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EXISTENCE OF DYNAMIC PHASE TRANSITIONS IN A

ONE-DIMENSIONAL LATTICE MODEL WITH PIECEWISE


QUADRATIC INTERACTION POTENTIAL∗


HARTMUT SCHWETLICK† AND JOHANNES ZIMMER† 

Abstract. The existence of travelling waves in an atomistic model for martensitic phase tran
sitions is the focus of this study. The elastic energy is assumed to be piecewise quadratic, with two 
wells representing two stable phases. We develop a framework such that the existence of subsonic 
heteroclinic waves in a bi-infinite chain of atoms can be proved rigorously. The key is to represent 
the solution as a sum of a (here explicitly given) profile and a corrector in L2(R). It is demonstrated 
that the kinetic relation can be easily inferred from this framework. 

Key words. lattice, travelling waves, piecewise linear stress-strain relation, Fermi–Pasta–Ulam 
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1. Introduction. Phase transitions in solids have been a focus of research ac
tivities in mathematics and physics alike. A very simple discrete model of elasticity 
allowing for phase transitions is as follows. Given a one-dimensional chain of atoms 
{qj }j∈Z on the real line, let the deformation of each atom be given by uj : R R.→
If neighboring atoms are linked by springs, then the evolution governed by Newton’s 
law takes the form 

(1) üj (t) = V �(uj+1(t) − uj (t)) − V �(uj (t) − uj−1(t)) 

for every j ∈ Z. A main challenge of phase transitions is that they are commonly 
characterized by a nonconvex energy V . 

In this article, we prove the existence of subsonic travelling waves for the sys
tem (1) in the special case of a piecewise quadratic interaction potential V with two 
wells of equal depth. We say that a travelling wave solution represents a phase tran
sition if its strain lives in both wells of the energy. Here, the wells meet at 0, so a 
solution with positive and negative strains exhibits a phase transition. We say that a 
phase-transforming solution is heteroclinic if the strain belongs asymptotically to the 
two different variants or phases of the material, that is, the two wells of the potential 
energy. 

Modeling the elastic or plastic behavior of materials with chain models with 
bistable or multistable springs is common in engineering and physics; see, for example, 
the seminal work [4] by Frenkel and Kontorova on dislocation dynamics (where an ad
ditional periodic on-site potential is introduced), or the analysis of a static snap-spring 
model by Müller and Villaggio [5]. The specific problem under consideration in the 
present work has been studied in a number of papers, notably by Balk, A. Cherkaev, 
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E. Cherkaev, and Slepyan (see [7, 2, 3]) and Truskinovsky and Vainchtein [10, 11]. In 
particular, the setting of [7, 10] is very similar to the one considered here. Yet, the 
methods employed in the present article are entirely different, and we believe that the 
tools we develop are of wider interest for lattice dynamical systems. 

One of the difficulties of proving the existence of travelling waves in the lattice 
model (1) is as follows. We express the solution in the strain variable ε. It is easy to 
see that the Fourier transform F [ε] of the solution, if it exists, has nonintegrable real 
poles stemming from zeros of the dispersion relation. The natural approach of finding 
the solution by applying the inverse Fourier transform F −1 to F [ε] is thus not rigorous. 
This is acknowledged in the physics literature. There, instead of integrating along the 
real axis Γ0 := R, the Fourier transform and its inverse are computed along suitable 
paths Γs such that the paths converge in the limit s 0 to Γ0; the solution is then →
found in the limit s 0 of the Fourier-like transform along Γs. The mathematical →
justification of this method is not immediate, as the result depends on the choice of 
the paths. However, precisely this thought amounts to the physical beauty of the 
argument: a selection principle is applied to choose physically reasonable solutions. 
This is called the causality principle for a steady-state solution; see [8]. 

One aim of this paper is to show that a rigorous framework can be established 
using Fourier methods. The idea is very simple. Indeed, it is already implicitly stated 
in the physics literature [7]. Namely, the aforementioned difficulties stem from the 
singularities that occur in the Fourier transform F [ε], and here these singularities can 
be traced back to 0 and κ0 > 0 being zeros of the dispersion relation; the positive 
zero, in turn, defines the oscillation frequency in the asymptotic tails of the solu
tion. Therefore, we represent the solution as a sum of a profile and corrector ; the 
former captures the nondecaying oscillatory tails, and the latter will be shown to be 
in L2(R). We will demonstrate that this splitting allows a rigorous application of 
Fourier methods to the equation for the corrector. 

We emphasise that this is more than a mere mathematical subtlety. One ad
vantage of the rigorous framework is that there is no need, and in fact no space, 
for a selection principle; the selection is made by the dispersion relation. The new 
mathematical framework thus has a very elementary physical interpretation. 

A second advantage of the method presented here is that a central argument 
can be made rigorous, apparently for the first time. This is the key difficulty, which 
can be described as follows. Effectively, one wants to solve a nonhomogeneous linear 
equation, where the inhomogeneity depends on the solution. This is formulated in 
a precise manner in (7), where the inhomogeneity depends on the solution ε. Only 
if the solution satisfies the sign condition (8), then the inhomogeneity becomes a 
function of the spatial variable x alone, as shown in (9). With any approach that 
we are aware of, a solution to the latter nonhomogeneous equation is found, that 
is, with inhomogeneity f = f(x). It is, however, evident that this solution is not 
a solution of the former (original) system if the sign condition (8) is violated. Yet, 
we could not find a rigorous proof of the sign condition in the literature. Since the 
deformation of integration paths leads to a representation of the solution as an infinite 
sum of residues, even a numerical verification of the sign condition will be difficult. 
Our proof in the setting introduced in this article is presented in subsection 3.4 and 
section 4. 

We hope that the method of combining a profile with a corrector, as described 
here, may be of interest for related problems as well. This study seems to present the 
first rigorous results for heteroclinic waves for a double-well potential. In addition, 
though the verification of the sign condition is cumbersome, the decomposition of the 
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solution as a sum of a profile and corrector is in principle simple and may be useful 
in numerical investigations as well as a stability analysis. 

One attractive feature of the approach presented here is that relevant information 
can be easily read off from the profile. This is demonstrated in section 5. There, we 
determine the kinetic relation of the evolving interface, which relates the velocity 
of a phase boundary to a configurational force. Kinetic relations are relevant for 
the continuum limit of (1), which is elliptic-hyperbolic and thus genuinely ill posed. 
Namely, kinetic relations serve as a selection criterion [1, 9]. As shown in section 5, 
it is easy to deduce from the symmetry of the profile that the kinetic relation here 
is zero. (The kinetic relation should not be confused with the pressure difference. 
In the situation under consideration, the region of atoms with high average pressure 
pushes the interface into the region of atoms with low average pressure; the asymptotic 
difference of the averaged pressure is explicitly calculated in section 5 and shown to 
be strictly positive.) 

Mathematically, an attractive feature of lattice systems is that a lot less is known 
about them in comparison to PDEs, and some methods are not easily applicable. For 
example, the use of the Wiener–Hopf technique for lattice equations is more subtle 
than for continuous problems. This is since the interface between the two linear half-
spaces to be glued together is no longer a hypersurface, but a set of full measure, 
due to the atomistic spacing. This already indicates that the consistency check of a 
solution candidate is a much more involved process. 

2. Description of the problem. We consider a one-dimensional chain of atoms 
{qj }j∈Z on the real line. For each atom, the deformation is given by uj : R R. The→
argument of the elastic potential is the discrete strain, which is given by the difference 
of the deformations uj+1(t) − uj (t). In particular, only nearest neighbor interaction 
is considered. The elastic potential V : R R will be nonconvex to model phase →
transitions. As in several previous studies [2, 3, 10, 11], we consider the simplest 
possible elastic potential V , namely a piecewise quadratic function. Specifically, we 
define 

1 (ε + 1)2 for ε < 0,
(2) V (ε) := 

2 (ε − 1)2 for ε ≥ 0. 

This choice of the interaction potential sets the sound speed to 
√

V �� = 1. It is obvious 
that the corresponding stress-strain relation is piecewise linear and exhibits a jump 
discontinuity at ε = 0. Let H be the symmetrized Heaviside function, 

H(x) = 

⎧ ⎪⎨ ⎪⎩ 

0 for x < 0, 
1 for x = 0,2 

1 for x > 0; 

then 

(3) σ(ε) := ε + 1 − 2H(ε) = ε + H(−ε) − H(ε) 

equals V �(ε) wherever V is differentiable, that is, for every ε = 0. �
We make two more assumptions, the first being that the equations of motion are 

governed by Newton’s law, 

(4) üj (t) = V � (uj+1(t) − uj (t)) − V � (uj (t) − uj−1(t)) 
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for every k ∈ Z. In particular, it is assumed that dissipative effects can be neglected. 
In fact, (4) is a Hamiltonian system with Hamiltonian � 1 

H := 1 u̇j (t)2 + V (uj+1(t) − uj (t))2 dt. 
j∈Z 0 

The second assumption is that the movement of a phase boundary can be de
scribed as a travelling wave with strains in both wells of the potential V . A travelling 
wave is a solution of the form 

(5)	 uj (t) = u(j − ct) for j ∈ Z. 

With the travelling wave ansatz (5), equation (4) reduces to 

c 2 u��(x) = V � (u(x + 1) − u(x)) − V � (u(x) − u(x − 1)) . 

It is convenient to reformulate the travelling wave equation for the discrete strain 
ε(x) := u(x) − u(x − 1). Then, after defining the discrete Laplacian as 

Δ1f(x) := f(x + 1) − 2f(x) + f(x − 1), 

the travelling wave equation for the discrete strain can be formulated as 

c 2ε��(x) = Δ1V � (ε(x)) . 

For the special potential V defined in (2), this becomes 

(6) c 2ε��(x) = Δ1 [ε(x) + H (−ε(x)) − H (ε(x))] = Δ1ε(x) − 2Δ1H (ε(x)) . 

For the sake of clarity, we order into linear and nonlinear part and rewrite (6) as 

(7)	 c 2ε�� − Δ1ε = −2Δ1H(ε). 

The aim of this article is to study the existence of heteroclinic travelling wave solutions 
for this nonlinear advance-delay equation. 

3. Waves on the real line. The purpose of this section is to prove the existence 
of solutions ε to (7) which are defined on the real line and have the property that 

(8)	 ε > 0 for x > 0 and ε < 0 for x < 0. 

Since a solution with this property has asymptotic strains in the different wells of the 
potential, we call it heteroclinic. 

If (8) holds, and only in this case, it follows directly that 

(9)	 f(x) := Δ1H(ε) = 

⎧ ⎪⎨ ⎪⎩ 

1 for x ∈ (−1, 0), 
−1 for x ∈ (0, 1), 
0 else; 

that is, the nonlinear right-hand side turns into a linear function depending on the 
spatial variable alone. 

Note that the right-hand side −2f of (7) is then, as a consequence of the sign 
condition (8), compactly supported on [−1, 1], and hence its Fourier transform exists. 
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Fig. 1. The graph of d2(κ) for 0 < κ < 4π. 

Recall that for g : R R, the Fourier transform (if defined) is F [g] := √1
2π 

∞ 
g(x)→	 −∞

exp(−iκx) dx; the Fourier sine transform (if defined) is given by 

1 ∞	 2 ∞
(10) Fs[g](κ) := sin(κx)g(x) dx = sin(κx)g(x) dx.√

2π −∞ π 0 

The relation 

F [g] = −iFs[g] 

holds for odd functions g : R R.→
The dispersion relation for the linear part c2ε�� − Δ1ε of (6) will play a central 

role in the analysis to come; it can be defined by the calculation 

(11)	 F c 2ε�� − Δ1ε = D (κ) F [ε], 

where 

(12)	 D(κ) := −c 2κ2 + 4 sin2 
� κ � 

2 

is the dispersion relation. Let us define the function 

sin κ 

(13)	 d(κ) := κ 
2 

2 

and rewrite D(κ) = d2(κ) − c2 κ2 . It follows that κ0 is a zero of D if and only if 
d2(κ0) = c2, where c2 < 1 for subsonic speeds; see Figure 1 for a graph of d2(κ). 

To simplify technicalities in the proof below, we restrict ourselves to considering 
positive values of κ0 such that κ2

0 < 12 . The first implication is that such a zero of the 
dispersion relation D is the unique positive real zero once we define 

sin κ0 

(14)	 c := d(κ0) = κ0 

2 . 
2 
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The choice of the sign of c is immaterial for the proof, and we choose without loss 
of generality the positive one. The second implication of the choice κ2

0 < 2
1 is that 

quantitative estimates in the proof will be sufficiently small, uniformly for arbitrarily 
small choices of κ0. 

For further reference, we rewrite (11) in terms of the Fourier sine transform 

(15) Fs c 2ε�� − Δ1ε = D (κ) Fs[ε]. 

The existence result of this article can be formulated as follows. 
Theorem 3.1. Suppose κ2

0 < 1
2 . Then there exists a heteroclinic solution to (7) 

with speed c given by (14). The solution has the odd symmetry and satisfies the sign 
condition (8). 

The outline of the proof is as follows. The first step is to show that (7) has 
a solution if the right-hand side is of the form given in (9). In a second step, we 
need to verify the sign condition (8) to show that the solution also solves the original 
problem (7). 

For an impression of the shape of the solution, we refer to Figure 2 (see also 
section 6 for numerical solutions of the initial value problem for different interaction 
potentials). 

3.1. A rigorous setting for Fourier analysis. We pause for a moment to 
describe the difficulties of solving (7) on the real axis with the special nonlinearity f 
given by (9). By (11) and (12), the solution ε is formally given by the inverse Fourier 
transform of 

(16) 
F

D

[−
(κ
2
) 
f ] 

(and analogously for the Fourier sine transform). The attempt to solve (7) with 
Fourier methods thus faces the obvious difficulty that the inverse Fourier transform 
of (16), which would yield ε, is not well defined. Namely, we had to integrate over 
the singularities of (16), that is, every real zero of the dispersion relation D, including 
κ = 0. These zeros necessarily exist; the singularity at 0 corresponds to nonzero 
asymptotic values of ε, whereas singularities at other real zeros reflect asymptotic 
oscillations of the solution with a frequency given by the corresponding dispersion 
frequency. 

This problem is acknowledged in the physics literature, where the so-called causal
ity principle for a steady-state solution [8] has been introduced as a formal solution 
method. Specifically, the singularities of (16) are avoided by choosing suitable paths 
around the singularities. Then, the limit of the Fourier-like transform along these 
paths is considered; the inverse Fourier-like transform can then be applied and the 
limit of vanishing deformations of the paths is considered. The solution is then ex
pressed as a sum over residues. A particular difficulty of this approach is that this 
representation of the solution as a formal sum makes it at least difficult to verify the 
sign condition (8). However, the solution is a solution to (7) with f given by (9). If 
the sign condition is not satisfied, then f(x) =� Δ1H(ε(x)), so the solution is not a 
solution to the original system we set out to solve. See also the discussion in section 1. 

We thus propose an alternative approach. Namely, we write the solution ε of (7) 
(with the sign condition (8)) as a linear combination of a profile and a corrector, that 
is, 

(17) ε := εpr − εcor. 
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The profile function collects all parts of the solution ε corresponding to the singu
larities of (16), so that the corrector is a function in L2(R) and satisfies an equation 
which can be solved by Fourier methods in L2(R). 

We show that this method does not require us to compute the Fourier (sine) 
transform of the profile. Indeed, in the calculations below, only those quantities 
derived from the profile enter Fourier arguments which are in L2(R). 

There are several possible choices for the profile function. Different profile func
tions obviously have different corrector functions, and the crucial sign condition (8) 
has to be estimated from the Fourier image of the corrector. The explicit choice of the 
profile function made below has the advantage that these estimates can be obtained 
relatively easily, while the estimates needed from the profile function itself can be 
read off directly. As motivation for the profile, let us consider the linearized problem 
of (7), 

(18)	 c 2ε�� − Δ1ε = 0. 

Linear waves, e.g., cos (κ0x) for κ > 0, travel with speed c = d(κ0). Note that, by 
definition, such speeds are subsonic (c < 1). The specific profile we use contains 
such linear waves, located in either well of the potential V , thus satisfying the sign 
condition (8). In particular, the profile is heteroclinic. Thus, if we can show that the 
solution is close to the profile, we are able to infer that the phase transition from the 
left to right well is travelling with subsonic speed c given in (14). 

Now, we turn our attention to the profile εpr, which we define as follows. Let α 
and β be constants, with 

κ2 

(19)	 α := c 2 0 

c2 sin(κ0 ) 
κ0

− 

and β > 0 chosen such that 

κ2
0 

−1
2α 

1 − c2
4 1 − c2 

(20)	 γ2 := 1 + 
β2 

:= c
κ2 = c

c2 sin(κ0) 
. 

0 κ0
− 

Then, we define the profile function as 

εjump(21)	 (x) := εosc(x) + 
−2 � � 

εpr pr c2 
Δ1 pr (x) + ε2nd(x), 

with 

(22) εosc(x) := sign(x) α 
2 sin2( κ2 

0 x)
+

1 − exp (−β|x|) ∈ C2(R),pr	 κ2 β2
· 

0 

(23) εjump(x) := sign(x) · 1
4 
|x| 2 

,pr 

and a second order correction in L2(R), 

√
30 �	 �

7 129 | | − 2 | |	 115 2(24) ε2nd(x) := sign(x) · 
60 128 

x exp 

c2 

x √
30 + 15 |x| − 

86 

√
30 |x| . 



1238 HARMUT SCHWETLICK AND JOHANNES ZIMMER 

Fig. 2. The profile function εpr for κ0 = 0.7 (left panel) and κ0 = 0.2 (right panel). 

Fig. 3. A zoom to the first positive minimum of the profile function εpr, again for κ0 = 0.7 
(left panel) and κ0 = 0.2 (right panel). 

We remark that 1 (1 − cos (κ0x)) = sin2( κ0 x), which shows the connection to linear 2 2 
waves discussed above. All other terms use exponentials since their expressions in 
Fourier space are simple. See Figure 2 for plots of the profile for κ0 = 0.7 and 
κ0 = 0.2. Figure 3 shows a zoom to illustrate the main challenge of subsection 3.4: 
the solution εpr − εcor will satisfy the sign condition (8) only if the corrector εcor is in 
amplitude small enough so that the sign for ε agrees with the sign for the profile εpr. 

Observe that εjump ∈ C1,1(R)∩C2(R\{0}) has a unit jump in the second derivative �� pr �� 
∂2εjumpat 0, that is, pr (0) = 1. 

As for the profile εpr, the first part of εosc(x) represents the oscillatory tails, while pr 
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Fig. 4. A plot of the second order correction ε2nd of (24). 

the additional exponential term ensures that εosc(x) is C2(R) for all choices of the pr 

parameters κ0 and β. The properties of the function εjump(x) imply that the jumps � � pr 

εjumpin the second derivative of −c2 
2 Δ1 pr (x) compensate the jumps in the right-hand 

side of (7); see (9). 
We call ε2nd a second order correction since the oscillatory tails and the disconti

nuities in the second derivative of the solution ε are already taken care of by the first 
two terms εosc and εjump in (21). This correction is by no means unique. However, pr pr 
the specific choice of ε2nd makes it possible to obtain a quantitatively small estimate 
for Fs[εcor](κ) for all values of κ ∈ R. The second order correction ε2nd is plotted in 
Figure 4. 

We now outline the construction of the solution. We will show that the profile 
function εpr satisfies an equation 

(25) c 2∂2 − Δ1 εpr(x) = −2f(x) + Φ(x), 

where Φ is a continuous localized function. In particular, we will prove that Φ ∈
L2(R). 

If, for the moment, we take this for granted, (25) shows that εpr is a solution 
to (7) up to an error Φ. The definition of the corrector is thus obvious; it is defined 
as a solution εcor ∈ L2(R) of 

(26) c 2∂2 − Δ1 εcor(x) = Φ(x). 

Hence, by (25) and (26) we deduce that ε = εpr − εcor solves 

(27) c 2∂2 − Δ1 ε(x) = −2f(x). 

This would be exactly the identity of (7) we set out to solve. However, there is a 
subtle issue; the explicit form of f in (9) was derived under the assumption that the 
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sign condition (8) is valid; we thus need to prove that the solution ε has the sign 
distribution prescribed by (8). 

In summary, two key assumptions made in this derivation need to be verified, as 
formulated in the claim below. 

Claim 3.2. We claim that the following two statements are true. 
(1) Equation (26) can be solved in L2(R). 
(2) The sign condition (8) holds for ε = εpr − εcor uniformly in κ2

0 ≤ 2
1 . 

Theorem 3.1 follows immediately once Claim 3.2 is verified. However, to achieve 
uniformity in 3.2, it turns out to be necessary to derive a sequence of technical esti
mates. 

Remark 3.3. We remark that as long as D has a unique positive root κ0, the 
profile has to include tails which oscillate exactly with frequency κ0. The bounds, 
as a function of κ0, are likely to diverge as κ0 approaches the first double root κ1 

of D. For larger values of κ0, that is, for smaller values of c, the decomposition can 
be generalized to include a superposition of oscillations with frequencies given by all 
positive roots of D as long as all these roots have single multiplicity. Note that for 
fixed c ∈ (0, 1), there are at most finitely many roots of multiplicity two, and none 
of multiplicity three or higher. The technical difficulties in deriving the necessary 
estimates will be significantly higher, and they cease to be uniform in 0 < κ0 < κ1. 

The fact that D always has for subsonic speeds, that is, c ∈ (0, 1), a positive zero 
is in contrast to the Frenkel–Kontorova model (Klein–Gordon chain), where a positive 
zero can, but does not need to, exist. In the former case, the decomposition technique 
introduced here carries over (in preparation). 

In the following we present some auxiliary results and verify the two claims (1) 
(respectively, (2)) of Claim 3.2 in subsection 3.3 (respectively, subsection 3.4). 

3.2. Auxiliary statements. For the arguments to follow, it will be useful to 
be familiar with the behavior of the constants α and β as we vary the frequency 
κ0. The expansions given below imply for (19) that α = 12 − 1 κ2 + O(κ0

4), and 5 0 
γ2 = 1 − 2 κ2

0 + O(κ4), by (20). This in turn determines an order of magnitude which 15 0

will be relevant in subsection 3.4, 

1 2(28) β2 = 15 + O(κ2
0). 

For κ2
0 ≤ 2

1 , we obtain the more precise estimate 

≤ ε2κ
4
0, with ε2 := 

1 
1000 

. 
1 2 247 

κ2 
0(29) 

β2 
− 

15 
+ 

25200 

We approximate η(κ) := 4 sin2

η(8)(κ) 

κ by a truncated Taylor series in powers of κ.2 

Since ≤ 2, it holds that 

≤ ε0κ
81 1 1 

η(κ) − κ2 1 − κ2 κ2(30) 1 − , with ε0 := .
12 30 20160 

Thus, recalling c2 = η(
κ
κ
2
0) , we find 
0 

11
(31) c 2 − 1 − 

12 
κ2 

0 1 − 
30 

κ2 
0 ≤ ε0κ

6
0. 
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1 κ2A division by 12 0 gives 

1 − c2 

1 

1 
κ2 

0 ≤ 12ε0κ
4
0.(32) − 1 − 

30κ2 
12 0 

Similarly, we obtain 

sin(κ0) 
κ0 

− 1 − 
1 
6 

1 
20 

κ2 
0 

1 1 
κ2 

0 1 − κ2 
0 ≤ ε1κ

8
0,(33) 1 − with ε1 := .

42 362880 

The last two estimates imply by direct calculation that 

(34) 
2 sin(κ0) 

κ0 
c − 

1 κ2 
12 0 

− 1 − 1 
15 ≤ κ4

0κ2
0 + 1 κ4

0 12ε0 + 12κ2
0ε1 .420 

3.3. Solvability in L2 . Here, we turn to the verification of point (1) of Claim 
3.2. We need to show that, with the profile εpr given in (21) and for the choice of the 
constants α in (19) and β in (20), the corrector Φ on the right-hand side of (26) has 
no contribution on the Fourier mode associated with κ = 0 and κ = κ0. Recall that 
the choice of c is such that there is exactly one real positive root κ0 of the dispersion 
relation D given in (12). 

We base our arguments on the following essential calculation of the Fourier sine 
transformation of Lεpr; here, L := c2∂2 − Δ1 is the operator of (25): 

2 α β2 + κ0
2 4 sin2( κ 

2 ) 1 φ
(35) ] = D(κ) + ,Fs[Lεpr

π κ (κ2
0 − κ2) β2 + κ2 

− 
κ c2κ2 c2 

where 

7 1 + 44 k2 
100(36) φ = κ .�460 1 + 2 κ2 
15 

Further, the right-hand side −2f of (27), with f given by (9), transforms as 

(37) Fs[−2f ](κ) = 
2 4 sin2( κ 

2 ) . 
π κ 

Proposition 3.4. The function Φ on the right-hand side of (25) and, hence, 
(26) is in L2(R), provided the profile function εpr in (21) is chosen such that α and β 
satisfy the relations (19) and (20), respectively. The unique L2 solution εcor of (26) 
has a bounded Fourier (sine) transform. 

Proof. First, we establish that Φ ∈ L2(R). Equations (25), (35), and (37) imply 

[Lεpr] − Fs[−2f ]


2 α β2 + κ2 4 sin2( κ ) 1 φ 4 sin2( κ )

(38) = 

π
D(κ) 

κ (κ2
0 − κ2) β2 + κ

0
2 
− 

κ 
2 

c2κ2 
+ 

c2 
− 

κ 
2 . 

It follows that the Fourier (sine) transform of Φ has, at most, singularities at κ = 0 
and κ = κ0. For κ = κ0, only the first term in (38) has a singularity, but it is a 
removable one since D(κ0) = 0. Similarly, for κ = 0, since D(0) = 0, the first two 

[Φ](κ) = FsFs
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terms in (38) are singular, but again they have a removable singularity; the same 
applies for the last term. Thus, Fs[Φ] has, for the given profile independently of the 
choice of α and β, no singularity. It is then easy to see that Fs[Φ] ∈ L2(R) and thus 
Φ ∈ L2(R) by Parseval’s identity. 

It remains to be shown that the Fourier (sine) transform of εcor is bounded. The 
argument resembles the previous one; we show that the singularities are removable. 
Unlike in the previous argument, this is only true for the specific choices of α and β 
in (19) and (20). Equation (26), written in Fourier space, shows that 

Fs[Φ](κ)
Fs[εcor](κ) = 

D(κ) r " # 
4 sin2 4 sin2(κ 

2 )(κ 
2 )2 α β2 + κ2

0 1 1 φ 
(39) = +− −

κ (κ2
0 − κ2) β2 + κ2 c2κ2 c2π κ κ D(κ) r (

2 1 β2 + κ2
0 4 sin2

= 

" ` ´ 2 ` ´# )
κ2 κ2

0 − κ2κ( ) φ2α +−
π κ (κ0

2 − κ2) c2 (k2)2β2 + κ2 c2D(κ) (
= 

Taking the limit κ κ0, for the quotient on the right-hand side we find with →
L’Hôpital’s rule that it equates to 

" 
1 

κ (κ2
0 − κ2) 

!4 ` ´# )
κ2 2 

φ1 − x 
+ 

D(κ) c2 

` ´r
κ

κ2
0 sin2 α 2(40) 

x2 + γ2 (1 − x2) 
− .κ c2π 

2 

2 1 κ2 

(41) 
π κ0 

α − c 2 
c2− 

0 

κ0 

= 0,sin(κ0) 

which vanishes by the choice of α in (19). Thus, Fs[εcor] is bounded for κ = κ0 by (40). 
Similarly, a twofold application of L’Hôpital’s rule yields that the limit of the quotient 
in (40) as κ 0 is → � � � � �

2 1 κ2 1 κ2 

π κ0 
α 1 + 

β
0
2 

− 
c2 1 − 

0 

c2 
= 0, 

now vanishing by the definition (20) of β. Thus, Fs[εcor] is bounded for κ = 0. Since 
κ = 0 and κ = κ0 are the only potential singularities, we have shown that the choices 
of the profile εpr and for α and β ensure that the Fourier sine transform Fs[εcor] is 
bounded for all κ ∈ R. 

Remark 3.5. As demonstrated, the choice for α and β ensures that the Fourier 
sine transform Fs[εcor] is bounded for all κ ∈ R, in particular when κ passes through 
0 and ±κ0. It is possible to strengthen this result and to show that Fs[εcor](κ) stays κ 
bounded as κ goes to 0. Furthermore, we show in Lemma 3.9 that Fs[εcor]κ5 stays 
bounded for κ > 4, provided κ0

2 < 2
1 . Thus, the Fourier transform Fs[εcor] of the 

corrector εcor is in L2(R), and so is the corrector itself. Furthermore, the corrector is 
a classical (in fact, C4(R)) solution of (26). 

We prove the remarks regarding the corrector εcor itself. It follows from Proposi
tion 3.4 and Lemma 3.9 that Fs[εcor] belongs to L2(R). Thus, 

2 ∞ 

εcor(x) = sin(κx)Fs[εcor](κ) dκ 
π 0 

belongs to L2(R) as well. The fact that εcor is a solution of (26) follows from the 
solvability of linear equations in L2(R); the smoothness of the solution is a consequence 
of the decay of the Fourier (sine) transform at infinity. 
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A direct consequence of the preceding considerations is that the full profile ε = 
εpr − εcor has a well-defined local average at x = ±∞. Thus, point (1) of the list in 
Claim 3.2 above is verified. 

3.4. Verification of the sign condition for ε. Now we turn to the task of 
verifying point (2) of Claim 3.2, that is, estimating the sign of ε. The estimates are 
lengthy, since the sign of ε has to be inferred from the amplitude of Fs[εcor] for all 
κ ∈ R. The overarching assumption is that κ0 is sufficiently small. Specifically, as 
stated in Theorem 3.1, we assume throughout that 

(42) κ2
0 < 12 . 

Under this condition, we are going to prove a quantitatively small weighted estimate 
for Fs[εcor](κ) for all values of κ ∈ R. Hence, we are able to employ the straightforward 
integral estimate 

|εcor(x)| = 
∞ 

Fs[εcor](κ) sin(κx) dκ 
2
� ∞2 

[εcor](κ) dκFs≤ 
π 0 

| |
π 0 

to bound the supremum of εcor in real space. This is the key issue for proving that 
the sign condition (8) holds for the solution 

ε(x) = εpr(x) − εcor(x), 

as can be seen from Figure 3: the profile εpr satisfies the sign condition (8); see 
Figure 2. Thus, the solution ε has the same sign and is thus a solution of (7), if the 
corrector εcor is so small that it fits in the gap between the real axis and the profile. 
This gap is shown in Figure 3. To make the estimate more digestible, we break it 

κ 
0

into four parts, depending on the value of κ and the scaled frequency x := . (We κ
work in Fourier space throughout this section and section 4; thus, x always denotes 
the rescaled variable and not the coordinate in real space, unless used to denote the 
arguments of the functions εcor and ε�cor in Theorem 3.11 and its proof, as well as 

12the statement of Corollary 3.10.) The four regimes are 0 < κ < 2 and − 1 
(see Lemma 3.7); 2 ≤ κ ≤ 4, 

studied in Lemma 3.8; and finally 4 < κ, the topic of Lemma 3.9. We approach the 

>x ,2 
12investigated in Lemma 3.6; 0 < κ < 2 and − 1 ≤x 2 

estimates in Lemmas 3.6 and 3.7 by carefully expanding terms around the respective 
zeros of the dispersion relation. It turns out that for large values of κ (Lemma 3.9), we 
need to invoke a different asymptotic argument. To achieve the necessary quantitative 
smallness of the corrector, we have to join the different ranges of κ considered so far 
by an intermediate regime, as done in Lemma 3.8, which exploits uniform continuity 
on bounded intervals. 

To emphasize the flow of the argument, we first state the results for these four 
regimes, and postpone the proofs to section 4. � 

1 3 x − 1 >2Lemma 3.6. Assume κ ∈ I1 := (0, 2) \ [ ]κ0, that is, κ < 2 and,2 2 
1 . Then there holds 2 

22 0.24κπ 

c2
|Fs[εcor]| ≤ 0.181κ + 

1 + x2 
. 

π 

In the second step, we investigate Fs[εcor] near κ0. 
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Lemma 3.7. Assume κ ∈ I2 := [ 1
2 , 

3
2 ]κ0, that is, κ < 2 and �x2 − 1� ≤ 1

2 . 
Then there holds 

2 2 1 0.13 
π 
|Fs[εcor]| ≤ 

c
π 
2 

0.219κ + 
c2 
· 
x4(1 + x)2 

· κ . 

Lemma 3.8. Assume κ ∈ I3 := [2, 4]. Then � 
2 � � � �

2 π 0.18 0.54 
π 
|Fs[εcor]| ≤ 

c2 
14 

κ5 
+ 

κ7 
+ 0.032 . 

Lemma 3.9. Assume κ ∈ I4 := (4, ∞). Then 

π 
2 |Fs[εcor]| ≤ 

c
π 
2

2 κ

1 
3 1 + 

1 
κ2 · 22. 
β̊2 

Now it is relatively easy to gather the results. 
Corollary 3.10. Let κ2

0 ≤ 2
1 . Then for all x ∈ R it holds true that 

0.48
(43) |εcor(x)| <

c2 
=: Ecor 

and 

1.1 |ε� (x)| <
c2 

=: E� .(44) cor cor

Proof. (i) Since 

2 ∞ 2 |εcor| ≤ 
π 0 

|Fs[εcor]| dκ ≤ 
π I1∪I2∪I3∪I4 

|Fs[εcor]| dκ, 

it is possible to proceed by integrating the estimates of the four preceding steps of 
Lemma 3.6 to Lemma 3.9. Note that � √ 

3
2 dx 

√ 
1 x3(1 + x)2 

≤ 0.19. 
2 

Hence, since κ = κ0x, � � √ 
3 
21 1 κ0

2 dx κ2
0 

c2 x4(1 + x)2 
· κ dκ = 

c2 √
1 x3(1 + x)2 

≤ 
c2 
· 0.19 < 0.2κ2

0. 
I2 2 

Further, for the range of κ0 under consideration, it holds that � 2 � 2 � � 
κ κ0 x κ2 4

dκ = κ2 dx = 0 ln 1 + < 0.55. 
0 0 01 + x2 0 1 + x2 2 κ2 

Now, observe that for all κ ∈ I2, i.e., �1 − x2� ≤ 1 , we know that 2 

0.24
0.219 ≤ 0.181 + 

1 + x2 
. 
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Hence, we infer from Lemmas 3.6 and 3.7 that 

2 
π 

2 

|Fs[εcor]| dκ 
I1∪I2� � 2 

π 0.181 κ dκ + 
� 2 0.24κ 1 κ dκ

dκ + 0.13≤ ·
1 + x2 x4(1 + x)2c2 c2 

0 0 I2 

2 2 

· 0.2κ2
0 

π 

c2 
< π 0.508.0.181 2 + 0.24 0.55 + 0.13≤ · · ·

c2 

An integration of the estimate in Lemma 3.8 yields 

22 |Fs[εcor]| dκ < 
c
π 
2 
· 0.121. 

π I3 

Finally, the integrated version of Lemma 3.9 reads r „ «Z 2 Z 2 2
2 1 1 ln(2) ln(47) 1 

22 dκ = + 22 < 0.124. 
π I4 

|Fs[εcor]| dκ ≤ 
c
π 
2 

I4 
κ3 1 + 

β

κ
˚

2

2 

·
c
π 
2 3 

− 
15 32 

·
c
π 
2 
·

Thus, the sum of these four integral estimates gives the desired bound 

2 0.48 |εcor| < π (0.508 + 0.121 + 0.124) ≤ . 
c2 c2 

(ii) The argument is similar to the preceding one, but now we consider 

[εcor](κ)κ cos(κx) dκ 
∞2 |ε�cor(x)| Fs= 

π 0 

2 
Fs[εcor](κ) κ dκ.|≤ 

π I1∪I2∪I3∪I4 

|

Thus, the second estimate can be inferred from a multiplication of the integrands in 
Lemma 3.6 to Lemma 3.9 by κ followed by an integration. 

This time, 

� √ 
3
2 x dx 

√ 
1 x3(1 + x)2 

≤ 0.17 
2 

implies 

κ2 dκ ≤ 
κ3 

0 

c2 

1 1 · 0.17 < 0.18κ3
0,·

c2 
I2 x4 (1 + x)2 

and a similar calculation shows that � 2 2 
κ0 x2κ2 

dκ = κ3
0 dx < 0.57.

1 + x2 1 + x2 
0 0 
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Thus, analogously to the calculation for I1 ∪ I2 in the first step of the proof, 

2 
π 

|Fs[εcor]| κ dκ 

2 
I�1∪I2 � 2 � 2 0.24κ2 1 

� 
1 

� 

≤ 
c
π 
2 

0.181 κ2 dκ + 
1 + x2 

dκ + 0.13 · 
c2 x4(1 + x)2 

· κ2 dκ 
0 0 I2 

2 28 ≤ 
c
π 
2 

0.181 · 
3 

+ 0.24 · 0.57 + 0.13 · 0.18κ3 <
c
π 
2 
· 0.63.0 

It is thus immediate to conclude from Lemmas 3.8–3.9 that � � � � � � � �2 0.18 0.54 1 1 |ε� (x)| ≤ 
c
π 
2 

0.63 + 
I3 

14 
κ5 

+ 
κ7 

+ 0.032 κ dκ + 
I4 

κ3 1 + 15 κ
2 
· 22κ dκcor 2 

2 1.1 ≤ 
c
π 
2 

[0.63 + 0.33 + 0.68] <
c2 

. 

It is now not hard to prove the main statement of this subsection. The following 
theorem shows that point (2) of Claim 3.2 is true; its proof relies on the following 
estimate, which follows directly from the expansion formulae in subsection 3.2: 

1 2 1 1 � 1 
� 

(45) 
β̊2 

:= 15 ≤ 
β2 

≤ 
β̊2 

1 + 20 . 

Here and in the following, we use the general notation X̊ := limκ0→0 X for a quantity 
X that depends on κ0. 

Theorem 3.11. Let κ2
0 ≤ 2

1 . Then the solution ε satisfies the sign condition (8), 
that is, 

ε(x) � 0 as x � 0. 

Proof. Let us recall the definition (21) of the profile function 

εjump(x) := εosc(x) + 
−2 � � 

εpr pr c2 
Δ1 pr (x) + ε2nd(x), 

where, as in (22), 

εosc 2 sin2( κ2 
0 x) 1 − exp (−β x )

(x) = sign(x) · α
κ2 + 

β2 

| |
.pr


0


Thus, we obtain 

εjump(46) c 2εpr(x) ≥ t4 (1 − exp (−β |x|)) − 2Δ1 pr (x) + c 2ε2nd(x), 

where, with (20), 

κ2 

αc2 0 

t4 = t4 (κ0) := 
β2 

= 
κ2

1−
+ 

c2 

β2 
. 

0 

For κ2
0 ≤ 2

1 , we can estimate 

(47) 1.57 ≤ t4 ≤ ̊t4 := lim t4 = 1.6. 
κ0→0 
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Furthermore, the monotonicity of β in κ0 yields via (45) 

β+β̊

β̊x β̊)x(β − 

˚ 20 ˚ 20(48)	 ≤ exp −β 21 x sinh β 21 − 1 x < 0.01. 

Let us define 

exp (−βx) − exp x sinhe− 2=−

−β̊x − 2Δ1 εjump 
pr + c 2ε2nd,(49) W (x) := ̊t4 1 − exp 

which is a function that depends only on x and not on κ0. We collect two properties 
of W (x), 

(50)	 W (x) > 0.58 for x > 0.385, 

(51)	 W (x) > 1.5 x for 0 < x ≤ 0.385.· 

Essential for the forthcoming arguments is that both lower bounds will turn out to 
be larger then the bounds in Corollary 3.10, that is, Ecor and E� , respectively. cor

We break the argument showing the positivity of ε for x > 0 in two parts, 0 < 
x ≤ 0.385 and x > 0.385. 

(i) x > 0.385. Since ε = εpr − εcor, we estimate with (46) and 

˚W1 := t4 exp (−βx) − t̊4 exp −βx 

that 

2εpr ≥ t4 (1 − exp (−βx)) − 2Δ1 

2ε2nd − t̊4 exp 

εjump 
pr + c 2ε2ndc 

β̊x εjump 
prt4 − 2Δ1 + c − W1 = −

= t4 − t̊4 + W − W1. 

It follows from (47) that 

t4 − t̊4(52) ≤ 0.03. 

Hence, we estimate with (52), (48), and (47) in the second step that 

|W1| ≤ t4 − t̊4 

˚exp (−βx) + exp −βx 

2 
+ exp (−βx) − exp 

t4 + t̊4 

2 
β̊x −

(53) < 0.03 1 + 0.01̊t4 ≤ 0.046 =: E1.· 

Thus, (50) ensures for all x > 0.385 that 

(54) W (x) > 0.58 > 0.03 + c 2Ecor + E1 = 0.556, 

where Ecor is defined in (43). Hence, (43), (54), and (53) imply 

(55) c 2ε ≥ c 2εpr − c 2 |εcor| > W (x) − t4 − ̊t4 + c 2Ecor + > 0,E1||

which proves the sign condition for all x > 0.385. 
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(ii) 0 < x ≤ 0.385. For this range of x, we base our argument on estimating the 
derivative of ε. We investigate all terms in 

ε� = ε� cor.pr − ε�


Since κ2
0 ≤ 1 , we observe
2 

sin (κ0x)2ε�pr ≥ εjump 
pr + c 2ε2nd+ βt4 exp (−βx) + −2Δ1c 

κ2 
0 

˚ ˚βt̊4 exp βx εjump 
pr 

2ε2nd+ −2Δ1 + c − W2≥ −

(56) = W � − W2, 

where W is defined in (49), and 

W2 := β̊t̊4 exp βx −˚ − βt4 exp (−βx) . 

Next, we want to show that W2 is small. Since (45) and (47) imply 

˚ ˚ 20 ˚ ˚βt̊4 ≥ βt4 ≥ β 1.57 > 0.95 t4β, 21 · · 

we deduce |β̊t̊4 − βt4| < 0.05̊t4β̊ and can estimate 

β̊t̊4 + βt4
β̊x (57) exp (−βx) − exp ⎛

˚exp (−βx) + exp −βx 

|W2| ≤ −
2 ⎞ ⎝β̊t̊4 − βt4 ⎠+ 

2 

≤ 0.01 · ̊t4β̊ + ·β̊t̊4 − βt4 β̊ < 0.3 =: E2.1 < 0.06̊t4 

Thus, we deduce from (44), (56), and (58) 
x 

c 2ε ≥ c 2ε� 2 
pr − c |ε�cor| 2E�

cordξ ≥ W (x) − x = W (x) − 1.4E2 + c · x, 
0 

which is strictly positive for all 0 < x ≤ 0.385 by (51). 
The claimed statement for x < 0 follows by symmetry. 

4. Proof of the integral estimates for the corrector. In this section, the 
proofs of Lemmas 3.6–3.9 are given. The estimates are delicate, but they can be 
skipped by a reader who is mainly interested in the logic of the argument. 

Before we start with these calculations, we collect a few estimates on terms de
pending on κ0 alone, which follow directly from the expansion formulae in subsec
tion 3.2: 

1
(58)	 1 ≤ 

c2 
≤ 1.05, 

(59)	
1 

1

− 

κ

c
2

2 

≤ lim 
0 

1 
1

− 

κ

c
2

2 

= 1, 
12 0 κ0→

12 0 
1 2κ2 1 2κ2 

(60)	 12 c 0 ≤ lim 12 c 0 = 1.
1 − c2 κ0→0 1 − c2 
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4.1. Proof of Lemma 3.6. We now give the proof of Lemma 3.6. Recall 
η(κ0)=from (30) and (31) in subsection 3.2 that η(κ) := 4 sin2 κ 2and c satisfy

κ2 
02 

1 1 
η(κ) − κ2 κ2 κ2 ≤ ε0κ

81 − 1 − ,
12 30 

1 12 κ2 
0 κ2 

0 ≤ ε0κ
6
0.1 − 1 −−c 

12 30 

1 κ2 1 κ2 1A division of the second inequality by 12 0 1 − 30 0 yields for κ2
0 < 2 

(61) 1 − 
κ2 

0 

≤ 12 
2 ε0κ

4
01 − c

1 1 
� ≤ 12.5ε0κ

4
0. 1 − 1 

30κ2 
0 κ2 

01 −12 30 

To simplify the expressions in this proof, it is convenient to introduce 

1 − c2 

(62) t0 := 1 κ2 1 κ2 
0 1 − 30 012 

to rewrite (61) in the more compact form 

(63) |1 − t0| ≤ 12.5ε0κ
4
0. 

As the dispersion relation D introduced in (12) satisfies D(κ) = η(κ) − c2κ2, an 
analogous procedure shows that 

(64) ≤ 
ε0κ

6 

1 − c2 
. 

1 κ2D(κ) 12 

(1 − c2) κ2 
− 1 − 

1 − c2 
1 − 

1 
κ2 

30 

We now express κ = xκ0 in the rescaled variable x to find t0 in this estimate, 

(65) 
D(κ)


(1 − c2) κ2

≤ 

ε0κ
6 

1 − c2 
. 

11 − 30 κ
21 2 x− 1 − 1 κ21 − 30 0t0 

We multiply by 1 − 1 κ2 and expand 1 = 1 − 1 + 1. This yields 30 0 t0 t0 

(66) 
1 κ2D(κ) 1 − 30 0 

(1 − c2) κ2 

1 1 
κ2 2 

0 − x κ21 − 1 −− 
30 30 

1 
t0 
− 1

ε0κ
6 

1 − c2 

1 1 
κ2 

0 
2 1 − κ21 − +≤ x .

30 30 

κ2
01 κ2

0 − x2 1 − 1 κ2 1 − x2= 1 + x2We divide by 1 − (1 − ) and arrive at 30 30 30 

ε0κ6 

t−0
11 − 1 

30 κ
2 
0 

2 1 − 1 κ2− 1+ x1−c2 30 |δ1 − 1| ≤ ,
κ2 
0 

30 (1 + x2)(1 − x2) 1 − 

where we have introduced 

1 κ2D(κ) 1 − 30 0 D(κ) 1
(67) δ1 := 

κ2 = 
κ2 1 

. 
0(1 − c2) κ2 (1 − x2) 1 − 30 (1 + x2) (1 − c2) κ2 (1 − x2) 1 − 30 1− 30 κ

2
0 

1 
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We continue the estimate as follows: the second estimate uses the trivial bound 
1 for the terms in parentheses in the nominator and the scaled variable κ = xκ0 as 
well as (63). The third inequality invokes (58), (60) and, for the denominator, κ2

0 ≤ 1 
and the assumption κ2 ≤ 2 stated in Lemma 3.6. Altogether, 

ε0κ6 � 1 κ2 
� 

+ �� t−1 �� x2 
� 

1 κ2 
� 

1−c 1 − 30 0 − 1 1 − 30 

κ2 
0

|δ1 − 1| ≤ 
2 

(1 − x2

0 

) 1 − 30 (1 + x2) 

1 c 2 κ0
2 

4 + 12.5 

≤ ε0κ
4
0x 2 c2 1−c2 x� 1−12.5ε0 κ0

4 � 
0|1 − x2| 1 − κ30 

2 

− κ30 
2 

≤ ε0κ
4
0 1 − 

x2 

x2

12
2 

.6 
+22 

� 
1 + x 4

� 
1 | � | 1 − � 30 

1 + x4 

(68)	 ≤ 15ε0κ
2
0κ

2 . 
|1 − x2| 

Now we have all the ingredients to estimate Fs [εcor](κ) with Fs[εcor] from (39). The κ	 � � 
second equality below uses the dispersion relation (12) to rewrite the term 4 sin2 κ 

2 
and the scaled variable x = κ

κ 
0 
, while the third line employs (20) for the first term: 

Fs[εcor](κ)
= 

2 1 α β2 + κ0
2 4 sin2(κ 

2 ) 1 4 sin2( κ 
2 ) 1 

+ 
φ


κ π κ κ (κ0
2 − κ2) β2 + κ2 

− 
κ c2κ2 

− 
κ D(κ) c2
⎡ � � 

0� 
α 1 + κ

2 

2 1 β2 1 
= ⎣ � �


π κ κ2
0 κ (1 − x2) 1 + κ

2


β2 ⎤ 
D(κ) + c2κ2 1 1 + c2 

D
κ
(

2 

κ) φ − 
κ c2κ2 

− 
κ 

+ 
c2 
⎦ 

2 I φ
(69) =	 + ,

π (1 − c2) κ2 (1 − x2) c2κ 

where we abbreviate � � � � � � 
(70) I := 

c

1 
2 1 + 

1 

β
κ2

2 

− 
� 
1 − c 2

� � 
1 − x 2

� D

c2

(
κ

κ
2 

) 
+ 2 − c 2 κ

2 1 − 

D

c2 

(κ)
1 − x2 

. 

We claim that I can be rewritten as 

(71)	 I = J1κ
2 + K1(δ1 − 1), 

with 
(72) “ ” 

2 1 1 ` 2 ́ ` 2 ́

` 
1 − c 2 ́

 2 ` 
1 − x 2 ́

 2 
1 − κ

30 

2 

1− 
1 
1 c30 κ

2
0 

2 

J1κ := 
c2 2 −2 1 − c 1 − x

c2 κ2 11 + κ
− − 

1β2	 1 − 
30 1− 30 κ

2
0 

and � 
2 
�2 � 2 

�2 
� 

κ2	 1 
� 

1 2 

κ2 1
(73) K1 := − 

1 − c 1 − x

c2 

1 − 30 1− 30 κ
2
0 − 

1 − 30 

c

1− 30 κ
2
0 

1 + (δ
1 

1 − 1) 
. 

1 
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To see this, we expand (70) as follows. The first manipulations are to rewrite the 
expression in terms of δ1 of (67): 

1 1	 ` 2 ́ ` 2 ́  I = 2 − 2 1 − c 1 − x 
2c 1 + κ

β2 “ ” ` ´ 2 ` ´ 2 2 
1 − c 2 1 − x 2 1 − κ

30 
1 
1
1− 30 κ

2 D(κ)
0 “ ” 
2 κ2


− 
c (1 − c2) κ2 (1 − x2) 1 − 

30 1− 
1 
1

30 κ

2
0“ ” ` ´ ` ´ 2 

2 1 − c 2 κ2 1 − x 2 1 − κ
30 

1 
1c 1− 30 κ0

2


κ2
− 
1 
1 

D(κ)
1 − 
30 1− 30 κ

2
0


1 1 ` 2 ́ ` 2 ́ 
=

c2 

1 + κ
β

2

2 

− 2 1 − c 1 − x


“ ” ` 
2 ́
 2 ` 2 ́

 2 κ2	 11 − c 1 − x 1 − 
30 1 c 2 ˆ` ´ ˜ 

− 
c2

1− 30 κ
2
0 [(δ1 − 1) + 1] − 

1 − κ
30 

2 1 
δ1
−1 − 1 + 1 

11− 30 κ
2
0“ ” ` 

2 ́
 2 ` 2 ́

 2 κ2 1 

c

1 
2 

1 + 

1 
κ
β

2

2 

− 2 1 − c 2 1 − x 2 − 
c2

1− 30 κ
2 

− 
1 − κ2 

c 
1 
1 

` ´ ` ´ 1 − c	 1 − x 1 − 
30 1 2 

0 = 
30 1− 30 κ

2
0“ ” ` 

2 ́
 2 ` 2 ́

 2 κ2	 1

1 2


− 
1 − c 1 − x

c2 

1 − 
30 1− 30 κ

2
0 (δ1 − 1) − 

κ2 

c 
1 

` 
δ1
−1 − 1 ́

 
11 − 

30 1− 30 κ
2
0 

= J1κ
2 + K1(δ1 − 1) 

as claimed; in the last step we used the identity 

1 − δ1
−1 = 

δ1 − 1 
.

1 + (δ1 − 1) 

First, let us bound K1 by means of inequality (68). Since κ < 2 in this lemma, it 
is easy to estimate 

1 − c2 
�2 21 12 c

κ4 
0 

21 − x 

Since the first factor in the second term depends only on κ0 and is monotonically 

(74) 1 + |K1| ≤ . 
22 1 κ2 (1+x4) 

|1−x

·
κ4 

0c2 1 − 1 − 15ε0κ2 
01 

30 κ
2
0 

230 1− | 

decreasing for κ0 ∈ (0, 1), we bound it by 

2 2 

= 
15 
13 

. 
c c

(75) 
30 κ

2
0 

≤ 
1 −22 221 11 − 1 1 

30 κ
2
0 κ0=0 

30 301− 1− 

We observe 

1 + x4	
3
5 for x2 < 2

1 , 
13 2 3

(76)	
|1 − x4|

≤ 
for x >5 2 

and obtain thus for κ < 2 and the global assumption κ2
0 < 2

1 of (42) 

1 + x4 1 + x4 13 1
(77) 15ε0κ

2
0κ

2 

|1 − x2
= 15ε0κ

2 κ2
0 + κ2 

|	 |1 − x4| 
≤ 15ε022 · 22 + 1 

2 · 5 
< . 

28 
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Thus, we can bound (74) with (59), (75), (77), and (58): 

1 1 
κ4 
� 

2 
��2 15 1 1 24 15 1

(78) |K1| ≤ 
c2 122 

�1 − x + 
13 

≤ 
c2 122 

+ 
13 

< 1.32.0 1 11 − 28 1 − 28 

The combination of (69) and (71) shows that we need to bound |K
2
1
)
|(
κ
δ
2
1−1) 

2 . To � � (1−c |1−x

− 1 2	

|
this end, we utilize the fact that the assumption �x2 � > 1 of this lemma implies 

1 + x2 

(79)	 ≤ 5. 
|1 − x2| 

We use (68) for the second step; for the fourth bound, we collect the results from (60), 
the trivial bounds (76) and (79), and finally (78) to deduce the estimate 

� K1| (δ1 − 1) �	 15ε0κ
2 1 + x4 
0 � � ≤ 2 K1

� 
(1 −
|

c2)κ2 |1 − x2| 
� 

(1 − c
|
2

δ

)
1 

κ

−
2 |

1
1
|
− x2|

|K1| ≤ 
(1 − c2) 1 − x2

| | 

1 c2κ2 1 + x4 1 + x2 

≤ 
c2 

15ε0 (1 − c
0
2) |1 − x4| |1 − x2|	

|K1| 

15ε0 · 12 13 5 1.32 0.154
(80) ≤

· 
c2

5 · · 
<

c2 
. 

The equivalent estimate for J1 is (even) lengthier but simpler. First, observe that 
there holds � 1 κ2 � � � 

1 − c 4 − 
κ

30 

2 1 
1 κ2 − c 4 

β

κ2

2 
= 1 − c 4 − x 2 30 

1
0 

κ2 + c 4 1 + β
κ

2
0
2 

− c 4 

1 − 30 0 1 − 30 0 � � � � x2 

= 4 21 − c 1 − x − 1 κ2 T1,1 − 30 0 

where, using (20) in the last step, � �� � �	 � 
4 0 κ2 κ2T1 := c 1 + β

κ2

2 1 − 
1 

0 1 − 
1 

030 
− 

15 

c2 1 κ2 1 κ2 2 

= 
− sin(

κ0 

κ0) � 
12 0 

� 
1 − 30 0 

� 
− 
� 
1 − c

� 
+ 1 

� � 
1 

κ2 

� 

.1 κ2 (1 − c2) 
− 1 − 

15 0 
12 0 

Thus, we apply (31), (33), and (60) to obtain 

1	 12ε0(81)	 |T1| ≤ κ4 

420 
+ 12ε0 + 12κ2

0ε1 + 
c2 

.0 

Hence, we deduce � � � � 
1 1 c2	 1 − c4 1 − x2 

(82) 
c2 1 + β

κ2

2 

− 
1 − 30 1 

= 
c2 
� 
1 + κβ

2

2 

�� 
1 − 30 

1 
1 

� − T2κ
2
0κ

2 ,
κ2 1 κ2 

1− 30 κ
2
0 1− 30 κ0

2 

where 

1	 T1κ
−4 

(83) T2 := � �� � � 0
1 

� . 
1 + β

κ2

2 1 − κ30 
2 1 

1 

· 
c2 1 − 30 κ0

2 

1− 30 κ
2
0 
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For κ ≤ 2 and κ2
0 ≤ 2

1 , it holds that � �� 
κ2 1 

� 

1 + β
κ2

2 1 − 
30 1 κ2 ≥ 1.

1 − 30 0 

Thus, (81) implies, with (58), (79), and κ2
0 ≤ 2

1 , that � � � � � �
1 + 12ε0 + 12κ0

2ε1 + 12ε0 1 + x2 �1 − x2� 0.24 �1 − x2� 
(84) T2

420 

c2 
� 

1 κ2 
� c2	

< .| | ≤ 
1 − 30 0 

·
|1 − x2|

· 
(1 + x2) 12 (1 + x2) 

We can now rewrite J1 given in (72), relying on (82) and (81) in the first equality 
below: � � � � 

1 − c4 1 − x2


J1κ
2 = −T2κ

2
0κ

2 + � �� �

c2 1 + κβ

2

2 
κ2 1 

11 − 30 1− 30 κ
2
0� � � � � � �� 

− 
� 
1 − c 2

� � 
1 − x 2

� 
2 + 

1 − c2 

c2 

1 − x2 

1 − 
κ

30 

2 1 
1 κ21 − 30 0 � � � � 

1 − c2 1 − x2 

(85) = −T2κ
2
0κ

2 + 
c2 
� 
1 + κβ

2

2 

�� 
1 − κ30 

2 1 
� 

11− 30 κ
2
0� � �� 

κ2 1 
� 

2 21 + c − 2c 1 + β
κ2

2 1 − 1 κ2
·	

30 1 − 30 0 � � �� �2 
� � � � κ2 1 − 1 − c 2 1 − x 2 1 + β

κ
2

2 
1 − 

30 1 κ21 − 30 0 

= −T2κ
2
0κ

2 +
1 − c2 κ

c2

2 1 − x2 

T3, 

where we defined “ ”“ “ ” ` 
1 − c 2 ́

„
1 − 

` 
1 − x 2 ́

 
β

2

2 1 − κ
30 

2 1 
1 

” 2 
« 
− 2c 2 κ

β

2

2 
κ
30 

2 1 
1 30

κ
β

4

2 
1 
11 + κ

1− 30 κ
2
0 

− 
1− 30 κ

2
0 
− 

1− 30 κ0
2 

T3 := “ ”“ ” . 
κ2 1 + 

β
κ2

2 1 − κ2 1 
130 1− 30 κ

2
0 

To analyze this term, it is convenient to denote 

1 − c2 
κ0→0 1 

t1 := 
κ2 −→ t̊1 := 

120 

and 

1 
15 κ0→0 1

(86)	 t2 := 1 κ2 −→ t̊2 := 
15 

.
1 − 30 0 

Observe the identity 1 − κ
2 1 = 1 − t2 κ2; this enables us to rewrite T3 as30 1 21− 30 κ

2
0 ⎡ ⎤ 

1+c 2 � � 1−c 2 
κ2 
� 

2 
� 

1 − 

1 

2 

− 
1 + 

β2 

β
κ2

2 

900 

1 − 30 

1 

κ

− 
2
0 

x
(87) T3 = t2 κ2 

⎣ � � + t1 1 − t2κ
2 + t2 − � 

1 
�2 

⎦ . 
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We define T̊3 as the limit of T3 as κ0 → 0. Namely, with (45) and (86), 

− 
1+ κ˚

2 

β 

1+1 
4 

+ t̊1 1 − t̊2κ
2 + t̊2 

β̊ 1 1 κ2 
12 1 − 15	 + 115 

(1+ 2 
15 κ

2) +−
(88) T̊3 := = 

˚	 1 . 
1 − t2 

2 κ2	 1 − 30 κ0
2 

Thus we can rewrite T3 from (87) as ⎤⎡ 
2	 21+c 1−c 

900 κ
2 1 − x2 �2 

1 β2⎣− 1 − t2κ
2 ⎦� + t1 + t2 −T3 = 

1 − t2 
2 κ2 1 + β

κ2
2 

1 κ21 − 30 0 

(89)	 = 
1

[II1 + II2 + II3 + II4] + T̊3,1 − t2 
2 κ2 

where the error terms IIj with j = 1, . . . , 4 are given by 

2 1+c 2 

β̊2 β2 � − 

�
˚1 − t2κ

2

II1 := 
1 + κ

2 

β̊2 
1 + β

κ2
2 

t2,− ̊II2 := t1 1 − t2κ
2 + t2 − t̊1 

1−c 2 
κ2 

900 1 − x2 �2II3 := − ,
1 κ2 
30 01 − 

t2 − ̊t2 

2
II4 := T̊3 κ2 . 

The error terms are bounded as follows: 

1+c 1 − c
2 κ2 

1 + κ
2 

β̊2 

2 2− − 1 1β2 β̊2 β̊2β2 �� �� � <|II1| = ≤ ,
100 1001 + κ

2 1 + κ
2 

β̊2 β2 1 + κ
2 1 + κ

2 

β̊2 β2 

since κ2
0 < 2

1 implies 

2 

< 
1 

and 
1 − c2 

< 
1 

β2 

1 + c 2 − . 
β̊2 100 100β2 

To estimate |II2|, we deduce from (31) 

t1 − ̊t1 
1 1 

κ2
0 + ε0κ

4
0 < ;≤ 

360 700 

furthermore, we obtain for κ2
0 < 2

1 

1 κ0
2 1 1 

t2 − t̊2(90) 1≤ 
15 30 1 − 60 

< 
885 

. 

Thus, 

t21 − κ2 t2 +˚

2 
t11 − κ2 t1 +˚

2
t1 − t̊1 t2 − ̊t2+|II2| ≤ 

1 ≤ t1 − t̊1 + t2 − t̊2 < 
390 

. 
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For the third term II3, we obtain from (59) for κ2
0 ≤ 2

1 and κ ≤ 2 

1 1 − c2 1 �2 κ
2 κ2 − κ2

0|II3| ≤ 
κ2 1 κ2

0 1 − 30 0 

1 

900 

1 1 1
22 22 <�2≤ .· ·

900 12 65011 − 60 

Finally, we observe in (88) that 

− 
4 1 1 1 4 1 1 5 

κ215 1 − + + + =≤
1 + 2 κ2 

15 
12 15 15 15 12 15 12 

and obtain for κ < 2 with (86) and (90) 

|II4| = T̊3 
t2 − t̊2 

5 1 1 
κ2 12 885 22 <≤ . 

22 2 
·

2 9201 − 30 

Also, let us remark that T̊3 is solely a function of κ, which is, for small κ, well 
approximated by the Fourier sine transform φ of the chosen second order correction 
given in (36). That is, 

T̊3 + 
φ 
κ 
≤ 0.009.(91) sup 

0<κ<2 

Now we arrive at the key estimate for J1κ
2. Below, we employ (86) for the equality 

in the first line, (84) for T2 in combination with (89) in the second bound, and finally 
use the bound (91), 

= 
J1κ

2 −T2κ
2
0κ

2 

(1 − c2) κ2 (1 − x2) 
φ T3 φ 

+ + +
(1 − c2) κ2 (1 − x2) 

2κ2 
0≤ 

12 2−c c�
0 24. 

c2κ c2 c2κ 

+ 
1 T2 φ|

1 − x2

|c
T3 − T̊3 T̊3 ++ 

κ| |
1 II1 + II2 + II3 + II4+ + 0.009≤ 
c2 1 + x2 1 − t2 κ2 

2⎛ ⎞ 
1 

100 
1 1 1 

9201 0.24 1 0.24+ + +⎜⎝ 
⎟⎠390 650(92) + 0.009 + 0.027+≤ 

c2 

Let us recall (69) and (71) to bound Fs[εcor] as a combination of the estimates (80) 
and (92): 

≤ .
221 + x2 1 + x2c2 

11 − 
1− 

30

60 

K1(δ1 − 1) + J1κ
2 

(1 − c2) κ2 (1 − x2) 
2 2 φ 

c2κ
[εcor] + 

π 
|Fs = κ 

π
| 

+ 
J1κ

22 ≤ 
π

κ 
K1(δ1 − 1) 

(1 − c2) κ2 (1 − x2) 
φ 

+
(1 − c2) κ2 (1 − x2) c2κ 

2 0.24κπ 

c2 1 + x2 
+ 0.181κ .≤ 

Thus, the claim of Lemma 3.6 is proved. 
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4.2. Proof of Lemma 3.7. The proof of Lemma 3.7 is similar to the arguments 
in the proof of Lemma 3.6. However, we need to expand the integrand at the nontrivial 
zero κ0 of the dispersion relation (12) (or, in rescaled variables, at x = 1) to deduce 
the desired estimate in I2. 

Proof. It is convenient to write Δ := κ − κ0. We remark that 

− 4 sin2 κ + κ0κ κ0 κ − κ0 

2 
sin4 sin2 = 4 sin ,

2 2 2 

Δ
= 2 sin (κ0) sin (Δ) + cos (κ0) 4 sin2 

2 
. 

This, together with κ = xκ0, D(κ0) = 0, and (12), yields with −κ2
0+κ2 = − (2κ0 + Δ) Δ 

that 

D(κ)
= 

1 D(κ) 
κ2 (1 − x2) x2(1 + x) κ2(1 − x)0

−1 D(κ) − D(κ0)= 
x2(1 + x) κ0Δ 

4 sin2 Δ −1 
2
sin (κ0) sin (Δ) 

+ 
Δ 

x2(1 + x) 
Δ2 2cos (κ0) 2 + = − c

Δ Δ2κ0 κ0 κ0 

4 sin2 Δ2 sin (κ0) sin (Δ) Δ2 2 2(93) − cos (κ0)+= −c c . 
x2(1 + x) Δ 2κ0 Δ2κ0 

The obvious estimate 

(94) 
sin (Δ) 1 1 6 1

Δ2 Δ21 − 1 − Δ| with ε3 :=≤ ε3− | , ,
Δ 6 20 5040 

combined with a division by 1 κ2 in (93), yields a bound for 12 0 

D(κ)
(95) δ2 := 1 κ2κ2 (1 − x2)12 0

and 

0@ 
δ̃2 := 

2 
2(1 + x) 

1 1 

x 0@ 1A 1A! 2( Δ 
2 ) «2 «4 sin2 sin(κ0 ) „ „2 

Δ2− cos (κ0)−c Δ Δ sin (κ0)c 
Δ2κ0(96) + 2 1 −+ ;· 

κ2 
0 κ2 

02κ0 κ0 κ0 20 
12 12 

namely, since Δ = (x − 1) κ0, 

1 − x2 6 

x2(1 + x)7 

�6 

(97) δ2 − δ̃2 
κ4 

024ε3 Δ 
κ4 

0 ≤ 24ε3κ
4 
0 1 − x 2 ε4,≤ ≤

x2(1 + x) 12κ0 

where, since 1 − x2 1 by assumption, < 2 �51 1 
ε4 := 2 122 ε3 max 2 <· · 

x2(1 + x)7 11000 
. 

2x2≥ 1 
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To proceed and formulate δ̃2 as defined in (96) in a more suitable form, let us 
introduce 

2 sin(κ0) 
κ0(98) U0 := 

c − 
1 . 

κ2 
12 0 

Since a short calculation reveals that �2 �32(1 + x) 5 Δ 
2 κ0 

Δ 1 Δx
1 − − 2= − ,− 

2 κ02 κ0 

we can rewrite ⎡ 
2(1 + x) x2(1 + x)2 

x2(1 + x) 
x

δ̃2 = ⎣U0 + 1 −
2 2 

Δ 
2κ0 

⎛⎝ ⎤⎞ 
2 )− cos (κ0) 

4 sin2( Δ 

Δ2 

1 

Δ 
�2 sin (κ0)2c Δ2 ⎠ + 2 ⎦1 −+ 

20κ2 
0 κ0 κ012 

4 sin2( Δ 
2 ) �2c 2−cos(κ0) 

1 
12 κ

2 
Δ2 Δ− 5 + U0κ0Δ 0

(99) = U0 + 
x2(1 + x) �2 sin(κ0) Δ2 

Δ κ0 
1 − 20 − U0 

+ 4 . 
κ0 x2(1 + x) 

We also recall from subsection 3.2 the following three estimates (30), (31), and (33): 

κ0 

4 sin2 Δ 1 1 6Δ2 Δ22(100) 1 − 1 − ≤ ε0 |Δ− |
Δ2 12 30 

κ2 
012 κ2 

0 ≤ ε0κ
6
0,(101) 1 − 1 −−c 

12 30 

sin (κ0) 
κ0 

1 1 1 
κ2 

0 κ2 
0 κ2 

0 ≤ ε1κ
8
0.(102) 1 − 1 − 1 −− 

6 20 42 

We also notice that for U0 in (98), estimate (34) implies, with the natural definition


U1 := 1 − 1 κ0
2 + 1 κ0

4 ,
15 420 

that 

1
(103) |U0 − U1| < ε5κ0

4 , with ε5 := 
1600 

. 

Also, the trigonometric identity 2 (1 − cos (κ0)) = 4 sin2

from (100) (with Δ replaced by κ0) that 

κ0 allows us to deduce 2 

κ2 
0 1 

κ2 
0 

κ2 
0 ε0 

κ8
0.(104) cos (κ0) − 1 − 

2 
1 − 

12 
1 − 

30 
≤ 

2 
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To obtain a bound for the second term in parentheses in (96), we introduce the 
abbreviation y := Δ = x − 1. Therefore we can show similarly that with κ0 

U2 := 5 + y 2 − κ2
0 

2 + 1 y 4 + κ4
0 

2 + 1 y 47 + 1 
2 

1 1+y y15 30 60 24 60 

the following bound is valid: 

(105) 
c

2( Δ 
2 − cos (κ0) 

4 sin 2 ) 
Δ2 

1 κ2 
12 0 

1 ≤ κ4
0ε6, with ε6 :=− U2 .

1200 

Finally we deduce for the third term in parentheses in (96) 

Δ2sin (κ0) 
κ0 

1 ≤ κ6
0ε7, with ε7 :=(106) 1 − − U3 ,

20 4200 

where 

κ4 
0
� 
1 + yU3 := 1 − κ2 

0 
2 21 1+ +y .6 20 120 

Let us state the following algebraic identity: 

5 + y 2 U1 + 4y (U3 − U1)U2 − 

= −κ2 
0 

2 11 1 1 �2 + 4 + 2 + y 2
15 

+ y
280 

y y
60 5 

1 13 1 1 7 
+ κ4

0 
2 + 4 + 21 + 

210 
+ y

30 
y y y

30 42 5
κ2 

0 1 − 
κ2 

0 

28 
5 13 12(1 + x)2 + κ2

0 
2 + 4 + 2(107) 4 + 11y= 

30 
−x y y y .

7 28 14 

Thus, we can estimate as follows (the first equality is (100) divided by 1 − x2 = 
− (1 + x) Δ , with U1, U2, and U3 each added and subtracted; the first inequality κ0 

relies on (105), (106), (103), and (107) divided by x2 1 + x2 ): 

(108)˛̨̨̨
δ̃2 − U0 

+ 
κ2

0 
2) 

˛̨̨̨ «„
1 21 − 
28 

κ0
(1 − x 30˛̨̨̨
˛̨ 

20@ » 32( Δ4 sin2 2 ) –«„

˛«˛̨̨̨ 

1 − 
Δ2− cos κ01 sin(κ0) 

κ0

c 
Δ2 − U25+ 4y4 − U3 = 1 

12 κ
2 
0 

2(1 + x)2 20x 1A ih´` 
− 5 + y 2 + 4y U0 − U1 

´` „
U2 − 5 + y 2 U1 + 4y (U3 − U1) κ0

2 

+ 
1 21 − 
28 

κ+ 02(1 + x)2 30x

1 
30 

˛̨̨̨ «˛̨̨̨„
κ4

0 ´` ´`5 2 13 4 12 2 
0ε7 + 5 + |y| + 4 |y| ε5 +ε6 + 4 y κ 4 + 11y+ y +≤ | | y y 

x2(1 + x)2 7 28 14 

κ4
0 0.13 

.≤ 
x2(1 + x)2 

· 
12 

2 
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In particular, since (103) implies 

κ2 

,|U0 − 1| ≤ 
15 

0 

we obtain easily from (109) for �1 − x2� ≤ 1 the bound 2 � � κ2 κ2 � � 
κ4� � 0 0 1 0 0.13 �δ̃2 − 1� ≤ 

15 
+ 

30
(1 − x 2) 1 − 

28
κ0

2 + 
12 

(1 − x 2) 
x2(1 + x)2 

≤ κ2 1
+ ��1 − x 2�� 1 

+ 0.01 κ2 
0 015 30 

· 

(109) ≤ κ2
0 

1 
+ 0.005 κ0

2 <
κ0

2 

.
12 

· 
11 

Then we can rewrite I as given in (70); the second equality relies on the defini
tion (95) of δ2: 

(110) 

1 1 � 
2
� � 

2
�� 

D(κ) 
� 

2 κ
2 
� 
1 − c2 

� � 
1 − x2 

� 
I = 

c2 1 + κ
2 − 1 − c 1 − x

c2κ2 
+ 2 − c

D(κ)
β2 ⎡ ⎤ 

1 ⎣ 1 � 
2
� � 

2
� � 

1 κ2 2
� c4 1 − c2 1 ⎦= 

c2 
0 

− 1 − c 1 − x δ2 · 12 0(1 − x 2) + 2c − 1 κ2 δ21 + β
κ2

2 x2 12 0 

1 
= 

c2 
[J2 + K2]; 

κ2
0 

in the last step, we use the identity 1 = t2 
, for t := 

1+ 

β2 

β
0
2 

(x2 − 1), since 1+t 1 − t + 1+t κ2 

0 0 0 2then 1 + β
κ2

2 x
2 = 1 + β

κ2

2 + β
κ

2

2 � 
x − 1 

� 
and 1 + t = 1 + β

κ2

2 , and thus obtain 

κ2
0


1 − 
1+ 

β2 

κ2
0 
(x2 − 1) ⎛ 

β
κ2

2 

⎞2 

c
� � 

1

J2 := β2 

+ ⎝ 
0 

(x 2 − 1)⎠ 
4 1 − c2 

1
1 + β

κ0
2

2 1 + β
κ0
2

2 

− 
12 κ

2
0 δ̃2 � � � � � � 

1 − c 2 1 − x 2 1 κ2(1 − x 2) + 2c 2 ,12 0−⎛ ⎞2 � �κ2
0 ⎝ β2 2 ⎠ 1 � 

2
� � 

2
� 

1 κ2 2)K2 := 
1 + β

κ2
0
2 

(x − 1) 
1 + β

κ
2
2 − 1 − 1 − c 1 − x (δ2 − 1) · 12 0(1 − x 

c4 1 − c2 δ2 − δ̃2+ .1 κ2 ˜
12 0 δ2δ2 

Estimate (97) together with 
|1−

2 

x 2| ≤ 1, (60), and (109) can be employed to bound x
K2 in the third inequality to come, whereas the first inequality again relies on κ = xκ0 

and (59): 
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(111)
K2 

(1 − c2) κ2 (1 − x2) 

κ2
0 

β2 
(x2 − 1)

κ2 
1+ 0 

⎞⎛ 2 ⎝ ⎠ 

− 1
1β2 

≤ 
1 + β

κ2
2(1 − c2) κ2 (1 − x2) 

· 

(δ2 − 1) 1 − x2 

12x2 

δ̃2 
4 δ2 −

(1 − c2) κ2 (1 − x2) 
c

+ + 
δ̃2δ2 

2κ2 
0 δ̃2 − 1 δ2 − δ̃2

κ2 +21 − x 1 − xβ2(1−c2) +≤ · 
1 + β

κ2
2 12 

·
β4 x2 x2 

c4 δ̃2 

δ2 − 

δ2 −
(1 − c2) κ2 (1 − x2)δ̃2 δ̃2 − 

+ 
δ̃2 

3 κ2 κ4 
0 012 1 ε44 + +≤ 

12 11 12 2c2β4 β2 

2 1 c2κ0
2 ε4c 12+ �� 

κ2 
0 

11 
κ2 κ4 

11 
0 − 0 

· 
(1 − c2) x2ε41 − 1 − 12 2 

κ2 κ49 1 ε4 

2
≤ 

c2β̊6 
+ 

12 11 
0 + 

12 
0 

2c · 2 ε4 < 0.005.·+ �� 
1 − κ

2 
0 

11 
κ2 κ4 
0 0 ε41 − 11 − 12 2 

Now we turn to the estimates for J2. Observe that (20) combined with (98) 
0implies that 

c 4(
1

1−c 2) (1 + κβ
2

2 ) = U0; thus, we can conclude that 
κ2 

12 0 

(112) 
δ̃2−U0 1 κ2

0 
κ2
0(1−x2) β4 (1 − x2) 1 − c2J2 β2 

2c 2 + 1 κ2(1 − x 2)12 0+= �2 �2 − . 
01 + β

κ2

2 
κ2 

0 κ2 
0(1 − x2) δ̃2 01 + β

κ2

2 
01 + β

κ2

2 

In order to estimate J2 we introduce in an intermediate step the term «„ « «„ «„ „ ` ´2 

˚

2 

β2 

1 
30 

1 67 1 1 17κ0 κ02
0

4
0 

2
0 

2 4
0U4 := 1 − 

28 
κ 1 − κ k 1 − x 1 − 2 κ+ + + +

β̊2 

` ´ ` ´ ` ´ β2 β̊48400 504 ` ´ 
21 − c 7 11 

12 κ
2
0(1 − x 2 2 22 2

0 
2) + 2c 1 − c κ 1 + x+ +− x

2
0κ 60 900 «„ « «„ «„ „ ` ´

˚
κ2 
0 

β2 

κ2 
01 

30 
1 

1 − 
28 

κ
67 1 1 172

0
4
0 

2
0 

2 4
01 − κ k 1 − x 1 − 2 κ+ + + += 

β̊2 

` ` ´´ β2 β̊48400 504 ««„ „
2 2

0 
2 

+ 
2
0κ

900 

` ´1 − c 
2
0k

1 κ 1 − c 
2
0

1 k

7 12 2 2 −2 1 − x 2 − 1 − x+ + 
5 5

− − . 
6 122 

12 12 

We can estimate this term as follows, using (32) twice in the second line as well as (29) 

1 
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in combination with (45): «` ` ´´ «„
1 −

„
κ

900


2
0
 2
1
 1


1 − 
28 

κ
67
κ2
 2

0

4
0


0 
β2 «„˚U4| ≤ 2 − 1 − x
 κ+ +|

30
 8400
 «„ ` ´ 2


β2
˚

1 247

+ 

1


β̊4 
k

17
κ02
0
+ ε2κ

4
0


2
0


2
 4
0
κ 1 − x
 1 − 2
 κ+ + + 

β̊2 25200
 504
«„ « ««„ „ „
−2 

2
0
 ` ´1


1 − 
30 

κ
1 κ 1


1 − 
30 

κ2
0


7 12
2
0
+ 12ε0κ

4
0


4
0


2
+ 12ε0κ 1 − x
+ + − 
5

+ 
5
122
6
« «„ „

4

315


„` ´1
 1781

1 + κ

113
 340
−1 + κ
2373


2
0


4
0


2
0


2
k 1 − x
+≤ 
12
 5600
 2250
 « « 

κ

5


2
0
 + 

„˛
˛1 − x

˛̨ `` 

+ (24ε0 + 12ε2) + 27 + 12 
´ ´ 2 17


ε0 + ε2 κ2
 4
0
+ 24ε0 

2
κ6
0
ε0 + 16ε2 . 

15 42


Thus, since κ2
0 < 1


2
 and 1 − x
2
 < 1

2
, we can conclude that 

1

(113) |U4| ≤ 

12 
k4 ε8, with ε8 := 0.057.0 · 

We continue to estimate the term involving J2 given in (112). To this end, we 
combine the well-known bounds κ2

0 ≤ 2
1 with (109); the first inequality employs (113), 

while the last estimate utilizes the fact that 1 ≤ 1: 
(1− 

κ

11
0
2 
)(1+ 

β

κ
˚
0
2

2 
) 

(114) 
κ2 
0δ̃2−U0 1


κ2
0(1−x2) −
30 1 − 28
κ2 

07
 � 
1 + x


J2 2
 2 + 2
1 − c+ ≤ |U4| +x

01 + κβ
2

2 
κ2 (1 − x2)0 60
 900
 δ̃2 

κ4 
0 

κ2 
0 

28

1

30 1 −
 κ2 

0 

28

1
 1
 1
 κ2 67


0− 1
 1 − − 1 −+ + + 
δ̃201 + κβ

2

2 
01 + β

κ2

2 
β̊230
 8400


1 1
k0
2 1 − x2 

+ 
−�2 

β4 β̊4 

01 + β
κ2

2 

1 1
 1

01 − 2 κ
2 

+ 
17


β̊2k2 
0 

2
 κ4 
01 − x
+ + 

β2 �2 −
β̊4 504
01 + β

κ2

2 

k4 k2 0.13 1 k0
2 1 1


+≤ 
12 
0 ε8 + 

12 
0 

x2(1 + x)2 
1.4 ε2κ

6 · 0 
01 + β

κ2

2 
30 11
 30
δ̃2 �� �21 21
 1
 21 1


+ k0
2 1 − x
2
 k2 

0 
2
 ε2κ

6
0− 1
 1 − x
 4.2+ + 

β̊4 20
 β̊2 β̊2 
·

20


k4 k2 0.13 1 k0
2 1


+≤ 
12 
0 ε8 + 

12 
0 

x2(1 + x)2 
�� 

01 + κ
2 

β̊2 

κ2 
0 

11

30 11 1 −
�� �2

κ2 1
0 21
 1.4 4.2 21 1 1
− 1 + ε2κ
6
0+ + + 

β̊4 β̊2 β̊2 4
2
 20
 30
 20


k2 
0 0.13 

< + 0.076 .
12 x2(1 + x)2 
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We are finally in a position to conclude by combining the last result with (69), (111) 
in the identity; (111) and (115) enter in the second estimate, while (58) and (60) are 
employed in the third step. We obtain 

2 2 J2 + K2 φ
[εcor] = π +|Fs⎡ 

κ| 
(1 − c2) κ2 (1 − x2) 

2 x2 + 

c2π κ 
κ2
0J2 7+ 21 − c 1 + x

κ2
0(1−x K2 

(1 − c2) κ2 (1 − x2) 

2) 60 900⎣≤ 
c
π 
2 
κ +

(1 − c2) x2 ⎤ 

+ ⎦1 κ2 
07 1φ 

1 + + +− 
60 900 1 − c2 x2κ 

+ 
1 

π 12≤ 
c2 

κ 
2 1 

12 c
2κ2 

0 
2κ2 

0 1 0.13 7 12φc
+ 0.076 + 0.005 + 3 

κ 
− · ·

x2(1 + x)2 

2 1 0.13 2 7π 

(1 − c2) 60 900c2 1 − c2c2x2 �� �2 130.076 + 0.005 + 0.14κ + κ κ0 +≤ 
c2 c2 

· 
x4(1 + x)2 

· · 
60 
· 2 25c2c2 

2 1 0.13 

κ 

which finally is the claimed result of Lemma 3.7. 

The proof of Lemma 3.8 is shorter than those of 4.3. Proof of Lemma 3.8. 

Proof Here we start with the representation in (39), and then we employ for-. 
κ 

π≤ 
c2 

κ 

the two previous statements. 

2 ) 2 ) 1 2 ))
2 

κ + 0.219κ , 
c2 
· 
x4(1 + x)2 

· 

4 sin2 ( 4 sin2( (4 sin2(1 
2κ2 −mula (19) and the identity −

equality: 
in the second = − k3c2D(κ)κ κ D(κ)c

4 sin2 4 sin2κ κ2 α β2 + κ0
2 1 1 φ2 2Fs[εcor](κ) = +− −

κ (κ2
0 − κ2) D(κ)β2 + κ2 c2κ2 c2π κ κ ⎡ ⎤ 

2 κ2 
0 ��2κ2 − κ2

0 

−D(κ) 
κ2 1 − c2 

κ2 

1 κπ 21−c

κ2 
4 sin2⎣ + φ⎦(115) += − ,

1 + β
κ2

2 2c2 κ3 − κ2
0 0 

2 

4 sin2 
��21 κ2 1 κπ

(116) + + φ= t3 
c2 κ5 

− ,
1 + β

κ2
2 2δ3 

where we introduced in the last step 

κ2 
0 

(117) t3 := 1−c

κ

2

2 

1 − κ2
0 

and 

−D(κ)
δ3 := 2 . 

1−c (κ2 − κ2)
κ2 0
0 
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Note that, since κ0 0 implies c2 1, while the denominator can be determined 
by (59), 

→ → 

κ2 − 4 sin2 κ 
2κ0→0 ˚−→ δ3 :=δ3 .1 κ2 

12 

With these preparations in place, it follows easily from (116) that 

2 
1

(118) [εcor](κ) = 
π 

t3 (V1 + V2 + V3) + φFs , 
c2 κ5 

with ��2
4 sin2 κ 

2κ2 1 κ2 

V1 := − 
1 + κ

2 + 
12 κ2 − 4 sin2

β̊2 

κ 
2 

κ2 κ2 

V2 := ,
1 + 

β
κ
˚

2

2 

− 
1 + β

κ2
2 �κ ��2δ3 − ̊δ3 4 sin2V3 := − . 

δ3 ̊δ3 2 

Observe that t3 is monotonically increasing in κ0 and decreasing in κ, so that in I3 

(119) 12 ≤ t3 ≤ t3 = < 14. 
0 2

| κ
κ

2

=2

1


Relying on (31), we estimate for 2 ≤ κ ≤ 4


≤ 1.9. 
κ2 − 4 sin2 κ κ2 

2 1 κ 
κ4 − κ2 − 4 sin2−

30 12 2 

Hence, as a step towards bounding δ3 − ̊δ3 , two applications of (31) for the terms 
involving 1 − c2 yield 

| |

(120)���� 1 
12 
− 

1 − c2 

κ2 

1κ κ 
κ2 − 4 sin2 κ2 1 − c 2 κ4 − κ2 − 4 sin2−

2 12 20 

κ2 − 4 sin2 κ κ2 
2κ2 1 κ 

κ4 − κ2 − 4 sin2≤ 
12 

κ2
0 1 2

1 1 9
≤ 
12 
· 1.9 + 

100 
≤ 

12
1.9 + 

100 
< 

100 
.


−
30 12 2 

κ4 − κ2 − 4 sin2κ4 
0 1 

12 
κ κ 

+ ε0κ
4
0 κ2 − 4 sin2 κ2 + ε0κ

6
0+

2 360 2 

Below, we deduce with (121) for the first, (60) for the second, and (58) for the third 

0 
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inequality that 

2 � � 
κ2 − 4 sin2 − 4 sin21 1−c 

12 − 
κ2 

κ 2 1 κ 
2κ2 κ4 κ21 − c

δ3 − ̊δ3 

− −2 120= 
1 1−c2 

κ2 (κ2 − κ2)12 κ2
0 

0

9

100


c2 1 1−c2 
κ2 (κ2

≤ 
2 κ2 − κ2)12 c 0 

0

9 122 1 1 ≤ 
100 1 10c2 22 22 − 2 

holds true since κ ≥ 2. 
Further, (45) implies 

(121) ⎧ ⎪⎨ 
⎫ ⎪⎬κ4 κ41 1 1 1

0 ≤ V2 < < 0.18.�� < max 
κ≤4 ⎪⎩ 

�2− 
β̊2 β̊2 201 + κ

2 1 + κ
2 β2 

β2 β̊2 
⎪⎭1 + κ

2 

β̊2 

δ3 7Also, note that δ̊3 as the limit of δ3 as κ0 → 0 is independent of κ0. Since 
˚

κ ≥ 4 
for 2 ≤ κ ≤ 4, we find for κ ≥ 2 that 

δ3 − ̊δ3 1 |V3| ≤ 16 
κ2 ˚ ˚ δ3−˚

δ3 δ3 − | δ3|
κ κ 2 

1 1 0.54
(122) ≤ 16 10 

κ2 7 7 1 κ2 
4 4 − 20 

Finally, since V1 and φ are solely functions of κ, we observe for 2 ≤ κ ≤ 4 that 
there hold 

V1 

κ5 
≤ 0.01 

and 

V112 ≤ 0.012.+ φ 
κ5 

We combine these two estimates with (119), (121), and (122) in the second inequality 
below; the identity relies on the representation (118): 

1 
κ5 

t3 (V1 + V2 + V3) + φ 
2 2 

[εcor] = π 

π 
|Fs | 

c2 

V1 

κ5 
+ 12 

V1 

κ5 
+ φ 

2 t3π 

c2 κ5 
(|V2| + |V3|) + (t3 − 12)≤ 

2 0.18 0.54π 14 + 2 0.01 + 0.012+≤ .·
c2 κ5 κ7 

This proves the claim of Lemma 3.8. 
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4.4. Proof of Lemma 3.9. We now turn our attention to the proof of Lemma 3.9. 
Proof. Here we rewrite the representation (115): 

2 � � � � ��2 � � 
π 1 t3 4 sin2 κ 

2Fs[εcor](κ) = 
c2 κ3 

− 
1 + κ

2 + 
−D(κ)

+ φ , 
β2 

where we used, as in the proof of Lemma 3.8, 

κ2 
0 

t3 = 1−c

κ

2

2 . 
1 − κ2

0 

Now, however, κ > 4 implies for I4 the estimate 

12 ≤ t3 ≤ t3 = < 12.6. 
0 2

| κ
κ

2

=4

1 

Thus, due to (45) and the fact that −D(κ) > 0 for κ > 4 > κ0, and φ > 0, 

π 
2 

Fs[εcor] ≥ − 
c
π 
2

2 κ

1 
3 1 + 

t3 
κ2 ≥ − 

c
π 
2

2 κ

1 
3 1 + 

1 
κ2 · 12.6. 

β2 β̊2 

On the other hand, κ > 4 implies 

t3 

� 
4 sin2 � ��2 

1 
� 

1 + β
κ2

2 

� 
κ 

− 
1 + κ

2 + 
−D(κ

2 

) 
≤ 

1 + κ
2 −t3 + 16 

−D(κ)
β2 β2 ⎛ � � ⎞ 

1 1 + β
κ

2

2 

≤ 
1 + κ

2 
⎝− [t3]κ0=0 + 16 

−D(κ) 
⎠ ≤ 0. 

β2 1κ2
0 = 2 

Hence, by (36) and (45), ⎛ ⎞ 

2 2 2 1 1 7 1 + 44 k2 2 1 1π π ⎜ 
κ4 100 ⎟ π 

π
Fs[εcor] ≤ 

c2 
φ = 

c2 κ3 1 + κ
2 ⎝ 60 � �3 ⎠ ≤ 

c2 κ3 1 + κ
2 · 22. 

β̊2 1 + κ
2 

β̊2 
β̊2 

In summary, the absolute value is bounded by 

π 
2 |Fs [εcor]| ≤ 

c
π 
2

2 κ

1 
3 1 + 

1 
κ2 · 22; 
β̊2 

hence the claim of Lemma 3.9 is proved. 

5. The Rankine–Hugoniot condition and the kinetic relation. From an 
applied point of view, one object of interest is the kinetic relation of a travelling wave. 
We sketch the derivation for the wave discussed in section 3. All the arguments in this 
section rely on macroscopic definitions of the relevant quantities. The discussion is 
greatly simplified by the fact that throughout section 3, ε(x) = εpr(x) − εcor(x) with 
εcor ∈ L2(R). It thus follows that the relevant macroscopic quantities can be directly 
read off from the profile function εpr, which is explicitly known. 
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We first show that the Rankine–Hugoniot conditions are satisfied. We write [[f ]]
for f(s(t)+, t) − f(s(t)−, t), that is, the difference of the limiting values from the 
right and from the left of the interface, which has position s(t). In the continuum 
mechanical limit of (1), for an interface moving with velocity c, either the strain 
ux or the velocity u̇ may be discontinuous at the interface, but it must satisfy the 
Rankine–Hugoniot conditions [1, equations (2.6) and (2.7)] 

[[σ(ux)]] = −ρc [[u̇]] , 
c [[ux]] = − [[u̇]] . 

We combine these conditions and write for ε = ux 

(123) ρc2 [[ε]] = [[σ(ε)]] . 

Here, one has ρ ≡ 1 and, thanks to (3), [[σ(ε)]] = [[ε]]− 2, so (123) is equivalent to 

2
(124) [[ε]] = .

1 − c2 

Although the strain is continuous, it oscillates at ±∞. Thus, the jump in ε in (124) 
needs to be understood in the sense of 

(125) [[ε]] = ε̄+ − ε̄−, 

where ε̄ are the limits of the averaged strains± 

and 

1 x+s 

ε̄+ := lim lim ε(ξ) dξ 
x→∞ s→∞ s x 

1 x 

ε̄− := lim lim ε(ξ) dξ. 
x→−∞ s→∞ s x−s 

By construction, only εpr contributes to the asymptotic strains ε̄±. A direct calcula
tion shows that 

ε̄+ = α 
1

+ 
β

1 
2 

+ 
−
c2 

2
2
1 

= 
α

γ−2 − 
c

1 
2 

=
1 − 

1 
c2 

. 
κ2 κ2 

0 0 

Analogously 

(126) ε̄− = −ε̄+. 

Thus, 

1 
ε̄+ − ε̄− = 2 

1 − c2 
, 

and, via (125), we have verified the Rankine–Hugoniot condition (124). 
We now turn our attention to the kinetic relation. We start with the def

inition. A moving interface can dissipate energy, and the amount of dissipation 
is measured by the configurational force (or driving force). To define it, we let 
{σ} := 1 (σ(s(t)+, t) + σ(s(t)−, t)) denote the average stress across the discontinuity.2 
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Furthermore, suppose for the moment that the strain on both sides of the interface is 
constant; we write εl (respectively, εr) for the strain on the left (respectively, on the 
right). Then, the configurational force acting on an interface is � εr 

(127) f := σ(ε) dε − {σ} [[ε]]
εl 

(see, for example, [1, equation (2.11)]). Since the configurational force depends on 
the speed c of the interface, we write f = f(c). Furthermore, 

(128) R(c) := cf(c) 

is the (macroscopic) rate of the energy dissipation or energy flux [1, equation (2.10)]. 
The entropy inequality requires that fc ≥ 0. 

Here, we interpret (127) in an averaged sense by setting εl := ε̄ and analogously−
εr := ε̄+. By symmetry (see (3) and (126)), the integral on the right-hand side of (127) 
vanishes, and {σ} = {ε} = 0. Thus, the driving force is zero; that is, the interface 
moves freely. We point out that this is due to the symmetry of the configuration; 
the configuration is force-free since ε̄+ + ε̄− = 0. Solutions with ε̄+ + ε̄− �= 0 have a 
nonvanishing kinetic relation. For the solution considered here, the entropy inequality 
is trivially satisfied. 

We close this section by mentioning that the vanishing kinetic relation can be 
explained from microscopic considerations. Though only a trivial kinetic relation is 
derived, the argument demonstrates the ease with which the analysis of the kinetic 
relation can be performed. 

To determine the kinetic relation, we need to consider the energy transport due 
to lattice waves which disappear in the continuum limit. The energy carried by these 
waves is “lost” in the continuous setting and thus perceived as dissipation. It suffices 
to study the energy associated with the modes ±κ0. The contribution to these modes 
is in εpr in (21). Since the asymptotic average strains agree, the average energy 
densities �G±k0 � carried by the waves with wave numbers ±κ0 agree. Then, if Vg is 
the group velocity, the associated energy flux R is 

R±κ0 (c) = ±�G±k0 � (Vg − c) ; 

see [10, equation (6.4)]. We remark that 

D�(κ0) 1 sin(κ0)
Vg − c =

2cκ0 
= 

c κ0 
− c 2 . 

Finally, the kinetic relation f is the one determined by (128), where R is obtained by 
summing over the individual contributions Rk. Since only R−κ0 and Rκ0 contribute, 
we again find that R(c) = 0 and thus f(c) = 0. 

6. Inclusion of further nonlinearities: Numerical investigations. So far, 
we considered a specific nonlinear problem and introduced a new decomposition 
method, which splits the solution ε into a profile and a corrector, and enables us 
the solve the problem with linear (Fourier) methods. 

A natural question is then whether the idea developed here extends to problems 
with more general nonlinearities. Clearly, the Fourier analysis is restricted to the lin
ear part of the problem studied in the previous sections. However, the decomposition 
strategy may be well suited for a wider class of interaction potentials, and in this 
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section we investigate its feasibility numerically. We simulate solutions with phase 
transition wave character, where one interface moves over a long period of time essen
tially with constant velocity c. Obviously, the travelling wave solution of Theorem 3.1 
is such a wave for the special interaction potential V of (2) for an arbitrarily long 
time, with constant speed. We consider the initial value problem for (1) with differ
ent interaction potentials V . We take the profile (21) as initial value. The numerical 
scheme is a simple explicit Euler method. As discussed below, the travelling phase 
transition character is observed for a wide range of choices for V . This shows that for 
a wider range of nonlinearities trajectories with phase transition character are well 
approximated by the special travelling wave obtained in this article. The persistence 
of the wave character is so strong that it seems promising to apply a suitable extension 
of the decomposition approach, coupled with fixed-point arguments, to establish the 
existence of travelling waves for more general V rigorously. 

6.1. Simulation of moving phase boundaries. We solve numerically the 
initial boundary value problem for (1) in the discrete strain εj (t) := uj+1(t) − uj (t): 

(129) ε̈j (t) = V � (εj+1(t)) − 2V � (εj (t)) + V � (εj−1(t)) 

for 201 particles. The profile εpr moving with velocity c induces our initial and 
boundary conditions, that is, 

εj (0) := 
εpr(j) for j = −100, . . . , 100 

ε̇j −cεpr
� (j) 

and 

ε±100(t) := εpr(±100 − ct). 

The profile εpr and the speed c are both taken for κ0 = 0.7. The simulations are 
carried out for various interaction potentials V . We use the explicit Euler method for 
a time step Δt = 0.0002. 

While the specific V of (2) is analyzed in a number of physical papers, it is a 
common assumption that the interaction potential V contains a spinodal region, that 
is, two wells joined by a concave segment. We choose ε0 > 0 and define ⎧ ⎪⎪⎨(ε + 1)2 for ε < −ε0, 

1 1 − 1 ε2(130) V (ε) = Vε0 (ε) := 1 − ε0 − for |ε| ≤ ε0, 

for ε > ε0; 
2 ε0⎪⎪⎩(ε − 1)2 

see Figure 5. This one-parameter family has been shown to capture all the qualitative 
features of general bistable models [6]. We remark that the stress-strain relation of 
this family is continuous. In Figure 6, we show a simulation for ε0 = 1 . We show the100 
numerical solution at times t = 40 and t = 80. This means the phase transition should 
have advanced 40 particles (respectively, 80 particles); the latter can be interpreted 
as the interface approaching the boundary of the computational domain. The two 
plots show the positions of the particles as circles superimposed to the profile εpr 

propagated with speed c. Since the quantitative agreement is very good, we turn 
now to a different form of representation, and plot the relative deviation, that is, the 
difference of the snapshot positions of the particles to the shifted profile εpr(· − ct) 
divided by the maximal amplitude. This is done in Figure 7 for solutions at time 
t = 80. 
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Fig. 5. The stress-strain relationship for the interaction potential Vε0 for ε0 = 1
2 (left panel) 

and the potential V of (131). Shown is the stress V � plotted versus the strain ε. 

We remark that smaller values of κ0 improve the quality of the approximation, 
due to the increased amplitude of the wave profile. This is surprising, as the absolute 
deviation remains small despite the growth of the solution’s amplitude as κ0 → 0. 

Finally, we consider an interaction potential V that is nowhere quadratic but has 
quadratic asymptotic growth. For the simulation, we choose � �2 

(131) V (ε) := 
1 ε2 − 1

;
2 ε2 + 1 

see Figure 5. Again, the quality is particularly good for smaller values of κ0. In 
Figure 8, we plot the numerical solution and the relative difference for κ0 = 2

1 . It is 
noteworthy that for this choice of V , the difference is maximal for particles near or 
at the interface. 

7. Discussion. Our knowledge of travelling waves in atomistic models with non
linear interactions is not nearly as good as we would like it to be; this is even more the 
case for nonconvex problems such as springs with nonmonotone stress-strain relation
ships as investigated here, or periodic on-site potentials as in the Frenkel–Kontorova 
model [4]. 

The philosophy behind this article is a straightforward one. Namely, we choose 
the simplest possible setting, a piecewise quadratic energy, and seek to prove the 
existence of waves representing phase transitions on the real line. 

To us, the appeal of the approach presented here is that there is relatively little 
choice along the flow of the argument. The main choice is the strain distribution. 
Here, with the symmetric distribution (8), the heteroclinic wave is symmetric, which 
in turn implies that the kinetic relation is trivial. Additional freedom is obviously 
given by the choice of the profile (see subsection 3.1). Yet, different choices mainly 
influence the ease of the argument showing that the sign condition (8) is satisfied 
(subsection 3.4 and section 4). The advantage of the choice made here is that the 
distance between the profile (21) and the real axis can be read off immediately due 
to the explicit nature of the profile. The control of the magnitude of the corrector in 
relation to this distance is then the crucial step in the argument. 

Sections 2–5 concern the rigorous analysis for a nonharmonic (and nonconvex) 
interaction potential without a spinodal segment. As shown in section 6, the profile 
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Fig. 6. The numerical long-time integration for (129) for V = with ε0 = 1 . The plots Vε0 100

are taken at t = 40 (left) and t = 80 (right); circles denote the positions of the particles, and we 
superimpose the shifted profile εpr(· − ct). 
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Fig. 8. The numerical long-time integration for (129) with V as in (131). On the left, we plot 
the solution at t = 80. On the right, we show the corresponding relative deviation from the shifted 
profile. 

used in the proof continues to be a good approximation for further interaction po
tentials V with a nonvanishing spinodal region. The numerical investigations of the 
shape of the solution in this section suggest that a suitable adaption of the decompo
sition technique developed in this article is promising for a rigorous existence proof 
via a fixed-point argument. Therefore, we see the method developed here as a crucial 
step toward the understanding of structural properties of travelling wave solutions 
traversing a spinodal region. 
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