σ-operations.

Definition 5.5 (Enough Structure)
Let KJ be a Kripke structure for LT . We say that KJ has enough structure to
interpret T , if for all worlds W in W , the following conditions are satisfied:

1. There are as least as many objects in BW as there are sorts in L, the
language underlying L;

2. For all worlds W and all function symbols f :S1, . . . , Sn → S, there exists
a morphism JS1KW,ρKJ × . . .× JSnKW,ρKJ → JSKW,ρKJ in BW ;

3. For all worlds W and all predicate symbols P with arity S1, . . . , Sn, there
exists an object P (x1, . . . , xn), where x1 :S1, . . . , xn :Sn, in J (W )(X) and
X = JS1KW,ρKJ × . . .× JSnKW,ρKJ . �

Since constants are 0-ary function symbols, we have a morphism JcKW,ρKJ : 1→
JCKW,ρKJ in BW for each constant c :C.

Definition 5.6 (Kripke Models of LT )
A Kripke model of LT consists of a pair 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]] is

a Kripke structure for LT and the partial function J−K−,ρKJ is an interpretation of
LT in JJ . The interpretation is defined by induction on the structure of (i) sorts
which are interpreted as objects in B; (ii) terms, which are interpreted as arrows
in B; and, (iii) propositions, with variables in the set X = {x1 :S1, . . . , xm :Sm},
which are interpreted in the fibre over JS1KW,ρKJ × . . . JSmKW,ρKJ . If X = ∅, then

Jφ(X)KW,ρKJ is an object of KJ (W )(1).
The sorts, terms and functions are interpreted as follows:

1. For each sort S, JSKW,ρKJ is an object of BW defined by induction on sorts;

• For each sort S, JSKW,ρKJ is (a choice of) an object in BW ;

• For each function sort, i.e., S = S1, . . . , Sn → T ,

JSKW,ρKJ = JT KW,ρKJ
(
Qn
i=1JSiK

W,ρ
KJ

)
,

the internal hom in BW ;
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2. For each variable x : S, JxKW,ρKJ is an arrow JSKW,ρKJ
ρ(x)−−→ JSKW,ρKJ in BW , not

dependent on W ;

3. For each function f :S1, . . . , Sn → S, we interpret it as the arrow given by
Definition 5.5. We have that:

• Constants c of sort S are interpreted as an arrow JcKW,ρKJ : 1 → JSKW,ρKJ
in BW ;

• Functions f :S1, . . . , Sn → S are interpreted as an arrow

n∏
i=1

JSiKW,ρKJ → JSKW,ρKJ

in BW , and given ti :Si for 1 ≤ i ≤ n, then

Jft1 . . . tnKW,ρKJ = JfKW,ρKJ Jt1KW,ρKJ . . . JtnK
W,ρ
KJ ,

using the cartesian category structure of BW in the usual way (Lambek
& Scott 1986);

• Tuples of terms are interpreted as arrows in BW :

〈Jt1KW,ρKJ , . . . , JtnK
W,ρ
KJ 〉 :JA1KW,ρKJ ×. . .×JAmKW,ρKJ → JB1KW,ρKJ ×. . .×JBnKW,ρKJ ,

where, for each 1 ≤ i ≤ n, x1 :A1, . . . , xm :Am `T ti :Bi;

• Term-formation by application is interpreted by function space appli-
cation in BW .

The connectives are interpreted as objects in J (W )(X) by induction over the
structure of formulæ, exploiting the cartesian closed structure of the fibres, as
follows:

Atomic: For each predicate letter P with arity S1, . . . , Sn, JP (x1, . . . , xn)KW,ρKJ is

an object of J (W )(JS1KW,ρKJ × . . .×JSnKW,ρKJ ), given by Definition 5.5 together

with an arrow 1→ JP (x1, . . . , xn)KW,ρKJ ;

Implication: if Jp1KW,ρKJ = A1 in KJ (W )(X) and Jp2KW,ρKJ = A2, then Jp1 ⊃
p2KW,ρKJ = AA1

2 in J (W )(X);

Universal: if Jρ(x)KW,ρKJ in J (W )(X, x :A), then J∀x :A . pKW,ρKJ = ∀X,AJpKW,ρ/xKJ in
J (W )(X).

We interpret the proof-objects as arrows in J (W )(X) by induction over the
structure of proof-objects, exploiting the cartesian closed structure of the fibres,
as follows:
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• JαφKW,ρKJ = pφ, the projection
∏n

i=1JφiK
W,ρ
KJ → JφKW,ρKJ ;

• Jδ1δ2KW,ρKJ = eval ◦ (Jδ1KW,ρKJ × Jδ2KW,ρKJ ), where eval is the application map;

• JIφδKW,ρKJ = λJδKW,ρKJ , where λ is the unique morphism guaranteed by expo-
nentiation;

• JδtKW,ρKJ = t∗JδKW,ρKJ ;

• JGx :S . δKW,ρKJ = ∀X,SJδKW,ρKJ .

We require, in order for the definition of interpretations by induction on the
syntactic structure of LT to work, the following syntactic monotonicity condition:
if JXKW,ρKJ is defined, then so is JX ′KW,ρKJ , for every subterm or subformula X ′

of X, where X ranges over the whole syntax of LT sequents. We also require
the following accessibility condition: if there is an arrow W

α−→ W ′ in W , then
J (W ′)(JXKW,ρKJ ) ∼= J (W ′)(JXKW

′,ρ
KJ ) and J (W )(JXKW,ρKJ ) ∼= J (W )(JXKW

′,ρ
KJ ). �

We give the term model as an example of a Kripke model for LT .

5.2.3 Term Model

We sketch the construction of a term model 〈KT , J−K−,ρKT 〉. For a fixed alphabet
A the category B(A) is defined as follows:

Objects: Contexts of the form x1 : S1, . . . xm : Sm, for m ≥ 0 (m = 0 gives the
unique empty context, 〈〉, the terminal object of B(A));

Arrows: Tuples of the form

x1 :S1, . . . , xm :Sm
〈t1,...,tn〉−−−−−→ y1 :T1, . . . , yn :Tn

such that, for each 1 ≤ i ≤ n, x1 :S1, . . . , xm :Sm `T ti :Ti. (Terms ti will
be of the form fis1 . . . smi . In particular, a variable x of sort S arises as an

arrow x :S
〈x〉−→ x :S.)

The posetal category of worlds, a subcategory of B(A) is defined just as in Defi-
nition 3.3.

Objects: The empty context, 〈〉, is an object of W . If X is an object of W and

there exists an arrow X
t−→ X,X ′ in B(A), then X,X ′ is an object of W ;

Arrows: There is an arrow X → X ′ if and only if X ⊆ X ′.
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At each world X, we take CX to be B(A). We then define Bop =
∐

X∈|W| C
op
X .

We show that CX has a product. We claim that given two objects, x1 :
S1, . . . , xm : Sm and y1 : T1, . . . , yn : Tn, their product is x1 : S1, . . . , xm : Sm, y1 :

T1, . . . , yn :Tn with projections x1 :S1, . . . , xm :Sm, y1 :T1, . . . , yn :Tn
〈x1,...,xm〉−−−−−−→ x1 :

S1, . . . , xm :Sm and x1 :S1, . . . , xm :Sm, y1 :T1, . . . , yn :Tn
〈y1,...,yn〉−−−−−→ y1 :S1, . . . , yn :

Sn.
Suppose that z1 : U1, . . . , zp : Up is another object in CX together with two

arrows z1 : U1, . . . , zp : Up
〈f1,...,fm〉−−−−−→ x1 : S1, . . . , xm : Sm and z1 : U1, . . . , zp :

Up
〈g1,...,gn〉−−−−−→ y1 : T1, . . . , yn : Tn. We show that there exists a unique arrow

z1 : U1, . . . , zp : Up
〈h1,...,hn+m〉−−−−−−−→ x1 : S1, . . . , xm : Sm, y1 : T1, . . . , yn : Tn such that

the diagram

z1 :U1, . . . , zp :Up

x1 :S1, . . . , xm :Sm �〈x1, . . . , xm〉
�

f

x1 :S1, . . . , yn :Tn

∃!h

?

〈y1, . . . , yn〉
- y1 :T1, . . . , yn :Tn

g

-

commutes. We begin by showing the existence of h. The arrow f is such that
for 1 ≤ i ≤ m, fi :Si is a term in LT . Similarly, for 1 ≤ i ≤ n, gi : Ti is a term
in LT . For the diagram to commute, we need xi ◦ hi = fi, for 1 ≤ i ≤ m¡ but
since xi ◦ hi = hi, we have that hi = fi for 1 ≤ i ≤ m. Similarly, hj+m = gj
for 1 ≤ j ≤ n. Thus we can define h to be 〈f1, . . . , fn, g1, . . . , gm〉. Uniqueness
follows, since if we were to chose another arrow k : z1 : U1, . . . , zp : Up → x1 :
S1, . . . , xm : Sm, y1 : T1, . . . , yn : Tn, then the same equalities hold and so k = h.
Hence B has a product.

We now show that CX has an exponential. We take XY = (x1 :S1, . . . ,
xm : Sm)(y1 :T1,...,yn :Tn) to be a candidate for the exponential together with the
evaluation arrow (x1 :S1, . . . , xm :Sm)(y1 :T1,...,yn :Tn) × (y1 :T1, . . . , yn :Tn)
〈f1x1...xn,...,fmx1...xn〉−−−−−−−−−−−−−→ (x1 :S1, . . . , xm :Sm), where each fi has sort T1, . . . , Tn → Si.
Let z1 :U1, . . . , zp :Up be an object in B and let (z1 :U1, . . . , zp :Up)×(y1 :T1, . . . , yn :

Tn)
〈g1,...,gm〉−−−−−→ x1 :S1, . . . , xm :Sm be an arrow in B. We need to show that there

exists a unique arrow h : z1 : U1, . . . , zp : Up → (x1 : S1, . . . , xm : Sm)(y1 :T1,...,yn :Tn)

such that the diagram
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z1 :U1, . . . , zp :Up (z1 :U1, . . . , zp :Up)× (y1 :T1, . . . , yn :Tn)

x1 :S1, . . . , xm :Sm

g

-

XY

∃!h

?

XY × (y1 :T1, . . . , yn :Tn)

h× 〈y1, . . . , yn〉

?
eva

l

-

commutes. We take h to be the map z1 :U1, . . . , zp :Up
〈(y1,...,yn)g1,...,(y1,...,yn)gm〉−−−−−−−−−−−−−−−−→ XY .

So that the diagram

z1 :U1, . . . , zp :Up, y1 :T1, . . . , yn :Tn

XY × (y1 :T1, . . . , yn :Tn)

〈(y1, . . . , yn)g〉 × 〈y〉

?

eval
- x1 :S1, . . . , xm :Sm

〈g1 , . . . , gm〉
-

commutes.
It should be clear that the above arrow is unique. Hence CX has an exponential

and is cartesian closed.
We define a functor T : [W , [Bop,V ]] as follows: at each object X = x1 :

S1, . . . , xm : Sm of W and each object ∆ = y1 : T1, . . . , yn : Tn of CX , we define a
category T (X)(∆) as follows:

T (X)(∆) =


Objects: Propositions φ such that Fv(φ) ⊆ Dom(X ./ ∆),
where ./ is defined analogously to syntactic merge in § 3;

Arrows: Proofs Φ such that φ
Φ−→ ψ if and only if

(X ./ ∆) φ `T Φ:ψ.

At each object Y of W and each arrow X ′
t−→ X, we define the functor t∗(=

T (W )(t)) : T (Y )(X) → T (Y )(X ′), as usual ((Lawvere 1970) and (Seely 1983))
this is given by substitution.

88



At each arrow X → X ′ of W , we must define a natural transformation
T (X)⇒T (X ′). As in the example constructed in § 3.2.1, inclusions will do:

∆ T (X)(∆) ⊂
I∆- T (X ′)(∆)

∆′

t

?

T (X)(∆′)

T (Y )(t)

?
⊂

I∆′

- T (X ′)(∆′)

T (X ′)(t)

?

We show that every fibre T (X)(∆) has a product. Let φ1 and φ2 be objects
in T (X)(∆), together with arrows φ1, φ2 → φ1 and φ1, φ2 → φ2. We show that

for all objects C and arrows C
f−→ φ1 and C

g−→ φ2 that there exists a unique
arrow h :C → φ1, φ2 such that the diagram

C

φ1
�

Φ

�

f

φ1, φ2

∃!h

?

Ψ
- φ2

g

-

commutes. Given proofs C `T φ1 and C `T φ2, it is possible to combine them
using meta-theoretic and to obtain a proof C `T φ1, φ2. We now show uniqueness.
Suppose we have another proof C `T φ1, φ2, then it is either equal to the above
proof or involves a detour, which we can resolve since all the inference rules in
LT satisfy the local reduction property, cf. S 7.

We show that every fibre T (X)(∆) has an exponential. We take φ ⊃ ψ as the
candidate for the exponential together with the evaluation arrow φ ⊃ ψ, φ→ ψ.

Let φ be an object in T (X)(∆) and τ, φ
Ψ−→ ψ be an arrow of T (X)(∆). We need

to show that there exists a unique arrow δ from τ to φ ⊃ ψ such that the diagram

τ τ, φ

ψ

Ψ

-

φ ⊃ ψ

∃!δ

?
φ ⊃ ψ, φ

δ, δ′

?
ev
al

-
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Since τ, φ `T ψ, we can conclude that τ `T φ ⊃ ψ which gives us the arrow
δ. This arrow is unique since any other proof τ `T φ ⊃ ψ will either be identical
or involve a detour. We can remove the detour because LT satisfies the local
reduction property.

We are now able to define a Kripke structure for LT , KT : [W , [B,V ]]. We
define the category V as follows:

Objects: Categories V built out of V = J (X)(∆), which contain

Objects: Arrows φ1 × . . .× φn → ψ in J (X)(∆);

Arrows: Arrows Γ→ ψ to Γ′ → τ are given by arrows Γ→ Γ′ in J (X)(∆).

Arrows: Functors f ∗ :KT (X)(∆) → KT (X)(∆′), where f : ∆′ → ∆ is an arrow
in T (X) are defined to be the the usual substitution.

It is straightforward to check that the functors f ∗ satisfy the definition. The
interpretation is taken to be the identity function in the fibres, in the base cate-
gories CX , we interpret a sort S by x :S.

5.2.4 Satisfaction

Satisfaction in Kripke models of LT follows a pattern similar to that for Kripke
Σ-λΠ-models. Since the base category is concerned only with terms, rather than
propositions as well, we can begin with the satisfaction of propositions, rather
than of consequences.

Definition 5.7 (‖−-satisfaction)
Let KJ , J−K−,ρKJ 〉, where KJ : [W , [[Bop,V ]], be a Kripke model of LT . The satis-

faction (forcing) relation W, ρ ‖−KJφ is defined by induction on the structure of
formulæ, as follows:

• W, ρ ‖−TJT p(X) if and only if there exists an arrow 1
f−→ Jp(X)KW,ρKJ in

J (W )(JSKW,ρKJ ), where X = {x1 :S1, . . . , xm :Sm} and S = S1 × . . .× Sm;

• W, ρ ‖−KJT φ ⊃ ψ if and only if, for all W
f−→ W ′, (W ′, ρ[f ] ‖−KJT φ implies

W ′, ρ[f ] ‖−KJψ );

• W, ρ ‖−KJT ∀x :S . φ if and only if, for all W
f−→ W ′ if, for all a ∈ JSKW,ρKJ and

terms t such that JtKW,ρKJ = a, W ′, ρ[x := a] ‖−TJT φ[t/x].

If Γ = φ1, . . . , φm, then we write W, ρ ‖−KJT Γ if, for each 1 ≤ i ≤ m, W, ρ ‖−KJT
φi. We write W, ρ ‖−KJT (Γ `T φ), or more commonly, W, ρ,Γ ‖−KJT φ, if W,

ρ ‖−KJT Γ implies W, ρ ‖−KJT φ. �
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The notion of satisfaction given above is a straightforward generalization of
the informal one discussed earlier. Moreover, it is monotone: if W, ρ ‖−KJT φ, if

W
f−→ W ′ and if JφKW ′ρ[f ]KJ is defined, then W ′, ρ[f ] ‖−KJT φ. More economically,

we have the following characterization of satisfaction.

Lemma 5.8 (‖−-forcing via global sections)
Let 〈KJ , J−K−,ρKJ 〉, be a Kripke model of LT . Let φ be a proposition with variables

in X of sorts S1, . . . , Sm. Let S = S1 × . . . × Sm. Then W, ρ ‖−KJT φ if and only

if there is an arrow 1
m−→ JφKW,ρKJ in J (W )(JSKW,ρKJ ).

Proof (Sketch) By induction on the structure of propositions. For example, sup-
pose φ = ψ1 ⊃ ψ2. The induction hypothesis gives arrows 1

m1−→ Jψ1(X)KW,ρKJ and

1
m2−→ Jψ2(X)KW,ρKJ in J (W )(JSKW,ρKJ ). Since J (W )(JSKW,ρKJ ) is cartesian closed, it

follows that there is an arrow 1 × Jψ1(X)KW,ρKJ → Jψ2(X)KW,ρKJ in J (W )(JSKW,ρKJ ).

Consequently, there is an arrow 1→ (Jψ2(X)KW,ρKJ )
Jpsi1(X)KW,ρKJ .

Conversely, given an arrow 1 → Jψ1(X) ⊃ ψ2(X)KW,ρKJ , it follows immediately

that the existence of an arrow 1→ Jψ1(X)KW,ρKJ implies the existence of an arrow

1→ Jψ2(X)KW,ρKJ .
The other cases are similar. �

5.2.5 Soundness and Completeness for ‖−
We readily obtain the following by induction on the structure of proofs:

Proposition 5.9 (Soundness for ‖−)
Let 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]], be any Kripke model of LT . If Γ `T
φ has a natural deduction proof, then, at every world W , we have W, ρ,Γ ‖−KJT φ.

Proof We proceed by induction on the structure of proofs in LT . We begin
with the axiom rule, i.e., φ ∈ Γ. We assume that W, ρ ‖−KJT Γ, i.e., W, ρ ‖−KJT φi
for all φi ∈ Γ, therefore, W, ρ ‖−KJT Γ implies W, ρ ‖−KJT φ and we are done.

We now assume that we have a proof of φ ⊃ ψ, i.e.,

Γ, φ `T ψ
⊃ I

Γ `T φ ⊃ ψ

We apply the induction hypothesis to obtain W, ρ,Γ, φ ‖−KJT ψ. This means that

we have W, ρ ‖−KJT φ and W, ρ ‖−KJT ψ, i.e., there are arrows 1
m1−→ JφKW,ρKJ and

1
m2−→ JψKW,ρKJ in J (W )(JXKW,ρKJ ). It follows that W, ρ ‖−KJT φ ⊃ ψ and hence

W, ρ,Γ ‖−KJT φ ⊃ ψ.
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We assume that the last rule used was

Γ `T φ Γ `T φ ⊃ ψ
⊃ E

Γ `T ψ

We apply the induction hypothesis to the premisses to obtain W, ρ,Γ ‖−KJT φ and

W, ρ,Γ ‖−KJT φ ⊃ ψ. Hence we have arrows 1 → JφKW,ρKJ and 1 → Jφ ⊃ ψKW,ρKJ .

It follows that we have an arrow 1 → JψKW,ρKJ and so we have W, ρ,Γ ‖−KJT ψ as
required.

Suppose that the last rule used was

Γ `T φ
∀ I

Γ `T ∀x :S . φ

We apply the induction hypothesis to obtain W, ρ,Γ ‖−KJT φ and thus there is an

arrow 1 → JφKW,ρKJ in J (W )(X, x : S). We can apply ∀X,S to obtain an arrow

1→ J∀x :S . φKW,ρ/xKJ in J (W )(X). Thus W, ρ,Γ ‖−KJT ∀x :S . φ.
Finally, we assume that the last rule used was

Γ `T ∀x :S . φ
∀ E

Γ `T φ[t/x]

We apply the induction hypothesis to obtain W, ρ,Γ ‖−KJ∀x:S . φ . Hence W, ρ ‖−KJT Γ

implies W, ρ ‖−KJT ∀x :S . φ. By Defintion 5.7, we have that W, ρ[x := a] ‖−KJT ∀x :

S . φ; we take f to be the identity. Hence W, ρ,Γ ‖−KJT φ[t/x]. �

We now prove a model existence lemma. It is worthwhile to contrast our proof
with that of Van Dalen (1994). We call a set ∆ of propositions prime if ∆ is closed
under `T . This is all we require of the usual definition of a prime theory, which
also requires disjunction and existence properties , since we are only dealing with
the {∀,⊃}-fragment. By a standard result ((Van Dalen 1994), Lemma 5.3.8, pp.
168-169), we can extend Γ to a prime Γ′ such that Γ′ 6`T φ. For this lemma,
just as in the corresponding lemma for Kripke λΠ-models (Lemma 3.39), we do
not require such a construction. This is because we will construct our model
not out of propositional consequence, but out of the proof-objects which realize
consequences. We consider, for each Γ, all propositions φ and all proofs Φ such
that Φ realizes, i.e., is a proof of φ from Γ.

Lemma 5.10 (Model Existence)
There exists a Kripke model of LT , 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]], with a

world W0 such that if Γ 6`T φ then W0, ρ ‖−KJT Γ and W0, ρ 6‖−KJT φ.

Proof The term model we constructed in § 5.2.3 is the required Kripke model
of LT . We take W0 = 〈〉. �
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Analogously to the first-order situation, cf. (Van Dalen 1994), or § 3.7, we
define Γ‖−Tφ as follows Γ‖−Tφ, where Γ = φ1, . . . , φm, if, for all Kripke models of

LT and all worlds W of KJ , W, ρ ‖−KJT Γ (i.e., W, ρ ‖−KJT φi, for each 1 ≤ i ≤ m)

implies W, ρ ‖−KJT φ.

Theorem 5.11 (Completeness for ‖−)
Γ‖−Tφ if and only if Γ `T φ has a natural deduction proof.

Proof

Only If This is soundness, Lemma 5.9.

If Suppose Γ 6`T φ, then Lemma 5.10 yields a contradiction. �

5.2.6 Soundness and Completeness for ‖→
The astute reader may have noticed that because we have a product in J (W )(U),
we can interpret conjunction. We extend our interpretation to include Jφ ∧
ψKW,ρKJ = JφKW,ρKJ × JψKW,ρKJ and add the following condition to the satisfaction rela-
tion:

Conjunction: w, ρ ‖−KJT φ ∧ ψ if and only if W, ρ ‖−KJT φ and W, ρ ‖−KJT ψ.

We can also extend the satisfaction of propositions to consequences as follows: if

Γ = φ1, . . . , φm, then W, ρ,Γ ‖−KJT φ if and only if, for all W
f−→ W ′, (W, ρ[f ]

‖−KJT
∧∧

Γ implies W, ρ[f ] ‖−KJT φ), where
∧∧

= φ1 ∧ . . . ∧ φm.

Lemma 5.12 (Satisfaction of Consequences)
Let 〈KJ , J−K−,ρKJ 〉 be any Kripke model of LT . If Γ = φ1, . . . , φm, then W, ρ,

∧∧
Γ

‖−KJT φ if and only if W, ρ,Γ ‖−KJT φ.

Proof Let Γ = φ1, . . . , φm. Since Γ‖−KJT φ, we know that for all worlds W , we

have that W, ρ ‖−KJT φi for 1 ≤ i ≤ m, implies W, ρ ‖−KJT φ. By the definition of

conjunction, we are able to rewrite W, ρ ‖−KJT φi, for 1 ≤ i ≤ m, as W, ρ ‖−KJT
∧∧

Γ.
For the converse, observe that this argument can be reversed. �

Now we see that our models have enough structure to interpret not only the
consequences but also the proofs, or realizers of consequences of LT (see also
(Seely 1983)). Let x1 : S1, . . . , xm : Sm and let X denote the set of variables
{x1, . . . , xm}. Let δ : (φ1(X), . . . , φm(X) `T φ(X)) be a natural deduction proof.

Let, for each 1 ≤ i ≤ m, JφiKW,ρKJ and JφKW,ρKJ be defined. If JδKW,ρKJ , the inter-
pretation of δ, is defined, then it is an object

(
m∏
i=1

JφiKW,ρKJ )
JδKW,ρKJ−−−→ JφKW,ρKJ
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in KJ (W )(JSKW,ρKJ ), defined by induction on the structure of natural deduction

proofs. We write W, ρ ‖→KJT δ : (Γ `T φ) if and only if

(
m∏
i=1

JφiKW,ρKJ )
JδKW,ρKJ−−−→ JφKW,ρKJ

is defined in KJ .
We have the following relationship between ‖→ and , ‖− . , ‖− is a special

case of ‖→ and, in the term model, we can obtain ‖→ from , ‖− . We now prove
soundness for ‖→.

Proposition 5.13 (Soundness for ‖→)
Let 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]] be any Kripke model for LT . If δ : (Γ `T
φ is a natural deduction proof and JδKW,ρKJ is defined, then W, ρ ‖→KJT δ : (Γ `T φ).

Proof We proceed by induction on the structure of proof-objects Firstly, we
consider the case where δ = αφ. Thus we have αφ : (Γ `T φ) and φ ∈ Γ. Since

J (W )(JSKW,ρKJ ) is cartesian closed, there exists a projection (
∏m

i=1JφiK
W,ρ
KJ )

JαφKW,ρKJ−−−−→
JφKW,ρKJ , thus W, ρ ‖−KJT φαφ : (Γ `T φ).

We assume that δ = δ1δ2. We apply the induction hypothesis and obtain

(
∏m

i=1JφiK
W,ρ
KJ )

Jδ1KW,ρKJ−−−−→ Jφ ⊃ ψKW,ρKJ and (
∏m

i=1JφiK
W,ρ
KJ )

Jδ2KW,ρKJ−−−−→ JφKW,ρKJ . Since these

are both arrows in J (W )(JSKW,ρKJ and Jφ ⊃ ψKW,ρKJ = (JψKW,ρKJ )
JφKW,ρKJ , we exploit eval-

uation in a cartesian closed category to obtain (
∏m

i=1JφiK
W,ρ
KK )

eval◦(Jφ1KW,ρKJ ×Jδ2KW,ρKJ−−−−−−−−−−−−−→
JψKW,ρKJ . Hence W, ρ ‖→KJδ1δ2:(Γ`Tψ) .

Suppose that δ = Iφδ. We apply the induction hypothesis to obtain (
∏m

i=1

JφiKW,ρKJ × JφKWKJ )
JδKW,ρKJ−−−→ JψKW,ρKJ . By definition, this is an arrow of J (W )(JSKW,ρKJ ).

We exploit the cartesian closed structure of J (W )(JSKW,ρKJ ) to obtain an arrow

(
∏m

i=1JφiK
W,ρ
KJ

λJδKW,ρKJ−−−−→ Jφ ⊃ ψKW,ρKJ . Hence W, ρ ‖−KJT Iφδ : (Γ `T φ ⊃ ψ).
We consider the case where δ = δt. Applying the induction hypothesis

yields (
∏m

i=1JφiK
W,ρ
KJ )

JδKW,ρKJ−−−→ J∀x : T . φKW,ρKJ . By definition, this is an arrow in

J (W )(JSKW,ρKJ ). We have a morphism JtKW,ρKJ : JT KW,ρKJ → JT KW,ρKJ , which induces t∗,

which sends (
∏m

i=1JφiK
W,ρ
KJ

JδKW,ρKJ−−−→ J∀x :T . φKW,ρKJ to (
∏m

i=1JφiK
W,ρ
KJ

t∗JδKW,ρKJ−−−−→
Jφ[t/x]KW,ρKJ . We use the first of the Beck-Chevalley conditions to obtain this

arrow. We now have W, ρ ‖→KJT δt : (Γ `T φ[t/x]).
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Finally, we have the proof-object Gx : A . δ. We apply the induction hy-

pothesis to obtain (
∏m

i=1JφiK
W,ρ
KJ

JδKW,ρKJ−−−→ JφKW,ρKJ . By definition, this is an ar-

row in J (W )(JS × AKW,ρKJ ). We apply the functor ∀S,A to obtain an arrow

(
∏m

i=1JφiK
W,ρ
KJ )

∀S,AJδKW,ρKJ−−−−−−→ J∀x :A . φKW,ρKJ since x :A /∈ FV (A). Hence W, ρ ‖→KJT
Gx :A . δ : (Γ `T ∀x :A . φ). �

Lemma 5.14 (Model Existence for ‖→)
There exists a Kripke model of LT , 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]], and a
world W0 such that if there does not exists a natural deduction proof δ : (Γ `T φ),
then W0, ρ 6‖→KJT δ : (Γ `T φ).

Proof Again we use the term model we constructed in § 5.2.3. World W0 = 〈〉
gives the required condition. �

We write (‖→)T δ : (Γ `T φ) if and only if for all Kripke models KJ and all
worlds W , we have that W, ρ ‖→KJT δ : (Γ `T φ).

Theorem 5.15 (Completeness for ‖→)
‖→T ` δ : (Γ `T φ) if and only if δ : (Γ `T φ) is a natural deduction proof and

JδKW,ρKJ is defined.

Proof

Only If By Soundness, Proposition 5.13.

If Suppose that δ : (Γ `T φ) is not a natural deduction proof, then Lemma 5.14
yields a contradiction.

�

5.3 Propositions-as-types Isomorphism

We are now able to set up the propositions-as-types isomorphism, an indexed
isomorphism between suitable Kripke models, induced by the propositions-as-
types correspondence. Gardner (1992a) provides similar models and morphisms
between models to ours; she does not have the worlds structure.

We begin with the definition of an indexed functor, between indexed cate-
gories.

Definition 5.16 (Indexed Functors)
Let F : [W , [Aop, C]] and G : [X , [Bop, C]] be strict indexed categories. An indexed
functor from F to G consists of a triple

τ = (α, β, (εW )W∈|W|),
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where α : W → X , β : A → B are functors and, for each object W in W ,
εW :F(W )⇒ βop;G(W ) is a natural transformation such that for each f :v → w
in W , the diagram

v F(v) =====
εW ⇒ βop; G(α(w))

w

f

?
W(w)

F(f)�
wwwwwwww

====
εW
⇒ βop; G(α(w))

G(α)(f)�
wwwwwwww

commutes �

Our definition of an indexed functor is similar to that found in (Gardner
1992a). Our definition has a triple (α, β, (εw)w∈|W|) whereas Gardner only has
a pair (σ, σbase), where σ is a natural transformation. This is because we have
two levels of indexing in our Kripke λΠ-model and so require an extra functor at
the second indexing category. We also have a coherence condition on the natural
transformations, unlike Gardner. This ensures that a transition between worlds
has the same effect as applying the corresponding transition after the appropriate
natural transformation.

Definition 5.17 (Indexed Isomorphism)
An indexed functor τ = (α, β, (εW )W∈|W|) is an indexed isomorphism if α and β
are isomorphisms and each εW is a natural isomorphism. �

To avoid confusion, from now on we use RS : [X , [Eop,U ]] to refer to Kripke
structures for LT .

Definition 5.18 (Category of Models)
We define a category M of models as follows:

Objects: Equational Kripke Σ-λΠ-models, 〈KJ J−K−KJ 〉, and Kripke models of

LT , 〈RS , J−K−,ρRS 〉;

Arrows: There are four cases:

1. An arrow
〈KJ , J−K−KJ 〉

h−→ 〈K′J ′ , J−K−K′J ′ 〉

is given by an indexed functor (α, β, (εW )W∈|W|) :KJ → K′J ′ such that
if αW = W ′, then h(JXKWKJ ) = JXKW ′K′J ′ ;

2. An arrow
〈RS , J−K−,ρRS 〉

h−→ 〈R′S′ , J−K−,ρ
′

R′S′
〉
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is given by an indexed functor (α, β, (εx)x∈|X |) :RS → R′S′ such that

if αx = x′, then h(JXKx,ρRS ) = JXKx
′,ρ′

R′S′
;

3. An arrow
〈KJ , J−K−KJ 〉

h−→ 〈RS , J−K−,ρRS 〉

is given by an indexed functor (α, β, (εW )W∈|W|) : KJ → RS such that
if αW = x, then h(J{{X}}KWRS ) = JXKx,ρRS ;

4. An arrow
〈RS , J−K−,ρRS 〉

h−→ 〈KJ , J−K−KJ 〉

is given by an indexed functor (α, β, (εx)x∈|X |) :RS → KJ such that if
αx = W , then h(JXKx,ρRS ) = J{{X}}KWKJ . �

Proposition 5.19 (M is Well-defined)
The category M defined in Definition 5.18 is well-defined.

Proof We have to show the following: there exists an identity; for all arrows
f and g, with appropriate domains and co-domains, f ◦ g is also an arrow inM;
composition is associative.

For the identity, we take the indexed functor which consists of the identity
functors and natural transformations.

We have to show that given arrows h1 : 〈KJ , J−K−KJ 〉 → 〈RS , J−K−,ρRS 〉 and

h2 :〈RS , J−K−,ρRS 〉 → 〈K
′
J ′ , J−K−K′J ′ 〉, which consist of indexed functors (α1, β1,

(ε1w)w∈|W|) and (α2, β2, (ε
2
x)x∈|X |) respectively, the composition h2◦h1 :〈KJ , J−K−KJ 〉

→ 〈K′J ′ , J−K−K′J ′ 〉 is an indexed functor and if α2 ◦ α1(W ) = W ′, then h2 ◦
h1(JXKWKJ ) = JXKW ′K′J ′ . h2 ◦ h1 is the indexed functor (α2 ◦ α1, β2 ◦ β1, (ε

2
α1(w) ◦

ε1w)w∈|W|) . If α2◦α1(W ) = W ′, then α1(W ) = x and α2(x) = W ′, So we have that
h1(J{{X}}KWKJ ) = JXKx,ρRS and h2(JXKx,ρRS ) = J{{X}}KW ′K′J ′ , hence h2 ◦ h1(JXKWKJ ) =

JXKW ′K′J ′ .
We now show that given arrows h1 :〈RS , J−K−,ρRS 〉 → 〈KJ , J−K−KJ 〉 and h2 :〈KJ ,

J−K−KJ 〉 → 〈R
′
J ′ , J−K−,ρR′S′ 〉, which consist of indexed functors (α1, β1, (ε

1
x)x∈|X |)

and (α2, β2, (ε
2
w)w∈|W|) respectively, the composition h2 ◦ h1 : 〈RS , J−K−,ρRS 〉 →

〈R′S′ , J−K−,ρR′S′ 〉 is an indexed functor and if α2◦α1(x) = x′, then h2◦h1(JXKw,ρRS ) =

JXKw
′,ρ′

R′S′
. h2 ◦ h1 is the indexed functor (α2 ◦ α1, β2 ◦ β1, (ε

2
α1(x) ◦ ε1x)x∈|X |). Let

α1(x) = W and α2(W ) = x′, then α2 ◦ α1(x) = x′. Also h1(JXKx,ρRS ) = J{{X}}KWKJ
and h2(J{{X}}KWKJ ) = JXKx

′,ρ′

R′S′
. We thus have h2 ◦ h1(JXKx,ρRS ) = JXKx

′,ρ′

R′S′
.

The other cases are straightforward. Associativity follows from the fact that
the composition of two indexed functors (α1, β1, (ε

1
x)x∈X) and (α2, β2, (ε

2
w)w∈W ) is

defined to be (α2 ◦ α1, β2 ◦ β2, (ε
2
α1(x) ◦ ε1x)x∈X). �

The definition of Kripke prestructures and prestructures, for both the λΠ-
calculus and the internal logic, involve the categories satisfying certain properties.
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The parts of the categories which satisfy these properties are those which interpret
the syntax of either the λΠ-calculus or the internal logic. We restrict our attention
to morphisms between these parts of the Kripke models.

Before we are able to show the existence of an isomorphism of models between
a Kripke λΠ-model and a Kripke model of LT , we need one further restriction.
The Kripke λΠ-models have more structure in the Kripke λΠ-prestructure than
the Kripke-prestructure for LT . The extra structure allows us to interpret re-
alizations of the form ∆

σ−→ Θ in the Kripke λΠ-model, while we are only able

to interpret realizations of the form Γ
δ−→ φ in a Kripke model of LT . We thus

restrict to the arrows in the Kripke λΠ-models which interpret realizations of the

form ∆
σ−→ x :A, which correspond to realizations Γ

δ−→ φ under the propositions-
as-types correspondence.

We are now in a position to define an isomorphism of models.

Definition 5.20 (Isomorphism of Models)
Let 〈KJ , J−K−KJ 〉 and 〈RJ , J−K−,ρRS 〉 be objects of M. Let h : 〈KJ , J−K−KJ 〉 →
〈RS , J−K−,ρRS 〉 be a morphism of models. We say that h is an isomorphism of
models if the indexed functor (α, β, (εw)w∈|W|) :KJ → RS (corresponding to h) is
an indexed isomorphism when its domain is restricted to those objects and arrows
in KJ which interpret the syntax of the λΠ-calculus excluding realizations of the
form ∆ → z : A and its range is restricted to those objects and arrows in RS
which interpret the syntax of LT . �

Proposition 5.21 (Propositions-as-types Isomorphism)
Let T be a theory of the {∀,⊃}-fragment of many sorted minimal first-order logic

and let 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], be a Kripke ΣLT -λΠ-model, where
ΣLT is the λΠ-signature in propositions-as-types correspondence with LT . Then
there is a Kripke model for LT , 〈RS , J−K−,ρRS 〉, where RS : [X , [Eop,U ]], together
with an isomorphism of models

h :〈KJ , J−K−KJ 〉 → 〈RS , J−K−,ρRS 〉

induced by the propositions-as-types correspondence. Specifically, abusing nota-
tion by allowing X to range over all the syntax of LT and suppressing information
above worlds, if JXKx,ρRS and J{{X}}KWRS are defined, then

h(J{{X}}KKJ ) = (JXKRS ).

Proof (Sketch) Given 〈KJ , J−K−KJ 〉, we sketch the construction of RS , together
with an indexed isomorphism (α, β, (εw)w∈|W|) :KJ → RS .

• We take X =W with α = 1W . It should be clear that α is an isomorphism.

• We take E to be the subcategory of D defined as follows:
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Objects: objects D of D such that D = J{{T}}KWKJ , where T is a sort of
LT ;

Arrows: all arrows in D whose domains and co-domains are objects of E .

We define the functor β : D → E to be the functor which is the identity
functor on all objects and arrows in D which are also in E and sends any
other objects in D to the terminal object in E and any other arrows in D
to the identity arrow on the terminal object in E . It should be clear that β
is an isomorphism.

• We take U and U to be the subcategories of V and V defined as follows:

Objects of U : objects J (W )(D) in V such that for each object A in J (W )
(D), where A = J{{φ}}KWKJ and φ is a formula in LT , and for each arrow

A
m−→ B in J (W )(D), m = J{{Φ}}KWKJ , where Φ is a proof in LT ;

Arrows of U : arrows in V whose domain and co-domain are objects in U .

We could now define an (indexed) isomorphism of Kripke λΠ-prestructures,
with the obvious family of natural transformations, however, we instead
turn to the category U .

Objects of U : objects KJ (W )(D) of V where for each object A → A in
KJ (W )(D), A→ A = J{{δ}}KWKJ , where δ is a natural deduction proof
in LT ;

Arrows of U : arrows of V whose domains and co-domains are objects of
U .

This completes our construction of RS and it is straightforward to show that
RS is a Kripke structure for LT . We continue with the construction of an in-
dexed isomorphism (α, β, (εw)w∈|W|). We now define a family of natural trans-
formations (εw)w∈|W| : KJ (w) ⇒ βop;RS(α(w)). We fix w and define each
component of εw, ηwa : KJ (w)(a) → (βop;RS(α(w)))a, where a ∈ |D|, to be
the functor which is the identity functor on objects and arrows in KJ (w)(a)
which are also in RS(α(w))(βop(a)) and sends objects in KJ (w)(a) which are
not in RS(α(w))(βop(a)) to the terminal object in RS(α(w))(βop(a)) and ar-
rows in KJ (w)(a) which are not in RS(α(w))(βop(a)) to the identity arrow on
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RS(α(w))(βop(a)). We need to show that the diagram

a KJ (w)(a)
ηwa- RS(α(w))(βop(a))

b

f

?
KJ (w)(b)

KJ (w)(f)

?

ηwb
- RS(α(w))(βop(b))

RS(α(w))(βop(f))

?

commutes. This follows from the definition of ηw−. It should be clear that each
εw is a natural isomorphism.Once we have shown that the diagram

v KJ (v) ====
εv ⇒ βop;RS(α(v))

w

f

?
KJ (w)

KJ (f)�
wwwwwwww

====
εw
⇒ βop;RS(α(w))

RS(α(f))�
wwwwwwww

commutes, we have shown that (α, β, (εw)w∈|W|) is an indexed isomorphism. The
commutativity of the diagram follows from the definition of each natural trans-
formation εw.

It remains to show that there is a Kripke model of LT which uses RS and
that there is an isomorphism of models h. We use the propositions-as-types
correspondence and the interpretation function J−K−KJ to define the interpretation

function J−K−,ρRS . Letting X range over the syntax of LT , we define JXKx,ρRS =

Jε(X)KwKJ , where α(w) = x. Showing that 〈RS , J−K−,ρRS 〉 is a Kripke model of LT
is straightforward. h is then defined to be the morphism of models which sends
〈KJ , J−K−KJ 〉 to 〈RS , J−K−,ρRS 〉 using the indexed isomorphism (α, β, (εw)w∈|W|). We
observe that the required condition on the interpretation function holds for h to
be a morphism of models. �

5.4 Kripke Models vs. Classical Models

We conclude this chapter with a reconstruction, in the dependently typed setting,
of a simple but pleasing result formulated for models of the simply typed λ-
calculus by Mitchell & Moggi (1991).

We need to extend the internal logic to include negation. We do this in a
standard, semantic, way by introducing a proposition ⊥ such that, for every
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Kripke model 〈KJ , J−K−,ρKJ 〉 of LT and every world W ,

W, ρ 6‖→KJT ⊥,

i.e., there is no model 〈KJ , J−K−,ρKJ 〉 with any world W in which there is an arrow

1 → J⊥KW,ρKJ , for any set of variables. We then define the usual intuitionistic
negation, ¬φ =def φ ⊃ ⊥.

In order to establish that there are Kripke models of LT which do not arise
as a Kripke quotient of a classical model, we shall not need to go beyond models
that are based on our (set-theoretic) applicative structures. Moreover, we shall
restrict our attention to applicative structures with families, q.v. § 4.1.2. The
consequence of this restriction, from the point of view of LT , is that we are able
to interpret not consequences but just propositions. However, such models admit
the usual (typed) first-order existential quantifier, i.e., for LT , the existential
quantifier can be interpreted, at each variable x : S, as a functor which is left

adjoint to the inverse image of the projection X, x : S
pX,S−−→ X, and for λΠ, the

existential quantifier can be interpreted as a functor, that is left adjoint to the
inverse image of the projection JΓ, x : SKWKJ

p−→ JΓKWKJ . Elementarily equivalent
means that any sentence satisfied in one model is satisfied in the other.

Theorem 5.22 (Kripke Models are Non-classical)
There is an equational Kripke Σ-λΠ= -applicative structure U which is not el-
ementary equivalent to any V/R, where V is any classical Σ-λΠ=-applicative
structure and R is any Kripke Σ-λΠ=-partial logical equivalence relation on V.

Proof (Sketch) We give a proposition φ in LT , extended with ⊥ as described
above, which is valid in all quotients V/R but which is not valid in every U .

The idea is for φ to be a predicate which characterizes the inhabitation of a
type, i.e.,

• if empty(p) and ¬¬ inhabited(p ⊃ q), then inhabited(p ⊃ q),

where inhabited(τ) ≡ (∃x :τ . x = x) and empty(τ) ≡ ¬ inhabited(τ). This holds
in a classical Σ-λΠ=-applicative structure, but is not intuitionistically valid. �
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Chapter 6

Introduction to to Logical
Frameworks

In this chapter, we provide an introduction to one of the key ideas in this thesis;
that of a logical framework. Logically, logical frameworks can be seen as arising
from Martin-Löf’s intuitionistic theory of iterated inductive definitions ((Martin-
Löf 1971) and (Martin-Löf 1975)) in which form and inductive definitional status
in the natural deductive rules are considered. In other words, Martin-Löf provides
a formal meta-theory of inference rules. This theory is further developed by
extending Kant’s (1800) notion of a judgement in (Martin-Löf 1982).

Computationally, the need for a formal account of the relationship between
a logic and its meta-theory arises from the desire, in computer science, to ma-
nipulate representations of logics and other formal systems. Here we are mainly
concerned with logics. Our conception of logic here is a broad one, it is possible
to consider the linear λ-calculus with equality judgements as a logic; for example.
In order to represent a logic in a machine, the logic must be described in a pro-
gramming language or metalogic. Moreover, if we are to understand the resulting
program, we must have a fixed metalogic.

We develop our account of logical frameworks from their philosophical basis.
Our starting point is Kant’s notion of a judgement, with Martin-Löf’s extension
to higher-order judgements providing the motivation for the notion of a logi-
cal framework. We then proceed to discuss the LF logical framework. All the
material in this chapter can be found in the relevant literature. Our method
of presentation is slightly unusual in that we start our presentation from the
philosophical viewpoint.

6.1 Kant’s Notion of a Judgement

The term judgement, in the sense in which we shall use it, was first used by
Kant (1800) in his lecture notes on logic. According to analysis by Martin-Löf
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(1982), Kant uses the term urteil (judgement) instead of proposition. Proposition
here meaning the thing that we prove. The origin of the word proposition, used
in this sense, comes from the Greek πρoτασις first used by Aristotle in the
Prior Analytics, the third part of the Organon.The result of Kant using the word
‘judgement’ means that in the German philosophical tradition, a proof (beweis)
is always a proof of a judgement. So given the natural deduction inference rule
for modus ponens:

φ φ ⊃ ψ
MP

ψ

we can think of the premisses φ and φ ⊃ ψ as being judgements. The actual
judgements, however, are hidden within this presentation, since φ, φ ⊃ ψ and ψ
are not themselves judgements. The judgements are that φ, φ ⊃ ψ and ψ are
true. By true, we mean that we have a proof of each proposition. The proof of
ψ is obtained or constructed from the proofs of φ and φ ⊃ ψ. Viewing inference
rules in this way leads to the Brouwer- Heyting-Kolmogrov (BHK) interpretation
(cf. (Brouwer 1924a), (Brouwer 1924b), (Heyting 1934) and (Kolmogorov 1932)).
We will write true(φ) for the judgement ‘φ is true’. Here we are not concerned
which logical system we are working with; for any logical system, a proposition
is true whenever there exists a proof of that proposition.

When we explicitly write out the judgements used in a logical system, we call
the system a judged proof system. In judged proof systems, we will write inference
rules with explicit judgements. The natural deduction inference rule for modus
ponens thus becomes

true(φ) true(φ ⊃ ψ)
MP

true(φ)

in a judged proof system. We allow multiple judgements in our systems because
some systems have more than one notion of truth. Modal logics; for example,
have true and valid formulæ. For more examples of systems with more than one
consequence relation, see (Avron 1991).

As we mentioned above, the inference rules are viewed as being constructive.
An inference rule takes proofs of its premisses and, from them, constructs a proof
of its conclusion. We stress that even though we are thinking of inference rules in
a constructive sense, the proofs themselves are not restricted, there is no reason
proofs cannot be classical; for example.

6.2 Martin-Löf’s Higher-Order Judgements

In a lecture series in Sienna, Martin-Löf (1982) introduced two higher-order judge-
ments. These higher-order judgements will allow us to describe inference rules in
terms of judgements. This presentation is a development of his earlier work on
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iterated inductive definitions, (Martin-Löf 1971). The first of these two judge-
ments is the hypothetical judgement. This judgement corresponds to logical con-
sequence. A hypothetical judgement is a statement of the form: given a collection
of judgements, we can infer another judgement, i.e.,

J1, . . . , Jn ` K.

The link to an inference rule is clear, we can take the premisses to be the judge-
ments on the left hand side of the turnstile and the conclusion to be the judgement
on the right hand side. We have, however, only shown an instance of an inference
rule is a hypothetical judgement. An inference rule is actually a schema since
it holds for all suitable propositions. The second of Martin-Löf’s higher-order
judgements deals with this quantification.

The second higher-order judgement introduced by Martin-Löf is the general
judgement, which corresponds to universality. A general judgement is a statement
of the form: for all elements of a syntactic category, contained within a judgement
the judgement holds; that is, we quantify over all elements within a judgement
to obtain a general judgement. Stating this syntactically, we have

Λx ∈ C . J(x)

where the Λ is quantification and C is a syntactic category. Clearly, the general
judgement will allow us to capture the universal nature of the judgements involved
in an inference rule; that is, they hold for all propositions.

We combine these two judgements to obtain the hypothetico-general judgement
which corresponds directly to an inference rule. A hypothetico-general judgement
has the following form:

Λx ∈ C . J1(x), . . . , Jn(x) ` J(x)

which can be viewed as a schema. In fact, hypothetico-general judgements are
sufficient to derive any inference rule. Returning to the example of modus ponens,
we see that

φ φ ⊃ ψ
MP

ψ

corresponds to the hypothetico-general judgement

Λφ, ψ ∈ Prop . true(φ), true(φ ⊃ ψ) ` true(ψ)

where Prop is the syntactic category of propositions. Modus ponens does not
involve discharge, and there is an important point we need to make about rules
which involve a discharge of an assumption. A natural deduction proof is a
tree with nodes labelled with inference rules and the values of their parame-
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ters together with a discharge function. We are not concerned in describing the
discharge function but we are interested in how rules involving discharge are de-
scribed in terms of judgements. When we have a rule involving discharge, the
proof involving the assumption is a hypothetical judgement. The following ex-
ample illustrates this: we take the natural deduction rule for ⊃ I and describe it
in terms of judgement, where the discharged assumption is a nested hypothetical
judgement.

[φ]
···
ψ
⊃ I

φ ⊃ ψ

corresponds to the hypothetico-general judgement

Λφ, ψ ∈ Prop . (true(φ) ` true(ψ)) ` true(φ ⊃ ψ)

where we see that the discharge of φ is handled by the nested hypothetical judge-
ment. This example also makes clear that the judgements used in hypothetico-
general judgements can themselves be higher-order. We refer to the judgements
described by Kant as basic judgements to distinguish them from the higher-order
judgements of Martin-Löf.

We claimed that hypothetico-general judgements are sufficient to describe
any natural deduction inference rule. We justify this claim by showing that
hypothetico-general judgements can describe the general natural deduction in-
troduction and elimination rules of (Prawitz 1978). The rule for modus ponens
is not in this general form and in fact is a special case which we do not discuss
here. A general natural deduction introduction rule is given by schemata of the
form

···
ψi1 · · ·

[ψij,1] · · · [ψij,hij ]···
ψij · · ·

···
ψipi

# I
#(φ1, . . . , φn)

for 1 ≤ i ≤ s. The general elimination rule is given by the schema

#(φ1, . . . , φn)

[Γ1]
···
ψ · · ·

[Γs]···
ψ

# E
ψ

where each Γi is of the form (ψi1,1, . . . , ψ
i
i,hi1
` ψi1), . . . , (ψipi,1, . . . , ψ

i
pi,hipi

` ψipi).
The introduction rule is described by the following hypothetico-general judge-
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ment:

Λψi1, . . . , ψ
i
pi
, ψi1,1, . . . , ψ

i
pi,hipi

, φ1, . . . , φn ∈ Prop . (true(ψi1,1), . . . , true(ψi1,hii
)

` true(ψi1)), . . . , (true(ψipi,1), . . . , true(ψipi,hipi
) ` true(ψipi)) ` #(φ1, . . . , φn),

while the elimination rule is given by the hypothetico-general judgement:

Λψ, ψ1
1,1, . . . , ψ

s
ps,hsps

, ψ1, . . . , ψn ∈ Prop . true(#(φ1, . . . , φn)), ((true(ψ1
1,1),

. . . , true(ψ1
1,h1

1
) ` true(ψ1

1)), . . . , (true(ψ1
p1,1

), . . . , true(ψ1
p1,h1

p1
) ` true(ψ1

p1
))

` true(ψ)), . . . , ((true(ψs1,1), . . . , true(ψs1,hs1) ` true(ψs1)), . . . , (true(ψsps,1), . . . ,

true(ψsps,hsps ) ` true(ψsps)) ` true(ψ)) ` true(ψ)

The rules of Hilbert-type systems can also be expressed in terms of judge-
ments. The axioms are general judgements and the rules are hypothetico-general
judgements.

6.3 The Notion of a Logical Framework

A logical framework formalizes the informal discussion above. In order to describe
a logical framework, we must (Ishtiaq & Pym 2002) have methods of

1. Characterizing the class of (object-)logics to be represented;

2. Describing a meta-logic or language, together with its meta-logical status
vis-à-vis the class of object-logics;

3. Characterizing the representation mechanism.

We remark that these components are not entirely independent of each other.
The above prescription can be summarized by the slogan:

Framework = Language + Representation

Our starting point for understanding the representation mechanism is that log-
ical inference rules can be expressed in terms of judgements as we described
in the previous section. The judgements-as-types correspondence is the formal
way of expressing this (informal) observation. We take the judgements-as-types
correspondence as our representation mechanism. There are other representa-
tion mechanisms: worlds-as-parameters, which we discuss in detail in § 9, and
no assumptions (Avron et al. 1997). For now, we concern ourselves with the
judgements-as-types correspondence. To be able to formally express an inference
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rule in terms of judgements, we need a language in which to express them. This
language will be a typed λ-calculus. To be able to represent hypothetico-general
judgements as types, we need a dependently typed λ-calculus. One can use any
dependently typed λ-calculus from the λ-cube (Barendregt 1992) as a language
provided it is given a signature.

6.4 The LF Logical Framework

In this section, we provide an overview of the LF logical framework. This logical
framework is the one presented in (Harper et al. 1987) and (Harper et al. 1993).
The language is the dependently typed λ-calculus, λΠ(cf. § 2. In the literature,
we find that any logical framework which has the same proof-terms as LF is
called LF, regardless of the language and the representation. This can be quite
confusing since they are technically different logical frameworks. We will follow
the literature in using LF as the name of a family of logical framework, although
we will make it clear which representation mechanism and language we are using
at any given point.

The main representation mechanism we will use is that of judgements-as-
types. The two higher- order judgements: the hypothetical, J1, . . . , Jn ` K and
the general Λx ∈ C . J(x), correspond to the ordinary and dependent function
spaces respectively. The methodology of judgements-as-types is that judgements
are represented by the type of their proofs. A logical system L is represented
by a signature in the type theory which assigns kinds and types to a finite set
of constants that represent its syntax, judgements and rule schema. An object-
logics rules and proofs can be seen as primitive proofs of hypothetico-general
judgements. Hypothetical judgements J1, . . . , Jn ` K are represented by the type
(J1 → . . . → Jn) → K and general judgements Λx ∈ C . J(x) are represented
by the type Πx : C . J; hypothetico-general judgements are represented by the
combination of these two types.

We contend that it is important to formulate the judgements-as-types corre-
spondence in two steps, based on the work in (Avron et al. 1997), – identifiable
formally for LF in (Harper et al. 1993) only for particular cases of (classical) first-
and higher-order natural deductions – as follows:

1. Consider object-logics as systems for deriving not propositions but rather
judged propositions, cf. § 7;

2. Consider a correspondence between the judged propositions and types in
the language of the framework constructed over a signature containing type-
constructors corresponding to each judgement of the object-logic, cf. § 8.

With this formulation, LF’s representation of object-logics now goes as follows:
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An object-consequence, in logic L, is written

X, y1 : j1(φ1), . . . , yn : jn(φn)︸ ︷︷ ︸
∆

`L δ : j(φ)

where ji and j are judgements, ∆ is a set of proof-variables, X is the set of
syntactic variables that occur in the formulæ and δ is a proof-object. This
object-consequence corresponds, in the language of the framework, to a meta-
consequence

ΓX ,Γ∆ `ΣL Mδ : j(φ)

where ΓX corresponds to the set X of syntactic variables, Γ∆ corresponds to
the set ∆ of proof-variables, Mδ is a λΠ-term corresponding to the proof-object
δ, which we sometimes call a proof-term. We deliberately write the context
as ΓX ,Γ∆ to emphasize the fact that the two parts have come from the set of
syntactic variables and the set of proof-variables.

The propositions-as-types correspondence for the {∀,⊃}-fragment of many
sorted minimal first-order logic can be seen as a special case of the judgements-
as-types correspondence, where each ji(= j) = proof. This point of view will
become apparent when we look at morphisms between Kripke models in § 9.
We will often refer to the propositions-as-types correspondence as a different
representation mechanism.

Roughly speaking, LF is concerned with those Hilbert and natural deduction
systems for which the correspondence is uniform. The basic idea is that an
encoding of a logic L is uniform if there is a surjection from consequences

X ∆ `L δ : j(φ)

in L to consequences
Γ `ΣL M :A

in ΣL. The term uniform comes from (Harper, Sannella & Tarlecki 1994) but their
notion is stronger than ours, requiring quantification over all possible signatures.

One property of representation is that the encoded version of an object-logic
inherits the structural properties, such as weakening and / or contraction, of the
language of the logical framework. For example, suppose that ΣL is a uniform
encoding of L, and that

ΓX ,Γ∆ `ΣL Mδ : j(φ)

is the image of the object-consequence

X ∆ `L δ : j(φ)

where δ should be read as the realizer of the consequence.
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In the λΠ-calculus, weakening is admissible, so that if

ΓX ,Γ∆ `ΣL Mδ : j(φ)

is provable, then so is
ΓX ,Γ∆,ΓΘ `ΣL Mδ : j(φ)

(provided ΓX ,Γ∆,ΓΘ is well-formed). By uniformity of ΣL,

ΓX ,Γ∆,ΓΘ `ΣL Mδ : j(φ)

is then the image of the object-consequence

X,∆,Θ `L δ′ : j(φ).

Consequently, LF is unable to uniformly encode relevant or substructural
((Schröder-Heister & Dŏsen 1993) and (Read 1988)) logics such as intuitionistic
linear logic (Girard 1987). A logical framework, also based on the judgements-
as-types notion of representation, which is able to uniformly encode intuition-
istic linear logic has been presented in (Ishtiaq & Pym 1998). A linear logical
framework has also been presented in (Pfenning 2002).

Given a representation in a logical framework, we are interested in the rela-
tionship between object-consequence and the encoded-consequence. To ensure
that we have encoded the object-consequence, we show that the encoding is ad-
equate. An adequate encoding is one in which the encoding does not introduce
any additional entities, i.e., full, and encodes all entities uniquely, i.e., faithful.
Issues surrounding representation will be discussed in more detail in § 8.
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Chapter 7

LF’s Object-Logics

Following on from the previous chapter, we present a characterization of object-
logics that are suitable for representation in LF using the judgements-as-types
method of representation. We begin this chapter with an extended example which
will provide the intuition for our characterization. Object-logics are abstractly
characterized by their correct consequences. In our case, this is done via a judged
consequence relation. We access the correct consequences of a logic through
proof systems and classes of models and satisfaction. Proof systems and classes
of models are developed separately, with soundness and completeness results
bringing together the two presentations.

The extended example is taken from (Avron et al. 1997). The presentation
of a judged proof system builds on known results about proof systems but our
use of judgements is original. There is a presentation of a similar system in
(Gardner 1992b), (Aczel 1980) and (Martin-Löf 1971). The characterization of
an object-logic in terms of Kripke models builds on known results in categorical
logic and correspondence theory.

7.1 Background

As we have seen, the LF logical framework is intended to provide a formal meta-
theory for Hilbert-type and natural deduction presentations of logical systems.
Indeed, it seems that, (Pfenning 2000), notwithstanding, LF does not provide a
suitable metatheory for logical systems based on sequent calculi (Gentzen 1934).
We describe representations of sequent calculi in LF in § 12.

Let us suppose, that for some language L, we have a Hilbert-type or natural
deduction system L. The basic idea of a proof in such a system is that of a labelled
tree. The labels of the tree are formulæ of L. Successor nodes are generated by
the axioms and inference rules of L subject to the following condition:
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(∗) The formula which labels a node which is not a leaf must follow from
the formulæ which label its successors by one of the inference rules of L.

Such systems are said to be pure ((Avron 1991) and (Avron et al. 1997)) if
the condition (∗) has the following localness property: that at a given node, it
can be checked by examining just that node and its successors. Examples of
rules which fail to have this localness property are the �-rule of the standard
Hilbert presentation of S4, which requires the global condition that the premiss
be a theorem, and �-I in Prawitz’s (1965) natural deduction system for S4,
which requires the global condition that all hypotheses have �-outermost. In a
Hilbert-type system, any rule of proof, i.e., a rule with no side-formulæ, is also
an example. Rules with side-formulæ are called rules of derivation. Systems
which require such global conditions in order to determine correctness are said
to be impure. From the point of view of logical frameworks, impure systems are
problematic for at least the following two reasons: firstly, from a structural point
of view, the formal description of global conditions may require ad hoc additions
to either the language or the representation mechanism, or to both; secondly,
checking such global conditions can be computationally expensive.

A formula φ in L follows from a set of formulæ ∆ (written ∆ `L φ) if and
only if there is a proof-tree Π in which every leaf is labelled by an axiom of L
or by an element of ∆, and the root is labelled by φ. Clearly, ∆ may contain
formulæ which do not label any leaves in Π. A proof Π is a valid proof in L of
φ with respect to (X,∆), where X is the set of syntactic variables, if ∆ `L Π:φ
and all the free variables in Π are contained in X. We write (X) ∆ `L Π :φ for
Π being a valid proof of φ.

It is common practice to give both Hilbert-type and natural deduction systems
presentations of logics as systems for deriving formulæ that are bare propositions
φ. In such formulations, Hilbert-type and natural deduction inference rules can
be considered to have the form

∀Γ1, . . . ,Γm
∆1(Γ1) `i1 φ1 · · ·∆m(Γm) `im φm

C
(⊕mi=1Γi) `i φ

where each ∆i(Γi) denotes a context, i.e., a collection of bare propositions which
includes the components of Γi, (⊕mi=1Γi) denotes the combination of the Γis, and
C is a possible side-condition, concerning variables or occurrences of modalities.
Typically, these side-conditions are global conditions which must be checked at
the application of the rule. The i, i1, . . . , im ∈ {1, . . . , n}, where `1, . . . ,`n are
the n consequence relations of L. Viewing a Hilbert-type and natural deduction
system in this way means that they are characterized by the focus on assumption-
conclusion dependencies rather than theorems. Weakening is also assumed in this
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presentation. For further justification of why this presentation of Hilbert-type and
natural deduction systems is an appropriate choice see (Avron et al. 1997).

By moving from bare propositions φ to judged propositions j(φ), with a given
logic exploiting many different judgements, we find global correctness conditions
can be rendered local.The technique is best understood by considering a (quite
general) example, from which the general situation should be clear.

Our subsequent informal presentation applies to Hilbert-type presentations
of minimal, intutionistic and higher-order predicate logics and minor variations
thereon, as well as to the family K, KT , KT4 (or S4), KT45 (or S5) and KL of
modal logics as discussed in (Avron et al. 1997). It also applies to the following
systems from (Avron, Honsell, Mason & Pollack 1992) and some minor variations
thereon: Kleene’s three-valued logic; classical first-order logic with (a version of)
Hilbert’s choice operator; classical λ-calculus; call-by-value λ-calculus; and, with
care, Hoare’s logic. An abstract definition of the class of systems we consider is
provided in § 7.2 and § 7.3.

Consider any system L, over a language L, drawn from the collection described
above, in particular suppose we have the following (impure) �-rule:

φ
� φ depends on no assumptions

�φ

Here the condition that φ depends on no assumptions is a global one on the
Hilbert-type proof of φ, thus rendering the rule impure. To check that the rule
� has been used correctly, we must check that all the formulæ at the leaves of
the Hilbert-type proof of φ are themselves theorems.

By reconstructing L (cf., propositional S4) as a judged logic with two judge-
ments, true and valid, we can render the check for theoremhood a local one and
thus remove the impurity. The presence of two judgements allows us to separate
the rules of L into two groups. The first group contains the usual rules of classical
logic and allows the inference just of propositions judged true. The second system
consists of the rules for � which can be used to derive valid propositions only in
valid contexts. All axioms are judged valid.

true and valid are symbols with a propositional arity, so that the pairs 〈φ, true〉
and 〈φ, valid〉 are formulæ of judged L. The nodes of a proof in judged L are thus
labelled with such pairs. Following (Avron et al. 1997), we say that such a tree
is a judged L-proof if the following conditions hold:

• The tree is a legitimate proof-tree in the system L′, which is obtained from
L by transforming all rules of proof into rules of derivation (by adding
side-formulæ in the obvious way);

• A node which is not a leaf is labelled valid if and only if all its successors
are so labelled;
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• Any node derived by a rule of proof of L is labelled valid;

• Axioms of L are labelled valid.

The second group of rules includes the following judged version of the �-rule:

〈φ, valid〉
�

〈�φ, valid〉

Rules from the first group are accessible to valid propositions via the following
connecting rule:

〈φ, valid〉
C

〈φ, true〉
A straightforward argument by induction on the structure of L’-proofs, judged
L-proofs and L-proofs leads to the following lemma:

Lemma 7.1 (Judged Systems (Avron et al. 1997))
The erasing of the labelling judgement is a compositional bijection between:

1. L′-proofs and judged L-proofs in which all nodes are labelled valid;

2. L-proofs and judged L-proofs in which all the leaves which are not axioms
are labelled true. �

The formulation of judged systems is such that their metatheory is rather sim-
ple and elegant. Specifically, we ensure the purity of proof systems by allowing,
in a judged consequence relation, several consequence relations to be treated si-
multaneously. A proof system with multiple consequence relations is non-uniform
according to Avron (1991). Judged systems are uniform because they only have
one (judged) consequence relation. In our running example of Hilbert-type pre-
sentations of modal logics, we can state, informally, a theorem which explains the
value of using judged systems in logical frameworks.

Let 2j(H) stand for the family K, KT , K4, KT4 (or S4), KT45 (or S5) and
KL, formulated as judged Hilbert-type systems.

Theorem 7.2 (Encoding Judged L (Avron et al. 1997))
For L one of the family 2j(H), there is a compositional bijection between L-proofs
of

(X) 〈φ1, l1〉, . . . , 〈φm, lm〉 `L Π:〈φ, l〉

and λΠ-terms M in long βη-normal form over the signature ΣL such that

ΓX , γV (∆), γt(Ξ) `L M : j(ε(φ))

where
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• ΓX is the λΠ-context which corresponds to X under judgements-as-types;

• γv(∆) is the λΠ-context which corresponds to ∆ = {φi|li = valid} under
judgements-as-types;

• γt(Ξ) is the λΠ-context which corresponds to Ξ = {φi|li = true} under
judgements-as-types;

• j is valid if l = valid, true otherwise;

• ε(φ) is the encoding of φ under judgements-as-types. �

Corollary 7.3 (Encoding L and L′ (Avron et al. 1997))
Suppose φ1, . . . , φm, φ are well-formed formulæ of L with free variables in X.

1. There is a compositional bijection between proofs in L′ of φ1, . . . , φm ` φ
and λΠ-terms M in long βη-normal form such that

ΓX ,Γv({φ1, . . . , φm}) `ΣL M :valid(ε(φ)).

2. There is a compositional bijection between proofs in L of φ1, . . . , φm ` φ
and λΠ-terms in long βη-normal form such that

ΓX ,Γt({φ1, . . . , φm}) `ΣL M : j(ε(φ))

where j is valid, if either m = 0 or no φi occurs in the proof, and is true
otherwise. �

The pattern of encoding judged systems demonstrated informally in this sec-
tion can be developed to give a formal theory of representation in the LF logical
framework. In the sequel, we provide such a theory, beginning, in the next section
with the theory of judged object-logics.

Before embarking upon our technical development of judged logics, it will be
useful to consider, informally, a range of examples of normative formulation of
object-logics and the representation mechanisms that can be used to encode them
in LF, judgements-as-types being our leading example.

We identify three typical, though not exhaustive, cases. Again, we draw
substantially upon (Avron et al. 1997) for background.

1. Proof-trees labelled with multiple judgements, encoded using the judge-
ments-as-types representation mechanism. For example:

• Hilbert-type formulations, for both truth and validity, of the modal
systems, such as KT , K4, KT4, KT5, etc., discussed above. Two
logical judgements true and valid are used.
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• Natural deduction formulations, for validity, of the modal logics dis-
cussed above. Two logical judgements true and valid are used.

2. Proof-trees labelled (degenerately) with a single judgement, encoded using
the worlds-as-parameters representation mechanism. For example:

• Hilbert-type formulations, for truth, of K, K4, KT , S4, etc. In a
worlds-as-parameters encoding, worlds are introduced via a sort, the
“universe” which, having no constructors, is inhabited only by vari-
ables, or “worlds”. The use of these parameters is purely syntactic.
They permit representation of global side-conditions found in rules of
proof, such as “no assumptions”, by transferring them to meta-logical
conditions such as “no free variables”. The details can be found in
(Avron et al. 1997).

• Natural deduction formulations, for truth, of K, K4, KT , S4, etc.

3. Proof-trees labelled degenerately with a single logical judgement but with
additional, syntactic judgements, such as “closed assumptions”, “boxed as-
sumptions” or “boxed fringe” (Avron et al. 1997), encoded using a rep-
resentation mechanism that is a variant on judgements-as-types in which
types which encode a proposition correspond not to propositions that have
first been judged logically and then judged structurally.

7.2 The Theory of Judged Object-logics

In this section, we provide a proof-theoretic account of an object-logic. Following
on from the previous section, and our general purpose, we provide an account of
judged object-logics.

We begin by defining the language L, consisting of an alphabet, syntactic
categories, expressions and judgements. We will interleave the formal account
with a presentation of classical logic as a judged proof system. We will provide
further examples at the end of this section.

Definition 7.4 (Alphabet)
An alphabet is a quintupe A = (S, V, E,C, J) of symbols defined as follows:

• S is a finite set of symbols with (natural number) arities;

• V ⊂ S is a distinguished subset of S which contains variables ;

• E is a finite set of expression symbols;

• C ⊂ E is a distinguished subset of E which contains connectives ;

• J is a finite set of judgements symbols. �
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We remark that the term “connective” in this definition should be interpreted
broadly; for example, the assignment operator := of Hoare’s logic (Avron et al.
1992) should be considered a member of this class of symbols. It is also worth
noting that the (natural number) arities assigned to each symbol are different
from the arities we shall shortly assign.

The alphabet for classical logic is the following:

• S = {ι, o}, where ι and o have 0 arity;

• V = {ι};

• E = {f1, . . . , fm, P1, . . . , Pm, c1, . . . , cq,∀,∃,¬,⊃,∧,∨,⊥};

• C = {∀,∃,¬,⊃,∧,∨};

• J = {true}.

fi are function symbols, Pj are predicate symbols and cr are constant symbols.

Definition 7.5 (Syntactic Categories)
Let A = (S, V,E,C, J) be an alphabet. The syntactic generated by A are induc-
tively defined as follows:

• The nullary symbols are syntactic categories;

• Let c1, . . . , cm be syntactic categories and s ∈ S be any m-ary symbol, then
sc1 . . . cm is a syntactic category.

The syntactic categories containing variables are those formed solely from ele-
ments of V . We will distinguish a finite (possibly) empty set of nullary symbols
{o1, . . . , om} as the syntactic categories of propositions. �

The syntactic categories of classical logic are ι and o, where ι is a syntactic
category containing variables and o is a syntactic category of propositions.

Following (Martin-Löf 1971), (Aczel 1980) and (Gardner 1992a), we define
the expressions of our logical syntax via a notion of arity.

Definition 7.6 (Arities and Levels)
An arity a is of the form (a0, . . . , am) → s, where, for 0 ≤ i ≤ m, ai is itself an
arity and s is a syntactic category. Associated with each such arity is a level,
defined as follows:

level(a) =

{
0 if m = 0

1 + max0≤i≤mlevel(ai) if m > 0

We refer to a1, . . . , am as the domain arities of a. We refer to a as the range
arity. �
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Each n-ary connective # ∈ C has an arity

(a1, . . . , an)→ o,

where o is one of the distinguished categories of propositions. We call any expres-
sion e ∈ E/C whose range arity is one of the syntactic categories of propositions
a predicate letter and any expression e ∈ E/C, whose range arity is not one of the
syntactic categories of propositions a function symbol. Function symbols which
do not have domain arities are called constant symbols.

In classical logic, the connectives ⊃,∧ and ∨ all have arity (o, o) → o and
level 1, ¬ has arity o→ o and level 1, ∀ and ∃ have arity (ι→ o)→ o and level
2.

The function symbols fi have arity (ι, . . . , ι)︸ ︷︷ ︸
li-times

→ ι and level 1, the predicate

symbols Pj have arity (ι, . . . , ι)︸ ︷︷ ︸
kj-times

→ o and level 1, the constant symbols cr have

arity ι and level 1 and ⊥ has arity o and level 1.
We now define the set of expressions generated by an alphabet. We assume

that each syntactic category s containing variables has an associated countable
set of variables Vs.

Definition 7.7 (Expressions)
Let A = (S, V, E,C, J) be an alphabet. The set of expressions generated by A is
defined as follows:

variables: If x ∈ Vs, then x is an expression with arity s;

applications: If e ∈ E with arity (a1, . . . , an)→ s of level l ≤ 2 and if e1, . . . , em
are expressions of arity a1, . . . , am respectively, then ee1 . . . em is an expres-
sion with arity s;

abstractions: If e is an expression with arity s of level 0 and if x1, . . . , xm
are distinct variables with arities a1, . . . , am of level 0 respectively, then
(x1, . . . , xm)e is an expression with arity (a1, . . . , am)→ s.

The logical expressions are those expressions with level 0 arity. The term expres-
sions are those logical expressions which inhabit syntactic categories containing
variables and the proposition expressions are those logical expressions which in-
habit one of the distinguished syntactic categories of propositions. �

We illustrate the use of application with an example from classical logic. Take
the connectives ∧ with arity (o, o) → o and two expressions φ and ψ both with
arity o. Application gives the proposition expression ∧φψ, usually written φ∧ψ.

Abstraction allows us to handle quantifiers correctly and any other connectives
whose level is 2. Given a proposition φ with arity o and a variable x with arity ι,
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we can abstract x to obtain (x)φ with arity ι→ o. Applying ∀ yields the logical
expression ∀(x)φ, usually written ∀x . φ.

Substitution can be defined in terms of abstraction. Given a logical expression
φ, we can abstract all the free variables we wish to substitute, i.e., we have
(x1, . . . , xn)φ and then apply variables y1, . . . yn to obtain φ[xi/yi]

m
i=1.

In classical logic the term expressions are the terms of classical logic and the
proposition expressions are the propositions of classical logic.

An alphabet includes a set of judgement symbols J. We take each judgement
symbol j ∈ J to be equipped with an arity of the form (o1, . . . , om), where each
oi is a distinguished syntactic category of propositions. This allows us to form
first-order or basic judgements.

Definition 7.8 (Basic Judgements)
Let A = (S, V, E,C, J) be an alphabet. The set J of basic judgements generated
by A is

{j(e1, . . . , em) | j ∈ J has arity (o1, . . . , om) and, for 1 ≤ i ≤ m, each ei is a

proposition expression inhabiting oi}

For each distinguished syntactic category of propositions o, we assume the exis-
tence of a nullary judgement null of arity o. �

In classical logic, we have the judgement symbol true of arity o. Thus the set
of basic judgements generated by A is just the set of proposition expressions of
A labelled by true.

The term basic judgement derives from the work of Martin-Löf (1982) on
the meanings of logical constants and rules of inference, which in turn derives
from Kant (1800). We let J, K and L, possibly subscripted, range over basic
judgements. Martin-Löf further constructs the general judgements, of the form
Λx :C .K, where C is a syntactic category, and the hypothetical judgements, of
the form J ` K. These higher-order judgements such be read, respectively, as the
universal and implication formulæ of a metalogic which has basic judgements as
its atomic formulæ. This metalogic is non-other than the internal logic of the
language (the λΠ-calculus) of the LF logical framework. In this meta-logic, we
can follow Martin-Löf and define the hypothetico-general judgements, of the Horn
form Λx1 :C1 . . . . .Λxm :Cm . J1, . . . , Jn ` K, which can be read as meta-logical
definitions of (Hilbert-type and natural deduction) inference rules.

Definitions 7.4 to 7.8 determine a language L. In order to define a logic L,
we must consider consequences and their axiomatization.

For a set S, let ℘f (S) denote the set of all finite sequences of elements of S.

Definition 7.9 (Judged Consequence Relation)
Let A = (S, V, E,C, J) be an alphabet. A judged consequence relation over A is

118



a pair (J,`), where J is a set of basic judgements over A and `⊂ ℘f (J)× J is a
binary relation such that:

Reflexivity: J ` J, for every every basic judgement J ∈ J;

Transitivity (cut): If ∆ ` J and ∆, J,∆′ ` K then, ∆,∆′ ` K, for each ∆,∆′ ∈
℘f (J) and J,K ∈ J;

Weakening: If ∆ ` J, then ∆,∆′ ` J, for each ∆,∆′ ∈ ℘f (J) and each J ∈ J.

A judged consequence relation (J,`) is said to be permutating if ∆, J,K,∆′ ` L
implies ∆,K, J,∆′ ` L, for each ∆,∆′ ∈ ℘f (J) and each J, K, L ∈ J. �

The judged consequence relation for classical logic is the consequence relation
determined by either the Hilbert-type rules or natural deduction rules for classical
logic where each proposition is labelled with the judgement true.

Judged consequence relations provide an abstract characterization of the cor-
rect consequences of a logical system. Access to consequence relations is provided
either through a class of models and satisfaction relations, the topic of § 7.3, or
via proof systems to which we now turn.

In the context of LF, we are concerned with two classes of proof-system:
Hilbert-type systems and natural deduction systems. LF is not a suitable meta-
theory for sequent systems because there is not a natural relationship between
them and lambda-calculi, unlike natural deduction systems where the prop-
ositions-as-types correspondence holds. Before we turn to the definition of the
inference rules for these systems, a more detailed analysis of purity is required.
We recall that an inference rule is pure when the check required by (∗) is local.
Following (Avron 1991), we distinguish three different levels of impurity:

Level 1: The side-conditions are related to the structure of the side-formulæ.
For example, the condition that there are no side-formulæ; that is, rules of
proof in Hilbert-type systems;

Level 2: The applicability of the rule depends also on the structure of side-
formulæ. For example, the introduction rule for � in Prawitz’s (1965)
natural deduction system for S4. The rule says that we can deduce �φ
only if all the assumptions of φ are boxed;

Level 3: The applicability of the rule depends not only on its potential pre-
misses, but also on their proofs.

The first two levels of impurity can be dealt with by introducing multiple
judgements, the third, however, cannot. The reason for this is that the third level
breaks uniformity. A system is uniform when it treats exactly one consequence
relation, and once a judged proposition has been derived we do not need to know
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how it was derived to use it in other inference rules. The third level of impurity
breaks this condition because we need to keep track of proofs and are only able
to apply certain rules if their proofs satisfy certain conditions. Uniformity is a
much more general condition then purity and since we can handle impure rules
if the system is uniform; only uniform systems are suitable for representation in
LF.

Definition 7.10 (Hilbert-type Systems)
Let A = (S, V, E,C, J) be an alphabet and ` be a judged consequence relation
over A. A Hilbert-type system for ` is given by the following:

• A set of axioms A ⊂ J;

• A set of rules of the form
J1 · · · Jn

J

where, for 1 ≤ i ≤ n, Ji ∈ J and J ∈ J.

We shall refer to the Hilbert-type system L for ` over A. �

Classical logic can be presented as a Hilbert-type system with axioms:

true(φ ⊃ (ψ ⊃ φ))
true((φ ⊃ (ψ ⊃ τ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ τ)))
true(φ ⊃ (φ ∨ ψ))
true(ψ ⊃ (φ ∨ ψ))
true((φ ⊃ τ) ⊃ ((ψ ⊃ τ) ⊃ (φ ∨ ψ) ⊃ τ))
true((φ ∧ ψ) ⊃ φ)
true((φ ∧ ψ) ⊃ ψ)
true(φ ⊃ (ψ ⊃ (φ ∧ ψ)))
true(∀xφ ⊃ φ[x/t])
true(φ[x/t] ⊃ ∃xφ)
true(∀x(φ ⊃ ψ) ⊃ (ψ ⊃ ∀yφ[x/y]))
true(∀x(φ ⊃ ψ) ⊃ (∃yφ[x/y] ⊃ ψ))
true(⊥ ⊃ ψ)
true(¬¬φ ⊃ ψ)

and rules:
true(φ) true(φ ⊃ ψ)

MP
true(ψ)

true(φ)

true(∀yφ[x/y])
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Definition 7.11 (Natural Deduction Systems)
Let A = (S, V, E,C, J) be an alphabet and ` be a judged consequence relation
over A. A natural deduction system for ` is given by the following:

• A set of axioms A ⊂ J;

• For each connective # ∈ C, an introduction rule given by schemata of the
form

···
Ji1

[Ki
j,1] · · · [Ki

j,hij
]

···
Jij

···
Jipi

# I
J

for i = 1, . . . , s, where Ki
j,1, . . . ,K

i
j,hij
, Jij, for 1 ≤ i ≤ pi, and J = j(#(e1, . . . ,

en)) are all basic judgements and ei is of the form ei(φ1, . . . , φm). The
inference infers a basic judgement j(e1, . . . , en)) from pi premisses J1, . . . , Jpi
and can bind assumptions of the form Ki

j,1, . . . ,K
i
j,hij

that occur above the

jth premiss;

• For each connective # ∈ C, # 6=⊃, an elimination rule schema of the form

k(#(e1, . . . , en))

[Γ1]
···
J

· · ·
[Γs]···

J
# E

J

with s minor premisses of the form J, a basic judgement, and

Γi =
∧∧hi1

1=k
Hi

1,k ⊃ Gi
1, . . . ,

∧∧hipi
k=1H

i
pi,k
⊃ Gi

pi

where
∧∧

stands for iterated conjunction;

• If # ∈ C and # =⊃, then we have an elimination rule given by the schema

[J(φ ⊃ ψ)]
···

···
J(φ)

[J(ψ)]
···

J(τ)
⊃ E

J(τ)

• Judgement rules of the form
J(φ)

K(φ)

where J(φ) and K(φ) are basic judgements.
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We shall refer to the natural deduction system L for ` over A. �

The general non-judged introduction and elimination rules can be found in
(Prawitz 1978), however, his schema for ⊃ E,

J(φ ⊃ ψ)

[J(φ) ⊃ J(ψ)]
···

J(τ)
⊃ E

J(τ)

has no deductive force as pointed out in (Schroeder-Heister 1982). There is
also a typo in the formulation of the general schema in (Prawitz 1978). This
is corrected in (Prawitz 1982). I am indebted to Prof. Prawitz for drawing my
attention to this, and the lack of deductive force in ⊃ E, (Prawitz 2008). The
general elimination rule forces us to have implication in the system whenever
there is a rule involving discharge and conjunction whenever we have a rule with
more than one premiss.

The natural deduction system for classical logic has the following axiom:

true(φ ∨ ¬φ)

and rules:
true(φ) true(ψ)

∧ I
true(φ ∧ ψ)

true(φ ∧ ψ)

[true(φ ∧ ψ)]
···

true(τ)
∧ E

true(τ)

true(φ)
∨ I1

true(φ ∨ ψ)

true(ψ)
∨ I2

true(φ ∨ ψ)

true(φ ∨ ψ)

[true(φ)]
···

true(τ)

[true(ψ)]
···

true(τ)
∨ E

true(τ)

[true(φ)]
···

true(ψ)
⊃ I

true(φ ⊃ ψ)
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true(φ ⊃ ψ) true(φ)

[true(ψ)]
···

true(τ)
⊃ E

true(τ)

[true(φ)]
···

true(⊥)
¬ I

true(¬φ)

true(¬φ)

[true(φ) ⊃ true(⊥)]
···

true(τ)
¬ E

true(τ)

true(φ)
∀ I

true(∀xφ[x/a])

where a must not occur in any assumption on which φ depends.

true(∀xφ)

[true(φ)]
···

true(τ)
∀ E

true(τ)

true(φ[t/x])
∃ I

true(∃xφ)

true(∃xφ)

[true(φ[a/x])]
···

true(τ)
∃ E

true(τ)

where a must not occur in ∃xφ, in τ , or in any assumption on which the upper
occurrence of φ depends other than φ[a/x].

In our definition of a natural deduction system, the elimination rule for each
connective “comes for free”, in the sense that an introduction rule provides all
the information needed to define the corresponding elimination rule. This cor-
responds to the philosophical understanding of logical connectives; the meaning
of a logical connective is given by its use, cf. (Sundholm 2001). For example,
Gentzen (1934) suggested that “it should be possible to display the elimination
rules as unique functions of the corresponding introduction rules on the basis of
requirements.” Prior (1960) showed that if the meaning of a logical connective

123



depended on both its introduction and elimination rules then we obtain examples
of the “tonk” form, which causes the system to become inconsistent.

We require that the introduction and elimination rules be, in a suitable sense,
inverses of one another (cf. (Prawitz 1965) and (Lorenzen 1955)). We need to
show that we cannot obtain examples of the “tonk” form. Given the introduction
and elimination rules for tonk:

φ
tonk I

φ tonk ψ

φ tonk ψ
tonk E

ψ

it follows that, for all φ and ψ, φ ` ψ. To avoid, tonk, we require that our system
has the local reduction property (Restall 2008).

Definition 7.12 (Local Reduction Property)
Let A be an alphabet, ` be a judged consequence relation over A and let L
be a natural deduction system L for ` over A. Given a proof Π in L which
contains an application of the introduction rule # I followed immediately by an
application of the elimination rule # E (for the same connective) which takes the
result of the introduction rule as its major premiss, then the introduction and
elimination rule can be eliminated, leading to a more direct (i.e., shorter) proof
of the conclusion. �

This corresponds to the philosophical idea found in (Hodges 2001); avoiding
tonk means that we can infer a formula from what we necessarily had to know
to infer the formula.

We show why a system with tonk fails to have the local reduction property.
Assume we have a proof containing an application of tonk I followed immediately
by tonk E.

···
φ

tonk I
φ tonk ψ

tonk E
ψ
···

It is impossible to eliminate this step because we only way we can prove φ from
ψ is to use the tonk introduction and elimination rules.

The introduction and elimination rules for # can be reduced in the following
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way:

··· Π
i
1

Ji1

[Ki
j,1] · · · [Ki

j,hij
]

··· Π
i
j

Jij

··· Π
i
pi

Jipi
# I

j(#(e1, . . . , en))

[Γ1]
··· δ1

J · · ·

[Γr]··· δr
J
# E

J

can be reduced to

Πi
1

. . . · · · . . .Πi
pi

... δi
J

where we remove the cancellations of Γi in δi and all the assumptions are no
longer discharged. This reduction means that our rules satisfy the local reduction
property and so, provided j = k for a given pair of introduction and elimination
rules, we have a consistent system.

Definition 7.13 (Judged Proof Systems)
Given an alphabet A and a judged consequence relation `, the judged proof system
L is a Hilbert-type or natural deduction system for ` over A. �

We need to provide a rigourous account of how proofs behave in a natural
deduction system for ` over A. We do this by introducing proof-objects which
realize consequence, cf. (Harper et al. 1993). Natural deduction proofs are trees
with nodes labelled by inference rules and the value of their parameters, together
with a discharge function. The discharge function assigns rule occurrences to
hypothesis occurrences and specifies which hypothesis occurrences are discharged
by which rule occurrence. The usual way of including the information contained
in the discharge function is to number each application of a rule which involves
discharge and then number (with the same number) the hypotheses discharged
by that rule. A valid proof is a proof in which every rule occurrence is a correct
instance of the rule scheme that labels it. In particular, if the side-conditions on
the applicability of the rule are satisfied.

In our presentation, we have employed the parenthesis convention, where dis-
charged hypotheses are written in square brackets. The square brackets around
a judged proposition indicate that zero or more occurrences of that hypothesis
are discharged by an application of the rule. The failing of this presentation, is
that we do not know what, if any, hypotheses are discharged by the rule, this
information is only present in the proof by means of a discharge function.

To be able to represent a natural deduction proof in a logical framework,
we need to know which hypotheses and how many are discharged by a given
rule, so we need to include this information in a proof. A discharge function is
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necessitated by the fact that it is hypothesis occurrences rather than a hypothesis
which is discharged. We can have a valid proof which contains an inference rule
which discharges j(φ) but still leaves certain occurrences of j(φ) undischarged. To
this end, we provide a formal account of valid proof expressions, which we often
call proof-objects or realizers of consequence.

We introduce proof-variables y : j(φ), where y is the proof-variable for j(φ).
We allow countably many proof-variables which are distinct from the set of first-
order variables. These proof-variables will play the rule of occurrence markers.
When a hypothesis is discharged, a certain set of its occurrences is discharged
and these are all marked by a particular y. We now define proof-expressions Π
by the grammar:

Π ::= HY Pφ(y) | #-I(Π1, . . . ,Πn) | #-E(Π1, . . . ,Πn)

where HY Pφ(y) indicates the use of a hypothesis y : j(φ) and there are constants
corresponding to introduction and elimination rules for each connective # ∈ C.
We use HY Pφ(y) rather than y to ensure consistency between our general defi-
nition of a proof-expression and that given in (Harper et al. 1993). We subscript
#-I and #-E by the judged formulæ and variables used in the corresponding
introduction and elimination rules.

The proof-expressions for classical logic are given by the grammar:

Π ::= HY Pφ(y) | AND-Iφ,ψ(Π1,Π2) | AND-Eφ,ψ,τ (Π1, (y1, y2) :Π) |

OR-Iφ,ψ(Πi) | OR-Eφ,ψ,τ (Π, y1 :Π1, y2 :Π2) | IMP -Iφ,ψ(y :Π) |

IMP -Eφ,ψ,τ (Π, y :Π′) | NEG-Iφ(y :Π) | NEG-Eφ,ψ(Π, y :Π′) | ALL-Ix,φ(Π) |

ALL-Ex,φ,ψ(Π, y :Π′) | SOME-Ix,t,φ(Π) | SOME-Ex,φ,ψ(Π, y :Π′)

where (y1, y2) : Π stands for the discharge of the hypotheses whose occurrences
are marked by y1, y2.

Not all proof-expressions are valid, so we need rules to generate them. A
proof-context is a pair (X,∆), where X is a finite set of variables and ∆ is a
set of proof-variables, y : j1(φ1), . . . , yn : jn(φn), where each yi is distinct. We
write FV (∆) for the set of free-variables occurring in ∆ and dom(∆) for the
set of y′is occurring in ∆. We give the rules for proving assertions of the form
(X) ∆ ` Π : j(φ), which is read as ‘Π is a valid proof of j(φ) with respect to the
proof-context (X,∆).’ The derivability of such an assertion means that a number
of general rules are obeyed (e.g., no two occurrences of a yi mark different judged
formulæ) and that the restrictions in the rules for valid proof-expressions are
obeyed. We say that Π is a valid proof with respect to the proof-context (X,∆)
if and only if (X) ∆ ` Π: j(φ) holds for some j(φ). There is a minimal such proof-
context, if it exists at all: take X to be the set of all free variables in Π, take ∆
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to be a list of the set of all the y : j(φ) such that HY Pφ(y) is a subexpression of
Π.

Validity is preserved under substitution, in the sense that, if Π[x1, . . . , xm, y1 :
j1(φ1), . . . , yn : jn(φn)] is a valid proof of j(φ[x1, . . . , xm]) with respect to ({x1, . . . ,
xm}, {y1 : j1(φ1), . . . , yn : jn(φ)n}), if t1, . . . , tm are terms whose free variables are
all in X ′ and if ∆′ = {yi : ji(φi) | HY Pφi(yi) is a subexpression of Πi, 1 ≤ i ≤ n}
and if Π1, . . . ,Πn are valid proofs of j1(φ1), . . . , jn(φn) with respect to (X ′,∆′),
then Π[t1, . . . , tm,Π1, . . . ,Πn] is a valid proof of j(φ[t1, . . . , tm]) with respect to
(X ′,∆′).

The rules for generating valid proof-expressions for classical logic are the fol-
lowing:

y : true(φ) ∈ ∆
v-HY P

(X) ∆ ` HY Pφ(y) : true(φ)

(X) ∆ ` Π: true(φ) (X) ∆ ` Π′ : true(ψ)
v-AND-I

(X) ∆ ` AND-Iφ,ψ(Π,Π′) : true(φ ∧ ψ)

(X) ∆ ` Π: true(φ ∧ ψ) (X) ∆, y1 : true(φ), y2 : true(ψ) ` Π′ : true(τ)
v-AND-E

(X) ∆ ` AND-Eφ,ψ,τ (Π, (y1, y2) :Π′) : true(τ)

where y1, y2 /∈ dom(∆).

(X) ∆ ` Πi : true(φ1)
v-OR-Ii

(X) ∆ ` OR-Iiφ1,φ2(Πi) : true(φi)

for i = 1, 2.

(X) ∆ ` Π: true(φ1 ∨ φ2) ((X) ∆, y1 : true(φi) ` Πi : true(τ))i=1,2
v-OR-E

(X) ∆ ` OR-Eφ,ψ,τ (Π, y1 :Π1, y2 :Π2) : true(τ)

where y1, y2 /∈ dom(∆).

(X) ∆, y : true(φ) ` Π: true(ψ)
v-IMP -I

(X) ∆ ` IMP -Iφ,ψ(y :Π) : true(φ ⊃ ψ)

(X) ∆ ` Π: true(φ ⊃ ψ) (X) ∆ ` Π′ : true(φ) (X) ∆, y : true(ψ) ` Π′′ : true(τ)

(X) ∆ ` IMP -E(Π,Π′, y :Π′′) : true(τ)

where y, y1 /∈ dom(∆).

(X) ∆, y : true(φ) ` Π: true(⊥)
v-NEG-I

(X) ∆ ` NEG-Iφ(y :Π) : true(¬φ)
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(X) ∆ ` Π: true(¬φ) (X) ∆, y : ((X) ∆, y1 : true(φ) ` Π1 : true(⊥)) ` Π′ : true(τ)

(X) ∆ ` NEG-Eφ,τ (Π, y :Π′) : true(τ)

(X, x) ∆ ` Π: true(φ)
v-ALL-I

(X) ∆ ` ALL-Ex,φ(Π): true(∀xφ)

where x /∈ X.

(X) ∆ ` Π: true(∀xφ) (X) ∆, y : true(φ) ` Π′ : true(ψ)
v-ALL-E

(X) ∆ ` ALL-Eφ,ψ(Π, y :Π′) : true(ψ)

(X) ∆ ` Π: true(φ[t/x])
v-SOME-I

(X) ∆ ` SOME-Ix,t,φ(Π): true(∃xφ)

(X) ∆ ` Π: true(∃φ) (X) ∆, y : true(φ) ` Π: true(ψ)
v-SOME-E

(X) ∆ ` SOME-Eφ,ψ(Π′, y :Π) : true(ψ)

We omit the valid proof rules for the general introduction and elimination
rules, with the above example providing enough intuition that they should be
clear. For higher-order logics, the set X is replaced by an assignment A governing
free-variables of the proof. An assignment A = {x1 :σ1, . . . , xn :σn}. We overload
notation by writing X for assignments.

As well as providing an account of judged proof systems, it is important that
our account of logics includes an account of theories; in particular, of arithmetic
theories. For example, the theory of Peano arithmetic for classical first-order
predicate calculus requires the following extension of first-order predicate calcu-
lus:

Expression Symbols
o arity ι

succ arity ι→ ι
+ arity (ι, ι)→ ι
= arity (ι, ι)→ ι

To get Peano arithmetic, we also need some axioms and inference rules for these
expressions. For example, the substitution rule for =,

= (t, u) true(φ(t))
(sub)

true(φ(u))

the transitivity rule for =,

= (t, u) = (u, v)
(trans)

= (t, v)
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and the rule of induction,

true(φ(0))

[true(φ(x))]
···

true(φ(succ(x)))
(ind)

true(∀x : ιφ(x))

can all be added to the judged proof system.

Definition 7.14 (Theories)
Let L be a judged proof system. A theory T over L is a set of expression symbols,
a collection of natural deduction rules, Hilbert-type rules and axioms and a set
of proof-expressions. �

We now provide two examples of judged proof systems which illustrate how
general our definition of a judged proof system is. Well the examples are well
known, their presentation as judged proof systems is original.

7.2.1 Classical λ-calculus

Our first example is the classical λ-calculus. We define the judged proof-system
of the classical λ-calculus defined in (Avron et al. 1992). We have the alphabet:

• S = {o};

• V = {o};

• E = {Λ, App};

• C = {Λ, App};

• J = {./,=};

where o has zero arity, Λ has arity (o → o) → o and level 2,0 App has arity
(o, o) → o and level 1 and ./ and = are both 2-ary. o is the only syntactic
category. It is a syntactic category of expressions and contains variables. The
expressions of the classical λ-calculus are generated according to Definition 7.7.
For example, take the variable y, we can abstract x to obtain (y)x with arity
o → o. We can now apply Λ to obtain the term Λ(y)x, usually written Λy . x.
We can now apply App then z to obtain the term App(Λ(y)x, z), usually written
(λy . x)z.

We have axioms:
E0 :x ./ x
E4 :App(Λ(x), y) ./ xy
β./ :App(Λ(x), y) = xy
β= :App(Λ(x), y) = xy
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together with the rules
x ./ y

E1
y ./ x

x ./ y
E2

y ./ z

x ./ y x′ ./ y′

E3
App(x, x′) ./ App(y, y′)

xz ./ yz
ζ

Λ(x) ./ Λ(y)

x ./ y
Con

x = y

x = y
E5

y = x
x = y y = z

E6
x = z

x = y x′ = y′

E7
App(x, x′) = App(y, y′)

7.2.2 Hoare’s Logic

This example defines a fragment of Hoare’s logic which can be adequately repre-
sented in LF, cf. (Mason 1903). We have the alphabet:

• S = {l, i, o, b, w, h};

• V = {l, i, o, b};

• E = {α, !, c1, . . . , cn, f1, . . . , fm, P
1
o , . . . , P

q
o ,=o,⇒o,¬o,∀,∧o,∨o,

R1
n, . . . , R

r
b ,=b,⇒b,¬b,∧b,∨b, :=, ; , if, while, triple};

• C = {!,⇒o,¬o,∀,∧o,∨o,∃,=b,⇒b,∧b,∨b, :=, ; , if, while};

• j = {`h,`b,`o, 6=,#i,#o},
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where
Expression Arity Level

α b→ o 1
! l→ i 1
ci i 1
fi (i, . . . , i)︸ ︷︷ ︸

pi

→ i 1

Rj
o (i, . . . , i)︸ ︷︷ ︸

oj

→ o 1

=0 (i, i)→ o 1
⇒o (o, o)→ o 1
¬o o→ o 0
∀ (i→ o)→ o 2
∧o (o, o)→ o 1
∨0 (o, o)→ o 1
∃ (i→ o)→ o 2
Rm
b (i, . . . , i)︸ ︷︷ ︸

lm

→ b 1

=b (i, i)→ b 1
⇒b (i, i)→ b 1
¬b b→ b 1
∧b (b, b)→ b 1
∨b (b, b)→ b 1
:= (l, l)→ w 1
; (w,w)→ w 1
if (b, w, w)→ w 1

while (b, w)→ w 1
triple (o, w, o)→ h 1
`h h
`b b
6= (l, l)
#i (l, i)
#o (l, o)

The consequence relation ` is the one determined by all the inference rules. We
omit the rules for connectives found in classical logic, i.e., ∧o,∨o,⇒o,∀,∃, etc.
because they are essentially the same as the ones we gave above.

`b x
α1

`o α(x)

`o α(x)
α2

`b x
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`o α(Rb(x1, . . . , xn))
α3R

`b Rb(x1, . . . , xn)

`b Rb(x1, . . . , xn)
α4R

`o α(Rb(x1, . . . , xn))

`o α(x1 =b x2)⇔ x1 =o x2

`i α(¬bx)⇔ ¬oα(x)

`o α(b1χbb2)⇔ α(b1)χoα(b2)

for χ ∈ {∧,∨,⇒}
x#ici for all constant ci

x 6= y

x#iy!

x#it1 · · ·x#itn

x#ifi(t1, . . . , tn)

x#it+ 1 · · ·x#itn

x#oRo(t1, . . . , tn)

x#oe1 x#oe2

x#e1χoe2

for χ ∈ {∧,∨,⇒}
x 6= y x#if(y)

x#o∀f
{p[t/x]}x := t{p}

{p}S1{r} {r}S)2{q}

{p}S1;S2{q}
{p ∧ e}S{q} {∧¬e}S2{q}

{p} if(e, S1, S2){q}
{p ∧ e}S{p}

{p}while(e, S){p ∧ ¬e}
p⇒ p1 {p1}S{q1} q1 ⇒ q

{p}S{q}
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7.3 Models of Judged Object-logics

This section provides a model-theoretic characterization of consequence relations.
We define a class of models of judged object-logics together with a satisfaction
relation. We begin with an informal overview of the desired satisfaction relation.

Our satisfaction relation is to be the one of Kripke forcing (Kripke 1963). Let
W be a set of worlds and let R be an (m + 1)-ary relation over W . We write
Rww1 . . . wm for the value of R at worlds w,w1, . . . , wm. Let φ = #(φ1, . . . , φm)
be a formula with outermost connective # of arity m. We distinguish two gen-
eral classes (cf. (Basin, Matthews & Viganò 1997)) of connectives, together with
judgements:

1. 〈#, j〉 is local if the meaning of 〈#(φ1, . . . , φm), j〉 at world w depends only
on the meaning of each 〈φi, ji〉 at world w;

2. 〈#, j〉 is non-local if the meaning of 〈#(φ1, . . . , φm), j〉 at world w depends on
the meaning of each 〈φi, ji〉 at worlds wi, whereR#ww1 . . . wm holds for some
chosen relation. We will consider both universal non-local connectives,
in which we permit universal quantification over the worlds occurring in
the definiens, and existential non-local connectives, in which we permit
existential quantification over the worlds occurring in the definiens.

The classes we have defined are quite broad and clearly more complex classes
are possible. The definition of local does not appear to include connectives like
∨, which one would expect to define as

〈φ ∨ ψ, true〉 if and only if 〈φ, true〉 or 〈ψ, true〉

but we observe that the meaning of 〈φ ∨ ψ, true〉 does depend on 〈φ, true〉 and
〈ψ, true〉, but they are not required to both be satisfied at the same time. This
is the analogue of having multiple introduction schema for the same connective,
they all need to be formally defined but only one introduces the connective in a
given proof.

Examples of local connectives include intuitionistic and classical disjunction
and conjunction and classical implication. Examples of universal non-local con-
nectives include intuitionistic implication, for which W must be preordered, rele-
vant implication and S4 �. The ♦ of S4 is an example of an existential non-local
connective.

Following this idea, we define Kripke models of object-logics in our usual in-
dexed setting, following the pattern established for the λΠ-calculus, by requiring
the base category to interpret first-order terms, given by some signature, and by
requiring the fibres to carry exactly the structure specified by the satisfaction
relation that defines the logic.
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The use of the satisfaction relation to define the connectives arbitrarily has
the consequence that we cannot guarantee that a given occurrence of a connec-
tive in a formula can be interpreted in a given model without reference to the
interpretation J−K−,ρ of the syntax in a model. We can require, however, at the
level of prestructures, that there be enough structure to interpret the function
symbols of the term language in the base category.

Thus, in order to define object-logic models, we take an object-logic OT to be
given by the following:

• A first-order language L over an alphabet A = (S, V, E,C, J);

• A collection of local connectives CL ⊂ C, each defined by a satisfaction
relation;

• A collection of non-local or global connectives GG ⊂ C defined by a satis-
faction relation and a world relation;

• A theory consisting of a set of expressions symbols and constants used in
the grammar for valid proof-expressions.

Such a logic OT may or may not have a complete axiomatization as a Hilbert-
type or natural deduction type system. Drawing heavily on the work of (Basin
et al. 1997), (Basin et al. 1998) and (Viganò 2000), we present classes of logics
which have axiomatizations as Hilbert-type or natural deduction systems. We
begin by describing a satisfaction relation ‖−OT for local and non-local connec-
tives. The generalized introduction rule of Prawitz (1978) provides the intuition
for the satisfaction relation for a local connective. The schemata

···
Ji1

[Ki
j,1] · · · [Ki

j,hij
]

···
Jij

···
Jipi

# I
J

for 1 ≤ i ≤ s, corresponds to the satisfaction relation

w, ρ ‖−MOT J if and only if either (((w, ρ ‖−MOT K1
1,1 and . . . and w, ρ ‖−MOT K1

1,h1
1
)

imply w, ρ ‖−MOT J1
1) and . . . and ((w, ρ ‖−MOT K1

p1,1
and . . . and

w, ρ ‖−MOT K1
p1,h1

p1
) imply w, ρ ‖−MOT J1

p1
)) or . . . or (((w, ρ ‖−MOT Ks

1,1 and

. . . and w, ρ ‖−MOT Ks
1,h1

1
) imply w, ρ ‖−MOT Js1) and . . . and ((w, ρ ‖−MOT Ks

ps,1

and . . . and w, ρ ‖−MOT Ks
ps,hsps

) imply w, ρ ‖−MOT Jsps))
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where M is a Kripke model of OT and J = j(#(φ1, . . . , φn)).
The satisfaction relation for the non-local connectives comes from (Basin et al.

1997) and is simpler than the satisfaction relation for local connectives. It is also
less general than Prawitz’s schema. For a universal non-local connective, we have
the satisfaction relation

w, ρ ‖−MOT j(#(φ1, . . . , φn)) if and only if for all worlds w1, . . . , wn ((

R#ww1 . . . wn and w1, ρ1 ‖−MOT j1(φ1) and . . . and wn−1, ρn−1 ‖−MOT jn−1(φn−1))

imply wn, ρn ‖−MOT jn(φn)

where M is a Kripke model for OT .
For an existential non-local connective, we have the satisfaction relation

w, ρ ‖−MOT j(#(φ1, . . . , φn)) if and only if there exist worlds w1, . . . , wn

R#ww1 . . . wn and w, ρ ‖−MOT j1(φ1) and . . . and w, ρ ‖−MOT jn(φn)

where M is a Kripke model for OT .
We need a separate satisfaction relation for ⊥ and ¬, when they are present.

Our definition of these satisfaction relations is more restrictive than the ones
given in (Viganò 2000). This restriction, however, ensures that # cannot be a
connective of a substructural logic. The satisfaction relation for ⊥ is defined as
follows: for all Kripke modelsM and all worlds w, w, ρ 6‖−MOT j(⊥). The satisfaction
relation for ¬ is defined as follows:

w, ρ ‖−MOT j(¬φ) if and only if w, ρ ‖−MOT j(φ) implies w, ρ ‖−MOT j(⊥)

where M is a Kripke model.
We have not specified the relation R# for each non-local connective. Basin

et al. (1997) use a Horn relational theory to describe a relation for a given con-
nective. We only examine two possibilities for this relation. The first is when the
relation is ≤, the partial ordering on worlds. This is sufficient for us to define
intuitionistic implication and universal and existential quantification. The sec-
ond is a more general case, here we let the relation be an (i, j,m, n)-convergency
axiom, i.e., R# is a closed formula of the form

∀x∀y∀z((xRiy ∧ xRjz) ⊃ ∃u(yRmu ∧ zRnu)),

where xR0y means x = y and xRi+1y means ∃v(xRv∧vRiy). We use a relation of
this form when we are defining modal logics. Since, if R� = R♦ is an (i, j,m, n)-
convergency axiom, then it corresponds to an axiom of the form

♦i�mφ ⊃ �j♦nφ

135



for a proof of this result see; for example, (Viganò 2000), (Lemmon & Scott 1977)
or (Chellas 1980). The axioms D, T , B, 4, 5, etc., are all instances of this schema.

Basin et al. (1997) provide more relations, but all the other examples give
substructural logics which cannot be adequately represented in LF. There is more
scope here for examining the choice of relations in detail, but this is beyond the
scope of this thesis. Correspondence theory examines the relationship between
relations on Kripke models for logics that involves modalities, and axioms in
Hilbert-type systems. The reader is referred to the survey paper (van Benthem
1984), for further details. A similar analysis is possible for intuitionistic modal
logics, but the nice relationship between axiom schema and properties of R does
not hold (cf. (Simpson 1994)).

The basic idea of our functorial treatment of object-logics is one that is famil-
iar from our treatment of models of the λΠ-calculus and its internal logic, cf. § 5.
At each world, a prestructure provides, functorially, a functor from environments
to values. In contrast, however, with the internal logic of the λΠ-calculus, our
formulation of object-logics, especially their proof systems, makes essential use
of judged propositions and we should like this to be reflected in their models.

Adumbrating our coming technical development, an example of the desir-
ability of an explicit treatment of judgements, can be seen in the case of, say,
Hilbert-type presentations of S4. We may be interested in a Kripke model of OT ,
〈KJ , J−K−,ρKJ 〉, which supports the principle

“if true(φ) then valid(φ)′′

by virtue of the existence of an arrow

J〈�φ, true〉Kw,ρKJ
m−→ J〈�φ, valid〉Kw,ρKJ

independently of the existence of a proof δ such that

w, ρ ‖−KJOT δ : (〈�φ, true〉 `OT 〈�φ, valid〉).

In order to include an explicit account of judgements in our models of object-
logics, we modify the category of values, in which propositions are interpreted,
to be categories of pairs of judgements and values. Specifically, we replace each
category of values V , i.e., each object of V , with V ⊗ J, where J is the category
of judgements. The product here being the tensor product in Cat.

Definition 7.15 (Category of Judgements)
A category of judgements J is defined as follows:

Objects: Judgements j, including a terminal object null;

Arrows: Identities and at least null
j−→ j, for each judgement j. �
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Additionally, we may have arrows j
m−→ k, which may be used in a model to

validate principles of the kind discussed above, i.e., rules in the object-logic which
only change the judgement and not the formula. Note that although we have
used the syntax of judgement symbols to describe the category of judgements,
we can consider any category having the specified structure to be a category of
judgements.

A judged proposition is interpreted in a category of judged values by taking
the tensor product (in Cat) of a category of judgements and a category of values.
The transition in semantics from values to judged values is directly, and delib-
erately, analogous to the transition from proof-trees to proof-trees labelled with
judgements, which is characterized using the techniques of Lemma 7.1.

Definition 7.16 (Judged Values)
A category of judged values is a category

V ⊗ J

where J is a category of judgements, V is a category (of values) and ⊗ is the
tensor product in Cat. �

For example, in the usual judged view of intuitionistic logic, we have just one
judgement proof. In this case, the category of judgements J is exactly

-
proof

·�
null

·	
proof

and a judged proposition 〈φ, proof〉 is interpreted as an object JφKw,ρKJ ⊗ proof of
V ⊗ J. A proof δ of 〈φ, proof〉, from judged assumptions Γ, is interpreted as an
arrow

JΓKw,ρKJ ⊗ null
JδKw,ρKJ ⊗proof

−−−−−−−→ JφKw,ρKJ ⊗ proof

where δ denotes the corresponding unjudged proof-tree, which can be character-
ized by the techniques of Lemma 7.1. From now on we refer to 〈φ, j〉 as j(φ).

Throughout our development of Kripke models for OT , we will just refer to
V as the category of values rather than V ⊗ J and JφKw,ρKJ ⊗proof as Jproof(φ)Kw,ρKJ .

Definition 7.17 (Kripke Prestructures for OT )
A Kripke prestructure for OT is a functor

J : [W , [Bop,V ]]
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such that

1. W is a small category of worlds;

2. BW is a small cartesian closed category with a terminal object;

3. Bop =
∐

W∈|W| B
op
W ;

4. V is a (sub)category (of Cat) of categories of judged values such that each
J (W )(D) has a terminal object and finite products, which are preserved
on the nose by inverse image functors;

5. The indexed category J is strict. �

We take base categories at each world and then define fibres over their co-
product to follow the structure of a Kripke λΠ-prestructure. We recall that the
reason for this is that we want our Kripke models to be analogous to Kripke
models of intuitionistic logic where there is a model of classical logic at each
world. We will find when we construct the term model of OT that we need to
take the same category at each world. This is because we need to define constants
and functions at each world.

This Kripke prestructure for OT has less structure than the Kripke prestruc-
ture we defined for the internal logic in § 5. We no longer require that there is a
right adjoint to the inverse image of projections or that J (W )(D) to be cartesian
closed. The reason for this is that the object-logic OT may not have universal
quantification or implication, so we do not, in general, require the extra structure.
Any structure required to interpret a connective arises from the enough structure
condition (cf. Definition 7.19) and the satisfaction relation.

We still have the coproduct construction to ensure that our models are con-
sistent throughout and that there are conceptually natural.

Definition 7.18 (Kripke Structures for OT )
Let J be a Kripke prestructure for OT . A Kripke structure for OT is a functor

KJ : [W , [Bop,V ]]

such that the category V has the following properties:

Objects: Categories built out of V = J (W )(Y ) with

Objects: Arrows

A
fA,A−−→ A

in V , where A = A1 × . . .× Am;
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Arrows: Arrows

(A
fA,A−−→ A)→ (B

fB,B−−→ B)

are given by arrows A
µ−→ B in V , where B = B1 × . . .×Bn.

Arrows: Functors KJ (f) : KJ (W )(Y ) → KJ (W )(X), where f : X → Y is an
arrow in BW . These functors have the following properties:

1. The functor KJ (W )(f) takes an object of KJ (W )(Y ), the arrow fC,C ,
and returns an object in KJ (W )(X),

KJ (f)(fC,C) = (
n∏
i=1

J (W )(f)(Ci))
J (W )(f)(fC,C)
−−−−−−−−−→ J (W )(f)(C);

2. The functor KJ (W )(f) takes an arrow of KJ (W )(Y ), A
µ−→ B, and

returns the arrow ν = J (W )(f)(µ), where C
ν−→ D, J (W )(f)(Ai) =

Ci, for 1 ≤ i ≤ m, and J (W )(f)(Bj) = Dj, for 1 ≤ j ≤ n. �

Before we can define the Kripke model of OT , we need to ensure that the
Kripke prestructure for OT has enough structure to interpret the language of L
of OT .

Definition 7.19 (Enough Structure)
Let OT be an object-logic with alphabet A. We say that a Kripke prestructure
for OT has enough structure to interpret A if the following conditions hold:

• Each Bw has at least as many objects as there are syntactic categories;

• For all worlds w and for each function symbol e ∈ E/C with arity (S1, . . . ,
Sn)→ S,there exists an arrow (

∏n
i=1JSiK

w,ρ
KJ )→ JSKw,ρKJ in Bw;

• For all worlds w and for each predicate letter e ∈ E/C with arity (S1, . . . ,
Sn) → S, there exists an object Jj(e(x1, . . . , xn)Kw,ρKJ ), where xi :Si for 1 ≤
i ≤ n and j ∈ J, in J (w)(

∏n
i=1JSiK

w,ρ
KJ );

• For all worlds w and for each connective c ∈ C, with arity (a1, . . . , an) →
a, there exists an operation opc such that opc takes n objects Jji(φi)Kw,ρiKJ
in J (w)(

∏mi
j=1JS

i
jK
w,ρi
KJ ), where the free variables of φi are in the set {xi1 :

Si1, . . . , x
i
mi

:Simi}, and returns an object Jj(c(φ1, . . . , φn))Kw,ρKJ in J (w)(
∏p

k=1

JSkKw,ρKJ ), where the free variables of c(φ1, . . . , φn) are in the set {x1 :S1, . . . ,

xp :Sp}, each xk :Sk ∈ {x1
1 :S1

1 , . . . , x
n
mn :Snmn} and ρ is the combination of

each of the environments ρ1, . . . , ρn with any variables which are bound in
c(φ1, . . . , φn) but free in one of the φis removed;
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• For each judgement symbol j ∈ J, there is an object in the category of
judgements j. �

Since the third condition is rather complicated, we provide some examples
which illustrate that it is correct.

• We take c to be ∧ and have op∧ act on Jj(φ)Kw,ρKJ in J (w)(JSKw,ρKJ ), where
φ has free variable x : S, and Jj(ψ)Kw,ρKJ in J (w)(JT Kw,ρKJ ), where ψ has free
variable y :T . opc returns an object Jj(φ∧ ψ)Kw,ρKJ in J (w)(JSKw,ρKJ × JT Kw,ρKJ );

• The condition on the environments allows us to handle quantification cor-
rectly. We take c to be ∀, op∀ acts on Jj(φ)Kw,ρKJ in J (w)(

∏n
i=1JSiK

w,ρ
KJ ×

JSKw,ρKJ ), where the free variables of φ are in the set {x1 :S1, . . . , xn :Sn, x :S},
and returns Jj(∀x : S . φ)Kw,ρ/xKJ in J (w)(

∏n
i=1JSiK

w,ρ/x
KJ ). We observe that x

is free in φ but bound in ∀x :S . φ.

In order to define the structure carried by models of OT , we require an inter-
pretation J−K−,ρKJ of the syntax OT in a structure KJ : the relations R# and the
satisfaction relation that define each connective # are predicated on the inter-
pretations of the propositional arguments taken by φ.

Definition 7.20 (Kripke Models of OT )
A Kripke model of OT consists of a pair 〈KJ , J−K−,ρKJ 〉, where KJ is a Kripke
structure for OT , which has enough structure to interpret the alphabet of A, and
the partial function J−K−,ρKJ is an interpretation of OT in KJ . The interpretation is
defined by induction on the structure of (i) sorts, which are interpreted as objects
in Bw; (ii) terms, which are interpreted as arrows in Bw; and (iii) propositions
with free variables in the set X = {x1 :S1, . . . , xn :Sn}, which are interpreted in
the fibre over JS1Kw,ρKJ × . . . × JSnKw,ρKJ . If X = ∅, then Jφ(X)Kw,ρKJ is an object of
KJ (w)(1). The sorts, terms and functions are interpreted as follows:

1. For each sort S, JSKw,ρKJ is an object of Bw, defined by induction on sorts:

• For each sort S, JSKw,ρKJ is (a choice of) an object in Bw;

• For each function sort, i.e., S = S1, . . . , Sn → T ,

JSKw,ρKJ = JT Kw,ρKJ
(
Qn
i=1JSiK

w,ρ
KJ

)

the internal hom in Bw

2. For each variable x : S, JxKw,ρKJ is an arrow JSKw,ρKJ
ρ(x)−−→ JSKw,ρKJ in Bw, not

dependent on w;

3. For each function symbol f : S1, . . . , Sn → S, JfKw,ρKJ is the arrow given by
Definition 7.19. We have that:
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• Constants c with arity S are interpreted as arrows JcKw,ρKJ : 1 → JSKw,ρKJ
in Bw;

• Functions f :S1, . . . , Sn → S are interpreted as arrows

(
n∏
i=1

JSiKw,ρKJ )→ JSKw,ρKJ

in Bw, and given ti :Si for 1 ≤ i ≤ n, then

Jft1 . . . tnKw,ρKJ = JfKw,ρKJ Jt1Kw,ρKJ . . . JtnK
w,ρ
KJ

using the cartesian closed structure of Bw in the usual way (cf.
(Lambek & Scott 1986));

• Tuples of terms are interpreted as arrows in Bw:

〈Jt1Kw,ρKJ , . . . , JtnK
w,ρ
KJ 〉 :JA1Kw,ρKJ × . . .×JAmKw,ρKJ → JB1Kw,ρKJ × . . .×JBnKw,ρKJ ,

where, for each 1 ≤ i ≤ n, x1 :A1, . . . , xm :Am `T ti :Bi;

• Term-formation by application is interpreted by function space appli-
cation in Bw.

The connectives are interpreted as objects in J (W )(X) by induction over
the structure of formulæ:

• Atomic: For each predicate letter P with arity (S1, . . . , Sn) → S,
Jj(P (x1, . . . , xn))Kw,ρKJ is an object of J (W )(JS1Kw,ρKJ×. . .×JSnKw,ρKJ ) given
by Definition 7.19;

• Connective: For each connective c, with arity (S1, . . . , Sn)→ S,
Jj(c(φ1, . . . , φn))Kw,ρKJ is an object of J (W )(X), where X =

∏m
i=1JSiK

w,ρ
KJ

and the free variables of c(φ1, . . . , φn) are in the set {x1 : S1, . . . , xm :
Sm} and j ∈ J, given by Definition 7.19.

4. For each local connective #, we have the following satisfaction condition:
there is an arrow

1
f−→ Jj(#(φ1, . . . , φm))Kw,ρKJ

if and only if there are arrows

(((1
f1
1,1−−→ JK1

1,1K
w,ρ
KJ and . . . and 1

f1
h1

1−−→ JK1
1,h1

1
Kw,ρKJ ) which imply 1

f1
1−→ JJ1

1K
w,ρ
KJ )

and . . . and arrows ((1
f1
p1,1−−→ JK1

p1,1
Kw,ρKJ and . . . and 1

f1
p1,h

1
p1−−−−→ JK1

p1,h1
p1

Kw,ρKJ )
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which imply 1
f1
p1−−→ JJ1

p1
Kw,ρKJ )) or . . . or there are arrows (((1

fs1,1−−→ JKs
1,1K

w,ρ
KJ

and . . . and 1
fs
1,hs1−−−→ JKs

1,hs1
Kw,ρKJ ) which imply 1

fs1−→ JJs1K
w,ρ
KJ ) and

((1
fsps,1−−→ JKs

ps,1K
w,ρ
KJ and . . . and (1

fs
ps,h

s
ps−−−−→ JKs

ps,hsps
Kw,ρKJ ) which imply

1
fsps−−→ JJspsK

w,ρ
KJ )).

Also, J#-IKw,ρKJ = f ;

5. For each universal non-local connective #, we have the following satisfaction
condition: there is an arrow

1
f−→ Jj(#(φ1, . . . , φn))Kw,ρKJ

if and only if for all worlds w1, . . . , wn (R#ww1 . . . wn and there exist arrows

1
f1−→ Jj1(φ1)Kw1,ρ1

KJ and . . . and 1
fn−1−−→ Jjn−1(φn−1)Kwn−1,ρn−1

KJ )which imply

1
fn−→ Jjn(φn)Kwn,ρnKJ .

Also, J#-IKw,ρKJ = f ;

6. For each existential non-local connective #, we have the following satisfac-
tion condition: there is an arrow

1
f−→ Jj(#(φ1, . . . , φn))Kw,ρKJ

if and only if there exists worlds w1, . . . , wn such that R#ww1, . . . , wn and
there exist arrows

1
f1−→ Jj1(φ1)Kw1,ρ1

KJ and . . . and 1
fn−→ Jjn(φn)Kwn,ρnKJ .

Also, J#-IKw,ρKJ = f ;

7. If ⊥ ∈ CG, then we have the following satisfaction condition: for all worlds

w, there are no arrows 1
f−→ Jj(⊥)Kw,ρKJ . Also, J⊥-IKw,ρKJ = f ;

8. If ¬ ∈ CG, then we have the following satisfaction condition: for all worlds
w, there exists an arrow

1
f−→ Jj(¬φ)Kw,ρKJ if and only if the arrow 1

f1−→ Jj(φKw,ρKJ implies

1
f2−→ Jj(⊥)Kw,ρKJ .
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Also, J¬-IKw,ρKJ = f .

9. If there is more than one judgement, we require the following satisfaction
condition:

1
f−→ Jj(φ)Kw,ρKJ

implies

1
f ′−→ Jk(φ)Kw,ρKJ ;

10. We require the following syntactic monotonicity condition: if JXKw,ρKJ is
defined, then so is JX ′Kw,ρKJ , for every subterm X ′ of X;

11. We require the following accessibility condition: there is an arrow W
α−→

W ′ in W , then J (W ′)(JΓKWKJ ) = J (W ′)(JΓKW
′,ρ

KJ ) and J (W )(JΓKW,ρKJ ) =

J (W )(JΓKW
′,ρ

KJ ). �

The definition of the structure in the model corresponding to each connective
# relies on the definition of the interpretations of the propositional arguments
taken by #. Hence without the syntactic monotonicity condition, our definition
would fail because we would be unable to start the induction. Condition (9)
essentially defines an arrow j→ k in the category of judgements.

As an example of a Kripke model for OT , we construct the term model. This
is essentially the same construction as the one in § 5.2.3. We firstly fix the object-
logic we are defining, so that we know the alphabet A. We define the category
B(A) of contexts and realizations as follows:

Objects: Contexts of the form x1 :S1, . . . , xm :Sm, for m ≥ 0 (m = 0 gives the
unique empty context, the terminal object of B);

Arrows: Tuples of the form

x1 :S1, . . . , xm :Sm
〈t1,...,tn〉−−−−−→ y1 :T1, . . . , yn :Tn

such that for 1 ≤ i ≤ n, x1 : S1, . . . , xm : Sm `T ti : Ti (Terms ti will be of
the form ft1 . . . tn. In particular, a variable x of sort S arises as an arrow

x :S
〈x〉−→ x :S).

We define a category of worlds W .

Definition 7.21
The category W is defined as follows:

Objects: The empty context, 〈〉 is an object of W . If X is an object of W and
there exists an arrow X → X,X ′ in B(A), then X,X ′ is an object of W ;

Arrows: There is an arrow X → X ′ if and only if X ⊆ X ′. �
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We have the obvious inclusion, W ↪→ B(A). Clearly, W can be viewed as a
posetal category of contexts ordered by inclusion, X ⊆ X ′.

We define the category CX to be the category B(A) at each world. We then
define B =

∐
X∈|W| CX .

CX is cartesian closed, see the argument in § 5.2.3.
We define a functor T : [W , [Bop,V ]] as follows: at each object X = x1 :

S1, . . . , xm : Sm of W and each object ∆ = y1 : T1, . . . , yn : Tn of CX , we define a
category T (X)(∆) as follows:

T (X)(∆) =


Objects: Judged propositions j(φ) such that Fv(φ) ⊆ X ./ ∆;

Arrows: Proofs Φ such that j(φ)
Φ−→ k(ψ) if and only if

(X ./ ∆) j(φ) `T Φ:k(ψ).

At each object Y of W and each arrow X ′
t−→ X, we define the functor t∗(=

T (W )(t)) :T (Y )(X) → T (Y )(X ′), as usual ( (Lawvere 1970) and (Seely 1983))
this is given by substitution.

At each arrow X
α−→ X ′ of W , we must define a natural transformation

T (X)
T (α)⇒ T (X ′). As in the example constructed in § 3.2.1, inclusions will

do:

∆ T (X)(∆) ⊂
I∆- T (X ′)(∆)

∆′

t

?

T (X)(∆′)

T (Y )(t)

?
⊂

I∆′

- T (X ′)(∆′)

T (X ′)(t)

?

Each fibre has a product, the proof is a slight generalization of the one given
for the term model in § 5.2.3 to include judgements. There may be extra struc-
ture required in the Kripke prestructure. This will arise due to the structure
having enough structure to interpret the connectives in the alphabet A and the
satisfaction conditions in the definition of the interpretation (cf. examples below).

We are now able to define a Kripke structure for LT , KT : [W , [B,V ]]. We
define the category V as follows:

Objects: Categories V built out of V = J (X)(∆), which contain

Objects: Arrows j1(φ1)× . . .× jn(φn)→ k(ψ) in J (X)(∆);

Arrows: Arrows Γ → k(ψ) to Γ′ → k′(τ) are given by arrows Γ → Γ′ in
J (X)(∆).

Arrows: Functors f ∗ :KT (X)(∆) → KT (X)(∆′), where f : ∆′ → ∆ is an arrow
in T (X) are defined to be the the usual substitution.
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It is straightforward to check that the functors f ∗ satisfy the definition. The
interpretation is taken to be the identity function in the fibres, in the base cate-
gories CX , we interpret a sort S by x :S.

We now complete our semantic view of object-logics by defining the satisfac-
tion of a proposition in a model. We have given the satisfaction relations for
connectives # in the definition of the interpretation, here we are concerned with
the satisfaction relation for the whole logic.

Definition 7.22 (Satisfaction)
Let 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]], be a Kripke model of OT . KJ satisfies
j(φ) at world w with respect to environment ρ,

w, ρ ‖−KJOT j(φ)

if and if there is an arrow
1

f−→ Jj(φ)Kw,ρKJ
in J (W )(D), where D =

∏n
i=1JSiK

w,ρ
KJ and all the free variables of φ are in the set

{x1 :S1, . . . , xn :Sn}. �

If Γ = {y1 : j1(φ1), . . . , yn : jn(φn)}, then we write w, ρ ‖−KJOT Γ (or more com-

monly w, ρ,Γ ‖−KJOT j(φ)) if for each 1 ≤ i ≤ n, w, ρ ‖−KJOT ji(φi). Satisfaction is

also monotone, if w
f−→ w′ and Jj(φ)Kw

′,ρ
KJ is defined, then w′, ρ[f ] ‖−KJOT j(φ),

We consider three examples of our formulation of object-logic models: classical
predicate logic, intuitionistic predicate logic and classical propositional modal K.
We begin by giving the alphabet of classical predicate logic:

• S = {ι, o};

• V = {ι};

• E = {∧,∨,⊃,∀, ∃,¬,⊥};

• CL = {∧,∨,⊃,¬};

• CG = {∀,∃,⊥};

• J = {true}.

The satisfaction relation for each local condition for each local connective is
as follows:

1
f−→ Jtrue(φ ∧ ψ)Kw,ρKJ if there exist arrows 1

f1−→ Jtrue(φ)Kw,ρKJ

and 1
f2−→ Jtrue(ψ)Kw,ρKJ
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1
f−→ Jtrue(φ ∨ ψ)Kw,ρKJ if there exist arrows 1

f1−→ Jtrue(φ)Kw,ρKJ

or 1
f2−→ Jtrue(ψ)Kw,ρKJ

1
f−→ Jtrue(φ ⊃ ψ)Kw,ρKJ if there exist arrows 1

f1−→ Jtrue(φ)Kw,ρKJ

implies 1
f2−→ Jtrue(ψ)Kw,ρKJ

The satisfaction relation for each non-local connective is as follows:

1
f−→ J∀x : ι . φKw,ρKJ if and only if for all worlds w′, w

α−→ w′ and for all

a :JιKw,ρKJ → JιKw,ρKJ and terms t such that JtKw
′,ρ[α]
KJ , then 1→ Jφ[t/x]Kw,ρ[α][x:=a]

KJ

1
f−→ J∃x : ι . φKw,ρKJ if and only if there exists a world w′, w

α−→ w′ such that there

exists a :JSKw
′,ρ
KJ → JSKw

′,ρ
KJ , a term t such that JtKw

′,ρ
KJ an arrow

1→ Jφ[t/x]Kw
′,ρ[f ][x:=a]
KJ

We now show what properties we need J to have in order for it to have
enough structure to interpret the alphabet of classical predicate logic. We re-
quire each fibre J (W )(D) to have products, coproducts, exponentials and an
initial object. Further, we require that each functor p∗ induced by the projection
p :U × V → U in the base category, has a left and right adjoint which satisfy the
(strict) Beck-Chevalley conditions. We show the argument for interpreting uni-
versal quantification as a right adjoint, the other arguments are similar. The sat-
isfaction relation tells us that for every JψKw,ρKJ , there is a bijection between arrows
opc(JφKw,ρKJ ) → JψKw,ρKJ in J (W )(

∏n
i=1JιK

w,ρ
KJ ) and arrows JφKw,ρKJ → p∗Qn

i=1JιKw,ρKJ ×JιKw,ρKJ
in J (w)(

∏n
i=1JιK

w,ρ
KJ × JιKw,ρKJ . The functor p∗ having a right adjoint op∀ ensures

that this condition holds. The Beck-Chevalley condition arises from the funtori-
ality of substitution. Given an arrow f :

∏n
i=1JιK

w,ρ
KJ → B, we have, writing op∀ as

∀p, ∀p◦f (JφKw,ρKJ = ∀g(∀f (JφKw,ρKJ )).
The connectives are interpreted as follows:

Jtrue(φ ∧ ψ)Kw,ρKJ = Jtrue(φ)Kw,ρKJ × Jtrue(ψ)Kw,ρKJ

Jtrue(φ ∨ ψ)Kw,ρKJ = Jtrue(φ)Kw,ρKJ + Jtrue(ψ)Kw,ρKJ

Jtrue(φ ⊃ ψ)Kw,ρKJ = Jtrue(ψ)Kw,ρKJ
Jtrue(φ)Kw,ρKJ

Jtrue(⊥)Kw,ρKJ = 1 (the initial object)

Jtrue(¬φ)Kw,ρKJ = Jtrue(⊥)Kw,ρKJ
Jtrue(φ)Kw,ρKJ

Jtrue(∀x : ι . φ)Kw,ρKJ = ∀ιJtrue(φ)Kw,ρKJ where ∀ι is the right adjoint to p∗
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Jtrue(∃x : ι . φ)Kw,ρKJ = ∃ιJtrue(φ)Kw,ρKJ where ∃ι is the left adjoint to p∗

Exactly the same structure will be sufficient to ensure that the Kripke model
of intuitionistic predicate logics has enough structure to interpret the alphabet
of intuitionistic predicate logic, which apart from the naming of judgements has
the same alphabet as classical predicate logic. The distinct between classical and
intuitionistic predicate logic is obtained from the forcing condition on implication.
For intuitionistic logic, we have w, ρ ‖−KJOT proof(φ ⊃I ψ) if and only if for all

worlds w′ such that w
f−→ w′, w′, ρ[f ] ‖−KJOT proof(φ) implies w′, ρ[f ] ‖−KJOT proof(φ).

The alphabet for the classical propositional modal logic K is as follows:

• S = {o};

• V = ∅;

• E = {∧,∨,⊃,⊥,�};

• CL = {∧,∨,⊃};

• CG = {⊥,�};

• J = {true, valid}.

Here the category of judgements has an arrow valid → true. A Kripke pre-
structure in which the fibres are cartesian closed with coproducts and an initial
object is enough to ensure that the Kripke model has enough structure to in-
terpret ∧,∨,⊥ and ⊃. To satisfy the enough points condition for � we need a
functor from J (W )(D) to itself. Once one moves to extensions of K, usually,
extra conditions are imposed on this functor to make it satisfy the extra axioms,
or, equivalently, the conditions on the relation R�. An example of this is the
monoidal co-monad (�, S, ε), where � : J(W )(D) → J(W )(D) used to model �
in (constructive) S4 in (Alechina, de Paiva & Ritter 1998).

We can extend our treatment of object-logic models to provide interpretations
of proofs. Again, we exploit the satisfaction relation. If Γ = {y1 : j1(φ1), . . . , yn :

jn(φn)}, then w, ρ,
∧∧

Γ ‖−KJj(φ) if and only if, for all w
f−→ w′, (w′, ρ[f ] ‖−KJOT

∧∧
Γ

implies w′, ρ[f ] ‖−KJOT j(φ)), where
∧∧

Γ = j1(φ1)× . . .× jn(φn).

Lemma 7.23 (Satisfaction of Consequences)
Let 〈KJ , J−K−,ρKJ 〉 be a Kripke model of OT . If Γ = {y1 : j1(φ1), . . . , yn : jn(φn)},
then w, ρ,

∧∧
Γ ‖−KJOT j(φ) if and only if w, ρ,Γ ‖−KJOT j(φ).

Proof The same argument as Lemma 5.12 will work here. �
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Our models have enough structure to interpret not only the consequences but
also the proofs, or realizers of consequence of OT . Let δ : ((X) y1 : j1(φ1), . . . , yn :
jn(φn) `OT j(φ)) be a proof in the axiomatization of OT . Let, for each 1 ≤ i ≤ n,
Jji(φi)Kw,ρKJ and Jj(φ)Kw,ρKJ be defined. If JδKw,ρKJ , the interpretation of δ, is defined,
then it is an object

(
n∏
i=1

Jji(φi)Kw,ρKJ )
JδKw,ρKJ−−−→ Jj(φ)Kw,ρKJ

in KJ (W )(Y ), where Y =
∏n

i=1JSiK
w,ρ
KJ and X = {x1 :S1, . . . , xn :Sn}. We write

w, ρ ‖→KJOT δ : ((X) Γ `OT j(φ)) if and only if

(
n∏
i=1

Jji(φi)Kw,ρKJ )
JδKw,ρKJ−−−→ Jj(φ)Kw,ρKJ

is defined. This move to realizers is important for classical logic because the
fibres of the Kripke prestructure for classical logic collapse, while the fibres of
the Kripke structure for classical logic do not and so we are able to interpret and
distinguish the proof-objects.

7.4 Meta-theorems for Object-logics

We now provide soundness and completeness results for object-logics. Before
we do so, a few comments are needed on the axiomatization of Kripke models.
The satisfaction relation for local connectives is defined in such a way that it
always corresponds to the natural deduction rules for that connective as given by
Prawitz’s general schema. The satisfaction relation for non-local connectives has
also been chosen so that it corresponds to a natural deduction rule. The satisfac-
tion relation for universal non-local connectives corresponds to the introduction
rule

[j1(φ1)] · · · [jn−1(φn−1)]
···

jn(φn)
#-I

j(#(φ1, . . . , φn))

with elimination rule

j(#(φ1, . . . , φn)) j1(φ1) · · · jn−1(φn−1)
#-E

jn(φn)
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and the satisfaction relation for the existential non-local connectives corresponds
to the introduction rule

j1(φ1) · · · jn(φn)
#-I

j(#(φ1, . . . , φn))

with elimination rule

j(#(φ1, . . . , φn))

[j1(φ1)] · · · [jn(φn)]
···

k(τ)
#-E

k(τ)

This is not the full picture since the relation R# will correspond to an axiom
of the judged proof system. This correspondence is where our general approach
fails. We do not know which axiom a relation corresponds to in general. We are
forced to deal with specific families of logics where we do know the relationship
between R# and axioms in the judged proof system. We have three families of
logics which we shall analyse in detail. The first are logics which only have local
connectives, so that the issue about the properties of the relation R# do not
arise. The second family contains minimal, intuitionistic and classical predicate
logics together with all their fragments. The final family contains extensions of
the classical propositional modal logic K, where the extensions are obtained by
adding axioms of the form

true(♦i�mφ ⊃ �j♦nφ)

which corresponds to R�(= R♦) satisfying

∀x∀y∀z(xRi
�y ∧ xR

j
�z ⊃ ∃u(yRm

�u ∧ zRn
�u))

where xR0
�y means x = y and xRi+1

� y means ∃v(xR�v ∧ vRi
�y). Other choices

for R� are possible but we restrict to this class because it covers all the usual
modal logics and the relationship between conditions on R� and axioms in the
judged proof system is well known. This family of modal logics is called the
Geach hierarchy by (Basin et al. 1997).

We can now prove soundness and completeness results for these families of
logics. We initially prove soundness for the family of logics which only contain
local connectives and then obtain the others as corollaries.

Theorem 7.24 (Soundness)
Let LT be a judged proof system with alphabet A which only contains local con-

nectives. Let 〈KJ , J−K−,ρKJ 〉, where KJ : [W , [Bop,V ]], be a Kripke model of LT .

We have that Γ `LT j(φ) implies w, ρ,Γ ‖−KJLT j(φ).

Proof This is by induction on the structure of proofs in LT . We begin with
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the case where j(φ) ∈ Γ, that is, the inference rule is an axiom. By the induction
hypothesis, we have that Jj(φ)Kw,ρKJ ∈

∏n
i=1Jji(φ)iKw,ρKJ . By the definition of product,

we have an arrow
∏n

i=1Jji(φi)Kw,ρKJ → Jj(φ)Kw,ρKJ and so w, ρ ‖−KJLT j(φ).
We assume that the last rule used was #-I. By the induction hypothesis we

have that w, ρ ‖−KJLT Γ implies either (((w, ρ ‖−KJLT K1
1,1 and . . . and w, ρ ‖−KJOT

K1
1,h1

1
) imply w, ρ ‖−KJOT J1

1) and . . . and ((w, ρ ‖−KJOT K1
p1,1

and . . . and w, ρ ‖−KJOT
K1
p1,h1

p1

) imply w, ρ ‖−KJOT J1
p1

)) or . . . or (((w, ρ ‖−KJOT Ks
1,1 and . . . and w, ρ ‖−KJOT

Ks
1,h1

1
) imply w, ρ ‖−KJOT Js1) and . . . and ((w, ρ ‖−KJOT Ks

ps,1 and . . . and w, ρ ‖−KJOT
Ks
ps,hsps

) imply w, ρ ‖−KJOT Jsps)) which by Definition 7.22 is equivalent to the follow-

ing condition in terms of arrows. Either there are arrows (((1
f1
1,1−−→ JK1

1,1K
w,ρ
KJ and

. . . and 1
f1
1,h1

1−−−→ JK1
1,h1

1
Kw,ρKJ ) which imply 1

f1
1−→ JJ1

1K
w,ρ
KJ ) and . . . and arrows ((1

f1
p1,1−−→

JK1
p1,1

Kw,ρKJ and . . . and 1
f1
p1,h

1
p1−−−−→ JK1

p1,h1
p1

Kw,ρKJ ) which imply 1
f1
p1−−→ JJ1

p1
Kw,ρKJ )) or . . . or

there exist arrows ((1
fs1,1−−→ JKs

1,1K
w,ρ
KJ and . . . and 1

fs
1,hs1−−−→ JKs

1,hs1
Kw,ρKJ ) which imply

1
fs1−→ JJs1K

w,ρ
KJ ) and . . . and ((1

fsps,1−−→ JKs
ps,1K

w,ρ
KJ and . . . and (1

fs
ps,h

s
ps−−−−→ JKs

ps,hsps
Kw,ρKJ )

which imply 1
fsps−−→ JJspsK

w,ρ
KJ )), which by Definition 7.20, means w, ρ ‖−KJLT Γ implies

w, ρ ‖−KJLT j(φ) and therefore w, ρ,Γ ‖−KJLT j(#(φ1, . . . , φn)).
Assuming that the last rule applied was #-E, we imply the induction hypoth-

esis to obtain w, ρ ‖−KJLT Γ implies (w, ρ ‖−KJLT j(#(e1, . . . , en)) and ((((w, ρ ‖−KJLT
H1

1,1 and . . . and w, ρ ‖−KJLT H1
1,h1

1
) implies w, ρ ‖−KJLT G1

1) and . . . and ((w, ρ ‖−KJLT
H1
p1,1

and . . . and w, ρ ‖−KJLT H1
p1,h1

p1

) implies w, ρ ‖−KJLT G1
p1

)) implies w, ρ ‖−KJLT J)

and . . . and ((((w, ρ ‖−KJLT Hs
1,1 and . . . and w, ρ ‖−KJLT Hs

1,hs1
) implies w, ρ ‖−KJLT Gs

1)

and . . . and ((w, ρ ‖−KJLT Hs
ps,1 and . . . and w, ρ ‖−KJLT Hs

ps,hsps
) implies w, ρ ‖−KJLT

Gs
ps)) implies w, ρ ‖−KJLT J), which by Definition 7.22 is equivalent to w, ρ ‖−KJLT Γ

implies the existence of arrows (1
f−→ Jj(#(e1, . . . , en))Kw,ρKJ and arrows ((((1 →

JH1
1,1K

w,ρ
KJ and . . . and 1→ JH1

1,h1
1
Kw,ρKJ ) which imply 1→ JG1

1K
w,ρ
KJ ) and . . . and arrows

(1→ JH1
p1,1

Kw,ρKJ and . . . and 1→ JH1
p1,h1

p1

Kw,ρKJ ) which imply 1→ JG1
p1

Kw,ρKJ ) which im-

ply 1→ JJKw,ρKJ ) and . . . and arrows ((((1→ JHs
1,1K

w,ρ
KJ and . . . and 1→ JHs

1,hs1
Kw,ρKJ )

which imply 1 → JGs
1K
w,ρ
KJ ) and . . . and arrows ((1 → JHs

ps,1K
w,ρ
KJ and . . . and

1 → JHs
ps,hsps

Kw,ρKJ ) which imply 1 → JGs
psK

w,ρ
KJ )) which imply 1 → JJKw,ρKJ )). By

Definition 7.20, we can use the left-to-right direction of condition (4) and observe
that all the assumptions of the above implications correspond to arrows given by

the expanded form of 1
f−→ Jj(#(e1, . . . , en))Kw,ρKJ . We can conclude that w, ρ ‖−KJΓ

implies 1→ JJKw,ρKJ and thus, by Definition 7.22, we have w, ρ,Γ ‖−KJLT J.
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Assuming that the last rule was ⊃ E, we can apply the induction hypoth-
esis to obtain w, ρ ‖−KJLT Γ implies (w, ρ ‖−KJLT J(φ ⊃ ψ) and w, ρ ‖−KJLT J(φ) and

(w, ρ ‖−KJLT J(ψ) implies w, ρ ‖−KJLT J(τ))). We can now apply Definitions 7.22 and

7.20 to get w, ρ ‖−KJLT Γ implies ((1 → JJ(φ)Kw,ρKJ implies 1 → JJ(ψ)Kw,ρKJ ) and
1 → JJ(φ)Kw,ρKJ and (1 → JJ(ψ)Kw,ρKJ implies 1 → JJ(τ)Kw,ρKJ )). It follows that

w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT J(τ).
We assume that we have used the judgement rule

j(φ

k(φ)

We apply the induction hypothesis to obtain w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT j(φ).

By Definition 7.22, we have an arrow 1
f−→ Jj(φ)Kw,ρKJ . The satisfaction condition

in Definition 7.20 gives us an arrow 1
f ′−→ Jk(φ)Kw,ρKJ and hence w, ρ,Γ ‖−KJLT k(φ).

We assume that we have the introduction rule for ⊥, here there are no pre-
misses. We apply the induction hypothesis to obtain that w, ρ 6‖−KJOT j(⊥).

If the last rule applied was ⊥ E, then we can apply the induction hypothesis
to obtain w, ρ ‖−KJLT j(⊥). Since ⊥ is interpreted as the initial object, if we have an

arrow 1
f−→ Jj(⊥)Kw,ρKJ , then we have arrow 1

f ′−→ D for all objects D in J (W )(X).
Hence w forces any formula.

Finally, we assume that we have the introduction rule for ¬. Applying
the induction hypothesis tells us that w, ρ ‖−KJLT Γ implies (w, ρ ‖−KJLT j(φ) implies

w, ρ ‖−KJLT j(⊥)). By Definition 7.22, we have that an arrow 1
f1−→ Jj(φ)Kw,ρKJ implies

that there is an arrow 1
f2−→ Jj(⊥)Kw,ρKJ . Definition 7.20 tells us that we have an

arrow 1
f−→ Jj(¬φ))Kw,ρKJ . Hence w, ρ,Γ ‖−KJLT j(¬φ. �

Corollary 7.25
Let LT be the judged proof system for classical predicate logic. Let 〈KJ , J−K−,ρKJ 〉 be

a Kripke model of LT . We have that Γ `LT true(φ) implies w, ρ,Γ ‖−KJLT true(φ).

Proof We only need to deal with the cases when j(φ) has been inferred from
∀ I, ∀ E, ∃ I and ∃ E. We begin by assuming that the last rule used was ∀ I.

By the induction hypothesis we have that for all worlds w′ such that w
f−→ w′, all

a :JSKw,KJ → JsKw,ρKJ and for all terms t such that JsKw,ρKJ = a, (w′, ρ[f ][x := a] ‖−KJLT Γ

implies w′, ρ[f ][x := a] ‖−KJLT true(φ[x/t])). By Definitions 7.22 and 7.20, we have

that w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT true(∀x :Sφ).
We assume that the last rule used was ∀ E, we apply the induction hypothesis

to obtain w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT true(∀x : Sφ). Definitions 7.22 and 7.20

tells us that w, ρ ‖−KJLT true(φ).
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Next, we assume that the last rule used was ∃ I, applying the induction

hypothesis tells us that there exists a world w′, where w
f−→ w′, an arrow a :

JSKw,ρKJ → JSKw,ρKJ and a term t such that JtKw,ρKJ = a, and w′, ρ[f ][x := a] ‖−KJLT Γ

implies w′, ρ[f ][x := a] ‖−KJLT true(φ[t/x]). Definition 7.22 and 7.20 tell us that

w, ρ ‖−KJLT true(∃x :Sφ).
Finally, we take the last rule to be used to be ∃ E. Applying the induction

hypothesis tells us that w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT true(∃x : Sφ). By Defini-

tions 7.22 and 7.20, we have that there exists a world w′, w
f−→ w′, such that

there exists an arrow a : JSKw,ρKJ → JSKw,ρKJ and a term t such that JtKw,ρKJ = a and

(w′, ρ[f ][x := a] ‖−KJLT Γ implies w′, ρ[f ][x := a] ‖−KJLT true(φ[x/t]). It follows that

w, ρ,Γ ‖−KJLT true(φ). �

Corollary 7.26
Let LT be the judged proof system for minimal or intuitionistic predicate logic.

Let 〈KJ , J−K−,ρKJ 〉 be a Kripke model of LT . Γ `LT proof(φ) implies w, ρ,Γ ‖−KJLT
proof(φ).

Proof We only show the cases for the rules ⊃ I and ⊃ E, since ⊃ is non-local.
The cases for the quantifiers are the same as Corollary 7.25. We assume that the
last rule used was ⊃ I and apply the induction hypothesis. We have that for all

worlds w′, w
f−→ w′, (w′, ρ[f ][x := a] ‖−KJLT Γ implies (w′, ρ[f ][x := a] ‖−KJLT proof(ψ)

implies w′, ρ[f ][x := a] ‖−KJLT proof(φ))). We apply Definitions 7.22 and 7.20 to

obtain w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT proof(φ ⊃ ψ), Hence w, ρ,Γ ‖−KJLT proof(φ ⊃
ψ).

Finally, we assume that the last rule used was ⊃ E. We apply the induction
hypothesis to see that w, ρ ‖−KJLT Γ implies w, ρ ‖−KJLT j(φ ⊃ ψ) and w, ρ ‖−KJLT
proof(ψ) and (w, ρ ‖−KJLT proof(φ) implies w, ρ ‖−KJLT proof(τ)). We apply Defi-

nition 7.22 and 7.20 to see that w, ρ ‖−KJLT Γ implies ((w, ρ ‖−KJLT proof(φ) im-

plies w, ρ ‖−KJLT proof(ψ)) and w, ρ ‖−KJLT proof(φ) and (w, ρ ‖−KJLT proof(ψ) implies

w, ρ ‖−KJLT proof(τ))). We observe that this is equivalent to w, ρ ‖−KJLT Γ implies

w, ρ ‖−KJLT proof(τ) and we are done. �

Corollary 7.27
Let LT be a classical modal propositional logic which is an extension of K by

axioms of the form valid(♦i�mφ ⊃ �j♦nφ) and let 〈KJ , J−K−,ρKJ 〉 be a Kripke

model for LT . Then Γ `LT j(φ) implies w, ρ ‖−KJLT j(φ) where j ∈ {true, valid}.
Proof The main part of this proof is showing that if R�(= R♦) satisfies
(i, j,m, n)-convergency then w, ρ ‖−KJLT valid(♦i�mφ ⊃ �j♦nφ)The proof we give

comes from (Chellas 1980). Let x be a world in W , and suppose that x, ρ ‖−KJLT
valid(♦i�mφ). This means that
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(a) For some world y, xRi
�y, every world u, yRm

�u, is such that u, ρ ‖−KJLT
valid(φ).

We wish to prove that x, ρ ‖−KJLT valid(�j♦mφ), that is,

(b) For every world z, xRi
�z, there is a world u, zRn

�u, such that u, ρ ‖−KJLT
valid(φ).

To show this, we suppose z is a world, xRj
�z and argue that there is a world u,

zRn
�u such that u, ρ ‖−KJLT valid(φ).
By our assumptions, y and z are such that xRi

�y and xRm
�z. So, by (i, j,m, n)-

convergency of R�, there is a world v such that yRj
�v and zRn

�v. From the first

half of this and (a), it follows that v, ρ ‖−KJLT valid(φ).
It remains to show that soundness holds for the rules for � I, � E, ♦ I and

♦ E. These follow the same pattern as the other non-local connectives. �

As usual, we obtain completeness from the construction of a term model. To
make the statements of the theorems easier until the end of the chapter, unless
we specify otherwise, we assume that LT is one of the following judged proof
systems:

• A judged proof system which only contains local connectives;

• The judged proof system for classical, minimal or intuitionistic predicate
logic;

• The judged proof system for a modal logic in the Geach hierarchy.

Lemma 7.28 (Model Existence)
Let LT be a judged proof system as specified above, then there exists a Kripke

model of LT , 〈KJ , J−K−,ρKJ 〉, together with a world w0 such that if Γ 6`LT j(φ) then

w0, ρ ‖−KJLT Γ and wo, ρ 6‖−KJOT j(φ).

Proof The term model we constructed after Definition 7.20 is the required
Kripke model of LT . We take W0 = 〈〉. �

Before we can prove completeness, we need to define validity. As usual, we
write Γ‖−LT j(φ) if for all models and all worlds w, w, ρ,Γ ‖−KJLT j(φ).

Theorem 7.29 (Completeness for ‖−)
Let LT be a judged proof system as specified above, then Γ `LT j(φ) if and only if
Γ‖−LT j(φ), for appropriate j.

Proof

Only If This is soundness, Lemma 7.24 and Corollaries 7.25, 7.26 and 7.27.

If Suppose Γ 6`LT j(φ), then Lemma 7.28 yields a contradiction. �

153



We now turn to soundness for consequences.

Theorem 7.30 (Soundness for ‖→)
Let LT be a judged proof system which only contains local connectives. Let

〈LT , J−K−,ρKJ 〉 be a Kripke model for LT . If δ : (Γ `LT j(φ)) is a natural deduc-

tion proof and JδKw,ρKJ is defined, then w, ρ ‖→KJLT δ : (Γ `LT j(φ)).

Proof We proceed by induction on the structure of proof-terms of LT . The
case where δ = HY Pφ(y) follows from the fact that every product comes with
projections. We assume that the last rule used was v-#-I. We apply the in-
duction hypothesis and Definition 7.22 to obtain one of 1 ≤ i ≤ s sets of arrows

{
∏n

l=1Jjl(φl)Kw,ρKJ×(
∏hij

k=1JKi
j,kK

w,ρ
KJ

JδijK
w,ρ
KJ−−−−→ JJijK

w,ρ
KJ |1 ≤ j ≤ pi}. Each of these arrows

are in different fibres of KJ . We can apply op# to the objects JJijK
w,ρ
KJ to obtain

an arrow
∏n

i=1Jjn(φn)Kw,ρKJ
J#-IKw,ρKJ−−−−−→ Jj(#(φ1, . . . , φn))Kw,ρKJ in the fibre KJ (w)(X),

where X =
∏n

i=1JSiK
w,ρ
KJ and the free variables of j1(φ1), . . . , jn(φn),

j(#(φ1, . . . , φn)) are in the set X ′ = {x1 :S1, . . . , xn :Sn}.
We assume that δ = v-#-E. We apply the induction hypothesis and Defi-

nition 7.22 to obtain an arrow
∏n

i=1Jji(φi)Kw,ρKJ
JδKw,ρKJ−−−→ Jj(#(φ1, . . . , φn))Kw,ρKJ and s

arrows
∏n

i=1Jji(φi)Kw,ρKJ × JΓjKw,ρKJ → JKKw,ρKJ for 1 ≤ j ≤ s. By Definition 7.20 and
the definition of Γi, we observe that the Γi correspond to clauses in the right
hand side of the implication in condition (4) of Definition 7.20, so that we obtain

an arrow
∏n

i=1Jji(φi)Kw,ρKJ
Jv-#-EKw,ρKJ−−−−−−−→ Jk(τ)Kw,ρKJ .

We assume that δ = v- ⊃ -E, we apply the induction hypothesis to obtain

w, ρ ‖→KJLT δ : (Γ `LT j(φ ⊃ ψ)), w, ρ ‖→K|LT δ1 : (Γ `LT j(φ)) and w, ρ ‖→KJLT δ2 : (Γ, y2 :
j(ψ) `LT j(τ)). By Definitions 7.22 and 7.20, we have that (

∏n
i=1Jji(φi)Kw,ρKJ →

Jj(φ)Kw,ρKJ implies
∏n

i=1Jji(φi)Kw,ρKJ → Jj(ψ)Kw,ρKJ ) and
∏n

i=1Jji(φi)Kw,ρKJ → Jj(φ)Kw,ρKJ and
(
∏n

i=1Jji(φi)Kw,ρKJ → Jj(ψ)Kw,ρKJ implies
∏n

i=1Jji(φi)Kw,ρKJ → Jj(τ)Kw,ρKJ ). We thus have

that
∏n

i=1Jji(φi)Kw,ρKJ → Jj(τ)Kw,ρKJ , that is, w, ρ ‖→KJLT v- ⊃ -E(δ, δ1, y2 : δ2) : (Γ `LT
j(τ).

We assume that δ = BOT -I. We apply the induction hypothesis to see that
there are no arrows into J⊥Kw,ρKJ , as required.

We assume that δ = BOT -E. We apply the induction hypothesis and obtain

an arrow
∏n

i=1Jji(φi)Kw,ρKJ
δ−→ Jj(⊥)Kw,ρKJ and since Jj(⊥)Kw,ρKJ is the initial object,

there is an arrow to every object in KJ and so we can compose them to obtain

an arrow
∏n

i=1Jji(φi)Kw,ρKJ
JBOT -EKw,ρKJ−−−−−−−→ D as required.

Next, we assume that δ = NEG-I and we apply the induction hypothe-

sis to obtain
∏n

i=1Jji(φi)Kw,ρKJ
JδKw,ρKJ−−−→ Jj(⊥)Kw,ρKJ . We can curry here to obtain∏n

i=1Jji(φi)Kw,ρKJ
JNEG-IKw,ρKJ−−−−−−−→ Jj(¬φ)Kw,ρKJ and can conclude that w, ρ ‖→KJLT δ : (Γ `LT
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j(φ).
We assume that δ = NEG-E. We apply the induction hypothesis to obtain

arrows
∏n

i=1Jji(φi)Kw,ρKJ
JδKw,ρKJ−−−→ Jj(¬φ)Kw,ρKJ ,

∏n
i=1Jji(φi)Kw,ρKJ

Jδ1Kw,ρKJ−−−−→ Jj1(φ1)Kw,ρKJ and∏n
i=1Jji(φi)Kw,ρKJ

Jδ2Kw,ρKJ−−−−→ Jk(τ)Kw,ρKJ . We use Definition 7.20 and the evaluation arrow

twice to obtain an arrow
∏n

i=1Jji(φi)Kw,ρKJ
JNEG-EKw,ρKJ−−−−−−−→ Jk(ψ)Kw,ρKJ .

Finally, the case for a judgement rule, follows from the fact that there is an
arrow j→ k in the category of judgements. �

Corollary 7.31
Let LT be the judged proof system for classical predicate logic and 〈KJ , J−K−,ρKJ 〉
be a Kripke model of LT . If δ : (Γ `LT true(φ)) be a natural deduction proof and
JδKw,ρKJ is defined then w, ρ,Γ ‖→KJLT δ : (Γ `LT true(φ)).

Proof (Sketch) We only need to prove the cases when δ is either FORALL-I,
FORALL-E, EXISTS-I or EXISTS-E. We just show FORALL-I, since
the rest are similar. We apply the induction hypothesis to obtain the arrow∏n

i=1Jji(φi)Kw,ρKJ
JδKw,ρKJ−−−→ Jj(φ)Kw,ρKJ . We first apply the natural transformation in-

duced by the arrow w
f−→ w′ in W and then the right adjoint ∀S to obtain∏n

i=1Jji(φi)K
w′,ρ[f ][x;=a]
KJ

∀SJδKw
′,ρ[f ][x:=a]
KJ−−−−−−−−−→ J∀x :SφKw,ρKJ . �

We do not prove soundness for minimal and intuitionistic logic because the
only difference between the proof and that of the above Corollary is the way
implication is handled and the proof is straightforward.

Corollary 7.32
Let LT be the judged proof system for classical propositional modal logic K ex-

tended with axioms of the form valid(♦i�mφ ⊃ �j♦nφ). Let 〈KJ , J−K−,ρKJ 〉 be a
Kripke model of LT . If δ : (Γ `LT j(φ)) be a natural deduction proof Γ `LT j(φ)
and JδKw,ρKJ is defined then w, ρ,Γ ‖→KJLT δ : (Γ `LT j(φ)), where j ∈ {true, valid}.
Proof (Sketch) We just need to show the cases where δ is BOX-I, BOX-E,
LOZENGE-I and LOZENGE-E. The case where δ is a natural deduction
proof Γ `LT valid(♦i�mφ ⊃ �j♦nφ) follows from the argument given in Corol-
lary 7.27. We just show the case for BOX-I, the others being similar. We apply

the induction hypothesis to obtain (
∏n

i=1Jji(φi)Kw,ρKJ )
JδKw,ρKJ−−−→ Jvalid(φ)Kw,ρKJ . We ap-

ply the natural transformation induced by w
f−→ w′ in W and then the functor �

to obtain an arrow (
∏n

i=1Jji(φi)K
w′,ρ[f ][x:=a]
KJ )

�JδKw
′,ρ[f ][x:=a]
KJ−−−−−−−−−→ Jvalid(�φ)Kw

′,ρ[f ][x:=a]
KJ . �
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Lemma 7.33 (Model Existence)
Let LT be one of the following:

• A judged proof system which only contains local connectives;

• The judged proof system for classical, minimal or intuitionistic predicate
logic;

• The judged proof system for a modal logic in the Geach hierarchy.

There exists a Kripke model of LT , 〈KJ , J−K−,ρKJ 〉, together with a world w0 where,

if δ : (Γ `LT j(φ)) is not a natural deduction proof, w0, ρ 6‖→KJLT δ,
Proof We use the term model constructed after Definition 7.20 and take w0 =
〈〉. �

Theorem 7.34 (Completeness for ‖→)
Let LT be one of the following:

• A judged proof system which only contains local connectives;

• The judged proof system for classical, minimal or intuitionistic predicate
logic;

• The judged proof system for a modal logic in the Geach hierarchy.

Let δ : (Γ `LT j(φ)) be a natural deduction proof. Then JδKw,ρKJ is defined if and

only if w, ρ ‖→KJLT δ : (Γ `LT j(φ)).

Proof

Only If By soundness, Lemma 7.30 and Corollaries 7.31 and 7.32.

If Suppose JδKw,ρKJ is not defined, then Lemma 7.33 yields a contradiction. �
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Chapter 8

Judgements-as-types
Correspondence

After providing providing proof- and model-theoretic characterizations of object-
logics which are suitable for representing in LF, we now turn to a characterization
of the representation mechanism. We restrict our attention to the judgements-
as-types representation mechanism, recalling that the previous chapter was de-
veloped with this in mind. We begin by describing the usual method of repre-
senting object-logics in LF (cf. (Harper et al. 1993), (Avron et al. 1992), (Avron
et al. 1997), etc.), using an encoding function induced by the judgements-as-types
correspondence. We then turn our attention to the model-theoretic counterpart
of this encoding. The judgements-as-types correspondence induces an (indexed)
epimorphism between Kripke models of the object-logic and Kripke models of the
λΠ-calculus. We conclude this chapter with a section on representation theorems.
A representation theorem proves that a representation is adequate, that is, every
proof in the object-logic has a corresponding proof in LF (fullness) and every
derivation in LF is (essentially) the representation of a proof in the object-logic
(faithfulness).

Traditionally, adequacy has been proven proof-theoretically: fullness is proven
by induction over the structure of proofs in the object-logic; and, faithfulness is
proven by analysis of normal forms for derivations in LF. Faithfulness proofs are
often quite involved. We claim that faithfulness should follow (intuitively) from
the semantics of LF. This idea is not new and can be found in (Simpson 1993). We
provide evidence for this claim by using the judgements-as-types epimorphism to
establish faithfulness. We prove faithfulness by constructing Kripke models of the
λΠ-calulus out of the encoded syntax of the object-logic. We then use soundness,
the judgements-as-types epimorphism and completeness of Kripke models of the
object-logic to complete the proof.

The judgements-as-types encoding is not original work, the generality of our
presentation is, however, original. The section on the judgements-as-types epi-
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morphism is original. We do not establish any new adequacy results, apart from
a couple of fairly obscure modal logics, and the originality of our work is in the
methodology not the result.

Our work is similar to Gardner (1992b), (Gardner 1992a). She presents in-
dexed categories as models of LF+ (LF restricted to canonical terms) and object-
logics and shows that adequate encodings induce (indexed) isomorphisms between
the models. She does not, however, work with LF or have any notion of satisfac-
tion in her models, so is unable to provide model-theoretic proofs of faithfulness.

8.1 Syntactic Judgements-as-types: Encoding

Logics in LF

The judgements-as-types correspondence tells us that the basic judgements of an
object-logic correspond to primitive types in the λΠ-calculus and hypothetico-
general judgements correspond to Π-types.

One the of the main reasons for using logical frameworks is that the handling of
variables and binding is dealt with by the variables and binding of the framework.
Recalling the definition of expressions in a judged proof system, we see that the
expressions were generated by abstraction and application. These correspond to
abstraction and application in the λΠ-calculus. Presentations of syntax in this
manner are often called higher-order abstract syntax (cf. (Pfenning & Elliott
1988)).

Definition 8.1 (Encoding)
Let OT be an object-logic presented either (1) as a Hilbert-type system, or (2)
as a natural deduction system. An encoding of OT in LF is determined by a
signature ΣOT , which determines a pair ε = (εs, εj) of functions. εs maps the
syntax of OT to λΠ-terms and εj maps the proof expressions of OT to λΠ-terms.
Thus we obtain that

(x1 :S1, . . . , xn :Sn︸ ︷︷ ︸
X

) y1 : j1(φ1), . . . , ym : jm(φm)︸ ︷︷ ︸
∆

`OT δ : j(φ)

gets sent to

εs(x1 :S1), . . . , ε(xn :Sn)︸ ︷︷ ︸
ΓX

, εs(y1 : j1(φ1)), . . . , εs(ym : jm(φm))︸ ︷︷ ︸
Γ∆

`ΣOT
εj(δ) :εs(j(φ))

An alphabet A = (S, V, E,C, J) is encoded as follows:

• Let s ∈ S/V : if s has zero arity, then s is encoded by a constant s :Type ∈
ΣOT or by a constant s : s′ ∈ ΣOT , where s′ : Type is declared to the left of
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s :s′. If s has arity m, then s is encoded in LF either by a constant

s : (s1 → . . .→ sm)→ Type ∈ ΣOT

or by a constant
s : (s1 → . . .→ sm)→ s′ ∈ ΣOT

where s′ :Type ∈ ΣOT is declared to the left of s :s′;

• Let s ∈ V : a variable x : Vs (with zero arity) is encoded in LF by a dec-
laration x : S ∈ Γ, where Γ is the context within which the declaration is
required;

• Let e ∈ E: if e has arity (a1, . . . , am) → s, then e is encoded in LF by a
constant

e :a1 → . . .→ am → s ∈ ΣOT

where if any ai are of the form a→ a′, we put brackets around the ai and
if any of the ai stand for more than one syntactic category, we quantify the
whole expression by Πai : Type, for each ai ranging over multiple syntactic
categories;

• Let j ∈ J: if j has arity (s1, . . . , sm), then j is encoded in LF by a constant

j :s1 → . . .→ sm → Type ∈ ΣOT .

Application in L is encoded in LF by application in the λΠ-calculus and abstrac-
tion in L is encoded in LF by abstraction in the λΠ-calculus.

1. Hilbert-type systems:

• An axiom Ax of the form j(e(φ1, . . . , φn)) is encoded in LF by a con-
stant of the form

Ax :Πp1 :o1 . . . . .Πpm :om . j(e1(p1, . . . , pm)) ∈ ΣOT

where each oi is one of the syntactic categories of propositions distin-
guished in A;

• A rule R of the form
J1 · · · Jm

R
J

where each Ji and J are basic judgements, is encoded in LF by a
constant of the form

R :Πp1 :o1 . . . . .Πpr :or . J1 → . . .→ Jm → J ∈ ΣOT
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where each oi is one of the distinguished syntactic categories of propo-
sitions distinguished in A, and there are r distinct formulæ φi : oi in
the rule, with each occurrence replaced by pi :oi in the constant.

2. Natural deduction systems:

• An axiom Ax of the form j(e(φ1, . . . , φn)) is encoded in LF by a con-
stant of the form

Ax :Πp1 :o1 . . . . .Πpm :om . j(e1(p1, . . . , pm)) ∈ ΣOT

where each oi is one of the syntactic categories of propositions distin-
guished in A;

• The #-introduction rule schema of the form

···
Gi

1

[Hi
j,1] · · · [Hi

j,hij
]

···
Gi
j

···
Gi
pi

# I
J

where each Gi
j, Hi

j,k and J = j(#(e1, . . . , en)) are basic judgements, is
encoded in LF by a constant of the form

#-I :Π:p1 :o1 . . . . .Πpm :om . ((Hi
1,1 → . . .→ Hi

1,hi1
)→ Gi

1)→ . . .→

((Hi
pi,1
→ . . .→ Hi

pi,hipi
)→ Gi

pi
)→ J ∈ ΣOT

where each oi is one of the syntactic categories of propositions distin-
guished in A and there are m distinct formulæ φi : oi in the schema,
each replaced by pi :oi in the encoded rule;

• The #-elimination rule schema of the form

K

[Γ1]
···
J · · ·

[Γs]···
J

# E
J

where each Γi is
∧∧hi1

k=1
Hi

1,k ⊃ Gi
1, . . . ,

∧∧hipi
k=1Hi

1,k ⊃ Gi
pi

and each K =

k(#(e1, . . . , en)), J, Hi
j,k and Gi

j are basic judgements, is encoded in LF
by a constant of the form

#-E :Π:p1 . . . . .Πpm :om . (K→ (Γ1 → J)→ . . .→ (Γs → J))→ J
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∈ ΣOT

where each oi is one of the syntactic categories of propositions distin-
guished in A and there are m distinct formulæ φi : oi in the rule each
replaced by pi :oi in the encoded rule and, for brevity, we have elided
the currying of the Γi’s;

• The ⊃ elimination rule

j(φ ⊃ ψ) j(φ)

[j(ψ)]
···

j(τ)
⊃ E

j(τ)

is encoded in LF by a constant of the form

⊃ -E :Πp :o .Πp :o .Πr :o . (j(⊃ pq)→ j(p)→ (j(q)→ j(r)))→ j(r).

The function εs is defined inductively on the structure of syntactic categories,
expressions and basic judgements of the language L generated by A (cf. Defini-
tions 7.5, 7.7 and 7.8):

• For a syntactic category sc1 . . . cm, εs(sc1 . . . cm) = εs(s)εs(c1) . . . εs(cm),
where s ∈ S and c1, . . . , cm are syntactic categories;

• Expression application: εs(ee1 . . . en) = εs(e)εs(e1) . . . εs(en), where e and
each ei are expressions;

• Expression abstraction: εs((x1, . . . , xm)e) = λx1 : s1 . . . . . λxm : sm . εs(e),
where e is an expression and each xi ∈ Vsi ;

• For a basic judgement j(e1, . . . , em), εs(j(e1, . . . , em)) = εs(j)εs(e1) . . . εs(em).

Also, a context (x1, . . . , xm) y1 : j1(φ1), . . . , yn : jn(φn) is encoded by εs as
x1 :s1, . . . , xm :sm︸ ︷︷ ︸

ΓX

, y1 :εs(j1(φ1)), . . . , εs(jn(φn))︸ ︷︷ ︸
Γ∆

.

εj is defined inductively over proof expressions:

• For HY Pφ(y), an hypothesis, εj(HY Pφ(y)) = y : j(φ);

• For #-I or #-E applied to proofs, we describe the function in two steps:

1. Instantiation of variables, formulæ and terms. These are written below
the proof expression. If a variable is present it is abstracted. For
example,

εj(#-Ix1,...,xn,φ1,...,φn,xn+1,φ) = #-I(λx1 :s1 . . . . . λxn :sn . εs(φ1))εs(φ2)
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. . . εs(φn)(λxn+1 :sn+1 . εs(φ))

2. Application of proof-terms. Any discharged hypothesis is λ-abstract-
ed. For example,

εj(#-I(Π1, . . . ,Πn, (y1, . . . , yn) :Π)) = #-I(εj(Π1), . . . , εj(Πn)(λy1 :εs

(j1(φ1)) . . . . . . . . λyn :εs(jn(φn) . εj(Π)))

If we have a proof which contains a formula with a free variable, then
we have to abstract this variable as well, using scoping to capture
which formulæ it is free in. �

As we mentioned earlier, abstraction and application in the λΠ-calculus han-
dle any application and abstraction in the object-logic. We have the following
example:

In classical logic we have (X, x : ι) `OT φ :o, which is encoded in LF as ΓX , x :
ι `ΣOT

εs(φ) :o. We can abstract to obtain ΓX `ΣOT
λx : ι . εs(φ) : ι→ o, since x is

free in o. Since ∀ : (ι→ o)→ o ∈ ΣOT , ΓX `OT ∀ : (ι→ o)→ o. Application gives
ΓX `OT ∀(λx : ι . εs(φ)) :o, which is the encoding of X `OT ∀x : ι . φ :o.

λ-abstraction is also used to handle discharge in natural deduction rules. Take,
for example, the rule for ⊃ I in classical logic, which gets encoded as the constant

IMP -I :Πp :o .Πq :o . (true(p)→ true(q))→ true(p ⊃ q) ∈ ΣOT

Given ΓX ,Γ∆ `OT Mδ : true(ψ) in LF, we abstract to obtain ΓX ,Γ∆ `OT λy :
true(φ) .Mδ : true(φ) → true(ψ), which can then be applied to (the instantiated)
constant IMP -I to obtain ΓX ,Γ∆ `OT IMP -Iεs(φ)εs(ψ)(λy : j(φ) .Mδ) : true(φ ⊃
ψ), which is the encoding of (X) ∆ `OT IMP -Iεs(φ)εs(ψ)((y) :δ) : true(φ ⊃ ψ).

Definition 8.1 is general enough to encompass the worlds-as-parameters rep-
resentation mechanism. We are able to encode judgements of the form U → o→
Type, where U is a syntactic category of worlds. We provide a detailed treatment
of worlds-as-parameters in § 9.

Theories in which induction is restricted; for example, to Σ0
1-induction, present

a further syntactic challenge for the definition of an object-logic. In an informal
meta-theory, we restrict our attention to induction formulæ of the appropriate
class; for example, Σ0

1-induction. Our object-logics, however, are intended to
be the logics which can be adequately represented in LF. The strength of the
induction of the theories built on top of an object-logic are restricted by the
meta-logic. We thus have a restriction imposed on us by the λΠ-calculus and
so we cannot adequately represent theories whose induction is stronger than Π2-
sentences.

We provide the λΠ-signature ΣCL for classical predicate logic with the λΠ-
signature for minimal and intuitionistic predicate logic, our usual family of classi-
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cal propositional modal logics and higher-order logic being given in Appendix A.

Definition 8.2 (ΣCL)
The λΠ-signature ΣCL contains the following constants:

o :Type

true :o→ Type

∧ :o→ o→ o

∨ :o→ o→ o

⊃:o→ o→ o

¬ :o→ o

⊥ :o

∀ : (ι→ o)→ o

∃ : (ι→ o)→ o

Ex :Πp :o . true(p ∨ ¬p)

∧ I :Πp :o .Πq :o . true(p)→ true(q)→ true(p ∧ q)

∨ I1:Πp :o .Πq :o . true(p)→ true(p ∨ q)

∨I2:Πp :o .Πq :o . true(q)→ true(p ∨ q)

⊃ I :Πp :o .Πq :o . (true(p)→ true(q))→ true(p ⊃ q)

¬ I :Πp :o . (true(p)→ true(⊥))→ true(¬p)

∀ I :ΠF : ι→ o . (Πx : ι . true(Fx))→ true(∀(λx : ι . Fx))

∃ I :ΠF : ι→ o . (Πx :o . true(Fx))→ true(∃(λx : ι . Fx))

∧ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ ((true(p)→ true(q))→ true(r))→ true(r)

∨ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ (true(p)→ true(r))→ (true(q)→ true(r))

→ true(r)

⊃ E :Πp :o .Πq :o .Πr :o . true(p ⊃ q)→ true(p)→ (true(q)→ true(r))→ true(r)

¬ E :Πp :o .Πq :o . true(¬p)→ (true(φ ⊃ ⊥)→ true(q))→ true(q)

∀ E :ΠF : ι→ o .Πx : ι .Πr :o . true(∀(λx : ι . Fx))→ (true(Fx)→ true(r))

→ true(r)

∃ E :ΠF : ι→ o .Πr :o . true(∃(λx : ι . Fx))→ (Πx : ι . true(Fx)→ true(r))

→ true(r) �
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We need to show that our encoding sends every proof in the object-logic to
a derivation in LF and that every derivation in LF corresponds to a proof in
the object-logic. The next two definitions are closely related to those in (Harper
et al. 1994) and (Simpson 1993).

Definition 8.3 (Full and Faithful Encodings)
An encoding of an object-logic OT is full if the valid proof

(x1 :S1, . . . , xn :Sn︸ ︷︷ ︸
X

) y1 : j1(φ1), . . . , ym : jm(φm)︸ ︷︷ ︸
∆

`OT δ : j(φ)

in OT implies the derivation

εs(x1 :S1), . . . , εs(xn :Sn)︸ ︷︷ ︸
ΓX

, εs(y1 : j1(φ1)), . . . , εs(ym : jm(φm))︸ ︷︷ ︸
Γ∆

`OT εj(δ) :εs(j(φ))

in LF, where εj(δ) is in long βη-normal form.
An encoding of an object-logic is faithful if the derivation

Γ `ΣOT
M :A

in LF, where M is in long βη-normal form, implies the proof

(X) ∆ `OT δ : j(φ)

is valid, where εj(X) = ΓX , εj(∆) = Γ∆, Γ = ΓX ,Γ∆, εj(δ) = M and εs(j(φ)) = A.
An encoding is adequate if it is both full and faithful. �

The terms full and faithful are not, perhaps, the best terminology here. When
we start ‘thinking semantically’, in the next section, the notion of full and faithful
functor may provide false intuition. We instead suggest relative soundness and
relative completeness as better terminology but keep the traditional terminology
to avoid confusion.

Definition 8.4 (Encoding Uniformly)
An encoding of an object-logic is uniformly full if the encoding is full and ε is
surjective, and uniformly faithful if the encoding is faithful and ε is surjective. �

In (Harper et al. 1994), the term ‘uniform encoding’ is used to denote a
stronger property than our ‘uniformly faithful’, requiring a quantification over all
possible signatures ΣOT which ‘present’ the logic OT . The details of this approach
to the representation of logics, described in (Harper et al. 1994), are beyond the
scope of the thesis.

From now on, we require every encoding to be uniformly full because we need
this property when we establish faithfulness model-theoretically.
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Lemma 8.5 (Fullness)
Let OT be a judged proof system with either natural deduction or Hilbert-type
rules. Then the encoding ε given in Definition 8.1 is full.

Proof (Sketch) By induction on the structure of proofs in OT and observing that
Definition 8.1 covers all the possible cases. �

8.2 Semantic Judgements-as-types: an Epimor-

phism of Models

Our work is section is similar to that of Gardner (1992b). She obtains an in-
dexed isomorphism between models of judged object-logics and models of the
λΠ-calculus rather than the epimorphism because she restricts the λΠ-caculus to
long βη-normal terms; that is, those terms which represent object-logics. We do
not make such a restriction and thus obtain an epimorphism.

Finally, we are able to set up what we shall call the judgements-as-types epi-
morphism between suitable Kripke models, induced by the judgements-as-types
correspondence. We recall the definition of an indexed functor (Definition 5.16)
and indexed isomorphisms (Definition 5.17). We need to introduce a new defini-
tion, that of an indexed epimorphism.

Definition 8.6 (Indexed Epimorphism)
An indexed functor τ = (α, β, (εw)w∈|W|) is an indexed epimorphism if α and β
are epimorphisms and each εw is a natural epimorphism. �

We now provide a new definition of the category of models because we are
now working with a more general notion of Kripke model of object-logics.

Definition 8.7 (Category of Models)
We define the category M of models as follows:

Objects: each object ofM is either a Kripke ΣOT - λΠ-model or a Kripke model
of OT ;

Arrows: there are four cases:

1. An arrow
〈KJ , J−K−KJ 〉

h−→ 〈K′J ′ , J−K−K′J ′ 〉

is given by an indexed functor (α, β, (εw)w∈|W|) :KJ → K′J ′ such that,
if αw = w′, then h(JXKwKJ ) = JXKw′K′J ′ ;

2. An arrow
〈RS , J−K−,ρRS 〉

h−→ 〈R′S′ , J−K−,ρ
′

KJ 〉

is given by an indexed functor (α, β, (εx)x∈|X |) :RS → R′S′ such that,

if αx = x′, then h(JXKx,ρRS ) = JXKw,ρ
′

R′S′
;
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3. An arrow
〈KJ , J−K−KJ 〉

h−→ 〈RS , J−K−,ρKJ 〉

is given by an indexed functor (α, β, (εw)w∈|W|) :KJ → RS such that,
if αw = x, then h(Jε(X)KwKJ ) = JXKx,ρKJ ;

4. An arrow
〈RS , J−K−,ρRS 〉

h−→ 〈KJ , J−K−KJ 〉

is given by an indexed functor (α, β, (εx)x∈|X |) :RS → KJ such that, if
αx = w, then h(JXKx,ρKJ ) = Jε(X)KwKJ . �

Lemma 8.8 (M is well-defined)
The category M described in Definition 8.7 is well-defined.

Proof (Sketch) Is essentially the same as that given in the proof of Lemma 5.19.
�

The definition of Kripke prestructures and prestructures, for both the λΠ-
calculus and the judged object-logic, involve the categories satisfying certain
properties. The parts of the categories which satisfy these properties are those
which interpret the syntax of either the λΠ-calculus or the judged object-logic
logic. We restrict our attention to morphisms between these parts of the Kripke
models.

We are now in a position to define an epimorphism of models.

Definition 8.9 (Epimorphism of Models)
Let OT be a judged object-logic. Let 〈KJ , J−K−KJ 〉 be a Kripke ΣOT -λΠ-model

and 〈RJ , J−K−,ρRS 〉 be a Kripke model of OT . Let h : 〈KJ , J−K−KJ 〉 → 〈RS , J−K−,ρRS 〉
be a morphism of models. We say that h is an epimorphism of models if the
indexed functor (α, β, (εw)w∈|W|) :KJ → RS (corresponding to h) is an indexed
epimorphism when its domain is restricted to those objects and arrows in KJ
which interpret the syntax of the λΠ-calculus and its range is restricted to those
objects and arrows in RS which interpret the syntax of OT . �

Proposition 8.10 (Judgements-as-types Epimorphism)
Let OT be a judged object-logic as defined in Defintion 7.13 and let 〈KJ , J−K−KJ 〉,
where KJ : [W , [Dop,V ]], be a Kripke ΣOT -λΠ-model, where ΣOT is the λΠ-
signature in judgements-as-types correspondence with OT . Then, there is a Kripke
model of OT , 〈RS , J−K−,ρRS 〉, where RS : [X , [Eop,U ]], together with an epimorphism
of models

h :〈KJ , J−K−KJ 〉 → 〈RSJ−K−,ρRS 〉

induced by the judgements-as-types correspondence. Specifically, abusing notation
by suppressing information about worlds, if JXKRS and Jε(X)KKJ are defined, then

h(Jε(X)KKJ ) = JXKRS .
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Proof (Sketch) Given 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], we sketch the con-

struction of RS : [X , [Eop,U ]], together with an indexed epimorphism (α, β,
(εx)x∈|X |) :KJ → RS .

• We take X =W with α = 1W . It should be clear that α is an epimorphism.

• We take E to be the subcategory of D defined as follows:

Objects: Objects D in D such that D = Jε(S)KwKJ , where S is a sort of
OT ;

Arrows: all arrows in D whose domain and co-domain are objects in E .

We define the functor β : D → E to be the functor which is the identity
functor on all objects and arrows in D which are also in E and sends any
other objects in D to the terminal object in E and any other arrows in D
to the identity arrow on the terminal object in E . It should be clear that β
is an epimorphism.

• We take U and U to be the subcategories of V and V defined as follows:

Objects of U : objects J (W )(D) in V , where for each object A in J (W )
(D), A = Jε(j(φ))KwKJ , where j(φ) is a judged proposition in OT , and

for each arrow A
m−→ B in J (W )(D), m = Jε(δ)KwKJ , where δ is a proof

in OT ;

Arrows of U : arrows in V whose domain and codomain are objects in U .

Objects of U : objects KJ (W )(D) in V such that each object A
m−→ A

=
∏n

i=1Jε(ji(φi))KwKJ
Jε(δ)KwKJ−−−−−→ Jε(j(φ))KwKJ and δ : y1 : j1(φ1), . . . , yn :

jn(φn) `OT j(φ) is a natural deduction proof in OT ;

Arrows of U : arrows of V , whose domains and codomains are objects of
U .

This completes our construction of RS and it is straightforward to show that RS
is a Kripke structure for OT . We continue with the construction of an indexed
epimorphism (α, β, (εw)w∈|W|).

We now define a family of natural transformations (εw)w∈|W| : KJ (w) ⇒
βop;RS(α(w)). We fix w and define each component of εw, ηwa : KJ (w)(a) →
(βop;RS(α(w)))a, where a ∈ |D|, to be the functor which is the identity functor
on objects and arrows in KJ (w)(a) which are also in RS(α(w))(βop(a)) and sends
objects in KJ (w)(a) which are not in RS(α(w))(βop(a)) to the terminal object
in RS(α(w))(βop(a)) and arrows in KJ (w)(a) which are not in RS(α(w))(βop(a))
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to the identity arrow on RS(α(w))(βop(a)). We need to show that the diagram

a KJ (w)(a)
ηwa- RS(α(w))(βop(a))

b

f

?
KJ (w)(b)

KJ (w)(f)

?

ηwb
- RS(α(w))(βop(b))

RS(α(w))(βop(f))

?

commutes. This follows from the definition of ηw−. It should be clear that each
εw is a natural epimorphism. Once we have shown that the diagram

v KJ (v) ====
εv ⇒ βop;RS(α(v))

w

f

?
KJ (w)

KJ (f)�
wwwwwwww

====
εw
⇒ βop;RS(α(w))

RS(α(f))�
wwwwwwww

commutes, we have shown that (α, β, (εw)w∈|W|) is an indexed epimorphism. The
commutativity of the diagram follows from the definition of each natural trans-
formation εw.

It remains to show that there is a Kripke model of OT which uses RS and that
there is an epimorphism of models h. We use the judgements-as-types correspon-
dence and the interpretation function J−K−KJ to define the interpretation function

J−K−,ρRS . Letting X range over the syntax of OT , we define JXKx,ρRS = Jε(X)KwKJ ,

where α(w) = x. Showing that 〈RS , J−K−,ρRS 〉 is a Kripke model of OT is straight-
forward. h is then defined to be the morphism of models which sends 〈KJ , J−K−KJ 〉
to 〈RS , J−K−,ρRS 〉 using the indexed epimorphism (α, β, (εw)w∈|W|). We observe that
the required condition on the interpretation function holds for h to be a morphism
of models. �

We call the epimorphism constructed in Proposition 8.10, the judgements-as-
types epimorphism.

Next, we show, as a corollary of the existence of the judgements-as-types epi-
morphism, that a model of the representation of an object-logic can be uniformly
constructed from a model of the object-logic. The result generalizes one of Simp-
son (1993), and will be crucial when we prove representation theorems in the
next section.

Corollary 8.11 (Induced Models)
Let OT be an object-logic as defined in Definition 7.13 and let 〈RS , J−K−,ρRS 〉, where
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RS : [X , [Eop,U ]], be a Kripke model of OT . Let ΣOT be the λΠ-signature in
judgements-as-types correspondence with OT . Then there is a Kripke ΣOT -λΠ-
model, 〈KJ , J−K−KJ 〉, where KJ : [W , [Dop,V ]], induced by the correspondence.

Proof (Sketch) It follows from Proposition 8.10 that we can define a Kripke
ΣOT -λΠ-structure KJ : [X , [Eop,U ]] and further that if we take the interpretation
function Jε(X)K−KJ = JXK−,ρRS then we have a Kripke ΣOT -λΠ-model. �

8.3 Representation Theorems

A representation theorem is a theorem stating that a given object-logic can be
adequately represented in a logical framework. Usually, representation theorems
for LF are proven proof-theoretically. We, however, are now in a position to
prove faithfulness model-theoretically. The idea behind this proof can be found
in (Simpson 1993). One constructs a ΣOT -λΠ-term model out of the syntax of
the encoded logic. Providing we restrict our attention to realizations of the from
Γ→ z :A then this term model will be the part of the domain of the judgements-
as-types epimorphism on which the indexed functor is the identity. Hence we
obtain an (indexed) isomorphism between these two models. We can then use
soundness for Kripke ΣOT -λΠ-models and completeness for Kripke models of OT
to prove faithfulness.

We now have the following representation theorems.

Theorem 8.12 (Classical, Intuitionistic and Minimal Predicate Logic)
Classical, intuitionistic and minimal predicate logic presented as judged proof sys-
tems with natural deduction rules can be adequately represented in LF. �

Theorem 8.13 (Classical Propositional Modal Logics)
Extensions of the classical propositional modal logic K by axioms of the form
valid(♦j�mφ ⊃ �i♦nφ) presented as judged proof systems with natural deduction
rules can be adequately represented in LF. �

Theorem 8.14 (Higher-order Classical, Intuitionistic and Minimal Logics)
Higher-order classical, intuitionistic and minimal logic presented as judged proof
systems with natural deduction rules can be adequately represented in LF. �

Theorem 8.15 (Local Connectives)
Logics with only local connectives presented as judged proof systems with natural
deduction rules can be adequately represented in LF. �
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Chapter 9

Worlds-as-parameters

In this chapter, we provide a quick overview of how the worlds-as-parameters
encoding mechanism can be understood in terms of our previous work on the
judgements-as-types correspondence. The worlds-as-parameters encoding was
introduced in (Avron et al. 1997). It is used to encode logics whose judgements
involve a parameter. This parameter is rather suggestively called a ‘world’ and
has sort U , called the ‘universe’. This terminology is intended to be entirely
syntactic, although a clear link is being made with intuition obtained from the
Kripke semantics of (modal) logics.

The treatment of the judgements-as-types correspondence in the previous
chapter is sufficiently general to include the worlds-as-parameters encoding as
a special case. We illustrate this point by examining the world-as-parameters
encoding of the modal logic K given in (Avron et al. 1997). Their signature,
Σw(K), for K contains the following constants:

U :Type

o :Type

T :U → o→ Type

A1 :Πx :o .Πy :o .Πw :U . (Tw(ε(x,y)(A1x,y)))

A2 :Πx :o .Πy :o .Πz :o .Πw :U . (Tw(ε(x,y,z)(A2,x,y,z)))

A3 :Πx :o .Πy :o .Πw :U . (Tw(ε(x,y)(A3,x,y)))

K :Πx :o .Πy :o .Πw :U . (Tw(ε(x,y)(Kx,y)))

MP :Πx :o .Πy :o .Πw :U . (Twx)→ (Tw(⊃ xy))→ (Txy)

NEC :Πx :o .Πy :o . (Πw :U . (Twx))→ Πw :U . (Tw(�x))

where A1x,y, A2x,y,z, A3x,y and Kx,y are the axioms in the usual Hilbert presenta-
tion of K (cf. (Troelstra & Schwichtenberg 1996)), ε(x,y) and ε(x,y,z) are encoding
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functions which are essentially the same as εs in § 8.1.
The judged proof system for K with a world parameter is given by the alpha-

bet
S = {U, o}

V = {U}

E = {⊃,�}

C = {⊃,�}

J = {T}

where U and o have arity 0, ⊃ has arity (o, o)→ o and level 1, � has arity o→ o
and level 1 and T has arity (U, o). Together with the Hilbert-type system with
axioms

Tw(A1)

Tw(A2)

Tw(A3)

Tw(K)

and rules
Twx Tw(x ⊃ y)

MP
Twy

Twx
NEC

Tw�x
It should be clear that the encoding of the above proof system using the

judgements-as-types encoding in § 8.1 will give the signature Σw(K).
Since our treatment of judgements in a judged proof system will always allow

us to do this analysis (adding an extra syntactic category U); we claim that the
worlds-as-parameters representation mechanism is a special case of the worlds-
as-parameters encoding is a special case of the judgements-as-types encoding.

We further claim that the appropriate judged proof systems in which to
present logics that will be encoded in LF using the worlds-as-parameters represen-
tation mechanism are labelled natural deduction systems (themselves presented
as judged proof systems).

This chapter intends to prove evidence for the second claim. The first being
sufficiently clear from the above discussion.

In the next section, we introduce labelled natural deduction systems. They are
presented as judged proof systems and are based on the unjudged labelled natural
deduction systems in (Basin et al. 1997), (Basin et al. 1998) and (Viganò 2000). A
consequence of presenting them as judged proof systems is that the results of the
previous chapter hold: the judgements-as-types epimorphism and the semantic
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proof of fullness.
We conclude this chapter with a section on the worlds-as-parameters encoding.

We exploit the fact that labelled natural deduction systems are designed to be
sound and complete with respect to Kripke models in which labels are interpreted
as worlds to modify Kripke OT -models so that labels are interpreted as worlds
and soundness and completeness holds. Further, we show that we can also alter
our definition of a Kripke λΠ-model so that encoded labels are interpreted as
worlds. We are then able to set up a worlds-as-paramters epimorphism between
the modified Kripke OT -models and Kripke λΠ-models.

9.1 Labelled Natural Deduction Systems

The idea behind a labelled natural deduction system is that the semantic infor-
mation (from the appropriate transition system) is embedded into the syntax.
Each proposition is labelled, with the intended meaning that the proposition is
true at the world corresponding to that label in the transition system. Further,
relations are introduced between labels. These allow one to write down natural
deduction rules for local and non-local connectives (cf. § 7) where the rules for
non-local connectives involve relations between labels. A labelled natural deduc-
tion system consists of two parts: a base system N(B) consisiting of introduction
and elimination rules for each of the connectives; and, a relational theory N(T )
consisting of Horn relational rules. A Horn relational rule is of the form

R(t10 . . . t
1
n) · · ·R(tm0 . . . t

m
n )

R(t00 . . . t
0
n)

where the tij are terms built from labels and function symbols.
Labelled natural deduction systems can be used to describe a wide range of

non-classical logics, cf. (Viganò 2000). We restrict our attention to structural
logics, since substructural logics are not suitable for representation in LF. We
achieve this restrict by taking ⊥ to not hold at any world and ¬ to have the
introduction rule

[true(w, φ)]
···

true(z,⊥)
¬ I

true(w,¬φ)

More information about the different choices of ⊥ and ¬ can be found in (Viganò
2000). The only examples which use these rules can be found in Appendix B.

We now show how to present a labelled natural deduction system as a judged
proof system. From the above discussion, we observe that the labelled proposi-
tions a :φ can be understood as being judged by the judgement true, with arity
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(U, o); that is, true(a, φ). Similarly, each relation R(t1, . . . , tn) can be viewed as
being judged by the proposition related with arity (U, . . . , U). Hence provided
we have a syntactic category U of labels and judgements is just described, we
can express a labelled natural deduction system as a judged proof system. We
have to split the connectives into local and non-local connectives as in § 7. The
local connectives have introduction and elimination rules given by the general
schema in Definition 7.11. The general schema has to be altered so that each
judgement also contains a world. Since the connectives are local, the world is
fixed for each connective and so this is just a notational issue. The rules for
non-local connectives are given by the following definition:

Definition 9.1 (Labelled Natural Deduction Rules for Non-local Connectives)
Let # be a universal non-local connective with arity u. The introduction rule for
# is

[j1(w1, φ1)] · · · [ju−1(wu−1, φu−1)][relatedu(w1, . . . , wu, y)]
···

ju(wu, φu)
# I

j(y,#(φ1, . . . , φu))

and the elimination rule is

j(y,#(φ1, . . . , φu)) j1(w1, φ1) · · · ju−1(wu−1, φu−1) related(w,w1, . . . , wu, y)
# E

ju(φu)

Let # be a non-local connective with arity e. The natural deduction introduction
rule for # is

j1(w1, φ1) · · · je(we, φe) related(y, w1, . . . , we)
# I

j(y,#(φ1, . . . , φe))

and the elimination rule is

j(y,#(φ1, . . . , φe))

[j1(w1, φ1)] · · · [je(we, φe)][relatede(y, w1, . . . , we)]···
k(z, τ)

# E
k(z, τ)

�

We conclude this section with an example. We define the judged proof system
for al modal logics in the Geach hierarchy (Viganò 2000); that is, K extended by
axioms of the form ♦j�mφ ⊃ �i♦nφ. The judged proof system for K is defined
as follows:
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Definition 9.2 (K)
The judged proof system for K is given by the alphabet

S = {U, o}

V = {U}

E = {�,⊃}

C = {�,⊃}

J = {true}

together with the natural deduction rules

[true(w, φ ⊃ ψ)]
···

true(y,⊥)
⊥ E

true(w, φ)

[true(w, φ)]
···

true(w,ψ)
⊃ I

true(w, φ ⊃ ψ)

true(w, φ ⊃ ψ)true(w, φ)

[true(w, φ)]
···

true(w, τ)
⊃ E

true(w, τ)

[related(w, z)]
···

true(z, φ)
� I

true(w,�φ)

true(w,�φ) related(w, z)
� E

true(z, φ)
�

There is no Horn relational theory for K. This corresponds to there being
no frame condition on the transition system for K. Other modal logics in the
Geach hierarchy do have a relational theory and this arises from the relationship
between axioms of the form♦j�mφ ⊃ �i♦nφ and (i, j,m, n)-convergency axioms
and the following proposition.

Proposition 9.3 (Basin,Matthews and Viganò)
If T is a theory corresponding to a collection of restricted (i, j,m, n)-convergency
axioms, then there is a Horn relational theory N (T ) conservatively extending it.

�

Restricted (i, j,m, n)-convergency axioms are a special case of (i, j,m, n)-
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convergency axioms where if m = n = 0, then i = j = 0. The axioms

D : valid(�φ ⊃ ♦φ)
T : valid(�φ ⊃ φ)
B : valid(φ ⊃ �♦φ)
4 : valid(�φ ⊃ ��φ)
5 : valid(♦φ ⊃ �♦φ)

correspond to the Horn relational rules

Ser
related(x, f(x))

Refl
related(x, x)

related(x, y)
symm

related(y, x)

related(z, y) related(y, z)
trans

related(x, z)

related(x, y) related(y, z)
eucl

related(z, y)

More of these correspondences can be found in (Viganò 2000).
This example illustrates how labelled natural deduction systems are used to

describe families of logics. One chooses a base system and then different relational
theories are used to describe different logics in the family.

More labelled natural deduction systems can be found in Appendix B.

9.2 Soundness and Completeness of Labelled

Natural Deduction Systems

The soundness and completeness results of § 7.3 also hold for labelled natural de-
duction systems. Judgements true(w, φ) are interpreted in the fibre J (z)(JUKz,ρKJ×∏n

i=1JSiK
z,ρ
KJ ), where the free variables of φ are in the set {x1 : S1, . . . , xn : Sn}.

The judgement related(w, y) is interpreted in J (z)(JUKz,ρKJ × JUKz,ρKJ ). The labels
have no relationship to the world in the Kripke model of the labelled natural
deduction system.

We now turn to an alternative presentation of the Kripke models for judged
proof systems. Keeping the categorical structure the same, we interpret labels as
the worlds. We then interpret the judgement related(w, y) as an arrow between
the objects w and y in W . Since W is a category, the relation is forced to be
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transitive. So we can only prove soundness and completeness results for labelled
natural deduction systems where the relation is transitive. This restricts our
family of classical propositional modal logics to those which are extensions of
K4 by axioms of the form valid(♦j�mφ ⊃ �j♦nφ). We also have to change
Definition 7.19 so that it includes the following:

• For each label w ∈ U , there is an object w in W ;

• For each basic judgement related(w1, w2), there is an arrow w1 → w2 in W ;

• For each basic judgement j(w, φ), where the free variables of φ are in the set
{x1 :S1, . . . , xn :Sn}, we have an object Jj(w, φ)Kw,ρKJ in J (w)(

∏n
i=1JSiK

w,ρ
KJ ).

Definition 7.20 also needs to be changed, so that it contains the following
rules:

• For each inference rule in the Horn relational theory,

related(t10, t
1
1) · · · related(tm0 , t

m
1 )

related(t00, t
0
1)

we have an arrow t00 → t01 in W if there are arrows t10 → t11 and . . . and
tm0 → tm1 ;

• For each predicate letter P with arity (S1, . . . , Sn)→ S, Jj(w, φ1, . . . , φn)Kw,ρKJ
is an object in J (w)(JS1Kw,ρKJ × . . .× JSnKw,ρKJ ) given by the above extension
to Definition 7.19;

• For each universal non-local connective #, we have the following satisfaction
condition: there is an arrow

1
f−→ Jj(#(φ1, . . . , φn))Kw,ρKJ

if and only if for all worlds w1 (there is an arrow w → w1 in W and there
exist arrows

1
f1−→ Jj1(φ1)Kw1,ρ1

KJ and . . . and 1
fn−1−−→ Jjn−1(φn−1)Kw1,ρn−1

KJ )which imply

1
fn−→ Jjn(φn)Kw1,ρn

KJ ;

• For each existential non-local connective #, we have the following satisfac-
tion condition: there is an arrow

1
f−→ Jj(#(φ1, . . . , φn))Kw,ρKJ
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if and only if there exist worlds w1 such that there is an arrow w → w1 in
W and there exist arrows

1
f1−→ Jj1(#(φ1))Kw1,ρ1

KJ and . . . and 1
fn−→ Jjn(#(φn))Kw1,ρn

KJ .

For the remainder of this section, we assume that any interpretation of a labelled
natural deduction system in a Kripke model takes into account the above changes.
We have the following soundness results. The proofs are essentially the same as
those of Lemma 7.24 and Corollaries 7.25,7.26 and 7.27. We just have to be
careful with the worlds: we have to ensure that we are always interpreting the
judgement j(w, φ) at the world w and any change to another world w′ means that
we are now interpreting the judgement j(w′, φ).

Lemma 9.4
Let OT be a labelled natural deduction system with alphabet A which only contains

local connectives and let 〈KJ , J−K−,ρKJ , where KJ : [W , [Bop,V ]], be a Kripke model

of OT . If Γ `OT j(w, φ) then w, ρ ‖−KJOT j(w, φ). �

Corollary 9.5
Let OT be the labelled natural deduction system for classical predicate logic and

let〈KJ , J−K−,ρKJ 〉 be a Kripke model of KJ . If Γ `OT true(w, φ) then w, ρ ‖−KJOT true(
w, φ). �

Corollary 9.6
Let OT be the labelled natural deduction system for minimal or intuitionistic

predicate logic and let 〈KJ , J−K−,ρKJ 〉 be a model of OT . If Γ `OT proof(w, φ) then

w, ρ ‖−KJOT proof(w, φ). �

Corollary 9.7
Let OT be the labelled natural deduction system for a classical modal propositional
logic which is an extension of K4 by Horn relational rules corresponding to axioms
of the form valid(♦i�mφ ⊃ �j♦nφ) and let 〈KJ , J−K−,ρKJ 〉 be a Kripke model of OT .

If Γ `OT true(w, φ) then w, ρ ‖−KJOT true(w, φ). �

To be able to prove completeness, we need to construct a term model. The one
we constructed after Definition 7.20 will work with some slight modification. We
just need to define the objects in the category J (W )(X) to be judged propositions
j(a, φ(X ′)), where X = X ′ × U and define arrows w1 → w2 in W , whenever
we can derive related(w1, w2). We now have a model existence result. From
now on we take OT to be one of the following labelled deduction systems: one
which only contains local connectives; minimal propositional logic; intuitionistic
propositional logic; classical propositional logic; or, a modal logic in the Geach
hierarchy.
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Lemma 9.8 (Model Existence)
There exists a Kripke model of OT , 〈KJ , J−K−,ρKJ 〉, together with a world w0 such

that if Γ 6`OT j(w, φ) then w0, ρ ‖−KJOT j(a, φ) implies w0, ρ 6‖−KJOT j(w0, φ).

Proof (Sketch) The term model constructed after Definition 7.20 together with
the modifications described above is the required Kripke model of OT . We take
the world w0 to be the world which labels each ji(w0, φi) ∈ Γ but does not label
j(w, φ). �

Theorem 9.9 (Completeness for ‖−)
Let 〈KJ , J−K−,ρKJ 〉 be a Kripke model of OT . Then Γ `OT j(w, φ) if and only if
w, ρ ‖−OT j(w, φ).

Proof

Only If This is soundness, Lemma 9.4 and Corollaries 9.5,9.6 and 9.7.

If Suppose Γ 6`OT j(w, φ), then Lemma 9.8 yields a contradiction. �

The proofs of soundness and model existence for ‖→ are essentially the same
as those in § 7.3. We thus have

Theorem 9.10 (Completeness for ‖→)
Let 〈KJ , J−K−,ρKJ 〉 be a Kripke model of OT . Then if δ : (Γ `OT j(w, φ) is a natural

deduction proof and JδKw,ρKJ is defined, then w, ρ ‖→KJOT δ : (Γ `OT j(w, φ). �

9.3 Worlds-as-parameters Encoding

It should be clear that we can use the judgements-as-types encoding outlined in
§ 8.1 to encode labelled natural deduction systems in LF. The encoding of K is
given by the signature ΣK .

Definition 9.11 (Basin & Matthews (2002))
The signature ΣK is defined as follows:

U :Type

o :Type

true :U → o→ Type

related :U → U → Type

⊥ :o

⊃ :o→ o→ o

� :o→ o
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BOT -E :Πp :o .Πa :U .Πb :U . (true(a)(p ⊃ ⊥)→ true(b)⊥)→ true(a)p

IMP -I :Πp :o .Πq :o .Πa :U . (true(a)p→ true(a)q)→ true(a)(p ⊃ q)

IMP -E :Πp :o .Πq :o .Πr :o .Πa :U .Πb :U . true(a)(p ⊃ q)→ true(a)p→

(true(a)q → true(b)r)→ true(b)(r)

BOX-I :Πp :o .Πa :U . (Πb :U . related(a)b→ true(b)p)→ true(a)(�p)

BOX-E :Πp :o .Πa :U .Πb :U . true(a)(�p)→ related(a)b→ true(b)p �

The encoding in (Basin & Matthews 2002) is also joint work with Luca Viganó.
Signatures for minimal, intuitionistic and classical predicate logics as well as

more modal logics can be found in Appendix A.
Since we are working with judged proof systems represented in LF using the

judgements-as-types correspondence, all the results of § 8.2 hold for labelled nat-
ural deduction systems. Specifically, the judgements-as-types epimorphism. One
might be tempted to call this special case the worlds-as-parameters epimorphism,
but we have another epimorphism which is more deserving of the name.

Recalling the new class of Kripke OT -models introduced in the previous sec-
tion, we show that there is an epimorphism between these Kripke OT -models and
suitably modified Kripke λΠ-models.

Given a signature Σw
L, which is the encoding of a labelled natural deduction

system using the worlds-as-parameters encoding, we are able to define a Kripke
Σw
L-λΠ-model in which encoded labels are interpreted as worlds. We are able

to define this model because when given the signature Σw
L, we are told which

constant encodes the syntactic category of labels and which constant encodes the
judgement which relates labels. This information is not available a priori. We
now include the following conditions in Definition 3.17:

• Ja :UKaKJ = a ∈ |W|, where U is the type encoding the universe;

• Each type of the form related(a, b), where a :U and b :U , is interpreted as
an arrow a→ b in W .

Care has to be taken with the interpretation of types of the form j(a)φ. We
need to interpret these as types j′(φ), where j′ : o → Type, in the fibres over
a. Roughly speaking, we ignore all the labels when we interpret any objects of
the λΠ-calculus apart from interpreting them at the world which interprets their
label.

We then have essentially the same structure in this Kripke Σ-λΠ-model, apart
from W , as we have in the usual Kripke Σ-λΠ-mopdel. Since W has the same
structure as the category of worlds in the Kripke model of the object-logic, we
claim it is possible to construct an epimorphism of models. We call this epimor-
phism the worlds-as-parameters epimorphism. We also claim that soundness and
completeness holds for the Kripke Σ-λΠ-model sketched above. Furthermore, all
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the results of § 8.3, provided they are put in terms of labelled natural deduction
systems, hold.
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Chapter 10

Introduction to Logic
Programming

Modern symbolic logic stands firmly in the Aristotelean tradition and takes de-
duction as the primary proof-theoretic notion. Rules of inference are used to
construct consequences from a collection of assumptions. These rules are applied
to known propositions to establish further propositions.

An alternative viewpoint takes proof-search as the primary proof-theoretic no-
tion. A logic is then seen as a system for reduction. One then uses inference rules
as reduction operators and attempts to construct a proof from a given judgement.
We are working from a conclusion to premisses and each step simplifies the proof.

Proof-search is inherently non-deterministic and any algorithm designed to
calculate proofs, or decide putative consequences, must deal with this. The non-
determinism arises from arbitrary choices involved in constructing a proof, e.g.,
which proposition is reduced at each step and which proof is reduced when the
proof branches. Logic viewed computationally can be be summarized by the
slogan

Logic = Inference + Control.

Thus the nature of reasoning determined by a system of logic depends on the
régime which controls their use as well as the inference rules (and indeed the
satisfaction relation). (The above argument is taken from (Pym & Ritter 2004).)

Often (Pym & Wallen 1992) one takes the result of the computation of a
logic program P, i.e., a collection of clauses, together with a query ∃x . g (written
g(X) in Prolog) to be a substitution of a term t for the (existentially quantified)
variable of the query such that

P entails g[t/x].

Pure logic programmes are usually modelled as sets of such substitutions
(Lloyd 1984). This is a natural view to take since the substitutions typically
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carry the information required by the user of the program.
Logical consequence, however, is an abstract notion and our access to it is

via concrete notions of deductions; that is, we construct a (finitary) proof that
∃x . g follows from P and extract a term t from this proof. There are two distinct
phases of computation:

proof-search: the computation of the proof; and

residual computation: the extraction of witnesses from that proof.

It is clear that the residual computation depends on the result of the proof-search.
Following (Pym & Wallen 1992), we believe that the proof (i.e., the output

from the first computation) is more naturally seen as the result of the computa-
tion. A consequence of this view is that any sound proof procedure gives rise to a
notion of computation with the values computed being proofs. If we take logical
systems as represented in LF, then the calculation of objects satisfying predicates
and of proofs proving formulæ is the same mechanism as that employed in logic
programming. An elementary notion of logic programming for the type theory
of LF is discussed in (Pym 1990) and (Pym & Wallen 1991); a more elaborate
notion is developed in (Pfenning 1991).

Following (Pym & Ritter 2004), we believe that the view of logic as a reductive
system is (at least) as fundamental as the deductive view and that the semantics
of reductions should be as closely linked to proof-search as the semantics of proof
is to model-theory. The semantics of deterministic strategies is beyond the scope
of this thesis — indeed, it is a current research topic. Here we present a proof-
theoretic operational semantics.

In type-theoretic analyses, such as those presented in (Pym 1990), (Pym
& Wallen 1991), (Ritter, Pym & Wallen 1996b) and (Ritter, Pym & Wallen
1996a), the realizing term provides the proof-object and answer substitution in a
single construction. It is the operational, or procedural, description of concrete
notions of deduction that traditionally lie outwith the declarative realm. Even
if the “computational” proof system, such as Prolog’s resolution, is sound and
complete with respect to consequence in the underlying logic, these soundness
and completeness results are highly non-deterministic and the non-determinism
must be resolved. The non-determinism, as we discussed above, arising via the
choice of which proposition to work on and the order in which to deal with
branches. Backtracking, the principal control mechanism for proof-search is one
way to resolve this non-determinism. When presented with a branch, choose one
and if it fails, backtrack to the choice and choose another branch. Clearly, there
is an ordering of the choice of branches. In Prolog, resolution computations are
executed using a depth first search strategy and a leftmost-first clause selection
strategy. But in practice, there is more to logic programming than search and
clause-selection strategies. In fact, one is required to deal with; for example, cut
and assert within a logic programming language.
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Historically, the starting point for resolution is Herbrand’s Investigations
in Proof Theory: The Properties of True Propositions (reprinted in (Herbrand
1967)). ‘Herbrand’s theorem’ provides a basis for a mechanical proof proce-
dure for first-order logic of manageable complexity. Perhaps, the most sig-
nificant development in the 1960s was Alan Robinson’s resolution procedure
(Robinson 1965). For formulæ in a certain, functionally complete, clausal form,
the resolution rule is, together with the use of unification to calculate terms,
both computationally appealing and logically complete. This use of resolution
followed by unification reminds us that there are two stages to a computation;
proof-search and the residual computation. The resolution procedure together
with a control régime for selecting which clauses from a set the resolution rule
should next be applied to, forms the basis of the programming language prolog
and Kowalski’s famous dictum

Programming = Logic + Control.

In recent years, Miller et al. (1991), Pym & Harland (1994) and Ritter et al.
(1996b) have provided more systematic accounts of logic programming via the
sequent calculus, and the proof-theoretic basis of their work provides a point of
departure for the remaining chapters of the thesis.

10.1 Logic Programming in λΠ

In (Pym 1990) and (Pym & Wallen 1991), it was shown that the λΠ-calculus
admits a natural interpretation as a logic programming language, based on se-
quents of the form Γ ⇒Σ A(α), where α is an indeterminate. Such sequents are
interpreted as request to calculate terms M and N such that Γ `Σ M :A[N/α]
is provable. Here [N/α] corresponds to the usual notion of answer substitution,
intended to be calculated by unification. An alternative formulation of logic pro-
gramming for LF has been presented by Pfenning (1991) and implemented in
Elf and Twelf (Pfenning & Schürmann 1999). (In the hope of clarifying some
previous confusion over the names of frameworks and implementations, we have
used the following terminology in this thesis:

• LF - the λΠ-calculus together with the judgements-as-types representation
mechanism;

• ELF - the implementation of LF (Arnon Avron & Mason 1996);

• Elf - Pfenning’s first implementation (Pfenning 1991);

• Twelf - Pfenning’s second implementation (Pfenning & Schürmann 1999).
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This appears to match the current naming conventions. We have probably added
further confusion to the naming of different logical frameworks by calling all
the logical frameworks in this thesis which have the same proof-terms LF, when
technically they are different frameworks due to different choices of representation
mechanisms or languages.)

As we discussed in the previous section, there are two distinct phases of com-
putation in logic programming: proof-search and residual computation. We are
interested in providing a proof-theoretic operational semantics and hence are in-
terested in resolution and unification. Our treatment of resolution follows Miller
et al. (1991) by dealing with uniform proof. We are not concerned with unifi-
cation in our current treatment, this is mainly because a lot of the issues have
been addressed elsewhere. A full and complete unification algorithm for the λΠ-
calculus was discovered independently by Elliott (1990) and Pym (1990) (and
(Pym 1992)). These algorithms would not be used in practice because they
are too expensive computationally. The work of Pfenning et al. ((Pientka &
Pfenning 2003), (Dowek, Hardin, Kirchner & Pfenning 1996) and (Pfening &
Schürmann 1998)) provides more efficient algorithms. A treatment of unification
from the point of view of the λΠ-calculus as the language of a logical framework
and the relationship between the unification of the λΠ-calculus and the encoded
logic can be found in (Brown & Wallen 1995).

The calculus we would use as a basis for computation is L (Pym & Wallen
1991). This is a system for the semi-decidable relation of inhabitation: Γ⇒Σ A,
with the meaning (∃M)(Γ `Σ M :A). The judgements of this calculus assert the
existence of proofs of the judgements of N. L is almost logistic in the sense of
Gentzen and has a subformula property with respect to the Π-type structure.

Definition 10.1 (Sequent)
A sequent is a triple 〈Σ,Γ, A〉, written Γ ⇒Σ A, where Σ is a signature, Γ is a
context and A is a type (family). The intended interpretation of the sequent is
the (meta-)assertion;

(∃M)N proves Γ `Σ M :A �
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Definition 10.2 (The System L (Pym & Wallen 1991))
The following axioms and rules define the semi-logistic calculus L.

Ax1 Γ, x :A,Γ′ ⇒Σ A

Ax2 Γ⇒Σ,c :A,Σ′ A

→ r
Γ, x :A⇒Σ B

Γ⇒Σ A→ B
(a) x /∈ Dom(Γ)

Π r
Γ, x :A⇒Σ B

Γ⇒Σ Πx :A .B
(a) x /∈ Dom(Γ)

→ l
Γ⇒Σ A Γ, y :B ⇒Σ C

Γ⇒Σ C
(a) @:A→ B ∈ Σ ∪ Γ

(b)y /∈ Dom(Γ)

Πl
Γ, y :D ⇒Σ C

Γ⇒Σ C
(a) @:Πx :A .B ∈ Σ ∪ Γ

(b) y /∈ Dom(Γ)
(c) G/cut proves Γ `Σ M :A
(d) B[N/x]→βη D �

G/cut is the calculus obtained from N by replacing (2.15) with the rule

@:Πx :A .B ∈ Σ ∪ Γ Γ `Σ N :A B[N/x] =βη C Γ, y :C `Σ M :D

Γ `Σ M [@N/y] :D

where y /∈ FV (D).
We have the following result which describes the relationship between L and

N. We begin with a definition.

Definition 10.3 (Well-formed Sequent (Pym 1990))
A sequent Γ ⇒Σ A is said to be well-formed just in case G/cut proves Γ `Σ A :
Type. �

Proposition 10.4 ((Pym 1990))
For well-formed sequents Γ⇒Σ A

L proves Γ⇒Σ A if and only if (∃M) N proves Γ `Σ M :A �
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Chapter 11

Σ-λΠ-Herbrand Models

Having discussed how the λΠ-calculus can be used as a logic programming lan-
guage, we provide a suitable semantics for it. We do this in terms of Σ-λΠ-
Herbrand models. In this chapter, we introduce Σ-λΠ-Herbrand models and
provide a least fixed-point construction. Σ-λΠ-Herbrand models are a special
class of Kripke Σ-λΠ-models and are more concrete. In a Kripke Σ-λΠ-model
realizations Γ

σ−→ ∆ are constructed out of the Kripke λΠ-prestructure. A con-
sequence of this is that there may be realizations in the fibre over Γ, say, in the
absence of putatively corresponding arrows in the Kripke λΠ-prestructure. Σ-
λΠ-Herband models take the structure at a world ∆ and base Γ to be a subset
of homD(Γ,∆). Thus ensuring that all arrows in the Σ-λΠ-Herbrand model have
a corresponding arrow in the Σ-λΠ-Herbrand prestructure.

The worlds in Σ-λΠ-Herbrand models consist of collections of propositions
(actually encodings of judged proof-variables). The motivation for taking worlds
to be collections of propositions can be found in (van Emden & Kowalski 1976).
van Emden and Kowalski’s use of atoms in a least Herbrand model is analogous
to our use of worlds to form axiom sequents.

The fixed-point construction is a generalization of a fixed-point construction
found in (Miller 1989) for intuitionistic logic. We generalize his construction to
our setting, taking full advantage of the fact that he uses Kripke models.

11.1 Herbrand Prestructures and Structures

We begin by defining a clausal form for terms in the λΠ-calculus. From now on
we assume that all terms used in the application rule in C are clausal and we
refer to this rule as resolution.

Definition 11.1 (Clausal Form)
We say that any constant or variable @ :A ∈ Σ ∪ Γ is in clausal form if it is of
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the form:

@:Πz1 :B1 . . . . .Πzm :Bm . (C1 → (C2 → (. . . (Cn → D) . . .)))

where m and n may be 0 and each Bj, Ci and D are clausal. The rule is said to
be strongly clausal if D is atomic. �

We are now able to define a Herbrand Σ-λΠ-prestructure. A Herbrand Σ-λΠ-
prestructure is the Kripke λΠ-prestucture, TΣ; that is, the term model, we con-
structed in § 3.2.1.

Definition 11.2 (Σ-λΠ-Herbrand Structure)
Let Σ be a λΠ-signature. A Σ-λΠ-Herbrand structure is a Kripke λΠ-structure,
IH(Σ), on H(Σ) such that the objects of each IH(Σ)(∆)(∆ ./ Γ) are given by

arrows Γ
σ−→ ∆ of B(Σ) (Definition 2.2) . The arrows of IH(Σ)(∆)(Γ) are given by

Definition 3.2. �

The proof that the above Σ-λΠ-Herbrand structure is well-defined; that is, it
is a Kripke λΠ-prestructure is very similar to that given for the term model in
§ 3.2.1.

11.2 Σ-λΠ-Herbrand Models

We now define a Σ-λΠ-Herbrand model. The partiality in the definition enables
us to interpret incomplete proofs.

Definition 11.3 (Σ-λΠ-Herbrand Model)
Let Σ be a λΠ-signature. A Σ-λΠ-Herbrand model is an ordered pair, 〈IH(Σ),
J−K−IH(Σ)

〉, where IH(Σ) : [P(Σ), [B(Σ)op,V(Σ)]], is a Σ-λΠ-Herbrand structure.

J−K−IH(Σ)
is the standard term model interpretation (we give only a sketch, the

details being obvious):

• JΓK∆
IH(Σ) = Γ;

• JAΓK∆
IH(Σ) = A;

• JcΓK∆
IH(Σ) = opc(= c);

• JxΓK∆
IH(Σ) = 〈〉 x−→ A;

etc. A consequence Γ
σ−→ ∆ is defined at ∆ with respect to Γ just in case JσΓK∆

IH(Σ)

is an object of IH(Σ)(∆)(Γ). �
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We now adapt the ideas of a Herbrand universe and Herbrand base to our set-
ting. The usual definitions (cf. (Lloyd 1984) are as follows: a Herbrand universe
is the set of all ground terms which can be formed out of constants and functions
appearing in a given logic. Ground terms are terms that contain no variables. A
Herbrand base is the set of all ground atoms, i.e., atoms that contain no variables,
which can be formed by using predicates of the logic and ground terms from the
Herbrand universe as arguments. The idea is then that for any given Herbrand
interpretation, the assignments of constants and functions are fixed but not the
assignments of predicates. This means that we are not instantiating the symbols
in a given set of clauses and so are restricting to an easier case. The appropriate
definition for our setting is given below.

Definition 11.4 (Ground Homset)
Let Σ be a λΠ-signature. Let ∆ and Γ be contexts. The ground homset [Σ,∆,Γ]
is the subset of homB(Σ(Γ,∆) consisting of arrows of the form 〈@1, . . . ,@n〉, where
each @i ∈ Γ ∪ Σ. �

11.3 Least Fixed-Point Construction

We are moving towards a least fixed-point construction. The material that fol-
lows is similar to the basic least fixed-point construction for intuitionistic logic
in (Miller 1989). We begin by showing that Σ-λΠ-Herbrand structures form a
lattice.

Definition 11.5 (Lattice Operations)
Let Σ be a λΠ-signature. We define at each object ∆ in P(Σ) and Γ in B(Σ),
the following operations on Σ-λΠ-Herbrand structures:

• Meet:

Objects: (IH(Σ)1 u IH(Σ)2)(∆)(Γ) =def IH(Σ)1(∆)(Γ) ∩ IH(Σ)2(∆)(Γ);

Arrows: post- and pre-composition, respectively, for the first and second
arguments;

• Join:

Objects: (IH(Σ)1 t IH(Σ)2)(∆)(Γ) =def IH(Σ)2(∆)(Γ) ∪ IH(Σ)2(∆)(Γ);

Arrows: post- and pre-composition, respectively, for the first and second
arguments;

• Order: IH(Σ)1 v IH(Σ)2 if and only if, for all ∆ in P(Σ) and Γ in B(Σ),
IH(Σ)1(∆)(Γ) ⊆ IH(Σ)2(∆)(Γ);

• Bottom: ⊥(Σ)(∆)(Γ):
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Objects: 〈〉 〈〉−→ 〈〉;

Arrows: 〈〉 〈〉−→ 〈〉. �

⊥(Σ) is the Σ-λΠ-Herbrand structure where for any ∆ in P(Σ) and Γ in B(Σ)
the fibre ⊥(Σ)(∆)(Σ) is the empty category.

Lemma 11.6
With the operations of Definition 11.5, Σ-λΠ-Herbrand structures form a com-
plete lattice.

Proof We observe that all the above structures are well-defined and note that
a powerset ordered by ⊆ forms a complete lattice. �

To be able to obtain a least fixed-point, we need to have a monotone function
between lattices (cf. (Miller 1989) and (Lloyd 1984)). In our situation, we need
a natural transformation between Σ-λΠ-Herbrand structures, which is monotone
with respect to the ordering, v. We need a natural transformation because Σ-
λΠ-Herbrand structures are functors. The intention is that one application of
this natural transformation corresponds to one application of the resolution rule
(3.31), so that we obtain a stratification of the search-space.

Definition 11.7
We define the operator T on Herbrand structures as follows:

Objects:

T(IH(Σ)(∆)(Γ)) =def [Σ,∆,Γ] ∪ IH(Σ)(∆)(Γ) ∪

{〈M1, . . . ,M
′
i , . . . ,Mn〉|Γ

〈M〉−−→ ∆, where M ′
i is

such that @P Q→βη M
′
i , for some appropriate

P Q and @i :Πzi1 :Bi1 . . . . .Πzip :Bip . (Ci1
→ (Ci2 → . . . (Ciq → Di) . . .)) ∈ Σ ∪ Γ. M ′

i the
object replaced by Mi is such that

∆ |=⇒II(Σ)

Σ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ] and where

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

IH(Σ)

Σ ((Γ
〈x1,...,xm,M ′i〉−−−−−−−−→ Γ,

x :Bi)[Mj/yj]
i−1
j=1)[Γ]};

Arrows: Given by the natural transformation T(IH(Σ))(∆
α−→ ∆), where ∆′ =

∆ ∪ Γ, x :Bi[Mj/yj]
i−1
j=1, with components

T(IH(Σ))(∆)(Γ)
(T(IH(Σ))(α))Γ−−−−−−−−→ T(IH(Σ))(∆

′)(Γ),

given by Γ
σ−→ ∆ 7→ Γ

σ′−→ ∆′, where σ′ = σ;α. �
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Lemma 11.8
The operator T is a natural transformation between Σ-λΠ-Herbrand structures.

Proof It is straightforward to check that if IH(Σ) is a Σ-λΠ-Herbrand structure,
then so is T(IH(Σ)). Naturality follows straightforwardly. �

We now give two lemmas concerning the relationship between the ordering v
and the satisfaction relation |=⇒ . For simplicity, henceforth, we shall drop the
subscript H(Σ) from Σ-λΠ-Herbrand models, writing just I or Ii, etc., where no
confusion can occur.

Lemma 11.9
If ∆ |=⇒I1Σ (Γ

σ−→ ∆)[Γ] and I1 v I2, then ∆ |=⇒I2Σ (Γ
σ−→ ∆)[Γ].

Proof If ∆ |=⇒I1Σ (Γ
σ−→ ∆)[Γ], then Γ

σ−→ ∆ ∈ I1(∆)(Γ). By the definition of

v, Γ
σ−→ ∆ ∈ I2(∆)(Γ) and thus ∆ |=⇒I2Σ (Γ

σ−→ ∆)[Γ]. �

Lemma 11.10
Let I1 v I2 v . . . be an ω-chain. If ∆ |=⇒(

Fω
i=1 Ii)

Σ (Γ
σ−→ ∆)[Γ], then there is a

k ≥ 1 such that ∆ |=⇒IkΣ (Γ
σ−→ ∆)[Γ].

Proof If ∆
(
Fω
i=1 Ii)−−−−−→ Σ(Γ

σ−→ ∆)[Γ], then there is an arrow Γ
σ−→ ∆ in (

⊔ω
i=1 Ii)

(∆)(Γ). Therefore, there is a k ≥ 1 such that the arrow Γ
σ−→ ∆ is an object of

Ik(∆)(Γ), from which it follows immediately that ∆ |=⇒IkΣ (Γ
σ−→ ∆)[Γ]. �

We now show the key lemma in establishing that the operator T has a fixed-
point.

Lemma 11.11
The operator T is monotone with respect to v.

Proof Suppose that I1 v I2. We must show that T(I1) v T(I2). Let
〈M〉 ∈ T(I1)(∆)(Γ). Either 〈M〉 ∈ [Σ,∆,Γ] or I1(∆)(Γ), in which case 〈M〉 ∈
T(I2)(∆)(Γ), or 〈M〉 ≡ 〈M1, . . . ,M

′
i , . . . ,Mn〉 and there is an @i ∈ Σ ∪ Γ such

that @iP Q→βη M
′
i ,

∆ |=⇒I1Σ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ],

and

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

I2
Σ ((Γ

〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]
i−1
j=1)[Γ].

By Lemma 11.9, we have

∆ |=⇒I2Σ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ],

and

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

I2
Σ ((Γ

〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]
i−1
j=1)[Γ]

so that 〈M〉 ∈ T(I2)(∆)(Γ). �
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The following results allows us to define the least fixed-point.

Lemma 11.12
The operator T is continuous.

Proof We must show that if I1 v I2 v . . . is an ω-chain, then

T(
ω⊔
i=1

Ii) =
ω⊔
i=1

(T(Ii)).

We establish the inclusion in two directions.
For any j ≥ 1, Ij v

⊔ω
i=1 Ii. So, by Lemma 11.11, T(Ij) v T (

⊔ω
i=1 Ii). Since

j is arbitrary, it follows that
⊔ω
i=1 T(Ii) v T(

⊔ω
i=1 Ii).

For the converse, suppose 〈M〉 ∈ T(
⊔ω
i=1 Ii)(∆)(Γ). If 〈M〉 ∈ [Σ,∆,Γ]

or (
⊔ω
i=1 Ii)(∆)(Γ), then 〈M〉 ∈ T(Ij)(∆)(Γ), for any j ≥ 1, so that 〈M〉 ∈

(
⊔ω
i=1 T(Ii)(∆)(Γ)). Otherwise, we must have that 〈M〉 ≡ M1, . . . ,M

′
i , . . . ,Mn〉

and there is some @i ∈ Σ ∪ Γ such that @iP Q→M ′
i ,

∆ |=⇒(
Fω
h=1 Ih)

Σ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ],

for some Mi, and

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

(
Fω
h=1)

Σ ((Γ
〈x1,...,xk,M〉−−−−−−−→ Γ, x :Bi)[Mj/yj]

i−1
j=1)[Γ].

By Lemmas 11.9 and 11.10, there is a g ≥ 1 such that

∆ |=⇒IgΣ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ],

and

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

Ig
Σ ((Γ

〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]
i−1
j=1)[Γ].

So 〈M〉 ∈ T(Ig)(∆)(Γ) v (
⊔ω
i=1 T(Ih))(∆)(Γ), Since 〈M〉, ∆ and Γ are arbitrary.

It follows that T(
⊔ω
i=1 Ii) v

⊔ω
i=1 T(Ii). �

Recall Tarski’s (1955) theorem that if X is a complete lattice, then any mono-

tone mapping X
f−→ X has a least fixed-point. Since T is also continuous, its least

fixed-point is

Tω(⊥(Σ)) =def

ω⊔
i=1

Ti(⊥(Σ))

i.e., the closure ordinal of T is ω. We abbreviate Tω(⊥(Σ)) to Tω, where no
confusion can arise. We obtain (recalling Lemma 11.8) the following;

Proposition 11.13
Tω is a Kripke Σ-λΠ-structure.
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Proof (Sketch) Definition 11.2 tells us that a Σ-λΠ-Herbrand structure is al-
ways a Kripke λΠ-structure. Lemma 11.8 tells us that the operation T is a
natural transformation between Σ-λΠ-Herbrand structures. Applying T to a Σ-
λΠ-Herbrand structure always returns a Σ-λΠ-Herbrand structure. A limiting
argument tells us that applying it ω-times still returns a Σ-λΠ-Herbrand struc-
ture. �

The model 〈Tω, J−K−Tω〉 is thus given by the Kripke λΠ-structure together with
the standard term interpretation. We must show that this model is well-defined.
Since it is a term model, defined by constructing realizers, this will amount to a
soundness argument.

Proposition 11.14
〈Tω, J−K−Tω〉 is well-defined.

Proof It is clear that all the contexts (programs) are properly interpreted. It
remains to show that consequences are properly interpreted over each context
and world (when they are defined in the model). The argument proceeds by
induction on the structure of derivations in C.

Suppose we have a derivation in C consisting of an axiom, i.e.,

`Σ Γ
〈@1,...,@n〉−−−−−−→ ∆

where each @i ∈ Σ ∪ Γ and Γ `Σ @i :Bi[@j/yj]
i−1
j=1 for 1 ≤ i ≤ n. We have to

show that

∆ |=⇒Tω

Σ (Γ
〈@1,...,@n〉−−−−−−→ ∆)[Γ]

holds. By definition, Γ
〈@1,...,@n〉−−−−−−→ ∆ ∈ [Σ,∆,Γ] and so by the definition of T

belong to Tω.
Suppose we have a derivation in C, the last rule applied being the following:

`Σ Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆

`Σ Γ
〈M1,...,M ′i ,...,Mn〉−−−−−−−−−−→ ∆

where N proves Γ `Σ M ′
i : Bi[Mj/yj]

i−1
j=1, @i : Πzi1 : Bi1 . . . . .Πzip : Bip . (Ci1 →

(Ci2 → (. . . (Ciq → Di)) . . .)) ∈ Σ ∪ Γ, @iP Q →βη M
′
i , for some 1 ≤ i ≤ n and

p, q possibly 0. We must show that if

∆ |=⇒Tω

Σ (Γ
〈M1,...,Mi,...,Mn〉−−−−−−−−−−→ ∆)[Γ] (11.1)

and

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

Tω

Σ ((Γ
〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]

i−1
j=1)[Γ] (11.2)
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then

∆ |=⇒Tω

Σ (Γ
〈M1,...,M ′i ,...,Mn〉−−−−−−−−−−→ ∆)[Γ] (11.3)

It immediately follows from the definition of T that if (11.1) and (11.2) obtain,

then Γ
〈M1,...,M ′i ,...,Mn〉−−−−−−−−−−→ ∆(T(Tω))(∆)(Γ) holds. Also T(Tω) = Tω, so it follows

that (11.3) obtains.
Assume that the last rule applied was introduction:

`Σ Γ, x :A
〈M1,...,Mn,x,M〉−−−−−−−−−→ Γ, x :A, y :B

`Σ Γ
〈M1,...,Mn,λx :A .M〉−−−−−−−−−−−−→ Γ, y :Πx :A .B

We have to show that if

Γ, x :A, y :B |=⇒Tω

Σ (Γ, x :A
〈M1,...,Mn,x,M〉−−−−−−−−−→ Γ, x :A, y :B)[Γ, x :A]

then

Γ, y :Πx :A .B |=⇒Tω

Σ (Γ
〈M1,...,Mn,λx :A .M〉−−−−−−−−−−−−→ Γ, y :Πx :A .B)[Γ]

We apply the adjoint ΠΓ,A to I(Γ, x : A, y : B)(Γ, x : A) and also note that the
realization Γ, x :A, y :B → Γ, y :Πx :A .N is an arrow in P(Σ). We are thus able

to move to the fibre Tω(Γ, y :Πx :A .B)(Γ) in which the arrow Γ
〈M1,...,Mn,λx :A .M〉−−−−−−−−−−−−→

Γ, y : Πx : A .B) is defined and hence Γ, y : Πx : A .B |=⇒Tω

Σ (Γ
〈M1,...,Mn,λx :A .M〉−−−−−−−−−−−−→

Γ, y :Πx :A .B)[Γ]. The term λx :A .M arises when we apply the adjunction.
Finally, we consider the case where we have applied the rule for equality:

`Σ Γ
σ−→ ∆

`Σ Γ′
σ′−→ ∆′

where Γ =βη Γ′, σ =βη σ
′ and ∆ =βη ∆′ are all defined componentwise. We have

to show that if
∆ |=⇒Tω

Σ (Γ
σ−→ ∆)[Γ]

then
∆ |=⇒Tω

Σ (Γ′
σ′−→ ∆′)[Γ′]

where Γ =βη Γ′, σ =βη σ
′ and ∆ =βη ∆′. By the definition of P(Σ) and B(Σ)

there are realizations ∆→ ∆′ and Γ→ Γ′ in each respectively. We are then able
to move to the fibre Tω(∆′)(Γ′) which contains the realization Γ′

σ−→ ∆′ and hence

∆′ |=⇒Tω

Σ (Γ′
σ′−→ ∆′)[Γ′]. �

We are now able to give the completeness theorem. Its proof follows the
pattern found in (Miller 1989).
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Theorem 11.15 (Completeness)
Let Σ be a signature. If, for some ∆ in P(Σ) ∆ |=⇒Tω

Σ (Γ
σ−→ ∆)[Γ], then C

proves `Σ Γ
σ−→ ∆, where Γ ≡ x1 :A1, . . . , xm :Am, ∆ ≡ y1 :B1, . . . , yn :Bn and

σ ≡ 〈M1, . . . ,Mn〉.
Proof If

∆ |=⇒Tω

Σ (x1,:A1, . . . , xm :Am︸ ︷︷ ︸
Γ

σ︷ ︸︸ ︷
〈M1, . . . ,Mn〉−−−−−−−−−−→ y1 :B1, . . . , yn :Bn︸ ︷︷ ︸

∆

)[Γ]

then, according to Definitions 3.26 and 11.3, there is an arrow Γ
σ−→ ∆ in

Tω(∆)(Γ). We must show that the realization `Σ Γ
σ−→ ∆ is derivable in C.

We proceed by induction on the structure of the types of the components
of the arrows and the number of applications of T. To this end, we proceed in
a manner similar to (Miller 1989) and (Pym 1990) by assigning to each triple
(Θ,Ξ, ρ), where ρ = 〈N1, . . . Np〉, the ordinal measure ω · (r − 1) + Σp

i=1si, where
each si ≥ 0 is the number of λ-abstractions in the head of the object Ni and
r ≥ 0 is the least r such that

Ξ |=⇒Tr(⊥(Σ))
Σ (Θ

ρ−→ Ξ)[Θ],

and proceed by induction on this measure.

(Base Case) The measure of (∆,Γ, σ) is 0(= ω · 0 + 0). Each of the objects Mi

must be atomic, i.e., of the form @i ∈ Σ ∪ Γ and ∆ |=⇒T1(⊥(Σ))
Σ (Γ

σ−→ ∆)[Γ].

Therefore, there must be an arrow Γ
〈@1,...,@n〉−−−−−−→ ∆, such that 〈@1, . . . ,@n〉

in [Σ,∆,Γ]. It follows that C proves `Σ Γ
〈@1,...,@n〉−−−−−−→ ∆.

(Inductive Case) The measure of (∆,Γ, σ) is ω ·α+β, so that ∆ |=⇒Tα+1(⊥(Σ))
Σ

s(Γ
σ−→ ∆)[Γ]. Either this measure is a limit ordinal, i.e. β = 0 or it is a

successor, i.e., β > 0.

(β = 0) In this case we have that α > 0 or σ is atomic. There are two possi-
bilities:

1. There is an arrow Γ
〈@〉−−→ ∆ in [Σ,∆,Γ], with 〈@〉 = σ. It then

follows that C proves `Σ Γ
〈@1,...,@n〉−−−−−−→ ∆;

2. There is in Tα+1(⊥(Σ))(∆)(Γ) some Γ
〈M1,...,M ′i ,...,Mp〉−−−−−−−−−−→ ∆, con-

structed from some Γ
〈M1,...,Mn〉−−−−−−→ ∆, in Tα(⊥(Σ))(∆)(Γ), where

M ′
i is such that

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

Tα

Σ ((Γ
〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]

i−1
j=1)[Γ]
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Since this satisfaction requires fewer applications of T, we have,
by the induction hypothesis that N proves Γ `Σ M

′
i :Bi[Mj/yj]

i−1
j=0,

Therefore, by resolution C proves `Σ Γ
〈M1,...,M ′i ,...,Mp〉−−−−−−−−−−→ ∆.

(β > 0) In this case, we have that σ is not atomic. In particular, suppose that
Mi is not atomic. There is in Tα+1(⊥(Σ))(∆)(Γ) some Γ
〈M1,...,M ′i ,...,Mp〉−−−−−−−−−−→ ∆, where M ′

i is such that

Γ, x :Bi[Mj/yj]
i−1
j=1 |=⇒

Tα

Σ ((Γ
〈x1,...,xm,M ′i〉−−−−−−−−→ Γ, x :Bi)[Mj/yj]

i−1
j=1)[Γ].

Since M ′
i is of the form @iP Q, it follows that 〈x1, . . . , xm,M

′
i〉 and

〈M1, . . . ,M
′
i , . . . ,Mn〉 have fewer abstractions than Γ

σ−→ ∆. So, by the
induction hypothesis, it follows that N proves Γ `Σ M ′

i :Bi[Mj/yj]
i−1
j=1

and C proves `Σ Γ
〈M1,...,M ′i ,...,Mp〉−−−−−−−−−−→ ∆. Therefore, by resolution , C

proves `Σ Γ
〈M1,...,M ′i ,...,Mp〉−−−−−−−−−−→ ∆. By Lemma 11.10, if ∆ |=⇒Tω

Σ (Γ
σ−→

∆)[Γ], then there is a k ≥ 1 such that ∆ |=⇒Tk(⊥(Σ))
Σ (Γ

σ−→ ∆)[Γ].

Therefore, by the inductive argument above, C proves `Σ Γ
σ−→ ∆. �
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Chapter 12

Encoding Sequent Systems in LF

We wish to examine the relationship between resolution in the object-logic and
resolution in the meta-logic. To achieve this we need a method of encoding se-
quent systems into LF. We are faced with a problem since LF does not provide
a suitable meta-theory for sequent systems. This is because one of the desired
properties of logical frameworks is that the structural rules of the logical frame-
work correspond to the rules of the object-logic and the structural rules of a
multi-conclusioned sequent system do not correspond to the structural rules of
the λΠ-calculus. This strongly suggests that it may not be possible to represent
sequent systems adequately in LF. Pfenning (2000), however, has shown that it is
possible to represent both the sequent presentation of classical and intuitionistic
logic in LF. We reconstruct Pfenning’s encoding in our setting and extend it to
higher-order intuitionistic logic. The key idea of this encoding is that instead of
using the ‘usual’ sequent rules, (Gentzen 1934), one uses the rules in Kleene’s
(1952) G3 (System GKi in (Troelstra & Schwichtenberg 1996)). The reason for
this choice is that if one views the sequent calculus for intuitionistic logic as a
calculus of proof-search for natural deduction proofs, then one can systemati-
cally derive G3. Details of this derivation can be found in (Pfenning 2000). Thus
the proof-objects of intuitionistic G3 are essentially the same as those for the
corresponding intuitionistic natural deduction system.

The encoding of classical sequent calculus is based on the extension of intu-
itionistic G3 to multi-conclusioned sequents. This breaks the relationship between
the sequent system and the corresponding natural deduction system. The G3 sys-
tems differ from the ‘usual’ presentation of the sequent calculus in that all the
rules have the principal formula of the rule present in each premiss. Having the
principal formula in each premiss is also essential to the proof of adequacy. The
encoding itself requires us to ignore any context and principal formulæ occurring
in the premiss. The logical framework then handles the context correctly.

Both our presentation and encoding of higher-order intuitionistic logic is orig-
inal, although higher-order classical logic has been encoded in LF before, (Harper
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et al. 1993).

12.1 Intuitionistic Logic

We present the intuitionistic system G3i, which is a judged proof system based
on Kleene’s (1952) G3 . Here, unlike Pfenning, we use a single judgement and do
not include cut in our definition.

Definition 12.1 (G3i)
The judged proof system G3i is given by the alphabet A = (S, V, E,C, J), where:

• S = {ι, o};

• V = {ι};

• E = {>,∧,∨,⊃, ∀,∃};

• C = {>,∧,∨,⊃,∀,∃};

• J = {proof}.

Each connective is assigned an arity and a level. > has arity o and level 1, ∧,∨
and ⊃ all have arity (o, o)→ o and level 1. ∀ and ∃ have arity (ι→ o)→ o and
level 2. The judgement proof has arity 0. Together with the following rules:

Ax
∆, proof(φ) `G3i proof(φ)

∆, proof(φ ∧ ψ), proof(φ), proof(ψ) `G3i proof(χ)
∧ l

∆, proof(φ ∧ ψ) `G3i proof(χ)

∆ `G3i proof(φ) ∆ `G3i proof(ψ)
∧ r

∆ `G3i proof(φ ∧ ψ)

∆, proof(φ ∨ φ), proof(φ) `G3i proof(χ) ∆′ `G3i proof(χ)
∨ l

∆, proof(φ ∨ ψ) `G3i proof(χ)

where ∆′ = ∆, proof(φ ∨ ψ), proof(ψ).

∆ `G3i proof(φi)
∨ ri

∆ `G3i proof(φ1 ∨ φ2)

∆, proof(φ ⊃ ψ) `G3i proof(φ) ∆, proof(φ ⊃ ψ), proof(ψ) `G3i proof(χ)
⊃ l

∆, proof(φ ⊃ ψ) `G3i proof(χ)
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∆, proof(φ) `G3i proof(ψ)
⊃ r

∆ `G3i proof(φ ⊃ ψ)

>
∆ `G3i >

∆, proof(∀xφ), proof(φ) `G3i proof(χ)
∀ l

∆, proof(∀xφ) `G3i proof(χ)

x free in φ
∆ `G3i proof(φ)

∀ r
∆ `G3i proof(∀xφ)

x free in φ
∆, proof(∃xφ), proof(φ) `G3i proof(χ)

∃ l
∆, proof(∃xφ) `G3i proof(χ)

x free in φ
∆ `G3i proof(φ)

∃ r
∆ `G3i proof(∃xφ)

x free in φ. The antecedent is a multiset throughout. �

We now show that G3i is provably equivalent to the usual sequent presentation
of intuitionistic logic. The rules for the sequent calculus LJ can be found in
Appendix C.

The following result is a simplified version of Kleene’s proof that LJ and G3

are provably equivalent. Kleene takes contexts in LJ to be sequences of formulæ
rather than sets. This makes his proof more complicated.

Lemma 12.2 (Kleene (1952))
Let φ be a formula in G3i, ∆ a multiset of formulæ of G3i and ∆′ a set of formulæ
of LJ . Then

∆ `G3i proof(φ) if and only if ∆′ `LJ proof(φ)

where ∆ and ∆′ contain the same formulæ.

Proof We begin by proving the left to right direction. We show that each
inference rule in G3i can be translated to a proof-tree in LJ with the same
premisses and conclusion. The right rules, Ax and >, are identical for each
system. We only need to show the translation for the left rules. We list the rules
of G3i on the left and the corresponding proof-tree in LJ on the right. We drop
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the judgements for readability.

∆, φ ∧ ψ, φ, ψ `G3i χ ∧ l
∆, φ ∧ ψ `G3i χ

∆, φ ∧ ψ, φ, ψ `LJ χ
∧ l

∆, φ ∧ ψ, φ ∧ ψ `LJ χ
contraction

∆, φ ∧ ψ `G3i χ

∆, φ ∨ ψ, φ `G3i χ ∆, φ ∨ ψ, ψ `G3i χ

∆, φ ∨ ψ `G3i χ

∆, φ ∨ ψ, φ `G3i χ ∆, φ ∨ ψ, ψ `G3i χ

∆, φ ∨ ψ, φ ∨ ψ `G3i χ

∆, φ ∨ ψ `G3i χ

∆, φ ⊃ ψ `G3i φ ∆, φ ⊃ ψ, ψ `G3i χ

∆, φ ⊃ ψ `G3i χ

∆, φ ⊃ ψ `G3i χ ∆, φ ⊃ ψ, ψ `G3i χ

∆, φ ⊃ ψ, φ ⊃ ψ `G3i χ

∆, φ ⊃ ψ `G3i χ

∆,∀xφ, φ `G3i χ ∀ l
∆,∀xφ `G3i χ

∆,∀xφ, φ `G3i χ ∀ l
∆,∀xφ,∀xφ `G3i χ

contraction
∆,∀xφ `G3i χ

∆,∃xφ, φ `G3i χ ∀ l
∆,∃xφ `G3i χ

∆,∃xφ, φ `G3i χ ∃ l
∆,∃xφ,∀xφ `G3i χ

contraction
∆,∀xφ `G3i χ

We have stated the use of contraction explicitly. It is not a separate rule but
follows directly from the fact that contexts are either multisets or sets. We now
have to show the right to left direction. We show that for every rule in LJ there
is a proof-tree in G3i

′ with the same premisses and conclusion. G3i
′ is G3i plus

weakening and contraction. Again, we just show the left rules.

∆, φ, ψ `LJ χ
∧ l

∆, φ ∧ ψ `LJ χ

∆, φ, ψ `G3i′ χ
weakening

∆, φ ∧ ψ, φ, ψ `G3i′ χ ∧ l
∆, φ ∧ ψ `G3i′ χ

∆, φ `LJ χ ∆, ψ `LJ χ
∨ l

∆, φ ∨ ψ `LJ χ

∆, φ `G3i′ χ

∆, φ ∨ ψ, φ `G3i′ χ

∆, ψ `G3i′ χ

∆, φ ∨ ψ `G3i′ χ

∆, φ ∨ ψ `G3i′ χ

∆ `LJ φ ∆, ψ `LJ χ
⊃ l

∆, φ ⊃ ψ `LJ χ

∆ `G3i′ φ

∆, φ ⊃ ψ `G3i′ φ

∆, ψ `G3i′ χ

∆, φ ⊃ ψ, ψ `G3i′ χ

∆, φ ⊃ ψ `G3i′ χ

199



∆, φ `LJ χ
∀ l

∆,∀xφ `LJ χ

∆, φ `LJ χ

∆,∀xφ, φ `LJ χ

∆,∀xφ `LJ χ

∆, φ `LJ χ
∃ l

∆,∃xφ `LJ χ

∆, φ `G3i′ χ

∆,∃xφ, φ `G3i′ χ

∆, ∃xφ `G3i′ χ

We now need to show that weakening and contraction are admissible in G3i.
These are proven by induction over the depth of the proof-tree. We start with
the base case, i.e. we have a proof-tree of depth 1:

∆, φ, φ `G3i χ

where either χ is atomic or χ is >. If χ is > then we can use the rule >,

>
∆, φ `G3i >

and we are done. If χ is atomic then either χ ∈ ∆ or χ = φ. If χ = φ then we
also have the axiom

Ax
∆, φ `G3i φ

and we are done. If χ ∈ ∆ then we have the axiom

Ax
∆, φ `G3i χ

since χ is still in ∆ and we complete the base case.
We prove ∧ r and ∧ l to illustrate how the induction step works. The other

cases are similar.
We begin with ∧ r. We have the proof-tree

∆, χ, χ `G3i φ ∆, χ, χ `G3i ψ ∧ r
∆, χ, χ `G3i φ ∧ ψ

and we can apply the induction hypothesis to the premiss. We obtain ∆, χ `G3i φ
and ∆, χ `G3i ψ. We now apply ∧ r to obtain

∆, χ `G3i φ ∆, χ `G3i ψ ∧ r
∆, χ `G3i φ ∧ ψ

which completes this case.
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We now look at ∧ l. There are three cases here. The first is when the formulæ
being contracted are distinct from the principal formula. The second is when the
principal formula is one of the contracted formulæ. The third is when one of the
contracted formulæ is one of the formulæ ‘used up’ by the rule. We begin with
the first case. We have a proof-tree

∆, χ, χ, φ ∧ ψ, φ, ψ `G3i τ ∧ l
∆, χ, χ, φ ∧ ψ `G3i τ

Applying the induction hypothesis to the premiss we obtain ∆, χ, φ∧ψ, φ, ψ `G3i

τ . We apply ∧ l to obtain

∆, χ, φ ∧ ψ, φ, ψ `G3i τ ∧ l
∆, χ, φ ∧ ψ `G3i τ

thus completing the case.
We now assume that we have the proof-tree

∆, φ ∧ ψ, φ ∧ ψ, φ, ψ `G3i τ ∧ l
∆, φ ∧ ψ, φ ∧ ψ `G3i τ

We apply the induction hypothesis to the premiss to obtain ∆, φ∧ψ, φ, ψ `G3i τ .
We apply ∧ l to obtain

∆, φ ∧ ψ, φ, ψ `G3i τ ∧ l
∆, φ ∧ ψ `G3i τ

which completes this case.
When the contracted formula is a formula used up by the rule, the rule auto-

matically does the contraction .

∆, φ ∧ ψ, φ, φ, ψ `G3i τ ∧ l
∆, φ ∧ ψ, φ `G3i τ

We now look at weakening. For the base case we have the Ax rule and >. If
we have a proof-tree

Ax
∆ `G3i χ

then we also have a proof-tree

Ax
∆, φ `G3i χ
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Similarly for >, if we have a proof-tree

>
∆ `G3i >

then we also have
>

∆, φ `G3i >
The induction steps are straightforward, we provide ⊃ r and ⊃ l as examples.

We begin with ⊃ r and thus have the proof-tree

∆, φ `G3i ψ ⊃ r
∆ `G3i φ ⊃ ψ

We apply the induction hypothesis to the premiss to obtain ∆, χ, φ `G3i ψ. We
can now use ⊃ r to obtain

∆, χ, φ `G3i ψ ⊃ r
∆, χ `G3i φ ⊃ ψ

which finishes the case.
We now prove ⊃ l. We have the proof-tree

∆, φ ⊃ ψ `G3i φ ∆, φ ⊃ ψ, ψ `G3i χ ⊃ l
∆, φ ⊃ ψ `G3i χ

We apply the induction hypothesis to the premiss to obtain ∆, φ ⊃ ψ, τ `G3i φ
and ∆, φ ⊃ ψ, ψ, τ `G3i χ. Applying ⊃ l gives the following proof-tree

∆, φ ⊃ ψ, τ `G3i φ ∆, φ ⊃ ψ, ψ, τ `G3i χ ⊃ l
∆, φ ⊃ ψ, τ `G3i χ

which completes this case and we are finished. �

We now extend the rules of G3i to rules for valid proof expressions. We
label each hypothesis in ∆ with a distinct proof variable yi, introduce a set X
of syntactic variables found in each formula in the judgement and label each
succedent with a proof-object δ.

v-HY P
(X) ∆, y :proof(φ) `G3i y :proof(φ)

(X) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3i δ :proof(χ)
v-AND-L

(X) ∆, y :proof(φ ∧ ψ) `G3i AND-L((y1, y2) :δ, y) :proof(χ)
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(X) ∆ `G3i δ1 :proof(φ) (X) ∆ `G3i δ2 :proof(ψ)
v-AND-R

(X) ∆ `G3i AND-R(δ1, δ2) :proof(φ ∧ ψ)

(X) ∆1 `G3i δ1 :proof(χ) ∆2 `G3i δ2 :proof(χ)
v-OR-L

(X) ∆, y :proof(φ ∨ ψ) `G3i OR-L(y1 :δ1, y2 :δ2, y) :proof(χ)

where ∆1 = ∆, y :proof(φ∨ψ), y1 :proof(φ) and ∆2 = ∆, y :proof(φ), y2 :proof(∆2).

(X) ∆ `G3i δi :proof(φi)
v-OR-Ri

(X) ∆ `G3i OR-Ri(δi) :proof(φi)

(X) ∆, y :proof(φ ⊃ ψ) `G3i δ1 :proof(φ) (X) ∆1 `G3i δ2 :proof(χ)
v-IMP -L

(X) ∆, y :proof(φ ⊃ ψ) `G3i IMP -L(δ1, y2 :δ2, y) :proof(χ)

where ∆1 = ∆, y :proof(φ ⊃ ψ), y2 :proof(ψ).

(X) ∆, y :proof(φ) `G3i δ :proof(ψ)
v-IMP -R

(X) ∆ `G3i IMP -R(y :δ) :proof(φ ⊃ ψ)

v-TOP
(X) ∆ `G3i TOP :proof(>)

(X) ∆, y :proof(∀xφ), y1 :proof(φ) `G3i δ :proof(χ)
v-FORALL-L

(X) ∆, y :proof(∀xφ) `G3i FORALL-L(y1 :δ, y) :proof(χ)

(X, x) ∆ `G3i δ :proof(φ)
v-FORALL-R

(X) ∆ `G3i FORALL-R(δ) :proof(∀xφ)

(X) ∆, y :proof(∃xφ), y1 :proof(φ) `G3i δ :proof(χ)
v-EXISTS-L

(X) ∆, y :proof(∃xφ) `G3i EXISTS-L(y1 :δ, y) :proof(χ)

(X, x) ∆ `G3i δ :proof(φ)
v-EXISTS-R

(X) ∆ `G3i EXISTS-R(δ) :proof(∃xφ)

We can use the judgements-as-types correspondence to allow us to define a
λΠ-signature ΣG3i. This can be found in Appendix A

Lemma 12.3 (Representing G3i in LF)
The judged proof system G3i can be adequately represented in LF.

Proof (Sketch) Proved by the usual methods (cf. (Harper et al. 1993)) �
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12.2 Classical Logic

Turning our attention to classical logic, we recall that the sequents have to be
multi-conclusioned. This allows the law of excluded middle, for example, to hold.

Ax
φ ` φ

¬ R
` ¬φ, φ

∨ R
(¬φ) ∨ φ

Again, we follow Pfenning and use the classical version of G3. The principal
formula of each rule is now present in the premisses of each right rule as well as
the left rules. This introduces a lot of symmetry between rules. We do not use
the symmetric rule for ∨ r because when we use it for proof-search in § 13, we
need to have a single formula ‘discharged’ on the right.

Definition 12.4 (G3c)
The judged proof system G3c is given by the alphabet A = (S, V, E,C, J) where

• S = {ι, o},

• V = {ι},

• E = {>,∧,∨,⊃,¬,∀,∃},

• C = {∧,∨,⊃,¬, ∀, ∃},

• J = {ant, suc}.

Each connective is assigned an arity and a level. > has arity o and level 0, ¬ has
arity o → o and level 1, ∧, ∨, ⊃ have arity (o, o) → o and level 1 and ∀ and ∃
have arity (ι→ o)→ o and level 2. The judgements both have arity 0. Together
with the rules:

Ax
∆, ant(φ) `G3c suc(φ)Θ

>
∆ `G3c suc(>),Θ

∆, ant(φ ∧ ψ), ant(φ), ant(ψ) `G3c Θ
∧ l

∆, ant(φ ∧ ψ) `G3c Θ

∆ `G3c suc(φ), suc(φ ∧ ψ),Θ ∆ `G3c suc(ψ), suc(φ ∧ ψ),Θ
∧ r

∆ `G3c suc(φ ∧ ψ),Θ

∆, ant(φ ∨ ψ), ant(φ) `G3c Θ ∆, ant(φ ∨ ψ), ant(ψ) `G3c Θ
∨ l

∆, ant(φ ∨ ψ) `G3c Θ
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∆ `G3c suc(φi), suc(φ1 ∨ φ2),Θ
∨ ri

∆ `G3c suc(φ1 ∨ φ2),Θ

∆, ant(φ ⊃ ψ) `G3c suc(φ),Θ ∆, ant(φ ⊃ ψ), ant(ψ) `G3c Θ
⊃ l

∆, ant(φ ⊃ ψ) `G3c Θ

∆, ant(φ) `G3c suc(ψ), suc(φ ⊃ ψ),Θ
⊃ r

∆ `G3c suc(φ ⊃ ψ),Θ

∆, ant(¬φ) `G3c suc(φ),Θ
¬ l

∆, ant(¬φ) `G3c Θ

∆, ant(φ) `G3c suc(¬φ),Θ
¬ r

∆ `G3c suc(¬φ),Θ

∆, ant(∀xφ), ant(φ) `G3c Θ
∀ l

∆, ant(∀xφ) `G3c Θ

∆ `G3c suc(φ), suc(∀xφ),Θ
∀ r

∆ `G3c suc(∀xφ),Θ

∆, ant(∃xφ), ant(φ) `G3c Θ
∃ l

∆, ant(∃xφ) `G3c Θ

∆ `G3c suc(φ), suc(∃xφ),Θ
∃ r

∆ `G3c suc(∃xφ),Θ

where the antecedent and succedents are multisets. �

We show that G3c is equivalent to LK, the ‘usual’ sequent presentation of
intuitionistic logic. The sequent system LK can be found in Appendix C. We
have the following corollary to Lemma 12.2.

Corollary 12.5 (Kleene (1952))
Let ∆ and Θ be multisets, ∆′ and Θ′ be sets and ant(φ) and suc(ψ) be formulæ
in G3c. We have that

∆, ant(φ) `G3c suc(ψ),Θ if and only if ∆′, ant(φ) `LK suc(ψ),Θ′

where ∆ and ∆′ contain the same formulæ and Θ and Θ′ contain the same for-
mulæ.

Proof We begin by showing the left to right direction. We only show the
right rules since the left rules follow from Lemma 12.2. We write the rules of
G3c on the left and the corresponding derivation in LK on the right. We omit
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judgements to keep the width of the derivation small.

∆ `G3c φ, φ ∧ ψ,Θ ∆ `G3c ψ, φ ∧ ψ,Θ

∆ `G3c φ ∧ ψ,Θ

∆ `LK φ, φ ∧ ψ,Θ ∆ `LK ψ, φ ∧ ψ,Θ

∆ `LK φ ∧ ψ, φ ∧ ψ,Θ

∆ `LK φ ∧ ψ

∆ `G3c φi, φ1 ∨ φ2,Θ
∨ ri

∆ `G3c φ1 ∨ φ2,Θ

∆ `LK φ1, φ1 ∨ φ2,Θ
∨ ri

∆ `LK φ1 ∨ φ2, φ1 ∨ φ2,Θ
contraction

∆ `LK φ1 ∨ φ2,Θ

∆, φ `G3c ψ, φ ⊃ ψ,Θ
⊃ r

∆ `G3c φ ⊃ ψ,Θ

∆, φ `LK ψ, φ ⊃ ψ,Θ
⊃ r

∆ `LK φ ⊃ ψ, φ ⊃ ψ,Θ
contraction

∆ `LK φ ⊃ ψ

∆, φ `G3c ¬φ,Θ ¬ r
∆ `G3c ¬φ,Θ

∆, φ `LK ¬φ,Θ
¬ r

∆ `LK ¬φ,¬φ,Θ
contraction

∆ `LK ¬φ,Θ

∆ `G3c φ,∀xφ,Θ ∀ r
∆ `G3c ∀xφ,Θ

∆ `LK φ, ∀xφ,Θ
∀ r

∆ `LK ∀xφ, ∀xφ,Θ
contraction

∆ `LK ∀xφ,Θ

∆ `G3c φ,∃xφ,Θ ∃ r
∆ `G3c ∃xφ,Θ

∆ `LK φ, ∃xφ,Θ
∃ r

∆ `LK ∃xφ, ∃xφ,Θ
contraction

∆ `LK ∃xφ,Θ
We have explicitly stated the use of contraction to highlight the way that the
derivation in LK represents the rules of G3c. We now turn to the right to left
direction. We work with G3c

′ which is G3c plus contraction and weakening. We
only deal with the right rules. We place the rules of LK on the left and the
corresponding derivation in G3c

′ on the right.

∆ `LK φ,Θ ∆ `LK ψ,Θ

∆ `LK φ ∧ ψ,Θ

∆ `G3c′ φ,Θ

∆ `G3c′ φ, φ ∧ ψ,Θ

∆ `G3c′ ψ,Θ

∆ `G3c′ ψ, φ ∧ ψ,Θ

∆ `G3c′ φ ∧ ψ

∆ `LK φi,Θ
∨ ri

∆ `LK φ1 ∨ φ2

∆ `G3c′ φi,Θ
weakening

∆ `G3c φi, φ1 ∨ φ2
∨ ri

∆ `G3c′ φ1 ∨ φ2,Θ
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∆, φ `LK ψ,Θ
⊃ r

∆ `LK φ ⊃ ψ

∆, φ `G3c′ ψ,Θ
weakening

∆, φ `G3c′ ψ, φ ⊃ ψ,Θ
⊃ r

∆ `G3c′ φ ⊃ ψ,Θ

∆ `LK φ,Θ
∀ r

∆ `LK ∀xφ,Θ

∆ `G3c′ φ,Θ
weakening

∆ `G3c′ φ,∀xφ,Θ ∀ r
∆ `G3c′ ∀xφ,Θ

∆ `LK φ,Θ
∃ r

∆ `LK ∃xφ,Θ

∆ `G3c′ φ,Θ
weakening

∆ `G3c′ φ,∃xφ,Θ ∃r
∆ `G3c′ ∃xφ,Θ

It remains to show that contraction and weakening are admissible in G3c. This is
done by induction over the inference rules of G3c. We only show the cases which
involve right rules since the cases for the left rules follow from Lemma 12.2. We
begin with contraction and just show the induction step when the last rule used
is ⊃ r, the other rules being similar. There are three cases here, the first is when
the formulæ being contracted are distinct from the formulæ used in the rule. The
second is when the principal formula is one of the contracted formulæ. The third
is when one of the contracted formulæ is one of the formulæ ‘used up’ by the
rule. We begin with the first case. We have the proof-tree

∆, χ, χ `G3c τ, τ, φ, φ ∧ ψ,Θ ∆, χ, χ `G3c τ, τ, ψ, φ ∧ ψ,Θ ∧ r
∆, χ, χ `G3c τ, τ, φ ∧ ψ,Θ

and we apply the induction hypothesis to the premiss to obtain ∆, χ `G3c τ, φ, φ∧
ψ,Θ and ∆, χ `G3c τ, ψ, φ ∧ ψ,Θ. We now apply ∧ r to obtain

∆, χ `G3c τ, φ, φ ∧ ψ,Θ ∆, χ `G3c τ, ψ, φ ∧ ψ,Θ ∧ r
∆, χ `G3c τ, φ ∧ ψ,Θ

which completes this case.
We turn to the second case and assume that we have the proof-tree

∆, χ, χ `G3c φ ∧ ψ, φ, φ ∧ ψ,Θ ∆, χ, χ `G3c φ ∧ ψ, ψ, φ ∧ ψ,Θ ∧ r
∆, χ, χ `G3c φ ∧ ψ, φ ∧ ψ,Θ

and we apply the induction hypothesis to the premiss to obtain ∆, χ `G3c φ, φ ∧
ψ,Θ and ∆, χ `G3c ψ, φ ∧ ψ,Θ. We now apply ∧ r to obtain

∆, χ `G3c φ, φ ∧ ψ,Θ ∆, χ `G3c ψ, φ ∧ ψ,Θ ∧ r
∆, χ `G3c φ ∧ ψ,Θ
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and we are done. Finally, we assume that the contracted formulæ is ‘used up’ by
the rule. Here the rule itself automatically does the contraction in the succedent;
the contraction in the antecedent still needs to be dealt with by induction. This
completes the proof that contraction is admissible. We now turn to weakening,
which is similar. We just show the case for ⊃ r. We have the rule

∆, φ `G3i ψ ⊃ r
∆ `G3i φ ⊃ ψ

and we apply the induction hypothesis to obtain ∆, χ, φ `G3i τ, ψ. We apply ⊃ r
to obtain

∆, χ, φ `G3i τ, ψ ⊃ r
∆, χ `G3i τ, φ ⊃ ψ

which finishes the case. �

Having shown that G3c is a suitable presentation of classical logic, we turn to
the rules for valid proof expressions. It is important to stress here that we have
to switch to realizations to be able to do this. The proof-objects for intuitionistic
logic and other single-conclusioned systems are directly associated to the formula
being proven. This does not hold here since we have multiple formulæ in the
succedent. We thus follow Pfenning and give the following collection of rules for
valid proof expressions of G3c. We add a set X of syntactic variables used in each
formulæ used in the realizer and label each formula with a proof variable yi.

v-Ax

`G3c X∆, y :ant(φ)
HY P (y,z)−−−−−−→ z :suc(φ),Θ

v-TOP

`G3c ∆
TOP (z)−−−−→ z :suc(>),Θ

`G3c X∆, y :ant(φ ∧ ψ), y1 :ant(φ), y2 :ant(ψ)
δ−→ Θ

v-AND-L

`G3c X∆, y :ant(φ ∧ ψ)
AND-L((y1,y2) : δ,y)−−−−−−−−−−−−→ Θ

`G3c X∆
δ1−→ Θ1 `G3c X∆

δ2−→ Θ2
v-AND-R

`G3c X∆
AND-R(z1 : δ1,z2 : δ2,z)−−−−−−−−−−−−−→ Θ

where Θ1 = z1 :suc(φ), z :suc(φ ∧ ψ),Θ and Θ2 = z2 :suc(ψ), z :suc(φ ∧ ψ),Θ

`G3c X∆1
δ1−→ Θ `G3c X∆2

δ2−→ Θ
v-OR-L

`G3c X∆, y :ant(φ ∨ ψ)
OR-L(y1 : δ1,y2 : δ2,y)−−−−−−−−−−−−→ Θ
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where ∆1 = ∆, y :ant(φ ∨ ψ), y1 :ant(φ) and ∆2 = ∆, y :ant(φ ∨ ψ), y2 :ant(ψ)

`G3c X∆
δ−→ z1 :suc(φ), z :suc(φ ∨ ψ)

v-OR-Ri

`G3c X∆
ORi-L(z1 : δ,z)−−−−−−−−→ z :suc(φ ∨ ψ)

`G3c X∆1
δ1−→ z1 :suc(φ),Θ `G3c X∆2

δ2−→ Θ
v-IMP -L

`G3c X∆, y :ant(φ ⊃ ψ)
IMP -L(z1 : δ1,z2 : δ2,y)−−−−−−−−−−−−−→ Θ

where ∆1 = ∆, y :ant(φ ⊃ ψ) and ∆2 = ∆, y :ant(φ ⊃ ψ), y1 :ant(ψ)

`G3c X∆, y1 :ant(φ)
δ−→ z1 :suc(ψ), z :suc(φ ⊃ ψ)

v-IMP -R

`G3c X∆
IMP -R((y1,y2) : δ,z)−−−−−−−−−−−→ z :proof(φ ⊃ ψ)

`G3c X∆, y :ant(¬φ)
δ−→ z1 :suc(φ),Θ

v-NEG-L

`G3c X∆, y :ant(¬φ)
NEG-R(z1 : δ,y)−−−−−−−−−→ Θ

`G3c X∆, y1 :ant(φ)
δ−→ z :suc(¬φ),Θ

v-NEG-R

`G3c X∆
NEG-R(y1 : δ,z)−−−−−−−−−→ z :suc(¬φ),Θ

`G3c X∆, y :ant(∀x . φ), y1 :ant(φ)
δ−→ Θ

v-FORALL-L

`G3c X∆, y :ant(∀x . φ)
FORALL-L(y1 : δ,y)−−−−−−−−−−−→ Θ

`G3c X, x∆
δ−→ z1 :ant(φ), z :ant(∀x . φ),Θ

v-FORALL-R

`G3c X∆
FORALL-L(z1 : δ,z)−−−−−−−−−−−→ z :ant(∀x . φ),Θ

`G3c (X, x) ∆, y1 :ant(φ), y :ant(∃x . φ)
δ−→ Θ

v-EXISTS-L

`G3c X∆, y :ant(∃x . φ)
EXISTS-L(y1 : δ,y)−−−−−−−−−−−→ Θ

`G3c X∆
δ−→ z1 :suc(φ), z :suc(∃x . φ),Θ

v-EXISTS-R

`G3c X∆
EXISTS-R(z1 : δ,z)−−−−−−−−−−−→ z :suc(∃x . φ),Θ

We now have to represent these valid proof expressions in LF. We do so by taking
both the antecedent and succedents as contexts in λΠ and introducing a new type
# which is intended to be the type of every valid proof term (cf., Pfenning). One
can think of # as the empty type or contradiction if one were to carry out classical
resolution (Robinson 1965) in this setting. We thus encode a realization

`G3c (X) ∆
δ−→ Θ

209



as the assertion
ΓX ,Γ∆,ΓΘ `ΣG3c

Mδ :#

in LF. One might expect the context ΓΘ to contain the negation of all the formulæ
in Θ; however, we have not negated any formulæ. The negation is hidden by the
use of judgements. A careful examination of the inference rules shows that ¬ r
and ¬ l classify a relationship between the judgements: the formulæ judged by
ant are the negation of formulæ judged by suc and vice-versa. The λΠ-signature
for G3c can be found in AppendixC. To help illustrate how # is used in LF, we
take two classical proofs and give their representation in LF.

Example 12.6 (Tertium non Datur)
We have the following proof of the law of excluded middle in G3c:

Ax

`G3c X y1 :ant(φ)
HY P (y1,z1)−−−−−−−→ z1 :suc(φ), z2 :suc(¬φ), z3 :suc((¬φ) ∨ φ)

X 〈〉 NEG-R(y1 :HY P (y1,z1)z2)−−−−−−−−−−−−−−−−→ z2 :suc(¬φ), z1 :suc(φ), z3 :suc((¬φ) ∨ φ)

X 〈〉 OR-R((z2,z1) :NEG-R(y1 :HY P (y1,z1),z2),z3)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ z3 : suc((¬φ) ∨ φ))

where we have used a different, but equivalent, rule for v-OR-R, which is encoded
in LF as the following assertion:

ΓX , z3 :suc(¬φ ∨ φ) `ΣG3c
OR-R((z2, z1) :NEG-R(y1 :HY P (y1, z1), z2), z3)z3)

:suc(¬φ ∨ φ) :#

We now provide the derivation of this assertion. We write the derivation in stages
due to its size and we omit the instantiation of formulæ for clarity.

ΓX ,Γ2 `ΣG3c
HY P :ant(φ)→ suc(φ)→ # ΓX ,Γ1, y1 :ant(φ) `ΣG3c

y1 :ant(φ)

ΓX ,Γ2 `ΣG3c
HY P (y1) :suc(φ)→ #

where Γ2 = y1 : ant(φ), z1 : suc(φ), z2 : suc(¬φ), z3 : suc(¬φ ∨ φ) and Γ1 = z1 :
suc(φ), z2 :suc(¬φ), z3 :suc(¬φ ∨ φ).

ΓX ,Γ2 `ΣG3c
HY P (y1) :suc(φ)→ # ΓX ,Γ3, z1 :suc(φ) `ΣG3c

z1 :suc(φ)

ΓX ,Γ1, y1 :ant(φ) `ΣG3c
HY P (y1)z1 :#

ΓX ,Γ1 `ΣG3c
λy1 :ant(φ) . HY P (y1)z1 :ant(φ)→ #
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where Γ3 = y1 :ant(φ), z2 :suc(¬φ), z3 :suc(¬φ ∨ φ).

ΓX ,Γ1 `ΣG3c
NEG-R : (ant(φ)→ #)→ (suc(¬φ)→ #) ΓX ,Γ1 ` N :ant(φ)

ΓX ,Γ1 `ΣG3c
NEG-R(N) :suc(¬φ)→ #

where N = λy1 :ant(φ) . HY P (y1)z1.

ΓX ,Γ1 `ΣG3c
NEG-R :suc(¬φ)→ # ΓX ,Γ4, z2 :suc(¬φ) `ΣG3c

z4 :suc(¬φ)

ΓX ,Γ2 `ΣG3c
NEG-R(N)z2 :#

where Γ4 = z1 :suc(φ), z3 :suc(φ ∨ ¬φ).

ΓX ,Γ5, z1 :suc(φ) `ΣG3c
NEG-R(N)z2 :#

ΓX ,Γ5 `ΣG3c
λz1 :suc(φ) . NEG-R(N)z2 :suc(φ)→ #

where Γ5 = z3 :suc(¬φ ∨ φ), z2 :suc(¬φ).

ΓX , z3 :suc(¬φ ∨ φ), z2 :suc(¬φ) `ΣG3c
M :suc(φ)→ #

ΓX , z3 :suc(¬φ ∨ φ) `ΣG3c
λz2 :suc(φ) .M :suc(¬φ)→ suc(φ)→ #

where M = λz1 :suc(φ) . NEG-R(N)z2.

ΓX , z3 :suc(¬φ ∨ φ) ` OR-R ΓX , z3 :suc(¬φ ∨ φ) ` P :suc(¬φ)→ suc(φ)→ #

ΓX , z3 :suc(¬φ ∨ φ) `ΣG3c
OR-R(P ) :suc(¬φ ∨ φ)→ #

where P = λz2 :suc(φ) .M .

Γ′ `ΣG3c
OR-R(P ) :suc(¬φ ∨ φ)→ # Γ′ `ΣG3c

z3 :suc(¬φ ∨ φ)

ΓX , z3 :suc(¬φ ∨ φ) `ΣG3c
OR-R(P )z3 :#

where Γ′ = ΓX , z3 :suc(¬φ ∨ φ), which completes the derivation. �

For our second example we turn to a proof of DeMorgan’s law for quantifica-
tion, again this is an example of a classical proof.
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Example 12.7 (DeMorgan)
We have the following proof in G3c

Ax
¬(∀xφ), φ `G3c φ,¬φ,∀xφ,∃x(¬φ)

¬ r
¬(∀xφ) `G3c φ,¬φ,∀xφ,∃x(¬φ)

∃ r
¬(∀xφ) `G3c φ,∀xφ,∃x(¬φ)

∀ r
¬(∀xφ) `G3c ∀xφ,∃x(¬φ)

¬ l
¬(∀xφ) `G3c ∃x(¬φ)

which is represented in LF by the assertion

ΓX , y1 :ant(φ(¬(∀(λx : ι . φ))), z4 :suc(∃(λx : ι . (¬φ))) `ΣG3c

NEG-L(λz3 :suc(∀(λx : ι . φ)) . FORALL-R(λz1 :suc(φ) .

EXISTS-R(λz2 :suc(¬φ) . NEG-R(λz2 :ant(φ) . HY P (y2)z1)z2)z4)z3)y1) :#

We show the derivation of this assertion in stages due to its size.

ΓX ,Γ1 `ΣG3c
HY P ΓX ,Γ2, y2 :ant(φ) `ΣG3c

y2 :ant(φ)

ΓX ,Γ1 `ΣG3c
HY P (y2) :suc(φ)→ #

where Γ1 = y1 : ant(¬(∀(λx : ι . φ))), y2 : ant(φ), z1 : suc(φ), z2 : suc(¬φ), z3 :
suc(∀(λx : ι . φ)), z4 : suc(∃(λx : ι . (¬φ))) and Γ2 = y1 : ant(¬(∀(λx : ι . φ))), z1 :
suc(φ), z2 :suc(¬φ), z3 :suc(∀(λx : ι . φ)), z4 :suc(∃(λx : ι . (¬φ))).

ΓX ,Γ1 `ΣG3c
HY P (y2) :suc(φ)→ # ΓX ,Γ

′, z1 :suc(φ) `ΣG3c
z1 :suc(φ)

ΓX ,Γ1 `ΣG3c
HY P (y1)z1 :#

where Γ′ = y1 : ant(¬(∀(λx : ι . φ))), y2 : ant(φ), z2 : suc(¬φ), z3 : suc(∀(λx : ι . φ)), z4 :
suc(∃(λx : ι . (¬φ))).

ΓX ,Γ2, y2 :ant(φ) `ΣG3c
HY P (y1)z1 :#

ΓX ,Γ2 `ΣG3c
λy2 :ant(φ) . HY P (y1)z1 :ant(φ)→ #

ΓX ,Γ2 `ΣG3c
NEG ΓX ,Γ2 `ΣG3c

λy2 :ant(φ) . HY P (y1)z1 :ant(φ)→ #

ΓX ,Γ2 `ΣG3c
NEG-R(λy2 :ant(φ) . HY P (y1)z1) :suc(¬φ)→ #

ΓX ,Γ2 `ΣG3c
M :suc(¬φ)→ # ΓX ,Γ3, z2 :suc(¬φ) `ΣG3c

z2 :suc(¬φ)

ΓX ,Γ2 `ΣG3c
Mz2 :#

where Γ3 = y1 : ant(¬(∀(λx : ι . φ))), z1 : suc(φ), z3 : suc(∀(λx : ι . φ)), z4 : suc(∃(λx :
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ι . (¬φ))) and M = NEG-R(λy2 :ant(φ) . (HY P (y1)z1)).

ΓX ,Γ3, z2 :suc(¬φ) `ΣG3c
Mz2 :#

ΓX ,Γ3 `ΣG3c
λz2 :suc(¬φ) . (Mz2) :suc(¬φ)→ #

ΓX ,Γ3 `ΣG3c
EXISTS-R ΓX ,Γ3 `ΣG3c

λz2 :suc(¬φ) . (Mz2) :suc(¬φ)→ #

ΓX ,Γ3 `ΣG3c
EXISTS-R(λz2 :suc(¬φ) . (Mz2)) :suc(∃(λx : ι . φ))→ #

ΓX ,Γ3 `ΣG3c
EXISTS-R(λz2 :suc(¬φ) . (Mz2))ΓX ,Γ4, z4 :suc(∃(λx : ι . (¬φ)))

ΓX ,Γ3 `ΣG3c
EXISTS-R(λz2 :suc(¬φ) . (Mx2))z4 :#

ΓX ,Γ4, z1 :suc(φ) `ΣG3c
N :#

ΓX ,Γ4 `ΣG3c
λz :suc(φ) . N :suc(φ)→ #

where Γ4 = y1 :ant(¬(∀(λx : ι . φ))), z3 :suc(∀(λx : ι . φ)), z4 :suc(∃(λx : ι . (¬φ))).

ΓX ,Γ4 `ΣG3c
FORALL-R ΓX ,Γ4 `ΣG3c

λz2 :suc(φ) . N :suc(φ)→ #

ΓX ,Γ4 `ΣG3c
FORALL-R(λz2 :suc(φ) . N) :suc(∀(λx : ι . φ))→ #

ΓX ,Γ4 `ΣG3c
P :suc(∀(λx : ι . φ))→ # ΓX ,Γ4 `ΣG3c

z3 :suc(∀(λx : ι . φ))

ΓX ,Γ4 `ΣG3c
Pz3 :#

where P = FORALL-R(λz2 :suc(φ) . N).

ΓX ,Γ4 `ΣG3c
Pz3 :#

ΓX ,Γ5 `ΣG3c
λz3 :suc(∀(λx : ι . φ)) . P z3 :suc(∀(λx : ι . φ))→ #

where Γ5 = y1 :ant(¬(∀(λx : ι . φ))), z4 :suc(∃(λx : ι . (¬φ))).

ΓX ,Γ5 `ΣG3c
NEG-L ΓX ,Γ5 `ΣG3c

Q :suc(∀(λx : ι . φ))→ #

ΓX ,Γ5 `ΣG3c
NEG-LQ :ant(¬(∀(λx : ι . φ)))→ #

where Q = λz3 :suc(∀(λx : ι . φ)) . P z3.

ΓX ,Γ5 `ΣG3c
NEG-LQ ΓX ,Γ5 `ΣG3c

y1 :ant(¬(∀(λx : ι . φ)))

ΓX ,Γ5 `ΣG3c
NEG-LQy1 :#

�

The encoding of G3c in LF is adequate using the judgements-as-types repre-
sentation mechanism.

Lemma 12.8 (Representing G3c in LF)
The judged proof system G3c can be adequately represented in LF.

Proof (Sketch) Proved using the standard method (cf. (Harper et al. 1993)) �
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12.3 Encoding Higher-Order Intuitionistic

Logic in LF

We begin by defining a sequent presentation of higher-order logic. There are
many presentations of higher-order logic and we base ours on the one given by
Church (1940). We do not present the whole of Church’s type theory, we just
present the logical connectives and the calculus of λ-conversion. We require that
each sequent must have the principal formula in each premiss to make it the
higher-order extension of G3i. The system described below, as far as we know,
does not appear in the literature.

Definition 12.9 (Higher-Order Intuitionistic Logic)
The judged proof system G3HOIL is given by the alphabet A = (S, V, E,C, J)
where

S= {ι, o,⇒}
V = {ι, o,⇒}
E= {>,∧,∨,⊃,∀σ,∃σ,Λσ,τ , apσ,τ ,=σ}
C = {∧,∨,⊃,∀σ, ∃σ}
J = {proof}

and ι and o have arity one, ⇒ has arity 2, > has arity o, ∧, ∨ and ⊃ have arity
o⇒ o⇒ o, ∀σ and ∃σ have arity (σ ⇒ o)⇒ o, where σ is any syntactic category,
Λσ,τ has arity (σ → τ) → (σ ⇒ τ), apσ,τ has arity (σ ⇒ τ) → σ → τ where σ
and τ are arbitrary syntactic categories, =σ has arity σ ⇒ σ ⇒ o and proof has
arity o. Together with the following rules:

Ax
∆, proof(φ) `G3HOIL proof(φ)

>
∆ `G3HOIL proof(>)

∆ `G3HOIL proof(φ) ∆ `G3HOIL proof(ψ)
∧ R

∆ `G3HOIL proof(φ ∧ ψ)

∆, proof(φ ∧ ψ), proof(φ), proof(ψ) `G3HOIL proof(χ)
∧ L

∆, proof(φ ∧ ψ) `G3HOIL proof(χ)

∆ `G3HOIL proof(φ)
∨ R1

∆ `G3HOIL proof(φ ∨ ψ)

∆ `G3HOIL proof(ψ)
∨ R2

∆ `G3HOIL proof(φ ∨ ψ)
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∆′, proof(φ) `G3HOIL proof(χ) ∆′, proof(ψ) `G3HOIL proof(χ)
∨ L

∆′ `G3HOIL proof(χ)

where ∆′ = ∆, proof(φ ∨ ψ).

∆, proof(φ) `G3HOIL proof(ψ)
⊃ R

∆ `G3HOIL proof(φ ⊃ ψ)

∆′ `G3HOIL proof(φ) ∆′, proof(ψ) `G3HOIL proof(χ)
⊃ L

∆′, proof(φ ⊃ ψ) `G3HOIL proof(χ)

where ∆′ = ∆, proof(φ ⊃ ψ).

∆ `G3HOIL proof(φ)
∀ R

∆ `G3HOIL proof(∀σφ)

∆, proof(∀σφ), proof(φx) `G3HOIL proof(χ)
∀ L

∆, proof(∀σφ) `G3HOIL proof(χ)

∆ `G3HOIL proof(φ)
∃ R

∆ `G3HOIL proof(∃σφ)

∆, proof(∃σφ), proof(φ) `G3HOIL proof(χ)
∃ L

∆, proof(∃σφ) `G3HOIL proof(χ)

∆ `G3HOIL proof(φ) ∆ `G3HOIL proof(φ =o ψ)
EQ

∆ `G3HOIL proof(ψ)

∆ `G3HOIL proof(φ =τ ψ)
LAM

∆ `G3HOIL proof(Λσ,τx . φ =σ⇒τ Λσ,τx . ψ)

(Λσ,τx . φ)ψ =τ φ[ψ](β)

Λσ,τx . (φ) =σ⇒τ φ(η)

where each antecedent is a multiset. �

There are a few points worth noting about the above definition. The first is
that we have a syntactic category⇒ of arity 2. This syntactic category is intended
to be the → in Church’s type theory. We then get as syntactic categories all the
types of Church’s type theory. The syntactic categories of the form σ ⇒ τ ,
where σ and τ are syntactic categories, are called functional types and they type
functional expressions. Note that all the logical connectives have an arity of level
0. This is because they are given the syntactic category corresponding to their
type in Church’s type theory. Only Λσ,τ and apσ,τ have an arity higher than 0.
This is to allow them to form and ‘destroy’ functional types. We have used Λσ,τ
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rather than the λσ used by Church to distinguish it from the arity abstraction
and λ in λΠ. We use the Barendregt convention (Barendregt 1991): no variable
occurs both free and bound; and, distinct binders use distinct variable names.
This ensures that we do not explicitly have to deal with α-conversion.

As with the other logics, we now give valid proof rules. There is one impor-
tant difference here. The valid proofs of G3HOIL are defined with respect to a
proof context ((A),∆) rather than a proof context (X,∆). (A) is an assignment
governing the free variables of the proof. The valid proof rules are as follows:

v-HY P
(A),∆ `G3HOIL HY P (y) :proof(φ)

v-TOP
(A),∆ `G3HOIL TOP :proof(>)

(A),∆ `G3HOIL δ1 :proof(φ) (A),∆ `G3HOIL δ2 :proof(ψ)
v-AND-R

(A),∆ `G3HOIL AND-R(δ1, δ2) :proof(φ ∧ ψ)

(A),∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3HOIL δ1 :proof(χ)
v-AND-L

(A),∆, y :proof(φ ∧ ψ) `G3HOIL AND-L((y1, y2) :δ2, y) :proof(χ)

(A),∆ `G3HOIL δ1 :proof(φ)
v-OR-R1

(A),∆ `G3HOIL OR-R1(δ1) :proof(φ ∨ ψ)

(A),∆ `G3HOIL δ2 :proof(ψ)
v-OR-R2

(A),∆ `G3HOIL OR-R2(δ2) :proof(φ ∨ ψ)

A,∆′, y1 :proof(φ) `G3HOIL δ1 :proof(χ) A∆′, y2 :proof(ψ) `G3HOIL δ2 :proof(χ)

A∆′ `G3HOIL OR-L(y1 :δ1, y2 :δ2, y) :proof(χ)

where ∆′ = ∆, y :proof(φ ∨ ψ).

(A),∆, y1 :proof(φ) `G3HOIL δ1 :proof(ψ)
v-IMP -R

(A),∆ `G3HOIL IMP -R(y1 :δ1) :proof(φ ⊃ ψ)

A∆′ `G3HOIL δ1 :proof(φ) A∆′, y1 :proof(ψ) `G3HOIL δ2 :proof(χ)

A∆′ `G3HOIL IMP -L(δ1, y1 :δ2, y) :proof(χ)

where ∆′ = ∆, y :proof(φ ⊃ ψ).

(A, x :σ),∆ `G3HOIL δ :proof(φ)
v-FORALL-R

(A),∆ `G3HOIL FORALL-R(δ) :proof(∀σφ)

(A),∆, y :proof(∀σφ), y1 :proof(φ) `G3HOIL δproof(χ)
v-FORALL-L

(A),∆, y :proof(∀σφ) `G3HOIL FORALL-L(y1 :δ, y) :proof(χ)
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(A),∆ `G3HOIL δ :proof(φ)
v-EXISTS-R

(A),∆ `G3HOIL EXISTS-R(δ) :proof(∃σφ)

(A, x :σ),∆, y :proof(∃σφ), y1 :proof(φ) `G3HOIL δ :proof(χ)
v-EXISTS-L

(A),∆, y :proof(∃σφ) `G3HOIL EXISTS-L(y1 :δ, y) :proof(χ)

(A),∆ `G3HOIL δ1 :proof(φ) (A),∆ `G3HOIL δ2 :proof(φ =o ψ)
v-EQ

(A),∆ `G3HOIL EQ(δ1, δ2) :proof(ψ)

(A, x :σ),∆ `G3HOIL δ1 :proof(φ =τ ψ)
v-LAM

(A),∆ `G3HOIL LAM(δ1)proof(Λσxφ =σ⇒τ Λσxψ)

Since this presentation is non-standard we prove that it is equivalent to the
sequent presentation of higher-order logic in (Miller et al. 1991), which we shall
call HOIL. A slight adaptation of Miller’s system can be found in Appendix C.

Lemma 12.10
Let Γ `G3HOIL proof(φ) be a provable assertion in G3HOIL and Γ `HOIL proof(φ)
be a provable assertion in HOIL. Then Γ `G3HOIL proof(φ) if and only if
Γ `HOIL proof(φ).

Proof We begin by showing the left to right direction. We show that each
inference rule in G3HOIL can be translated to a proof-tree in HOIL with the
same premisses and conclusion. The right rules are the same in both systems so
we only consider the left rules. We also ignore the rules for > and Ax for the
same reason. We list the rules of G3HOIL on the left and the corresponding
proof-tree in HOIL on the right. We drop the judgements and subscripts for size
reasons.

∆, φ ∧ ψ, φ, ψ `G3 χ ∧ L
∆, φ ∧ ψ `G3 χ

∆, φ ∧ ψ, φ, ψ ` χ
∧ L

φ ∧ ψ, φ ∧ ψ ` χ
c

φ ∧ ψ ` χ

∆, φ ∨ ψ, φ `G3 χ ∆, φ ∨ ψ, ψ `G3 χ

∆, φ ∨ ψ `G3 χ

∆, φ ∨ ψ, φ ` χ ∆, φ ∨ ψ, ψ ` χ
∨

∆, φ ∨ ψ, φ ∨ ψ ` χ
c

∆, φ ∨ ψ ` χ

∆, φ ⊃ ψ `G3 φ ∆, φ ⊃ ψ, ψ `G3 χ

∆, φ ⊃ ψ `G3 χ

∆, φ ⊃ ψ ` φ ∆, φ ⊃ ψ, ψ ` χ
⊃

∆, φ ⊃ ψ, φ ⊃ ψ ` χ
c

∆, φ ⊃ ψ ` χ

∆,∀σφ, φ `G3 χ ∀ L
∆,∀σφ `G3 χ

∆,∀σφ, φ ` χ
∀ L

∆,∀σφ,∀σφ ` χ
c

∆,∀σφ ` χ
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∆,∃σφ, φ `G3 χ ∃ L
∆,∃σφ `G3 χ

∆, ∃σφ, φ `G3 χ ∃ L
∆,∃σφ, ∃σφ `G3 χ

c
∆,∃σφ `G3 χ

We have explicitly stated the use of contraction above. This is to make it clear
that HOIL absorbs the additional formula in the antecedent.

We just have to show that our theory of λ-conversion corresponds to Miller’s
λ rule. The equality relation defined in our theory of λ-conversion equates terms
that can be obtained by α, β and η-reduction. Replacing a term in a sequent by
an equal term can be achieved in HOIL by using the λ rule where arbitrary terms
in the succedent and antecedent are replaced by terms which are αβη-convertible.
Thus the λ rule can be used to mimic the equality used in G3HOIL.

We now have to show the right to left direction. We show that each rule in
HOIL is equivalent to a proof-tree in G3HOIL

′, with the same premisss and
conclusion. G3HOIL

′ is G3HOIL plus weakening and contraction. The right
rules are the same and so we concentrate on the left rules. We also ignore the
rules for > and Ax for the same reason We list the rules of HOIL on the left
and the corresponding proof-tree in G3HOIL

′ on the right.

∆, φ, ψ ` χ
∧ L

∆, φ ∧ ψ ` χ

∆, φ, ψ ` χ
w

∆, φ ∧ ψ, φ, ψ ` χ
∧ L

∆, φ ∧ ψ ` χ

∆, φ ` χ ∆, ψ ` χ
∨ L

∆, φ ∨ ψ ` χ

∆, φ ` χ
w

∆, φ ∨ ψ, φ ` χ

∆, ψ ` χ
w

∆, φ ∨ ψ, ψ ` χ
∨ L

∆, φ ∨ ψ ` χ

∆ ` φ ∆, ψ ` χ
⊃ L

∆, φ ⊃ ψ ` χ

∆ `G′3 φ w
∆, φ ⊃ ψ `G′3 φ

∆, ψ `G′3 χ w
∆, φ ⊃ ψ, ψ `G′3 χ ⊃ L

∆, φ ⊃ ψ `G′3 χ

∆, φ ` χ
∀ L

∆,∀xφ ` χ

∆, φ `G′3 χ w
∆,∀xφ, φ `G′3 χ ∀ L
∆,∀xφ `G′3 χ

∆, φ ` χ
∃ L

∆,∃xφ ` χ

∆, φ `G′3 χ w
∆,∃xφ, φ `G′3 χ ∃ L
∆,∃xφ `G′3 χ

∆ ` φ
weakening

∆, ψ ` φ

∆ `G′3 φ weakening
∆, ψ `G′3 φ
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∆, φ, φ ` ψ
contraction

∆, φ ` ψ

∆, φ, φ `G′3 ψ contraction
∆, φ `G′3 ψ

We have explicitly shown the cases for weakening and contraction even though
contraction is guaranteed in HOIL since it takes the antecedent to be a set.

The λ rule is captured by the equality relation of G3HOIL
′.

To complete the proof, we need to show that weakening and contraction are
admissible in G3HOIL. These are proven by induction over the depth of the
proof-tree. We begin by proving contraction.

We start with the base case, i.e. we have a proof-tree of depth 1:

∆, φ, φ `G3HOIL χ

where either χ is atomic or χ is >. If χ is > then we can use the rule >,

>
∆, φ `G3HOIL >

and we are done. If χ is atomic then either χ ∈ Γ or χ = φ. If χ = φ then we
also have the axiom

Ax
∆, φ `G3HOIL φ

and we are done. If χ ∈ ∆ then we have the axiom

Ax
∆, φ `G3HOIL χ

since χ is still in ∆ and we complete the base case.
We prove ∧ R and ∧ L to illustrate how the induction step works. The other

cases are similar.
We begin with ∧ R. We have the rule

∆, χ, χ `G3HOIL φ ∆, χ, χ `G3HOIL ψ ∧ R
∆, χ, χ `G3HOIL φ ∧ ψ

and we can apply the induction hypothesis to the premisses. We obtain ∆, χ
`G3HOIL φ and ∆, χ `G3HOIL ψ. We now apply ∧ R to obtain

∆, χ `G3HOIL φ ∆, χ `G3HOIL ψ ∧ R
∆, χ `G3HOIL φ ∧ ψ

which completes this case.
We now look at ∧ L. There are three cases here, the first is when the formulæ

being contracted are distinct from the principal formula. The second when the
principal formula is one of the contracted formulæ and the third is when one of
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the contracted formulæ is one of the formulæ ‘used up’ by the rule. We begin
with the first case. We have the rule

∆, χ, χ, φ ∧ ψ, φ, ψ `G3HOIL τ ∧ L
∆, χ, χ, φ ∧ ψ `G3HOIL τ

We now apply the induction hypothesis to the premiss to obtain ∆, χ, φ∧ψ, φ, ψ
`G3HOIL τ . We apply ∧ L to obtain

∆, χ, φ ∧ ψ, φ, ψ `G3HOIL τ ∧ L
∆, χφ ∧ ψ `G3HOIL τ

completing the case.
We now assume that we have the rule

∆, φ ∧ ψ, φ ∧ ψ, φ, ψ `G3HOIL τ ∧ L
∆, φ ∧ ψ, φ ∧ ψ `G3HOIL τ

We apply the induction hypothesis to the premiss to obtain ∆, φ∧ψ, φ, ψ `G3HOIL

τ and we can now apply ∧ L to obtain

∆, φ ∧ ψ, φ, ψ `G3HOIL τ ∧ L
∆, φ ∧ ψ `G3HOIL τ

which completes this case.
When the contracted formula is the formula ‘used up’ by the rule, the rule

automatically does the contraction.

∆, φ ∧ ψ, φ, φψ `G3HOIL τ ∧ L
∆, φ ∧ ψ, φ `G3HOIL τ

We now look at weakening. For the base case we have the the Ax rule and
>. If we have a proof-tree

Ax
∆ `G3HOIL χ

then we also have a proof-tree

Ax
∆, φ `G3HOIL χ

Similarly for >, if we have a proof-tree

>
∆,`G3HOIL >

220



then we also have
>

∆, φ `G3HOIL >
The induction steps are straightforward, we illustrate this with ⊃ R and

⊃ L. We begin with ⊃ R. We have the rule

∆, φ `G3HOIL ψ ⊃ R
∆ `G3HOIL φ ⊃ ψ

We apply the induction hypothesis to the premiss to obtain ∆, χ, φ `G3HOIL ψ.
We can now use ⊃ R to obtain

∆, χ, φ `G3HOIL ψ ⊃ R
∆, χ `G3HOIL φ ⊃ ψ

which finishes the case.
We now prove ⊃ L. We have the rule

∆, φ ⊃ ψ `G3HOIL φ ∆, φ ⊃ ψ, ψ `G3HOIL χ ⊃ L
∆, φ ⊃ ψ `G3HOIL χ

We apply the induction hypothesis to the premiss to obtain ∆, φ ⊃ ψ, τ `G3HOIL

φ and ∆, φ ⊃ ψ, ψ, τ `G3HOIL χ. Applying ⊃ L gives the following proof-tree

∆, φ ⊃ ψ, τ `G3HOIL φ ∆, φ ⊃ ψ, ψ, τ `G3HOIL χ ⊃ L
∆, φ ⊃ ψ, τ `G3HOIL χ

which completes this case.
Finally, since antecedents in G3HOIL are multisets, we can permute formulæ

in G3HOIL whenever they are permuted in HOIL. �

We now show how to encode G3HOIL in LF. It is encoded using the same
method used to encode G3i. The signature ΣG3HOIL can be found in Appendix A.
We have followed Harper et al. (1993) by using the ‘externalization’ of the equality
constant as ≈. This is only done for notationally expediency.

Lemma 12.11
G3HOIL can be adequately represented in LF.

Proof Similar to the proof in (Harper et al. 1993). �

We can also encode higher-order classical logic. We just repeat the above
analysis using the sequent rules for G3c instead of those for G3i and encode as
per G3c.
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Chapter 13

Representing Abstract Logic
Programming Languages in LF

Having shown how to represent sequent systems in a logical framework, we turn to
uniform proofs. Due to time constraints, this chapter is an extended example. We
take a definition of an abstract logic programming language in terms of uniform
proof uniform proof and show that it is possible to classify the LF proof-terms
which represent them. In this chapter we work with a system NR introduced in
(Pym 1990), rather than a more general system for simplicity. NR is the calculus
N defined in § 2.1 with the rules (2.16) and (2.22) replaced by the resolution rule

Γ `Σ M1 :A1 . . . . .Γ `Σ Mm :Am Γ `Σ N1 :D1 . . . . .Γ `Σ Nn :Dn
Res

Γ `Σ M1 . . .MmN1 . . . Nn :E

where

@:Πx1 :E1 . . . . .ΠEm :B1 → (B2 . . .→ (Bn → C) . . .) ∈ Σ ∪ Γ,

Ai[M1/x1, . . . ,Mi−1/xi−1] =βη Ei for 1 ≤ i ≤ m,

Bi[M1/x1, . . . ,Mm/xm] =βη Di for 1 ≤ i ≤ n,

and C[M1/x1, . . . ,Mm/xm] =βη E.

We also require that Γ, x :E `Σ x :E, where x /∈ Dom(Γ) be a premise of the
resolution rule, with this premise omitted for clarity of presentation.

This rule is syntax-directed and essentially deals with an application of a
term @ in clausal form. The rule is syntax-directed in two senses; (i) the left
rule is driven by a choice of clausal type, the principal formula of the rule, form
the context (corresponding, in logic programming terms, to the choice of program
clause, for which it is desirable that the rule builds in a contraction of the principal
formula, thereby permitting the re-use of the clause); and, (ii) the rightmost
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(atomic) type matches the succedent of the sequent. The following theorem
shows the relationship between NR and N.

Theorem 13.1 (Soundness and Completeness (Pym 1995))
If NR proves Γ `Σ M :A then N proves Γ `Σ M :A. Let M be in β-long normal
form. If N proves Γ `Σ M :A then NR proves Γ `Σ M :A. �

This chapter forms the first step on the road to a general theory of computa-
tion based on logical frameworks. The results in this chapter are all original.

It is advantageous to be able to classify abstractly logics or fragments of log-
ics which can be used as a suitable basis for logic programming languages. One
example of such an abstract characterization is given in Miller et al. (1991). Here
the abstract characterization is based on a notion of uniform provability. Miller
et al.’s definition of a logic programming language says that any logic or frag-
ment of a logic which is closed under uniform provability is an abstract logic
programming language. Uniform provability characterizes a (well-motivated) set
of desiderata that Miller et al. claim should be satisfied by any logic program-
ming language. This set of desiderata essentially says that a logic programming
language should implement the following search instructions:

• SUCCESS – search has been successful, finish;

• AND – search two separate paths for success;

• OR – search two separate paths but only one success required ;

• INSTANCE – search all possible paths to find a single sucess;

• AUGMENT – add a new clause and continue search; and,

• GENERIC – introduce a new parameter and attempt to find success for new
goal.

The logical connectives >, ∧, ∨, ∃σ, ⊃ and ∀σ are then associated with each of
these search instructions respectively. > is intended to signify a successfully com-
pleted search; ∧ and ∨ provide the specification of non-deterministic AND and OR
nodes in the interpreter’s search space; ∃σ specifies an infinite non-deterministic
OR branch; where the disjuncts are parameterized by the set of all terms; ⊃ tells
the interpreter to augment its program; and, ∀σ instructs the interpreter to in-
troduce a new parameter and to try to prove the resulting generic instance of the
goal. The reason this set of desiderata is a set of search instructions is because
computation in logic programming involves goal-directed search, cf., § 10. We
now define the notion of a uniform proof.

Definition 13.2 (Uniform Proof (Miller et al. 1991))
Let `I be the consequence relation of LJ . A uniform proof in LJ is a proof
Γ `I G which satisfies the following conditions:
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• if G is > then that assertion is an axiom;

• if G is φ∧ψ then that assertion is inferred by ∧ r from Γ `I φ and Γ `I ψ;

• if G is φ ∨ ψ then that assertion is inferred by ∨ r from Γ `I φ or Γ `I ψ;

• if G is ∃xφ then that assertion is inferred by ∃ r from Γ `I φ[t/x];

• if G is φ ⊃ ψ then that assertion is inferred by ⊃ r from Γ, φ `I ψ;

• if G is ∀xφ then that assertion is inferred by φ[c/x], where c is a parameter
that does not occur in the given assertion. �

A uniform proof reflects the desiderata of Miller et al. We can think of a uniform
proof as characterized by always preferring right rules over left rules. Uniform
proofs are intuitionistic. We define the consequence relation `O, which charac-
terizes uniform provability, as follows:

Definition 13.3 (Uniform Provability (Miller et al. 1991))
Let P be a set of well-formed formulæ. We say that P `O G if and only if there
is a uniform proof of G from P . �

Miller et al.’s definition is subtly different from ours. They take uniform proof
to be an operational condition and thus define `O semantically. We have been
more concrete and defined uniform proof in terms of a sequent proof system.

The intended meaning of P `O G is that the interpreter succeeds on the
goal G given the program P . We can now define an abstract logic programming
language to be any logic or fragment of a logic closed under `O.

Definition 13.4 (Abstract Logic Programming Language (Miller et al. 1991))
Let G and D be well-formed sets of formulæ. An abstract logic programming
language is a triple 〈D,G,`〉 such that for all finite subsets P of D and all
formulæ G of G, P ` G if and only if P `O G. �

All the sequent systems we defined in § 12 all have fragments that are ab-
stract logic programming languages. The proofs that these fragments are indeed
abstract logic programming languages can be found in (Miller et al. 1991).

Example 13.5 (The Logic Programming Fragment of G3i)
Let A be an atomic formula of G3i. Let G3 and D3 be the sets of all first-order
G- and D-formulæ defined by the grammars:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀xG | ∃xG | D ⊃ G

D := A | G ⊃ A | ∀xD | D1 ∧D2

The formulæ in D3 are called (first-order) hereditary Harrop formulæ. The triple
〈D3,G3,`G3i〉, which we call fohh, is an abstract logic programming language. �
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Example 13.6 (The Logic Programming Fragment of G3HOIL)
Let H2 be the set of expressions of G3HOIL that are in β-normal form that do
not contain the logical connective ⊃. An atomic formula A in H2 is said to be
rigid if A is of the form Pt1 . . . tn, where P is a non-logical constant. Let A and
Ar be atomic and rigid formulæ in H2 respectively. Let G4 and D4 be the sets of
G- and D-formulæ that are defined by the grammars:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀σG | ∃σG | D ⊃ G

D := Ar | G ⊃ Ar | ∀σD | D1 ∧D2

The formulæ in D4 are called higher-order hereditary Harrop formulæ. The triple
〈D4,G4,`G3HOIL〉, which we call hohh, is an abstract logic programming language.

�

Example 13.7 (The Logic Programming Fragment of G3c)
Let A be an atomic formula and G1 and D1 be the sets of all first-order G- and
D-formulæ defined by the grammars:

G := > | A |G1 ∧G2 | G1 ∨G2 | ∃xG

D := A | G ⊃ A | D1 ∧D2 | ∀xD

The formulæ contained in D are the (first-order) Horn clauses. The triple
〈D1,G1,`G3c〉, which we call fohc, is an abstract logic programming language. �

Example 13.8 (The logic programming fragment of G3HOCL)
Let H1 be the set of expressions of G3HOCL that are in β-normal form that do
not contain the logical connectives ⊃ and ∀. Let A and Ar be atomic and atomic
rigid formulæ in H1 respectively. Let G2 and D2 be the sets of all higher-order
G- and D-formulæ defined by the grammars:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∃σG

D := Ar | G ⊃ Ar | D1 ∧D2 | ∀σD

The formulæ in D2 are called higher-order Horn clauses. The triple
〈D2,G2,`G3HOCL

〉, which we call hohc, is an abstract logic programming language.
�

We did not define G3HOCL previously but it can be obtained by replacing all
the single-conclusioned rules of G3HOIL with the appropriate multi-conclusioned
rules in an analogous fashion to the way that G3c is obtained from G3i.

We now look at the representations of G3i and G3HOIL in LF and explore
how LF represents uniform proof. We do not consider G3c and G3HOCL for the
moment because they required a different method of encoding and have to be
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treated separately. We begin by showing how these systems are represented in
the logical framework obtained when we take the language to be NR instead of the
λΠ-calculus. We also call this logical framework LF because the proof-terms are
the same as the logical framework whose language is the λΠ-calculus. Although,
strictly speaking, it is a different logical framework.

13.1 Representing Uniform Proofs in G3i in LF

We have already shown that G3i can be adequately represented in LF in § 12.1.
We begin by analysing how the constants which represent valid proof rules in
G3i are handled by the resolution rule of NR. We observe that all the constants
representing valid proof rules in G3i are in clausal form.

We begin by looking at the resolution rule when the clause @ is taken to be
the constant

AND-L :Πp :o .Πq :o .Πr :o . (proof(p)→ proof(q)→ proof(r))→ (proof(p ∧ q)

→ proof(r))

We omit the assertions ΓX ,Γ∆ `ΣG3i
φ :o, ΓX ,Γ∆ `ΣG3i

ψ :o and ΓX ,Γ∆ `ΣG3i
χ :o

and the judgements to keep the size of the derivations down.

ΓX ,Γ∆ `ΣG3i
λy1 :φ . λy2 :ψ .Mδ :φ→ ψ → χ ΓX ,Γ∆ `ΣG3i

y :φ ∧ ψ
Res

ΓX ,Γ∆ `ΣG3i
AND-L(λy1 :φ . λy2 :ψ .Mδ)y :χ

where y :φ ∧ ψ ∈ Γ∆. We observe that we have the generalized elimination rule
for ∧ given by Prawitz (1978).

This observation holds for the other left rule of G3i, as we shall see. We claim
further that this observation is more general and that the resolution rule usually
encodes left and right rules of a logic as generalized elimination and introduction
rules respectively.

We now look at the case where @ is taken to be the constant

OR-L :Πp, q, r :o . (proof(p)→ proof(r)→ proof(q)→ proof(r))

→ (proof(p ∨ q)→ proof(r))

This is represented by resolution as

ΓX ,Γ∆ `Σ λy1 .Mδ1 :φ→ χ ΓX ,Γ∆ `Σ λy2 .Mδ2 :ψ → χ ΓX ,Γ∆ `Σ y :φ ∨ ψ

ΓX ,Γ∆ `ΣG3i
OR-L(λy2 :φ .Mδ1)(λy2 :ψ .Mδ2)y :χ

where y :φ ∨ ψ ∈ ∆, which is in the form of a generalized elimination rule.
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We look at the resolution rule when the clause @ is taken to be the constant

IMP -L :Πp :o .Πq :o .Πr :o . proof(p)→ (proof(q)→ proof(r))→

(proof(p ⊃ q)→ proof(r)).

We have

ΓX ,Γ∆ `ΣG3i
Mδ1 :φ ΓX ,Γ∆ `ΣG3i

λy1 :ψ .Mδ2 :ψ → χ ΓX ,Γ∆ `ΣG3i
y :φ ⊃ ψ

ΓX ,Γ∆ `ΣG3i
IMP -L(Mδ1)(λy1 :φ .Mδ2)y :χ

where y :proof(φ ⊃ ψ) ∈ Γ∆, which is in the same form as a generalized elimina-
tion rule.

We now take the clause @ to be the constant

FORALL-L : ΠF : ι→ o .Πr :o .Πx : ι . (proof(Fx)→ proof(r))→ (proof(∀

(λx : ι . Fx))→ proof(r))

We have

ΓX ,Γ∆ `ΣG3i
λy1 :φx .Mδ :φx→ χ ΓX ,Γ∆ `ΣG3i

y :∀(λx : ι . φx)
Res

ΓX ,Γ∆ `ΣG3i
FORALL-L(λy1 :φx .Mδ)y :χ

where y :proof(∀(λx : ι . φx) ∈ Γ∆, which is in the form of a generalized elimination
rule.

Finally, we take the clause @ to be the constant

EXISTS-L :ΠF : ι→ o .Πr :o . (Πx : ι . proof(Fx)→ proof(r))

→ (proof(∃(λx : ι . Fx))→ proof(r))

which is represented as

ΓX ,Γ `ΣG3i
λy1 :χ . λx : ι .Mδ :φx→ χ ΓX ,Γ∆ `ΣG3i

y :∃(λx : ι . φx)
Res

ΓX ,Γ∆ `ΣG3i
EXISTS-R(λy1 :χ . λx : ι .Mδ)y :χ

where y :∃(λx : ι . φx) ∈ Γ∆, which is in the form of a generalized elimination rule.
We now show how the constants representing the right rules are handled by

the resolution rule. We begin with the constant

AND-R :Πp :o .Πq :o . proof(p)→ proof(q)→ proof(p ∧ q)
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We have

ΓX ,Γ∆ `ΣG3i
Mδ1 :proof(φ) ΓX ,Γ∆ `ΣG3i

Mδ2 :proof(ψ)
Res

ΓX ,Γ∆ `ΣG3i
AND-R(Mδ1)(Mδ2) :proof(φ ∧ ψ)

which is just an introduction rule. In fact all the right rules encode as introduction
rules.

Let @ be the constant

OR-R1:Πp :o .Πq :o . proof(p)→ proof(p ∨ q)

We have
ΓX ,Γ∆ `ΣG3i

Mδ :proof(φ)
Res

ΓX ,Γ∆ `ΣG3i
OR-R(Mδ) :proof(φ ∨ ψ)

with the rule OR-R2 being similar.
We take the clause @ to be the constant

IMP -R :Πp :o .Πq :o . (proof(p)→ proof(q))→ proof(p ⊃ q)

ΓX ,Γ∆ `ΣG3i
λy1 :proof(φ) .Mδ :proof(φ)→ proof(ψ)

Res
ΓX ,Γ∆ `ΣG3i

IMP -R(λy1 :proof(φ) .Mδ) :proof(φ ⊃ ψ)

which is not quite the introduction rule, but we observe the that derivation
ΓX ,Γ∆ `ΣG3i

λy1 :proof(φ) .Mδ : (proof(φ)→ proof(ψ)) is obtained from
ΓX ,Γ∆, y1 :proof(φ) `ΣG3i

Mδ :proof(ψ) and this is the premiss of an introduction
rule.

Finally we take @ to be the constant

FORALL-R :ΠF : ι→ o . (Πx : ι . proof(Fx))→ proof(∀(λx : ι . Fx))

We have

ΓXΓ∆ `ΣG3i
λx : ι .Mδ :Πx : ι . proof(φx)

Res
ΓX ,Γ∆ `ΣG3i

FORALL-R(λx : ι .Mδ) :proof(λx : ι . φx)

which is the introduction rule for ∀.
We now look at the representation of the uniform proofs of G3i in NR. The

first observation is that all proofs in G3i are represented by terms of NR in
long βη-normal form. We thus require an extra condition on the terms of NR
in long βη-normal form such that if terms satisfy this condition they represent
uniform proofs in G3i. The second observation is that each term produced by
resolution is of the form P1 . . . Pn, where P1 is a constant corresponding to a valid
proof rule of G3i. The type of this term corresponds to the judged formula in
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the succedent. This observation is enough to enable us to adapt Miller et al.’s
definition to our setting. First, however, we provide some examples which back
up this observation.

Example 13.9
The following proof is uniform:

Ax
τ, ∀xχ, φ `G3i φ

Ax
φ, ψ, ∀xχ, τ `G3i τ

Ax
φ, τ, ψ, ∀xχ, χ `G3i χ ∀ l
φ, τ, ψ, ∀xχ `G3i χ ∧ r

φ, τ,∀xχ, ψ `G3i τ ∧ χ ⊃ r
φ, τ,∀xχ `G3i ψ ⊃ (τ ∧ χ)

∧ r
φ, τ,∀xχ `G3i φ ∧ (ψ ⊃ (τ ∧ χ))

This has valid proof expression

X∆ `G3i AND-R(HY P (y1), IMP -R(y3 :AND-R(HY P (y2), FORALL-L

(y5 : HY P (y5)y4)))) :proof(φ ∧ (ψ ⊃ (τ ∧ χ)))

where ∆ = y1 :proof(φ), y2 :proof(τ), y4 :proof(∀xχ) and y3 has type proof(ψ) and
y5 has type proof(χ).

This is represented in NRΣG3i
by the assertion

ΓX ,Γ∆ `ΣG3i
AND-R(y1)(IMP -R(λy3 :proof(ψ) . AND-R(y2)(FORALL-L

(λy5 :proof(χ) . y5)y4))) :proof(φ ∧ (ψ ⊃ (τ ∧ χ)))

where Γ∆ = y1 :proof(φ), y2 :proof(τ), y4 :proof(∀xχ).
Examining the subterms, we see that the subterm

AND-R(y1)(IMP -R(λy3 :proof(ψ) . AND-R(y2)(FORALL-L(λy5 :proof(χ) . y5)

y4)))

has type proof(φ ∧ (ψ ⊃ (τ ∧ χ))). The subterm

IMP -R(λy3 :proof(ψ) . AND-R(y2)(FORALL-L(λy5 :proof(χ) . y5)))

has type proof(ψ ⊃ (τ ∧ χ)). The subterm

AND-R(y2)(FORALL-L(λy5 :proof(χ) . y5))
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has type proof(τ ∧ χ). Finally, the subterm

FORALL-L(λy5 :proof(χ) . y5)

has type proof(χ), where χ is atomic. �

Example 13.10
The following is a non-uniform proof of the formula in the previous example.

Ax
τ, ∀xχ, φ `G3i φ

Ax
φ, ψ,∀xχ, χ, τ `G3i τ

Ax
φ, τ, ψ, ∀xχ, χ `G3i χ ∧ r

φ, τ, ∀xχ, χ, ψ `G3i τ ∧ χ ⊃ r
φ, τ,∀xχ, χ `G3i ψ ⊃ (τ ∧ χ)

∀ l
φ, τ,∀xχ `G3i ψ ⊃ (τ ∧ χ)

∧ r
φ, τ,∀xχ `G3i φ ∧ (ψ ⊃ (τ ∧ χ))

This has valid proof expression

X∆ `G3i AND-R(HY P (y1), FORALL-L(y5 :IMP -R(y3 :AND-R(HY P (y2),

HY P (y5))), y4)) :proof(φ ∧ (ψ ⊃ (τ ∧ χ)))

where ∆ = y1 :proof(φ), y2 :proof(τ), y4 :proof(∀xχ), y3 :proof(ψ) and y5 :proof(χ).
This is represented in NRΣG3i

by the assertion

ΓX ,Γ∆ `ΣG3i
AND-R(y1)(FORALL-L(λy5 :proof(χ) . IMP -R(λy3 :proof(ψ) .

AND-R(y2)(y5))(y4)) :proof(φ ∧ (ψ ⊃ (τ ∧ χ))))

where Γ∆ = y1 :proof(φ), y2 :proof(τ) and y4 :proof(∀xχ).
The proof is not uniform because the left rule ∀ l has been applied when the

formula on the right of the turnstile was not atomic. We have the subterm

FORALL-L(λy5 :proof(χ) . IMP -R(λy3 :proof(ψ) . AND-R(y2)(y5))(y4))

which has type proof(ψ ⊃ (τ ∧ χ)). �

We have the following definition.

Definition 13.11 (Uniform Proof-terms in NRΣG3i
)

Let ΓX ,Γ∆ `Σ M : proof(τ) be provable in NRΣG3i
and M be in long βη normal

form. We say that M is a uniform proof-term in NRΣG3i
if all subterms N of M ,

which are not variables, satisfy the following conditions:

• N never has type proof(¬φ);
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• N never contains NEG-L;

• if N has type proof(>) then N = TOP ;

• if N has type proof(φ ∧ ψ) then N = P1 . . . Pn where P1 = AND-R;

• if N has type proof(φ ∨ ψ) then N = P1 . . . Pn where P1 = OR-R;

• if N has type proof(φ ⊃ ψ) then N = P1 . . . Pn where P1 = IMP -R;

• if N has type proof(∀xφ) then N = P1 . . . Pn where P1 = FORALL-R;

• if N has type proof(∃xφ) then N = P1 . . . Pn where P1 = EXISTS-R. �

The first example satisfies this definition while the other fails it. The first
two conditions of the definition just ensure that we do not have ¬ involved in the
proof. We now provide a proof that this definition defines λΠ-proof terms which
represent uniform proofs in G3i.

Lemma 13.12 (Uniform Proof-terms Represent Uniform Proofs)
Let X∆ `G3i δ :proof(φ) be provable in G3i and let ΓX ,Γ∆ `ΣG3i

Mδ :proof(φ) be
its representation in LF. δ is in long βη normal form if and only if Mδ is in long
βη normal form and a uniform proof-term.

Proof Since the representation of any valid assertion in G3i in NR is adequate,
we know that Mδ is always in long βη normal form. We prove the left to right
direction of the implication first. Let δ be in long βη normal form.

Since δ is in long βη-normal form, any left rules used in δ must have been
applied to a sequent with an atomic formula in the succedent. This means that all
subterms of Mδ of the form #-LP1 . . . Pn have type proof(χ), where χ is atomic.
This is enough to ensure that Mδ is a uniform proof-term.

Suppose that Mδ is a uniform proof-term, then any subterm N of the form
#-L must have a type proof(χ) where χ is an atomic formula. Hence any left
rule in G3i must have been applied when the succedent was atomic. Thus δ is in
long βη-normal form. �

Having found the terms in NR which represent uniform proofs in G3i, we turn
to the representation of hereditary Harrop formulæ in NR. We are interested in
the hereditary Harrop formulæ because every hereditary Harrop sequent has a
uniform proof in G3i, cf. (Miller et al. 1991). We show that an analogous result
holds for their representation in NR. We begin by defining hereditary Harrop
formulæ and sequents.

Definition 13.13 (Hereditary Harrop Sequent)
Goal formulæ G and hereditary Harrop formulæ D are defined by the following
grammars:

D := A | G ⊃ A | ∀xD | D1 ∧D2
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G := A | G1 ∧G2 | D ⊃ G | ∀xG

where A is an atomic formula. We say that a sequent Γ `G3i φ is a hereditary
Harrop sequent if Γ only contains hereditary Harrop formulæ and φ is a Goal
formula. �

The previous examples are all hereditary Harrop sequents. We will return to
these examples after we prove the following lemma:

Lemma 13.14
Let (X) ∆ `G3i δ :φ be a hereditary Harrop sequent in G3i and ΓX ,Γ∆ `ΣG3i

Mδ :
proof(φ) be its representation in NRΣG3i

. If (X) ∆ `G3i δ : φ is provable in G3i
then there exists a uniform proof-term M such that ΓX ,Γ∆ `ΣG3i

M :proof(φ) is
provable in NRΣG3i

.

Proof Let (X) ∆ `G3i δφ be provable in G3i. If δ is in long βη normal form
then by Lemma 13.12 we have a uniform proof-term M such that ΓX ,Γ∆ `ΣG3i

M :proof(φ).
If the proof is not in long βη normal form then we know that there exists one

in long βη normal form, cf. (Miller et al. 1991). We can then use Lemma 13.12
to obtain a uniform proof-term M such that ΓX ,Γ∆ `G3i M :proof(φ). �

The following example shows an instance of the lemma.

Example 13.15
The sequent φ, τ,∀xχ `G3i φ ∧ (ψ ⊃ (τ ∧ χ)) is a hereditary Harrop sequent. In
Example 13.10 we have a non-uniform proof of this sequent.

Ax
τ, ∀xχ, φ `G3i φ

Ax
φ, ψ,∀xχ, χ, τ `G3i τ

Ax
φ, τ, ψ, ∀xχ, χ `G3i χ ∧ r

φ, τ, ψ,∀xχ, χ `G3i τ ∧ χ ⊃ r
φ, τ,∀xχ, χ `G3i ψ ⊃ (τ ∧ χ)

∀ l
φ, τ,∀xχ `G3i ψ ⊃ (τ ∧ χ)

∧ r
φ, τ,∀xχ `G3i φ ∧ (ψ ⊃ (τ ∧ χ))

It is possible to transform this non-uniform proof to a uniform proof by moving
the ∀ l rule upwards. We end up with the uniform proof of Example 13.9.

Ax
τ, ∀xχ, φ `G3i φ

Ax
φ, ψ, ∀xχ, τ `G3i τ

Ax
φ, τ, ψ, ∀xχ, χ `G3i χ ∀ l
φ, τ, ψ, ∀xχ `G3i χ ∧ r

φ, τ,∀xχ, ψ `G3i τ ∧ χ ⊃ r
φ, τ,∀xχ `G3i ψ ⊃ (τ ∧ χ)

∧ r
φ, τ,∀xχ `G3i φ ∧ (ψ ⊃ (τ ∧ χ))
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which tells us that there is a uniform proof-term

M = AND-R(y1)(IMP -R(λy3 :proof(ψ) . AND-R(y2)(FORALL-L

(λy5 :proof(χ) . y5)y4)))

such that ΓX ,Γ∆ `ΣG3i
M :proof(φ∧ (ψ ⊃ (τ ∧ χ))) is provable in NRΣG3i

, where
Γ∆ = y1 : proof(φ), y2 : proof(τ), y4 : proof(∀xχ). We have the following derivation
for this assertion. We write the derivation in stages due to its size.

Γ1 `ΣG3i
y2 :proof(τ) Γ1 `ΣG3i

y5 :proof(χ)
Res

Γ1 `ΣG3i
AND-R(y2)y5 :proof(τ ∧ χ)

where Γ1 = ΓX ,Γ∆, y5 :proof(χ), y3 :proof(ψ)

Γ1 `ΣG3i
AND-R(y2)y5 :proof(τ ∧ χ)

→ I
Γ2 `ΣG3i

λy3 :proof(ψ) . AND-R(y2)y5 :proof(ψ)→ proof(τ ∧ χ)

where Γ2 = ΓX ,Γ∆, y5 :proof(χ).

Γ2 `ΣG3i
λy3 :proof(ψ) . AND-R(y2)y5 :proof(ψ)→ proof(τ ∧ χ)

Res
Γ2 `ΣG3i

IMP -R(λy3 :proof(ψ) . AND-R(y2)y5) :proof(ψ ⊃ (τ ∧ χ))

Γ2 `ΣG3i
N :proof(ψ ⊃ (τ ∧ χ))

→ I
ΓX ,Γ∆ `ΣG3i

λy5 :proof(χ) . N :proof(χ)→ proof(ψ ⊃ (τ ∧ χ))

where N = IMP -R(λy3 :proof(ψ) . AND-R(y2)y5).

ΓX ,Γ∆ ` λy5 . N :proof(χ)→ proof(ψ ⊃ (τ ∧ χ)) ΓX ,Γ∆ `ΣG3i
y4 :proof(∀xχ)

ΓX ,Γ∆ ` FORALL-L(λy5 :proof(χ) . N)y4 :proof(ψ ⊃ (τ ∧ χ))

ΓX ,Γ∆ ` y3 :proof(φ) ΓX ,Γ∆ ` P :proof(ψ ⊃ (τ ∧ χ))
Res

ΓX ,Γ∆ ` AND-R(y1)(P ) :proof(φ ∧ (ψ ⊃ (τ ∧ χ)))

where P = FORALL-L(λy5 : proof(χ) . N)y4 We observe that if we move the
resolution step which resolves the constant FORALL-L upwards then, we also
need to move the → I rule upwards. It is easier if we consider the movement
of the → I rule. This can be moved towards the top of the tree provided the
variable that it takes across the turnstile is still on the left. In this case, we can
move the → I right to the leaf and then apply resolution. This gives us the
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proof-tree:

Γ1 `ΣG3i
y5 :proof(χ)

→ I
Γ2 `ΣG3i

λy5 :proof(χ) . y5 :proof(χ)→ proof(χ)

where Γ1 = ΓX ,Γ∆, y3 :proof(ψ), y5 :proof(χ) and Γ2 = ΓX ,Γ∆, y3 :proof(ψ).

Γ2 `ΣG3i
λy5 :proof(χ) . y5 :proof(χ)→ proof(χ) Γ2 `ΣG3i

y4 :proof(∀xχ)
Res

Γ2 `ΣG3i
FORALL-L(λy5 :proof(χ) . y5)y4 :proof(χ)

Γ2 `ΣG3i
y2 :proof(τ) Γ2 `ΣG3i

FORALL-L(λy5 :proof(χ) . y5)y4 :proof(χ)
Res

Γ2 `ΣG3i
AND-R(y2)(FORALL-L(λy5 :proof(χ) . y5)y4) :proof(τ ∧ χ)

Γ2 `ΣG3i
N

→ I
ΓX ,Γ∆ `ΣG3i

λy3 :proof(ψ) . N :proof(ψ)→ proof(τ ∧ χ)

where N = AND-R(y2)(FORALL-L(λy5 :proof(χ) . y5)y4) :proof(τ ∧ χ).

ΓX ,Γ∆ `ΣG3i
λy3 :proof(ψ) . N :proof(ψ)→ proof(τ ∧ χ)

Res
ΓX ,Γ∆ `ΣG3i

IMP -R(λy3 :proof(ψ) . N) :proof(ψ ⊃ (τ ∧ χ))

ΓX ,Γ∆ ` y1 :proof(φ) ΓX ,Γ∆ ` IMP -R(λy3 :proof(ψ) . N) :proof(ψ ⊃ (τ ∧ χ))

ΓX ,Γ∆ ` AND-R(y1)(IMP -R(λy3 :proof(ψ) . N)) :proof(φ ∧ (ψ ⊃ (τ ∧ χ)))

which we see has the same proof-term as Example 13.9. �

In the above example we saw that the permutation of rules inG3i which turned
a non-uniform proof of a hereditary Harrop sequent into a uniform proof are
mirrored in NR. We claim that this is possible for any hereditary Harrop sequent.
The basis of this claim is that the permutation of a non-uniform proof of a
hereditary Harrop sequent into a uniform proof only involves permuting left rules
up the proof tree. Permuting a left rule upwards is possible until it encounters
another left rule or a leaf. To avoid a clash of left rules during permutation,
we start with the uppermost rule and work downwards. A permutation in G3i
corresponds to the permutation of a resolution rule in NR. We have to be careful
because in NR we have to permute any abstraction needed for resolutions upwards
as well. These rules can always be permuted upwards providing the variables in
the context being abstracted are present.

We formalise the above discussion in the following lemma:

Lemma 13.16
Let X,∆ `G3i δ : proof(φ) be a provable hereditary Harrop sequent in G3i and
ΓX ,Γ∆ `ΣG3ci

Mδ : proof(φ) be its representation in NRΣG3i
. If δ is not in long

βη-normal form then the permutation which turns δ into long βη-normal form
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is mimicked in NRΣG3i
by a permutation of Mδ into a uniform proof-term. Sim-

ilarly the permutation of Mδ into a uniform proof-term is mimicked in G3i by a
permutation of δ into long βη-normal form.

Proof (Sketch) Let δ not be in long βη-normal form. There exists a permutation
which turns δ into long βη-normal form because (X) ∆ `G3i δ : proof(φ) is a
hereditary Harrop sequent. The permutation is on the proof-tree of δ and involves
permuting a left rule upwards until the sequent in its conclusion has an atomic
formula on the right. It is sufficient to show that any permutation of a left rule
past a right rule has a corresponding permutation in NRΣG3i

. We only prove a
few cases, the rest are similar.

We begin with v-AND-L and v-AND-R. We have v-AND-L beneath v-AND
-R thus:

(X) ∆′ ` δ1 :proof(φ) (X) ∆′ ` δ2 :proof(ψ)

(X) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y1 :proof(ψ) ` AND-R(δ1, δ2) :proof(φ ∧ ψ)

(X) ∆, y :proof(φ ∧ ψ) ` AND-L((y1, y1) :AND-R(δ1, δ2), y) :proof(φ ∧ ψ)

where ∆′ = ∆, y : proof(φ ∧ ψ), y1 : proof(φ), y1 : proof(ψ). Permuting v-AND-L
yields

(X) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3i δ1 :proof(φ)
v-AND-L

(X) ∆, y :proof(φ ∧ ψ) `G3i AND-L((y1, y2) :δ1, y) :proof(φ)

(X) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3i δ2 :proof(ψ)
v-AND-L

(X) ∆, y :proof(φ ∧ ψ) `G3i AND-L((y1, y2) :δ2, y) :proof(ψ)

(X) ∆, y :proof(φ ∧ ψ) `G3i P :proof(ψ) (X) ∆, y :proof(φ ∧ ψ) `G3i Q :proof(φ)

(X) ∆, y :proof(φ ∧ ψ) `G3i AND-R(P )(Q) :proof(φ ∧ ψ)

where P = AND-L((y1, y2) : δ2, y) and Q = AND-L((y1, y2) : δ1, y). We can
represent the first proof-tree above by the following derivation in NRΣG3i

:

Γ1 `ΣG3i
Mδ1 :proof(φ) Γ1 `ΣG3i

Mδ2 :proof(ψ)
Res

Γ1 `ΣG3i
AND-R(Mδ1)(Mδ2) :proof(φ ∧ ψ)

Γ1 `ΣG3i
AND-R(Mδ1)(Mδ2) :proof(φ ∧ ψ)

→ I
Γ2 `ΣG3i

λy2 :proof(ψ) . AND-R(Mδ1)(Mδ2) :proof(ψ)→ proof(φ ∧ ψ)

Γ2 `ΣG3i
N :proof(ψ)→ proof(φ ∧ ψ)

Γ3 `ΣG3i
λy2 :proof(φ) . N :proof(φ)→ proof(ψ)→ proof(φ ∧ ψ)
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Γ3 ` λy2 :proof(φ) . N :proof(φ)→ proof(ψ)→ proof(φ ∧ ψ)Γ3 ` y :proof(φ ∧ ψ)

Γ3 ` AND-L(λy2 :proof(φ) . N)y :proof(φ ∧ ψ)

where N = λy2 : proof(ψ) . AND-R(Mδ1)(Mδ2), Γ1 = ΓX ,Γ∆, y : proof(φ ∧ ψ), y1 :
proof(φ), y2 : proof(ψ), Γ2 = ΓX ,Γ∆, y : proof(φ ∧ ψ), y1 : proof(φ) and Γ3 =
ΓX ,Γ∆, y :proof(φ∧ψ). We have left out the judgements of the form Γ ` εs(φ) :o
to keep the derivation small.

We present the representation of the second proof-tree in three stages:

Γ1 `ΣG3i
Mδ1 :proof(φ)

Γ2 `ΣG3i
λy2 :proof(ψ) .Mδ1 :proof(ψ)→ proof(φ)

Γ2 `ΣG3i
λy2 :proof(ψ) .Mδ1 :proof(ψ)→ proof(φ)

Γ2 `ΣG3i
λy1 :proof(φ) . λy2 :proof(ψ) .Mδ1 :proof(φ)→ proof(ψ)→ proof(ψ)

Γ3 ` N :proof(φ)→ proof(ψ)→ proof(ψ)Γ3 ` y :proof(φ ∧ ψ)

Γ3 ` AND-L(N)y :proof(φ)

Γ1 `ΣG3i
Mδ2 :proof(ψ)

Γ2 `ΣG3i
λy2 :Mδ2 :proof(ψ)→ proof(ψ)

Γ2 `ΣG3i
λy2 :Mδ2 :proof(ψ)→ proof(ψ)

Γ3 `ΣG3i
λy1 :proof(φ) . proof(ψ) .Mδ2 :proof(φ)→ proof(ψ)→ proof(ψ)

Γ3 ` P :proof(φ)→ proof(ψ)→ proof(ψ) Γ3 ` y :proof(φ ∧ ψ)

Γ3 ` AND-L(P )y :proof(ψ)

Γ3 `Mδ3 :proof(φ) Γ3 `Mδ3 :proof(ψ)
Res

Γ3 ` AND-R(Mδ3)(Mδ4) :proof(φ ∧ ψ)

where Mδ3 = AND-L(λy1 :proof(φ) . λy2 :proof(ψ) .Mδ1)y, Mδ4 =
AND-L(λy1 :proof(φ) . y2 :proof(ψ) .Mδ2)y, N = λy1 :proof(φ) . λy2 :proof(ψ) .
Mδ1 , P = λy1 : proof(φ) . proof(ψ) .Mδ2 , Γ1 = ΓX ,Γ∆, y : proof(φ ∧ ψ), y1 :
proof(φ), y2 : proof(ψ), Γ2 = ΓX ,Γ∆, y : proof(φ ∧ ψ), y1 : proof(φ) and Γ3 =
ΓX ,Γ∆, y : proof(φ ∧ ψ). We observe that the second NRΣG3i

derivation can be
obtained from the first. We permute the two → R rules and the resolution step
resolving AND-L past the resolution step resolving AND-R.

We now consider the permutation of v-IMP -L past v-AND-R

(X) ∆, y1 :proof(ψ) ` δ2 :proof(χ) (X) ∆, y1 :proof(ψ) ` δ3 :proof(τ)

(X) ∆, y1 :proof(ψ) ` AND-R(δ2, δ3) :proof(χ ∧ τ)
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X∆ ` δ1 :proof(χ) X∆, y1 :proof(ψ) ` N :proof(χ ∧ τ) X∆ ` y :proof(φ ⊃ ψ)

(X) ∆ ` IMP -L(δ1, y1 :AND-R(δ2, δ3), y) :proof(χ ∧ τ)

where P = AND-R(δ2, δ2). We permute v-IMP -L upwards to obtain

(X) ∆ ` δ1 :proof(φ) (X) ∆, y1 :proof(ψ) ` δ2 :proof(χ) (X) ∆ ` y :proof(φ ⊃ ψ)

(X) ∆ ` IMP -L(δ1, y1 :δ2, y) :proof(χ)

(X) ∆ ` δ1 :proof(ψ) (X) ∆, y1 :proof(ψ) ` δ3 :proof(τ) (X) ∆ ` y :proof(φ ⊃ ψ)

(X) ∆ ` IMP -L(δ1, y1 :δ3, y) :proof(τ)

(X) ∆ ` N :proof(χ) (X) ∆ ` P :proof(τ)

(X) ∆ ` AND-R(N,P ) :proof(χ ∧ τ)

whereN = IMP -L(δ1, y1 :δ2, y) :proof(χ) and P = IMP -L(δ1, y1 :δ3, y) :proof(τ).
The first proof-tree is represented in NRΣG3i

by the following derivation:

Γ2 `Mδ2 :proof(χ) Γ2 `Mδ3 :proof(τ)
Res

Γ2 ` AND-R(Mδ2)(Mδ3) :proof(χ ∧ τ)

Γ2 ` AND-R(Mδ2)(Mδ3) :proof(χ ∧ τ)

Γ1 ` λy1 :proof(ψ) . AND-R(Mδ2)(Mδ3) :proof(ψ)→ proof(χ ∧ τ)

Γ1 `Mδ1 :proof(ψ) Γ1 ` N :proof(ψ)→ proof(χ ∧ τ) Γ1 ` y :proof(φ ⊃ ψ)

Γ1 ` IMP -L(Mδ1)(N)y :proof(χ ∧ τ)

where N = λy1 :proof(ψ) . AND-R(Mδ2)(Mδ3).
We represent the second proof-tree in stages due to its size.

Γ2 `Mδ2 :proof(χ)

Γ1 ` λy1 :proof(ψ) .Mδ2 :proof(ψ)→ proof(χ)

Γ1 `Mδ1 :proof(φ) Γ1 ` N :proof(ψ)→ proof(χ) Γ1 ` y :proof(φ ⊃ ψ)

Γ1 ` IMP -L(Mδ1)Ny :proof(χ)

Γ2 `Mδ3 :proof(τ)

Γ1 ` λy1 :proof(ψ) .Mδ3 :proof(ψ)→ proof(τ)

Γ1 `Mδ1 :proof(χ) Γ1 ` P :proof(ψ)→ proof(τ) Γ1 ` y :proof(φ ⊃ ψ)

Γ1 ` IMP -L(Mδ1)Py :proof(τ)

Γ1 `Mδ4 :proof(χ) Γ1 `Mδ5 :proof(τ)

Γ1 ` AND-R(Mδ4)(Mδ5) :proof(χ ∧ τ)

where Γ1 = ΓX ,Γ∆, y : proof(φ ⊃ ψ), Γ2 = ΓX ,Γ∆, y : proof(φ ⊃ ψ), y1 : proof(ψ),
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Mδ4 = IMP -L(Mδ1)Py, Mδ5 = IMP -L(Mδ1)(λy1 : proof(ψ) .Mδ3)y, N = λy1 :
proof(ψ) .Mδ2 and P = λy1 :proof(ψ) .Mδ3 .

Finally, we show v-AND-L permuting up past v-FORALL-R. We initially
have

X, x ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) ` δ :proof(φ[x])

(X) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) ` FORALL-R(δ) :proof(∀x . φ)

(X) ∆, y :proof(φ ∧ ψ) ` AND-L((y1, y2) :FORALL-R(δ), y) :proof(∀xφ)

We now permute v-AND-L upwards to obtain

X, x ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3i δ :proof(φ[x])

X.x ∆, y :proof(φ ∧ ψ) `G3i AND-L((y1, y2) :δ, y) :proof(φ[x])

(X) ∆, y :proof(φ ∧ ψ) `G3i FORALL-R(AND-L((y1.y2) :δ, y)) :proof(∀xφ)

We encode the first proof-tree in NRΣG3i
to obtain

Γ1 ` δ :proof(φx)

Γ2 ` λx : ι . δ :Πx : ι . proof(φx)

Γ2 ` λx : ι . δ :Πx : ι . proof(φx)

Γ2 ` FORALL-R(λx : ι . δ) :proof(∀(λx : ι . φx))

Γ2 ` FORALL-R(λx : ι . δ) :proof(∀(λx : ι . φx))

Γ3 ` λy2 :proof(ψ) . FORALL-R(λx : ι . δ) :proof(ψ)→ proof(∀(λx : ι . φx))

Γ3 ` N :proof(ψ)→ proof(∀(λx : ι . φx))

Γ4 ` λy1 :proof(φ) . N :proof(φ)→ proof(ψ)→ proof(∀(λx : ι . φx))

Γ4 ` λy1 :proof(φ) . N :proof(φ)→ proof(ψ)→ proof(∀(λx : ι . φx))

Γ4 ` AND-L(λy1 :proof(φ) . N)y :proof(∀(λx : ι . φx))

where Γ1 = ΓX , x : ι,Γ∆, y :proof(φ∧ψ), y1 :proof(φ), y2 :proof(ψ), Γ2 = ΓX ,Γ∆, y :
proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ), Γ3 = ΓX ,Γ∆, y :proof(φ ∧ ψ), y1 :proof(φ),
Γ4 = ΓX ,Γ∆, y : proof(φ ∧ ψ), N = λy2 : proof(ψ) . FORALL-R(λx : ι . δ), We
encode the permuted proof-tree in NRΣG3i

as

Γ1 `Mδ :proof(φx)

Γ2 ` λy2 :proof(ψ) .Mδ :proof(ψ)→ proof(φx)

Γ2 ` λy2 :proof(ψ) .Mδ :proof(ψ)→ proof(φx)

Γ3 ` λy1 :proof(φ) . λy2 :proof(ψ) .Mδ :proof(φ)→ proof(ψ)→ proof(φx)
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Γ3 ` N :proof(φ)→ proof(ψ)→ proof(φx)

Γ3 ` AND-L(N)y :proof(φx)

Γ3 ` AND-L(N)y :proof(φx)

Γ4 ` λx : ι . AND-L(N)y :Πx : ι . proof(φx)

Γ4 ` λx : ι . AND-L(N)y :Πx : ι . proof(φx)

Γ4 ` FORALL-R(λx : ι . AND-L(N)y) :proof(∀(λx : ι . φx))

where Γ1 = ΓX , x : ι,Γ∆, y : proof(φ ∧ ψ), y1 : proof(φ), y2 : proof(ψ), Γ2 = ΓX , x :
ι,Γ∆, y : proof(φ ∧ ψ), y1 : proof(φ), Γ3 = ΓX , x : ι,Γ∆, y : proof(φ ∧ ψ), Γ4 =
ΓX ,Γ∆, y : proof(φ ∧ ψ) and N = λy1 : proof(φ) . λy2 : proof(ψ) .Mδ. This is also a
permutation of the resolution step resolving FORALL-L together with the two
→ R rules upwards.

We have shown a few of the many interesting cases, the rest are similar.
In each case, the permutation in G3i corresponds directly to a permutation in
NRΣG3i

. The other direction is similar. �

13.2 Representing Uniform Proofs in G3HOIL

in LF

In § 12.3, we showed that G3HOIL could be adequately represented in LF.
We begin by examining how the resolution rule in NR represents valid proofs
of G3HOIL. We begin with the right rules which are encoded as generalized
introduction rules by Res. We write each right rule followed by its representation
by Res. We ignore the ap used to form expressions in judgements and write the
usual logical expression for clarity.

(A) ∆ `G3HOIL δ1 :proof(φ) (A) ∆ `G3HOIL δ2 :proof(ψ)
v-AND-R

(A) ∆ `G3HOIL AND-R(δ1, δ2) :proof(φ ∧ ψ)

ΓA,Γ∆ `ΣG3HOIL
Mδ1 :proof(φ) ΓA,Γ∆ `ΣG3HOIL

Mδ2 :proof(ψ)
Res

ΓL,Γ∆ `ΣG3HOIL
AND-Rε(φ)ε(ψ)Mδ1Mδ2 :proof(φ ∧ ψ)

(A) ∆ `G3HOIL δ1 :proof(φ)
v-OR-R1

(A) ∆ `G3HOIL OR-R1(δ1) :proof(φ ∨ ψ)

ΓA,Γ∆ `ΣG3HOIL
Mδ1 :proof(φ)

Res
ΓA,Γ∆ `ΣG3HOIL

OR-R1ε(φ)ε(ψ)Mδ1 :proof(φ ∨ ψ)

(A) ∆ `G3HOIL δ2 :proof(ψ)
v-OR-R2

(A) ∆ `G3HOIL OR-R2(δ2) :proof(φ ∨ ψ)
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ΓA,Γ∆ `ΣG3HOIL
Mδ2 :proof(ψ)

Res
ΓA,Γ∆ `ΣG3HOIL

OR-R2ε(φ)ε(ψ)Mδ1 :proof(φ ∨ ψ)

(A) ∆, y1 :proof(φ) `G3HOIL δ1 :proof(ψ)
v-IMP -R

(A) ∆ `G3HOIL IMP -R(y1 :δ1) :proof(φ ⊃ ψ)

ΓA,Γ∆ `ΣG3HOIL
λy1 :proof(φ) .Mδ1 :proof(φ)→ proof(ψ)

Res
ΓA,Γ∆ `ΣG3HOIL

IMP -Rε(φ)ε(ψ)(λy1 :proof(ψ) .Mδ1) :proof(φ ⊃ ψ)

(A, x :σ) ∆ `G3HOIL δ :proof(φx)
v-FORALL-R

(A) ∆ `G3HOIL FORALL-R(δ) :proof(∀σφ)

ΓA,Γ∆ `ΣG3HOIL
λx :obj(σ) .Mδ :Πx :σ . proof(φx)

Res
ΓA,Γ∆ `ΣG3HOIL

FORALL-Lε(σ)ε(φ)(λx :obj(σ) .Mδ) :proof(∀σφ)

(A) ∆ `G3HOIL δ :proof(φx)
v-EXISTS-R

(A) ∆ `G3HOIL EXISTS-R(δ) :proof(∃σφ)

ΓA,Γ∆ `ΣG3HOIL
Mδ :proof(φx)

Res
ΓA,Γ∆ `ΣG3HOIL

EXISTS-Rε(σ)ε(φ)ε(x)Mδ :proof(∀σφ)

We observe that each right rule is represented as a generalized introduction rule.
We now represent the left rules using Res and observe that each left rule is
represented as a generalized elimination rule.

(A) ∆, y :proof(φ ∧ ψ), y1 :proof(φ), y2 :proof(ψ) `G3HOIL δ :proof(χ)
v-AND-L

(A) ∆, y :proof(φ ∧ ψ) `G3HOIL AND-L((y1, y2) :δ, y) :proof(χ)

Γ ` N :proof(φ)→ proof(ψ)→ proof(χ) Γ ` y :proof(φ ∧ ψ)

Γ ` AND-Lε(φ)ε(ψ)(N)y :proof(χ)

where Γ = ΓA,Γ∆, y :proof(φ ∨ ψ) and N = λy1 :proof(φ) . λy2 :proof(ψ) .Mδ.

(A) ∆, y1 :proof(φ) ` δ1 :proof(χ) (A) ∆, y2 :proof(ψ) ` δ2 :proof(χ)
v-OR-L

(A) ∆, y :proof(φ ∨ ψ) ` OR-L(y1 :δ1, y2 :δ2, y) :proof(χ)

where ∆ = (A) ∆, y :proof(φ ∨ ψ).

Γ ` N :proof(φ)→ proof(χ) Γ ` P :proof(χ) Γ ` y :proof(φ ∨ ψ)

Γ ` OR-Lε(φ)ε(ψ)(λy1 :proof(φ) .Mδ1)(λy2 :proof(ψ) .Mδ2)y :proof(χ)
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where Γ = ΓA,Γ∆, y :proof(φ ∨ ψ), N = λy1 :proof(φ) .Mδ1 , P = λy2 :proof(ψ)
.Mδ2 and y :proof(φ ∨ ψ) ∈ Γ∆.

∆ ` δ1 :proof(φ) ∆, y1 :proof(ψ) ` δ2 :proof(χ)
v-IMP -L

(A) ∆, y :proof(φ ⊃ ψ) ` IMP -R(δ1, y1 :δ2, y) :proof(χ)

where ∆ = (A) ∆, y :proof(φ ⊃ ψ).

Γ `Mδ1 :proof(φ) Γ ` λy1 :proof(ψ) .Mδ2 :proof(χ) Γ ` y :proof(φ ⊃ ψ)

ΓA,Γ∆ ` IMP -Rε(φ)ε(ψ)Mδ1(λy1 :proof(ψ) .Mδ2)y :proof(χ)

where Γ = ΓA,Γ∆, y :proof(φ ⊃ ψ).

(A) ∆, y :proof(∀σφ), y1 :proof(φx) `G3HOIL δ :proof(χ)
v-FORALL-L

(A) ∆, y :proof(∀σφ) `G3HOIL FORALL-L(y1 :δ, y) :proof(χ)

ΓA,Γ∆ ` λy1 :proof(φx) .Mδ :proof(φx)→ proof(χ) ΓA,Γ∆ ` y :proof(∀σφ)

ΓA,Γ∆ ` FORALL-Lε(σ)ε(φ)ε(χ)ε(x)(λy1 :proof(φx) .Mδ)y :proof(χ)

where y :proof(∀σφ) ∈ Γ∆.

(A), x :σ ∆, y :proof(∃σφ), y1 :proof(φx) `G3HOIL δ :proof(χ)
v-EXISTS-R

(A) ∆, y :proof(∃σφ) `G3HOIL EXISTS-L(δ, y) :proof(χ)

Γ ` N : (Πx :σ . proof(φx))→ proof(χ) Γ ` y :proof(∃σφx)

Γ ` EXISTS-Lε(σ)ε(φ)ε(χ)(λx :obj(σ) . λy1 :proof(φx) .Mδ)y :proof(χ)

where Γ = ΓA,Γ∆ and N = λx : obj(σ) . λy1 : proof(φx) .Mδ. We now just show
how the remaining rules are represented by Res.

(A) ∆ `G3HOIL δ1 :proof(φ) (A) ∆ `G3HOIL δ2 :proof(φ =o ψ)
v-EQ

(A) ∆ `G3HOIL EQ(δ1, δ2) :proof(ψ)

ΓA,Γ∆ `ΣG3HOIL
Mδ1 :proof(φ) ΓA,Γ∆ `ΣG3HOIL

Mδ2 :proof(φ ≈o ψ)
Res

ΓA,Γ∆ `ΣG3HOIL
EQε(φ)ε(ψ)Mδ1Mδ2 :proof(ψ)

(A), x :σ ∆ `G3HOIL δ :proof(φ =τ ψ)
v-LAM

(A) ∆ `G3HOIL LAM(δ) :proof(Λσxφ =σ⇒τ Λσxψ)

Γ ` λx :obj(σ) .Mδ :Πx :obj(σ) . proof(φ =τ ψ)

Γ ` LAMε(σ)ε(τ)ε(φ)ε(ψ)λx :obj(σ) .Mδ :proof(Φ)

where Γ = ΓAΓ∆ and Φ = Λσ,τλx :obj(σ) . φx ≈σ⇒τ Λσ,τλx :obj(σ) . ψx.
We give an example of a uniform proof and its encoding to allow us to begin
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to understand the relationship between resolution in G3HOIL and resolution in
LF.

Example 13.17
The following proof is uniform.

>
(A) ∆1 ` TOP :proof(>)

v-HY P
(A) ∆2 ` y3 :proof(Pa)

(A) ∆1 ` TOP :proof(>) (A) ∆2 ` y3 :proof(Pa)
v-IMP -L

(A) ∆1 ` IMP -L(TOP, y3 :y3, y2) :proof(Pa)

(A) ∆1 ` IMP -L(TOP, y3 :y3, y2) :proof(Pa)
v-FORALL

(A) ∆3 ` FORALL-L(y2 :IMP -L(TOP, y3 :y3, y2), y1) :proof(Pa)

(A) ∆3 ` FORALL-L(y2 :IMP -L(TOP, y3 :y3, y2), y1) :proof(Pa)

(A) ∆3 ` EXISTS-R(FOR-L(y2 :IMP -L(TOP, y3 :y3, y2), y1)) :proof(∃σyPy)

where ∆1 = y1 : proof(∀o(x ⊃ Pa)), y2 : proof(> ⊃ Pa), ∆2 = y1 : proof(∀o(x ⊃
Pa)), y2 : proof(> ⊃ Pa), y3 : proof(Pa), ∆3 = y1 : proof(∀o(x ⊃ Pa)) and P has
arity ι→ o.

This proof is represented in NR by the following derivation. We complete the
derivation in stages due to its size.

ΓA,Γ∆2 ` y3 :proof(Pa)

ΓA,Γ∆1 ` λy3 . y3 :proof(Pa)→ proof(Pa)

ΓA,Γ∆1 ` TOP :proof(>) Γ ` N :proof(Pa)→ proof(Pa)Γ ` y2 :proof(> ⊃ Pa)

Γ ` IMP -Lε(>)ε(Pa)TOP (λy3 :proof(Pa) . y3)y2 :proof(Pa)

ΓA,Γ∆1 `Mδ1 :proof(Pa)

ΓA,Γ∆3 ` λy2 :proof(> ⊃ Pa) .Mδ1 :proof(> ⊃ Pa)→ proof(Pa)

ΓA,Γ∆3Q :proof(> ⊃ Pa)→ proof(Pa) ΓA,Γ∆3 ` y1 :proof(∀σ(x ⊃ Pa)))

ΓA,Γ∆3 ` FORALL-Lε(σ)ε(x ⊃ Pa)ε(x)(Q)y1 :proof(Pa)

where Γ = ΓA,Γ∆1 , N = λy3 . y3, Q = λy2 : proof(> ⊃ Pa) .Mδ1 and Mδ1 =
IMP -Lε(>)ε(Pa)TOP (λy3 :proof(Pa) . y3)y2.

ΓA,Γ∆3 `Mδ2 :proof(Pa)

ΓA,Γ∆3 ` EXISTS-Rε(τ)ε(Qy)ε(y)(Mδ2) :proof(∃τPy)
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where Mδ2 = FORALL-Lε(o)ε(x ⊃ Pa)ε(x)(λy2 :proof(> ⊃ Pa) .Mδ1)y1. �

The same observations about how uniform proofs are represented in LF for
G3i also hold for G3HOIL. We now provide a definition of uniform proof-
terms, which we will show are the terms in NR which represent uniform proofs in
G3HOIL.

Definition 13.18 (Uniform Proof-Terms in NRΣG3HOIL
)

A uniform proof in NRΣG3HOIL
is a term M in long βη-normal form of type

proof(φ) in which all subterms N , which are not variables, satisfy the following
conditions:

• N never has type proof(¬φ);

• N never contains the term NEG-L;

• if N has type proof(>) then N = TOP ;

• if N has type proof(φ ∧ ψ) then N = P1 · · ·Pn where P1 = AND-R;

• if N has type proof(φ ∨ ψ) then N = P1 · · ·Pn where P1 = OR-R;

• if N has type proof(φ ⊃ ψ) then N = P1 · · ·Pn where P1 = IMP -R;

• if N has type proof(∀σφx) then N = P1 · · ·Pn where P1 = FORALL-R;

• if N has type proof(∃σφx) then N = P1 · · ·Pn where P1 = EXISTS-R. �

We have the following lemma.

Lemma 13.19 (Uniform Proof-terms Represent Uniform Proofs)
Let (A) ∆ `G3HOIL δ :proof(φ) be a provable assertion in G3HOIL and ΓA,Γ∆

`ΣG3HOIL
Mδ :proof(φ) be its representation in NRΣG3HOIL

. δ is in long βη-normal
form if and only if Mδ is a uniform proof-term. �

The proof is identical to Lemma 13.12. In Example 13.17, the proof-object is
in long βη-normal form and it is encoded in NRΣG3HOIL

as a uniform proof-term.
There is a particular class of sequents which always have a uniform proof.

These sequents are the higher-order hereditary Harrop sequents and we define
them below:

Definition 13.20 (Hereditary Harrop Sequents (Miller et al. 1991))
Let H be the set of all expressions of G3HOIL in β-normal form which do not
contain ⊃. An atomic formula A in H is said to be rigid if A is of the form
Pt1 . . . tn where P is a non-logical constant. We denote rigid formulæ by Ar.
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We say that a sequent ∆ `G3HOIL proof(φ) in G3HOIL is a higher-order
hereditary Harrop sequent if φ is a G-formula and all the formulæ in ∆ are D-
formulæ defined by the grammars:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀σG | ∃σG | D ⊃ G

D := Ar | G ⊃ Ar | D1 ∧D2 | ∀σD

TheD-formulæ defined by this grammar are called higher-order hereditary Harrop
clauses. �

The following corollary shows that higher-order hereditary Harrop sequents
have the property we want.

Corollary 13.21
Every higher-order hereditary Harrop sequent has a uniform proof.

Proof (Sketch) We invoke Lemma 12.10 to show that every proof in G3HOIL
corresponds to a proof inGHOIL. Miller et al. (1991) prove that every higher-order
hereditary Harrop sequent inGHOIL has a uniform proof. We invoke Lemma 12.10
to obtain a uniform proof in G3HOIL. �

We conclude this section with the following result which shows the relationship
between permutations of proofs of higher-order hereditary Harrop sequents and
permutations of derivations of their encodings.

Lemma 13.22
Let (A) ∆ `G3HOIL δ : proof(φ) be a higher-order hereditary Harrop sequent in
G3HOIL. If δ is not in long βη-normal form then there exists δ which is in
long βη-normal form such that (A) ∆ `G3HOIL δ

′ : proof(φ) and a permutation
from δ to δ′. Let Mδ′ be the uniform proof-term which represents δ′. There is a
permutation Mδ to Mδ′ corresponding to the permutation δ to δ′. Similarly, if Mδ

is not a uniform proof-term, then there exists a uniform proof-term Mδ′ together
with a permutation from Mδ to Mδ′. This permutation represents a permutation
δ to δ′ in G3HOIL, where δ′ is in long βη-normal form.

Proof (Sketch) The proof is analogous to that of Lemma 13.16. �

13.3 Representing ALPLs in LF, the Story so

Far

We summarize the results on G3i and G3HOIL before moving on to discuss multi-
conclusioned sequent systems. The reason for this is that the multi-conclusioned
systems have a substantially different encoding which requires a more complex
definition. We begin with a slightly more general definition of a uniform proof-
term.
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Definition 13.23 (Uniform Proof-Terms for Single-Conclusioned Systems)
Let L be a judged proof system with single-conclusioned sequent rules, which can
be adequately represented in LF. Let M be a term of the λΠΣL calculus in long
βη-normal form. We say that M is a uniform proof-term for a single-conclusioned
system if all subterms N , which are not variables, satisfy the following conditions:

• N never has type j(#(φ1, . . . , φn)) where # /∈ {>,∧,∨,⊃,∀σ,∃σ};

• N never contains the term NEG-L;

• if N has type j(>) then N = TOP ;

• if N has type j(φ ∧ ψ) then N = P1 · · ·Pn where P1 = AND-R;

• if N has type j(φ ∨ ψ) then N = P1 · · ·Pn where P1 = OR-R;

• if N has type j(φ ⊃ ψ) then N = P1 · · ·Pn where P1 = IMP -R;

• if N has type j(∀σφx) then N = P1 · · ·Pn where P1 = FORALL-R;

• if N has type j(∃σφx) then N = P1 · · ·Pn where P1 = EXISTS-R. �

This definition assumes that ∀ and ∃ are special cases of ∀σ and ∃σ. We note
that we have made the requirement that M be in long βη-normal form part of
the definition of a uniform proof-term. This definition will not work for multi-
conclusioned sequents. It relies on the type of the (sub)terms being the judged
formula in the succedent. This is not true for the encoding of multi-conclusioned
sequents. We have the following lemma.

Lemma 13.24 (Abstract Single-Conclusioned Logic Programming Language)
Let L be a judged proof system with single-conclusioned sequent rules, which can
be adequately represented in LF. If for all derivations ΓA,Γ∆ `ΣL M : j(φ), M is
a uniform proof-term or M can be transformed into a uniform proof-term, then
L is an abstract logic programming language.

Proof The definition of a uniform proof-term restricts us to fragments of intu-
itionistic , minimal and higher-order intuitionistic logics. The result follows from
Lemma 13.12 and 13.19. Minimal is treated as a special case of intuitionistic
logic. �

13.4 Representing Uniform Proofs in G3c in LF

We repeat the analysis of § 13.1 and 13.2 for G3c. We emphasize that the way
G3c is encoded in LF is different from G3i and G3HOIL even though a lot of
similar observations hold. We begin by seeing how Res represents the valid proof
rules of G3c. Again we ignore the instantiation of variables for clarity. As was
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the case for G3i, we observe that all the left rules are represented by Res as
generalized elimination rules. The right rules are not represented as introduction
rules as we shall see shortly. They are represented by the elimination rule of their
dual connective except for ⊃ r and ¬ r. For ∨ r, we use the version of the rule
which is suitable for proof-search; breaking the symmetry in this case.

We begin with HY P :ant(φ)→ suc(φ)→ # for which we have the resolution
step:

ΓX ,Γ∆,ΓΘ `ΣG3c
y1 :ant(φ) ΓX ,Γ∆,ΓΘ `ΣG3c

z1 :ant(ψ)
Res

ΓX ,Γ∆,ΓΘ `ΣG3c
HY P (y1)z2 :#

where y1 :ant(φ) ∈ Γ∆ and z1 :suc(ψ) ∈ ΓΘ.
We now proceed to examine all of the constants which encode left rules be-

ginning with AND-L : (ant(φ) → ant(ψ) → #) → (ant(φ ∧ ψ) → #). This has
the following resolution step:

Γ ` λy1 :ant(φ) . λy2 :ant(ψ) .Mδ :ant(φ)→ ant(ψ)→ # Γ ` y :ant(φ ∧ ψ)

Γ ` AND-L(λy1 :ant(φ) . λy2 :ant(ψ) .Mδ)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(φ ∧ ψ). We observe that we have the generalized
elimination rule for ∧.

For the constant OR-L : (ant(φ)→ #)→ (ant(ψ)→ #)→ (ant(φ ∨ ψ)→ #)
we have the resolution step:

Γ `M :ant(φ)→ # Γ ` N :ant(ψ)→ # Γ ` y :ant(φ ∨ ψ)

Γ ` OR-L(λy1 :ant(φ) .Mδ2)(λy2 :ant(ψ) .Mδ2)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(φ ∨ ψ), M = λy1 : ant(φ) .Mδ1 and N = λy2 :
ant(ψ) .Mδ2 . Again we see that we have the generalized elimination rule for ∨.

For the constant IMP -L : (suc(φ) → #) → (ant(ψ) → #) → (ant(φ ⊃ ψ) →
#) we have the resolution step:

Γ `M :suc(φ)→ # Γ ` N :ant(ψ)→ # Γ ` y :ant(φ ⊃ ψ)

Γ ` IMP -L(λz1 :suc(φ) .Mδ1)(λy1 :ant(ψ) .Mδ2)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(φ ⊃ ψ), M = λz1 : suc(φ) .Mδ1 and N = λy1 :
ant(ψ) .Mδ2 . For the constant NEG-L : (suc(φ)→ #)→ (ant(¬φ)→ #) we have
the resolution step:

Γ ` λz1 : suc(φ) .Mδ :suc(φ)→ # Γ ` y :ant(¬φ)
Res

Γ ` NEG-L(λz1 :suc(φ) .Mδ)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(¬φ), which is the generalized elimination rule for
¬.
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For the constant FORALL-L : (ant(φx)→ #)→ (ant(∀(λx : ι . φx))→ #) we
have the resolution step:

Γ ` λy1 :ant(φx) .Mδ :ant(φx)→ # Γ ` y :ant(∀(λx : ι . φx))

Γ ` FORALL-L(λy1 :ant(φx) .Mδ)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(∀(λx : ι . φx)), which is the generalized elimination
rule for ∀.

We have the last constant encoding a left rule of G3c, EXISTS-L : (Πx :
ι . ant(φx)→ #)→ (ant(∀(λx : ι . φx))→ #). We have the resolution step:

Γ ` λx : ι . λy1 :ant(φx) .Mδ :Πx : ι . ant(φx)→ # Γ `ΣG3c
y :ant(∃(λx : ι . φx))

Γ ` EXISTS-L(λx : ι . λy1 :ant(φx) .Mδ)y :#

where Γ = ΓX ,Γ∆,ΓΘ, y : ant(∃(λx : ι . φx)). The resolution rule is also in the
form of the generalized elimination rule for ∃.

We now turn to the representation of the right rules beginning with AND-R :
(suc(φ) → #) → (suc(φ) → #) → (suc(φ ∧ ψ) → #). We have the resolution
step:

Γ ` N :suc(φ)→ # Γ ` P :suc(ψ)→ # Γ ` z :suc(φ ∧ ψ)

Γ ` AND-R(λz1 :suc(φ) .Mδ1)(λz2 :suc(ψ) .Mδ2)z :#

where Γ = ΓX ,Γ∆,ΓΘ, z : suc(φ ∧ ψ), N = λz1 : suc(φ) .Mδ1 and P = λz2 :
suc(ψ) .Mδ2 . Here the rule is a generalized elimination rule but for ∨. To see
this, replace φ by ¬φ and ψ by ¬ψ and φ∧ψ by ¬(φ∧ψ) = ¬φ∨¬ψ. This is to
be expected because of the symmetry present in G3c.

For the constant OR-Ri : (suc(φi) → #) → (suc(φ1 ∨ φ2) → #) we have the
resolution step

Γ ` λzi :suc(φi) .Mδi :suc(φi)→ # Γ ` z :suc(φ1 ∨ φ2)

Γ ` OR-Ri(λzi :suc(φi))z :#

where ΓX ,Γ∆,ΓΘ, z : suc(φ1 ∨ φ2), which is not a generalized elimination rule. If
we were using the symmetric version of this rule then it would be the generalized
elimination rule for ∧ provided we replace each formula by its negation.

For the constant IMP -R : (suc(φ) → suc(ψ) → #) → (suc(φ ⊃ ψ) → #) we
have the resolution step:

Γ ` λz1 :suc(φ) . λz2 :suc(ψ) .Mδ :suc(φ)→ suc(ψ)→ # Γ ` z :suc(φ ⊃ ψ)

Γ ` OR-R(λz1 :suc(φ) . λz2 . suc(ψ) .Mδ)z :#

where Γ = ΓX ,Γ∆,ΓΘ, z : suc(φ ⊃ ψ). We can use weakening to obtain a version
of the rule which is in the form of a generalized elimination rule.
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For the constant NEG-R : (ant(φ) → #) → (suc(¬φ) → #) we have the
resolution step:

Γ ` λy1 :ant(φ) .Mδ :ant(φ)→ # Γ ` z :suc(¬φ)

Γ ` NEG-R(λy1 :ant(φ) .Mδ)z :#

where Γ = ΓX ,Γ∆,ΓΘ, z :suc(¬φ). Here we have the generalized elimination rule
for ¬.

For the constant FORALL-R : (Πx : ι . suc(φx)→ #)→ (suc(∀(λx : ι . φx))→
#) we have the resolution step:

Γ ` λx : ι . λz1 :suc(φx) .Mδ :Πx : ι . suc(φ)→ # Γ ` z :suc(∀(λx : ι . φx))

Γ ` FORALL-R(λx : ι . λz1 :suc(φx) .Mδ)z :#

where Γ = ΓX ,Γ∆,ΓΘ, z : suc(∀(λx : ι . φx)). We have the generalized elimination
rule for ∃ provided we replace each formula by its negation.

For the constant EXISTS-R : (suc(φx)→ #)→ (suc(∃(λx : ι . φx))→ #) we
have the resolution step:

Γ ` λz1 :suc(φx) .Mδ :suc(φx)→ # Γ ` z :suc(∃(λx : ι . φx))

Γ ` EXISTS-R(λz1 :suc(φx) .Mδ)z :#

where Γ = ΓX ,Γ∆,ΓΘ, z : suc(∃(λx : ι . φx)). Here we have the generalized elimi-
nation rule for ∀ provided we replace each formula by its negation.

We recall Examples 12.6 and 12.7 and show how theG3c proofs are represented
in NR.

Example 13.25 (Tertium Non Datur)
The proof expression

`G3c 〈〉
OR-R((z2,z1) :NEG-R(y1 :HY P (y1,z1),z2),z3)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ z3 :suc(¬φ ∨ φ)

is represented in NR by the assertion

ΓX , z3 :suc(¬φ∨¬φ) `ΣG3c
OR-R(λz2 :suc(¬φ) . λz1 :suc(φ) . NEG-R(λy1 :ant(φ) .

HY P (y1)z1)z2)z3 :#

This is derived as follows:

Γ1 ` y1ant(φ) Γ1 ` z1 :suc(φ)
Res

Γ1 ` HY P (y1)z1 :#
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Γ1 ` HY P (y1)z1 :#

Γ2 ` λy1 :ant(φ) . HY P (y1)z1 :ant(φ)→ #

Γ2 ` λy1 :ant(φ) . HY P (y1)z1 :ant(φ)→ # Γ2 ` z2 :suc(¬φ)

Γ2 ` NEG-R(λy1 :ant(φ) . ant(φ) . HY P (y1)z1)z2 :#

Γ2 ` NEG-R(λy1 :ant(φ) . ant(φ) . HY P (y1)z1)z2 :#

Γ3 ` λz1 :suc(φ) . NEG-R(λy1 :ant(φ) . ant(φ) . HY P (y1)z1)z2 :suc(φ)→ #

Γ3 ` N :suc(φ)→ #

Γ4 ` λz2 :suc(¬φ) . N :suc(¬φ)→ suc(φ)→ #

Γ4 ` λz2 :suc(¬φ) . N :suc(¬φ)→ suc(φ)→ # Γ4 ` z3 :suc(¬φ ∨ φ)

Γ4 ` OR-R(λz2 :suc(¬φ) . N)z3 :#

where Γ1 = ΓX , y1 :ant(φ), z1 :suc(φ), z2 :suc(¬φ), z3 :suc(¬φ ∨ φ), Γ2 = ΓX ,
z1 : suc(φ), z2 : suc(¬φ), z3 : suc(¬φ ∨ φ), Γ3 = ΓX , z2 : suc(¬φ), z3 : suc(¬φ ∨ φ) and
Γ4 = ΓX , z3 :suc(¬φ ∨ φ), N = λz1 :suc(φ) . NEG-R(λy1 :ant(φ) . ant(φ) .
HY P (y1)z1)z2. �

Example 13.26 (DeMorgan)
The proof expression

`G3c y1 :ant(¬(∀x . φx))
δ−→ z4 :suc(∃x . (¬φx))

where δ = NEG-L(z3 : FORALL-L(z1 : EXISTS-R(z2 : NEG-R(y2 :
HY P (y2, z1)z2), z4), z3), y1) is encoded in NR as the assertion

ΓX , y1 :ant(¬(∀(λx : ι . φx))), z4 :suc(∃(λx : ι . (¬φx))) `ΣG3c
NEG-Lεs(∀x . φx)

(λz3 :suc(∀(λx : ι . φx)) . FORALL-Rεs(φx)εs(x)(λz1 :suc(φx) . EXISTS-Rεs

(¬φx)εs(x)(λz2 :suc(¬φx) . NEG-Rεs(φx)(λy2 :ant(φx)HY Pεs(φx)(y2)z1)z2)z4)

z3)y1 :#

This is derived as follows:

Γ1 ` y2 :ant(φx) Γ1 ` z1 :suc(φx)

Γ1 ` HY P (y2)z1 :#

Γ1 ` HY P (y2)z1 :#

Γ2 ` λy2 :ant(φx) . HY P (y2)z1 :ant(φx)→ #

Γ2 ` λy2 :ant(φx) . HY P (y2)z1 :ant(φx)→ # Γ2 ` z2 :suc(¬φx)

Γ2 ` NEG-R(λy2 :ant(φx) . HY P (y2)z1)z2 :#
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Γ2 `Mδ1 :#

Γ3 ` λz2 :suc(¬φx) .Mδ1 :suc(¬φx)→ #

Γ3 ` λz2 :suc(¬φx) .Mδ1 :suc(¬φx)→ # Γ3 ` z4 :suc(∃(λx : ι . φx))

Γ3 ` EXISTS-R(λz2 :suc(¬φx) .Mδ1)z4 :#

Γ3 ` EXISTS-R(λz2 :suc(¬φx) .Mδ1)z4 :#

Γ4 ` λz1 :suc(φx) . EXISTS-R(λz2 :suc(¬φx) .Mδ1)z4 :suc(φx)→ #

Γ4 `Mδ2 :suc(φx)→ # Γ4 ` z3 :suc(∀(λx : ι . φx))

Γ4 ` FORALL-R(Mδ2)z3 :#

Γ4 ` FORALL-R(Mδ2)z3

Γ5 ` λz3 :suc(∀(λx : ι . φx)) . FORALL-R(Mδ2)z3 :suc(∀(λx : ι . φx))→ #

Γ5 `Mδ3 :suc(∀(λx : ι . φx))→ # Γ5 ` y1 :ant(¬(∀(λx : ι . φx)))

Γ5 ` NEG-L(Mδ3)y1

where Γ1 = ΓX , y1 :ant(¬(∀(λx : ι . φx))), y2 :ant(φx), z1 : suc(φx), z2 : suc(¬φx), z3 :
suc(∀(λx : ι . φx)), z4 :suc(∃(∀(λx : ι . (¬φx)))), Γ2 = ΓX , y1 :ant(¬(∀(λx : ι . φx))),
z1 : suc(φx), z2 : suc(¬φx), z3 : suc(∀(λx : ι . φx)), z4 : suc(∃(∀(λx : ι . (¬φx)))),
Γ3 = ΓX , y1 : ant(¬(∀(λx : ι . φx))), z1 : suc(φx), z3 : suc(∀(λx : ι . φx)), z4 :
suc(∃(∀(λx : ι . (¬φx)))), Γ4 = ΓX , y1 : ant(¬(∀(λx : ι . φx))), z3 : suc(∀(λx :
ι . φx)), z4 : suc(∃(∀(λx : ι . (¬φx)))), Γ5 = ΓX , y1 : ant(¬(∀(λx : ι . φx))), z4 :
suc(∃(∀(λx : ι . (¬φx)))), Mδ1 = NEG-R(λy2 : ant(φx) . HY P (y2)z1)z2, Mδ2 =
λz1 : suc(φx) . EXISTS-R(λz2 : suc(¬φx) .Mδ1)z4 and Mδ3 = λz3 : suc(∀(λx :
ι . φx)) . FORALL-R(Mδ2)z3. �

We now look for a condition on the terms of NRΣG3c
in long βη-normal form

which ensures that they represent uniform proofs in G3c. We have to be careful
here with the notion of uniform proof because we are using the logic G3c where
every right rule has multiple-conclusioned premisses. The definition of uniform
proof given by Miller et al. (1991) requires us to work with single-conclusions.
A careful analysis of the way the extra formulæ are used in G3c allows us to
reconstruct their notion of uniform proof for our setting. The rules of G3c require
the principal formula to be present in the premisses. We ignore any formulæ which
are not required by the rule and any principal formulæ in the premisses and then
use the same notion of uniform proof as Miller et al. Only sequents of the form
Γ → φ can have uniform proofs. This condition is the same as Miller et al. We
now need to adapt the conditions on the right rules so that they take into account
the extra formulæ. The following idea is crucial here, working from the bottom
up: we begin with a single-conclusioned sequent and if the formulæ on the right
contain any logical connectives it must be the conclusion of the right rule of the
principal connective, otherwise we apply a suitable left rule. We apply the same
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analysis to the premisses of the rule but only to the new formulæ. We show how
to derive a uniform proof for the sequent

∀xφ→ φ ∨ ψ

This has to be the conclusion of ∨ r.

∀xφ→ φ, φ ∨ ψ
∨ r

∀xφ→ φ ∨ ψ

where φ is the new formula in the succedent. φ is atomic so we have to apply a
left rule. We conclude it must be the conclusion of ∀ l.

∀xφ, φ→ φ, φ ∨ ψ
∀ r

∀xφ→ φ, φ ∨ ψ

where φ is the new formula introduced on the left. We now have an axiom, so
we are finished. The uniform proof is

Ax
∀xφ, φ→ φ, φ ∨ ψ

∀ r
∀xφ→ φ, φ ∨ ψ

∨ r
∀xφ→ φ ∨ ψ

The key here is that we only concentrate on new formulæ on the right of the
sequent. This means that we are treating G3c as if it were the sequent system
LK, (Gentzen 1934). Hence the notion of uniform proof can be used in G3c. We
only require that the notion of uniform proof in Miller et al. hold for the principal
formula on the right. Any other formulæ on the right are occurrences of formulæ
introduced by right rules, working from the bottom upwards. We can rewrite the
rules of Miller et al. for our setting and define uniform proof for G3c thus:

Definition 13.27 (Uniform Proof for G3c)
A proof of a sequent ∆ → φ in G3c is uniform if every occurrence of a sequent
of the form ∆ → G,Θ where G is the prinicipal formula, satisfies the following
conditions:

• If G is > then the sequent is initial.

• If G is φ ∧ ψ then that sequent is inferred by ∧ R from ∆ → φ, φ ∧ ψ,Θ
and ∆→ ψ, φ ∧ ψ,Θ.

• If G is φ∨ψ then that sequent is inferred by ∨ R from either ∆→ φ, φ∨ψ,Θ
or ∆→ ψ, φ ∨ ψ,Θ.

• If G is φ ⊃ ψ then the sequent is inferred by ⊃ R from ∆, φ→ ψ, φ ⊃ ψ,Θ.
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• If G is ∀xφ then the sequent is inferred by ∀ R from ∆ → [c/x]φ,∀xφ,Θ,
where c is a parameter that does not occur in the given sequent.

• If G is ∀xφ then the sequent is inferred by ∃ R from ∆→ [t/x]φ,∃φ,Θ for
some term t.

• G is never ¬φ.

• No ¬ l rules are used.

• Each formula in ∆ is used in at most one left rule.
�

Since we are starting from a sequent of the form ∆ ` φ, there is at most one
principal formula on the right all through the proof, so the above definition is
well-defined. If we had not replaced ∨ R by the two equivalent rules we would
have had two principal formulæ which would have meant the above definition was
not well-defined. The last condition ensures that left rules are used correctly. In
G3c the formula introduced by the left rule are present throughout the rule and
we do not want them reused.

We begin by looking at some examples of uniform and non-uniform proofs in
G3c.

Example 13.28 (Tertium Non Datur)
We recall Examples 12.6 and 13.25. The proof of the law of excluded middle
is uniform since it does not involve any left rules. We have to ensure that any
condition we put on the terms of NRΣG3c

in long βη normal form covers this
special case. �

Example 13.29 (DeMorgan)
We recall Examples 12.7 and 13.26. The proof used in these examples is non-
uniform since it involves negation. The term representing this non-uniform proof
is

NEG-Lεs(∀x . φx)(λz3 :suc(∀(λx : ι . φx)) . FORALL-R

εs(φx)εs(x)(λz1 :suc(φx) . EXISTS-Rεs(¬φx)εs(x)(λz2 :suc(¬φx) .

NEG-Rεs(φx)(λy2 :ant(φx)HY Pεs(φx)(y2)z1)z2)z4)z3)y1 �

Example 13.30
The following proof is uniform.

Ax
(∀xφx) ⊃ ψ, φx→ φx,∀xφx, ψ ∨ τ

∀ r
φx, (∀xφx) ⊃ ψ → ∀xφx, ψ ∨ τ

Ax
φx, (∀xφx) ⊃ ψ, ψ → ψ, ψ ∨ τ

⊃ l
φx, (∀xφx) ⊃ ψ → ψ, ψ ∨ τ

∨ r
φx, (∀xφx) ⊃ ψ → ψ ∨ τ
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which has valid proof expression

Xy1 :ant(φx), y3 :ant((∀xφx) ⊃ ψ)

OR-R1(z3 : IMP -L(z2 :FORALL-R(z1 :HY P (y1,z1),z2),y2 :HY P (y2,z3),y3),z4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

z4 :suc(ψ ∨ τ)

where y2 : ant(ψ), z1 : suc(φx), z2 : suc(∀xφx), z3 : suc(ψ). This assertion is
represented in NRΣG3c

by the assertion

ΓX , y1 :ant(φx), y3 :ant((∀xφx) ⊃ ψ) `ΣG3c
OR-Rεs(ψ)εs(τ)(λz3 :suc(ψ) .

IMP -Lεs(∀xφx)εs(ψ)(λz2 :suc((∀x(λx : ι . φx)) ⊃ ψ) . FORALL-Rεs(x)εs(φx)

(λz1 :suc(φx) . HY P (y1)z1)z2)(λy2 :ant(ψ) . HY P (y2)z3)y3)z4 :# �

We now define a condition on the terms of NRΣG3c
in long βη-normal form so

that they represent uniform proofs in G3c.

Definition 13.31 (Uniform Proof-terms in NRΣG3c)
Let ΓX ,Γ∆, z : suc(φ) `ΣG3c

Mδ : #, where Mδ is in long βη-normal form, be
a derivable assertion in NRΣG3c

. We say that Mδ is a uniform proof-term if all
subterms of the form My :# typed in a context ΓX ,Γ∆,ΓΘ satisfy the following
conditions:

• if y : ant(@(φ1, . . . , φn)), where @ ∈ {>,∧,∨,⊃,∀σ, ∃σ}, then ΓΘ contains
z :suc(ψ), where ψ is atomic;

• if y :suc(φ), then φ = @(φ1, . . . , φn) where @ ∈ {∧,∨,⊃,∀,∃}. �

The above definition is very different from one given for NRΣG3i
. That encod-

ing relied on the type of each subterm corresponding to the judged formula in the
succedent. Here the succedent in sequents in G3c is encoded as a context. We
thus have to examine the variables used in a term to determine when a left rule
has been applied and then determine if the succedent was atomic. The second
condition ensures that all the right rules where applied to non-atomic formulæ.

Lemma 13.32 (Uniform Proof-terms Represent Uniform Proofs)
Let `G3c (X) ∆

δ−→ z : suc(φ) be a provable assertion in G3c and ΓX ,Γ∆, z :
suc(φ) `ΣG3c

Mδ :#, where Mδ is in long βη normal form, be its representation in
NRΣG3c

. δ is in long βη normal form if and only if Mδ is a uniform proof-term.

Proof We show the right to left direction first. Let (X) ∆
δ−→ suc(φ) be a

provable assertion in G3c and δ be a uniform proof. Since δ is a uniform proof-
term, working from the bottom upwards, any left rule is only applied when the
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principal formula in the succedent is atomic. Thus any use of a left rule in a proof-
object δ corresponds to a subterm of the form My where y : ant(φ), provided φ
is not equal to ¬τ . This is typed in the context ΓX ,Γ∆,ΓΘ, where ΓΘ contains a
variable z :suc(ψ), where ψ is atomic.

Working from right to left, we observe that the condition that z :suc(ψ) ∈ ΓΘ,
where ψ is atomic is enough to ensure that the principal formula of the succedent
is atomic. Hence, working upwards, left rules are only applied in δ when the
principal formula in the succedent is atomic and thus δ is in long βη-normal
form. �

With G3i we saw that every hereditary Harrop sequent had a uniform proof.
There is a similar class of sequents for G3c, the Horn sequents. We have the
following definition.

Definition 13.33 (Horn Sequent (Miller et al. 1991))
A provable sequent ∆ → G in G3c is a Horn sequent if ∆ = D1, . . . , Dn and Di

and G are defined by the following grammars:

D := A | G ⊃ A | D1 ∧D2 | ∀xD

G := A | G1 ∧G2 | G1 ∨G2 | ∃xD

where A is an atomic formula. Formulæ defined by D are called Horn clauses. �

The following lemma clarifies the relationship between uniform proof-terms
and the assertions of NRΣG3c

which represent Horn sequents.

Lemma 13.34 (Representations of Horn Sequents have a Uniform Proof Term)
Let ∆

G−→ be a provable Horn sequent in G3c. Let `G3c (X) ∆
δ−→ z : suc(G)

be its valid proof expression. There exists a uniform proof-term M such that
ΓX ,Γ∆, z :suc(φ) `M :#.

Proof The proof that every provable Horn sequent in G3c has a uniform proof
can be found in (Miller et al. 1991). It is important to realise that it must be
adapted slightly to G3c because G3c does not allow introduction of formulæ on the
right, only their removal. The trick lies in keeping track of the principal formula
in each rule. We obtain the uniform proof-term M ′

δ as follows. We take δ′ which is

in long βη normal form and has valid proof expression `G3c (X) ∆
δ′−→ z : suc(G)

and represent it in NRΣG3c
as ΓX ,Γ∆, z : suc(G) `ΣG3c

M ′
δ : # where M ′

δ is a
uniform proof-term. �

We provide an example of a Horn sequent and show that the proof permuta-
tion in G3c corresponds to a permutation in NRΣG3c

.
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Example 13.35
The following proof is not uniform:

Ax
(∃xψx) ⊃ φ, ψx, φ→ φ, φ ∧ ψx, (φ ∧ ψx) ∨ τ

Ax
(∃xψx) ⊃ φ, φ, ψx→ ψx, φ ∧ ψx, φ ∧ ψx, φ ∧ ψx, (φ ∧ ψx) ∨ τ)

M N
∧ r

(∃xψx) ⊃ φ, φ, ψx→ φ ∧ ψx, (φ ∧ ψx) ∨ τ
(∃xψx) ⊃ φ, φ, ψx→ φ ∧ ψx, (φ ∧ ψx) ∨ τ

∨ r1
(∃xψx) ⊃ φ, ψx, φ→ (φ ∧ ψx) ∨ τ

Ax
(∃xψx) ⊃ φ, ψx→ ψx,∃xφx, (φ ∧ ψx) ∨ τ
(∃xψx) ⊃ φ, ψx→ ψx,∃xφx, (φ ∧ ψx) ∨ τ

∃ r
(∃xψx) ⊃ φ, ψx→ ∃xφx, (φ ∧ ψx) ∨ τ

(∃xψx) ⊃ φ, ψx→ ∃xφx, (φ ∧ ψx) ∨ τ P
⊃ l

(∃xψx) ⊃ φ, ψx→ (φ ∧ ψx) ∨ τ)

where M = (∃xψx) ⊃ φ, ψx, φ → φ, φ ∧ ψx, (φ ∧ ψx) ∨ τ , N = (∃xψx) ⊃
φ, φ, ψx→ ψx, φ∧ψx, φ∧ψx, φ∧ψx, (φ∧ψx)∨τ) and P = (∃xψx) ⊃ φ, φ, ψx→
φ ∧ ψx, (φ ∧ ψx) ∨ τ . It has the valid proof expression:

`G3c (X) y1 :ant(ψx), y3 :ant((∃xψx) ⊃ φ)
δ−→ z5 :suc((φ ∧ ψx) ∨ τ)

where y2 : ant(φ), z1 : suc(ψx), z2 : suc(φ), z3 : suc(∃xψx), z4 : suc(φ ∧ ψx) and
δ = IMP -L(z3 : EXISTS-R(z1 : HY P (y1, z1), z3), y2 : OR-R1(z4 : AND-R(z2 :
HY P (y2, z2), z1 :HY P (y1, z1), z4), z5), y3). This is represented in NRΣG3c

by the
assertion

ΓX , y1 :ant(ψx), y3 :ant((∃(λx : ι . ψx) ⊃ φ), z5 :suc((φ ∧ ψx) ∨ τ) `ΣG3c
IMP -Lεs

(∃(λx : ι . ψx)εs(φ)(λz3 :suc(∃(λx : ι . ψx) . EXISTS-Rεs(ψx)(λx : ι . λz1 :suc(ψx) .

HY Pεs(ψx)(y1)z1)z3)(λy2 :ant(φ) . OR-R1εs(φ ∧ ψx)εs(τ)(λz4 :suc(φ ∧ ψx) .

AND-Rεs(φ)εs(ψx)(λz2 :suc(φ) . HY Pεs(φ)(y2)z2)(λz1 :suc(ψx) . HY Pεs(ψx)

(y1)z1)z4)z5)y3 :#

which has the following derivation. We do the derivation in stages due to the
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size.
Γ1 ` y1 :ant(ψx) Γ1 ` z2 :suc(ψx)

Res
Γ1 ` HY P (y1)z1 :#

Γ1 ` HY P (y1)z1 :#

Γ2 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ2 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ3 ` λx : ι . λz1 :suc(ψx) . HY P (y1)z1 :Πx : ι . suc(ψx)→ #

Γ3 `M :Πx : ι . suc(ψx)→ # Γ3 ` z3 :suc(∃(λx : ι . ψx))

Γ3 ` EXISTS-R(M)z3 :#

where Γ1 = ΓX , x : ι, y1 : ant(ψx), y3 : ant(∃(λx : ι . ψx), z1 : suc(ψx), z3 : suc(∃(λx :
ι . ψx), z5 : suc((φ ∧ ψx) ∨ τ), Γ2 = ΓX , x : ι, y1 : ant(ψx), y3 : ant(∃(λx : ι . ψx), z3 :
suc(∃(λx : ι . ψx), z5 : suc((φ ∧ ψx) ∨ τ) and Γ3 = ΓX , y1 : ant(ψx), y3 : ant(∃(λx :
ι . ψx), z3 :suc(∃(λx : ι . ψx), z5 :suc((φ ∧ ψx) ∨ τ) and M = λx : ι . λz1 :suc(ψx) .
HY P (y1)z1.

Γ4 ` y2 :ant(φ) Γ4 ` z2 :suc(φ)

Γ4 ` HY P (y2)z2 :#

Γ4 ` HY P (y2)z2 :#

Γ5 ` λz2 :suc(φ) . HY P (y2)z2 :suc(φ)→ #

Γ8 ` y1 :ant(ψx) Γ8 ` z1 :suc(ψx)

Γ8 ` HY P (y1)z1 :#

Γ8 ` HY P (y1)z1 :#

Γ5 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ5 ` P :suc(φ)→ # Γ5 ` Q :suc(ψx)→ # Γ5 ` z4 :suc(φ ∧ ψx)

Γ5 ` AND-R(P )(Q)z4 :#

where Γ4 = ΓX , y1 : ant(ψx), y3 : ant(ψx), z2 : suc(φ), z4 : suc(φ ∧ ψx), z5 : suc((φ ∧
ψx) ∨ τ), Γ5 = ΓX , y1 :ant(ψx), y3 :ant(ψx), z4 :suc(φ ∧ ψx), z5 :suc((φ ∧ ψx) ∨ τ),
Γ8 = ΓX , y1 :ant(ψx), y3 :ant(ψx), z1 :suc(ψx), z4 :suc(φ∧ψx), z5 :suc((φ∧ψx)∨τ),
P = λz2 :suc(φ) . HY P (y2)z2 and Q = λz1 :suc(ψx) . HY P (y1)z1.

Γ5 `Mδ2 :#

Γ6 ` λz4 :suc(φ ∧ ψx) .Mδ2 :suc(φ ∧ ψx)→ #

Γ6 ` λz4 :suc(φ ∧ ψx) .Mδ2 :suc(φ ∧ ψx)→ # Γ6 ` z5 :suc((φ ∧ ψx) ∨ τ)

Γ6 ` OR-R1(λz4 :suc(φ ∧ ψx) .Mδ2)z5 :#

where Mδ2 = AND-Rεs(φ)εs(ψx)(λz2 :suc(φ) . HY Pεs(φ)(y2)z2)(λz1 :suc(ψx) .
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HY Pεs(ψx)(y1)z1)z4, Γ6 = ΓX , y1ant(ψx), y2 : ant(φx), y3 : ant((∃(λx : ι . ψx) ⊃
φ), z5 :suc((φ ∧ ψx) ∨ τ).

Γ3 `Mδ1 :#

Γ7 ` λz3 :suc(∃(λx : ι . ψx)) .Mδ1 :suc(∃(λx : ι . ψx)→ #

Γ6 `Mδ3 :#

Γ7 ` λy2 :ant(φ) .Mδ3 :suc(φ)→ #

Γ7 ` R :suc(∃(λx : ι . ψx))→ #Γ7 ` S :suc(φ)→ #Γ7 ` y3 :ant(∃(λx : ι . ψx) ⊃ φ)

Γ7 ` IMP -L(R)(S)y3 :#

where Mδ1 = λx : ι . λz2 : suc(ψx) . HY Pεs(ψx)(y1)z1, Mδ3 = OR-Rεs(φ ∧
ψx)εs(τ)(λz4 : suc(φ ∧ ψx) .Mδ2)z5 and Γ7 = ΓX , y1 : ant(ψx), y3 : ant((∃(λx :
ι . ψx) ⊃ φ), z5 : suc((φ ∧ ψx) ∨ τ), R = λz3 : suc(∃(λx : ι . ψx)) .Mδ1 and S = λy2 :
ant(φ) .Mδ3 .

We can convert the above proof into a uniform proof by moving the ⊃ L rule
upwards thus:

Ax
(∃xψx) ⊃ φ, ψx→ ψx,∃xψx, (φ ∧ ψx) ∨ τ

(∃xψx) ⊃ φ, ψx→ ψx,∃xψx, (φ ∧ ψx) ∨ τ
∃ r

ψx, (∃xψx) ⊃ φ→ ∃xψx, (φ ∧ ψx) ∨ τ

Ax
ψx, (∃xψx) ⊃ φ, φ→ φ, φ ∧ ψ, (φ ∧ ψx) ∨ τ

P → ∃xψx, (φ ∧ ψx) ∨ τ P → φ, φ ∧ ψ, (φ ∧ ψx) ∨ τ
⊃ l

P → φ, φ ∧ ψx, (φ ∧ ψx) ∨ τ

Ax
(∃xψx) ⊃ φ, ψx→ ψx, φ ∧ ψ, (φ ∧ ψx) ∨ τ

P → φ, φ ∧ ψx, (φ ∧ ψx) ∨ τ (∃xψx) ⊃ φ, ψx→ ψx, φ ∧ ψ, (φ ∧ ψx) ∨ τ
∧ r

ψx, (∃xψx) ⊃ φ→ φ ∧ ψx, (φ ∧ ψx) ∨ τ
ψx, (∃xψx) ⊃ φ→ φ ∧ ψx, (φ ∧ ψx) ∨ τ

∨ r1
ψx, (∃xψx) ⊃ φ→ (φ ∧ ψx) ∨ τ

where P = ψx, (∃xψx) ⊃ φ, which has valid proof expression:

`G3c (X) y1 :ant(ψx), y3 :ant((∃xψx) ⊃ φ)

δ−→

z5 :suc((φ ∧ ψx) ∨ τ)
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where y2 : ant(φ), z1 : suc(ψx), z2 : suc(φ), z3 : suc(∃xψx), z4 : suc(φ ∧ ψx) and
δ = OR-R1(z4 : AND-R(z2 : IMP -L(z3 : EXISTS-R(z1 : HY P (y1, z1), z3), y2 :
HY P (y2, z2), y3), z1 :HY P (y1, z1), z4), z5). This is represented in NRΣG3c

by the
assertion

ΓX , y1 :ant(ψx), y3 :ant((∃(λx : ι . ψx) ⊃ φ), z5 :suc((φ ∧ ψx) ⊃ τ) `ΣG3c
OR-R1

εs(φ ∧ ψx)εs(τ)(λz4 :suc(φ ∧ ψx) . AND-Rεs(φ)εs(ψx)(λz2 :suc(φ) . IMP -L

εs(∃(λx : ι . ψx)εs(φ)(λz3 :suc(∃(λx : ι . ψx) . EXISTS-Rεs(ψx)(λx : ι .

λz1 :HY Pεs(ψx)(y1)z1)z3)(λy2 :ant(φ) . HY Pεs(φ)(y2)z2)y3)(λz1 :HY Pεs(ψx)

(y1)z1)z4)z5

which has a uniform proof-term. This assertion has the following derivation.
Again we do it in parts due to the size.

Γ ` y1 :ant(ψx) Γ1 ` z1 :suc(ψx)

Γ1 ` HY P (y1)z1 :#

Γ1 ` HY P (y1)z1 :#

Γ2 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ2 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ3 ` λx : ι . λz1 :suc(ψx) . HY P (y1)z1 :Πx : ι . suc(ψx)→ #

Γ3 ` P :suc(ψx)→ # Γ3 ` z3 :suc(∃(λx : ι . ψx))

Γ3 ` EXISTS-R(P )z3 :#

where Γ1 = ΓX , x : ι, y1 : ant(ψx), y3 : ant((∃(λx : ι . ψx)) ⊃ φ), z1 : suc(ψx), z2 :
suc(φ), z4 : suc(φ ∧ ψx), z5 : suc((φ ∧ ψ) ∨ τ), Γ2 = ΓX , x : ι, y1 : ant(ψx), y3 :
ant((∃(λx : ι . ψx)) ⊃ φ), z2 :suc(φ), z4 :suc(φ∧ψx), z5 :suc((φ∧ψ)∨τ), Γ3 = ΓX , y1 :
ant(ψx), y3 :ant((∃(λx : ι . ψx)) ⊃ φ), z2 :suc(φ), z4 :suc(φ∧ψx), z5 :suc((φ∧ψ)∨ τ)
and P = λx : ι . λz1 :suc(ψx) . HY P (y1)z1.

Γ4 ` λy2 :ant(φ) Γ4 ` z2 :suc(φ)

Γ4 ` HY P (y2)z2 :#

Γ4 ` HY P (y2)z2 :#

Γ3 ` λy2 :ant(φ) . HY P (y2)z2 :ant(φ)→ #

Γ3 `Mδ1 :suc(∃(λx : ι . ψx))→ # Γ3 ` Q Γ3 ` y3 :ant((∃(λx : ι . ψx)) ⊃ φ)

Γ3 ` IMP -L(Mδ1)(Q)y3 :#

where Mδ1 = EXISTS-Rεs(ψx)(λx : ι . λz2 : suc(ψx) . HY Pεs(ψx)(y1)z1)z3 and
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Γ4 = ΓX , y1 : ant(ψx), y1 : ant(φ), y3 : ant((∃(λx : ι . ψx)) ⊃ φ), z2 : suc(φ), z4 :
suc(φ ∧ ψx), z5 :suc((φ ∧ ψ) ∨ τ) and Q = λy2 :ant(φ) . HY P (y2)z2.

Γ3 `Mδ2 :#

Γ5 ` λz1 :suc(φ) .Mδ2 :suc(φ)→ #

Γ6 ` y1 :ant(ψx) Γ6 ` z1 :suc(ψx)

Γ6 ` HY P (y1)z1 :#

Γ6 ` HY P (y1)z1 :#

Γ5 ` λz1 :suc(ψx) . HY P (y1)z1 :suc(ψx)→ #

Γ5 ` λz1 :suc(φ) .Mδ2 :suc(φ)→ # Γ5 ` R :suc(ψx)→ # Γ5 ` z4 :suc(φ ∧ ψx)

Γ5 ` AND-R(λz1 :suc(φ) .Mδ2)(R)z4

where Mδ2 = IMP -Lεs(∃(λx : ι . ψx))εs(φ)(Mδ1)(λy2 : ant(φ) . HY Pεs(φ)(y2)z2)
0y3, Γ5 = ΓX , y1 : ant(ψx), y3 : ant((∃(λx : ι . ψx)) ⊃ φ), z4 : suc(φ ∧ ψx), z5 :
suc((φ ∧ ψ) ∨ τ), Γ6 = ΓX , y1 :ant(ψx), y3 :ant((∃(λx : ι . ψx) ⊃ φ), z1 : suc(ψx), z4 :
suc(φ ∧ ψx), z5 :suc((φ ∧ ψ) ∨ τ) and R = λz1 :suc(ψx) . HY P (y1)z1.

Γ5 `Mδ3 :#

Γ7 ` λz4 :suc(φ ∧ ψx) .Mδ3 :suc(φ ∧ ψx)→ #

Γ7 ` λz4 :suc(φ ∧ ψx) .Mδ3 :suc(φ ∧ ψx)→ # Γ7 ` z5 :suc((φ ∧ ψx) ∨ τ)

Γ7 ` OR-R(λz4 :suc(φ ∧ ψx) .Mδ3z5 :#

It is possible to obtain this derivation from the first one by moving the reso-
lution step representing v-IMP -I up the derivation providing we are careful. It
is important that we move the → R rule up the tree with the resolution step.
We can only move the resolution step up as far as the occurrence of the variables
that → I abstracts exist. �

The analysis we did for G3i holds here. We can permute a resolution step
resolving a constant encoding a left rule, together with a→ R rule; and, possibly
a Π I rule up the proof-tree until the first occurrence of the variables which the
→ I or Π I abstracts, in the context. The following lemma formalizes this
remark.

Lemma 13.36
Let `G3c (X) ∆

δ1−→ z : suc(φ) be a provable Horn sequent in G3c and ΓX ,Γ∆, z :
suc(φ) `ΣG3c

Mδ1 :# be its representation in NRΣG3c
. If δ is not in long βη-normal

form, then there exists a proof-object δ′ in long βη-normal form together with a
permutation from δ to δ′. This permutation has a corresponding permutation
taking Mδ to Mδ′. Similarly, if Mδ is not a uniform proof-term, then there exists
a uniform proof-term Mδ′ together with a permutation from Mδ to Mδ′. This
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transformation corresponds to a permutation from δ to δ′, where δ′ is a uniform
proof-term.

Proof It is sufficient to show that any permutation in G3c corresponds to a
permutation in NRΣG3c

. Since we are transforming a proof into long βη-normal
form, we are only going to be permutating left rules past right rules. We show
some of the more interesting cases, the rest are similar.

We begin with v-OR-L being permutated past a v-AND-R. We begin with
the proof-tree:

` (X) ∆1
δ1−→ z1 :suc(φ), z :suc(φ ∧ ψ),Θ ` (X) ∆1

δ2−→ z2 :suc(ψ), z :suc(φ ∧ ψ),Θ

` (X) ∆1
AND-R(z1 : δ1,z2 : δ2,z)−−−−−−−−−−−−−→ z :suc(φ ∧ ψ),Θ

` (X) ∆1
AND-R(z1 : δ1,z2 : δ2,z)−−−−−−−−−−−−−→ Θ1 ` (X) ∆2

δ3−→ Θ1

` (X) ∆, y :ant(χ ∨ τ)
OR-L(y1 :AND-R(z1 : δ1,z2 : δ2,z),y2 : δ3,y)−−−−−−−−−−−−−−−−−−−−−−−−→ z :suc(φ ∧ τ),Θ

where ∆1 = ∆, y1 : ant(χ), y : ant(χ ∨ τ), ∆2 = ∆, y2 : ant(τ), y : suc(χ ∨ τ) and
Θ1 = z :suc(φ ∨ ψ),Θ, which is permutated to

` (X) ∆1
δ1−→ Θ1 ` (X) ∆

δ′3−→ Θ1

` (X) ∆3

OR-L(y1 : δ1,y2 : δ′3,y)
−−−−−−−−−−−−→ Θ1

` (X) ∆1
δ2−→ Θ2 ` (X) ∆2

δ′′3−→ Θ2

` (X) ∆3

OR-L(y1 : δ2,y2 : δ′′3 ,y)
−−−−−−−−−−−−→ Θ2

` (X) ∆3

OR-L(y1 : δ1,y2 : δ′3,y)
−−−−−−−−−−−−→ Θ1 ` (X) ∆3

OR-L(y1 : δ2,y2 : δ′′3 ,y)
−−−−−−−−−−−−→ Θ2

` (X) ∆3

AND-R(z1 :OR-L(y1 : δ1,y2 : δ′3,y),z2 :OR-L(y1 : δ2,y2 : δ′′3 ,y),z)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Θ3

where ∆1 = ∆, y1 : ant(χ), y : ant(χ ∨ τ), ∆2 = ∆, y2 : ant(τ), y : ant(χ ∨ τ),
∆3 = ∆, y : ant(χ ∨ τ), Θ1 = Θ, z1 : suc(φ), z2 : suc(φ ∧ ψ), Θ2 = Θ, z2 : suc(ψ), z :
suc(φ ∧ ψ), Θ3 = Θ, z :suc(φ ∧ ψ) and δ′3 and δ′′3 are δ3 followed by weakenings.

We encode the first proof-tree in NRΣG3c
as the following derivation:

ΓX ,Γ∆1 ,ΓΘ1 `Mδ1 :#

ΓX ,Γ∆1 ,ΓΘ3 ` λz1 :suc(φ) .Mδ1 :suc(φ)→ #

ΓX ,Γ∆1 ,ΓΘ2 `Mδ2 :#

ΓX ,Γ∆1 ,ΓΘ3 ` λz2 :suc(ψ) .Mδ2 :suc(ψ)→ #
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Γ1 ` λz1 :suc(φ) .Mδ1 :suc(φ)→ # Γ1 ` λz2 :suc(ψ) .Mδ2 :suc(ψ)→ #

Γ1 ` AND-R(λz1 :suc(φ) .Mδ1)(λz2 :suc(ψ) .Mδ2)z :#

Γ1 ` AND-R(λz1 :suc(φ) .Mδ1)(λz2 :suc(ψ) .Mδ2)z :#

Γ2 ` λy1 :ant(χ) . AND-R(λz1 :suc(φ) .Mδ1)(λz2 :suc(ψ) .Mδ2) :ant(χ)→ #

ΓX ,Γ∆2 ,ΓΘ3 `Mδ3 :#

ΓX ,Γ∆3 ,ΓΘ3 ` λy2 :ant(τ) .Mδ3 :ant(τ)→ #

Γ2 ` P :ant(χ)→ # Γ2 ` λy2 :ant(τ) .Mδ3 :ant(τ)→ #

Γ2 ` OR-L(P )(λy2 :ant(τ) .Mδ3)y :#

where Γ1 = ΓX ,Γ∆1 ,ΓΘ3 , Γ2 = ΓX ,Γ∆3 ,ΓΘ3 , P = λy1 : ant(χ) . AND-R(λz1 :
suc(φ) .Mδ1)(λz2 : suc(ψ) .Mδ2)z and the second proof-tree is represented by the
derivation done in stages due to the size:

ΓX ,Γ∆1 ,ΓΘ1 `Mδ1 :#

ΓX ,Γ∆3 ,ΓΘ1 ` λy1 :ant(χ) .Mδ1 :ant(χ)→ #

ΓX ,Γ∆2 ,ΓΘ1 `Mδ′3
:#

ΓX ,Γ∆3 ,ΓΘ1 ` λy2 :ant(τ) .Mδ′3
:ant(τ)→ #

Γ3 ` λy1 :ant(χ) .Mδ1 :ant(χ)→ # Γ3 ` λy2 :ant(τ) .Mδ′3
:ant(τ)→ #

Γ3 ` OR-L(λy1 :ant(χ) .Mδ1)(λy2 :ant(τ) .Mδ′3
)y :#

ΓX ,Γ∆1 ,ΓΘ2 `Mδ2 :#

ΓX ,Γ∆3 ,ΓΘ2 ` λy1 :ant(χ) .Mδ2 :ant(χ)→ #

ΓX ,Γ∆2 ,ΓΘ2 `Mδ′′3
#

ΓX ,Γ∆3 ,ΓΘ2 ` λy2 :ant(τ) .Mδ′′3
:ant(τ)→ #

Γ4 ` λy1 :ant(χ) .Mδ2 :ant(χ)→ # Γ4 ` λy2 :ant(τ) .Mδ′′3
:ant(τ)→ #

Γ4 ` OR-L(λy1 :ant(χ) .Mδ2)(λy2 :ant(τ) .Mδ′′3
)z :#

ΓX ,Γ∆3 ,ΓΘ1 `Mδ′ :#

ΓX ,Γ∆3 ,ΓΘ3 ` λz1 :Mδ′ . suc(φ)→ #

ΓX ,Γ∆3ΓΘ2 `Mδ′′ :#

ΓX ,Γ∆3 ,ΓΘ3 ` λy2 :suc(ψ) .Mδ′′ :suc(ψ)→ #

Γ5 ` λz1 :suc(φ) .Mδ′ :suc(φ)→ # Γ5 ` λz2 :suc(ψ) .Mδ′′ :suc(ψ)→ #

Γ)X,Γ∆3 ,ΓΘ3 ` AND-R(λz1 :suc(φ) .Mδ′)(λz2 :suc(ψ) .Mδ′′) :#

where Γ3 = ΓX ,Γ∆3 ,ΓΘ1 , Γ4 = ΓX ,Γ∆3 ,ΓΘ2 , Γ5 = ΓX ,Γ∆3 ,ΓΘ3 , Mδ′ = OR-L
εs(χ)εs(τ)(λy1 : ant(χ) .Mδ1)(λy2 : ant(τ) .Mδ′3

)y and Mδ′′ = OR-Lεs(χ)εs(τ)(λy1 :
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ant(χ) .Mδ2)(λy2 :ant(τ) .Mδ′′3
)y.

We observe that the two derivations in NRΣG3c
only differ by a rule permuta-

tion.
We do one other case. Here we have v-IMP -L being permutated past

v-AND-R. We initially have

` (X) ∆1
δ2−→ Θ1 ` (X) ∆1

δ3−→ Θ2

` (X) ∆1 `
AND-R(z1 : δ2,z2 : δ3,z)−−−−−−−−−−−−−→ z :suc(χ ∧ τ),Θ

(X) ∆, y :ant(φ ⊃ ψ)
δ1−→ Θ3 ` X∆1

AND-R(z1 : δ1,z2 : δ2,y)−−−−−−−−−−−−−→ Θ3

` (X) ∆, y :ant(φ ⊃ ψ)
IMP -L(z3 : δ1,y1 :AND-R(z1 : δ2,z2 : δ3,z),y)−−−−−−−−−−−−−−−−−−−−−−−−−→ Θ3

where ∆1 = ∆, y : ant(φ ⊃ ψ), u1 : ant(ψ), Θ1 = z1 : suc(χ), z : suc(χ ∧ τ),Θ,
Θ2 = z2 :suc(τ), z :suc(χ ∧ τ),Θ, Θ3 = z :suc(χ ∧ τ),Θ, which is permuted to

` (X) ∆1
δ1−→ Θ1 ` (X) ∆2

δ2−→ Θ2

` (X) ∆1
IMP -L(z3 : δ1,y1 : δ2,y)−−−−−−−−−−−−−→ Θ2

` (X) ∆1
δ1−→ Θ1 ` (X) ∆2

δ3−→ Θ3

` (X) ∆1
IMP -L(z3 : δ1,y1 : δ3,y)−−−−−−−−−−−−−→ Θ3

` (X) ∆1
IMP -L(z3 : δ1,y1 : δ2,y)−−−−−−−−−−−−−→ Θ2 ` (X) ∆1

IMP -L(z3 : δ1,y1 : δ3,y)−−−−−−−−−−−−−→ Θ3

` (X) ∆1
AND-R(z1 : IMP -L(z3 : δ1,y1 : δ2,y),z2 : IMP -L(z3 : δ1,y1 : delta2,y),z)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Θ4

where ∆1 = ∆, y : ant(φ ⊃ ψ), ∆2 = ∆, y : ant(φ ⊃ ψ), y1 : ant(ψ), Θ1 = z3 :
suc(φ),Θ, Θ2 = z1 : suc(χ), z : suc(χ ∧ τ),Θ, Θ3 = z2 : suc(τ), z : suc(χ ∧ τ),Θ and
Θ4 = z :suc(χ ∧ τ),Θ.

We encode the first proof-tree in NRΣG3c
and obtain the following derivation:

ΓX ,Γ∆1 ,ΓΘ1 `Mδ1 :#

ΓX ,Γ∆1 ,ΓΘ4 ` λz3 :suc(φ) .Mδ1 :suc(φ)→ #

ΓX ,Γ∆2 ,ΓΘ2 `Mδ2 :#

ΓX ,Γ∆2 ,ΓΘ4 ` λz1 :suc(χ) .Mδ2 :suc(χ)→ #

ΓX ,Γ∆2 ,ΓΘ3 `Mδ3 :#

ΓX ,Γ∆2 ,ΓΘ4 ` λz2 :suc(τ) .Mδ3 :suc(τ)→ #

Γ1 ` P :suc(χ)→ # Γ1 ` Q :suc(τ)→ #Γ1 ` z :suc(χ ∧ τ)

Γ1 ` AND-R(P )(Q)z :#
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Γ1 ` AND-R(P )(Q)z :#

Γ2 ` λy1 :ant(ψ) . AND-R(P )(Q)z :ant(ψ)→ #

Γ2 ` λz3 :suc(φ) .Mδ3 :# Γ2 ` R :ant(ψ)→ # Γ2 ` y :ant(φ ⊃ ψ)

Γ2 ` IMP -L(λz3 :suc(φ) .Mδ3)(R)y :#

where Γ1 = ΓX ,Γ∆2 ,ΓΘ4 , Γ2 = ΓX ,Γ∆1 ,ΓΘ4 , P = λz1 : suc(χ) .Mδ2 , Q =
λz2 : suc(τ) .Mδ3 and R = λy1 : ant(ψ) . AND-R(P )(Q)z. The second proof-tree
is encoded in NRΣG3c

as the following derivation. The derivation is in parts due
to its size.

ΓX ,Γ∆1 ,ΓΘ1 `Mδ1 :#

ΓX ,Γ∆1 ,ΓΘ2 ` λz3 :suc(ψ) .Mδ1 :suc(φ)→ #

ΓX ,Γ∆2 ,ΓΘ2 `Mδ2 :#

ΓX ,Γ∆2 ,ΓΘ2 ` λy1 :ant(ψ) .Mδ2 :ant(ψ)→ #

Γ3 ` λz3 :suc(ψ) .Mδ1 :suc(φ)→ # Γ3 ` λy1 :ant(ψ) .Mδ2 :ant(ψ)→ #

Γ3 ` IMP -L(λz3 :suc(ψ) .Mδ1)(λy1 :ant(ψ) .Mδ2)y :#

ΓX ,Γ∆1 ,ΓΘ1 `Mδ1 :#

ΓX ,Γ∆1 ,ΓΘ3 ` λz3 :suc(φ) .Mδ1 :suc(φ)→ #

ΓX ,Γ∆2 ,ΓΘ3 `Mδ3 :#

ΓX ,Γ∆1 ,ΓΘ3 ` λy1 :ant(ψ) .Mδ3 :ant(ψ)→ #

Γ4 ` T :suc(φ)→ # Γ4 ` U :ant(ψ)→ # Γ4 ` y :ant(φ ⊃ ψ)

Γ4 ` IMP -L(U)(T )y :#

ΓX ,Γ∆1 ,ΓΘ2 `Mδ′ :#

ΓX ,Γ∆1 ,ΓΘ4 ` λz1 :suc(χ) .Mδ′ :suc(χ)→ #

ΓX ,Γ∆1 ,ΓΘ3 `Mδ′′ :#

ΓX ,Γ∆1 ,ΓΘ4 ` λz2 :suc(τ) .Mδ′′ :suc(τ)→ #

Γ5 ` V :suc(χ)→ # Γ5 ` W :suc(τ)→ # Γ5 ` z :suc(χ ∧ τ)

Γ5 ` AND-R(V )(W )z :#

where Γ3 = ΓX ,Γ∆1 ,ΓΘ2 , Γ4 = ΓX ,Γ∆2 ,ΓΘ3 , Γ5 = ΓX ,Γ∆2 ,ΓΘ4 , T = λz3 :
suc(φ) .Mδ1 , U = λy1 :ant(ψ) .Mδ3 , V = λz1 : suc(χ) .Mδ′ , W = λz2 : suc(τ) .Mδ′′ ,
Mδ′ = IMP -Lεs(φ)εs(ψ)(λz3 :suc(ψ) .Mδ1)(λy1 :ant(ψ) .Mδ2)y and Mδ′′ =
IMP -Lεs(φ)εs(ψ)(λz3 :suc(ψ) .Mδ1)(λy1 :ant(ψ) .Mδ3)y.

Again we observe that the two derivations in NRΣG3c
differ by a permutation

of the Res and → R rules. �
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13.5 Summary

The analysis in the previous section can be extended to higher-order classical
logic. The following definition and lemmas cover both classical and higher-order
classical logic.

Definition 13.37 (Uniform Proof-Term for Multi-Conclsuioned Sequent Systems)
Let L be a judged proof system with multi-conclusioned sequent rules, which can
be adequately represented in LF. Let M be a term in the λΠΣL calculus in long
βη-normal form. We say that M is a uniform proof-term for a multi-conclusioned
sequent system if all subterms Ny : # typed in a context ΓA,Γ∆,ΓΘ, satisfy the
following conditions:

• if y has type ant(@(φ1, . . . , φn)), where @ ∈ {>,∧,∨,⊃,∀σ,∃σ} and ΓΘ

contains z :suc(ψ), where ψ is atomic;

• if y :suc(φ), then φ = @(φ1, . . . , φn), where @ ∈ {∧,∨,⊃,∀σ,∃σ} �

Lemma 13.38
Let L be a judged proof system with multi-conclusioned sequents, which can be ade-
quately represented in LF. If every proof-term M in NRΣL is a uniform proof-term
or can be permuted into one, then L is an abstract logic programming language.

Proof (Sketch) Follows from Lemma 13.32 and Miller et al.’s definition of an
abstract logic programming language. We leave higher-order classical logic to
the reader. �

It would be nice to have a result about the representation of an abstract
logic programming language in LF which works for judged proof systems with
single- and multi-conclusioned sequents. Our problem arises from the method
used to encode multi-conclusioned sequent systems in LF. It is fundamentally
different from the way that single-conclusioned systems are encoded. Ideally, we
would prefer to be able to restrict multi-conclusioned systems to their single-
conclusioned fragment. This would mirror Miller et al.’s method for defining
uniform proof in classical logic. We cannot do this because we need to use the
G3-type systems to be able to obtain an adequate encoding in LF. Since this
does not work, the next simplest solution is to consider the single-conclusioned
systems to be a special case of the multi-conclusioned systems and then encode
them as multi-conclusioned systems. This also does not work since we are unable
to prove fullness for the right rules. We illustrate the problem which arises.

Suppose we have the rule v-AND-R. We apply the induction hypothesis to
obtain ΓX ,Γ∆, z1 : suc(φ) `ΣG′3i

Mδ1 : # and ΓX ,Γ∆, z2 : suc(ψ) `ΣG′3i
Mδ2 : #,

where ΣG′3i
is the λΠ-context with constants encoding all the valid proof rules

of G3i using #. We now abstract these two rules to obtain ΓX ,Γ∆ `ΣG′3i
λz1 :

suc(φ) .Mδ1 : suc(φ) → # and ΓX ,Γ∆ `ΣG′3i
λy2 : suc(ψ) .Mδ2 : suc(ψ) → #. We
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also have ΓX ,Γ∆ `ΣG′3i
AND-R : (suc(φ) → #) → (suc(ψ) → #) → (suc(φ ∧

ψ) → #). We now have a problem since we are unable to obtain the assertion
ΓX ,Γ∆ `ΣG′3i

z :suc(φ∧ψ). This does not occur in classical logic since z :suc(φ∧ψ)

is present in the succedent of each premiss and hence z : suc(φ ∧ ψ) does occurs
in ΓΘ.

The author claims that because LF is not a natural metatheory for sequent
calculi and the method of encoding single- and multi-conclusioned sequent calculi
are fundamentally different, it will not be possible to solve this problem. It is,
however, left as an open problem.
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Chapter 14

Conclusion

The main results of this thesis are summarized as follows:

• Kripke λΠ-models. These models provide a semantics for the λΠ-calculus
and are a generalization of the Kripke lambda models of (Mitchell & Moggi
1991).

• Propositions-as-types isomorphism. We have shown that the propositions-
as-types correspondence between the λΠ-calculus and its internal logic in-
duces an isomorphism between a Kripke λΠ-model and a suitable Kripke
model of the internal logic.

• Judged proof systems. We have provided a general proof- and model-
theoretic account of these, which includes a class of Kripke models.

• Judgements-as-types epimorphism. We have shown that the judgements-
as-types correspondence induces an epimorphism between a Kripke model
of a judged proof system and a Kripke λΠ-model. Furthermore, this epi-
morphism was used to provide a semantic proof of fullness.

• Worlds-as-parameters. We have shown that labelled natural deduction sys-
tems presented as judged proof systems provide a natural account of the
worlds-as-parameters representation mechanism and allow us to observe it
is a special case of the judgements-as-types correspondence. Furthermore,
we show that we can interpret labels as worlds in the appropriate Kripke
models, which allows us to obtain a worlds-as-parameters epimorphism.

• Least fixed-point construction. We have shown that a class of Kripke λΠ-
models can be seen to be Herbrand models and a least fixed-point can be
constructed.

• Abstract logic programming languages. We have provided a characteriza-
tion of abstract logic programming languages in terms of proof-terms in
LF.
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We conclude with a discussion of various possible avenues of future research.
This thesis is, in a certain sense, a tidying up of various loose ends and setting
the scene for a foundation for proof-search and logic programming in terms of
logical frameworks. The results of Chapter 11 are not used in this thesis and
further work on proof-search needs to take these results as its starting point.
The next stage would be to consider the search space generated by resolution in
C and examine its relationship to the search space generated by resolution in the
object-logic. An important text to consider would be (Kowalski 1979) and the
hope would be to provide a formal account of the ideas contained therein.

On a similar vein, an account of backtracking in terms of Kripke worlds
(cf. (Pym & Ritter 2004)) could be provided for Kripke λΠ-models. This could
then be compared to backtracking in Kripke models of object-logics.

There is a strong possibility that semantic characterizations of fullness and
faithfulness can be obtained. These would be similar to those found in (Simpson
1993).

In Chapter 7 we encountered problems with a general semantic characteri-
zation of connectives. It is not clear whether a general satisfaction condition,
analogous to Prawitz’s schemata for natural deduction inference rules, is possi-
ble. It seems that it is impossible to decide a priori whether a given connective
is local or non-local, for example. The most likely approach to this problem is
through labelled natural deduction systems. The author hopes that Chapter 9
goes some way to helping formalize the problem. It would also be interesting to
analyse in detail the relationship between a general satisfaction condition, if one
exists, and the categorical structure this induces in the Kripke model.

It is possible that the analysis in this thesis can be carried out for other logical
frameworks. The author hopes that this will be done in the future and that
model-theoretic analysis of logical frameworks is as common as proof-theoretic
analysis.

Finally, we suggest a line of research suggested to the author by Matthew
Collinson. He has suggested that the proof of functional completeness found
in (Wansing 1993) is a metalogical argument and that it could be used, after
a suitable generalization, to determine functional completeness for object-logics
which can be adequately represented in LF.
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Pfening, F. & Schürmann, C. (1998), Algorithms for equality and unification in
the presence of notational definitions, in T. Altenkirch, W. Naraschewski &
B. Rues, eds, ‘Types for Proofs and Programs’, Lecture Notes in Computer
Science, Springer Verlag, pp. 179–193.

Pfenning, F. (1991), Logic programming in the LF logical framework, in ‘Logical
Frameworks’, Cambridge University Press, pp. 149–181.

Pfenning, F. (2000), ‘Structural cut elimination I. classical and intuitionistic
logic’, Information and Control 157(1-2), 84–141.

Pfenning, F. (2002), ‘A linear logical framework’, Information and Computation
179, 19–75.

Pfenning, F. & Elliott, C. (1988), Higher-order abstract syntax, in ‘Proceedings
of the ACM SIGPLAN PLDI ’88’, pp. 199–208.
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Appendix A

Signatures of Object-logics

This appendix contains a various signatures of object-logics.
Minimal Logic

Definition A.1 (ΣML)
ΣML is the λΠ-signature containing the following constants:

o :Type

ι :Type

proof :o→ Type

∧ :o→ o→ o→ o

∨ :o→ o→ o→ o

⊃ :o→ o→ o→ o

∀ : (ι→ o)→ o

∃ : (ι→ o)→ o

∧ I :Πp :o .Πq :o . true(p)→ true(q)→ true(p ∧ q)

∨ I1:Πp :o .Πq :o . true(p)→ true(p ∨ q)

∨I2:Πp :o .Πq :o . true(q)→ true(p ∨ q)

⊃ I :Πp :o .Πq :o . (true(p)→ true(q))→ true(p ⊃ q)

∀ I :ΠF : ι→ o . (Πx : ι . true(Fx))→ true(∀(λx : ι . Fx))

∃ I :ΠF : ι→ o . (Πx :o . true(Fx))→ true(∃(λx : ι . Fx))

∧ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ ((true(p)→ true(q))→ true(r))→ true(r)

∨ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ (true(p)→ true(r))→ (true(q)→ true(r))
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→ true(r)

⊃ E :Πp :o .Πq :o .Πr :o . true(p ⊃ q)→ true(p)→ (true(q)→ true(r))→ true(r)

∀ E :ΠF : ι→ o .Πx : ι .Πr :o . true(∀(λx : ι . Fx))→ (true(Fx)→ true(r))

→ true(r)

∃ E :ΠF : ι→ o .Πr :o . true(∃(λx : ι . Fx))→ (Πx : ι . true(Fx)→ true(r))

→ true(r) �

Intuitionistic Logic

Definition A.2 (ΣIL)
ΣIL is the λΠ-signature containing the following constants:

o :Type

ι :Type

proof :o→ Type

∧ :o→ o→ o→ o

∨ :o→ o→ o→ o

⊃ :o→ o→ o→ o

⊥ :o

∀ : (ι→ o)→ o

∃ : (ι→ o)→ o

∧ I :Πp :o .Πq :o . true(p)→ true(q)→ true(p ∧ q)

∨ I1:Πp :o .Πq :o . true(p)→ true(p ∨ q)

∨I2:Πp :o .Πq :o . true(q)→ true(p ∨ q)

⊃ I :Πp :o .Πq :o . (true(p)→ true(q))→ true(p ⊃ q)

∀ I :ΠF : ι→ o . (Πx : ι . true(Fx))→ true(∀(λx : ι . Fx))

∃ I :ΠF : ι→ o . (Πx :o . true(Fx))→ true(∃(λx : ι . Fx))

∧ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ ((true(p)→ true(q))→ true(r))→ true(r)

∨ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ (true(p)→ true(r))→ (true(q)→ true(r))

→ true(r)

⊃ E :Πp :o .Πq :o .Πr :o . true(p ⊃ q)→ true(p)→ (true(q)→ true(r))→ true(r)

∀ E :ΠF : ι→ o .Πx : ι .Πr :o . true(∀(λx : ι . Fx))→ (true(Fx)→ true(r))
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→ true(r)

∃ E :ΠF : ι→ o .Πr :o . true(∃(λx : ι . Fx))→ (Πx : ι . true(Fx)→ true(r))

→ true(r) �

BOT :Πp :o . proof(⊥)→ proof(p)

Modal Logics

Definition A.3 (ΣG)
ΣG is the λΠ-signature containing the following constants:

o :Type

ι :Type

true :o→ Type

valid :o→ Type

∧ :o→ o→ o→ o

∨ :o→ o→ o→ o

⊃ :o→ o→ o→ o

� :o→ o

♦ :o→ o

G :valid(♦j�mφ ⊃ �i♦nφ)

∧ I :Πp :o .Πq :o . true(p)→ true(q)→ true(p ∧ q)

∨ I1:Πp :o .Πq :o . true(p)→ true(p ∨ q)

∨I2:Πp :o .Πq :o . true(q)→ true(p ∨ q)

⊃ I :Πp :o .Πq :o . (true(p)→ true(q))→ true(p ⊃ q)

Nec I :Πp :o . valid(p)→ valid(�p)

Pos I :Πp :o . valid(p)→ valid(♦p)

∧ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ ((true(p)→ true(q))→ true(r))→ true(r)

∨ E :Πp :o .Πq :o .Πr :o . true(p ∨ q)→ (true(p)→ true(r))→ (true(q)→ true(r))

→ true(r)

⊃ E :Πp :o .Πq :o .Πr :o . true(p ⊃ q)→ true(p)→ (true(q)→ true(r))→ true(r)

Nec E :Πp :o .Πq :o . valid(�p)→ (valid(p)→ valid(q))→ valid(q)

Pos E :Πp :o .Πq :o . valid(�p)→ (valid(p)→ valid(q))→ valid(q)
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C :Πp :o . valid(p)→ true(p) �

Higher-order Intuitionistic Logic

Definition A.4 (ΣHOIL)
The signature ΣHOIL contains the following constants:

holtype :Type

ι :holtype

o :holtype

⇒:holtype→ holtype→ holtype

obj :holtype→ Type

true :obj(o)→ Type

> :obj(o)

∧ :obj(o⇒ o⇒ o)

∨ :obj(o⇒ o⇒ o)

⊃ :obj(o⇒ o⇒ o)

∀σ :Πs :holtype . obj((s⇒ o)⇒ o)

∃σ :Πs :holtype . obj((s⇒ o)⇒ o)

Λ:Πs :holtype .Πt :holtype . (obj(s)→ obj(t))→ obj(s⇒ t)

ap :Πs :holtype .Πt :holtype . obj(s⇒ t)→ obj(s)→ obj(t)

=:Πs :holtype . obj(s⇒ s⇒ o)

TOP : true(>)

AND-R :Πp :obj(o) .Πq :obj(o) . true(p)→ true(q)→ true(ap(ap ∧ p)q)

AND-L :Πp :obj(o) .Πq :obj(o) .Πr :obj(o) . (true(p)→ true(q)→ true(r))

→ (true(ap(ap ∧ p)q)→ true(r))

OR-R1:Πp :obj(o) .Πq :obj(o) . true(p)→ true(ap(ap ∨ p)q)

OR-R2:Πp :obj(o) .Πq :obj(o) . true(q)→ true(ap(ap ∨ p)q)

OR-L :Πp :obj(o) .Πq :obj(o) .Πr :obj(o) . (true(p)→ true(r))

→ (true(p)→ true(r))→ (true(ap(ap ∨ p)q)→ true(r))

IMP -R :Πp :obj(o) .Πq :obj(o) . (true(p)→ true(q))

→ true(ap(ap ∧ p)q)IMP -L :Πp :obj(o) .Πq :obj(o) .Πq :obj(o) . true(p)
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→ (true(q)→ true(r))→ (true(ap(ap ⊃ p)q)→ true(r))

FORALL-R :Πs :holtype .ΠF :obj(s⇒ o) . (Πx :obj(s) .

true(apFx))→ true(ap∀sF )

FORALL-L :Πs :holtype .ΠF :obj(s⇒ o) .Πr :obj(o) .Πx :obj(s) .

(true(apFx)→ true(r))→ (true(ap∀sF )→ true(r))

EXISTS-R :Πs :holtype .ΠF :obj(s⇒ o) .Πx :obj(s) .

true(apFx)→ true(ap∃sF )

EXISTS-L :Πs :holtype .ΠF :obj(s⇒ o) .Πr :obj(o) . (Πx :obj(s) .

true(apFx)

→ true(r))→ (true(ap∃sF )→ true(r))

≈≡ λs :holtype . λx : . obj(s) . aps,o(aps,s⇒o =s x)y :Πs :holtype .

obj(s)→ obj(s)→ obj(o)

EQ :Πp :obj(o) .Πq :obj(o) . true(p)→ true(p ≈o q)→ true(q)

LAM :Πs, t :holtype .Πf, g :obj(s)→ obj(t) . (Πx :obj(s) . true(fx ≈t gx))

→ true(Λs,tλx :obj(s) . fx ≈s⇒t Λs,tλx :obj(s) . gx)

β :Πs, t :holtype .Πf :obj(s)→ obj(t) .Πx :obj(s) . true(aps,t(Λs,t(λx :obj(s)

. fx))x ≈t fx)

η :Πs, t :holtype .Πf :obj(s⇒ t) . true(Λs,t(λx :obj(s) . aps,tfx) ≈s⇒t f) �

Labelled KT

Definition A.5 (ΣKT )
The signature ΣKT contains the following constants:

U :Type

o :Type

true :U → o→ Type

related :U → U → Type

⊥ :o

⊃ :o→ o→ o

� :o→ o

REFL :Πa :U . related(a)(a)
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BOT -E :Πp :o .Πa :U .Πb :U . (true(a)(p ⊃ ⊥)→ true(b)⊥)→ true(a)p

IMP -I :Πp :o .Πq :o .Πa :U . (true(a)p→ true(a)q)→ true(a)(p ⊃ q)

IMP -E :Πp :o .Πq :o .Πr :o .Πa :U .Πb :U . true(a)(p ⊃ q)→ true(a)p→

(true(a)q → true(b)r)→ true(b)(r)

BOX-I :Πp :o .Πa :U . (Πb :U . related(a)b→ true(b)p)→ true(a)(�p)

BOX-E :Πp :o .Πa :U .Πb :U . true(a)(�p)→ related(a)b→ true(b)p �

Labelled KB

Definition A.6 (ΣKB)
The signature ΣKB contains the following constants:

U :Type

o :Type

true :U → o→ Type

related :U → U → Type

⊥ :o

⊃ :o→ o→ o

� :o→ o

SYMM :Πa :U .Πb :o . related(a)(b)→ related(b)(a)

BOT -E :Πp :o .Πa :U .Πb :U . (true(a)(p ⊃ ⊥)→ true(b)⊥)→ true(a)p

IMP -I :Πp :o .Πq :o .Πa :U . (true(a)p→ true(a)q)→ true(a)(p ⊃ q)

IMP -E :Πp :o .Πq :o .Πr :o .Πa :U .Πb :U . true(a)(p ⊃ q)→ true(a)p→

(true(a)q → true(b)r)→ true(b)(r)

BOX-I :Πp :o .Πa :U . (Πb :U . related(a)b→ true(b)p)→ true(a)(�p)

BOX-E :Πp :o .Πa :U .Πb :U . true(a)(�p)→ related(a)b→ true(b)p �

Labelled K4

Definition A.7 (ΣK4)
The signature ΣK4 contains the following constants:

U :Type

o :Type

true :U → o→ Type
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related :U → U → Type

⊥ :o

⊃ :o→ o→ o

� :o→ o

TRANS :Πa :U .Πb :U .Πc :U . related(a)(b)→ related(b)(c)→ related(a)(c)

BOT -E :Πp :o .Πa :U .Πb :U . (true(a)(p ⊃ ⊥)→ true(b)⊥)→ true(a)p

IMP -I :Πp :o .Πq :o .Πa :U . (true(a)p→ true(a)q)→ true(a)(p ⊃ q)

IMP -E :Πp :o .Πq :o .Πr :o .Πa :U .Πb :U . true(a)(p ⊃ q)→ true(a)p→

(true(a)q → true(b)r)→ true(b)(r)

BOX-I :Πp :o .Πa :U . (Πb :U . related(a)b→ true(b)p)→ true(a)(�p)

BOX-E :Πp :o .Πa :U .Πb :U . true(a)(�p)→ related(a)b→ true(b)p �

Labelled K5

Definition A.8 (ΣK5)
The signature ΣK5 contains the following constants:

U :Type

o :Type

true :U → o→ Type

related :U → U → Type

⊥ :o

⊃ :o→ o→ o

� :o→ o

EUCL :Πa :U .Πb :U .Πc :U . related(a)(b)→ related(b)(c)→ related(b)(a)

BOT -E :Πp :o .Πa :U .Πb :U . (true(a)(p ⊃ ⊥)→ true(b)⊥)→ true(a)p

IMP -I :Πp :o .Πq :o .Πa :U . (true(a)p→ true(a)q)→ true(a)(p ⊃ q)

IMP -E :Πp :o .Πq :o .Πr :o .Πa :U .Πb :U . true(a)(p ⊃ q)→ true(a)p→

(true(a)q → true(b)r)→ true(b)(r)

BOX-I :Πp :o .Πa :U . (Πb :U . related(a)b→ true(b)p)→ true(a)(�p)

BOX-E :Πp :o .Πa :U .Πb :U . true(a)(�p)→ related(a)b→ true(b)p �

Labelled Classical Propositional Logic
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Definition A.9 (ΣLCL)
The signature ΣLCL contains the following constants:

U :Type

o :Type

true :U → o→ Type

AND-I :Πa :U .Πp :o .Πq :o . true(a)p→ true(a)q → true(a)p ∧ q

AND-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . true(a)p ∧ q → ((true(a)p→

true(a)q)→ true(b)r)→ true(b)r

OR1-I :Πa :U .Πp :o .Πq :o . true(a)p→ true(a)p ∨ q

OR2-I :Πa :U .Πp :o .Πq :o . true(a)q → true(a)p ∨ q

OR-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . true(a)p ∨ q → (true(a)p→

true(b)r)→ (true(a)q → true(b)r)→ true(b)r

IMP -I :Πa :U .Πp :o .Πq :o . (true(a)p→ true(a)q)→ true(a)p ⊃ q

IMP -E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . true(a)p ⊃ q → true(a)p→

(true(a)q → true(b)r)→ true(b)r

NEG-I :Πa :U .Πb :U .Πp :o . (true(a)p→ true(b)⊥)→ true(a)¬p

BOT -E :Πa :U .Πb :U .Πp :o . true(b)⊥ → true(a)p �

Labelled Intuitionistic Propositional Logic

Definition A.10 (ΣLIL)
The signature ΣLIL contains the following constants:

U :Type

o :Type

true :U → o→ Type

related :U → U → Type

AND-I :Πa :U .Πp :o .Πq :o . proof(a)p→ proof(a)q → proof(a)p ∧ q

AND-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . proof(a)p ∧ q → ((proof(a)p→

proof(a)q)→ proof(b)r)→ proof(b)r

OR1-I :Πa :U .Πp :o .Πq :o . proof(a)p→ proof(a)p ∨ q

OR2-I :Πa :U .Πp :o .Πq :o . proof(a)q → proof(a)p ∨ q
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OR-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . proof(a)p ∨ q → (proof(a)p→

proof(b)r)→ (proof(a)q → proof(b)r)→ proof(b)r

IMP -I :Πa :U .Πb :U .Πp :o .Πq :o . ((proof(b)p→ related(a)b)→ proof(b)q)

→ proof(a)p ⊃ q

IMP -E :Πa :U .Πb :U .Πp :o .Πq :o . proof(a)p ⊃ q → proof(b)p→ related(a)b

→ proof(b)q

BOT -E :Πa :U .Πb :U .Πp :o . proof(a)⊥ → proof(b)p �

Labelled Minimal Propositional Logic

Definition A.11 (ΣLML)
The signature ΣLML contains the following constants:

U :Type

o :Type

true :U → o→ Type

AND-I :Πa :U .Πp :o .Πq :o . proof(a)p→ proof(a)q → proof(a)p ∧ q

AND-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . proof(a)p ∧ q → ((proof(a)p→

proof(a)q)→ proof(b)r)→ proof(b)r

OR1-I :Πa :U .Πp :o .Πq :o . proof(a)p→ proof(a)p ∨ q

OR2-I :Πa :U .Πp :o .Πq :o . proof(a)q → proof(a)p ∨ q

OR-E :Πa :U .Πb :U .Πp :o .Πq :o .Πr :o . proof(a)p ∨ q → (proof(a)p→

proof(b)r)→ (proof(a)q → proof(b)r)→ proof(b)r

IMP -I :Πa :U .Πb :U .Πp :o .Πq :o . ((proof(b)p→ related(a)b)→ proof(b)q)

→ proof(a)p ⊃ q

IMP -E :Πa :U .Πb :U .Πp :o .Πq :o . proof(a)p ⊃ q → proof(b)p→ related(a)b

→ proof(b)q �

Sequent Intuitionistic Logic

Definition A.12 (ΣG3i)
ΣG3i is the λΠ-signature containing the following constants:

o :Type

ι :Type
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proof :o→ Type

> :o

∧ :o→ o→ o

∨ :o→ o→ o

⊃ :o→ o→ o

¬ :o→ o

∀ : (ι→ o)→ o

∃ : (ι→ o)→ o

AND-L :Πp, q, r :o . (proof(p)→ proof(q)→ proof(r))

→ (proof(p ∧ q)→ proof(r))

AND-R :Πp, q :o . proof(p)→ proof(q)→ proof(p ∧ q)

OR-L :Πp, q, r :o . (proof(p)→ proof(r)→ proof(q)→ proof(r))

→ (proof(p ∨ q)→ proof(r))

OR-R1 :Πp, q :o . proof(p)→ proof(p ∨ q)

OR-R2 :Πp, q :o . proof(q)→ proof(p ∨ q)

IMP -L :Πp, q, r :o . (proof(p)→ proof(q)→ proof(r))

→ (proof(p ⊃ q)→ proof(r))

IMP -R :Πp, q :o . (proof(p)→ proof(q))→ proof(p ⊃ q)

TOP :proof(>)

FORALL-L :ΠF : ι→ o .Πr :o .Πx : ι . (proof(Fx)→ proof(r))

→ (proof(∀(λx : ι . Fx))→ proof(r))

FORALL-R :ΠF : ι→ o . (Πx : ι . proof(Fx))→ proof(∀(λx : ι . Fx))

EXISTS-L :ΠF : ι→ o .Πr :o . (Πx : ι . proof(Fx)→ proof(r))

→ (proof(∃(λx : ι . Fx))→ proof(r))

EXISTS-R :ΠF : ι→ o .Πx : ι . proof(Fx)→ proof(∃(λx : ι . Fx)) �

Sequent Classical Logic

Definition A.13 (ΣG3c)
ΣG3c is the λΠ-signature which contains the following constants:

ι :Type
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o :Type

#:Type

ant :o→ Type

suc :o→ Type

> :o

∧ :o→ o→ o

∨ :o→ o→ o

⊃ :o→ o→ o

¬ :o→ o

∀ : (ι→ o)→ o

∃ : (ι→ o)→ o

HY P :Πp :o . ant(p)→ suc(p)→ #

TOP :ant(>)→ #

AND-L :Πp :o .Πq :o . (ant(p)→ ant(q)→ #)→ (ant(p ∧ q)→ #)

AND-R :Πp :o .Πq :o . (suc(p)→ #)→ (suc(q)→ #)→ (suc(p ∧ q)→ #)

OR-L :Πp :o .Πq :o . (ant(p)→ #)→ (ant(q)→ #)→ (ant(p ∨ q)→ #)

OR-R :Πp :o .Πq :o . (suc(p)→ suc(q)→ #)→ (suc(p ∨ q)→ #)

IMP -L :Πp :o .Πq :o . (suc(p)→ #)→ (ant(q)→ #)→ (ant(p ⊃ q)→ #)

IMP -R :Πp :o .Πq :o . (ant(p)→ suc(q)→ #)→ (suc(p ⊃ q)→ #)

NEG-L :Πp :o . (suc(p)→ #)→ (ant(¬p)→ #)

NEG-R :Πp :o . (ant(p)→ #)→ (suc(¬p)→ #)

FORALL-L :ΠF : ι→ o .Πx : ι . (ant(Fx)→ #)→ (ant(∀(λx : ι . Fx))→ #)

FORALL-R :ΠF : ι→ o . (Πx : ι . suc(Fx)→ #)→ (suc(∀(λx : ι . Fx))→ #)

EXISTS-L :ΠF : ι→ o . (Πx : ι . ant(Fx)→ #)→ (ant(∃(λx : ι . Fx))→ #)

EXISTS-R :ΠF : ι→ o .Πx : ι . (suc(Fx)→ #)→ (suc(∃(λx : ι . Fx))→ #) �

Sequent Higher-order Intuitionistic Logic

Definition A.14 (ΣG3HOIL)
The λΠ-signature ΣG3HOIL contains the following constants:

holtype :Type
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ι :holtype

o :holtype

⇒:holtype→ holtype→ holtype

obj :holtype→ Type

> :obj(o)

∧ :obj(o⇒ o⇒ o)

∨ :obj(o⇒ o⇒ o)

⊃ :obj(o⇒ o⇒ o)

∀σ :Πs :holtype . obj((s⇒ o)⇒ o)

∃σ :Πs :holtype . obj((s⇒ o)⇒ o)

Λ:Πs :holtype .Πt :holtype . (obj(s)→ obj(t))→ obj(s⇒ t)

ap :Πs :holtype .Πt :holtype . obj(s⇒ t)→ obj(s)→ obj(t)

=:Πs :holtype . obj(s⇒ s⇒ o)

proof :obj(o)→ Type

TOP :proof(>)

AND-R :Πp :obj(o) .Πq :obj(o) . proof(p)→ proof(q)→ proof(ap(ap ∧ p)q)

AND-L :Πp :obj(o) .Πq :obj(o) .Πr :obj(o) . (proof(p)→ proof(q)→ proof(r))

→ (proof(ap(ap ∧ p)q)→ proof(r))

OR-R1:Πp :obj(o) .Πq :obj(o) . proof(p)→ proof(ap(ap ∨ p)q)

OR-R2:Πp :obj(o) .Πq :obj(o) . proof(q)→ proof(ap(ap ∨ p)q)

OR-L :Πp :obj(o) .Πq :obj(o) .Πr :obj(o) . (proof(p)→ proof(r))

→ (proof(p)→ proof(r))→ (proof(ap(ap ∨ p)q)→ proof(r))

IMP -R :Πp :obj(o) .Πq :obj(o) . (proof(p)→ proof(q))

→ proof(ap(ap ∧ p)q)IMP -L :Πp :obj(o) .Πq :obj(o) .Πq :obj(o) . proof(p)

→ (proof(q)→ proof(r))→ (proof(ap(ap ⊃ p)q)→ proof(r))

FORALL-R :Πs :holtype .ΠF :obj(s⇒ o) . (Πx :obj(s) .

proof(apFx))→ proof(ap∀sF )

FORALL-L :Πs :holtype .ΠF :obj(s⇒ o) .Πr :obj(o) .Πx :obj(s) .

(proof(apFx)→ proof(r))→ (proof(ap∀sF )→ proof(r))
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EXISTS-R :Πs :holtype .ΠF :obj(s⇒ o) .Πx :obj(s) .

proof(apFx)→ proof(ap∃sF )

EXISTS-L :Πs :holtype .ΠF :obj(s⇒ o) .Πr :obj(o) . (Πx :obj(s) .

proof(apFx)

→ proof(r))→ (proof(ap∃sF )→ proof(r))

≈≡ λs :holtype . λx : . obj(s) . aps,o(aps,s⇒o =s x)y :Πs :holtype .

obj(s)→ obj(s)→ obj(o)

EQ :Πp :obj(o) .Πq :obj(o) . proof(p)→ proof(p ≈o q)→ proof(q)

LAM :Πs, t :holtype .Πf, g :obj(s)→ obj(t) . (Πx :obj(s) . proof(fx ≈t gx))

→ proof(Λs,tλx :obj(s) . fx ≈s⇒t Λs,tλx :obj(s) . gx)

β :Πs, t :holtype .Πf :obj(s)→ obj(t) .Πx :obj(s) . proof(aps,t(Λs,t(λx :obj(s)

. fx))x ≈t fx)

η :Πs, t :holtype .Πf :obj(s⇒ t) . proof(Λs,t(λx :obj(s) . aps,tfx) ≈s⇒t f) �
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Appendix B

Examples of Labelled Natural
Deductive Systems

In this appendix, we provide labelled natural deduction presentations of minimal,
intuitionistic and classical logic.

Definition B.1 (Minimal Logic)
The labelled natural deduction system for minimal logic has a base system con-
sisting of the following inference rules:

proof(w, φ) proof(w,ψ)
∧ I

proof(w, φ ⊃ ψ) proof(w, φ ∧ ψ)

[proof(w, φ)][proof(w,ψ)]
···

proof(z, τ)
∧ E

proof(z, τ)

proof(w, φ)
∨ I1

proof(w, φ ∨ ψ)

proof(w,ψ)
∨ I2

proof(w, φ ∨ ψ)

proof(w, φ ∨ ψ)

[proof(w, φ)]
···

proof(z, τ)

[proof(w,ψ)]
···

proof(z, τ)
∨ E

proof(z, τ)

[proof(z, φ)][related≤(w, z)]
···

proof(z, ψ)
⊃ I

proof(w, φ ⊃ ψ)

proof(w, φ ⊃ ψ) proof(z, φ) related≤(w, z)
⊃ E

proof(z, ψ)

and no Horn relational theory. �
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Definition B.2 (Intuitionistic Logic)
The labelled natural deduction system for intuitionistic logic has a base system
consisting of the following inference rules:

proof(w, φ) proof(w,ψ)
∧ I

proof(w, φ ⊃ ψ) proof(w, φ ∧ ψ)

[proof(w, φ)][proof(w,ψ)]
···

proof(z, τ)
∧ E

proof(z, τ)

proof(w, φ)
∨ I1

proof(w, φ ∨ ψ)

proof(w,ψ)
∨ I2

proof(w, φ ∨ ψ)

proof(w, φ ∨ ψ)

[proof(w, φ)]
···

proof(z, τ)

[proof(w,ψ)]
···

proof(z, τ)
∨ E

proof(z, τ)

[proof(z, φ)][related≤(w, z)]
···

proof(z, ψ)
⊃ I

proof(w, φ ⊃ ψ)

proof(w, φ ⊃ ψ) proof(z, φ) related≤(w, z)
⊃ E

proof(z, ψ)

proof(w,⊥)
⊥ E

proof(z, φ)

and no Horn relational theory. �

Definition B.3 (Classical Logic)
The labelled natural deduction system for classical logic has a base system con-
sisting of the following inference rules:

true(w, φ) true(w,ψ)
∧ I

true(w, φ ⊃ ψ) true(w, φ ∧ ψ)

[true(w, φ)][true(w,ψ)]
···

true(z, τ)
∧ E

true(z, τ)

true(w, φ)
∨ I1

true(w, φ ∨ ψ)

true(w,ψ)
∨ I2

true(w, φ ∨ ψ)
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true(w, φ ∨ ψ)

[true(w, φ)]
···

true(z, τ)

[true(w,ψ)]
···

true(z, τ)
∨ E

true(z, τ)

[true(w, φ)]
···

true(w,ψ)
⊃ I

true(w, φ ⊃ ψ)

true(w, φ ⊃ ψ) true(w, φ)

[true(w, φ)]
···

true(z, τ)
⊃ E

true(z, τ)

[true(w, φ)]
···

true(z,⊥)
¬ I

true(w,¬φ)

true(z,⊥)
⊥ E

true(w, φ)

and no Horn relational theory. �
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Appendix C

Various Sequent Calculi

In this appendix we present sequent systems for LJ , LK

Definition C.1 (LJ)
The judged proof system LJ is given by the alphabet A = (S, V, E,C, J), where:

• S = {o, ι};

• V = {ι};

• E = {>,∧,∨,⊃, ∀,∃};

• C = {>,∧,∨,⊃,∀,∃};

• J = {proof}.

Each connective is assigned an arity and a level. > has arity o and level 1, ∧,∨
and ⊃ all have arity (o, o)→ o and level 1. ∀ and ∃ have arity (ι→ o)→ o and
level 2. The judgement proof has arity 0. Together with the following rules:

Ax
∆, proof(φ) `LJ proof(φ)

∆, proof(φ), proof(ψ) `LJ proof(χ)
∧ l

∆, proof(φ ∧ ψ) `LJ proof(χ)

∆ `LJ proof(φ) ∆ `LJ proof(ψ)
∧ r

∆ `LJ proof(φ ∧ ψ)

∆, proof(φ) `LJ proof(χ) ∆, proof(φ ∨ ψ), proof(ψ) `LJ proof(χ)
∨ l

∆, proof(φ ∨ ψ) `LJ proof(χ)

∆ `LJ proof(φi)
∨ ri

∆ `LJ proof(φ1 ∨ φ2)
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∆ `LJ proof(φ) ∆, proof(φ ⊃ ψ), proof(ψ) `LJ proof(χ)
⊃ l

∆, proof(φ ⊃ ψ) `LJ proof(χ)

∆, proof(φ) `LJ proof(ψ)
⊃ r

δ `LJ proof(φ ⊃ ψ)

>
∆ `LJ >

∆, proof(φ[x]) `LJ proof(χ)
∀ l

∆, proof(∀xφ) `LJ proof(χ)

∆ `LJ proof(φ[x])
∀ r

∆ `LJ proof(∀xφ)

∆, proof(φ[x]) `LJ proof(χ)
∃ l

∆, proof(∃xφ) `LJ proof(χ)

∆ `LJ proof(φ[x])
∃ r

∆ `LJ proof(∃xφ)

∆ `LJ proof(φ)
weakening

∆, proof(ψ) `LJ proof(χ)
�

Definition C.2 (LK)
The judged proof system LK is given by the alphabet A = (S, V, E,C, J) where

• S = {o, ι},

• V = {ι},

• E = {>,∧,∨,⊃,¬,∀,∃},

• C = {∧,∨,⊃,¬, ∀, ∃},

• J = {ant, suc}.

Each connective is assigned an arity and a level. > has arity o and level 0, ¬ has
arity o → o and level 1, ∧, ∨, ⊃ have arity (o, o) → o and level 1 and ∀ and ∃
have arity (ι→ o)→ o and level 2. The judgements both have arity 0. Together
with the rules:

Ax
∆, ant(φ) `LK suc(φ)Θ

>
∆ `LK suc(>),Θ

∆, ant(φ), ant(ψ) `LK Θ
∧ l

∆, ant(φ ∧ ψ) `LK Θ
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∆ `LK suc(φ),Θ ∆ `LK suc(ψ),Θ
∧ r

∆ `LK suc(φ ∧ ψ),Θ

∆, ant(φ) `LK Θ ∆, ant(ψ) `LK Θ
∨ l

∆, ant(φ ∨ ψ) `LK Θ

∆ `LK suc(φi),Θ
∨ ri

∆ `LK suc(φ1 ∨ φ2),Θ

∆ `LK suc(φ),Θ ∆, ant(ψ) `LK Θ
⊃ l

∆, ant(φ ⊃ ψ) `LK Θ

∆, ant(φ) `LK suc(ψ),Θ
⊃ r

∆ `LK suc(φ ⊃ ψ),Θ

∆ `LK suc(φ),Θ
¬ l

∆, ant(¬φ) `LK Θ

∆, ant(φ) `LK Θ
¬ r

∆ `LK suc(¬φ),Θ

∆, ant(φ[x]) `LK Θ
∀ l

∆, ant(∀xφ) `LK Θ

∆ `LK suc(φ[x]),Θ
∀ r

∆ `LK suc(∀xφ),Θ

∆, ant(φ[x]) `LK Θ
∃ l

∆, ant(∃xφ) `LK Θ

∆ `LK suc(φ[x]),Θ
∃ r

∆ `LK suc(∃xφ),Θ

∆ `LK Θ
weakening

∆, ant(φ) `LK suc(φ),Θ
�

Definition C.3 (Miller’s HOIL (Miller et al. (1991)))
HOIL consists of well-formed formulæ, inference and structural rules for se-
quents. We begin by defining the well-formed formulæ. To do this we need
a language to generate them. This language consists of types, defined by the
grammar:

Types := ι | o | σ → τ

and expression symbols ∧,∨,⊃,>,∀σ,∃σ, λσ each with a type. > has type o; ∧,
∨ and ⊃ have type o → o → o, ∀σ and ∃σ have type (σ → o) → o and λσ has
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type σ → τ → (σ → τ). Every expression symbol is a proper symbol apart from
λσ. For a given type there are countably many variables of that type. Every
variable is a proper formula. The well-formed formulæ are the smallest class of
formulæ which satisfy the following rules:

1. Every proper formula is a well-formed formula with type as defined above;

2. If x is a variable with type β and M is a well-formed formula with type α
then λβx .M is a well-formed formula with type β → α;

3. If F and A are well-formed formulæ with type α → β and type α respec-
tively then FA is a well-formed formula with type β.

We omit the subscript on the λσ and abbreviate ∀σλσx . φ to ∀x . φ and ∃σλσx . φ
to ∃x . φ when it is clear from the context what the intended meaning is. We
say that a well-formed formula has been (λ-)converted if one of the following
conversions has been applied:

(α) A well-formed formula λx .M , where x has type β and M has type α can be
converted to a well formed-formula λy .M ′, where y has type β and M ′ has
type α and M ′ is the result of substituting y for x in M , provided y does
not occur in M and x is not bound in M ;

(β) A well-formed formula (λx .M)N , where x and N have type β and M has
type α, can be converted to M ′ of type α, where M ′ is the result of substi-
tuting N for x in M , provided that the bound variables of M are distinct
from x and N ;

(η) A well-formed formula λx . (Mx), where x has type α and M has type α→ β,
can be converted to M provided y does not occur free in M .

We now define the inference rules, where for each rule ∆ is a set of well-formed
formulæ. φ, ψ and χ are well-formed formulæ:

>
Γ `HOIL >

Ax
Γ, φ `HOIL φ

∆, φ, ψ `HOIL χ
∧ L

∆, φ ∧ ψ `HOIL χ
∆ `HOIL φ ∆ `HOIL ψ

∧ R
∆ `HOIL φ ∧ ψ

∆, φ `HOIL χ ∆, ψ `HOIL χ
∨ L

∆, φ ∨ ψ `HOIL χ
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∆ `HOIL φ
∨ R1

∆ `HOIL φ ∨ ψ
∆ `HOIL ψ

∨ R2
∆ `HOIL φ ∨ ψ

∆ `HOIL φ ∆, ψ `HOIL χ
⊃ L

∆, φ ⊃ ψ `HOIL χ
∆, φ `HOIL ψ

⊃ R
∆ `HOIL φ ⊃ ψ

∆, φ[x] `HOIL χ
∀ L

∆, ∀xφ `HOIL χ
∆ `HOIL φ[x]

∀ R
∆ `HOIL ∀xφ

∆, φ[x] `HOIL χ
∃ L

∆, ∃xφ `HOIL χ
∆ `HOIL φ[x]

∃ R
∆ `HOIL ∃xφ

∆ `HOIL φ
λ

∆′ `HOIL φ′

where in λ, ∆′ and φ′ are obtained by applying λ-conversions to φ and formulæ
in ∆. We also have the following structural rule:

∆ `HOIL φ
weakening

∆, ψ `HOIL φ

We do not need to explicitly state contraction and permutation since ∆ is taken
to be a set. �

297


