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State Space Formulas for a Solution of the

Suboptimal Nehari Problem on the Unit Disc

Ruth F. Curtain and Mark R. Opmeer

Integral Equations and Operator Theory 64 (2009) no 1, pp 35-59

Abstract

We give state space formulas for a (“central”) solution of the subop-
timal Nehari problem for functions defined on the unit disc and taking
values in the space of bounded operators in separable Hilbert spaces.
Instead of assuming exponential stability, we assume a weaker stability
concept (the combination of input-, output- and input-output stability),
which allows us to solve the problem for general H-infinity functions.

1 Introduction

The Nehari problem on the unit disc can be formulated as follows. Given (sep-
arable) Hilbert spaces U and Y and the coefficients Gn ∈ L(U, Y ) of the power
series

∞∑
n=1

Gnz
n, (1)

find coefficients Gn with n ≤ 0 such that the Laurent series

∞∑
n=−∞

Gnz
n,

defines a L∞(T;L(U, Y )) function on the unit circle. It is well-known that the
Hankel operator H : l2(N;U)→ l2(N;Y ) formed from the problem data as

G1 G2 G3 . . .
G2 G3

G3

...


plays a crucial role: the problem is solvable if and only if H is a bounded
operator and the norm of H equals the infimum of the L∞ norms of all the
Laurent series solutions. In the scalar case this is due to Nehari [13] and in the

1



Hilbert space case it is due to Page [17] (see also Nikolskii [14] and Peller [18]
for treatments in book form and further references).

The suboptimal Nehari problem is: for a given σ > ‖H‖, parameterize all
solutions with L∞ norm smaller than or equal to σ. This problem was solved
in the scalar case by Adamjan, Arov and Krein [1, 2] and in the Hilbert space
case by Kheifets [12] (see also Peller [18]).

The suboptimal Nehari problem has many applications in control theory,
e.g. the problem of designing robustly stabilizing controllers (see e.g. Curtain
and Zwart [8]). For such applications the above mentioned abstract existence
and parametrization results are not enough. More specific information about
(at least) one of the solutions is needed in the form of so-called state space
formulas, which we explain below.

In the applications to control theory that we have in mind the power series
(1) defines a function in the Hardy space H∞(D;L(U, Y )) of the unit disc. This
is often called input-output stability. Moreover, there is a realization in terms
of operators A ∈ L(X), B ∈ L(U,X) and C ∈ L(X,Y ), where the Hilbert space
X is called the state space, and Gn = CAn+1B, n > 0. Whenever the Hankel
operator is bounded, there is always a ‘trivial’ state space realization of (1)
called the shift realization with X = l2(N;Y ) and

(Ax)n = xn+1, Bu = (Gnu)n∈N, Cx = x1.

In fact, there are infinitely many state space realizations. However, in control
applications the state space parameters A, B and C are given and they have
physical significance. The to be determined operators Gn with n ≤ 0 should
also be given in state space form, since these state space parameters Ã, B̃ and
C̃ are needed for implementation of the controller. Consequently, in this paper
we seek expressions for the to be determined operators Ã ∈ L(X), B̃ ∈ L(U,X)
and C̃ ∈ L(X,Y ) in terms of A,B,C such that Gn = C̃Ã−n−1B̃ for n < 0. This
is what we mean by a state space solution to the suboptimal Nehari problem.

Since the state space solutions given in Section 7 involve the expressions

LB =
∞∑
k=0

A∗kB∗BAk, LC =
∞∑
k=0

AkCC∗A∗k, (2)

we require that both of these expressions be in L(X). This is satisfied if and
only if the realization is input and output stable (see Section 2). A stronger
sufficient condition is that A is exponentially stable, i.e., its spectral radius is
strictly less than one. Our three basic assumptions of input stability, output sta-
bility and input-output stability are much weaker than the exponential stability
assumption.

It is interesting to note that our state space formulas applied to the specific
case of the shift realization give an explicit formula for Gn with n ≤ 0 in terms
of the Hankel operator H, the shift τ and the first element e1 of the standard
basis of l2(N):

Gnu =
(
−HH∗

[
τ∗TτX

−1
]−n+1

XHe1u
)

1
,
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with
X = (σ2 −HH∗)−1,

the inverse of the square of the defect operator of H and

Tτ = (σ2 − τHH∗τ∗)−1,

the inverse of the square of the defect operator of H∗τ∗. Since the Hankel
operator is bounded, the condition LB , LC ∈ L(X) is automatically satisfied
for the shift realization. So in the light of the known results on the Nehari
problem the condition LB , LC ∈ L(X) is a natural one. Note also that the
above formulas in terms of the Hankel operator make perfect sense even if the
power series is not in the Hardy space H∞. Although our proof breaks down in
this case, we conjecture that the formulas remain valid.

We now compare our results with existing results in the literature on state
space formulas for solutions of the suboptimal Nehari problem. There are many
results in the half-plane case under the assumption of exponential stability:
e.g. Curtain and Zwart [8], Glover et al. [10], Ran [19], Curtain and Ran [7],
Curtain and Zwart [3], Curtain and Ichikawa [4]. We generalized these results for
systems with realizations that are input stable, output stable and input-output
stable in [5], [6, Section 6]. As already mentioned, not every H∞ function has
an exponentially stable realization, but it does always possess an input stable,
output stable and input-output stable realization. The best existing result for
the disc case is by Foias et al in [9, Section VI.8] where they assume exponential
stability of the state space realization. Their approach uses commutant lifting
results which is very different from our approach and unfortunately the formulas
are given in a different form. (Their central solution does agree with ours). In
contrast, we use the J-spectral factorization approach that we used in the half-
plane case [5], [6, Section 6] adapted to the case of the disc. In obtaining the
formulas for the J-spectral factorization we were aided by the exposition for the
case of rational functions in Ionescu et al [11, Section 8] (in spite of the typo in
(8.94) there: R̃ should read R̂).

Our paper is arranged as follows. We begin in Section 2 with some back-
ground on infinite-dimensional discrete-time state space systems and in Section
3 we introduce the special Riccati equations that lie behind the formulas for
the solution to the suboptimal Nehari problem. In Section 4 we introduce and
solve the associated J-spectral factorization problem. For notational simplicity
in the proofs we assume that σ = 1. The inverse of the solution to the J-spectral
factorization problem found in Section 4 is analyzed in Section 5. These results
are then used in Section 6 to obtain an explicit state space solution to the sub-
optimal Nehari problem for the case σ = 1. Finally, in Section 7 the solution to
the general case (where σ may not equal one) is derived.

In the sequel we shall use the following notation

G(z) =
∞∑
n=1

Gnz
n, Z(z) =

0∑
n=−∞

Gn
1
zn
, K(z) =

0∑
n=−∞

Gnz
n.
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2 Transfer functions, characteristic functions and
stability

We recall some basic facts on infinite-dimensional discrete-time state space sys-
tems (a more comprehensive treatment can be found in Opmeer [16]).

For the state space system Σ(A,B,C,D) defined by a bounded operator[
A B
C D

]
∈ L

([
X
U

]
,

[
X
Y

])
with U , X, Y separable Hilbert spaces, we define the transfer function

G(z) = D +
∞∑
i=0

CAiBzi+1.

The system is called input-output stable if G is analytic and uniformly bounded
on the unit disc, i.e. G ∈ H∞(D,L(U, Y )). The Hankel operator of the system
has the infinite matrix representation

CB CAB CA2B . . .
CAB CA2B CA3B . . .
CA2B CA3B CA4B . . .

...
...

...
. . .

 .
Note that all of this is consistent with what was mentioned in the introduction
(where D = 0).

The characteristic function of the state space system is G(z) := Cz(I −
zA)−1B +D, which for z 6= 0 may also be written as C

(
1
z −A

)−1
B +D. The

characteristic function and the transfer function of a state space system are equal
for |z| < 1/r(A), where r(A) is the spectral radius of the operator A, but they
might have different values at other points (see [8, Example 4.3.8] or [21]). If one
assumes exponential stability (also called power stability), i.e. r(A) < 1, then
G = G on the closed unit disc and the difference is insignificant for the Nehari
problem. In this article we do not assume exponential stability and therefore
we do have to be careful about this difference. The main advantage of the
characteristic function is that it lends itself better for algebraic computations,
but it is the transfer function of the system that we are in fact interested in.

At several points in this article we will need to find a state space realization
of the inverse of a characteristic function given a realization of that function
itself. The following simple lemma will be used for that purpose.

Lemma 2.1. The characteristic function of the state space system Σ(A,B,C,D)
is invertible if and only if D is invertible. In this case it is the characteristic
function of the state space system Σ(A−BD−1C,BD−1,−D−1C,D−1).
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Proof. By multiplying out we obtain[
C

(
1
z
I −A

)−1

B +D

]

×

[
−D−1C

(
1
z
I −A+BD−1C

)−1

BD−1 +D−1

]

= I + C

(
1
z
I −A

)−1

×
[(

1
z
I −A+BD−1C

)
−
(

1
z
I −A

)
−BD−1C

]
×
(

1
z
I −A+BD−1C

)−1

BD−1

= I.

That the product in the reverse order is also the identity follows similarly.

The following stability concept plays an important role in this article. Here
H2(D, Y ) is the usual Hardy space.

Definition 2.2. A state space system is called output stable if, with

C(z) :=
∞∑
i=0

CAizi,

for every x ∈ X we have C(·)x ∈ H2(D, Y ).

Note that the transfer function of an output stable system, being equal to
D + zC(z)B, is analytic in the open unit disc.

Output stability is equivalent to the observation Lyapunov equation

A∗LA− L+ C∗C = 0 (3)

having a nonnegative, selfadjoint solution. The observability gramian LC is the
smallest nonnegative, selfadjoint solution of the observation Lyapunov equation.
An explicit formula for the observability gramian is given in (2).

A state space system is input stable if the dual system Σ(A∗, C∗, B∗, D∗) is
output stable. The controllability gramian LB of the system is the observability
gramian of this dual system. It is is the smallest nonnegative, selfadjoint solution
of the control Lyapunov equation

ALA∗ − L+BB∗ = 0.

The transfer function of an input stable system is analytic in the open unit
disc, just as the transfer function of an output stable system is, as we saw above.

The following key result was first established, in a different context, in Weiss
and Weiss [20] for the continuous-time case. See also Oostveen [15, Lemma
4.2.6]. The dashes indicate unimportant entries.
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Lemma 2.3. Let LC be the observability gramian of the output stable and input-
output stable system Σ(A,B,C,−). Then Σ(A,−, B∗LCA,−) is output stable.

Proof. Since the system is input-output stable we have G ∈ H∞(D,L(U, Y ))
and since it is output stable we have Cx ∈ H2(D, Y ) for all x ∈ X. It follows
that G∗Cx ∈ L2(T, U) for all x ∈ X with T the unit circle. From this it follows
that the analytic part of G∗Cx is in H2(D, U). We calculate for z ∈ T (so that
z̄ = 1/z):

G(z)∗C(z) =

( ∞∑
k=0

B∗A∗kC∗z−k−1

)( ∞∑
m=0

CAmzm

)
.

It follows that the analytic part is:

∞∑
k=0

∞∑
m=k+1

B∗A∗kC∗CAmzm−k−1.

Substituting j = m− k − 1 we obtain for this analytic part

∞∑
j=0

∞∑
k=0

B∗A∗kC∗CAkAj+1zj ,

and using that

LC =
∞∑
k=0

A∗kC∗CAk,

we can rewrite this as
∞∑
j=0

B∗LCAA
jzj .

It follows that the analytic part of G∗C equals the ‘C’ function of the system
Σ(A,−, B∗LCA,−) defined in Definition 2.2. It follows from this definition and
the above that this system is output stable.

Our stability assumption on the state space realization Σ(A,B,C,D) of G
is that it is input stable, output stable and input-output stable.

This assumption is implied by and is strictly weaker than exponential stabil-
ity. Any function in H∞(D,L(U, Y )) has a realization that satisfies our stability
assumption (for example the shift realization mentioned in the introduction).

3 Algebraic Riccati equations

In this section we introduce two algebraic Riccati equations that play a key role
in the solution of the suboptimal Nehari problem.

We first recall some general facts about algebraic Riccati equations.
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Definition 3.1. The control algebraic Riccati equation of a system Σ(A,B,C,D)
is the equation

A∗QA−Q+ C∗C = F ∗SF,

where
S := I +D∗D +B∗QB, F := −S−1(B∗QA+D∗C).

The closed-loop system corresponding to a nonnegative selfadjoint solution Q is A+BF BS−1/2

F S−1/2

C +DF DS−1/2

 . (4)

The filter algebraic Riccati equation of a system Σ(A,B,C,D) is the equation

APA∗ − P +BB∗ = LRL∗,

where
R := I +DD∗ + CPC∗, L := −(APC∗ +BD∗)R−1.

The following theorem can be proven as was done for the corresponding
continuous-time result in [6] (see [16, Proposition 6.34, Corollary 6.40]).

Lemma 3.2. If the control Riccati equation of Σ(A,B,C,D) has a nonnegative,
selfadjoint solution Q, then the closed-loop system (4) is output stable and input-
output stable. Moreover, the H∞ norm of its transfer function is bounded from
above by one. If the filter algebraic Riccati equation of Σ(A,B,C,D) also has
a nonnegative, selfadjoint solution, then the afore-mentioned closed-loop system
is also input stable.

Standing hypothesis From here on, until section 7, we assume that G ∈
H∞(D,L(U, Y )) is such that its Hankel operator has norm strictly smaller than
one and G(0) = 0. We take σ = 1 and fix an input stable, output stable and
input-output stable realization Σ(A,B,C, 0) of G.

The spectral radius of the product LBLC of the controllabilty and observ-
ability gramians equals the square of the norm of the Hankel operator HG (see
[16, Lemma 3.1.8]).

Since we take σ = 1 > ‖HG‖ it follows that I−LBLC has a bounded inverse
and that, with

N : = (I − LBLC)−1, (5)
W : = NLB , (6)
X : = LCN, (7)

we have W = W ∗ ≥ 0, X = X∗ ≥ 0. Some nontrivial algebraic manipulations
show that W and X satisfy the algebraic Riccati equations given below. We
first define the following operators

TX := (I +B∗XB)1/2, TW := (I + CWC∗)1/2. (8)
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Lemma 3.3. The nonnegative selfadjoint operator X defined by (7) is a solution
of the control algebraic Riccati equation of the system[

A B

T−1
W CN 0

]
, (9)

A∗XA−X +N∗CT−2
W CN = A∗XBT−2

X B∗XA.

The nonnegative selfadjoint operator W defined by (6) is a solution of the filter
algebraic Riccati equation of the system[

A NBT−1
X

C 0

]
, (10)

AWA∗ −W +NBT−2
X B∗N∗ = AWC∗T−2

W CWA∗. (11)

Proof. We only give a proof the case of the system (10) since that for the system
(9) is very similar. We first note that the following identities hold:

I +BB∗X = (I −ALBA∗LC) (I − LBLC)−1, (12)

I + C∗CW = (I −A∗LCALB) (I − LCLB)−1. (13)

We will prove only (13) since the proof for (12) is similar. Using the definition
(6) of W and the observation Lyapunov equation (3) we have

I + C∗CW = I + (LC −A∗LCA)LB(I − LCLB)−1.

This can be rewritten as

(I − LCLB + LCLB −A∗LCALB) (I − LCLB)−1,

which simplifies to the right-hand side of (13).
Our goal is to show that (11) holds. We first note that by the definition (5)

of N we have

NB(I +B∗XB)−1B∗N∗ = (I − LBLC)−1(I +BB∗X)−1BB∗(I − LCLB)−1.

Next we use the control Lyapunov equation to rewrite this as

(I − LBLC)−1(I +BB∗X)−1 (LB −ALBA∗) (I − LCLB)−1,

which by (12) in turn equals

(I −ALBA∗LC)−1 (LB −ALBA∗) (I − LCLB)−1.

Rewriting this first as

(I −ALBA∗LC)−1 ([I −ALBA∗LC ]LB −ALBA∗[I − LCLB ]) (I − LCLB)−1

8



and then simplifying this via

LB(I − LCLB)−1 − (I −ALBA∗LC)−1
ALBA

∗

to
LB(I − LCLB)−1 −ALB (I −A∗LCALB)−1

A∗

and using the definition (6) of W gives

W −AW (I − LCLB)(I −A∗LCALB)−1A∗.

We now use (13) and obtain for the above

W −AW (I + C∗CW )−1A∗,

which we first rewrite as

W −AW (I + C∗CW )−1 (−C∗CW + I + C∗CW )A∗

and subsequently simplify to

W +AW (I + C∗CW )−1C∗CWA∗ −AWA∗.

So we finally obtain

NB(I +B∗XB)−1B∗N∗ = W +AW (I + C∗CW )−1C∗CWA∗ −AWA∗,

which is easily seen to be equivalent to the desired (11).

From Lemmas 3.2 and 3.3 we obtain the following.

Lemma 3.4. The system  AX B

−T−2
X B∗XA 0
T−1
W CN 0

 , (14)

where
AX := (I +BB∗X)−1A, (15)

is output stable and input-output stable.
The system [

AW −AWC∗T−2
W NBT−1

X

C 0 0

]
, (16)

where
AW := A(I +WC∗C)−1, (17)

is input stable and input-output stable.

9



Proof. The system (14) is the closed-loop system (up to an insignificant simi-
larity transformation in the input space) of the control Riccati equation for the
system (9). So by Lemma 3.2 it is output stable and input-output stable. The
argument for the system (16) is similar, but based on the filter Riccati equation
for (10).

The following important result shows that N intertwines AX and AW .

Lemma 3.5. The following identity holds:

NAX = AWN. (18)

Proof. Using the definitions of AX , AW and N we see that (18) is equivalent to

A(I − LBLC)(I +WC∗C) = (I +BB∗X)(I − LBLC)A,

and using X = LCN and W = NLB this in turn is equivalent to

A(I − LBLC + LBC
∗C) = (I +BB∗LC − LBLC)A,

which is easily seen to be true by using C∗C = LC − A∗LCA and BB∗ =
LB −ALBA∗.

The following formula that relates NA to AN will also be useful.

Lemma 3.6. The following identity holds:

NA = AN −NALBC∗CN +NBB∗LCAN. (19)

Proof. This follows easily after substituting C∗C = LC − A∗LCA and BB∗ =
LB −ALBA∗.

4 J-spectral factorization

The following J-spectral factorization plays a crucial role.[
I G∗

0 I

] [
−I 0
0 I

] [
I 0
G I

]
−X

[
−I 0
0 I

]
X∗ ≤ 0.

The objective is to find a analytic function on the open unit disc X such that the
above inequality holds on the open unit disc. This function X is subsequently
used to define a function K and the above inequality is used to show that this
K is a solution of the suboptimal Nehari problem. It was first realized in [6]
that it is this inequality that is important and not equality on the unit circle,
which was used in all previous approaches via J-spectral factorization to the
Nehari problem.

Our candidate solution is the following.

10



Definition 4.1. Denote by X the transfer function and by X the characteristic
function of the system A −NBT−1

X AWC∗T−1
W

B∗LCA T−1
X B∗LCAWC∗T−1

W

C 0 TW

 . (20)

By an application of Lemma 2.3 we obtain the following stability result.

Lemma 4.2. The system given by (20) is output stable.

Proof. By our standing hypothesis Σ(A,−, C,−) is input-output and output sta-
ble. It then immediately follows from Lemma 2.3 that Σ(A,−, [B∗LCA;C],−)
is output stable and then the same conclusion can be made about the system
(20).

It will prove useful to have the following alternative formula for X.

Lemma 4.3. We have X = X1T with X1 the transfer function of the system A −NB NALBC
∗

B∗LCA I 0
C 0 I

 (21)

and

T :=
[
T−1
X B∗LCAWC∗T−1

W

0 TW

]
. (22)

The corresponding result for characteristic functions also holds.

Proof. The only thing to prove is that

Bh := [−NB,NALBC∗]T =
[
−NBT−1

X , AWC∗T−1
W

]
, (23)

for the first component this is trivial and for the second component this amounts
to proving that

−NBB∗LCAWC∗T−1
W +NALBC

∗TW = AWC∗T−1
W . (24)

Multiplying (19) from the right with LBC
∗ and noting that W = NLB gives

NALBC
∗ = AWC∗ −NALBC∗CWC∗ +NBB∗LCAWC∗,

which after rearranging and multiplication to the right with T−1
W gives (24).

We have the following useful identities involving the operator T .

Lemma 4.4. With the notation

J :=
[
−1 0
0 1

]
,

11



the following identities hold:

TJT ∗ =
[
−I +B∗LCB +B∗LCAWA∗LCB B∗LCAWC∗

CWA∗LCB T 2
W

]
, (25)

TJT ∗
[
−B∗N∗

CLBA
∗N∗

]
=
[
B∗ +B∗LCAWA∗

CWA∗

]
(26)

and

[−NB,NALBC∗]TJT ∗
[
−B∗N∗

CLBA
∗N∗

]
= AWA∗ −W. (27)

Proof. To prove (25) we only need to show that

−T−2
X +B∗LCAWC∗T−2

W CWA∗LCB = −I +B∗LCB +B∗LCAWA∗LCB.
(28)

By the algebraic Riccati equation for W we have for the left-hand side of (28)

−T−2
X +B∗LC

(
AWA∗ −W +NBT−2

X B∗N∗
)
LCB.

Thus (28) is equivalent to

−T−2
X −B∗LCWLCB +B∗LCNBT

−2
X B∗N∗LCB = −I +B∗LCB,

i.e. that

−T 2
XB
∗LCWLCB + T 2

XB
∗LCNBT

−2
X B∗N∗LCB + T 2

X − T 2
XB
∗LCB = I.

Using that LCN = X and LCW = XLB this is equivalent to

−T 2
XB
∗XLBLCB + T 2

XB
∗XBT−2

X B∗XB + T 2
X − T 2

XB
∗LCB = I.

Furthermore, we have B∗XBT−2
X = T−2

X B∗XB so that the above is equivalent
to

−T 2
XB
∗XLBLCB +B∗XBB∗XB + T 2

X − T 2
XB
∗LCB = I.

Using the definition of TX from (8) this is equivalent to

−B∗XLBLCB −B∗XBB∗XLBLCB +B∗XBB∗XB

+B∗XB −B∗LCB −B∗XBB∗LCB = 0. (29)

Combining the first and fourth term on the left-hand side gives

−B∗XLBLCB +B∗XB = B∗X(I − LBLC)B = B∗LCB,

so that these terms cancel against the fifth term on the left-hand side of (29).
The second and third term on the left-hand side of (29) are

−B∗XBB∗XLBLCB +B∗XBB∗XB

= B∗XBB∗X (I − LBLC)B = B∗XBB∗LCB,

12



so that they cancel against the sixth term on the left-hand side of (29). So (29)
holds and consequently (28) and (25) hold.

Using (25) we see that the left-hand side of (26) equals[
B∗ −B∗LCBB∗ −B∗LCAWA∗LCBB

∗ +B∗LCAWC∗CLBA
∗

−CWA∗LCBB
∗ + CLBA

∗ + CWC∗CLBA
∗

]
N∗. (30)

Now using the Lyapunov equations we see that the first component of (30)
equals

B∗ (I − LCLB + LCALBA
∗ − LCAWA∗LCLB + LCAWA∗LCALBA

∗

+LCAWLCLBA
∗ − LCAWA∗LCALBA

∗)N∗.

We see that the fifth and seventh terms cancel against each other. Using that
W = LBN

∗ and the definition of N we obtain

B∗ (I − LCLB + LCAW [(I − LCLB)A∗ −A∗LCLB + LCLBA
∗)])N∗.

Cancelling terms we obtain

B∗ (I − LCLB + LCAWA∗ [I − LCLB ])N∗,

which equals
B∗ +B∗LCAWA∗,

as desired. Using that W = LBN
∗ and the definition of N we see that the

second component of (30) equals

CW (−A∗LCBB∗ + (I − LCLB)A∗ + C∗CLBA
∗)N∗.

Now using the Lyapunov equations we see that this equals

CWHN∗,

with

H := −A∗LCLB +A∗LCALBA
∗ + (I − LCLB)A∗ + LCLBA

∗ −A∗LCALBA∗.

After cancellations we see that this equals

CW (−A∗LCLB +A∗)N∗ = CWA∗,

as desired.
The equality (27) follows by recognizing that the left-hand side equalsBhJB∗h

with
Bh = [−NBT−1

X , AWC∗T−1
W ]

(compare (23)), so that (27) is nothing else than the Riccati equation (11).

The following lemma is proven by more algebraic manipulations.
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Lemma 4.5. On 1/ρ(A) we have[
I G∗

0 I

] [
−I 0
0 I

] [
I 0
G I

]
− X

[
−I 0
0 I

]
X∗ (31)

=
|z|2 − 1
|z|2

([
L
M

] [
L∗ M∗

]
+
[

L∗0
0

] [
L0 0

])
,

where L is the characteristic function of the system[
A W 1/2

B∗LCA 0

]
, (32)

M is the characteristic function of the system[
A W 1/2

C 0

]
, (33)

and L0 is the characteristic function of the system[
A B

L
1/2
C 0

]
. (34)

Proof. We have

XJX∗ = X1TJT
∗X1

= TJT ∗ +
[
B∗LCA
C

](
1
z
−A

)−1

[−NB,NALBC∗]T ∗JT

+ TJT ∗
[
−B∗N∗

CLBA
∗N∗

](
1
z
−A

)−∗
[A∗LCB,C∗]

+
[
B∗LCA
C

](
1
z
−A

)−1

[−NB,NALBC∗]T ∗JT

×
[
−B∗N∗

CLBA
∗N∗

](
1
z
−A

)−∗
[A∗LCB,C∗] .

Using (25), (26) and (27) we see that the right-hand side equals[
−I +B∗LCB +B∗LCAWA∗LCB B∗LCAWC∗

CWA∗LCB T 2
W

]
+
[
B∗LCA
C

](
1
z
−A

)−1

[B +AWA∗LCB,AWC∗] (35)

+
[
B∗ +B∗LCAWA∗

CWA∗

](
1
z
−A

)−∗
[A∗LCB,C∗]

+
[
B∗LCA
C

](
1
z
−A

)−1

(AWA∗ −W )
(

1
z
−A

)−∗
[A∗LCB,C∗] .

14



We proceed by considering the separate components of this 2 by 2 matrix.
The (1,1) component of (35) equals

− I +B∗LCB +B∗LCA

(
1
z
−A

)−1

B +B∗
(

1
z
−A

)−∗
ALCB

+
(

1
|z|2
− 1
)
B∗LCA

(
1
z
−A

)−1

W

(
1
z
−A

)−∗
A∗LCB,

where we have used the identity(
1
|z|2
− 1
)
W

=
(

1
z
−A

)
W

(
1
z
−A

)∗
+AW

(
1
z
−A

)∗
+
(

1
z
−A

)
WA∗ +AWA∗ −W.

Using a similar calculation we obtain

G∗G = B∗
(

1
z
−A

)−∗
C∗C

(
1
z
−A

)−1

B

= B∗
(

1
z
−A

)−∗
×
[(

1
z
−A

)∗
LCA+

(
1
z
−A

)∗
LC

(
1
z
−A

)
+ A∗LC

(
1
z
−A

)
+
(

1− 1
|z|2

)
LC

]
×
(

1
z
−A

)−1

B

= B∗LCA

(
1
z
−A

)−1

B +B∗LCB +
(

1
z
−A

)−∗
A∗LCB

+
(

1− 1
|z|2

)
B∗
(

1
z
−A

)−∗
LC

(
1
z
−A

)−1

B.

where we have used the observation Lyapunov equation.
It follows from the formulas obtained for XJX∗ and G∗G that the (1,1)

component of the left-hand side of (31) equals(
1− 1
|z|2

)
(H1 +H2) ,

with

H1 = B∗
(

1
z
−A

)−∗
LC

(
1
z
−A

)−1

B,

H2 = B∗LCA

(
1
z
−A

)−1

W

(
1
z
−A

)−∗
A∗LCB,

15



as desired. The proof for the other components is obtained by similar tedious
calculations and hence is omitted.

The following lemma gives the corresponding result for transfer functions.

Lemma 4.6. On the open unit disc we have[
I G∗

0 I

] [
−I 0
0 I

] [
I 0
G I

]
−X

[
−I 0
0 I

]
X∗

=
|z|2 − 1
|z|2

([
L
M

] [
L∗ M∗ ]+

[
L∗0
0

] [
L0 0

])
,

where L is the transfer function of the system (32), M is the transfer function
of the system (33) and L0 is the transfer function of the system (34).

Proof. From Lemma 4.5 we obtain equality of the transfer functions in a neigh-
borhood of zero. The transfer functions involved are all analytic on the open
unit disc: for G, M and L0 this follows directly from our stability assumptions,
while for X this follows from Lemma 4.2 and for L this follows using Lemma
2.3. The left- and right-hand sides of the equation are not analytic on the unit
disc, but they are real-analytic there. This last assertion follows from the fact
that both analytic functions and their adjoints are real-analytic and that the
product of real-analytic functions is again real-analytic. By the identity theo-
rem for real-analytic functions the equality holds on the whole unit disc (see [5,
Appendix]).

Remark 4.7. We note that the right-hand sides of the equations obtained in
Lemmas 4.5 and 4.6 are strictly speaking not defined for z = 0, since we divide
by |z|2. Noting that the feedthrough terms of the systems (32), (33) and (34)
are zero this singularity is seen to be removable, i.e. the functions can be con-
tinuously (and even analytically) extended to z = 0. It is in this sense that the
equalities hold in z = 0.

From Lemma 4.6 we deduce the following.

Lemma 4.8. On the open unit disc we have[
I G∗

0 I

] [
−I 0
0 I

] [
I 0
G I

]
≤ X

[
−I 0
0 I

]
X∗.

Proof. The term between brackets on the right-hand side of the equation ob-
tained in Lemma 4.6 is of the form T ∗1 T1 + T ∗2 T2 and so it is nonnegative. The
fraction in front, |z|

2−1
|z|2 , is negative since by assumption |z| < 1. It follows

that the right-hand side of the equation obtained in Lemma 4.6 is, for every
z ∈ D, nonpositive. It follows that the left-hand side is, which gives the desired
inequality.

The following lemma gives important formulas for the inverse of one of the
components of X.
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Lemma 4.9. The inverse of the (2, 2) component of X on the open unit disc is
the transfer function of the input stable and input-output stable system[

AW AWC∗T−2
W

−T−1
W C T−1

W

]
. (36)

Proof. That the characteristic functions of (36) is the inverse of that of the (2,2)
component of (20) follows by an application of Lemma 2.1 together with the
identity

A−AWC∗T−2
W C = AW ,

which is easily proven using only the definition of TW .
That the system (36) is input and input-output stable follows from Lem-

ma 3.4.
Since the characteristic functions of the two systems are inverses it follows

that the product of the two transfer functions equals the identity for z in a
neighborhood of zero. This equality extends to the whole of the open unit disc
since these transfer functions are analytic on the open unit disc by the stability
properties of the given realizations.

5 The inverse of the spectral factor

Definition 5.1. Define V as the transfer function and V as the characteristic
function of the system A B −ALBC∗

T−1
X B∗XA TX −T−1

X B∗XALBC
∗

T−1
W CN 0 T−1

W

 . (37)

Lemma 5.2. The system given by (37) is input stable.

Proof. This follows similarly as Lemma 4.2.

Lemma 5.3. We have V = T−1V1 with V1 the transfer function of the system A B −ALBC∗
B∗LCAN I 0
CN 0 I

 (38)

and

T−1 =
[
TX −T−1

X B∗XALBC
∗

0 T−1
W

]
(39)

the inverse of the operator T defined by (22). The corresponding result for
characteristic functions also holds.
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Proof. We first show that the right-hand side of (39) is indeed T−1. It is easily
seen that the inverse of T defined by (22) is given by[

TX −TXB∗LCAWC∗T−2
W

0 T−1
W

]
. (40)

To show that this equals (39) we need to show that

TXB
∗LCAWC∗T−2

W = T−1
X B∗XALBC

∗,

or equivalently that

B∗LCAWC∗ = T−2
X B∗XALBC

∗T 2
W .

Since W = NLB , with (19) we see that the left-hand side equals

B∗LCN [ALB +ALBC
∗CNLB −BB∗LCANLB ]C∗,

which by using X = LCN and W = NLB is seen to equal

B∗X
[
AN−1 −BB∗XN−1A(I +WC∗C)−1

]
(I +WC∗C)WC∗.

Using (15) and (17) this can be rewritten as

B∗X(I +BB∗X)
[
AXN

−1 − (I +BB∗X)−1BB∗XN−1AW
]
WT 2

WC
∗.

From (18) we have AXN−1 = N−1AW so that the above equals

B∗X(I +BB∗X)
[
I − (I +BB∗X)−1BB∗X

]
AXN

−1WT 2
WC

∗.

Simplifying shows that this equals

B∗XAXLBT
2
WC

∗,

and using (15) shows that this in turn equals

T−2
X B∗XALBT

2
WC

∗,

as desired.
To show that V = TV1 it only remains to show that

T−1
X B∗XA = TXB

∗LCAN − T−1
X B∗XALBC

∗CN.

After multiplying (19) from the left by B∗LC we obtain

B∗LCNA = B∗LCAN −B∗LCNALBC∗CN +B∗LCNBB
∗LCAN.

But LCN = X and so rearranging we obtain

B∗XA = (I +B∗XB)B∗LCAN −B∗XALBC∗CN.

Multplication from the left by T−1
X gives the desired equality.
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The following is the analogue of Lemma 4.9 and is proven similarly.

Lemma 5.4. The inverse of the (1, 1) component of V on the open unit disc is
the transfer function of the output stable and input-output stable system[

AX −BT−1
X

T−2
X B∗XA T−1

X

]
. (41)

Proof. That the characteristic function of the system (41) is the inverse of that
of the (1, 1) component of (37) follows by an application of Lemma 2.1 together
with the identity

A−BT−2
X B∗XA = AX ,

which is easily proven using only the definition of TX .
That the system (41) is output and input-output stable follows from Lem-

ma 3.4.
Since the characteristic functions of the two systems are inverses it follows

that the product of the two transfer functions equals the identity for z in a
neighborhood of zero. This equality extends to the whole of the open unit disc
since these transfer functions are analytic on the open unit disc by the stability
properties of the given realizations.

The following lemma can be proven by algebraic manipulation.

Lemma 5.5. On 1/ρ(A) we have VX = I = XV, where X is the character-
istic function of the system (21) and V is the characteristic function of the
system (38).

Proof. We first note that equivalently we may show that the characteristic func-
tions of the systems (21) and (38) are each others inverses.

Define

Bl := [−NB,NALBC∗], Cl :=
[
B∗LCA
C

]
.

We apply Lemma 2.1 to obtain the inverse of the characteristic function of the
system (21). This is the characteristic function of the system[

A−BlCl Bl
−Cl I

]
. (42)

The system (38) may be written in terms of Bl and Cl as[
A −N−1Bl
ClN I

]
, (43)

provided that
A−BlCl = NAN−1.

But after multiplication from the right by N and substituting the definitions of
Bl and Cl this simplifies to (19)
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The case of transfer functions follows immediately.

Lemma 5.6. On the open unit disc we have VX = I = XV, where X is the
transfer function of the system (21) and V is the transfer function of the system
(38).

Proof. Using Lemma 5.5 for the corresponding result for characteristic func-
tions, the output stability of the system (21) and the input stability of the system
(38) (which follows from the dual version of Lemma 2.3) we obtain the desired
result.

From the previous lemma and the J-spectral factorization inequality obtain
in Lemma 4.8 we obtain the following.

Lemma 5.7. On the open unit disc we have

V
[
I G∗

0 I

] [
−I 0
0 I

] [
I 0
G I

]
V∗ ≤

[
−I 0
0 I

]
.

Proof. This follows from multiplying both sides of the inequality obtained in
Lemma 4.8 from the left with V, from the right with V∗ and using that V is
the inverse of X by Lemma 5.6.

6 The Nehari problem

In this section we give an explicit solution to our Nehari problem using the
inverse J-spectral factor V found in Section 5.

Definition 6.1. Define Z as the transfer function of the system[
A∗X −A∗XXB

CLBA
∗
X −CLBA∗XXB

]
. (44)

Lemma 6.2. The system (44) is input stable.

Proof. Since AX = (I + BB∗X)−1A, we see that the adjoint of the control
operator, B∗XAX , equals (I+B∗XB)−1B∗XA. Using Lemma 3.4, specifically
that the system (14) is output stable, we obtain the desired result.

The following can be proven by algebraic manipulation.

Lemma 6.3. The characteristic function of the system (44) equals the charac-
teristic function of the system[

A∗W −A∗WLCB
CWA∗W −CWA∗WLCB

]
. (45)
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Proof. From (18) it follows by multiplication from the left with LC and from
the right with LB that XAXLB = LCAWW , which in turn implies that the
right-bottom terms in (44) and (45) are equal. Using (18) it follows that the top
right-hand corner of (44) equals that of (45) multiplied from the left by N∗, the
bottom left-hand corner of (44) equals that of (45) multiplied from the right by
N−∗ and the top left-hand corner of (44) equals that of (45) multiplied from the
right by N−∗ and from the left by N∗. In the calculation of the characteristic
functions this causes cancellation, showing that the characteristic functions are
equal.

The following can be proven in a similar manner as Lemma 6.2.

Lemma 6.4. The system (45) is output stable.

Lemma 6.5. The transfer functions of the systems (44) and (45) are equal on
the open unit disc.

Proof. Since the system (44) is input stable, its transfer function is analytic on
the open unit disc. Since the system (45) is output stable, the same holds for
this system. By Lemma 6.3 the characteristic functions of these systems are
equal. So the transfer functions restricted to the open unit disc are analytic
extensions of the same function. By the identity theorem for analytic functions
they must be equal.

The following lemmas relate Z to the J-spectral factor X and its inverse V.
The first of these lemmas deals with the corresponding characteristic functions
and can by proven by algebraic manipulation.

Lemma 6.6. On 1/ρ(A∗) ∩ 1/ρ(A∗X) we have

Z(z) = V12(z̄)∗V11(z̄)−∗. (46)

On 1/ρ(A∗) ∩ 1/ρ(A∗W ) we have

Z(z) = −X22(z̄)−∗X21(z̄)∗. (47)

Proof. We first note that T−2
X B∗XA = B∗XAX , and that if follows from this

equality using Lemma 3.5 that T−2
X B∗XA = B∗LCAWN .

Using Definition 5.1, Lemma 5.4 and the identity T−2
X B∗XA = B∗LCAWN ,

we have

V11(z)−1V12(z)

= −B∗LCAWWC∗ + T−2
X B∗XA

(
1
z
I −AX

)−1

BB∗LCAWWC∗

+ T−2
X B∗XA

(
1
z
I −AX

)−1 [
−
(

1
z
I −AX

)
+BT−2

X B∗XA

]
×
(

1
z
I −A

)−1

ALBC
∗.
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The term in square brackets is easily seen to equal −
(

1
z I −A

)
, so that the

above simplifies to

−B∗LCAWWC∗ + T−2
X B∗XA

(
1
z
I −AX

)−1

[BB∗LCAWWC∗ −ALBC∗] .

The term in square brackets simplifies to −AXLBC∗. Using this, the identity
T−2
X B∗XA = B∗XAX and comparing to the formula for Z in (44) (and (45) for

the constant term) we obtain (46). The equality (47) is proven similarly.

Lemma 6.7. On the open unit disc we have

Z(z) = V12(z̄)∗V11(z̄)−∗ = −X22(z̄)−∗X21(z̄)∗. (48)

Proof. This follows from Lemma 6.6 and the stability properties of the given
realizations of the involved transfer functions.

The following is the main result of this article.

Theorem 6.8. Define K(z) := Z(1/z), where Z is defined as in Definition 6.1.
Then K ∈ H∞(D+,L(U, Y )) and ‖G + K‖L∞(T,L(U,Y )) ≤ 1.

Proof. Noting that all the transfer functions G, V, and Z are holomorphic on
D, we perform some elementary calculations on D. We first verify that[

I
G(z) + Z(z̄)

]
=
[

I 0
G(z) I

]
V(z)∗

[
V11(z)−∗

0

]
by expanding the right hand-side:[

I 0
G(z) I

] [
V11(z)∗ V21(z)∗

V12(z)∗ V22(z)∗

] [
V11(z)−∗

0

]
=
[

I 0
G(z) I

] [
I

V12(z)∗V11(z)−∗

]
=
[

I
G(z) + Z(z̄)

]
,

where by Lemma 6.7
Z(z̄) = V12(z)∗V11(z)−∗

holds on the open unit disc. Using the just established identity we have

(G(z) + Z(z̄))∗ (G(z) + Z(z̄))− I

=
[

I
G(z) + Z(z̄)

]∗ [ −I 0
0 I

] [
I

G(z) + Z(z̄)

]
=
[

V11(z)−∗

0

]∗
V(z)

[
I 0

G(z) I

]∗
×
[
−I 0
0 I

]
×
[

I 0
G(z) I

]
V(z)∗

[
V11(z)−∗

0

]
. (49)
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Applying Lemma 5.7 we obtain

(G(z) + Z(z̄))∗ (G(z) + Z(z̄))− I

≤
[

V11(z)−∗

0

]∗ [ −I 0
0 I

] [
V11(z)−∗

0

]
(50)

= −V11(z)−1V11(z)−∗ ≤ 0.

This shows that the analytic function Z is bounded in norm on D and so it is
in H∞(D,L(U, Y )). We also obtain the estimate ‖G(z) + Z(z̄)‖ ≤ 1 for z ∈ D.
By taking nontangential limits we obtain the same estimate almost everywhere
on the unit circle. It follows from Z ∈ H∞(D,L(U, Y )) that K(z) = Z(1/z)
is in H∞(D+;L(U, Y )). The boundary functions of Z and K are related by
K(ζ) = Z(ζ̄) with ζ on the unit circle. So K satisfies the following for almost
all ζ on the unit circle

‖G(ζ) + K(ζ)‖ ≤ 1.

Remark 6.9. Theorem 6.8 gives one solution of the sub-optimal Nehari prob-
lem. With little extra effort one can actually obtain infinitely many. To show this
we first note that V21V−1

11 equals the second component of the transfer function
of the closed-loop system (as defined by (4)) of the system (9). The proof is very
similar to that of Lemma 6.6. It follows from Lemma 3.2 that ‖V21V−1

11 ‖∞ ≤ 1.
So if ‖Q‖∞ < 1, then V11+QV21 has a well-defined inverse in H∞. Now define
Z(z̄) = (V12(z)∗ + V22(z)∗Q(z)∗)(V11(z)∗ + V21(z)∗Q(z)∗)−1. Entirely anal-
ogously to the proof of Theorem 6.8 it follows that K defined by K(z) = Z(1/z)
is a solution of the suboptimal Nehari problem (Theorem 6.8 being the special
case Q = 0). In the analogue of inequality (50) we used that ‖Q‖∞ ≤ 1 (strict
inequality is not needed for this).

So for any Q ∈ H∞(D,L(U, Y )) with ‖Q‖∞ < 1 we obtain a solution.
From the analogy with similar formulas known to give a parametrization

of all solutions of the suboptimal Nehari problem, one would expect that the
above given linear fractional formula (possibly rewritten in Redheffer form) with
parameter Q ranging over the closed unit ball ‖Q‖∞ ≤ 1 should give rise to all
solutions. However, justification of such a statement would require further work
beyond the scope of the present article.

7 The general case

In this section we make some elementary observations that allow us to obtain
the general case of the suboptimal Nehari problem from the special with D = 0
and σ = 1 considered above.

Remark 7.1. If K is a solution of the suboptimal Nehari problem for data
G −G(0), then K + G(0) is a solution of the suboptimal Nehari problem for
data G.

23



Let a, b > 0. If K is a solution of the suboptimal Nehari problem for data
G/a and parameter b, then aK is a solution of the suboptimal Nehari problem
for data G and parameter ab.

If S := Σ(A,B,C,D) is a realization of G, then Sa := Σ(A,B, aC, aD) is
a realization of aG. If LC is the observability gramian of S, then a2LC is the
observability gramian of Sa.

From the above remark and Theorem 6.8 it follows that if G is the transfer
function of the state space system Σ(A,B,C,D) and σ > ‖HG‖, then the
function K defined for |z| > r(AXσ

) by

K(z) = −D − CLBA∗Xσ
XσB − CLBA∗Xσ

(z −A∗Xσ
)−1A∗Xσ

XσB

extends to K ∈ H∞(D+,L(U, Y )) which satisfies ‖G + K‖L∞(T,L(U,Y )) ≤ σ.
Here

Xσ = (σ2I − LCLB)−1LC ,

AXσ
= (I +BB∗Xσ)−1A.
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