
        

Citation for published version:
Nickles, M & Sottara, D 2009, Approaches to uncertain or imprecise rules: a survey. in G Governatori, J Hall & A
Paschke (eds), Rule Interchange and Applications. vol. 5858, Lecture Notes in Computer Science, Springer, pp.
323-336. https://doi.org/10.1007/978-3-642-04985-9

DOI:
10.1007/978-3-642-04985-9

Publication date:
2009

Link to publication

The original publication is available at springerlink.com.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/161909704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-04985-9
https://researchportal.bath.ac.uk/en/publications/approaches-to-uncertain-or-imprecise-rules-a-survey(e694dee1-786f-4d20-802f-156c64a98ad5).html


Approaches to Uncertain or Imprecise Rules - A

Survey 

Matthias Nickles and Davide Sottara 

1 Department of Computer Science, 
University of Bath 

Bath, BA2 7AY, United Kingdom 
nickles@gmx.net 

2 DEIS, Facolta di Ingegneria, 
Universita di Bologna, Bologna, Italy 

dsotty@gmail.com 

Abstract. With this paper we present a brief overview of selected promi­
nent approaches to rule frameworks and formal rule languages for the 
representation of and reasoning with uncertain or imprecise knowledge. 
This work covers selected probabilistic and possibilistic logics, as well as 
implementations of uncertainty and possibilistic reasoning in rule engine 
software. 

Keywords: Rules, Uncertainty Reasoning, Imperfect Knowledge, Seman­
tic Web, Knowledge Engineering 

1 Introduction 

This survey paper presents a short overview of selected more or less prominent 
approaches to rule frameworks and formal rule languages for the representation 
of and reasoning with various kinds of uncertain, imprecise or ambiguous infor­
mation. These properties of information are quite different and knowledge may 
be affected by one or more of them at the same time. After Smets ([25]), the 
term “imperfection”will be used as a general concept encompassing all kinds 
of them, since “uncertainty”, which is also sometimes used in a general way, is 
actually a specific type of imperfection. 

The knowledge an agent has about the world can often be conveniently en­
coded using formulas expressed in some logic-based language. In classical logic, 
a formula is either true or false. However, in many practical cases the truth of a 
formula might be unknown, unclear or uncertain, in which case we cannot assign 
it a definite truth value. 
There are many possible reasons for such imperfect knowledge. Several attempts 
to outline the differences and classify them in a standard framework exist: among 
them, the already cited survey by Smets [25] but also, for example [11, 15, 17]. 
More recently, the W3C Incubator Group on Uncertainty Reasoning for the Web 
has defined an ontology (see [4]) for the representation of imperfection of infor­
mation on the Web which is to some degree resembled in this paper. Even if there 

mailto:nickles@gmx.net
mailto:dsotty@gmail.com


is much philosophical debate, it is generally accepted that such imperfection can 
take on the following major forms (among others): 

Uncertainty derives from a lack of knowledge about a fact or an event, be it 
past, present or future, even if the actual state of the world is known to belong 
to some set of alternatives. Uncertainty may be aleatory, i.e. intrinsically 
present in some random phenomenon so that the knowledge gap cannot be 
filled, or epistemic, i.e. due to a partial ignorance of the agent, for example 
because of missing, questionable or inconsistent data. Often, but not always, 
the degree of uncertainty can be measured in some statistical, objective way. 
In the epistemic case, or whenever a subjective judgement is adopted, the 
degree of uncertainty is typically denoted as the degree of belief of some 
agent in a statement. But the subjective belief of an agent can of course also 
comprise statistical information. 

Imprecision arises when knowledge is as complete as it can be, but the terms 
used to denote it do not allow to identify the entity that are being referred 
in a precise and univocal way. This imprecision may lead to ambiguity, when 
there is more than one possible interpretation, approximation, when a class of 
entities is collapsed into one representative, and vagueness, when the bound­
aries of the definition of a concept are relaxed - usually fuzzified - in some way. 

Inconsistency is a property of a knowledge base with conflicting information, 
such that there is no possible world it can describe. Conflicts have to be 
resolved, usually removing, ignoring or modifying part or all the conflicting 
information. Inconsistency may be a symptom of incorrect or noisy informa­
tion. But of course there is possibly also erroneous information which does 
not lead to any (apparent) inconsistency. In this survey, we do not consider 
formal frameworks for inconsistency handling. 

Notice that an imperfect representation of knowledge may be more concise, 
robust and less expensive to obtain than its perfect version. Consider for example 
the age-related version of the Sorite Paradox : if a person is young on one day, 
they will also be young the day after, until the day when they will be old. This 
is a paradox in classical logic unless a different adjective is defined for every day 
in the life of a person, but is perfectly acceptable in fuzzy logic, where one single 
property, “young”, has a truth degree that varies continuously with age. Given 
the variety of sources, most knowledge based systems are likely to have to deal 
with some type of imperfection in the data they process: moreover, given the ro­
bustness/conciseness trade-off, a system handling imperfection without ignoring 
is more applicable and powerful than an idealized system which simply prunes 
away uncertainty and imprecision. Of all the possible applications, we will dis­
cuss an example class, chosen because it is usually a domain of traditional (from 
a logical point of view), i.e., ”perfect” rule-based systems: 

Complex Event Processing (CEP) is an emerging approach [19] based on the 
concept of event, that is here, a message notifying that some state has changed 



in a system at a certain time. Many real-world systems (e.g. a stock markets in 
finance, a plant in chemistry, a human body in medicine, . . . ) generate dozens 
of such events of different types at high frequencies, but only a few are usually 
relevant at a given time. The challenge, then, is to filter, sort and analyze the 
events, possibly aggregating them in higher order events at different abstraction 
levels, so to extract only the relevant information. Uncertain formal rules can 
be used to reason about such events, and reaction rules are particularly suitable 
in the context of CEP since they can be used to trigger actions (including the 
generation of new events) when the current events match their preconditions. 
Event processing, however, may be affected by imperfection in different ways: 

–	 If some events are partially unobservable, there may be uncertainty due to 
the missing data. Moreover, the conditions used to detect a complex event 
from simpler ones may not be certain (i.e. when detecting the insurgence 
of a disease from its symptoms). Finally, all event-based predictions are 
intrinsically uncertain. 

–	 Events may be reported with imprecision, e.g. because the measurements 
are unreliable. It may also be convenient, if not necessary, to express some 
constraints - especially the temporal ones - with some degree of vagueness 
(e.g., event A happens more or less contemporarily with event B). 

–	 There may be unexpected, conflicting combinations of events, especially in 
case of failures. 

Being a relatively novel discipline, not many real-world applications of imperfect 
CEP exist yet, possibly because commercial rule-based systems are efficient at 
handling imprecision, especially in the fuzzy case, but still have serious limitation 
when processing uncertainty. 

A further set of examples and case studies related to uncertain and imprecise 
information on the Web can be found in [4], along with a discussion on possible 
solution approaches. 

The remainder of this paper is structured as follows: Section 2 deals with dif­
ferent models of imperfection, such as fuzzy sets and probability theory, focusing 
on how they have been applied to extend traditional logics in the formalization 
of rules. Section 3 discusses whether and how mainstream rule-based systems, 
both academic and commercial, support imperfect rules. 

2 Probabilistic and Possibilistic Reasoning with Rules 

The different types of imperfection are the domains of different theories: in par­
ticular, uncertainty is typically handled using probabilistic approaches, while 
possibilistic ones are used for imprecision. The theoretical backgrounds are far 
beyond the scope of this work, so the main techniques will just be recalled briefly, 
to focus more properly on their application in logic. 



2.1 Probabilistic Approaches 

Probability Theory 

Probability theory is the mathematical theory of random events. The proba­
bility of an event A is represented by a real number ranging from 0 (impossible 
event) to 1 (certain event), and is usually denoted as Pr(A). If uncertainty is 
aleatory, this probability is normally estimated using a ”frequentist” approach, 
by repeating observations of events in long-run experiments and choosing the 
ratio of favorable outcomes over the total number of experiments as the proba­
bility. In contrast to this view, with the Bayesian or epistemic interpretation of 
probability, which is the underlying theory for most approaches in Artificial In­
telligence (especially in Machine Learning), probability is a measure of the belief 
in some hypothesis which is not necessarily grounded in any physical properties 
or empirical observations (but could be). Under this view, for a rational agent, 
probability is typically grounded in terms of betting behavior: Pr(A) is here 
the amount of money that a rational agent would be indifferent to betting on 
the occurrence of event A. In order to calculate probabilities, an agent typically 
starts with some personal prior belief, which is then progressively updated using 
the application of Bayes’ rule as new information is acquired. 

Various logics with support for probabilistic reasoning (purely statistical ap­
proaches as well as Bayesian reasoning) have been developed. In the following, 
we will present a subset of those first-order languages which are able to represent 
logical rules in the sense of Horn clauses (see below). Our survey does not aim 
at a complete or representative list of such formal frameworks, but just at a list 
of hopefully interesting example approaches and as a starting point for further 
reading. 

One of the most simple languages for rules, and the core of RuleML [2], is 
Datalog [8]. A Datalog program allows to contain rules, that is, clauses (disjunc­
tions of literals) with at most one positive literal (Horn clauses), with certain 
restrictions (see below). Rules can thus be written in the form H ←− B1 ∧...∧Bn, 
where H and the Bi are atoms (the Datalog notation follows that of Prolog and 
is thus slightly different). 
So-called extensional predicates are fully defined in an extensional manner by 
lists of facts (positive ground unit clauses). Intensional predicates are in con­
trast defined entirely by rules. Extensional predicates correspond to relations 
(”tables”) in extensional databases, intensional predicates correspond to inten­
sional database relations. The difference between these two type of predicates 
in Datalog becomes very important for probabilistic extensions of Datalog, as 
explained further below. 

Datalog can be seen both as a deductive database system (a database system 
which can derive new data (facts) using logical inference) and as a Prolog-like 
logic language. But in contrast to Prolog, functions within terms are not allowed, 
and every variable in the head of a clause must also appear in the body of this 



clause (so-called safe rules or range-restricted rules). Variants of Datalog such 
as stratified Datalog imply further restrictions. Datalog allows for very effective 
query evaluation, and queries are ensured to terminate. Its expressivity covers 
relational algebra (roughly: the core of SQL), but goes beyond it, by means of 
so-called recursive queries. 

Probabilistic Datalog (DatalogP ) [13] is an extension of Datalog which ad­
ditionally allows for the probabilistic weighting of facts (but not - extensionally 
- of rules). Informally, the idea here is that each ground fact corresponds to an 
event in the sense of probability theory, and rules allow for boolean combinations 
of events and their probabilities. However, naively applied, this approach would 
lead to inconsistencies and other problems, since probability theory is not truth-
functional, that is, values of complex expressions are not necessarily functions of 
the values of the constituents of these expressions. This is a problem which all 
formal approaches which aim for a combination of probability theory and logical 
calculi need to be aware of. 

The semantics of DatalogP programs is a probabilistic possible-world seman­
tics. ”Possible worlds” correspond to subsets of the least Herbrand model of the 
respective Datalog program, and a probability structure provides a probability 
distribution over all possible worlds. This uncertainty enabled possible-world 
semantics is typically - but not always - used for probabilistic logics, and re­
flects the aforementioned view of probabilities as degrees of belief. Essentially, a 
possible-world semantics assigns probabilities to propositions, and the probabil­
ity of a certain proposition is the probability of the set of possible worlds where 
this particular proposition is true. 

In order to deal with the absence of truth functionality, DatalogP follows 
two alternative directions: basic DatalogP yields probability intervals instead of 
”point” probabilities in case of derived event expressions (which are not given ex­
plicitly as probabilistically annotated ground facts) in order to reflect incomplete 
knowledge about event independence, which is the actual cause of lack of truth-
functionality of probabilistic calculi. Alternatively, DatalogPID (”DatalogP with 
independence assumptions”) makes the quite strong assumption of universal 
event independence, that is Pr(e1 ∧ e2) = Pr(e1) Pr(e2) for any events e1 and· 
e2. Under this assumption boolean combinations of the constituents of proba­
bilistic event expressions become possible. Please find technical details in [13]. 

Approaches which combine Description Logics for the Semantic Web with 
Datalog/Prolog-like logic programming (and thus full rules as defined above) 
are described in the next section. 

Whereas the logics described so far are subsets of first-order logic, in [14], 
Halpern presents three different probabilistic (full) first-order languages L1, L2, 
and L3. Basic DatalogP is a subset of L2. All three languages have a very ex­
pressive syntax, allowing for, e.g., probabilistically-weighted arbitrary first-order 
formulas (including rules in the sense of Horn clauses) and conditional probabili­
ties. However, they are undecidable and their relevance is largely theoretical and 



important mainly because of their influence on historically newer and practically 
more relevant languages. 
Formulas of L1 take the basic form of wx(ϕ) ≥ pr, where ϕ is a first-order for­
mula and pr is a probability. This syntax is more or less identical to the syntax 
of Bacchus’ logic Lp [6]. The semantics is quite similar, but not identical. The 
informal meaning of the statement form above is ”The probability that a ran­
domly chosen object x in the domain satisfies ϕ is at least pr”. This means that 
we do here (and also for Lp) not encounter a possible-world semantics here, but 
instead a ”statistical semantics” (or more appropriate: domain-frequency seman­
tics) which puts a probability distribution over the domain of discourse. This 
semantics is an implementation of the empirical interpretation of probabilities 
mentioned at the beginning of this section. Probabilities reflect here ”objective” 
statistical proportions or frequencies. 

In contrast, L2 uses a possible-world semantics. The syntactical form of L2 

formulas is lb ≤ ϕ ≤ up, where lp is the lower bound for the probability of ϕ 
and up is the upper bound. The semantics works much like that of DatalogP , 
only that ϕ is not restricted to facts. 

Both approaches can be converted into each other - however, to understand 
better what the practical difference between these two languages respectively 
their semantics is, and why a degree-of-belief semantics is not appropriate in 
certain cases, and domain-frequency semantics is not adequate in other case, we 
look at the following example (taken from [14]): 

Suppose one would like to formalize the two statements ”The probability 
that a randomly chosen bird is greater than 0.9” and ”The probability that 
Tweety (which is a bird) can fly is greater than 0.9”, using some first-order 
probabilistic languages. For the second statement, a possible-world semantics 
which assigns a probability of 0.9 or higher to the set of those worlds in which 
Tweety can fly seems appropriate. However, the first statement cannot simply 
be formalized using a possible-world semantics, at least not in a straightforward 
way [14, 6]. A seeming way (among others which do not work very well) would 
be to attach probability 0.9 to the worlds in which ∀xBird(x) → Flies(x) holds. 
However, if in all worlds there is at least a single bird which does not fly, and 
so the probability of this statement is zero, it could still be the case that the 
probability that a randomly chosen bird flies is greater than 0.9. In contrast 
to the possible-world semantics, a domain-frequency semantics can represent 
the first statement without problems, but would on the other hand have in 
certain contexts problems with the representation of statements like the second 
statement above [14, 6]. 

In order to allow for a simultaneous reasoning with both views of probability, 
Halpern introduces the language L3. It allows statements such as 
w(wx(Flies(x)|Bird(x)) > .99) < 2 ∧ w(wx(Flies(x)|Bird(x)) > .9) > .95, 
hence combining the syntactical features of L1 and L2. What essentially hap­
pens here is that agents can hold degrees of beliefs about statistically uncertain 
statements. 



While Bayesian networks (also called belief networks) are able to represent 
a sort of event-conditional rules, and certain variations of Bayesian networks 
encode causal rules, they work only on a propositional level, and thus do not fall 
into our scope of interest. However, several formal approaches exist which ex­
tend Bayesian networks with first-order capabilities (relations). Bayesian logic 
programs (BLP) [16] for example can be seen as a generalization of Bayesian 
networks and logic programming, implementing a possible-world semantics. The 
logic component of BLP consists of so-called Bayesian clauses. A Bayesian clause 
is a rule of the form A|A1, ..., An, where each Ai is a universally quantified 
Bayesian atom. The main difference between Bayesian clauses and ordinary 
clauses (apart from the use of | instead of : − as in Prolog or Datalog rules) is that 
the Bayesian atoms have values from a finite domain instead of boolean values. 
In addition to Bayesian clauses, a BLP consists of a set of conditional proba­
bility distributions over Bayesian clauses c (encoding Pr(head(c)|body(c))) and 
so-called combining rules in order to retrieve a combined conditional probability 
distribution from the combination of the multiple different conditional probabil­
ity distributions. From a BLP a Bayesian network can be easily computed and 
then queried using standard Bayesian inference. Another prominent example for 
relational extensions of Bayesian Networks are Probabilistic Relational Models 
(PRMs). However, they cannot express arbitrary quantified first-order rules. 

Multi-entity Bayesian networks (MEBNs) [18] are another example for a 
formal framework which integrates first-order logic with Bayesian probability 
theory. In contrast to most other ”relational Bayesian” approaches, they have 
full first-order representation power. 

Stochastic Logic Programs (SLPs) [21] are sets of rules in form of range-
restricted clauses labeled with probabilities. The resulting annotated rules are 
called stochastic clauses. The semantics of SLPs assigns a probability distribu­
tion to the atoms of each predicate in the Herbrand base of a program. SLPs 
are a generalization of Hidden Markov Models as well as stochastic grammars to 
first-order logic programming, and are expressive enough to encode (undirected) 
Bayesian networks. SLPs cannot only be manually constructed, but also learned 
using a combination of Inductive Logic Programming (ILP) and stochastic pa­
rameter estimation [21]. 
Stochastic Logic Programs encode a sort of domain-frequency semantics. It can 
be shown, however, that SLPs (respectively, BLPs) can be translated into BLPs 
(respectively, extended SLPs) [23]. 

A quite recent approach to the combination of first-order logic and prob­
abilistic theory are Markov Logic Networks (MLNs) [24]. A MLN is a set of 
(unrestricted) first-order formulas with a weight (not a probability) attached to 
each formula. MLNs are used as ”templates” from which Markov networks are 
constructed. Markov networks are graphical models for the joint distribution of 
a set of random variables, allowing to express conditional dependencies Bayesian 
networks cannot represent, and vice versa. The (ground) Markov network gen­
erated from the MLN then determines a probability distribution over possible 
worlds, and is used to compute probabilities of restricted formulas using proba­



bilistic inference. Machine learning algorithms allow to learn the formula weights 
in MLNs from relational databases. 

2.2 Dealing with Imprecision: Possibilistic Theories 

Fuzzy Sets 

Fuzzy sets [27] are sets X whose elements x have varying degrees of mem­
bership, evaluated by a membership function µ : X �→ [0, 1]. Fuzzy sets can be 
used to define concepts with vagueness (e.g. “old”, “tall”) and reason with and 
over them. If the membership degree can’t be estimated precisely, higher order 
fuzzy sets can be defined, which meta-membership degrees are, in turn, fuzzy 
sets over the domain of membership degrees themselves, [0, 1]. 

The concept of fuzzification, i.e. extension with vagueness, can been applied 
to many contexts, including logic. 

Fuzzy Logic in a Narrow Sense 

The fuzzification of first-order logic can be obtained directly by extending 
the underlying algebraic structure. In boolean FOL true and false are the only 
allowed truth values for a formula: one can obtain a fuzzy version of this logic 
assuming that the truth value is a member of a lattice (a partially ordered set in 
which any two elements always have a unique supremum and infimum), which 
in practice is usually the unit interval [0, 1]. 

Like in classical logic, the formulas are still built from atoms using connectives 
and quantifiers, but their evaluation is delegated to complex operators which 
generalize the boolean ones. To preserve an axiomatic structure, only a minimal 
set of operators is defined primitively (e.g. the implication and the negation → 
¬), while the others are derived according to the canonical definitions (e.g. ¬x ∨ 
y x y). The choice of the implication operator is strictly connected to the ⇔ →
choice of the conjunction operator �, implemented using a triangular norm, a 
commutative, associative, monotonic binary map on [0, 1] having 1 as neutral 
element: in fact, it holds that x � z ≤ y ⇔ z ≤ (x → y). 

Interestingly, there is not a unique choice for �, so, given the mutual depen­
dencies, there exist families of operators and thus different logics according to 
which operators and how they are defined. However, it has been shown that all 
alternatives can be reduced to three basic t-norms, namely minimum, product 
and Lukasiewicz. 

The operators, in any case, are truth functional, which makes evaluation 
computable efficiently. The truth value of the atoms may be given as a fact, or 
evaluated using the equivalent of a membership function operating on its argu­
ments: afterwards, operators are applied to determine the truth value of formu­
las. For these reasons, these “mathematical”fuzzy logics are special instances of 
many-valued logic. A complete discussion can be found in [?]. 



Fuzzy Logic in a Broader Sense 

When Zadeh defined fuzzy logic ([?]), he was more interested in adopting a 
formalism close to the way people think and express concepts than in defining a 
formal extension of mathematical logic. This vision led to the definition of lin­
guistic variables, which values are fuzzy sets over a specific domain. For example, 
the variable age may have young, mature and old as values, all fuzzy sets over, 
say, the integer interval 0..100. This allows to write conjunctive, horn-like rules 
having the form “if X1 is A1 and . . . and Xn is An then Y is B ”. Tipically, several 
rules entailing information on Y are written and then combined disjunctively. 
In order to apply the rules, the quantitative inputs x (e.g. the age of a person) 
are fuzzified using, for example, a membership function. The fuzzified variables 
are matched against the qualitative constraints in the rules to entail the fuzzy 
conclusions Y , again fuzzy sets, which are defuzzified to obtain a quantitative 
output value. It has been shown (e.g. see again [?]) that a set of such fuzzy rules 
is equivalent to a local, declarative approximation of a relation Πj

n 
=1Xj �→ Y . 

For this reason, fuzzy logic has been widely applied to the control of complex, 
nonlinear systems. 

Possibility theory In possibility theory [10], a possibility distribution asso­
ciates a value π(x) ∈ [0, 1] to each element x in a set of alternatives X. This 
value measures the compatibility of x with the actual state of the world. Unlike 
probability theory, where relative odds are considered, in possibility theory each 
individual is considered separately: in fact, the possibility Π(A) associated to a 
set A is given by max(π(x)) : x ∈ A. The dual concept of possibility is necessity, 
defined by negating the possibility of the complementary: N(A) = 1 − Π(A). 
Possibility can be physical or epistemic, depending whether objective or subjec­
tive factors are taken into account when defining π. Notice that the membership 
function of a fuzzy set can be considered a possibility distribution on its domain, 
given the only knowledge that the actual state of the world belongs to the set. 

3 Mainstream Software Tools and Standards 

The (Semantic) Web is a heterogeneous software environment in which many 
systems and frameworks coexist. 

We have shown that there exist different families of logic, with different 
expressiveness, which can be used to define and reason with rules. On the other 
hand, there exist many rule engines, with different characteristics, that a user can 
adopt in their projects. In modern applications, such rule engines are currently 
mainly used for two following tasks: 

processing business rules and, as an emerging field, reasoning over Semantic 
Web ontologies enhanced with rules [5, 2]. 

The main goal of our survey is to see whether existing rule engines support 
imperfect rules natively, i.e. if the rule engine handles all the inference procedures 
typical of the respective logic. 



Inevitably, however, other aspects have also to been taken into account: 
whether a tool is commercial or freely available, whether it is for an academic 
or industrial use, whether it is just a rule engine or a full fledged Business 
Rule Management System (BRMS), and its execution environment (e.g. Java 
vs. .NET). 

Even limiting our research to mainstream projects3, i.e. general purpose tools 
supported by a some community (to whatever extent), thus discarding several 
student projects and many ad-hoc engines built for specific applications, we have 
noticed that there are more than two dozens of different alternatives, but only 
a few with support for imperfection, and most of these work with fuzzy logic. 
Note that we disregard in this section logical reasoners and other implementa­
tions of probabilistic and possibilistic frameworks which are not rule engines in 
the usual sense. 

Imperfection in Rule-based Systems 

Fuzzy logic is perhaps the easiest type of imperfect logic to implement in a 
rule-based system. Inference in fuzzy logic is a generalization of the boolean case. 
Most importantly, the operators are truth functional, i.e. they just aggregate 
the degrees associated to their operands, so the complexity remains limited. 
However, this still means that a standard rule engine can’t evaluate fuzzy rules 
natively without an extension. Many mainstream BRMSs, both commercial and 
free, include an engine, typically based on the RETE algorithm ([12]), and several 
additional tools giving support for rule management (remote and local), event 
handling, editing and reporting. 

Among them, we can cite InRule, ObjectConnections Common Knowledge, 
Microsoft BizTalk, Fair Isaac’s Blaze Advisor, ILOG JRules, OpenRules, Pe­
gaSystems PegaRules, Open Lexicon, XpertRule KnowledgeBuilder and JBoss 
Drools. 

Adding fuzzy logic (or any other type of logic) to any of these systems would 
require a refactoring of the internal rule engine and, possibly, the rule language, 
neither of which is a simple operation, although such a process is being attempted 
in Drools. 

The mainstream fuzzy-capable systems, instead, are open source rule shells, 
typically originated in an academic context, without many of the additional 
features of BRMSs. The most famous are possibly FuzzyShell, FuzzyClips and 
FuzzyJess; we also know of a commercial data mining tool, Scientio XMLMiner / 
MetaRule, which has fuzzy capabilities. FuzzyJess is one of the most used given 
its Java-oriented nature: it is actually a rewriting of FuzzyCLips, itself an ex­
tension of the CLIPS engine. FuzzyClips, moreover, has the merit of supporting 
two types of imperfection: fuzzy logic and confidence, in the form of certainty 
factors. 

Inevitably, we can’t consider all existing tools, so we preventively apologize for not 
citing or discussion some software. 

3 



The first rule-based system to introduce uncertainty in automatic reason­
ing, MYCIN ([7]), adopted imperfect rules annotated with certainty factors to 
model a sort of quality score. The way of handling the factors was not theo­
retically very sound, so later systems used more structured approaches, even if 
the idea of using confidence was further developed (see for example [26]). In 
FuzzyClips, however, they have been introduced in a more coherent way, again 
truth-functional, and their evaluation proceeds in parallel with the evaluation of 
the fuzzy truth degrees of the formulas. Notice that all these fuzzy shells support 
fuzzy logic in the broader sense of the term. 
In contrast, no commercial mainstream rule engine that we are aware of supports 
probabilistic logic. Whereas Bayesian networks have become a very popular tool 
for handling uncertainty and many mature software packages exist which imple­
ment Bayesian networks, hardly any product already supports any of the vari­
ous probabilistic logics, even if recently at least two projects have been started, 
namely Balios and BLOG. 

Interoperability 

One of the limitations of the different engines is their using proprietary lan­
guages to write logic formulas and rules in particular. 

However, current Web standards for knowledge representation are not able 
to represent imperfect probabilistic or possibilistic rules. 

To achieve a good degree of interoperation, standards on rule representation 
and interchange are being proposed in the last few years. The Rule Interchange 
Format (RIF) [1] is a proposed W3C standard format for rule representation 
and interchange, based on XML. RuleML [2] is an initiative which develops a 
XML- and RDF- based markup language for rules, with Datalog-rules as the 
core. RuleML uses a modular approach to support different rule-based logics 
with different types of complexity and expressiveness, in order to promote rule 
interoperability between industry standards. RuleML supports various kinds of 
reasoning engines (e.g., forward vs backward chaining, RETE vs Prolog, . . . ) and 
leaves knowledge engineers the choice of implementation for entities and facts 
(e.g., objects, plain symbols, XML trees, . . . ). RuleML is supported by various 
rules engines, such as jDREW and Mandarax. A combination of the current 
standard ontology language OWL and RuleML is proposed to the W3C in form 
of the Semantic Web Rule Language (SWRL) [3]. 

The issues related to the introduction of imperfection in rule languages have 
recently been discussed in [9], where a module for uncertainty and fuzzy reason­
ing with rules is defined. This work is remarkable since it shows that most types 
of imperfect logic can be encoded simply by allowing truth degrees and oper­
ators to be customized using appropriate tags (degree) and attributes (kind). 
Such knowledge, however, should be processed by an engine capable of chang­
ing its configuration at run-time, a task that requires more than the creation 
of a language translator. The extensions proposed in [9] can be integrated into 



RuleML, but also in a preliminary version of the W3C Rule Interchange Format 
(RIF) [1]. Another approach to the integration of rules based on proposed stan­
dards and fuzzy logic is f-SWRL [22]. 
As for probability theory, candidates for future standard languages will possible 
integrate a description logic with rules (in the sense of logic programming) and 
uncertainty reasoning, such as the formal framework proposed in [20]. 

References 

1.	 Rule interchange format (rif) working group, 
http://www.w3.org/2005/rules/wiki/rif working group. 

2.	 Ruleml, http://www.ruleml.org. 
3.	 Swrl: A semantic web rule language combining owl and ruleml, 

http://www.w3.org/submission/swrl/. 
4.	 W3c uncertainty reasoning for the web incubator group, 

http://www.w3.org/2005/incubator/urw3/xgr-urw3. 
5.	 G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and 

Peter. Combining Rules and Ontologies. A survey., 2005. 
6.	 F. Bacchus. lp, a logic for representing and reasoning with statistical knowledge. 

Computational Intelligence, 6:209–231, 1990. 
7.	 B. G. Buchanan and E. H. Shortliffe. Rule-based Expert Systems : the MYCIN ex­

periments of the Stanford Heuristic Programming Project. Addison-Wesley, Read­
ing, Mass. [u.a.], 1984. 

8.	 S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog 
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 
(1(1)):146–66, 1989. 

9.	 C. V. Damsio, J. Z. Pan, G. Stoilos, and U. Straccia. Representing uncertainty in 
RuleML. Fundam. Inf., 82(3):265–288, 2008. 

10.	 D. Dubois. Possibility theory and statistical reasoning. Computational Statistics 
& Data Analysis, 51(1):47–69, 2006. 

11.	 D. Dubois and H. Prade. Possibility theory, probability theory and Multiple-
Valued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 
32(1-4):35–66, 2001. 

12.	 C. Forgy. Rete: A fast algorithm for the many patterns/many objects match 
problem. Artif. Intell, 19(1):17–37, 1982. 

13.	 N. Fuhr. Probabilistic datalog - a logic for powerful retrieval methods. In Proceed­
ings of the 18th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, 1995. 

14.	 J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, 
46:311–350, 1990. 

15.	 J. Y. Halpern. Reasoning about Uncertainty. The MIT Press, October 2003. 
16.	 K. Kersting and L. D. Raedt. Bayesian logic programs. In Proceedings of the 10th 

International Conference on Inductive Logic Programming, 2000. 
17.	 G. J. Klir. Generalized information theory. Fuzzy Sets Syst., 40(1):127–142, 1991. 
18.	 K. B. Laskey and P. C. Costa. Of klingons and starships: Bayesian logic for the 

23rd century. In Proceedings of the Twenty-first Conference on Uncertainty in 
Artificial Intelligence, 2005. 

19.	 D. C. Luckham. The Power of Events: An Introduction to Complex Event Process­
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., 
Inc., Boston, MA, USA, 2001. 

http://www.w3.org/2005/rules/wiki/rif
http://www.ruleml.org
http://www.w3.org/submission/swrl/
http://www.w3.org/2005/incubator/urw3/xgr-urw3


20.	 T. Lukasiewicz. Probabilistic description logic programs. International Journal of 
Approximate Reasoning, 45(2):288–307, 2007. 

21.	 S. Muggleton. Learning stochastic logic programs. In Electronic Transactions in 
Artificial Intelligence, 2000. 

22.	 J. Z. Pan, G. B. Stamou, V. Tzouvaras, and I. Horrocks. f-swrl: A fuzzy extension 
of swrl. In ICANN (2), pages 829–834, 2005. 

23.	 A. Puech and Muggleton. A comparison of stochastic logic programs and bayesian 
logic programs. In IJCAI03 workshop on learning statistical models from relational 
data, IJCAI, 2003. 

24.	 M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1­
2):107–136, February 2006. 

25.	 P. Smets. Imperfect Information: Imprecision and Uncertainty, pages 254, 225. 
1996. 

26.	 P. Wang. Confidence as higher order uncertainty. null, 1994. 
27.	 L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June 1965. 


