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Enhanced Light Extraction by Photonic
Quasi-Crystals in GaN Blue LEDs

Philip A. Shields, Martin D. B. Charlton, Tom Lee, Majd E. Zoorob, Duncan W. E. Allsopp, Member, IEEE,
and Wang N. Wang, Member, IEEE

Abstract—The far-field profile of photonic quasi-crystal pat-
terned and unpatterned LEDs, fabricated from commercial epi-
taxial substrates by electron beam lithography, has been measured
prior to lapping and dicing. Emission enhancements reach a max-
imum of 62%, and are strongly dependent on the filling factor.
Qualitative agreement is achieved between 2-D finite-difference
time-domain calculations and the experimental data.

Index Terms—Electroluminescence, extraction, LEDs, photonic
crystals.

I. INTRODUCTION

THE LAST few years has seen reports of the use of photonic
crystals to increase the extraction efficiency of LEDs by

coupling the traditionally trapped guided modes in a planar
semiconductor structure into radiative modes [1]. Initially, work
focused on the theoretical possibilities that photonic crystals can
alter the spontaneous emission within an LED via the Purcell
effect [2], or used bespoke structures or excitation schemes to
demonstrate the principles [3]–[5]. Subsequently, there was a
shift toward photonic crystal integration in more commercial
LED devices [6].

In order to increase the strength of the interaction between the
guided modes and the photonic crystal, the use of a buried pho-
tonic crystal has been reported [7], [8]. However, this approach
requires a second epitaxial growth process for the regrowth of
the capping material. The growth is more challenging, and the
intermediate processing step will introduce contamination close
to the critical active layers.

The approach taken in this paper is to introduce the periodic
structure in the top layer of the high-index GaN waveguide.
Since the photonic crystal is separated from the active region,
this approach introduces only a small perturbation to the trapped
optical modes. Therefore, it is not the photonic bandgap that is
being exploited but the coupling of trapped modes with modes
that can escape from the material. This simpler process enabled
the trends over a relatively wide range of the photonic crystal
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design parameters to be studied using readily available commer-
cial epitaxy, but with the drawback that the layer structure may
not be the optimum for strong-mode perturbation.

One of the disadvantages of using square or triangular sym-
metry photonic crystals to improve LED extraction is the az-
imuthal anisotropy of the light emission that is undesirable in
lighting applications [9]. An alternative is to use photonic quasi-
crystals (PQCs) that have higher rotational symmetries leading
to less azimuthal emission dependency [10]–[12]. These quasi-
crystals have long-range order but no short-range translational
order.

II. EXPERIMENTAL DETAILS

Standard unroughened GaN-based LED wafers on sapphire
substrates were sourced from commercial suppliers. The surface
was patterned with electron-beam lithography (EBL) before the
resist pattern (ZEP 520, Zeon Corporation) was transferred via
a SiO2 hard mask to the upper 200-nm-thick p-GaN layer by
Cl2 /Ar plasma etching. The patterned wafer was then processed
by conventional lithography into 270× 270 µm LED chips using
5:5 nm Ni/Au transparent p-contacts.

The PQC patterns were based on square-triangular tiling [10]
with three different pitches: 450, 550, and 750 nm. Initially, we
aimed for hole diameters of half the pitch, which corresponds to
a filling factor or air fraction of∼0.22. In practice, three different
beam doses were used in order to achieve three different hole
sizes around the design filling factor. Also, each element was
written as a square by the EBL system rather than a circle, since
this considerably increased the writing speed allowing many
more LEDs to be patterned in one run. This enabled a sufficient
number of devices to be fabricated for systematic trends to be
studied without drift in the EBL system being a factor. Thus,
the experimental realizations only approximate to the idealized
structures.

Fig. 1 shows a SEM image of one of the photonic crystal chips
(PCLED) with a representative area of the quasi-photonic crystal
structure defined in its top surface. The depth of the etched
holes was measured to be 110 nm by atomic force microscope
(AFM). The inset at highest magnification indicates the degree
of distortion that occurred to the elements that were written as
individual squares.

The SEM observations of the final LEDs reveal that the fab-
ricated patterns differ from that intended in the following dif-
ferent ways: the positional accuracy of the element, its size, and
its circularity. Measurements of the geometric parameters of the
photonic crystal structures were obtained from SEM images in
order to assess the departure from that originally intended [13].

1077-260X/$25.00 © 2009 IEEE
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Fig. 1. SEM images of a 750-nm-pitch PCLED along with the cross section
from a test sample showing the hole profile.

Fig. 2. Example of the SEM image analysis that has been used to determine
the fidelity of the photonic crystal. The inset is annotated with the lateral extent
of the top and bottoms of the etched holes.

TABLE I
PCLED PARAMETERS DEDUCED FROM THE SEM AND AFM ANALYSIS THAT

DESCRIBE THE PATTERN FIDELITY

The SEM images were analyzed to determine the nearest neigh-
bor distances, the distribution of hole sizes, the hole circularity,
and, in combination with AFM measurements of the hole depth,
the sidewall angle. Fig. 2 shows an example of such an SEM im-
age with the inset additionally annotated with the lateral extent
of the top and bottoms of the holes. Table I lists the parame-
ters deduced from the SEM and AFM analysis that describe the
pattern fidelity.

For characterization, an optical fiber mounted on a goniome-
ter was used to measure the far-field light distribution of the
undiced devices. Control samples with no surface patterning

were interspersed between every patterned LED to minimize
the influence on the results of growth and fabrication varia-
tions across the wafer fragment. Since the wafer was not diced
into chips, these results do not include the effects of emission
through the cleaved chip sidewalls. This forms a significant con-
tribution to the total output of diced chips as reported in [14].
Nevertheless, without singulation, comparisons are easier since
all that is required for comparing extraction enhancements from
differently patterned chips is a simple translation of the wafer
by the chip pitch.

III. RESULTS

Fig. 3 shows the angular electroluminescence from an un-
patterned control LED (upper left) and a patterned PQC LED
(upper right) as a function of zenith angle and wavelength. The
measurements were for TE polarization. Numerous peaks can
be observed in the control sample. Those that shift angle with
wavelength correspond to Fabry–Perot (FP) fringes that arise
from sandwiching the ∼4-µm high-index GaN layer between
the lower index sapphire substrate and air. Two further peaks at
±79◦ that are independent of wavelength correspond to lateral
emission from the etched mesa sidewalls.

The FP modes correspond to modes that lie within the normal
material extraction cone, and would be subject to Fresnel reflec-
tion at the GaN–air interface. This provides limited recycling of
photons within the structure, and hence, a very weak interaction
with the photonic crystal surface patterning. Nonetheless, for
the patterned sample, these broad FP fringes are almost com-
pletely broken down, as shown in the lower two graphs of Fig. 3.
This provides information about the level of interaction between
the relatively shallow photonic crystal and the weakly confined
FP modes. These effects have been examined in detail for thin
waveguide structures in [15]. Energy previously associated with
these weakly confined modes has become redistributed in the
far field. In Fig. 3 (lower graphs), we see that the two FP modes
closest to the critical angle at 50◦ and 65◦ are efficiently smeared
out, and only the two remaining FP modes at 0◦ and 30◦ survive
but are less pronounced. We would expect there to be a relation-
ship between the number of FP modes extracted by the PC and
the etch depth of the holes. The data indicate that the photonic
crystal, in this case, of depth 110 nm interacts with the higher
order FP modes but is not deep enough to interact strongly with
the remaining lower order FP modes. An identical behavior is
observed for TM-like modes.

The analysis of FP modal behavior provides an insight into
the relationships and level of interaction between the photonic
crystal and light extracted from the structure but does not tell us
anything more about the interaction of the photonic crystal with
guided modes that occur as a result of total internal reflection.

Looking more closely at Fig. 3 (top right), inclined lines
are observed from the Bragg scattering of the confined optical
modes by the photonic crystal. These can be seen more clearly
by taking a cross section through the contour plots at 454 nm,
as shown in the lower two graphs of Fig. 3. The fine structure
can be seen more clearly along with the emission enhancement
with the reminder that the jagged line for the PCLED is not
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Fig. 3. Angular electroluminescence plots for TE-polarized light for a control LED (left) and a 750-nm-pitch PCLED (right). The intensity versus wavelength
is shown in the form of contour plots for the full emission band (above) and as line plots for a single wavelength of 454 nm (below). The centre of the x-axis
corresponds to the surface normal.

caused by noise but rather by the numerous Bragg scattered
modes. This fine structure confirms that the photonic crystal
does not merely act as a source of inclined surface normals akin
to surface roughening. Rather, it has a significant interaction
with the trapped guided modes as well. This is further confirmed
by the strong reduction in the mesa sidewall emission at ±79◦

for the photonic crystal sample. As expected, it shows that with
the increased light extraction through the top patterned surface,
there is a simultaneous reduction of optical energy in the guided
modes.

Integrating over the wide ∼40 nm emission band leads to
all the F-P and the Bragg features being smeared out. For the
unpatterned control samples, an almost perfect Lambertian far-
field profile is recovered, thus confirming the validity of the
experimental setup. Within a ±50◦ cone, this emission was
Lambertian to within ±2%. Outside this range, small peaks
representing 5% of the total light output were observed due to
emission through the mesa sidewalls.

Between successive measurements, the wafer was translated
by the chip pitch in order to allow direct comparison of the

light output intensity of patterned and unpatterned devices. The
electrical characteristics of the PCLEDs and the control LEDs
were very similar with a forward voltage of 3.2 V at 20 mA
drive current.

Fig. 4(a) shows the measured far-field profile of both the
control LEDs and the PCLEDs for the three different pitches.
The EBL dose was the same (150 µC/cm2) for the three PQC
structures considered, and corresponds to the highest dose used
in this paper. The total emission intensity enhancement from the
top surface for the best chips for each pitch was estimated by
integrating the far-field profile over the extraction cone, whilst
assuming that there is no azimuthal dependence on the far-field
profile.

In order to confirm this assumption, a second experiment was
performed at a fixed zenith angle of 30◦ for a sample with a
735-nm PQC etched in the surface but without metal contacts
or Ni–Au conducting layer. Luminescence that was excited by a
He−Cd laser at 325 nm was collected by the same experimen-
tal setup as before for azimuthal angles between 0◦–180◦. The
results are shown in Fig. 5. The contour plot shows intensity
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Fig. 4. (a) Measured far-field profile of the PCLEDs and control chip (unpolar-
ized). (b) Simulated far-field profile of the PCLED (not to scale). (c) Qualitative
comparison of the measured and simulated far-field profile for the 550 nm
PCLED.

modulations that originate from interference between a com-
plex set of criss-crossing Bragg scattered peaks. The line plots
(bottom) correspond to horizontal slices in the contour plot at
a single wavelength. These clearly reveal the 12-fold symme-
try of the quasi-crystal. Further, the intensity modulations are
completely smeared out when the emission is integrated over
the whole emission band. This is shown by the upper line plots
for TE and TM polarization demonstrating there is negligible
azimuthal dependence of the far-field profile. These results con-
firm the advantage of using PQCs over a more conventional
hexagonal symmetry photonic crystal structure.

Integrating over a ±90◦ cone, the electroluminescence en-
hancement ranged between 42%–48% for all three pitches.
However, integrating over a full ±90◦ cone masks a much larger
enhancement over cones of smaller angle about the surface nor-
mal. The enhancement reached a maximum of 58% for a ±15◦

cone for the 550-nm-pitch PCLED, and 62% for a ±45◦ cone
for the 750-nm-pitch PCLED.

Fig. 5. Photoluminescence from a 730-nm-pitch PCLED for different az-
imuthal angles. The contour plot shows the intensity for a specific wavelength
and azimuthal angle for TE polarized light. The lower line plots show the cor-
responding intensity at wavelengths of 450, 455, and 460 nm, and highlight the
12-fold symmetry of the PQC. However, once the spectra are integrated over all
wavelengths (upper line plot), the 12-fold symmetry is hardly visible.

The dependence on the photonic crystal hole size (i.e., air
fraction) is shown in Fig. 6. For each pitch, increasing the hole
size caused an increase in the total emission. This is most pro-
nounced for the 550-nm-pitch PCLEDs. Since the hole size has
no observable effect on the far-field distribution, the data in
Fig. 6 can be summarized by integrating over a ±90◦ cone, and
plotting the result against air fraction, as shown in Fig. 7.

Both the 450 and 550 nm pitches show similar increases in
extraction from an air fraction from 0.13 to 0.21. The 750 nm
pitch also shows an increase up to 0.30. Whilst the data does not
point to a value for an optimum air fraction, it consistently shows
that larger holes are better across a broad range of pitches. This
result perhaps highlights the complex role of the etched layer
in that it acts as both a 2-D photonic crystal laterally as well as
an anti-reflection layer in the vertical direction. Further work is
continuing to establish the optimum air fraction for the different
pitches.

The optical properties of the PCLEDs have also been modeled
using a 2-D finite-difference time domain (FDTD) technique
with an in-line near- to far-field transform [16]. This allows the
conversion of the near-field image of the light coming out of the
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Fig. 6. Measured far-field emission profiles of PCLEDs with pitches of 450,
550, and 750 nm. The light gray, dark gray, and black lines correspond to the
PCLEDs written with low, medium, and high electron beam doses.

LED into a far-field emission profile. The LED region is bound
by reflecting boundaries in order to simulate a larger structure. A
perfectly matched layer boundary condition is used elsewhere.
Dipoles oriented to achieve TE-polarized light are placed in the
quantum well region. The 2-D algorithm does not allow the
full LED to be simulated. Therefore, only a cross section of
the device is considered. The output of the simulations is then
normalized to a Lambertian emitter in order to obtain far-field
profiles.

Calculations of the extraction efficiency and far-field profile
were carried out to inform the choice of pattern design. The
450 nm pitch was chosen for high on-axis emission whereas
the 750 nm pitch was chosen for low on-axis and high off-axis
emissions. Results of these calculations are shown in Fig. 4(b).
Qualitatively, the simulations reproduce the key features in the
measured enhanced extraction efficiency of the PCLEDs. In
general, the maximum enhancement is at emission angles cor-
responding to the peak angles predicted from the simulations
shown in Fig. 4(b).

Fig. 4(c) illustrates this further by comparing the simulated
and measured angular dependence of the far-field intensity of
the 550-nm-pitch PCLED. Note the simulations were carried out
over a smaller spectral bandwidth as that of the measured data.
Increasing the spectral range of the simulations will have the

Fig. 7. Total extraction enhancement versus air fraction for the measured
PCLEDs. A ratio was taken of the total intensity, integrated over a ±90◦ cone
from the far-field profile, of patterned and unpatterned LEDs.

effect of smoothing the far-field pattern due to its slow variation
with wavelength. Averaging the simulated data with respect to
angle will have much the same effect. The dotted line in Fig. 4(c)
shows the influence of smoothing on the simulated data. The de-
gree of smoothing used here is arbitrary and nonoptimum. The
shape of the averaged far-field pattern shows improved quali-
tative similarity with the experimental data. This demonstrates
that the 2-D FDTD simulations are reproducing the key fea-
tures in the experimental data, and are therefore a useful tool for
optimizing photonic-quasi-crystal light-extraction elements.

IV. CONCLUSION

In conclusion, results have been presented showing enhanced
and more directional light extraction from blue-emitting LEDs
with PQCs etched into the device surface. The results confirm a
relatively smooth azimuthal dependence of the far-field profile
once the broad emission band is taken into account, and point
to a strong dependence on the extraction on the photonic crystal
air fraction.
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