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Abstract

The focus of study is the nonlinear discrete sine-Gordon equation, where the non-
linearity refers to a nonlinear interaction of neighbouring atoms. The existence of
travelling heteroclinic, homoclinic and periodic waves is shown. The asymptotic
states are chosen such that the action functional is finite. The proofs employ varia-
tional methods, in particular a suitable concentration-compactness lemma combined
with direct minimisation and mountain pass arguments.
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1 Introduction

This article is concerned with travelling waves in the discrete sine-Gordon
equation

q̈k(t) = V ′ (qk+1(t)− qk(t))− V ′ (qk(t)− qk−1(t))−K sin (qk(t)) , k ∈ Z, (1)
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with a constantK > 0. Equation (1) describes the evolution of an infinite chain
of atoms with elastic nearest neighbour interaction and an on-site potential,
according to Newton’s law. The argument of the interaction potential V : R→
R is the discrete strain qk+1(t)− qk(t). In an earlier work [7], we assumed that

V is a quadratic function V (ε) :=
c20
2
ε2 with c0 > 0; here, we consider an

anharmonic interaction, that is, V (ε) 6= c20
2
ε2. We are interested in travelling

wave solutions to (1), that is, solutions of the form qk(t) = u(k − ct) for all
k ∈ Z, where u : R → R is the wave profile and c > 0 is the wave speed. For
this ansatz, (1) becomes

c2u′′(τ) = V ′ (u(τ + 1)− u(τ))− V ′ (u(τ)− u(τ − 1))−K sin(u(τ)). (2)

In a suitable setting, Equation (2) is the Euler-Lagrange equation of the action
functional

J(u) :=
∫

R

[
c2

2
(u′(τ))

2 − V (u(τ + 1)− u(τ)) +K(1 + cos(u(τ)))

]
dτ. (3)

Here, −K(1 + cos(u(τ))) is the on-site potential (density).

The specific form of the on-site potential is not crucial for the results presented
here. In fact, they will, with obvious modifications, also hold for any non-
negative 2π-periodic W 1,∞-function with zero set {(2k + 1)π : k ∈ N} instead
of (1 + cos(·)).

In this article, we only consider supersonic waves, that is, restrict the anal-
ysis to wave speeds c > V ′′(0). Under suitable conditions on the interaction
potential V , we show the existence of three types of solutions:

– heteroclinic travelling waves: lim
z→−∞

u(z) = −π and lim
z→+∞

u(z) = π, (4)

– homoclinic travelling waves: lim
z→−∞

u(z) = lim
z→+∞

u(z) = π,

– periodic travelling waves: u(z) = u(z + T ) for some T > 0 and

for every z ∈ R.

The first part generalises an existence result for supersonic heteroclinic waves
in [7] to the case of nonlinear interaction.

The results for homoclinic waves presented here are related to those of Bates
and Zhang [3]. They have, among other results, shown the existence of super-
sonic travelling waves for

c2u′′(τ) = c2
0(u(τ + 1)− 2u(τ) + u(τ − 1)) +K sin(u(τ)). (5)

Bates and Zhang [3] consider homoclinic waves that have their asymptotic
states in the maximum of the on-site potential, which can here be taken to be

2



K cos(u(τ))−1. Employing entirely different methods, we study the analogous
situation with nonlinear interaction and thus achieve a complementary result.

In addition, we prove the existence of periodic solutions. This result is related
to work on periodic solutions with nonlinear interaction, but without on-site
potential [1,2]. The interest in periodic solutions can be explained with the
desire to analyse the (non-)ergodicity of a system; see the discussion in [1],
also regarding the (non-)equipartitioning of energy of the Fermi-Pasta-Ulam
experiment (nonlinear interaction without on-site potential).

Other choices of boundary conditions and their physical interpretations are
discussed in [7].

2 Heteroclinic travelling waves

In this section, we prove the existence of heteroclinic waves for (2) with bound-
ary conditions (4). The solution will be found as a minimiser of a penalised
variant of the action functional (3). The penalisation is necessary since the
action functional is, unlike in the case of linear interaction, not bounded from
below.

We introduce the function-analytic setting. Let us define the space

X :=
{
u ∈ H1

loc(R) : u′ ∈ L2(R)
}

;

when equipped with the inner product 〈u, v〉X := u(0) v(0) +
∫

R
u′(τ) v′(τ) dτ ,

it becomes a Hilbert space. Further, we set

M−π,π := {u ∈ X : u(−∞) = −π, u(∞) = π}. (6)

Throughout this section, the following assumptions are made.

Assumption 2.1 (i) V ∈ C1(R), V (0) = 0, and V (x) ≥ 0 for all x ∈ R.
(ii) The interaction potential is growing at infinity,

lim
|x|→∞

V (x) =∞.

(iii) (Super-)quadratic growth at 0: limx→0

∣∣∣V (x)
x2

∣∣∣ exists and is finite.

(iv) The wave speed satisfies

c2 > c2
1 := 2 sup

|x|<6π

∣∣∣∣∣V (x)

x2

∣∣∣∣∣ .
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The main result of this section is as follows.

Theorem 2.2 Let Assumption 2.1 be satisfied and suppose that c is large
enough to ensure δ < π for δ given by

δ :=
4c2

1

c2 − c2
1 + c

√
(c2 − c2

1)
. (7)

Then a solution u ∈ C2(R) of (2) exists with boundary conditions (4).

Assumption 2.1 allows for interaction potentials V which grow superquadrat-
ically at infinity, i.e., limx→±∞ x

−2 · V (x) =∞; for such potentials the action
functional J from (3) is unbounded from below (and from above). In the next
subsection, we gather some general properties of J and introduce a penalised
functional that agrees with J on a suitable neighbourhood of 0 ∈ X which
includes a relevant part ofM−π,π. It is then shown that a global minimiser of
the penalised functional, if it exists, lies in the interior of this neighbourhood
so that it is necessarily a local minimiser of J as well. The last subsection es-
tablishes the existence of such a global minimiser of the penalised functional,
which is the solution claimed in Theorem 2.2.

2.1 Auxiliary statements

For more a compact notation, we introduce on X a difference operator A by
Au(τ) := u(τ + 1)− u(τ). It is easy to see (e.g., [12, Proposition 1]) that

max
{
‖Au‖L2(R) , ‖Au‖L∞(R)

}
≤ ‖u′‖L2(R) . (8)

The action functional (3) can then be rewritten as

J(u) :=
∫

R

[
c2

2

(
u′(τ)

)2 − V (Au(τ)) +K
(
1 + cos(u(τ))

)]
dτ. (9)

We now give the precise connection between the action functional and (2) by
showing that the latter is, in a suitable sense, the Euler-Lagrange equation
associated with (9).

Lemma 2.3 Let v0 : R→ [−π, π] be a monotone function in C∞(R) such that
v0(τ) = −π for τ < −1 and v0(τ) = π for τ > 1. Define Ψ: H1(R)→ R by

Ψ(v) := J (v0 + v)

and suppose that Assumption 2.1 is satisfied. Then the following holds:
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(i) Ψ(v) <∞ for all v ∈ H1(R), or, equivalently, J(u) <∞ for all u of the
form u = v0 + v for some v ∈ H1(R).

(ii) J(u) =∞ for all u ∈M−π,π which are not of the form u = v0 +v for any
v ∈ H1(R). In particular, a minimiser u of J on M−π,π can be written
as u = v0 + v for some v ∈ H1(R).

(iii) Ψ is continuously differentiable on H1(R).
(iv) Let v ∈ H1(R) be a critical point of Ψ and set u := v0 + v. Then u, v ∈

C2(R) and u is a solution of (2) with boundary conditions (4).

The proof is straightforward and thus omitted here (see [6,7] for details).

The penalisation is defined as follows. Let F be a non-negative function in
C∞(R) such that

F (x) = 0 for all |x| ≤ 5
2
π,

F (x) ≥ 4
∫ 2x

0
|V ′(ξ)| , dξ and F (x) ≥ 2K for all |x| ≥ 3π,

1
2
≤ 1 + cos(x) + 1

2K
F (x) for all |x| ∈

(
5
2
π, 3π

)
.

(10)

The existence of such a function is immediate. In particular, for all λ > 0,

1 + cos(x) + λF (x) = 0 if and only if |x| = π. (11)

We then define the penalised functional JP : X → R ∪ {∞} by

JP (u) :=
∫

R

[
c2

2

(
u′(τ)

)2 − V (Au(τ)) +K
(
1 + cos(u(τ))

)
+ F (u(τ))

]
dτ.

(12)
Obviously JP (u) = J(u) for all u ∈ X with ‖u‖L∞(R) ≤ 5

2
π.

Π 2 Π-2 Π 3 Π-3 Π -Π-4 Π 4 Π
u

1

3

4

2

Fig. 1. Graphs of 1 + cos(u) and 1 + cos(u) + 1
KF (u), the on-site potentials in the

definitions of J and JP , respectively. Here K = 1.

To simplify the notation, we denote the monotonised interaction potential
of (10) by Ṽ , that is, Ṽ (x) := |∫ x0 |V ′(ξ)| dξ|. Then (10) implies for all |x| ≥ 3π

V (2x) ≤ Ṽ (2x) ≤ 1
4
· F (x) (13)

and in particular, by Assumption 2.1 (ii), F (x)→∞ for x→ ±∞.
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Lemma 2.4 Let T, α > 0 be given. The solutions of the variational problem

minimise

T∫
0

(
u′(s)

)2
ds, subject to ‖u‖L∞(0,T ) = 1, u(0) = u(T ) = 0

on H1(0, T ) are the piecewise affine function u+(s) = 2
T

min{s, T − s} and its

negative u−(s) := −u+(s). The value of the minimum is ‖u±‖2
L2(0,T ) = 4

T
.

Again, the proof is immediate (see [6]).

2.2 A-priori bounds

We start with an auxiliary statement, which is taken from [4, Section 6.2] (see
also [10]).

Lemma 2.5 Let W ∈ C1(R) be such that W (±π) = 0 and W (ξ) > 0 for

|ξ| < π and set I(u) :=
∫

R

[
(u′(τ))

2
+W (u(τ))

]
dτ . Then the minimum of I

on M−π,π is attained and

min
u∈M−π,π

I(u) = ϑ := 2
∫ π

−π

√
W (ξ) dξ. (14)

Moreover, with the same ϑ,

inf
T>0

inf


T∫
−T

[
(u′(τ))2 +W (u(τ))

]
dτ :

u ∈ H1(−T, T ),

u(−T ) = −π, u(T ) = π

 = ϑ. (15)

Lemma 2.6 (Bounds for JP ) Suppose that Assumption 2.1 is satisfied. Then

(i) For all u ∈ X and JP as defined in (12),

JP (u) ≥
∫

R

[
c2 − c2

1

2

(
u′(τ)

)2
+K

(
1 + cos(u(τ))

)
+

1

2
F (u(τ))

]
dτ.

(16)
(ii) The functional JP is bounded from below on M−π,π ⊂ X, as defined

in (6). Indeed, JP satisfies

b− := 8
√

(c2 − c2
1)K < inf

u∈M−π,π
JP (u) < b+ := 8c

√
K. (17)
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Proof: (i) Since |Au(τ)| ≤ |u(τ + 1)|+ |u(τ)| ≤ 2 max
{
|u(τ + 1)| , |u(τ)|

}
, we

find for every k > 0

{
τ ∈ R : |Au(τ)| > k

}
⊆
{
τ ∈ R : max{|u(τ + 1)| , |u(τ)|} > k

2

}
⊆
{
τ ∈ R : |u(τ)| > k

2

}
∪
{
τ ∈ R : |u(τ + 1)| > k

2

}
.

Therefore, using (13) and the fact that the monotonised interaction potential
Ṽ is monotone on (−∞, 0) and (0,∞),

∫
{τ∈R : |Au(τ)|>6π}

V (Au(τ)) dτ ≤
∫

{τ∈R : |Au(τ)|>6π}

Ṽ (Au(τ)) dτ

≤
∫

{τ∈R : |Au(τ)|>6π}

Ṽ
(
2 max{|u(τ)| , |u(τ + 1)|}

)
dτ

≤
∫

{τ∈R : max{|u(τ+1)|,|u(τ)|}>3π}

1
4
· F

(
max{|u(τ)| , |u(τ + 1)|}

)
dτ

≤ 2
∫

{τ∈R : |u(τ)|>3π}

1
4
· F (u(τ)) dτ ≤ 1

2

∫
R

F (u(τ)) dτ. (18)

Employing c1 from Assumption 2.1, we obtain

∫
{τ∈R : |Au(τ)|≤6π}

V (Au(τ)) dτ ≤
∫

{τ∈R : |Au(τ)|≤6π}

1
2
· c2

1

(
Au(τ)

)2
dτ

≤
∫
R

1
2
· c2

1

(
Au(τ)

)2
dτ.

Thus we obtain with (18) for all u ∈ X

JP (u) ≥
∫
R

[
c2

2

(
u′(τ)

)2 − c2
1

2

(
Au(τ)

)2
+K

(
1 + cos(u(τ))

)
+ F (u(τ))

]
dτ

−
∫

{τ∈R : |Au(τ)|>6π}

V (Au(τ)) dτ

≥
∫

R

[
c2 − c2

1

2

(
u′(τ)

)2
+K

(
1 + cos(u(τ))

)
+

1

2
F (u(τ))

]
dτ.

(ii) Lemma 2.5 can be applied to

I1(u) =
c2 − c2

1

2

∫
R

[(
u′(τ)

)2
+W1(u(τ))

]
dτ,

7



with W1(ξ) := 2K
c2−c21

[
(1 + cos(ξ)) + 1

2K
F (ξ)

]
, so that (16) and (14) show

inf
u∈M−π,π

JP (u) ≥ c2 − c2
1

2
· 2
∣∣∣∣∫ π

−π

√
W1(ξ) dξ

∣∣∣∣
=
√

2 (c2 − c2
1)K

∣∣∣∣∫ π

−π

√
1 + cos(ξ) dξ

∣∣∣∣ = 8
√

(c2 − c2
1)K =: b−.

F does not contribute to the integral because F (x) = 0 for |x| ≤ π.

On the other hand, using V ≥ 0, we can estimate JP for all u ∈ X by

JP (u) ≤ c2

2

∫
R

[
(u′(τ))

2
+

2

c2

(
K(1 + cos(u(τ))) + F (u(τ))

)]
dτ.

Lemma 2.5 can be applied to

I2(u) =
c2

2

∫
R

[(
u′(τ)

)2
+W2(u(τ))

]
dτ,

now with W2(ξ) := 2K
c2

[
(1 + cos(ξ)) + 1

K
F (ξ)

]
, in order to obtain

inf
u∈M−π,π

JP (u) ≤ c2

2
· 2
∣∣∣∣∫ π

−π

√
W2(ξ) dξ

∣∣∣∣ = 8c
√
K =: b+. 2

In the next statement we will use that b+ − b− is small for c� c1. Indeed,

b+ − b− = 8
√
K
(
c−

√
c2 − c2

1

)
= 8
√
K
c2 − (c2 − c2

1)

c+
√
c2 − c2

1

=
8c2

1

√
K

c+
√
c2 − c2

1

. (19)

Lemma 2.7 (L∞ bound for minimisers of JP ) Suppose Assumption 2.1
is satisfied. If uP ∈M−π,π minimises JP on M−π,π then

‖uP‖L∞(R) ≤
3

2
π + δ.

In particular, if c is large enough to ensure δ < π, then ‖uP‖L∞(R) <
5
2
π.

Proof: Define S := {τ ∈ R : |uP (τ)| ≥ 3
2
π}. If |S| = 0 then the statement is

obvious. We thus suppose |S| > 0. Let T1, T2 ∈ R ∪ {±∞} with T1 < T2 be
such that uP (T1) = −π, uP (T2) = π and |uP (τ)| ≤ π for all τ ∈ [T1, T2]; then
in particular F (uP (τ)) = 0 for all τ ∈ [T1, T2]. Then, using (15), it follows
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that

σ :=

T2∫
T1

[
c2 − c2

1

2

(
u′P (τ)

)2
+K

(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ

≥ inf
u∈H1

loc(T1,T2) ∩ C0[T1,T2],

u(T1)=−π, u(T2)=π

T2∫
T1

[
c2 − c2

1

2

(
u′(τ)

)2
+K

(
1 + cos(u(τ))

)
+ 0

]
dτ

≥ b−.

Employing (17), (16), the preceding estimate and [T1, T2] ∩ S = ∅,

b+ ≥ JP (uP )

≥
∫

R

[
c2 − c2

1

2

(
u′P (τ)

)2
+K

(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ

= σ +
∫

R\[T1,T2]

[
c2 − c2

1

2

(
u′P (τ)

)2
+K

(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ

≥ b− +
∫
S

[
c2 − c2

1

2

(
u′P (τ)

)2
+K

(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ.

By definition of F in (10) and of S, (1 + cos(uP (τ)) + 1
2K
F (uP (τ)) ≥ 1

2
for all

τ ∈ S (see Figure 1), therefore

∫
S

[
K
(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ ≥ K

2
|S| .

Lemma 2.4 shows (see Figure 2),

∫
S

(
u′P (τ)

)2
dτ ≥ 2 · |S|

2

‖uP‖L∞(R) − 3
2
π

|S|
2

2

=
4

|S|
(
‖uP‖L∞(R) − 3

2
π
)2
.

CC��

!!!!!!!!!aaaaaaaaa

��XX

s s
zS

1

1 + cos(uP (z)) + 1
2K F (uP (z))

1
2

1
Fig. 2. Illustration of the proof of Lemma 2.7 for the case of connected S.
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This includes the case that S consists of several connected components; indeed,
let S̃ = [T3, T4] be a connected component of S such that |uP (τ)| = ‖uP‖L∞(R)

for some τ ∈ [T3, T4] and apply Lemma 2.4 on S̃; the claim follows from∣∣∣S̃∣∣∣ ≤ |S|.
Combining the last three inequalities, we obtain, using in the third line the
trivial estimate x2 + y2 ≥ 2xy,

b+ − b− ≥
∫
S

[
c2 − c2

1

2

(
u′P (τ)

)2
+K

(
1 + cos (uP (τ))

)
+

1

2
F (uP (τ))

]
dτ

≥ c2 − c2
1

2

4

|S|
(
‖uP‖L∞(R) − 3

2
π
)2

+
K

2
|S|

≥ 2

√√√√2 (c2 − c2
1)

|S|
(
‖uP‖L∞(R) − 3

2
π
)2 ·

√
1
2
K |S|

= 2
√
K (c2 − c2

1)
(
‖uP‖L∞(R) − 3

2
π
)
.

Thus

‖uP‖L∞(R) ≤ 3
2
π +

b+ − b−
2
√
K (c2 − c2

1)
= 3

2
π + δ,

where, employing the expression for b+ − b− from (19),

δ :=
b+ − b−

2
√
K (c2 − c2

1)
=

8c2
1

√
K(

c+
√
c2 − c2

1

)
2
√
K (c2 − c2

1)
=

4c2
1

c2 − c2
1 + c

√
(c2 − c2

1)
,

as defined in (7). 2

2.3 Existence proof

The proof relies on an argument in the spirit of concentration-compactness.
For given parameters T > 1 and η ∈ R, we thus introduce a truncated version
of JP ,

JP,T (u; η) :=

1∫
0

η+T−1+s∫
η−T+s

c2

2

(
u′(τ)

)2
dτ ds−

η+T−1∫
η−T

V
(
Au(τ)

)2
dτ

+

η+T− 1
2∫

η−T+ 1
2

[
K(1 + cos(u(τ))) + F (u(τ))

]
dτ. (20)

A corresponding concentration-compactness statement is given in Lemma A.1
in the Appendix.
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Lemma 2.8 Under the assumptions of Lemma A.1, JP possesses a minimiser
on M−π,π.

Proof: By Lemma 2.6, JP is bounded from below on M−π,π. Let (un)n∈N ⊂
M−π,π be a minimising sequence. Lemma A.1 implies that a subsequence of
(un)n∈N, not relabelled, is tight, or vanishes, or splits.

Splitting cannot occur; indeed, as fn, gn ∈ X and JP (fn) , JP (gn) < ∞, the
analogue statement of Lemma 2.3 (with J replaced by JP ) shows fn (±∞) ∈
{±π} and gn (±∞) ∈ {±π}. Since fn + gn − π ∈ M−π,π, either fn(−∞) =
fn(∞) or gn(−∞) = gn(∞), but not both. Define ũn := gn in the first case
and ũn := fn in the second case. Then (ũn)n∈N ⊂M−π,π, and Lemma A.1 (iii)
implies that, possibly after passing to a subsequence,

lim
n→∞

JP (ũn) < inf
u∈M−π,π

JP (u) = lim
n→∞

JP (un) ,

contradicting the assumption that (un)n∈N is a minimising sequence.

Vanishing cannot occur either; the proof of [7, Lemma 5.1] carries over verba-
tim.

Hence, for fixed ε > 0, it is possible to choose a sequence (ηn)n∈N ⊂ R and
T0 > 0 such that ∣∣∣JP (un)− JP,T0 (un; ηn) ]

∣∣∣ < ε. (21)

We write wn(τ) = un (ηn + τ). The sequence (wn)n∈N is bounded in X be-
cause, by (16), ‖w′n‖L2(R) = ‖u′n‖L2(R) ≤ 2

c2−c21
J (un), and |wn(0)| ≤ 3

2
π + δ by

Lemma 2.7.

It follows that (wn)n∈N contains a subsequence, not relabelled, which converges
weakly to some limit u ∈ X. On [−T0, T0], the convergence is uniform, and
‖u′‖L2(−T0,T0) ≤ lim inf ‖w′n‖L2(−T0,T0). Since V (u), (1 + cos(u)) and F (u) are

C1(R) and therefore Lipschitz continuous for |u| ≤ 3
2
π+ δ, there exists n0 ∈ N

such that for all n > n0∣∣∣(JP (u)− c2

2
‖u′‖L2(R)

)
−
(
JP,T0 (wn)− c2

2
‖u′‖L2(−T0,T0)

)∣∣∣ ≤ ε.

Since this holds also for all T > T0, it follows with help of Lemma 2.3 that
u ∈ M−π,π. Moreover, as T 7→ JP,T (wn; 0) is non-decreasing for each n ∈ N,
we have JP,T (wn; 0) ≤ JP (wn), hence

JP (u) = lim
T→∞

JP,T (u; 0) ≤ lim
T→∞

lim inf
n→∞

JP,T (wn; 0)

≤ lim
T→∞

lim
n→∞

JP (wn) = lim
n→∞

JP (wn) = lim
n→∞

JP (un) .

This means that u is a minimiser of JP on M−π,π. 2

We now come to the proof of Theorem 2.2.
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Proof of Theorem 2.2: The assumptions imply, by Lemma 2.8, that the pe-
nalised functional JP possesses a minimiser u∞ on M−π,π. With v0 and Ψ as
in Lemma 2.3 and ΨP defined analogously to Ψ, it is equivalent to say that
v∞ := u∞ − v0 minimises ΨP on H1(R). As the embedding H1(R) ↪→ L∞(R)
is continuous and ‖u∞‖L∞(R) = ‖v0 + v∞‖L∞(R) <

5
2
π (Lemma 2.7), we have

‖v0 + v‖L∞(R) <
5
2
π for all v in a neighbourhood V ⊂ H1(R) of v∞. Now for

all v ∈ V ,

Ψ(v) = J (v0 + v) = JP (v0 + v) = ΨP (v)

by the remark after (12), so v∞ is minimises Ψ as well as ΨP on V ⊂ H1(R).
In particular, v∞ is a local minimiser of Ψ on H1(R), and thus a critical point
of Ψ. Hence u∞ = v0 + v∞ is, by Lemma 2.3 (iv), a solution of (2) with
boundary conditions (4). 2

3 Homoclinic travelling waves

We now consider (2) with homoclinic boundary conditions, that is,

lim
τ→−∞

u(τ) = lim
τ→+∞

u(τ) = π,

or equivalently, using sin(u+ π) = − sin(u),

c2u′′(z) = V ′(u(z + 1)− u(z))− V ′(u(z)− u(z − 1)) +K sin(u(z)),

lim
τ→−∞

u(τ) = lim
τ→+∞

u(τ) = 0.

 (22)

The assumptions in this section are

c > c0 ≥ 0,

V (x) = 1
2
c2

0 x
2 +W (x), where W (x) = β |x|α , β > 0, α ≥ 3.

}
(23)

At the expense of additional technicalities, the results can be generalised to W
with 0 ≤ αW (x) ≤ xW ′(x). This is essentially the assumption in [5,12] (there
without on-site potential). For details see [6]. Also, it is possible to weaken the
growth assumption (23) so that it holds only for |x| ≤ π

2
. This is explained

in the remark preceding Lemma 3.5. For simplicity, however, we assume here
that (23) is valid for every x ∈ R.

The action functional for (22) is J : H1(R)→ R,

J(u) :=
∫

R

[
c2

2

(
u′(τ)

)2 − V (Au(τ)) +K(1− cos(u(τ)))

]
dτ. (24)

For some results we will need to consider an auxiliary functional. We set

12



f(u) := 1
2

(
max{0, (|u| − π

2
)}
)2

and define

J̃(u) :=
∫

R

[
c2

2

(
u′(τ)

)2 − V (Au(τ)) +K
(
1− cos(u(τ)) + f(u(τ))

)]
dτ.

Obviously J(u) = J̃(u) for all u with ‖u‖L∞(R) ≤ π
2
. Furthermore, f ∈ C1(R),

1 − cos(u) + f(u) ≤ 1
2
u2, and there exists a constant κ > 0, depending only

on α, such that for all u ∈ R

κu2 ≤ 1− cos(u) + 1
α
u sin(u) + f(u)− 1

α
uf ′(u). (25)

Lemma 3.1 Let (23) be satisfied. Then J(u) < ∞ and J̃(u) < ∞ for all
u ∈ H1(R). J and J̃ are continuously differentiable on H1(R), and the Fréchet
derivative of J is

〈J ′(u), ϕ〉 =
∫

R

[
c2 u′(τ)ϕ′(τ)− V ′(Au(τ)) (Aϕ)(τ) +K sin(u(τ))ϕ(τ)

]
dτ.

If u0 ∈ H1(R) is a critical point of J then u0 ∈ C2(R), and u0 is a solution
of (22).

Again, the proof is straightforward (see [6]).

Lemma 3.2 (Mountain pass geometry of J and J̃) Let (23) hold. Then
there exist r > 0 and e ∈ H1(R) with ‖e‖H1(R) > r such that

inf
‖u‖H1(R)=r

J(u) > J(0) ≥ J(e).

The same holds for J̃ .

Proof: Let ε > 0 such that 0 < 1
2

(c2 − c2
0 − 2ε) and choose r ∈

(
0, π

2

)
small

enough such that |W (x)| ≤ εx2 for all x ≤ r. Using (8) and the estimate
1−cos(u) ≥ 1

4
u2 which holds for |u| < π

2
, we obtain for every u with ‖u‖L∞(R) ≤

‖u‖H1(R) ≤ r < π
2

J(u) ≥
∫

R

[
c2

2

(
u′(τ)

)2 − c2
0

2
|Au(τ)|2 − ε |Au(τ)|2 +K

(
1− cos(u(τ))

)]
dτ

≥ 1
2

(
c2 − c2

0 − 2ε
)
‖u′‖2

L2(R) + 1
4
K ‖u‖2

L2(R)

≥ min
{

1
2

(
c2 − c2

0 − 2ε
)
, 1

4
K
}
· ‖u‖2

H1(R) ,

hence for ‖u‖2
H1(R) = r2

J(u) ≥ r2 ·min
{

1
2
(c2 − c2

0 − 2ε), 1
4
K
}

=: m > 0. (26)
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To find e ∈ H1(R) with ‖e‖ > r and J(e) ≤ J(0), fix an arbitrary u0 ∈ H1(R).
Then for all λ ≥ 0, due to 1− cos(u) ≤ 1

2
u2,

J (λu0) ≤ 1
2
c2λ2 ‖u′0‖2

L2(R) − βλα ‖Au0‖αLα(R) + 1
2
Kλ2 ‖u0‖2

L2(R) ,

hence, due to α > 2 and β > 0 and the special form of W ,

lim
λ→∞

J (λu0) = −∞.

This establishes the claim for J . The proof for J̃ is almost identical. 2

Lemma 3.3 (Palais-Smale sequence) Let (23) hold. There exists a Palais-
Smale sequence, that is, a sequence (un)n∈N ⊂ H1(R) such that for n→∞

J (un)→ d and ‖J ′(un)‖L(H1(R),R) → 0,

for some
d ∈ [m,M ] (27)

with constants m,M ∈ R that can be determined explicitly. The same holds
for J̃ , with the same constants M , m.

Proof: The existence of a Palais-Smale sequence follows from the Mountain
Pass Theorem [13, Theorem 1.15], which can be applied as a consequence of
Lemma 3.2. The lower bound m can be taken as in (26). For the upper bound
M we can fix some function u0 ∈ H1(R) and set M := maxλ∈(0,∞) J (λ0u0).

The proof for J̃ is again almost identical. 2

Lemma 3.4 (Boundedness of Palais-Smale sequences) Suppose that as-
sumption (23) holds and suppose further that there exists ε0 > 0 such that the
parameters satisfy √√√√ 2M

min
{
α−2
2α

(c2 − c2
0) , κK

} < π

2
− ε0, (28)

with M as in Lemma 3.3 and κ as in (25). Then the following holds. A
Palais-Smale sequence (un)n∈N for J with the properties stated in Lemma 3.3
is bounded in H1(R), and

‖un‖L∞(R) ≤
π

2
− ε0.

for all n ∈ N large enough. The same holds for J̃ .

Proof: We consider J̃ first. Let (un)n∈N be a sequence with the properties
stated in Lemma 3.3. Choose δ > 0 and let n0 ∈ N be large enough such that

J̃ (un) < M + δ and
1

α

∥∥∥〈J̃ ′ (un) , un〉
∥∥∥ ≤ δ ‖un‖H1(R)
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for all n ≥ n0.

Then for all n > n0, estimating the first summand in the second line with (8)
and (23), the second summand with W (x) ≤ 1

α
xW ′(x), and for the third

summand with (25) (see [12,11] for a similar argument),

(M + δ) + δ ‖un‖H1(R) ≥ J̃ (un)− 1

α
〈J̃ ′ (un) , un〉

=
(

1

2
− 1

α

) (
c2 ‖u′n‖2

L2(R) − c2
0 ‖Aun‖2

L2(R)

)
+
∫

R

[
−W (Aun) + 1

α
AunW

′ (Aun)
]

dτ

+K
∫

R

[
1− cos(u)− 1

α
u sin(u) + f(u)− 1

α
uf ′(u)

]
dτ

≥ α− 2

2α

(
c2 − c2

0

)
‖u′n‖2

L2(R) + 0 + κK ‖un‖2
L2(R)

≥ min
{
α−2
2α

(
c2 − c2

0

)
, κK

}
· ‖un‖2

H1(R) ,

thus

0 ≤ (M + δ) + δ ‖un‖H1(R) −min
{
α−2
2α

(
c2 − c2

0

)
, κK

}
‖un‖2

H1(R) .

This implies by direct calculation

‖un‖H1(R) ≤
1

2 ·min
{
α−2
2α

(c2 − c2
0) , κK

} ·
·
(
δ +

√
δ2 + 4(M + δ) min

{
α−2
2α

(c2 − c2
0) , κK

})
.

Therefore, since
√
δ2 + ξ2 ≤ |δ|+ |ξ|,

‖un‖H1(R) ≤
√√√√ M + δ

min
{
α−2
2α

(c2 − c2
0) , κK

} + 2 · δ

2 min
{
α−2
2α

(c2 − c2
0) , κK

} .
By assumption (28), the right-hand side is bounded by π

2
− ε0 for δ small

enough. This shows for all n ≥ n0

‖un‖L∞(R) ≤ ‖un‖H1(R) ≤ π
2
− ε0,

as claimed. The statement for J is an immediate consequence of the statement
for J̃ since J(u) = J̃(u) for all u ∈ H1(R) with ‖u‖L∞(R) <

π
2
. 2

We remark that the parameters (c, c0, α, β,K) can be chosen such that there
exists an ε0 > 0 with the property that (28) holds. In other words, the as-
sumptions of Lemma 3.4 can be satisfied.

Lemma 3.4 shows that the growth of the interaction potential at infinity as
required in (23) is not essential to the argument. Namely, a critical point
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u ∈ B :=
{
u ∈ H1(R) : ‖u‖H1(R) <

π
2

}
of J is also a critical point of any

functional that agrees with J on B. Now if V is an interaction potential
satisfying (23) for all x ∈ R and if V1 is a potential with V1(x) = V (x) for
|x| ≤ π

2
only then, by (8), V1(Au(τ)) = V (Au(τ)) for all u ∈ B and all τ ∈ R;

thus the action functionals with V1 and V as interaction potentials agree on B.

Lemma 3.5 Under the assumptions of Lemma 3.4, a Palais-Smale sequence
(un)n∈N for J with the properties of Lemma 3.3 does not converge to zero in
measure.

Proof: By Lemma 3.4, (un)n∈N is bounded in H1(R), hence (Aun)n∈N is also
bounded in H1(R) and in L∞(R); more precisely, by (8),

max
{
‖Aun‖L2(R) , ‖Aun‖L∞(R)

}
≤ sup

n∈N
‖un‖H1(R) ≤ C1 :=

π

2
− ε0.

By assumption, 1
2
W ′(x)x−W (x) =

(
α
2
− 1

)
β |x|α, so x−2

(
1
2
W ′(x)x−W (x)

)
→ 0 for x→ 0. Likewise, u−2

(
1− cos(u)− 1

2
u sin(u)

)
→ 0. Hence there exists

C2 > 0 such that

sup
|x|≤C1

1
2
W ′(x)x−W (x)

x2
≤ C2 and sup

|u|≤C1

1− cos(u)− 1
2
u sin(u)

u2
≤ C2.

Given ε > 0, there exists, for the same reason (see [6,12]), δ > 0 such that for
all |x| < δ∣∣∣1

2
W ′(x)x−W (x)

∣∣∣ ≤ εx2 and
∣∣∣1− cos(x)− 1

2
x sin(x)

∣∣∣ ≤ εx2.

Then, due to 1
2
W ′(x)x−W (x) =

(
α
2
− 1

)
β |x|α ≥ 0,

0 ≤
∫

R

[
1
2
W ′ (Aun)Aun −W (Aun)

]
dτ

≤
∣∣∣{τ ∈ R : |Aun(τ)| > δ}

∣∣∣ · C2 ‖Aun‖2
L∞(R) + ε ‖Aun‖2

L2(R)

≤ C2
1

(∣∣∣{τ ∈ R : |Aun(τ)| > δ}
∣∣∣ · C2 + ε

)
and, due to ‖un‖L∞(R) <

π
2
,

0 ≤
∫

R

[
1− cos(un)− 1

2
un sin (un)

]
dτ

≤
∣∣∣{τ ∈ R : |un(τ)| > δ}

∣∣∣ · C2 ‖un‖2
L∞(R) + ε ‖un‖2

L2(R)

≤ C2
1

(∣∣∣{τ ∈ R : |un(τ)| > δ}
∣∣∣ · C2 + ε

)
.

For all n large enough,
∣∣∣〈J ′ (un) , un〉

∣∣∣ < m
4

and J (un)− 3
4
m > 0. Therefore for

ε small enough, we find with Lemma 3.1 (using the preceding estimates and
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observing that all quadratic terms cancel)

0 <
m

2
≤ J (un)− 1

2
〈J ′ (un) , un〉

=
∫

R

[
1
2
W ′(Aun)Aun −W (Aun)

]
dτ +K

∫
R

[
1− cos(un)− 1

2
un sin(un)

]
dτ

≤ C2
1

(∣∣∣{τ ∈ R : |Aun(τ)| > δ}
∣∣∣ · C2 + ε

)
+KC2

1

(∣∣∣{τ ∈ R : |un(τ)| > δ}
∣∣∣ · C2 + ε

)
=
(∣∣∣{τ ∈ R : |Aun(τ)| > δ}

∣∣∣+ ∣∣∣{τ ∈ R : |un(τ)| > δ}
∣∣∣)C2

1C2K

+ (1 +K)εC2
1 .

If un converges to zero in measure, then Aun → 0 in measure as well (see the
proof of Lemma 2.6). In this case, the right-hand side can be made arbitrarily
small. Butm from (26) is a positive constant, so convergence to zero in measure
would lead to a contradiction. 2

Theorem 3.6 Let (23) be satisfied and suppose the parameters are such that
there exists ε0 > 0 such that the parameters satisfy (28), that is,√√√√ 2M

min
{
α−2
2α

(c2 − c2
0) , κK

} < π
2
− ε0,

with M as in Lemma 3.3 and κ as in (25). Then (22) possesses a nonconstant
solution u ∈ C2(R).

Proof: Lemma 3.3 provides a Palais-Smale sequence which is bounded by
Lemma 3.4 and does not converge to zero in measure by Lemma 3.5. Hence,
by the Lieb-Brezis Lemma [8, Lemma 6], there exist a subsequence of (un)n∈N
(not relabelled) and a sequence (ηn)n∈N ⊂ R such that weakly in H1(R)

wn := un ( · + ηn) ⇀ u 6= 0.

Let ϕ ∈ C∞0 (R) be a test function. Weak convergence wn ⇀ u in H1(R)
implies weak convergence wn ⇀ u in L2(R), therefore∫

R
c2w′n(τ)ϕ′(τ) dτ −→

∫
R
c2 u′(τ)ϕ′(τ) dτ.

The convergence Awn → Au is strong in C0(supp(Aϕ)), and as V ′ is uniformly

continuous on
[
−π

2
, π

2

]
(the maximal range of wn by Lemma 3.4), so the second

term of J converges as well,

lim
n→∞

∫
R
V ′ (Awn(τ))Aϕ(τ) dτ = lim

n→∞

∫
supp(Aϕ)

V ′ (Awn(τ)) Aϕ(τ) dτ

=
∫

supp(Aϕ)
V ′(Au(τ)) Aϕ(τ) dτ =

∫
R
V ′(Au(τ)) Aϕ(τ) dτ.
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The argument for the term from the on-site potential is similar and yields

lim
n→∞

∫
R

sin (wn(τ)) ϕ(τ) dτ =
∫

R
sin(u(τ)) ϕ(τ) dτ.

Altogether for all ϕ ∈ C∞0 (R), 〈J ′ (wn) , ϕ〉 → 〈J ′(u), ϕ〉 for n→∞, so

∣∣∣〈J ′(u), ϕ〉
∣∣∣ = lim

n→∞

∣∣∣〈J ′(wn), ϕ〉
∣∣∣ = lim

n→∞

∣∣∣〈J ′ (un( ·+ηn)) , ϕ〉
∣∣∣

= lim
n→∞

∣∣∣〈J ′ (un) , ϕ ( · −ηn)〉
∣∣∣ ≤ lim

n→∞
‖J ′(un)‖L(H1(R),R) ‖ϕ‖H1(R) = 0,

thus 〈J ′(u), ϕ〉 = 0 for all ϕ ∈ C∞0 (R). By density, this shows that u is a
critical point of J . The theorem follows now directly from Lemma 3.1. 2

4 Periodic travelling waves

This section considers travelling wave solutions for a system as in (1) with a
periodicity condition. Specifically, we study

q̈k(t) = V ′ (qk+1(t)− qk(t))− V ′ (qk(t)− qk−1(t)) +K sin (qk(t)) ,

qk(t) = qk+N(t), k ∈ Z,

for some fixed N ∈ N. Inserting the travelling wave ansatz qk(t) = u(ct + k)
and setting T := N

c
, we obtain

c2u′′(τ) = V ′ (u(τ + 1)− u(τ))− V ′ (u(τ)− u(τ − 1)) +K sin(u(τ)),

u(τ) = u(τ + T ) for every τ ∈ R.


(29)

Assumption 4.1 Let c > c0 ≥ 0 and T > 3. Suppose further V (x) = 1
2
c2

0x
2 +

W (x), where W ∈ C1(R) is even, W 6≡ 0 and 0 ≤ αW (x) ≤ xW ′(x) for all
x ∈ R and some α > 2.

The following existence result can be stated for periodic solutions.

Theorem 4.2 Let Assumption 4.1 be satisfied and suppose that d < 2KT
for d as defined in (32) below. Then (29) possesses a nonconstant periodic
solution u ∈ H1

per(0, T ) with period T and J(u) = d.

The solution is constructed as critical point of J : H1
per(0, T )→ R,

J(u) :=
∫ T

0

[
c2

2

(
u′(τ)

)2 − V (Au(τ)) +K
(
1− cos(u(τ))

)]
dτ. (30)
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Similarly to Lemma 3.1 and Lemma 3.2, it is shown that J is continuously
differentiable, that its Euler-Lagrange equation is indeed given by (29), and
that J possesses the mountain pass geometry. The proof of Theorem 4.2 turns
out to be much easier than the proof of Theorem 3.6 because the present
functional satisfies a Palais-Smale condition.

Lemma 4.3 Under the assumptions of Theorem 4.2, every Palais-Smale se-
quence for J , that is, every sequence (un)n∈N ⊂ H1

per(0, T ) with

J (un)→ d ∈ R and ‖J ′ (un)‖L(H1
per(0,T ),R) → 0,

contains a strongly converging subsequence.

Proof: The proof of Lemma 3.4 shows with a few obvious modifications (see [6])
that (un)n∈N is bounded. Since H1

per(0, T ) is reflexive a weakly converging sub-
sequence of (un)n∈N exists, not relabelled, such that un ⇀ u ∈ H1

per(0, T ). By
standard embedding theorems for Sobolev spaces, this convergence is strong
in L2(0, T ) and in C0[0, T ].

Since ‖J ′ (un)‖L(H1
per(0,T ),R) → 0 by assumption, we have 〈J ′ (un) , u〉 → 0 for

n → ∞ and, as (un)n∈N is bounded in H1
per(0, T ), also 〈J ′ (un) , un〉 → 0.

The weak convergence un ⇀ u implies 〈J ′(u), un − u〉 → 0 because J ′(u) is a
continuous linear functional on H1

per(0, T ). Thus altogether

〈
J ′ (un)− J ′(u), un − u

〉
→ 0. (31)

As V ∈ C1(R), V is Lipschitz-continuous on compact intervals. Therefore,

0 ≤
∣∣∣∣∣
∫ T

0

[
V (Aun)− V (Au)

] [
Aun − Au

]
dτ

∣∣∣∣∣
≤ C

∫ T

0

[
Aun(τ)− Au(τ)

]2
dτ ≤ 2C ‖un − u‖2

L2(0,T ) −→ 0,

where C > 0 is a constant. Similarly, the strong convergence un → u in
L2(0, T ) implies

∫ T
0

[
sin (un(τ))− sin(u(τ))

] [
un(τ)− u(τ)

]
dτ → 0. Now

〈
J ′ (un)− J ′(u), un − u

〉
=
c2

2

∫ T

0

[
u′n − u′

]2
dτ −

∫ T

0

[
V (Aun)− V (Au)

]
·
[
Aun − Au

]
dτ +K

∫ T

0

[
sin (un(τ))− sin(u(τ))

] [
un(τ)− u(τ)

]
dτ,

and all terms on the right-hand side except
∫ T

0 [u′n − u′]2 dτ have been shown
to converge to 0 for n→∞. We conclude then with (31) that

‖u′n − u′‖2
L2(0,T ) =

∫ T

0

[
u′n − u′

]2
dτ −→ 0,
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i.e., u′n → u′ in L2(0, T ). This shows strong convergence in H1
per(0, T ). 2

Proof of Theorem 4.2: The existence of a critical point u0 ∈ H1
per(0, T ) of J

follows from the Mountain Pass Theorem [13, Theorem 1.17], which is applica-
ble because J possesses the mountain pass geometry (cf. the remark after (30))
and satisfies a Palais-Smale condition (Lemma 4.3). According to this theorem,
the critical value of J is given by

J(u0) = d := inf
γ∈Γ

max
s∈[0,1]

J(γ(s)), (32)

where Γ := {γ ∈ C0([0, 1], H1(0, T )) : γ(0) = 0, γ(1) = e}, with e as in
Lemma 3.2. The condition on d ensures that this solution is not constant.
Indeed, a constant solution u to (29) satisfies necessarily sin(u) ≡ 0, hence
u ≡ kπ for some k ∈ Z. If k is even then J(kπ) = 0 but d > 0. If k is odd
then J(kπ) = 2KT but d < 2KT by assumption. 2
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A Concentration-compactness

The following lemma is in the spirit of Lions’ well-known concentration-com-
pactness principle [9]. However, as the constraint u(∞)−u(−∞) = 2π cannot
be varied continuously, there is no meaningful analogue to the subadditivity
inequality as required in the classic setting. Accordingly, the third alternative
(splitting) refers to splitting the value of the functional, not of the constraint.
For a discussion see [6,7].

Lemma A.1 (Concentration-compactness) Let Assumption 2.1 be satis-
fied and (un)n∈N ⊂ M−π,π be a minimising sequence for JP as in (12) in
M−π,π. Suppose c is large enough to ensure δ < π for δ as defined in (7).

Then a subsequence exists, still denoted by (un)n∈N, which satisfies one of the
following three alternatives:
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(i) Tightness: There is a sequence (ηn)n∈N ⊂ R such that for all small enough
ε > 0 there exists T > 0 such that, with JP,T from (20),

|JP (un)− JP,T (un; ηn)| < ε for every n ∈ N.

(ii) Vanishing: For all T > 0,

lim
n→∞

sup
η∈R

JP,T (un; η) = 0.

(iii) Splitting: There exists ε1 > 0 such that for every 0 < ε < ε1, there are
fn, gn ∈ X such that

|un − (fn + gn − π)| ≤ ε

|JP (un)− (JP (fn) + JP (gn))| ≤ ε, lim
n→∞

dist (supp (f ′n) , supp (g′n)) =∞,
lim
n→∞

JP (fn) = α, lim
n→∞

JP (gn) = β,

for some 0 < α, β < inf JP |M−π,π . (π is needed in the first inequality to
ensure JP (fn) <∞ and JP (gn) <∞.)

The proof is almost verbatim the same as the one given in [7] for a similar
statement. We thus omit the proof and refer to [6,7] for the details. We remark
that the statement in Lemma A.1 is weaker than that of the concentration-
compactness statement in [7]; indeed, here the statement holds only for min-
imising sequences, while the statement in [7] requires only a uniform bound
for (J (un))n∈N.
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