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Abstract
It is common knowledge that desktop computing power
is now increasing mainly by the change to multi-core
chips. This is a challenge for the software community
in general, but is a particular problem for audio process-
ing. Our needs are increasingly towards real-time and
low latency. We propose a number of possible paths that
need investigation, including multi-core and special ac-
celerators, which may offer useful new musical tools. We
define this as High-Performance Audio Computing, or
HiPAC, in analogy to current HPC activity, and indicate
some on-going work.
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1 Introduction
We have been particularly struck by the paper by
James Moorer[1] where he states

This is compute power far beyond what
even the most starry-eyed fortune-teller
could have imagined! It will change the
very nature of what audio is, and what
audio engineers do, since it changes what
is possible at a fundamental level.

In pursuit of this aim we propose the topic of
HiPAC — High-Performance Audio Computing —
as the study of new advanced processor architec-
tures to enhance audio synthesis, processing and
music composition. The name is a deliberate echo
of the field of general High-Performance Comput-
ing (HPC), but there are significant differences.
Rather than considering the use of supercomput-
ers and megaclusters we are concentrating on what
will within a relatively short timescale be consumer-
grade hardware. The emphasis has to be on afford-
able low latency real-time processing.

The long-established Moore’s law, the doubling
of the number of transistors in a chip every 18
months, has persisted as an indirect measure of
processing power, so long as the emphasis has

remained on increasing the processing power of
a single CPU core. However, obtaining further
speed from a single core (demanding not least, in-
creased clock speeds) incurs a significant increase in
power requirements, expressed not only in terms of
wattage but also in terms of heat generation, which
in turn demands further power for its dissipation us-
ing air or other cooling. This high power consump-
tion is not only directly costly, it also implies an in-
creasingly unacceptable “carbon cost”, and for the
musician, noise. The universally recognised solu-
tion is to increase the number of processing cores,
so that more computations can be made concur-
rently. This move towards parallel computation has
profound implications for both users and program-
mers. In this respect, music and audio processing
raises a number of interesting challenges and oppor-
tunities. One the one hand, a digital audio stream
is by definition serial, naturally suggesting a serial
(if fast) mode of computation; on the other, practi-
cal audio processes may involve a large number of
identical and often independent tasks which can in
principle run concurrently.

For many musicians, the availability of higher
computing power has typically been measured in
terms of the number of demanding processes (such
as reverberation, or synthesiser voices) that can be
performed in real time. While this remains an im-
portant measure, we are interested more in the pos-
sibility of exploring in real time processes that have
hitherto been disregarded as too computationally
demanding but which the next generation of hard-
ware could bring into to the realm of real-time exe-
cution.

2 The Hardware — from Supercomputers
to the Desktop

For a period the interest was in “supercomputing”,
as typified by vector and array processors, like the
original Cray 1, built in 1976 for the Los Alamos
National Laboratory[2] and specified to reach the
then astonishing speed of 160Mflops and an almost
equally astonishing main memory of 8Mbytes. The



machine solved a central issue for any cluster, of
inter-node communication, by ensuring that no con-
nection was longer than 4 feet. The resulting horse-
shoe shape became for the general public almost the
defining iconic image of a “supercomputer”.

At a similar time in the UK there were many al-
ternative designs, such as dataflow [3] and the ICL
DAP[4].

There was a brief flowering of research into par-
allel computing, and much discussion on meshes
and hyper-cubes. A key aspect was the use of a
Single-Instruction-Multiple-Data (SIMD) computa-
tional mode, which is unsuited to computations dis-
tributed over physically disparate nodes. This leads
to a number of synchronous processing elements,
with a common clock, which must be physically
very close – same board or chip. The concept of
SIMD still dominates much computing, even in the
SSE instructions in recent chips.

Early MIMD (Multiple-Instruction-Multiple-
Data) processing was beset by communication costs
and organisational issues. However it is this style
that led the revival of interest, with the Beowulf
cluster approach, using a network of commodity
PCs.

In contrast, modern SIMD fine-grained parallel
architectures are associated today firstly with the
vector extensions to standard CPUs (e.g. Altivec
on the PPC, SSE on x86) whereby several arith-
metic units are employed in parallel, and secondly
with the graphics accelerator cards now essential to
all consumer workstations (especially where high
performance in games is required). The difference
clearly is that these SIMD systems are typically
monolithic, implemented in one chip. An example
of this approach is the IBM Cell Broadband Proces-
sor[5] employed in the Sony Playstation. This chip
employs a conventional PowerPC master CPU cou-
pled with 8 parallel floating-point PEs.

In the attempt to maintain a generational perfor-
mance increase, chip manufacturers are already sup-
plying devices and motherboards supporting multi-
ple CPU cores (currently with a maximum of four
cores per chip, in the case of the processors from
Intel and AMD), while investigating designs which
significantly increase the number of cores. Intel,
for example, have publicised a development chip
featuring 80 cores, and claim performance up to 1
Teraflop, while indicating that a commercial release
may still be 10 years away. When associated with
cluster computing we obtain the current batch of su-
per computers – indeed it is now a mark of pride
to have a cluster with more cores than ones neigh-
bours.

At the same time a highly significant market
has arisen for SIMD-style accelerator systems de-
signed to work in conjunction with a host computer,
and targeted at the HPC community. One signif-
icant example is the Tesla accelerator series from
nVidia [6]. The company have for many years pro-
vided a SDK for several of their GPU-based video
cards, featuring their CUDA development environ-
ment. The Tesla series represents their first general-
purpose accelerator product not specifically devel-
oped as a graphics accelerator, while based on the
same technology. The Graphics Processing Unit
(GPU) has already attracted the interest of a num-
ber of audio researchers (e.g. [7]), especially for the
computation of 3D acoustic modelling tasks. A sec-
ond example, is the “Advance” floating-point accel-
erator card from the British startup Clearspeed[8].
Each card features two of their CSX600 chips, each
offering 96 PEs supporting double-precision float-
ing point computation, with very low power con-
sumption of some 30W per card. Each card pro-
vides a sustained computation speed of 50 Gflops.
Both the nVidia and Clearspeed products provide
automatic acceleration support for Matlab, enabling
them to be rapidly integrated into an existing HPC
cluster.

Clearspeed’s most recent device, the CSX700,
merges the two CSX600 cores onto one chip, and
the new PCIe-based cards employing them are con-
siderably cheaper, making them directly competi-
tive with the nVidia Tesla product, and thus signifi-
cantly more accessible to the individual user.

In a parallel development, FPGA devices have
increased substantially in both size and speed, of-
fering a powerful alternative path to custom DSP
chip design for both academic research[9] and in-
dustry. For example, the new “Crystal Core” sys-
tem from Fairlight is based on a dynamically recon-
figurable FPGA device[10]. It is also of interest to
note the use of special “physics” co-processors in
some game computers.

3 The software
Over time there have been many attempts at soft-
ware aimed at parallel execution schemes, often tied
to particular hardware.

Of particular note is the now defunct Inmos
Transputer, almost unique in being closely associ-
ated with a dedicated concurrent programming lan-
guage Occam[11]1.

This in turn was based on the formal language
Communicating Sequential Processes (CSP) de-

1An insider’s history of the Transputer can be found in [12;
13]



vised by Hoare[14], and which is still highly influ-
ential in the field of concurrent and parallel com-
putation. Amongst computer musicians, the Trans-
puter is of special note for its use in the first
real-time parallel implementation of Csound[15],
involving some 170 Transputers, though it is re-
counted that the problem of heat dissipation was
never resolved. The Transputer however lives on
in emulation, for example in the forms of an FPGA-
based device[16] and of a software emulation of the
instruction set supporting Occam[17].

There is a tension between using a language
that directly supports a parallel and concurrent
paradigm, and retaining the ubiquity of the C and
C++ languages, neither of which embodies any ex-
plicit support for parallelism. In the latter case
the trend is to a dependence on general thread-
ing libraries (such as POSIX pthreads for C, or
the Boost C++ threading library), or on language
enhancements such as OpenMP, that may or may
not make explicit use of platform-specific facili-
ties (with the many well-known issues associated
with multi-threaded programming using these lan-
guages).

The prevailing trend is the emergence of a vari-
ety of custom extensions to C, usually serving par-
ticular hardware. For example, in a fashion simi-
lar to the MasPar, the Clearspeed hardware is sup-
ported by an extended C compiler supporting a cus-
tom keyword poly defining a variable stored (with
unique values) on each of the 96 PEs and referenced
as a single entity. Further extensions and library
functions deal with the sometimes complex tasks
of transferring data between PEs, and between poly
and mono (conventional) memory. With respect to
FPGA programming, the company Celoxica pro-
vides the language Handel-C (following CSP prin-
ciples) enabling a range of FPGA development sys-
tems to be programmed using a similarly extended
C language supporting both coarse and fine grained
concurrency by means of wait and par keywords
[18].

This very condensed and selective snapshot of the
fields of hardware and software support for concur-
rent processing leads us to a consideration of the
particular challenges presented by audio. In this
regard, we must recall the inherently serial (one-
dimensional) nature of raw audio data, which would
seem to impose significant constraints on the full ex-
ploitation of parallel processing. Many of the funda-
mental processes in which we are interested, such as
recursive filters, are inherently data-dependent and
(taking the example of a plain first-order IIR filter)
therefore by definition un-parallelisable. The re-

lationship between sequential and parallel compu-
tation is summarised in Amdahl’s law [19], which
may be stated as the speedup being

1/(S + P/N)

where S is the fraction of serial computation, P =
1 − S is the amount of parallelisable computation
and N is number of processors.

The limiting value is therefore 1/S for an infi-
nite number of processors; that is, computation will
be dominated by the sequential subset. This law
(which has been applied in such areas as business
and project management as well as in computing)
suggests some serious limits on how much speedup
can be obtained from parallel processing. However,
this has more recently been demonstrated to be an
overly conservative estimate [20], with respect to
a hypercube-based system. For audio processes an
equivalent to Amdahl’s law is as yet undefined, and
would seem to be highly dependent on the charac-
teristics of the architecture, as well as on the na-
ture of the process itself. Clearly, a process com-
prised mostly of recursive processes will gain rela-
tively little speedup (dependent entirely on the map-
ping of the number of recursive streams to the num-
ber of processors). On the other hand, many audio
processes are inherently highly parallelisable with
few or no data dependencies, most obviously frame-
based analysis techniques such as the DFT. Such al-
gorithms can be expected to derive the maximum
benefit from parallel computation using SIMD mod-
els. As already indicated in the examples of graphic
modelling, audio processes based on physical mod-
els (e.g. finite element networks) similarly offer a
very good fit to a parallel computational model. One
factor that must be borne in mind is that the clock
speeds of such devices (rated in MHz rather than
GHz), as also of most DSP chips, are often signifi-
cantly lower than those currently employed in desk-
top PCs. The overall computation speed of such
processors depends almost entirely on parallel com-
putation, such that serial computation needs to be
kept to an absolute minimum.

As the current technology as exemplified in the
systems described above is seeking to reach and ex-
ceed 1 Teraflop speeds, we argue that it is now time
to revisit audio processes hitherto disregarded on
account of their computational demands. Even if
they are time-consuming today, they will not be in
only a few years, so that we must start investigating
them now. By the same argument, we expect hard-
ware that is currently relatively expensive to fall to
commodity prices and therefore to become accessi-
ble to everyone. In particular, we advocate in the



HiPAC program the study of no-compromise algo-
rithms – rather than make simplifications to an al-
gorithm purely for reasons of slowness, HiPAC con-
siders such algorithms in as pure or “ideal” a form
as possible, especially where that ideal form may
lead to musically useful and novel behaviour.

We present below two contrasting case studies
which we have started.

We can summarise the primary defining charac-
teristics of a pure HiPAC DSP process:
• use of highly parallel fine-grained architectures

(e.g. following the SIMD model), though we
do not exclude more “conventional” multi-core
computation
• real-time performance or better
• implies low latency
• ideal and “no-compromise” forms of algo-

rithms
• new processes, and hence new effects and

sounds, not simply “more of the same” -
whether more reverbs or more voices.

Finally we note that there are alternative forms of
parallel and distributed computation that can be ap-
plied to audio, such as grids, web services[21] and
clusters. We do not consider these further in this pa-
per, but suspect they will eventually find a place in
the galaxy.

4 A HiPAC case study – the Sliding Phase
Vocoder

In the paper [22] we identified the The Sliding Phase
Vocoder (SPV) as a canonical example of a HiPAC
process. A fuller description of the SPV and its pre-
cursor SDFT can be found in that paper and else-
where [23; 24; 25]

We focus here on the HiPAC aspects that relate
to the SPV. The conventional phase vocoder trans-
forms audio into the frequency domain by means
of a series of overlapping Fourier transforms (using
the FFT algorithm). All practical implementations
(and especially where real-time performance is re-
quired) overlap analysis frames by some small frac-
tion of the window size. For a given sample rate R,
the analysis rate A is given by the overlap length D
in samples, as A = R/D. This can be described
as the “hopping phase vocoder”. It is well known
that increasing the overlap leads to improved sonic
performance, but at a directly increasing computa-
tional cost. In the limit, as D → 1, the “ideal”
phase vocoder overlaps frames by one sample, so
that A = R. While recognised in the literature
as offering sonic advantages, this sliding form has
hitherto been avoided in practice as being computa-
tionally prohibitive.

Our implementation of the SPV is based on the
use of the Sliding DFT, in which the DFT frame is
updated every sample by a simple complex rotation
of the bin values

Ft+1(n) = (Ft(n)− ft + ft+N ) e2πi n
N

It should be noted that this process is inherently par-
allel between the bins. It has also been found to re-
duce the latency by as much as 75% compared to
conventional pvoc. The computational demands are
greatly increased, it being in effect an N2 process.
However, most transformations applied to analysis
frames are also parallelisable (often involving stan-
dard vector arithmetic operations).

We have also shown that pitch shifting is a
much simpler process compared to the hopping
pvoc, since the frequency range of each bin covers
the whole audio range (resynthesis is by oscillator
bank). This enables, for example, audio-rate Fre-
quency Modulation to be applied cleanly to an arbi-
trary input, a process we have termed Transforma-
tional FM[22]. The single-sample update (permit-
ting high modulation rates) is essential to the imple-
mentation of audio-rate FM, in both time and fre-
quency domain forms; thus TFM is an example of
a frequency-domain process that cannot be imple-
mented using the hopping pvoc.

It should be noted that these algorithms are avail-
able in Csound5, but the dismal performance means
that it is unlikely to be used in any but off-line pro-
cessing.

In terms of the HiPAC criteria listed above, we
can see that they are all met by the SPV:
• highly parallelisable
• streamable in real time given fast enough hard-

ware
• lower latency compared to conventional pvoc
• an “ideal” or no-compromise version of pvoc
• enables a new class of transformation, TFM,

not realisable using standard pvoc.
We are investigating the use of the Clearspeed ac-

celerator chips in implementing a viable version of
this algorithm. It has been shown that this hardware
can support significantly in excess of a hundred os-
cillators, so seems like a good match.

5 A HiPAC case study – Parallelising
Csound

A slightly different case is exemplified by Csound.
There is a multitude of music pieces that depend on
the syntax and semantics of the Csound system, and
it is a cardinal feature of the system that existing
pieces must not be broken by developments[26]. If
this synthesis language is to work in a world where



everyone have a multicore computer we need to find
a way to harness multiple processes. It is simple
to use one processor for the GUI and one for the
processing, but this is hardly sufficient. We need to
split the audio processing itself between processors
or threads.

There have been at least three previous attempts
at a parallel Csound. We have already cited the
Transputer Array project. A similar project was
Midas[27], where the processing was developed as
a flowgraph of unit generators, and then mapping
them to a network of SGI workstations. This pro-
cess has an inherent latency, and the communica-
tion costs tend to dominate. It would be good to ex-
periment with this scheme, but it seems unavailable
now.

Another less documented system is that of Ver-
coe, where Extended Csound was implemented on
a small number of SHARC processes, with a fixed
allocation of instruments to processors, and a ren-
dezvous point at the end of each kontrol cycle. This
scheme is also found in the later work described at
Sounds Electric[28]. The model restricts the lan-
guage, and introduces a change in semantics relat-
ing to the order of instruments, but it is a working
system.

A full solution needs to take account of gran-
ularity and semantics. The parcels of work need
to be of sufficient size to overcome the communi-
cation costs, and the semantics defining the order
of instruments and global variables needs analysis.
We previously were involved in a parallel simula-
tion project in LISP[29] where we followed the pro-
cess [30] of analysing the program for points of syn-
chronisation, and also evaluated the possible cost of
individual functions[31]. We are currently investi-
gating a compiler-technology approach to the par-
allelisation of csound, using the new parser as the
basis of the flowgraph, and hence of the identifi-
cation of synchronisation, and using valgrind and
some scripts to count the cost of individual ugens.
This work is reported in more detail in [32].

6 Conclusions
We define HiPAC as a new class of computationally
demanding audio processes implemented by means
of the next generation of parallel processing plat-
forms and tools. We have described the primary
trends with respect both to desktop computers and
to hardware accelerators. The latter are already
offering close to Teraflop-class computing power.
We expect the cost of these devices to drop sig-
nificantly within the next decade, so that parallel
computing will move from the domain of HPC to

the home desktop. We have presented the Sliding
Phase Vocoder as a canonical example of a HiPAC
process. Many other audio processes are known
that are well suited to parallel implementation. We
also outlined a contrasting parallel audio problem,
utilising multicore processors with exiting applica-
tions. We would also cite in particular processes
based on physical models (whether of instruments
or of acoustic spaces), which can be realised not
only with optimised waveguides, but also in a more
“ideal” form using finite element models. We sug-
gest that by implementing these computationally in-
tensive processes now, we prepare the ground for
the immediate exploitation of the next generations
of parallel computing hardware, which may be with
us much sooner than we might have supposed only
a year or two ago.

This paper is a revision of the paper[33] presented
at ICMC2009, revised in the light of comments and
a panel discussion.
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