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Design of Ultrahigh-� 1-D Photonic
Crystal Microcavities

Qin Chen, Martin D. Archbold, and Duncan W. E. Allsopp, Member, IEEE

Abstract—Waveguide based 1-D photonic crystal (PC) micro-
cavities in silicon-on-insulator are investigated by 2-D finite-differ-
ence time-domain method. Values up to � � ��� for the quality
factor � � are feasible if the cavities are properly designed. The
factors that govern are analyzed in both real space and mo-
mentum space. Etching down into the SiO� layer is found to give
more than 20% improvement in compared to the structure in
which etching is stopped at the oxide layer. Short air gap mirrors
are used to reduce the vertical scattering loss. The addition to the
Bragg mirrors of tapered periods optimized to produce a cavity
mode with a near Gaussian shaped envelope results in a major re-
duction in vertical loss. A new tapered structure with varying Si
block width demonstrates an ultrahigh- and relieves the fabri-
cation constraints compared to the conventional air slots tapered
structure.

Index Terms—Filters, finite difference methods, microres-
onators, optical resonators, -factor.

I. INTRODUCTION

P HOTONIC microcavities with ultrahigh quality factor
and ultrasmall modal volume have great potential in the

application of low threshold lasers [1], high finesse filters [2],
single photon devices [3], nonlinear optics [4], and slow light
[5]. The per modal volume is the defining charac-
teristic of a resonant cavity. Normally a cavity with a smaller
volume suffers more severely from radiation loss. Photonic band
gaps, like the energy bandgap in semiconductors, opens up en-
tirely new possibilities to achieve an ultrahigh . A local-
ized defect state in a 3-D photonic crystal (PC) gives an infi-
nite and a very small . However, the fabrication of a 3-D
PC in micro- or nano-scale is very difficult using present tech-
niques. Major improvements in the of 2-D PC slab micro-
cavities have been reported by several groups over recent years.
Noda et al. experimentally demonstrated a resonant mode with a

of in a PC slab with air cladding by carefully tuning
the holes close to the cavity and concluded that ultrahigh- is
obtained if the envelope of the cavity mode fits a Gaussian field
profile [6]. Kuramochi demonstrated a cavity based on a line
defect with a loaded of in a PC slab [7]. Recently,
Noda further improved to in their double-hetero-PC
cavity in which the lattice constant was changed at the interfaces
[8].
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A 1-D PC cavity etched into an optical waveguide [9] is an-
other interesting candidate for the high- resonant cavity. Com-
pared to 2-D PC slab cavities with air claddings [6]–[8], 1-D
PC cavity with a one-sided cladding structure possesses strong
mechanical robustness and is thus attractive from the viewpoint
of practical engineering. One main loss source is the etched air
slots, where there is no refractive index contrast in the vertical
direction. The out-of-plane scattering loss, either into the air or
into the substrate, causes a serious degeneration of . In the
earliest report on 1-D PC microcavities, Krauss et al. suggested
the use of short air slots to suppress the scattering loss [10],
but the measured values were just several hundreds [9]–[13],
which are much lower than those of 2-D PC slab cavities. More
recently, significant improvements have been reported. Velha
et al. demonstrated a 1-D PC cavity with tapered reflectors on
silicon-on-insulator (SOI) wafers and obtained a of
[14]. Using a Fabry–Perot model, they estimated that an intrinsic

of could be obtained in a cavity with two tapered
semi-infinite mirrors. Pruessner observed a resonance with a
of in a 1-D PC with a long cavity on SOI wafer by
using a 4-micron-deep Si etch [15]. Lalanne designed a 1-D PC
cavity based on a 2-D SOI geometry using the Fourier-expan-
sion method. By considering the impedance match and radiation
recycling, these researchers obtained a single resonance with a
theoretical as high as together with 89% transmis-
sion in a nonperiodic mirror structure [16].

In this paper, we explore by the finite-difference time-domain
(FDTD) method the effect of etch depth, Si filling ratio in mir-
rors and different kinds of taper on in 1-D PC microcavi-
ties of 2-D SOI geometry. In particular, it is shown that a
value as high as become possible if the mirror pe-
riods closest the cavity region are tapered in an optimal way.
Momentum space analysis of the localized mode reveals that
the improvement results from the tapers suppressing the ampli-
tude of the wave vector components in the leaky region of the
resonant mode, thereby suppressing the vertical radiation loss.

II. METHOD

SOI is emerging as an interesting platform for integrated
nanophotonics due to the high refractive index contrast between
the silicon core and the oxide cladding. This material system
is very well suited for high density integration of photonic
components and circuits which can be fabricated by standard
CMOS technology.

Fig. 1 shows the basic structure used in the simulation work
reported here. It comprises a block of SOI material consisting
of a Si substrate, SiO buffer layer of 1.5 m, the top Si guide
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Fig. 1. Schematic of a 1-D PC cavity on SOI material with 4 pairs of Si/air
mirrors.

layer of 360 nm and the air cladding layer. The refractive in-
dexes of silicon and silicon dioxide are 3.48 and 1.46, respec-
tively. It is assumed that a central cavity layer is then formed by
etching Bragg mirrors, each comprising pairs of Si and air
gap layers. In the 2-D FDTD simulations, the corrugated wave-
guide is assumed to be illuminated from the input waveguide
by the transverse magnetic (TM, ) fundamental mode,
which is a Gaussian-modulated cosine impulse covering a wide
frequency band [17]. The “bootstrapping” technique is used to
set the exciting source [17]. The perfectly matched layer (PML)
absorbing boundary is used to terminate the FDTD calculation
window, with the PML thickness of 0.5 and 1 m in the and

directions, respectively. The spatial cell size is 10 nm, and
the time step is Courant limit [17]. The transmission spectra are
calculated from the power flux recorded at the detector plane,
which is normalised by the source value [18]. The resonance
wavelength is found by fitting a Lorentzian to the transmission
peak and is given by the ratio of the peak wavelength to its
3-dB bandwidth.

By compressing the incident impulse spectral width into a
range narrow enough to ensure that only on-resonance modes
can be excited, we can obtain the mode field distributions
from the FDTD simulation. The spatial Fourier transformation
spectra, which represent the plane wave components of the
cavity mode, are then calculated from these field distributions.

The analysis is valid for 1-D PC structures in 2-D cross sec-
tion geometry, which is an approximation to the actual 3-D
structures. In the case of air slots without transverse waveguide
confinement, our 2-D model neglects the scattering loss in the
third dimension, i.e., reported here is the upper limit. In prac-
tice, the width of the access waveguide must be finite, even ta-
pered [13], to ensure single mode behavior in the PC cavity part
and low insertion loss at each end of the device.

III. CAVITIES WITH SHORT AIR GAP BRAGG MIRRORS

The basis of the simulations is a 1-D PC microcavity with
each reflector comprising 8 pairs of Bragg mirrors. Instead of
quarter wave stacks, high Si filling ratio (defined as

) mirrors are used to realize light confinement and suppress
scattering losses at the interface between Si blocks and air slots
[10].

Fig. 2. Transmission on resonance and � versus the etch depth of mirrors,
where � � ��� nm, �� � ��� nm and �� � �� nm. The field distribution
of the vertical four-layer slab waveguide is shown in the inset.

A. Etch Depth

The etch depth of the air slots is an important factor. Deep
gratings are expected to exhibit strong Bragg reflection effect,
while in practical device fabrication small feature sizes can limit
the etch depth via the aspect ratio dependent etching [19]. Fig. 2
shows the variation of the transmission at resonance and with
etch depth, , at nm, nm, and nm.

increases sharply as the etch depth into the Si guiding layer
increases, then rises more slowly as the air gap penetrates into
the underlying SiO layer and finally saturates for nm.
This behaviour occurs because the confinement of the cavity
mode in a weakly corrugated waveguide is much lower than
that in an etched-through structure where the refractive index
contrast is larger.

The inset of Fig. 2 shows the approximate vertical field
distribution in the device, from which the effect of the etch
depth, , of the air slots on microcavity performance can be
deduced. Since the cavity mode evolves from the slab modes of
the air–Si–SiO feeder waveguides, it will have a similar ver-
tical field distribution. For the very shallow air slots, the mode
mismatch between the input waveguide and the microcavity
is small and the transmission is still high. Increasing the etch
depth, the mismatch increases and the scattering loss increases
with the increasing index contrast [20].

On resonance transmission undergoes a rapid variation with
as a result of two effects. Light couples from the input

waveguide either via butt-coupling of the dielectric waveguide
formed by any residual dielectric layers under the air gap or
via near-field radiation from the effective aperture formed
by end facet created by the air gap. The contribution from
waveguide coupling is governed by the overlap integral of
the two waveguide modes. This decreases with increasing ,
reaching a minimum when the residual waveguide is cut-off. At
the same time the area of the effective aperture formed by the
facet formed by the air gap increases linearly with increasing

and radiative coupling ultimately dominates. Such radiative
coupling saturates when the air gap extends beyond the extent
of the guided mode illuminating the facet. The crossover is ex-
pected to occur when the residual waveguide below the air gap
approaches cut off. This explains qualitatively the behaviour of

in Fig. 2.
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High requires high reflectivity mirrors. For short Bragg re-
flectors, this requirement is met by maximising the effective di-
electric contrast at the interfaces between the low and high index
sections. Having deep air slots increases the effective dielectric
contrast, defined as where is
the full height of the Si waveguide core and is the modal
index for slab mode propagation in the Si blocks of a PC period.
Therefore, increasing gives rise to a rapid increase in Bragg
reflection and hence . Once the air gap is sufficiently deep to
extend over the full range of the vertical mode profile there is
no further increase in and . Overall, deep air slots give
the highest dielectric contrast and thus give the largest and
simultaneously a high transmission.

B. Si Filling Ratio in the Reflector

Varying the Si filling ratio in the reflector changes the reflec-
tivity and relative phase, which affect and the resonant wave-
length. In Fig. 3, and wavelength are shown as functions of Si
filling ratio, where nm, nm, and are
changed around central values of 200 and 90 nm, respectively.

At a fixed air gap length as in Fig. 3(a), the resonance wave-
length is found to increase almost linearly with the Si filling
ratio, where the effective light propagation distance in one pe-
riod of mirrors increases linearly with the increasing width of
Si blocks. When changing the width of air slots at a fixed width
of Si blocks, a similar relation is observed in Fig. 3(b), where
a decrease of Si filling ratio means an increase in the width of
air slots and effective light propagation. In both cases, the reso-
nance wavelength is very sensitive to the widths of air and sil-
icon blocks used in the mirrors, for example, a systematic 10 nm
fabrication error in the width of Si blocks will cause a 20 nm
offset in the resonance wavelength.

In practical device fabrication, the period is in ef-
fect fixed and both types of error will occur owing to limited
processing tolerances. This situation is considered in Fig. 3(c)
where is fixed at 290 nm and both and are varied
for Si filling ratios around 0.7 (achieved when nm,

nm). Now the resonant wavelength, , shows a vari-
ation of only 2 nm, essentially fixed at 1.67 m, over a range
of Si filling ratios that corresponds to a nm fabrication
error. This demonstrates that is a robust parameter in 1-D
PC microcavity design and fabrication although is more de-
pendent on process tolerances. Compared to the optimum for

m, a smaller Si filling ratio results in larger scat-
tering loss at the interface between Si blocks and air slots, whilst
a larger ratio results in lower reflection by the reflectors, both ef-
fects reducing .

C. Cavity Length

Transmission and are calculated with different cavity
length as shown in Fig. 4. Around 400 nm, trans-
mission increases from 340 nm to 460 nm and has a
maximum at 360 370 nm. When increases, the
resonance moves close to the bandgap edge and suffers more
loss. When decreases, transmission disappears. Therefore,
there is a tradeoff when choosing the cavity length. In later
sections, is set to be 400 nm, which supports both reasonable
high transmission and .

Fig. 3. Resonance wavelength and � versus Si filling ratio in the reflectors.
(a) �� is stepped in the sequence 180, 190, ..., 260 nm, �� � constant = 90 nm.
(b) �� = constant= 200 nm, dL stepped in the sequence 50, 60, ..., 150 nm.
(c) �� stepped in the sequence 140, 150, ..., 240 nm, �� � �� � constant =
290 nm.

D. Number of Mirror Periods

Fig. 5 shows the transmission and as functions of the
number, , of mirror pairs for a structure of the generic type
shown in Fig. 1. The variation of can be divided into three
stages. Firstly, increases exponentially when is less than
10. Secondly, it increases slowly from to 16. Thirdly,
it becomes saturated when is larger than 16.

In a 2-D model of a 1-D PC cavity in SOI slab waveguide as
shown in Fig. 1, there are two loss mechanisms. One is the longi-
tudinal radiation loss, which depends on the degree of light con-
finement due to the Bragg mirrors, and the other is the vertical
radiation loss caused by the mode coupling between the reso-
nant mode in the cavity and the radiation mode in the cladding

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:41:12 EDT from IEEE Xplore.  Restrictions apply. 



236 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 3, MARCH 2009

Fig. 4. Transmission and� versus the cavity length, where � = 650nm, �� =
200 nm and �� = 90 nm. On resonance wavelengths are also shown.

Fig. 5. Transmission and � versus mirror pairs � , where �� = 200 nm, ��
= 90 nm, � = 400 nm, and � = 650 nm.

layer. With two such loss mechanisms, the of a 1-D PC mi-
crocavity can be given by

(1)

In (1) and are the values the quality factor would take
if, respectively, longitudinal loss or vertical loss were the sole
degradation mechanism. Since behaves in a similar way to
the conventional loss mechanisms in a Fabry–Perot resonator,
it will increase exponentially with increasing number, , of
mirror periods whereas the longitudinal confinement has only
a slight effect on . Therefore, for small the longitudinal
loss dominates the total loss, i.e., and, from (1),

. This corresponds to region of the dependence of
on shown in Fig. 5. With an increase in , the longi-

tudinal and vertical loss become comparable, i.e., ,
and have almost the same effect on , region II of Fig. 5. With
further increase in , the vertical loss becomes dominant, i.e.,

, and saturates a value limited by , region III
of Fig. 5.

From Fig. 5, is found to be about . No matter
how many mirrors are located at each side of the central cavity,

can not be larger than . Obviously, this is much lower than
those observed in 2-D PC cavities [8]. Transmission is found to
decrease quickly with . The main reason is the increase of the
out-of-plane scattering loss from the mirror interfaces induced
by the additional mirrors [20], [21]. Increasing reflection also

contributes to the decrease of the transmission. As shown in
Fig. 5, greater than 50% of incident power is scattered out when

is larger than 8. If this cavity is used as a filter, a tradeoff
between transmission and has to be considered.

E. Momentum Space Analysis

As in 2-D PC slab cavities, 1-D PC cavities with periodic
structures in one direction do not have a complete photonic band
gap. The light confinement is realized by total internal reflection
in the two other directions. The localized mode in the cavity can
be seen as a combination of numerous plane wave components
with wave vectors , which may couple with the radiative modes
in the cladding layer. The inevitable vertical radiation loss pre-
vents the ultrahigh- resonance. The mode field in such a struc-
ture can be written as:

(2)

(3)

where and are the vertical and tangential components of
wave vector , and is the resonant wavelength. If lies within
the range , is a real number, which means the mode
is not confined in the vertical direction. All plane wave compo-
nents having in the range of (called the leaky region
below) result in the vertical loss of the resonant mode. The spa-
tial Fourier transform (SFT) of the longitudinal field distribution
provides the spectral distribution of its plane wave components
and enables analysis of the vertical loss [6], [22].

Fig. 6 shows the electric field distribution of the resonant
mode in the longitudinal direction in 1-D PC microcavities for

and . The dotted lines in Figs. 6(a) and 6(b) in-
dicate the position of the central cavity relative to the mode field
profiles. As Fig. 6(a) reveals, the longitudinal field of the cavity
mode is antisymmetric with respect to a vertical symmetry plane
through the centre of the cavity.

Although the of the microcavity formed by mir-
rors, at , is times higher than that with
mirrors, the normalized integral of the spectral intensity over
the leaky regions of the SFTs are and for

8 and 16, respectively. This indicates a reduction of only
1.5 times in the vertical loss by 8 additional mirror pairs. This

is reasonable because the electric field profile around the cen-
tral cavity in the longitudinal direction shows no obvious change
with the increase in the number of mirror periods, as can be seen
in Fig. 6(b). The slightly higher integrated spectral intensity in
the leaky region for the structure, compared to that of
the device, derives from its different electric field dis-
tribution at the outer edge of the reflectors. The stronger electric
field variation at the boundary of the whole structure at
introduces an additional vertical radiation loss.

IV. CAVITIES WITH TAPERED MIRRORS

In 2-D PC microcavity technology, tailoring the positions of
the holes around the cavity is a proven method for achieving ul-
trahigh by suppression of spectral components of the resonant
mode lying in the leaky region of momentum space [8]. The the-
oretically optimum shape for the field envelope of the resonant
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Fig. 6. Electric field profile (solid line) at the boundary between the top Si
layer and the oxide buffer layer in a 1D PC cavity for (a)� �8 and (b) � �

16, other parameters are the same as those in Fig. 5. The fitting curve obtained
by Gaussian envelope function for ) 16 and the right half of the profile in (a) are
plotted in (b) as a dash dot line and a dashed line for comparison. “B” and “C”
separated by the dot line indicate Bragg mirrors and the central cavity.

mode is a sinc function as its SFT is rectangular and can be engi-
neered not to overlap with the leaky range of components. A
Gaussian shaped envelope has been shown to be a practical alter-
native, requiring less rigorous optimization [6], [8]. It is shown
here that mirror pairs with tapering variations in their period-
icity fulfil the same role in increasing by creating a nearly
Gaussian shaped envelope for the cavity mode in 1-D PC mi-
crocavities as optimal holes positioning have in 2-D structures.

A. Linearly Varying Air Gap Tapers

Linearly tapered air slots are discussed in this section, where
the minimum value of air gap considered is 50 nm, a limit
beyond which fabrication becomes difficult. Tapers are added
to the Bragg reflectors by reshaping the four air slots in each
mirror closest to the central cavity layer so that their widths
increase from 50 to 80 nm, in steps of 10 nm, moving away
from the cavity while the Si section lengths remain constant.
Fig. 7 shows the variations in (open squares) and transmis-
sion (solid squares) with the total number of mirror periods, .
The variations in and transmission with follows the trends
shown in Fig. 5, except that the saturated value of , i.e., ,

Fig. 7. Transmission and � versus the number of mirror pairs in a 1D PC
microcavity with linearly (square symbols, four air slots close to the central Si
cavity at each side are 50, 60, 70, 80 nm wide) and nonlinearly (circular symbols,
three air slots close to the central Si cavity at each side are 50, 70, 80 nm wide)
tapered mirrors. Other parameters are the same as those in Fig. 5.

Fig. 8. Electric field profile (solid line) at the boundary between the top Si
layer and the oxide buffer layer in a 1D PC cavity with linear tapers for � �

14, other parameters are the same as those in Fig. 7. The fitting curve obtained
by Gaussian envelope function and the electric field profile in the nontapered
structure at � � 16 [Fig. 6(b)] are plotted as a dash dot line and a dashed
line for comparison. The regions labeled “B,” “T,” and “C” and delineated by
the dotted lines indicate the positions of the normal Bragg mirrors, tapers and
the central cavity relative to the mode field (only distribution at the half region
� � � are plotted).

has increased significantly from in Fig. 5 to
with the introduction of tapers.

The electric field variation in the longitudinal direction is
shown in Fig. 8 for the linearly tapered 1-D PC cavity at

. Due to the antisymmetric property of the mode profile, only
the distribution in a half region is plotted for clarity. The
electric field profile (solid line) around the central cavity in the
tapered structure agrees well with the fitting curve obtained by
Gaussian envelope function (dash dot line). On the other hand,
the electric field profile in a nontapered structure (dashed line)
shows a marked departure from the Gaussian profile, notably
over the normalized distance . The normal-
ized integral of the difference between the electric field profile
and the Gaussian fitting curve is about 0.6% in the region of

0.5 for the linearly tapered structure for ,
however, it is as high as 4.7% in the nontapered structure for

. It can be seen that the electric field profile now changes
more gently around the central cavity than it does in the nonta-
pered structure to reduce the vertical loss.
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This is verified by the normalized integral of the spectral in-
tensity in the leaky region of SFTs, which are and

in the tapered structure for and
, respectively, a 20-times suppression of vertical radia-

tion loss compared to the nontapered structure. Although the
of the tapered microcavity is less than that

of the cavity without tapers considered in Fig. 6(b), it
is now limited by longitudinal loss and hence by rather by

as in the case of the latter. The reduction of the intensity
of the wave vector components in the leaky region, indicates a
method to obtain an ultrahigh via increases in by the use
of tapers. For example, values as high as result from
incorporating linear tapers with 50, 70, and 90 nm air slots in-
creasing from the cavity edge towards the unperturbed mirrors.

For both linearly varying air gap tapers considered in this
section, the transmission is significantly improved compared
to the nontapered structures with the same number of mirror
pairs. However, transmission still drops rapidly with increasing
number of mirror pairs.

B. Nonlinear Tapers

Whilst Bloch wave engineering offers a design method for
increasing the transmission [16], it is shown here that nonlinear
tapers provide a flexible alternative to optimize the field pro-
file around the boundary of the central cavity in order to match
the desired Gaussian profile. Even higher , around ,
is obtained in a structure with three pairs of tapered mirrors at
each side, i.e., 50, 70, 80 nm, where is the width of
the air gap numbered from the central cavity, together with
16 pairs of periodic mirrors. A 100 times improvement is ob-
tained compared to the nontapered structure. The whole cavity
length is around including the reflectors. Transmission and

versus mirror pairs are shown as circular symbols in Fig. 7.
The transmission also improves significantly, with the nonlinear
tapers making theoretically possible a 1-D PC microcavity with

with 75% transmission.

C. Si Blocks Tapers

As discussed above and in [11], [12], tapers are usually
formed by systematically reducing the width of the air slots.
This creates a problem in practical device fabrication arising
from the impact of aspect ratio dependent etching of the nar-
rower air slots [19]. If instead the air slots in the tapers are kept
the same as in the normal periodic mirrors (in this work 90 nm)
and the widths of the Si blocks now are tailored to match
the field profile with the Gaussian function, the fabrication
constraints are eased. This is due to the optimum width of the
Si block in a PC period being larger than the air gap.

If the widths of just the first Si block on each side of the
central layer are reduced from 200 to 180 nm, increases
to . If two mirror periods are altered so that in each
Bragg reflector the two Si blocks closest to the central cavity
are 170 and 180 nm, respectively, a of is obtained.
A as high as is obtained when the widths of the
three Si blocks in each reflector closest to the central cavity are
170, 180, and 190, nm respectively. To the best of our knowl-
edge, this is the record predicted value for a 1-D PC microcavity

Fig. 9. Transmission and� versus mirrors pairs in a 1-D PC microcavity with
Si block tapers. The tapers are formed by, on each side, adjusting the widths
of the three Si blocks closest to the central Si cavity to 170, 180, 190 nm
increasing towards to unmodified Bragg reflectors whilst keeping the air gap
widths constant.

from a 2-D FDTD model. Transmission and for this 3 period
variable width Si block fixed air gap taper are shown as func-
tions of the mirrors pairs in Fig. 9. Compared to the nontapered
structure, both transmission and show a major improvement.
The transmission of a resonance with a above is larger
than 70% and that with a above is above 90%, which
is ideal for applications in nonlinear optics. At the same time,
structures with nontapered air slots are much easier fabricated
since the minimum feature size can now be as large as 90 nm.

V. MODAL AREA

Finally, the modal area in the 2-D model can be used as
an alternative to modal volume in order to investigate the
variation of mode size due to the cavity reshaping. Similar to
the definition of in [1], can be written as

(4)

where is the electric field profile, is the dielectric con-
stant and is the position vector. The calculated modal area for
the untapered cavity with the mode envelope shown
in Fig. 6(b) and the nearly equivalent structure with
tapered Si blocks (Fig. 9) are 0.1205 and 0.1263 m , respec-
tively. The cavity tailoring improves by around 300 times but
keeps the mode volume almost constant, giving rise to almost
equivalent improvement in .

VI. CONCLUSION

In conclusion, the FDTD method has been used to demon-
strate how the structure of a SOI 1-D PC microcavity can be
optimized to support an ultrahigh resonance yet retain ac-
ceptably high transmission. Using a 2-D model, it is shown how
tapers inserted between the central cavity section and the Bragg
reflectors can be used to shape the envelope of the resonant
mode to minimize the vertical radiation loss. Analysis of the
spatial Fourier transform of the cavity field has revealed that the
tapers have much the same effect as optimizing the positions of
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the holes in 2-D PC SOI microcavities in reducing the intensity
of leaky spectral components of the resonant mode.

In particular, two new forms of taper are considered, both of
which result in predicted of greater than . The first
comprises three PC periods in which the Si block width is kept
constant whilst the air slots are increased nonlinearly from the
central section of the cavity towards the Bragg reflectors. The
second comprises tapers are formed by optimizing the widths
of the first three Si blocks in each mirror nearest the central
section whilst keeping the air slots constant. The latter approach
yielded a resonance with as high as . The same
basic structure can be detuned by using fewer PC periods in the
reflectors to achieve simultaneously theoretical approaching

with transmission. Whilst the 3-D nature of any
practical 1-D PC microcavity of the type considered here will
lead inevitably to lower in practice, the design features for
simultaneous high and high revealed by the 2-D FDTD
modeling reported here are expected to be robust.
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Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turn-
stile device,” Science, vol. 290, pp. 2282–2285, 2000.

[4] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale sil-
icon electro-optic modulator,” Nature, vol. 435, pp. 325–327, 2005.

[5] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama,
“Trapping and delaying photons for one nanosecond in an ultrasmall
high-Q photonic-crystal nanocavity,” Nature Photon., vol. 1, pp. 49–52,
2007.

[6] Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic
nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425,
pp. 944–947, 2003.

[7] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe,
“Ultrahigh-Q photonic crystal nanocavities realized by the local width
modulation of a line defect,” Appl. Phys. Lett., vol. 88, p. 041112,
2006.

[8] T. Asano, B. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocav-
ities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Topics
Quantum Electron., vol. 12, no. 6, pp. 1123–1134, Nov./Dec. 2006.

[9] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S.
Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen,
“Photonic-bandgap microcavities in optical waveguides,” Nature, vol.
390, pp. 143–145, 1997.

[10] T. E. Krauss and R. M. De La Rue, “Optical characterization of wave-
guide based photonic microstructures,” Appl. Phys. Lett., vol. 68, pp.
1613–1615, 1996.

[11] M. Palamaru and P. Lalanne, “Photonic crystal waveguides out-of-
plane losses and adiabatic modal conversion,” Appl. Phys. Lett., vol.
78, pp. 1466–1468, 2001.

[12] D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short
Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett., vol.
81, pp. 829–831, 2002.

[13] A. S. Jugessure, P. Pottier, and R. M. De La Rue, “One dimensional
periodic photonic crystal microcavity filters with transition mode
matching features embedded in ridge waveguides,” Electron. Lett.,
vol. 39, pp. 367–368, 2003.

[14] P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard,
T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap
mirrors in a ridge SOI waveguide,” New J. Phys., vol. 8, p. 204, 2006.

[15] M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated
waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,”
Opt. Lett., vol. 32, pp. 533–535, 2007.

[16] P. Lalanne and J. P. Hugonin, “Bloch wave engineering for high-Q,
small-V microcavities,” IEEE J. Quantum Electron., vol. 39, no. 11,
pp. 1430–1438, Nov. 2003.

[17] A. Taflove, Advances in Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Boston, MA: Artech House, 1998,
vol. 13, pp. 561–612.

[18] Q. Chen, Y.-D. Yang, and Y.-Z. Huang, “Distributed mode coupling in
microring channel drop filters,” Appl. Phys. Lett., vol. 89, p. 061118,
2006.

[19] C.-K. Chung, “Geometrical pattern effect on silicon deep etching by
an inductively coupled plasma system,” J. Micromech. Microeng., vol.
14, pp. 656–662, 2004.

[20] H. Bensity, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T.
F. Krauss, R. M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and
D. Cassagne, “Optical and confinement properties of two-dimensional
photonic crystals,” J. Lightw.Technol., vol. 17, no. 11, pp. 2063–2077,
Mar. 1999.

[21] S. Blair and J. Goeckeritz, “Effect of vertical mode matching on de-
fect resonances in one-dimensional photonic crystal slabs,” J. Lightw.
Technol., vol. 24, no. 3, pp. 1456–1461, Mar. 2006.

[22] K. Srinivasan and O. Painter, “Momentum space design of high� pho-
tonic crystal optical cavities,” Opt. Exp., vol. 10, pp. 670–684, 2002.

Qin Chen received the B.Sc. degree in physics from Wuhan University, Wuhan,
China, in 2001, and received the Ph.D. degree in microelectronics and solid state
electronics from Institute of Semiconductors, Chinese Academy of Sciences,
Beijing, China, in 2006. His Ph.D. research work focused on the microlasers
and microresonant filters.

Since 2007, he has been working as a research officer in Department of Elec-
tronic and Electrical Engineering in University of Bath, Bath, U.K. His research
interests include nanoimprint technology, design and fabrication of microres-
onator and photonic crystal devices.

Martin D. Archbold received the M.Sci. degree in Physics from Imperial
College London, U.K., in 1999 and the Ph.D. degree in the field of thin film
photovoltaic devices from the University of Durham in 2007.

Since 2007 he has been working in the Department of Electronic and Elec-
trical Engineering, University of Bath, Bath, U.K., as a Research Officer. His
research interests include photonic crystal device structures, nanoimprint tech-
nology, and porous alumina nanotemplate fabrication.

Duncan W. E. Allsopp (M’89) received the B.Sc. degree in physics and the
M.Sc. and Ph.D. degrees from the University of Sheffield, Sheffield, U.K., in
1971, 1974, and 1977, respectively.

From 1977 to 1979, he was with Ferranti Electronics, Ltd., developing high-
speed Si bipolar transistors. From 1979 to 1984, he was with the University of
Manchester Institute of Science and Technology, Manchester, U.K., researching
defects in semiconductors, and from 1984 to 1986, he was with British Telecom
Research Laboratories, Martlesham Heath, U.K. In 1986, he joined the Univer-
sity of York, York, U.K., where he established a group researching photonic de-
vices. Since 1999, he has been in the Optoelectronics Group, University of Bath,
Bath, U.K., where he is currently a Royal Academy of Engineering/Leverhulme
Trust Senior Research Fellow, where he continues his research into photonics.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:41:12 EDT from IEEE Xplore.  Restrictions apply. 


	cover
	chen-45-3-2009

